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Environmental contours as Voronoi cells

Andreas Hafver · Christian Agrell · Erik Vanem

Abstract Environmental contours are widely used as basis for design of structures exposed to
environmental loads. The basic idea of the method is to decouple the environmental description
from the structural response. This is done by establishing an envelope of joint extreme values
representing critical environmental conditions, such that any structure tolerating loads on this
envelope will have a failure probability smaller than a prescribed value.

Specifically, given an n-dimensional random variable X and a target probability of failure pe,
an environmental contour is the boundary of a set B ⊂ Rn with the following property: For any
failure set F ⊂ Rn, if F does not intersect the interior of B, then the probability of failure,
P (X ∈ F), is bounded above by pe. We work under the assumption that failure sets are convex,
which is relevant for many real-world applications.

In this paper, we show that such environmental contours may be regarded as boundaries of
Voronoi cells. This geometric interpretation leads to new theoretical insights and suggests a simple
novel construction algorithm that guarantees the desired probabilistic properties. The method is
illustrated with examples in two and three dimensions, but the results extend to environmental
contours in arbitrary dimensions. Inspired by the Voronoi-Delaunay duality in the numerical dis-
crete scenario, we are also able to derive an analytical representation where the environmental
contour is considered as a differentiable manifold, and a criterion for its existence is established.

Keywords Multivariate extremes · Convexity · Computational geometry · Differential geometry

1 Introduction and background

1.1 Environmental contours for multivariate extremes analysis

Extreme value analysis typically involves estimating probabilities of rare events or conversely,
the values of random variables associated with small probabilities of being exceeded, i.e. high
return values associated with long return periods. In the univariate case, such return values are
often estimated by quantiles associated with a certain probability of being exceeded. Typically,
return periods are long compared to the amount of data that are available, and there is a need to
extrapolate beyond the support of the data. Two commonly used approaches for univariate extreme
value analysis are the so-called block maxima approach and the peak over threshold approach,
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where specific probability distributions are known to asymptotically describe the tails of the
underlying distributions well, under certain conditions; the generalized extreme value distribution
for block maxima and the generalized Pareto distribution for peaks over threshold (see e.g. [14]).

In a multivariate, setting, the notions of return period and return values are ambiguous. There
are various definitions of a multivariate extreme, as discussed in [65,22,72,74], giving rise to
different versions of multivariate quantiles [13]. The following discussion considers the bivariate
case for simplicity, but may easily be generalized to higher dimensions. Typically, a bivariate
quantile will be vector-valued and can be expressed on the following form [13]:

QX,Y (p, ε) =
{
(x, y) ∈ R2 : Fε(x, y) = p

}
,

where Fε(x, y) correspond to some exceedance or non-exceedance event. Different types of ex-
ceedance events give rise to different type of multivariate quantiles and hence different meanings
of a multivariate extreme.

Moreover, even with a specific definition of a bivariate extreme, corresponding to a specific
choice of Fε(x, y), there will not be a unique solution to the extreme quantile problem. Given a
pair (x, y) that satisfies the definition of the extreme quantile, one may increase x slightly and
reduce y in such a way that the condition is still fulfilled [62]. Hence, there is a continuum of
solutions to the extreme value problem in the bivariate, and more generally in the multivariate,
case. Hence, the solution will be a curve or a contour in the variable space associated with a
non-exceedance probability defined in some way.

Two commonly used examples are the so-called OR and AND events defined in the following
ways, where F· denotes the cumulative distribution function,

QOR
X,Y (p) =

{
(x, y) ∈ R2 : P (X ≤ x, Y ≤ y) = 1− p

}
=

{
(x, y) ∈ R2 : FX,Y (x, y) = 1− p

}
,

QAND
X,Y (p) =

{
(x, y) ∈ R2 : P (X ≥ x, Y ≥ y) = p

}
=

{
(x, y) ∈ R2 : FX(x) + FY (y)− FX,Y (x, y) = 1− p

}
.

The OR extreme event is defined in terms of simultaneous non-exceedance of the multivariate
variables, whereas the AND extreme event is defined in terms of simultaneous exceedance [16].
These definitions correspond to different quantile regions, and different applications would be
in favour of using different definitions. Environmental contours represent yet other definitions
of multivariate extremes, and there exist different types of contours. Typically, environmental
contours are defined in terms of the probability of exceeding a hyperplane, in either physical
variable space or a transformed standard normal space, and correspond to marginal exceedances
in different directions. Hence, an extreme event along direction θ can be defined as

QEC1
X,Y (p; θ) =

{
(x, y) ∈ R2 : P (X cos(θ) + Y sin(θ) ≥ x cos(θ) + y sin(θ)) = p

}
, (1)

for θ ∈ [0, 2π].
Other definition of environmental contours, proposed in e.g. [25,12], correspond to multidimen-

sional quantile regions associated with total exceedance probabilities [20,7], see e.g. the discussion
in [47].

Some different definitions of bivariate extremes are illustrated in Figure 1 (reproduced from
[76]), where the probability of being in the shaded areas correspond to the exceedance proba-
bility p. The two first plots correspond to OR and AND extreme events, respectively, the third
plot corresponds to environmental contours based on exceedance hyperplanes and the final plot
corresponds to the overly conservative definitions in terms of total exceedance probabilities.

In this paper, environmental contours defined in terms of the probabilities of exceeding hyper-
planes in physical space will be considered. It is noted that such contours will yield conservative
results in structural design if the failure region of a structure is convex. Other contours defined
in terms of total exceedance probabilities will always be conservative, for any failure region, but
will then be overly conservative if the failure region is indeed convex. For most physical systems,
assuming convex failure regions is reasonable, see e.g. some examples in [70].

Environmental contours are often used in probabilistic structural reliability applications, where
structural failure may occur in extreme environmental conditions. Hence, the interest is in iden-
tifying extreme environmental conditions associated with a small probability of occurrence. A
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Fig. 1: Different definitions of bivariate extremes

performance function, g is often defined in terms of a set of environmental stochastic input vari-
ables, X = (X1, X2, . . . , Xp)

T , so that the structure is deemed safe if g(X) > 0 and will fail if
g(X) < 0. g(X) = 0 defines the so-called limit state function and is the boundary between the safe
and unsafe regions of the input space. If the environmental variables have joint density function
fX(x), then the reliability R and the probability of failure Pf of the structure can be calculated
from

R = 1− Pf = P [g(X) > 0] =

∫
g(X)>0

fX(x)dx.

These integrals will typically be difficult to solve, and both the joint probability density function
fX(x) and the performance function g(X) can be complicated functions. One common approximate
method to solve this problem, is the first order reliability (FORM) method, where the failure
boundary at the design point is approximated by a first-order Taylor expansion, see e.g. [29,35] for
more details. Typically, it will be assumed that such a linearisation introduces some conservatism,
since most structures are likely to have convex failure regions.

With environmental contours, one essentially addresses the inverse problem. Rather than com-
puting the failure probability of a given structure, one assumes that the failure probability is
given and then explores what restrictions this poses on possible designs. Environmental contours
are typically used in long-term extreme response assessment, and the underlying assumption is
that extreme environmental loads and structural responses occur in extreme environmental condi-
tions described by the environmental contours. That is, if the structure can be found to survive all
environmental conditions along the environmental contours for a specified exceedance probability,
it can be deemed safe according to associated reliability targets. In this way, computationally
expensive response analyses may only be carried out for a limited set of environmental conditions
in order to perform long-term extreme response analyses. Environmental contours also effectively
de-couples the environmental descriptions from the structural problem, and once established, a set
of environmental contours may be applied to a range of different structural designs. Environmen-
tal contours are hence not a function of the performance function of the structure (which is often
unknown and can only be calculated for particular input by computationally heavy calculations),
but only relies on the joint distribution of the environmental input variables. This latter is typi-
cally established based on fitting parametric distributions to data of the environmental variables,
for example using the conditional modelling approach [11,31] using copulas [79,69], the condi-
tional extremes model [30,67], or any other modelling approach [38]. In this context, statistical
distributions that accurately captures the tail behaviour of multivariate environmental data are
very relevant, for example based on multivariate extensions of extreme value theories such as the
Pickands-Balkema-de Haan theorem, see e.g. [40,15,61].

Considering the various definitions of extremes, as illustrated in Figure 1, which one is most
appropriate will depend on the application (i.e. the shape of the limit state function), and the
shaded areas in the plots should best correspond to the failure region. It can be seen that the
extremes defined in terms of exceedance hyperplanes correspond to a linearisation of the failure
surface, and is in line with the rationale behind the FORM approximation. For convex failure sets,
this will represent a conservative estimate of the failure probability.

1.2 A brief review of environmental contours

The use of environmental contours is a well-established practice in design of marine structures, and
helps the designer to identify design sea states corresponding to extreme environmental loads asso-
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ciated with a certain return period. The concept of environmental contours is an efficient method
for estimating multivariate extreme conditions, and it is an alternative to full long-term response
analysis in situations where this is not feasible. An environmental contour is a set constructed
based on a joint probability distribution for the relevant input parameters, for example significant
wave height and wave period. The environmental contour method is advised in standards and
recommended practices such as [23,57].

The concept of environmental contours was first introduced by [26,27] as a means to study
the joint distribution of significant wave height and wave period of ocean waves. These early envi-
ronmental contours were based on constant densities, but the concept of environmental contours
was developed further by [80] by using the Inverse First Order Reliability Method (IFORM) and
considering exceedance probabilities in the transformed standard normal space [29]. The IFORM
method avoids unnecessary conservatism in the equi-density contours [41], and has since then be-
come the most applied contour method. Several applications of the environmental contour method
in marine engineering and design are reported in the literature [56,81,5,64,6,3,4,39,28,54]. A com-
parison study presented in [1] investigated the influence of the choice of contour method on some
vessel responses.

Environmental contours continues to be an active area of research, and several modified ap-
proaches have been suggested in recent years, e.g., a dynamical IFORM method [45], a modified
approach to account for non-monotonic behaviour of the responses [43], an approach including
pre-processing and principal component analysis prior to estimate IFORM contours [19], contours
for sub-populations such as directional sectors or seasonality [72,33], contours for a combination of
circular and linear variables [24], contours for copula-based joint distributions [68,51] and contours
based on a direct IFORM approach [18]. Contours for buffered failure probabilities were proposed
in [17] and contours based on a particular version of the inverse second order reliability method
(ISORM) were derived in [12]. Recently, the initial equi-density method was revisited in [25].
The uncertainties associated with environmental contours due to uncertainties in the underlying
joint distribution model and due to sampling variability are investigated in [53] and [77], respec-
tively, and weighted environmental contours based on combining data from different datasets were
explored in [73]. Reviews of various contour methods are presented in e.g. [48,62].

An alternative approach to constructing environmental contours that avoids the transformation
into standard normal space, but rather defines exceedance probabilities in the original parameter
space, was proposed in [35,37]. This is based on Monte Carlo simulations from the joint distribu-
tion of environmental parameters. Initial inaccuracies due to insufficient number of Monte Carlo
samples were overcome by a scheme for tail sampling as outlined in [36]. It is argued that the
contours obtained in this way have more well defined probabilistic properties. An evaluation of
the properties of the IFORM-based environmental contours is presented in [34]. However, in some
situations it is found that the direct sampling contours may contain irregularities in the form of
small loops, as discussed in [37]. One reason for this is related to the Monte Carlo variance and
the fact that the contours are estimated with respect to a finite sample from the joint distribu-
tion, and the issue may be resolved by increasing the number of Monte Carlo samples. However,
the reason may also be genuine features of the underlying joint distribution, i.e. that the joint
distribution does not admit a proper convex environmental contour. An illustrative example is
given in [37], which shows a scenario where it is not possible to obtain an environmental contour
with the property that the exceedance probability for each supporting hyperplane is constant. We
reproduce this example herein, in Figure 4.

A comparison study on the IFORM and the Monte Carlo-based approach to environmental
contours was presented in [75], which demonstrated that in certain cases, notably different contours
are obtained. The comparison study was extended to consider various simple structural problems
in [70] and to compare contour-based methods to response-based methods in [78].

Even though many structural problems depend on more than two environmental variables, most
applications of environmental contours are restricted to two-dimensional contours. For example, in
the multivariate problem addressed in [55], environmental contours were only calculated for pairs of
variables. However, some examples of three-dimensional contours based on the IFORM approach,
are shown in [44,63,59,52]. An extension of the direct sampling approach to three-dimensional
problems was outlined in [71], and this method was applied to the tension in a mooring line of
a semi-submersible in [60]. However, even though extensions of the direct sampling approach to
environmental contour to higher dimensional problems is indeed possible, calculating the contours
becomes increasingly cumbersome in higher dimensions.



Environmental contours as Voronoi cells 5

1.3 Contribution of this paper

In this paper, an alternative way of constructing environmental contours is proposed, that easily
generalises to arbitrary dimensions. With this method, environmental contours can be described
as boundaries of Voronoi cells, which may easily be found from standard software packages at rea-
sonable computational costs. The method makes use of Monte Carlo samples from the underlying
distribution, but overcomes the common loop-problem of direct sampling methods, and can be
used to produce convex contours with the desired probabilistic properties.

In Section 2 we briefly review the mathematical definition of environmental contours. In Section
3 we give a general introduction to Voronoi cells, before showing in Section 4 that environmental
contours may be interpreted as boundaries of Voronoi cells. In Section 5 we generalise results from
Section 4 to the continuous limit, deriving additional theoretical insights, including an analytic
formula for environmental contours in terms of a given percentile function. Section 6 details the
practical application of the proposed algorithm, and examples in two and three dimensions are
provided in Section 7. Some concluding remarks are provided in section 8. For brevity, proofs are
contained in appendices.

2 Definition of environmental contours

We consider a structure or component exposed to some environmental loads. The environmental
loads can be represented by a vector of variables X ∈ X ⊆ Rn, distributed according to some mul-
tivariate probability distribution fX(x). We further define a performance function g(x), where x
is a specific environmental state, such that the structure or component remains intact/functioning
as long as g(x) ≥ 0, and fails if g(x) < 0.

The failure region F = {x ∈ X : g(x) < 0} and the corresponding failure probability pf =
P (X ∈ F) =

∫
F fX(x)dx are generally unknown. However, in many cases, one may argue based

on physics that F must be convex. Therefore, in such situations, if we can find another convex
set B such that g(x) ≥ 0 ∀x ∈ B, it follows from convexity theory that there exist a supporting
hyperplane Π that separates B and F (i.e. B ⊆ Π− and F ⊆ Π+, where Π− and Π+ are the two
half spaces separated by Π), and pf ≤ P (X ∈ Π+) =

∫
Π+ fX(x)dx.

We may construct the set

Bpe =
⋂
u∈U

Π−
pe
(u), (2)

where U denotes the set of all unit vectors in Rn, i.e.

U = {u ∈ Rn | ∥u∥ = 1},

and Π−
pe
(u) is the half-space normal to u with the property that P (X ∈ Π−

pe
(u)) = 1− pe. More

precisely,

Π−
pe
(u) = {x : u · x ≤ Cpe

(u)}, (3)

where Cpe denotes the pe-level percentile function, defined by

Cpe
(u) = inf{c : P (u ·X > c) ≤ pe}. (4)

We will assume that the distribution of X is absolutely continuous with respect to the Lebesgue
measure on Rn, so the function Cpe

(u) in (4) is well defined. We note also that (2) uniquely defines
a convex set, as all half-spaces Π−

pe
(u) are convex.

Depending on the distribution of X, the definition of Bpe in (2) does not imply that all hyper-
planes Πpe

(u) intersect Bpe
. (See for instance the discussion in Section 4 or the example given in

Figure 8.) In the case where all hyperplanes Πpe
(u) intersect Bpe

, the authors in [37] state that
X admits a pe-contour. We will make use of the equivalent definition below.

Definition 1 Let Bpe be a nonempty convex set in Rn and pe ∈ (0, 0.5). If

P (X ∈ Π+) ≤ pe

for any supporting half-space Π+ of Bpe
, we say that ∂Bpe

is a valid environmental contour of
X with respect to the target probability pe. If (1) holds with equality for all the supporting
half-spaces Π+, then ∂Bpe

is also a proper environmental contour.
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In the case where a proper convex environmental contour exists, it is necessarily given by the
representation in (2). This follows from the fact that any closed convex subset B ⊂ Rn is the
intersection of all supporting half-spaces that contain B (see e.g. Theorem 3.6.18 in [42]). If all
those half-spaces satisfy (1) with equality, then the representation in (2) follows. For reference we
state this in a separate proposition.

Proposition 1 Assume that the random variable X admits a proper convex environmental con-
tour ∂Bpe

with respect to a target probability pe ∈ (0, 0.5). Then the closure of Bpe
is uniquely

defined by (2).

In the following we will start by assuming that X admits a proper convex environmental con-
tour, and also that the probabilities P (X ∈ Π+) can be computed without error. After introducing
the connection with Voronoi cells and an algorithm for constructing Bpe , we present an approach
that can be used when these assumptions are relaxed.

3 Voronoi cells

The Voronoi diagram is a fundamental data structure in computational geometry that has found
applications in a variety of fields, including physics, biology, cartography, crystallography, ecology,
geology, anthropology, and meteorology to mention some [58]. Given a set of points p1, . . . pk in a
metric space X , the Voronoi diagram is defined as the partitioning of X into regions R1, . . . Rk,
such that Ri consists of all points in X whose distance to pi is not greater than their distance to
any other pj for j ̸= i. The region Ri is often referred to as the Voronoi cell of pi (with respect to
the remaining points pj , j ̸= i).

In its canonical form, a Voronoi diagram is constructed from a set of points in Rn endowed
with the Euclidean metric, and other alternatives are usually referred to as Generalised Voronoi
diagrams [46,2]. In this paper, we will consider the Voronoi cell of a point o ∈ Rn with respect to
a set S ⊂ Rn. We denote the Voronoi cell by Vor(o, S). This consists of the set of points that are
at least as close to o as any point in S, measured by the Euclidean distance in Rn, i.e.

Vor(o, S) =

{
x ∈ Rn | ∥x− o∥ ≤ inf

s∈S
∥x− s∥

}
. (5)

To motivate the algorithm presented in this paper we will make use of the rather trivial property
that if the set S is finite, then it is equivalent to the definition of point Voronoi cells as illustrated
in Figure 2. In the following section we show that an environmental contour can be represented
as a Voronoi cell of the form (5). A numerical approximation is then achieved by replacing the set
S in (5) with a finite subset, where available algorithms developed for canonical (point) Voronoi
diagrams can be used. In this case we will also make use of the Delaunay triangulation of the finite
point set, that correspond to the dual graph of the Voronoi diagram. This is illustrated for points
in the plane in Figure 2, and we refer to [58] for further details.

4 Environmental contours as boundaries of Voronoi cells

In this section we give a representation of the environmental contours described in Section 2 using
Voronoi cells of the form (5). We start by introducing the general construction and present some
theoretical properties, in anticipation of a practical procedure for approximation of environmental
contours that will follow in Section 6.

In Section 2 we defined the environmental contours in terms of half-spaces that were parametrized
by their perpendicular distance to the origin. However, a half-space may equivalently be parametrized
in terms of perpendicular distance to any other point o ∈ Rn, i.e.

Π−
pe
(u) = {x : u · (x− o) ≤ Co

pe
(u)}, (6)

with

Co
pe
(u) = inf{c : P (u · (X− o) > c) ≤ pe}. (7)

By comparing (2) and (7) it is evident that

Co
pe
(u) = Cpe

(u)− u · o, (8)
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a) b) c)

Fig. 2: Illustration of Delaunay triangulation and Voronoi diagram of a set of points. a) A Delaunay triangulation
of the 8 black points is defined as a triangulation such that no point lies inside the circumcircle of any triangle.
The red points are the centers of each circumcircle. b) The Voronoi diagram corresponds to the dual graph
of the Delaunay triangulation, with the red circumcenters of the Delaunay triangles as Voronoi vertices. Two
Voronoi vertices are joined by an edge (red lines) if the corresponding Delaunay triangles share a face. c) The
Voronoi cell of a Voronoi vertex, which correspond to the set of points that are closer to that vertex than to any
of the other Voronoi vertices. This generalises to n dimensions, where the Delaunay triangulation corresponds to
n-simplices such that no Delaunay vertex lie inside the circum-hypersphere of any n-simplex, and the Voronoi
vertices correspond to the centers of circum-hyperspheres, which are joined by edges defined by shared hyperplanes
between the Delaunay n-simplices.

and that the two definitions of Π−
pe
(u) given in (3) and (6) are equivalent.

Using this alternative parametrization for Π−
pe
(u), we define the set So

pe
(U) as

So
pe
(U) = {so,upe

= o+ 2Co
pe
(u)u}u∈U , (9)

where U is a subset of the unit vectors in Rn.
A point so,upe

∈ So
pe
(U) represents the reflection of the point o ∈ Rn with respect to the

boundary of the half-space Π−
pe
(u) (i.e. with respect to Πpe

(u)). Stated differently, the half-space
Π−

pe
(u) contains all points that are closer to o than to so,upe

. Intuitively, if o is in the interior of
Bpe , then all points in the convex set Bpe should be closer to o than to any point in So

pe
(U). This

means that Bpe
is included in the Voronoi cell of o with respect to the set of points So

pe
(U). The

latter insight is stated formally as a lemma below.

Lemma 1 Let Bpe
be defined as in (2). Then

o ∈ Bpe
⇐⇒ Co

pe
(u) ≥ 0 ∀ u ∈ U ,

o ∈ Bpe \ ∂Bpe ⇐⇒ Co
pe
(u) > 0 ∀ u ∈ U .

Furthermore, if o ∈ Bpe \ ∂Bpe we have for any subset U ⊆ U that

Vor(o,So
pe
(U)) =

⋂
u∈U

Π−
pe
(u),

where Vor(·, ·) is the Voronoi cell as defined in (5).

The proof is given in Appendix A. Using this result we arrive at the following proposition that
motivates the algorithm presented in this paper.

Proposition 2 Let Bpe be defined as in (2), and let U1 and U2 be sets of unit vectors in Rn, such
that U1 ⊆ U2 ⊆ U . If o ∈ Bpe \ ∂Bpe then the following holds:

Bpe
= Vor(o,So

pe
(U)) ⊆ Vor(o,So

pe
(U2)) ⊆ Vor(o,So

pe
(U1)).

This proposition follows directly from Lemma 1 (see Appendix B for details). The first interesting
observation is that the environmental contour, ∂Bpe , can be represented as the boundary of the
Voronoi cell Vor(o,So

pe
(U)). This insight immediately suggests a new algorithm for numerical

approximation of environmental contours, by replacing the set of unit vectors U with a finite
subset U = {ui | ui ∈ U , i = 1, . . . , k}, as illustrated in Figure 3. The proposition also states that
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any such approximation of a proper convex environmental contour will be conservative, in the
sense that the resulting Voronoi cell is guaranteed to contain Bpe

. Accordingly, any approximation
will be a valid convex environmental contour. Moreover, including more unit vectors in the set
U improves the approximation (or at least does not make it worse). Intuitively, the error in the
approximation can be made arbitrarily small, although this naturally will depend on the sampling
strategy used.
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A natural procedure for approximating Bpe
could therefore be as follows:

Step 1 Select a set of unit vectors U = {uj}Mj=1.
Step 2 Compute Cpe

(u1), . . . , Cpe
(uM ).

Step 3 Compute So
pe
(U) for some o ∈ Bpe

\ ∂Bpe
.

Step 4 Compute the Voronoi cell of o with respect to So
pe
(U).

Fig. 3: Construction of environmental contour using the Voronoi method. The black point is the chosen origin
o ∈ Bpe \ ∂Bpe . The red points correspond to the finite set So

pe . The boundaries of the half planes Π−
pe (u) half

way between o and the respective points so,upe ∈ So
pe

are drawn as light grey lines, and their perpendicularity on

the black lines from o to so,upe is indicated with small squares. The boundary of the Voronoi cell of o with respect
to So

pe
is drawn in blue, and it can be seen that the grey lines are tangential on the Voronoi cell.

Under the assumption that a proper convex environmental contour exists (for the given random

variable X and target probability pe), the set B̂pe
= Vor(o,So

pe
(U)) is guaranteed to contain Bpe

,
and the difference can be made arbitrarily small by including sufficiently many unit vectors in U .
For practical application, however, it is not reasonable to assume that the function Cpe(u) can be
computed exactly, and we might not have a priori a point o ∈ Bpe

\ ∂Bpe
. We will postpone these

questions to Section 6. For now, we will assume that a point o ∈ Bpe
\ ∂Bpe

is given and that
the function Cpe

(u) can be evaluated without error, in order to study the final major assumption.
Namely, that the random variable of interest X admits a proper convex environmental contour
for the target probability pe.

In practice, it might not be possible to determine a priori whether a proper convex environ-
mental contour exists. To see how we might account for this issue, we first study what will happen
if X does not admit a proper convex environmental contour. In Figure 4 we reproduce the example
given in [37], illustrating the scenario where a supporting half-space can have exceedance proba-
bility larger than pe. That is, one of the hyperplanes Π−

pe
(u) in (2) does not intersect Bpe . Hence,

if a scenario such as the one in Figure 4 a) occurs, this means that a proper environmental contour
cannot exist (for the selected target probability pe). As we illustrate in the figure, there is an in-
teresting connection with the dual representation of the Voronoi cell, the Delaunay triangulation,
that can be exploited when studying this problem. We recall that every vertex on a Voronoi cell
corresponds to the circumcenter of a Delaunay triangle (in general a Delaunay simplex for higher
dimensions), and we say that a Delaunay triangulation connects two points a,b ∈ X if both a
and b are part of the same triangle (simplex) in the triangulation. With this terminology, we may
state the observation made in Figure 4 formally as follows.

Proposition 3 Assume ∂Bpe is a proper convex environmental contour with Bpe defined as in
(2). Let So

pe
(U) be defined as in (9) for some finite set U ⊂ U , and o ∈ Bpe

\ ∂Bpe
.

Then, for all s ∈ So
pe
(U), there exists a Delaunay triangulation of the point set {o} ∪ So

pe
(U)

that connects s and o.
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a) b) c)

o o o

Π3 Π3 Π3

Π2

Π2

Π2Π1 Π1 Π1

s1 s1 s1

s3 s3 s3

s2

s2

s2

Fig. 4: Three points from So
pe

(U) with corresponding hyperplanes, si = s
o,ui
pe and Πi = Πpe (ui) for three unit

vectors U = {u1,u2,u3}. The Voronoi cell Vor(o,So
pe (U)) corresponds to the shaded area in each figure, and the

dual Delaunay triangulation is indicated with dashed lines. a) Π2 is not a supporting hyperplane of Vor(o,So
pe

(U))
since s2 is not connected to o by any Delaunay edge. b) All planes Πi intersect Vor(o,So

pe (U)) as si is connected
to o by a Delaunay edge for all i. c) The Delaunay triangulation is not unique, and Π2 only intersects a vertex of
Vor(o,So

pe (U)).

A proof of Proposition 3 is given in Appendix C, where we refer to [58] for results regarding
the Voronoi-Delaunay duality. We may also make use of the fact that a Delaunay triangulation
of a point set is unique if the points are in general position. In the general n-dimensional case,
a set P of points is in general position if the affine hull of P is n-dimensional, and there is no
subset of n + 2 points in P that lie on the boundary of a ball whose interior does not intersect
P. Figure 4 c) shows a scenario where this condition is violated. Here, the affine hull of the set
P = {o, s1, s2, s3} is clearly 2-dimensional, but the four points in P all lie on a circle (whose interior
does not contain any points in P). Hence, the Delaunay triangulation is not unique. There are
in fact two possible Delaunay triangulations as illustrated in Figure 4 c), {{o, s1, s3}, {s1, s2, s3}}
and {{o, s1, s2}, {o, s2, s3}}. Using this condition for uniqueness together with Proposition 3, we
immediately achieve the following convenient result.

Corollary 1 Under the assumptions of Proposition 3, if also the points in {o} ∪ So
pe
(U) are in

general position, then the Delaunay triangulation is unique and connects all points s ∈ So
pe
(U)

with o.

Corollary 1 gives a criterion for checking whether a proper convex environmental contour exists,
and can be used to identify why an environmental contour is not proper convex (i.e., identify the
directions u for which Πpe

(u) is not a supporting hyperplane of Bpe
). The general idea is also

illustrated in Figure 5, where we can conclude that no proper convex environmental contour exists,
for the given distribution of X and target probability pe, as the grey shaded triangle contains a
point s ∈ So

pe
(U) which is not connected with o.

5 Voronoi contours in the continuous limit

Besides constructing environmental contours numerically, it is also of interest to understand more
theoretically the connection between probability distributions fX(x) and corresponding environ-
mental contours Bpe for some target probability pe. From a more practical perspective, if the
insight we get this way can help us understand the conditions for when a proper environmental
contour can be obtained, then that can be very useful. With the results we have obtained so far,
and the intuition that comes from viewing environmental contours as Voronoi cells, we get an
opportunity to investigate this connection, by considering the geometric relationship between the
pe-level percentile function Cpe

and the boundary ∂Bpe
.

We can begin by considering the illustrations in Figure 4 and Figure 5, and imagine what
happens as more points are added, moving to the limit as So

pe
(U) → So

pe
(U). Consider the Delaunay

triangle {o, s2, s3} in Figure 4 b). This triangle has the property that its circumcircle contains no
other points from So

pe
(U) in its interior. As the points s2 and s3 move arbitrarily close together, the
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Fig. 5: Illustration of the idea behind Proposition 3 and Corollary 1 in 2D. The dashed lines shows the Delaunay
triangulation of the points {o}∪So

pe
(U), which are in general position. The grey triangle contains a point s ∈ So

pe
(U)

that is not connected to o. Hence, no proper convex environmental contour exists for the selected probability pe
and the random variable X used to generate So

pe
(U).

circumcircle of this ”triangle” is the circle that contain o and is tangential to s2 ≈ s3. Moreover,
the center of this circle is a point on ∂Bpe

. From this intuition we arrive at the geometric property
of proper convex environmental contours, which is illustrated in Figure 6. We state this formally
in Proposition 4, with a proof given in Appendix D.

Proposition 4 Assume ∂Bpe is a proper convex environmental contour with Bpe defined as in
(2). Let So

pe
(U) be as in (9) and define, for any b ∈ ∂Bpe and o ∈ Bpe \ ∂Bpe , the n-dimensional

ball Wo(b) = {x ∈ Rn | ∥x− b∥ ≤ ∥b− o∥}.
Then for any u ∈ U , there exists some b ∈ Πpe(u)∩∂Bpe such that So

pe
(U)∩Wo(b) ⊆ ∂Wo(b),

and so,upe
∈ ∂Wo(b).

b

∂Bpe

Bpe

o

So
pe

(U)

Πpe
(u)

u

so,upe

Fig. 6: Geometric illustration of Proposition 4 in 2D. For any u ∈ U there exists some b ∈ Πpe (u) ∩ ∂Bpe , such
that the circle centered at b that also contains o is tangent to So

pe (U) at so,upe , and contains no points of So
pe (U) in

its interior.

A consequence of the geometric property stated in Proposition 4 is that, given a parametriza-
tion of unit vectors in Rn, we will be able to derive a parametric characterization of ∂Bpe

. The
key insight from Figure 6 is that, given certain regularity assumptions, the vectors tangential to
the set So

pe
(U) and the ball Wo(b) coincide at so,upe

. This will eventually let us derive a parametric
representation of the set ∂Bpe

as a (n−1)-dimensional manifold. So now, motivated by the proper-
ties derived in the discrete scenario using tools from computational geometry, i.e. the Voronoi and
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Delaunay tessellations, we will move to the continuous limit and study environmental contours in
the context of differential geometry.

We will start by assuming that the set So
pe
(U), viewed as a (n − 1)-dimensional manifold

embedded in Rn, is differentiable. We recall that a m-dimensional manifold S in Rn, for m ≤ n,
can be represented by a set of charts σi : Vi → S, where Vi are open non-empty subsets of Rm.
Any set of charts {σi, Vi}i that cover S, i.e. S = ∪iσi(Vi), is called an atlas of S. We will in
particular consider a regular parametrization of the unit (n−1)-sphere U , by which we mean a set
of charts {σi, Vi}i covering U where each σi is smooth and where the Jacobi matrix of σi has rank
n− 1 at any point in Vi. With the canonical alternative of spherical coordinates in mind, we will
let {ui(θ) | θ ∈ Θi}i denote an atlas of U with these properties. With some abuse of terminology,
we will also refer to {ui(θ) | θ ∈ Θi}i as a regular parametrization of U . Given such a regular
parametrization of U , we will continue to construct corresponding parametrizations of So

pe
(U) and

eventually ∂Bpe
. But first we will need a preliminary result given in Lemma 2 below.

Lemma 2 Assume ∂Bpe
is a proper convex environmental contour with Bpe

defined as in (2), let
o ∈ Bpe \ ∂Bpe and assume So

pe
(U) is a differentiable manifold.

If the pair (a,u), for some a ∈ Rn and u ∈ U , satisfies the following

1. ∥a− o∥ =
∥∥so,upe

− a
∥∥, and

2. (so,upe
− a) is orthogonal to So

pe
(U) at so,upe

,

then {a} = Πpe
(u) ∩ ∂Bpe

.

In the proof of Lemma 2, given in Appendix E, we also show that for any u ∈ U ,Πpe(u)∩∂Bpe is
a singleton set, as Πpe

(u)∩∂Bpe
is nonempty when ∂Bpe

is a proper convex environmental contour
and the pair (b,u) satisfies the conditions in Lemma 2 for any b ∈ Πpe

(u) ∩ ∂Bpe
. This means

that the set Bpe
has no ”flat parts”, and that Bpe

is in fact strictly convex. But besides this, the
conditions in Lemma 2 will also serve as a more practical criterion to verify that a given mapping
(soon to be given explicitly) gives a representation of the environmental contour ∂Bpe . This result
is summarised in Proposition 5 below, with a proof given in Appendix F.

Proposition 5 Let F : U → Rn be a mapping such that the assumptions and conditions of Lemma
2 hold for any pair (F (u),u). Then F (U) = ∂Bpe

.

Now, the next step is to introduce a specific parametrization of ∂Bpe that we will use Propo-
sition 5 to verify. We will achieve this by mapping a parametrization of the unit (n − 1)-sphere
U to a parametrization of ∂Bpe

. This idea has been explored in [37,32] for the 2-dimensional case
using the parametrization u(θ) = (cos(θ), sin(θ)), where also the existence of a proper convex en-
vironmental contour is determined from properties related to the parametrized percentile function
Cpe(θ) = Cpe(u(θ)). In the following we will extend this to the n-dimensional case.

Let {ui(θ) | θ ∈ Θi}i be the regular parametrization of U introduced previously. Suppressing
the index i, for any chart u(θ) : Θ → U we define the functions Co

pe
(θ) and sope

(θ) accordingly,

Co
pe
(θ) = Co

pe
(u(θ)) : Θ → R,

sope
(θ) = o+ 2Co

pe
(θ)u(θ) : Θ → Rn,

where we will assume that both u(θ) and Co
pe
(θ) are continuously differentiable as functions of

θ, and let ∇θ denote the Jacobian. That is, for functions f : Θ → Rm, ∇θf is the m × (n − 1)
matrix with entries [∇θf ]i,j = ∂fi/∂θj . The assumption that u(θ) is a regular parametrization
means that we also assume that ∇θu(θ) has rank n− 1 for any θ ∈ Θ.

Theorem 1 (Representation of proper convex environmental contours) Assume the n-
dimensional random variable X admits a proper convex environmental contour ∂Bpe with respect
to a target probability pe ∈ (0, 0.5), and assume that the pe-level percentile function Cpe

(u) is
k-times continuously differentiable on the unit (n− 1)-sphere for k ≥ 1.

Then Bpe
is strictly convex, and ∂Bpe

is a (k − 1)-times differentiable manifold. Furthermore,
if {ui(θ) | θ ∈ Θi}mi=1 is a regular parametrization of the unit (n − 1)-sphere, then an atlas of
∂Bpe is obtained by {bi(θ) | θ ∈ Θi}mi=1, where bi(θ) is obtained from ui(θ) using the following
relation:

b(θ) = Cpe(θ)u(θ) +∇θu(θ)η
−1(θ)(∇θCpe(θ))

T , (10)
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and where η(θ) = ∇θu(θ)
T∇θu(θ) is the metric tensor of the (n − 1)-sphere induced by the

parametrization u(θ).

The proof of Theorem 1 is given in Appendix G. Note that Theorem 1 gives an analytic
expression for the environmental contour (i.e. bi(θ)) in terms of the pe-level percentile function
Cpe

(θ). Thus, given a specific parametrization and a differentiable approximation of Cpe
(θ) it is

possible to compute b(θ) directly, as an alternative to explicitly constructing a Voronoi cell as
described in section 4. One common parametrization in the n-dimensional case is given by u(θ) =

(u0, u1, . . . , un−1) with ui = cos θi
∏i−1

j=0 sin θj for i = 0, 1, . . . , n−2 and un−1 =
∏n−2

j=0 sin θj , where
θi ∈ [0, π) for i = 1, 2, . . . , n− 2 and θn−2 ∈ [0, 2π). The corresponding induced metric tensor has

entries η0,0 = 1, ηi,i =
∏i−1

j=0 sin θj
2 for i = 0, 1, . . . , n− 2 and ηi,j = 0 if i ̸= j.

It would be desirable to have a criterion for Cpe
(θ) that guarantees that bi(θ) represent a

proper environmental contour. To obtain such a criterion, we will need a couple of intermediate
results given in the following Lemmas.

Lemma 3 The random variable X admits a proper convex environmental contour with respect to
pe ∈ (0, 0.5) if and only if the following holds:

For any u′ ∈ U , there exists some o ∈ Πpe
(u′) such that Co

pe
(u) ≥ 0 for all u ∈ U .

Lemma 4 Assume the percentile function Cpe
(θ) is twice differentiable and that u(θ) : Θ → U

is regular (∇u(θ) exists and has full rank for all θ). Let b(θ) be defined as in (10). Then

u(θ)Tb(θ) = Cpe(θ) and u(θ)T∇b(θ) = 0

for all θ ∈ Θ. This means that Πpe
(θ) is tangential to b(Θ) at the point b(θ).

Lemma 3 comes as a consequence of Lemma 1, and the proof is given in Appendix H. In
Appendix I we present the proof of Lemma 4, which states that for any θ, the hyperplane Πpe

(θ)
is tangential to b(Θ) at the point b(θ).

Armed with these results we can prove the following criteria for existence.

Theorem 2 (Existence of proper convex environmental contours) Let X be any n-dimensional
random variable where the percentile function Cpe

(·) is differentiable on the unit (n − 1)-sphere.
Let {ui(θ) | θ ∈ Θi}mi=1 be a regular parametrization of the unit (n−1)-sphere, and define for any
u(θ) = ui(θ) the function

κ(θ|θ′) = Cb(θ′)
pe

(θ) = Cpe
(θ)− u(θ) · b(θ′),

where Cpe(θ) = Cpe(u(θ)) and b(θ′) is given by (10) with θ = θ′.
Then the following are equivalent:

1. X admits a proper convex environmental contour.
2. The hypersurface given by the parametrization b(θ) in (10) is the boundary

of a closed convex set.
3. κ(θ|θ′) ≥ 0 for all u(θ) = ui(θ),θ,θ

′ ∈ Θi, and i = 1, . . . ,m.
4. κ(θ|θ′) attains its global minimum at θ = θ′ for all u(θ) = ui(θ), i =

1, . . . ,m.

The proof of Theorem 2 is provided in Appendix J. In the 2-dimensional case with polar
coordinates, one can also show that existence is equivalent to the criterion that Cpe(θ)+C ′′

pe
(θ) > 0

for all θ ∈ [0, 2π) (see Theorem 3.13 in [32]). As a consequence of Theorem 2, we can obtain the
following similar result stated in Corollary 2 below.

Corollary 2 Assume the n-dimensional random variable X admits a proper convex environmental
contour, and that Cpe(θ) is twice differentiable. Then Hess(Cpe(θ))+η(θ)Cpe(θ) is positive semi-
definite for all θ ∈ Θ, where Hess(·) is the Hessian operator on the (n− 1)-sphere and η(θ) is the
(n− 1)-sphere metric tensor.

The proof of Corollary 2 is given in Appendix K. Note that the metric tensor on the unit circle
is simply η = 1, so the 2-dimensional version of Corollary 2 states that Cpe

(θ) + C ′′
pe
(θ) ≥ 0. As

a stronger version of the statement holds in the 2-dimensional case, we might conjecture that the
criterion in Corollary 2 with strict positive definiteness could hold as a necessary condition, but
we have currently not explored this further in any detail.
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6 Practical application of the Voronoi method for environmental contour
approximation

In Section 4 we outlined a potential procedure for approximating environmental contours using the
Voronoi-representation. Based on this idea, we present the steps involved in Algorithm 3 below,
followed up by a discussion on how each step may be implemented in practice.

Algorithm 3 Approximating Bpe
using the Voronoi method

1. Select a set of unit vectors U = {uj}Mj=1.

2. Estimate Ĉpe
(uj) ≈ Cpe

(uj) for each j = 1, . . . ,M .

3. Compute Ŝo
pe
(U), using Ĉo

pe
(uj) in (9), for some o ∈ Bpe

\ ∂Bpe
.

4. Compute the approximation B̂pe
= Vor(o, Ŝo

pe
(U)).

5. Check that each point in Ŝo
pe
(U) is connected with o in the Delaunay triangulation of the point

set {o} ∪ So
pe
(U).

Step 1: The algorithm will produce finer approximations as more unit vectors are included.
However, the main computational burden is usually related to the estimation of Cpe(uj) for each
unit vector, so the number of unit vectors is often decided by the desired run-time of the entire
algorithm. In applications such as design of marine structures, there might be knowledge related
to which directions that are the most informative, and the set U might be chosen on this basis.
Alternatively, a uniform selection may be applied. One way to generate uniform random samples
from the unit (n − 1)-sphere is to let uj = vj/ ∥vj∥ where vj = (v1,j , . . . , vn,j) and all v1,j are
i.i.d. Gaussian [49].

Step 2: In practice, we might not be able to compute Cpe
(uj) exactly. However, this can be

estimated based on a finite number of Monte Carlo samples from the joint distribution, in the
same way as outlined in [35,37]. The estimation error will depend on the sample size and may in
principle be reduced to an acceptable level by increasing the number of samples, or for example
using the importance sampling scheme proposed in [36]. Moreover, if one were to apply conserva-

tive estimates, i.e. Ĉpe
(uj) ≥ Cpe

(uj), this would produce a conservative (larger) environmental
contour approximation as well.

Step 3: In order to compute Ŝo
pe
(U), we first need some point of reference o from the interior

of Bpe . The criterion that Co
pe
(u) > 0 for any u ∈ U (see Lemma 1) can be used to identify if the

selected origin o is not in the interior of Bpe . We can then also observe that, in the case where
we want to replace the origin o with some new point o∗, the new set So∗

pe
can be computed using

that Co∗

pe
(u) = Co

pe
(u) + u · (o− o∗), and hence

so
∗,u

pe
= so,upe

+ 2u · (o− o∗)u− (o− o∗).

This means that the estimates Ĉpe
(uj) can be reused, as going from Ŝo

pe
(U) to Ŝo∗

pe
(U) is a simple

linear transformation. We may also note the geometric interpretation, by observing that the added
term 2u · (o−o∗)u− (o−o∗) is the reflection of the point (o−o∗) with respect to the unit vector
u. As both checking whether Co

pe
(u) > 0 and moving the origin Co

pe
(u) → Co∗

pe
(u) are cheap

computationally, one could derive an iterative procedure to determine o. Alternatively, finding the
point o with maximal distance to all hyperplanes under the restriction that Co

pe
(uj) > 0, which is

equivalent to Cpe
(uj) > uj ·o, for each j = 1, . . . ,M can be solved by linear programming. In our

implementation, the geometric median of a set of samples from the joint distribution of X (the
ones used to estimate Cpe

(uj) in Step 2) was selected as the origin o. This choice of o will with
high probability lie inside Bpe for any pe > 0.5, and in our experiments we did not find the need
to iterate further beyond this initial guess.

Step 4: Some of the motivation for this paper comes from the fact that the Voronoi tessel-
lation is a well studied object. As a result, a wide range of software and programming languages
come with efficient procedures for computing Voronoi cells, including Python/Scipy, R, Wolfram
Language/Mathematica, Matlab and Octave. Moreover, Voronoi algorithms work in arbitrary di-
mensions, which is what makes the proposed algorithm agnostic to the dimensionality of X.

Step 5: This check comes as a consequence of Proposition 3 and Corollary 1. There are two
scenarios that may cause this check to fail. 1) When the selected probability distribution does
not admit a proper convex environmental contour with respect to the chosen target probability,
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and 2) when the percentile function Cpe
(u) is estimated with error. In the case where the check

fails due to noise in the estimates Ĉpe
(uj), we can make refinements based on the relevant unit

vectors. For instance, if it is found that the point ŝk ∈ Ŝo
pe
(U) corresponding to unit vector uk

is not connected with o, the estimates Ĉpe
(uj) can be refined for relevant indices j. The rele-

vant indices here, besides j = k, are the ones corresponding to points ŝj affecting the Delaunay
triangulation in the vicinity of ŝk, which are the points connected with ŝk and the neighbouring
Delaunay simplices. With reference to the previous step, we also note that the task of obtaining the
Delaunay triangulation usually ”comes for free”, in the sense that available algorithms used to ob-
tain the Voronoi tessellation do this by computing the Delaunay triangulation and taking the dual.

The goal of this numerical procedure presented in Algorithm 3 is to provide a good approxima-
tion in the case where a proper convex environmental contour exists. In the case where a proper
convex environmental contour does not exist, one might still be interested in finding a valid convex
environmental contour that is ”as small as possible”. That is, a convex set where the exceedance
probability of each supporting half-space is less than or equal to pe (where it cannot be equal to
pe for all supporting half-spaces as no proper convex environmental contour exists). We will end
this section with a modified version of the algorithm to accommodate this scenario.

The contour ∂Bpe
corresponding to the boundary of a Voronoi cell V or(o,So

pe
) =

⋂
u∈U Π−

pe
(u)

is only a valid and proper environmental contour if ∂Bpe ∩Π−
pe
(u) ̸= ∅ ∀u ∈ U . Otherwise, it is

invalid. We may however use an invalid Voronoi contour to create a valid improper contour by
the following algorithm:

Algorithm 4 Let V be a Voronoi contour computed by Algorithm 3 based on a set of unit vectors
U .

1. Initialise Z = V .
2. For each direction u ∈ U :
(a) Find the point v′ ∈ V that is furthest out in direction u, i.e. v′ = argmax

v∈V
{v · u}.

(b) Compute the projection of v′ onto the plane Πpe
(u), i.e. z = v′ + (Cpe

(u)− v′ · u)u.
(c) Update Z → Z ∪ {z}.

3. Compute the convex hull of Z. This is the corrected Voronoi contour.

The algorithm above guarantees a valid environmental contour with respect to U , because
it intersects all the hyperplanes Π−

pe
(u) ∀u ∈ U by construction. The projection algorithm is

illustrated in figure 7.

Fig. 7: Illustration of algorithm 4 to construct a valid environmental contour (red).

Figure 8 shows two examples using the above algorithms and also the direct method presented
in [35]. First, a scenario where a proper convex environmental contour exists, and then a scenario
where a proper environmental contour does not exist. The top row corresponds to a centered bivari-
ate normal distribution with covariance 0.16 · [1 0.5; 0.5 1], and the bottom row represents a Gaus-
sian mixture; X = 0.8X1 + 0.1X2 + 0.1X3 where X1 ∼ N ([0 0]T , 0.16I), X2 ∼ N ([0.5 1]T , 0.04I)
and X3 ∼ N ([−0.5 1]T , 0.04I). The contours are computed with pe = 0.15.
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Fig. 8: Top: Contours for a multinormal distribution, constructed using the direct method of [35]. The loops
disappear as the number of samples increased, indicating that the loops is a sampling issue. Bottom: Contours for a
multimodal distribution constructed using the direct method of [35]. The top loops do not disappear as the number
of samples increase, indicating that the loops is a feature of the underlying distribution (i.e. the distribution does
not admit a proper convex contour for the selected target probability).

7 Examples

7.1 2D example

To illustrate the Voronoi approach in two dimensions, we use the same example as [35]. The
environmental variables of interest are the significant wave height, HS , and the zero-upcrossing
wave period, TZ . Their joint distribution is modelled using a conditional modelling approach [8,
11], and can be expressed as

fH,T (h, t) = fH(h)fT (t|h).
Here, fH(h) is a 3-parameter Weibull distribution for significant wave height, with scale parameter
α, shape parameter β, and location parameter γ. The term fT (t|h) is a conditional log-normal
distribution for wave period, where the model parameters are functions of significant wave height,
as outlined in e.g. [23,75], i.e.

µT (h) = E (lnTZ |HS = h) = a1 + a2h
a3

σT (h) = sd (lnTZ |HS = h) = b1 + b2e
b3h.

The parameter values used are listed in Table 1.

Table 1: Parameters assumed for the bivariate distribution of HS and TS .

3-p Weibull (HS) α β γ

2.776 1.471 0.8888

Conditional log-normal (TZ) i = 1 i = 2 i = 3

ai 0.1000 1.4890 0.1901
bi 0.0400 0.1748 -0.2243

Figure 9 shows comparisons of results for different methods. The number of samples that the
contours are based on is varied in the rows, but the samples are identical within each row. The
number of unit vectors used to compute the contours is varied in the columns.
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The direct sampling method of [35] is drawn in black. This method does not guarantee convex
contours, but sometimes produce loops. Keeping the samples fixed, the loops tend to be larger as
the number of unit vectors increase, which is undesirable. However, the loops tend to get smaller
with increased number of samples. The convex hull of the black contours are drawn in red. Note
that for the same number of samples, these red contours tend to get larger when the number of
directions is increased, due to the larger loops.

Contours based on the Voronoi method are shown in blue. More precisely, blue regions are
plotted, where the inner boundary correspond to the simple Voronoi method (i.e. Algorithm 3),
and the outer boundary correspond to the corrected Voronoi method (i.e. Algorithm 4). Note that,
unlike the other methods, the contours produced by the Voronoi methods do not diverge as the
number of directions is increased. We also see that the shaded region is generally thin, indicating
that the simple Voronoi method is a good approximation to the ’true’ environmental contour. The
inset shows the error, i.e. the difference between the two Voronoi methods in the various directions.
The directions with high error corresponds to directions where the direct method of [35] produces
loops, i.e. the Voronoi method provides a warning for directions where more sampling may be
needed.

Fig. 9: Comparison of results, for pe = 0.05. The samples that contours are computed from are shown in grey. The
grey curves represent the direct sampling method of [35] (visible only in the third column). The red curves represent
the convex hull of the grey curves. The blue regions represent the Voronoi methods; the inner boundary correspond
to the simple Voronoi method, and the outer boundary correspond to the corrected Voronoi method. The insets
show the error in different directions, i.e. the difference between the simple and corrected Voronoi methods.
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7.2 3D example

To illustrate the Voronoi approach in three dimensions, we include an example from [71]. The
environmental variables of interest are the significant wave height, HS , the zero-upcrossing wave
period, TZ , and the 10-minute mean wind speed at a particular height, U10. Their joint distribution
is modelled using a conditional modelling approach [8,11], and can be expressed as

fH,T,U (h, t, u) = fH(h)fT (t|h)fU (u|h).

Here fH(h) is a 3-parameter Weibull distribution for significant wave height, with scale pa-
rameter α, shape parameter β, and location parameter γ.

The term fT (t|h) is a conditional log-normal distribution for wave period, where the model
parameters are a function of significant wave height as outlined in e.g. [23,75], i.e.

µT (h) = E (lnTZ |HS = h) = a1 + a2h
a3

σT (h) = sd (lnTZ |HS = h) = b1 + b2e
b3h.

The parameters ai, bi, i = 1, 2, 3 are estimated from data.
fU (u|h) is a conditional 2-parameter Weibull distribution with parameters modelled as func-

tions of significant wave height as suggested by [23,10,9]. The scale parameter, λU , and shape
parameter, κU , are modelled as

λU (h) = c1 + c2h
c3

κU (h) = d1 + d2h
d3 .

For the significant wave height and wave period, parameters corresponding to average world
wide operations of ships according to appendix C of [23] are assumed, as summarised in Table 2.
For the conditional distribution of wind speed, the average sectoral parameters reported in [10,9]
will be assumed, as summarised in Table 2. It is noted that the parameter d3 is omitted in [10],
so this is simply set to 1 in this study.

Figure 10 shows the result of applying the Voronoi methods (simple and corrected) to the
example described above. As can be seen, the simple method and corrected method are very similar,
indicating that the simple Voronoi method is a good approximation for the ’true’ environmental
contour.

Table 2: Parameters assumed for the trivariate distribution of HS , TS and U10.

3-p Weibull (HS) α β γ

average World wide trade 1.798 1.214 0.856

Conditional log-normal (TZ) i = 1 i = 2 i = 3

average World wide trade
ai -1.010 2.847 0.075
bi 0.161 0.146 -0.683

Conditional 2-p Weibull (U10) i = 1 i = 2 i = 3

average directional sector
ci 2.58 0.12 1.60
di 4.6 2.05 1
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Fig. 10: a) Approximate (invalid) environmental contour for 3D example, computed using the simple Voronoi method
(i.e. Algorithm 3). b) Valid (improper) environmental contour for 3D example, computed using the corrected Voronoi
method (i.e. Algorithm 4). c) Difference between the corrected and simple Voronoi methods, showing that the simple
method gives good approximation to a valid environmental contour.

8 Concluding remarks

In this paper, a novel algorithm for constructing environmental contours has been presented, based
on a geometric interpretation of environmental contours as Voronoi cells. One advantage of this
approach is that many software libraries exist for Voronoi cell computation, making the algorithm
simple to implement. Another advantage is that the Voronoi method also makes it easy to compute
environmental contours in higher than two dimensions. The Voronoi environmental contours are
not guaranteed to be proper, but with a simple modification to the algorithm, valid environmental
contours can always be constructed from improper Voronoi environmental contours.

The Voronoi geometric interpretation also has given new intuition and theoretical insights
about environmental contours, including representation and existence theorems for proper convex
environmental contours. The presented analytical formula provides another alternative algorithm
to compute environmental contours. Interestingly, this formula has an analogy in shadow systems
and can be interpreted as an inverse Gauss map [66,21,50]. Further exploration of this correspon-
dence between environmental contours and shadow functions could potentially reveal new insights
in both domains, and potentially provide some information on the class of random variables for
which proper environmental contours exist.
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Appendices
A Proof of Lemma 1

Proving the first statement is trivial, as x ∈ Bpe by definition means that u · (x− o) ≤ Co
pe
(u) for

any u ∈ U . So, in particular, we have that o ∈ Bpe ⇔ 0 = u · (o− o) ≤ Co
pe
(u).

To prove the second statement we use that

x ∈ Bpe
\ ∂Bpe

⇒ x ∈
⋂
u∈U

(
Π−

pe
(u) \ ∂Π−

pe
(u)

)
.

That is, a point x in the interior of Bpe is also in the intersection of all interior half-spaces. Hence,
x ∈ {x : u · (x− o) < Co

pe
(u)} for all u ∈ U . And so by the same argument as above we have that

o ∈ Bpe
\ ∂Bpe

⇒ 0 = u · (o− o) < Co
pe
(u) ∀u ∈ U .
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To prove the converse, we first observe that if o ∈ ∂Bpe
, then then there exists some u∗ ∈ U

where o ∈ ∂Π−
pe
(u∗) (by the supporting hyperplane theorem) which means that Co

pe
(u∗) = 0, and

if o /∈ Bpe
then we have already shown that Co

pe
(u∗) < 0 for some u∗. Putting this together we

get that o /∈ Bpe
\Bpe

⇒ ∃u∗ ∈ U s.t. Co
pe
(u∗) ≤ 0, and hence Co

pe
(u) > 0 ∀u ∈ U ⇒ o ∈ Bpe

\Bpe
.

As for the final statement, we first recall that a point x is in Vor(o,So
pe
(U)) if and only if ∥x− o∥ ≤∥∥x− so,upe

∥∥, or equivalently ∥x− o∥2 ≤
∥∥x− so,upe

∥∥2, for any u ∈ U . We first observe that∥∥x− so,upe

∥∥2 =
∥∥x− o− 2Co

pe
(u)u

∥∥2 = ∥x− o∥2 + 4(Co
pe
(u))2 − 4Co

pe
(u)(x− o) · u, (11)

and so,

∥x− o∥2 ≤
∥∥x− so,upe

∥∥2 ⇔ Co
pe
(u)(x− o) · u ≤ (Co

pe
(u))2.

Hence, using the second statement of the Lemma, we have that if o ∈ Bpe \∂Bpe then Co
pe
(u) > 0,

and so ∥x− o∥2 ≤
∥∥x− so,upe

∥∥2 ⇔ (x− o) · u ≤ Co
pe
(u) for any u ∈ U which completes the proof.

⊓⊔

B Proof of Proposition 2

First we recall that by definition Bpe =
⋂

u∈U Π−
pe
(u). Using Lemma 1 we then have Bpe =

Vor(o,So
pe
(U)), and also Vor(o,So

pe
(Ui)) =

⋂
u∈Ui

Π−
pe
(u) for i = 1, 2.

Since U1 ⊆ U2 ⊆ U the proof is completed by observing that⋂
u∈U

Π−
pe
(u) ⊆

⋂
u∈U2

Π−
pe
(u) ⊆

⋂
u∈U1

Π−
pe
(u).

⊓⊔

C Proof of Proposition 3

The proof will follow from the Voronoi-Delaunay duality, which tells us that the Voronoi cells
are convex polytopes with vertices corresponding to circumcenters of the Delaunay simplices. In
particular, the vertices of Vor(o,So

pe
(U)) are the circumcenters of the simplices in {τ ∈ D | o ∈ τ},

where D is any Delaunay triangulation of the point set {o} ∪ So
pe
(U).

Assume that D is such a Delaunay triangulation, and that there exists a point s∗ ∈ So
pe
(U)

such that s∗ and o are not connected by D. This means (by definition) that any simplex in D
containing o does not contain s∗, and vice versa. Hence,

Vor(o,So
pe
(U)) = Vor(o,So

pe
(U) \ {s∗}).

We now let u∗ ∈ U denote the unit vector corresponding to s∗, i.e. s∗ = so,u
∗

pe
. Making use of

Lemma 1 we then observe that

Vor(o,So
pe
(U)) = Vor(o,So

pe
(U) \ {s∗}) ⇒

⋂
u∈U

Π−
pe
(u) =

⋂
u∈U\{u∗}

Π−
pe
(u). (12)

This means that, either 1) Πpe(u
∗) ∩ Vor(o,So

pe
(U)) = ∅, or 2) that there exists some vertex

v∗ of Vor(o,So
pe
(U)) such that v∗ ∈ Πpe

(u∗) ∩ Vor(o,So
pe
(U)). From Proposition 2 we have that

Bpe
⊆ Vor(o,So

pe
(U)). Since we assume that ∂Bpe

is a proper convex environmental contour,
Πpe

(u∗) ∩ Bpe
̸= ∅, and so

Πpe(u
∗) ∩Vor(o,So

pe
(U)) ̸= ∅. (13)

From (12) and (13) we can therefore conclude that there exists some vertex v∗ of Vor(o,So
pe
(U))

such that v∗ ∈ Πpe(u
∗) ∩Vor(o,So

pe
(U)).

We then observe that

v∗ ∈ Πpe(u
∗) ⇒ ∥v∗ − o∥ = ∥s∗ − o∥ . (14)

This follows from the definition of Πpe
(·) and the set So

pe
(U), which says that s∗ is the reflection

of o with respect to the hyperplane Πpe(u
∗). Now, since v∗ is also a vertex of Vor(o,So

pe
(U)), then
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v∗ is the circumcenter of a Delaunay simplex τ , with o ∈ τ . From (14) we see that s∗ also lies on
this circum-hypersphere, together with o. Hence, if the Delaunay triangulation D was unique, we
could conclude that {s∗,o} ⊂ τ ∈ D, which contradicts the initial assumption that s∗ and o are
not connected in D.

In the case where there is no unique Delaunay triangulation of the point set {o} ∪ So
pe
(U),

the fact that s∗ and o lie on the same circum-hypersphere of some Delaunay simplex τ lets us
conclude that there exists some Delaunay triangulation D′ where s∗ and o are part of the same
simplex. We can therefore conclude that, if there exists a Delaunay triangulation D that does not
connect s∗ and o, then there must exist a different Delaunay triangulation D′ that connects s∗

and o.

⊓⊔

D Proof of Proposition 4

For any u ∈ U we first recall that the existence of some b ∈ Πpe
(u) ∩ ∂Bpe

follows from the
definition of proper convex environmental contours. We then note that, as any element of So

pe
(U)

is of the form so,upe
= o+ 2Co

pe
(u)u, we have that∥∥so,upe

− b
∥∥2 =

∥∥o− b+ 2Co
pe
(u)u

∥∥2 = ∥o− b∥2 + 4(Co
pe
(u))2 + 4Co

pe
(u)(o− b) · u.

= ∥o− b∥2 + 4Co
pe
(u)

(
Co

pe
(u)− (b− o) · u

)
.

(15)

Now if b ∈ Πpe(u) we have that (b − o) · u = Co
pe
(u) (by definition), and hence

∥∥so,upe
− b

∥∥2 =

∥o− b∥2, which means that so,upe
∈ ∂Wo(b).

The statement that So
pe
(U) ∩ Wo(b) ⊆ ∂Wo(b) means that there are no u′ ∈ U such that

so,u
′

pe
lies in the interior of the ball Wo(b). Assume, on the contrary, that there exists some

so,u
′

pe
∈ Wo(b) \ ∂Wo(b). Then

∥∥∥so,u′

pe
− b

∥∥∥ < ∥o− b∥ by definition. From (15) we then have that

4Co
pe
(u′)

(
Co

pe
(u′)− (b− o) · u′) < 0. We have assumed that o ∈ Bpe \ ∂Bpe , and so by Lemma 1

Co
pe
(u′) > 0. Hence,

so,u
′

pe
∈ Wo(b) \ ∂Wo(b) ⇒ Co

pe
(u′)− (b− o) · u′ < 0.

But this means that b ∈ Π+
pe
(u′), which is impossible when b ∈ ∂Bpe .

⊓⊔

E Proof of Lemma 2

We first observe that the condition 1) is just a different way of stating that a point is on the
hyperplane Πpe(u) (alternatively, compute the norms as in (15) and note that Co

pe
(u) > 0). That

is, for any x ∈ Rn, we have x ∈ Πpe
(u) ⇔ ∥x− o∥ =

∥∥so,upe
− x

∥∥.
Hence, a ∈ Πpe

(u) by condition 1). Then, by Proposition 4 there exists some b ∈ Πpe
(u)∩∂Bpe

where So
pe
(U)∩Wo(b) ⊆ ∂Wo(b), and so,upe

∈ ∂Wo(b). This means that the n-dimensional closed
ball Wo(b), centered at b with radius ∥b− o∥ is tangent to So

pe
(U) at the point so,upe

. As both
So
pe
(U) and Wo(b) are differentiable (n− 1)-dimensional manifolds, they share the same (n− 1)-

dimensional tangent space at so,upe
. We let V = {v1, . . . ,vn−1} ⊂ Rn denote a basis for this tangent

space.

From the above argument, it is clear that also b satisfies both of the criteria in the Lemma,
as 1) b ∈ Πpe

(u) and 2) (so,upe
− b) is orthogonal to So

pe
(U) at so,upe

since (so,upe
− b) is orthogonal

to Wo(b) at so,upe
.

Hence, starting with a pair (a,u) that satisfies the two conditions of the Lemma, we have
identified a point b ∈ Πpe(u) ∩ ∂Bpe such that (b,u) satisfies the same conditions. Using that
(a,u) and (b,u) satisfy these conditions simultaneously, we obtain

1. ⇒ a,b ∈ Πpe(u) ⇒ a · u = b · u,
2. ⇒ (so,upe

−a) ·v = (so,upe
−b) ·v = 0 for any v ∈ V .
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From these conditions we see that (a− b) · u = 0 and (a− b) · v = 0 for any v ∈ V . Hence, if u
is linearly independent of V , we can conclude that a = b.

Assume u =
∑n−1

i=1 αivi for some α1, . . . , αn−1 ∈ R. Then (b−so,upe
)·u =

∑n−1
i=1 αi(b−so,upe

)·vi =
0. Then, by definition of the hyperplane Πpe

(u), Co
pe
(u) = (b−o) ·u = (b− so,upe

+ so,upe
−o) ·u =

(so,upe
− o) · u. But this means that so,upe

∈ Πpe
(u), which is impossible.

We may therefore conclude that a = b ∈ Πpe(u) ∩ ∂Bpe . By the same argument as above,
if b1 and b2 are two elements of Πpe(u) ∩ ∂Bpe , then since (b1,u) and (b2,u) both satisfy the
conditions of the Lemma, we must have b1 = b2. Therefore Πpe

(u) ∩ ∂Bpe
is a singleton set, and

we can conclude that {a} = Πpe
(u) ∩ ∂Bpe

.
⊓⊔

F Proof of Proposition 5

We first recall that if ∂Bpe is a proper convex environmental contour, then for any b ∈ ∂Bpe there
exists some u ∈ U such that b ∈ Πpe

(u), and so ∂Bpe
⊂ ∪u∈UΠpe

(u).
Then, if F : U → Rn is a mapping such that the assumptions and conditions of Lemma 2 hold

for any pair (F (u),u), Lemma 2 lets us conclude that {F (u)} = Πpe
(u) ∩ ∂Bpe

for any u ∈ U .
Hence, F (U) = ∪u∈U (Πpe(u) ∩ ∂Bpe) = ∂Bpe ∩ (∪u∈UΠpe(u)) = ∂Bpe .

⊓⊔

G Proof of Theorem 1

If the pe-level percentile function Cpe
(u) is continuously differentiable on the unit (n− 1)-sphere,

then as so,upe
= o+ 2(Cpe

(u)− u · o)u, the set So
pe
(U) = {so,upe

|u ∈ U} is a differentiable manifold.
Hence, the assumptions of Lemma 2 are satisfied.

We first note that, as a consequence of Lemma 2, any supporting hyperplane intersects ∂Bpe

at a single point, which means that Bpe
is strictly convex. For details we refer to the proof of

Lemma 2 in Appendix E, where we observe that Πpe
(u) ∩ ∂Bpe

is a singleton set for any u ∈ U ,
as the pair (b,u) satisfies the conditions in Lemma 2 for any b ∈ Πpe

(u) ∩ ∂Bpe
. (And for any

b ∈ ∂Bpe
we have b ∈ Πpe

(u) for some u as ∂Bpe
is proper).

We will show that the proposed parametrization in the theorem is valid using Lemma 2 and
Proposition 5. That is, for any u = u(θ) ∈ U , we must show that

1. ∥b(θ)− o∥ =
∥∥∥so,u(θ)pe − b(θ)

∥∥∥, and
2. (s

o,u(θ)
pe − b(θ)) is orthogonal to So

pe
(U) at so,u(θ)pe ,

for o ∈ Bpe
\ ∂Bpe

. To simplify the notation we will suppress writing out the dependency on θ,
and write

b = Cpeu+∇uη−1(∇Cpe)
T .

Using (8) we can express b in terms of Co
pe
:

b = Cpeu+∇uη−1(∇Cpe)
T

= Cpe
u+ uuTo+∇uη−1(∇Co

pe
)T +∇uη−1(∇u)To

= o+ Co
pe
u+∇uη−1(∇Co

pe
)T ,

where we made use of the property that uuT + ∇uη−1(∇u)T = I (i.e. the identity operator).
Note that the metric tensor η = (∇u)T∇u is invertible because we have assumed a regular
parametrization (and so ∇u has full rank). To show condition (1) above, we can just compute the
norms

∥b− o∥2 −
∥∥so,upe

− b
∥∥2

=
∥∥Co

pe
u+∇uη−1(∇Co

pe
)T

∥∥2 − ∥∥Co
pe
u−∇uη−1(∇Co

pe
)T

∥∥2
= 4Co

pe
u · ∇uη−1(∇Co

pe
)T

= 0.

Here we have used the fact that u · ∇u = uT∇u = 1
2∇(uTu) = ∇(1) = 0.



23

To show condition (2) we will use that the columns of ∇so,upe
form a basis of the tangent

space of So
pe
(U) at so,upe

. The orthogonality condition (2) is therefore equivalent to saying that

∇(so,upe
)T (so,upe

− b) = 0. But this follows from the definition of so,upe
, as ∇so,upe

= ∇(o+ 2Co
pe
u) =

2(Co
pe
∇u+ u∇Co

pe
), and hence

1

2
∇(so,upe

)T (so,upe
− b) =

(
Co

pe
∇uT + (∇Co

pe
)TuT

) (
Co

pe
u−∇uη−1(∇Co

pe
)T

)
= (Co

pe
)2 ∇uTu︸ ︷︷ ︸

0

−Co
pe

∇uT∇uη−1︸ ︷︷ ︸
I

(∇Co
pe
)T

+ Co
pe
(∇Co

pe
)T uTu︸︷︷︸

1

−(∇Co
pe
)T uT∇u︸ ︷︷ ︸

0

η−1(∇Co
pe
)T

= −Co
pe
(∇Co

pe
)T + Co

pe
(∇Co

pe
)T

= 0.

Using Proposition 5 we may then conclude that, given an atlas {ui(θ) | θ ∈ Θi}i on U where
each (ui, Θi) is a regular parametrization, the corresponding charts (bi, Θi) is an atlas on ∂Bpe

.
Finally, differentiability of ∂Bpe

then follows from the given expression for bi as a function of θ.
⊓⊔

H Proof of Lemma 3

We first observe that, as a direct consequence of Definition 1, X admits a proper convex environ-
mental contour if and only if every hyperplane Πpe

(u) is a supporting hyperplane of Bpe
. That is,

if and only if Bpe
∩Πpe

(u) ̸= ∅ for all u ∈ U .
Hence, if X admits a proper convex environmental contour, we can select o ∈ Πpe

(u′) ∩ ∂Bpe

which (by Lemma 1) satisfies the condition.
If X does not admit a proper convex environmental contour, then there is some hyperplane

Πpe
(u′) that does not intersect Bpe

. Hence, for any o ∈ Πpe
(u′) we have o /∈ Bpe

, and by Lemma
1 there must exist some u∗ with Co

pe
(u∗) < 0.

⊓⊔

I Proof of Lemma 4

Dropping the dependency on θ and pe for simpler notation, we may write

uTb = uT (Cu+∇uη−1∇CT ) = CuTu+ uT∇uη−1∇CT = C,

as uTu = 1 and uT∇u = 1
2∇(uTu) = ∇(1) = 0. This means that b(θ) ∈ Π(θ). Similarly, we

observe that
∇uTb = C∇uTu+∇uT∇uη−1∇CT = ∇CT ,

as ∇uT∇u = η by definition. From the chain rule we then get uT∇b = ∇(uTb) − (∇uTb)T =
∇C −∇C = 0. Since the hyperplane Π(θ) has normal vector u(θ), we can conclude that Π(θ) is
tangential to b(Θ) at b(θ).

⊓⊔

J Proof of Theorem 2

To simplify notation, we drop the dependency pe and the index i of the parametrization.
Assume (2) is true and let B denote the closed convex set. Then Lemma 4 implies that all

hyperplanes Π(θ) are supporting hyperplanes of B, and so ∂B is a proper convex environmental
contour. The fact that (1) ⇒ (2) comes as a direct consequence of Theorem 1, so we have that
(1) ⇔ (2).

To show that (1) ⇒ (3), we first note that when X admits a proper convex environmental
contour, then since b(θ) ∈ Π(θ) (see Lemma 4) it follows from Lemma 1 that κ(θ|θ′) ≥ 0 for all θ
and θ′. For the converse, assume that X does not admit a proper convex environmental contour.
Then from Lemma 3 there exists some u′ such that for any o ∈ Π(u′) we can find some u where
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Co(u) < 0. In forms of the given parametrization, this means that we can find some θ and θ′

where Co(θ) < 0 for any o ∈ Π(θ′). As b(θ′) ∈ Π(θ′) we have that κ(θ|θ′) = Cb(θ′)(θ) < 0.
Hence (1) ⇔ (3).

Finally, (3) ⇔ (4) follows from the fact that b(θ′) ∈ Π(θ′) which means that κ(θ′|θ′) = 0.
⊓⊔

K Proof of Corollary 2

From statement (4) in Theorem 2, κ(θ|θ′) attains a local minimum at θ = θ′, which means that
the matrix A(θ) = ∇θ∇θκ(θ|θ′)|θ=θ′ is positive semi-definite ∀θ ∈ Θ. Suppressing the notation
θ and pe we can write

A = ∇∇C − bT∇∇u

= ∇∇C −
(
Cu+∇uη−1∇CT

)T ∇∇u

=
(
∇∇C −∇Cη−1(∇u)T∇∇u

)
− CuT∇∇u.

(16)

The first term of (16) (in brackets) can be recognized as the Hessian operator on a Riemann
manifold. This is most easily seen when expressed in index form, i.e.,

Hessij(C) =
∂2C

∂θi∂θj
− Γm

ij

∂C

∂θm
,

where Γm
ij are known as a Christoffel symbols, defined as

Γm
ij =

∑
k,l

(
η−1

)
ml

∂uk

∂θl

∂2uk

∂θi∂θj
.

The last term in the last line of (16) above can be rewritten in terms of the metric tensor η,
i.e., CuT∇∇u = C∇

(
uT∇u

)
− C(∇u)T∇u = −ηC, because uT∇u = 0 and (∇u)T∇u = η. It

therefore follows that

A(θ) = ∇θ∇θκ(θ|θ′)|θ=θ′ = Hess(C(θ)) + η(θ)C(θ).

⊓⊔
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40. Juri, A., Wüthrich, M.V.: Tail dependence from a distributional point of view. Extremes 6, 213–246 (2004)
41. Leira, B.J.: A comparison of stochastic process models for definition of design contours. Structural Safety 30,

493–505 (2008)
42. Leonard, I., Lewis, J.: Geometry of Convex Sets. Wiley (2015)
43. Li, Q., Gao, Z., Moan, T.: Modified environmental contour method for predicting long-term extreme responses

of bottom-fixed offshore wind turbines. Marine Structures 48, 15–32 (2016)
44. van de Lindt, J., Niedzwecki, J.: Environmental contour analysis in earthquake engineering. Engineering

Structures 22, 1661–1676 (2000)
45. Lutes, L.D., Winterstein, S.R.: A dynamic inverse FORM method: Design contours for load combination prob-

lems. Probabilistic Engineering Mechanics 44, 118–127 (2016)
46. M. Schaller, F., Kapfer, S., Evans, M., J.F. Hoffmann, M., Aste, T., Saadatfar, M., Mecke, K., W. Delaney, G.,
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