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Abstract

Recovering a signal (function) from finitely many binary or Fourier samples is one of the core prob-
lems in modern imaging, and by now there exist a plethora of methods for recovering a signal from such
samples. Examples of methods, which can utilise wavelet reconstruction, include generalised sampling,
infinite-dimensional compressive sensing, the parameterised-background data-weak (PBDW) method etc.
However, for any of these methods to be applied in practice, accurate and fast modelling of an N × M

section of the infinite-dimensional change-of-basis matrix between the sampling basis (Fourier or Walsh-
Hadamard samples) and the wavelet reconstruction basis is paramount. Building on the work of [Gataric
& Poon, SIAM J. Sci. Comput. 38 (2016) pp. A1075-A1099] we derive an algorithm, which bypasses
the NM storage requirement and the O(NM) computational cost of matrix-vector multiplication with
this matrix and its adjoint when using Walsh-Hadamard samples and wavelet reconstruction. The pro-
posed algorithm computes the matrix-vector multiplication in O(N logN) operations and has a storage
requirement of O(2q), where N = 2dqM , (usually q ∈ {1, 2}) and d = 1, 2 is the dimension. As matrix-
vector multiplications is the computational bottleneck for iterative algorithms used by the mentioned re-
construction methods, the proposed algorithm speeds up the reconstruction of wavelet coefficients from
Walsh-Hadamard samples considerably.
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1 Introduction

Approximating a function from finitely many samples is one of the fundamental problems in approximation
theory, and, by now, there exist myriads of conditions and algorithms for obtaining good function approxi-
mation. The problem is often motivated by the many applications in natural sciences where one is given a
finite set of samples of an underlying unknown signal (function) that one wants to recover (approximate).

In this work, we consider the recovery of signals, where physical constraints dictate the type of samples
one can acquire. This is a well-studied problem with numerous applications in medical imaging. Examples
include Magnetic Resonance Imaging (MRI) [43, 44], surface scattering [39, 40], X-ray Computed Tomog-
raphy (CT) [29] and electron microscopy [42], all of which employ Fourier sampling. Other examples,
employing binary samples, include fluorescence microscopy [55], lensless imaging [16] and compressive
holography [20].
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Given the long list of applications, there are many efficient methods for reconstructing a function from
a fixed sampling modality. Examples of such methods include generalised sampling [3, 6, 7, 10, 38, 45],
studied by Adcock, Hansen, Hrycak, Gröchenig, Kutyniok, Ma, Poon, Shadrin and others; its predecessor
consistent sampling [26, 27, 28, 37, 60, 61], developed by Aldroubi, Eldar, Unser and others. More recently
Adcock, Antun, Hansen, Kutyniok, Lim, Poon, Thesing and many others have analysed reconstruction
methods based on infinite-dimensional compressive sensing [1, 4, 8, 41, 52, 58]. Other approaches can be
found within data assimilation. A first approach here was introduced by Maday & Mula in [47], called
generalised empirical interpolation method, this was later followed by the Parametrized Background Data-
Weak (PBDW) method, developed by Maday, Patera, Penn & Yano in [46, 48], and later analysed by Binev,
Cohen, Dahmen, DeVore, Petrova, and Wojtaszczyk in [15, 23].

This work extends the work of Gataric & Poon in [30] to binary sampling. In [30] they derive an
algorithm for computing a matrix-vector multiplication with a N ×M section of the change-of-basis matrix
between a Fourier sampling basis and a wavelet reconstruction basis using O(N logN) operations. Here we
extend their approach to Walsh sampling and wavelet reconstruction. As we shall see, the analysis allowing
us to do this is different, while the underlying algorithm is the same.

We model the problem as follows. Let H be an infinite-dimensional separable Hilbert space with inner
product ⟨·, ·⟩ and norm ∥ · ∥. Let {sk : k ∈ N} and {rk : k ∈ N} be two orthonormal bases for H, called the
sampling and reconstruction basis, respectively. Furthermore define the sampling space as the linear span
SN = span{s1, . . . , sN} and the reconstruction space as RM = span{r1, . . . , rM}.

Suppose that we can only observe the function f ∈ H, using finitely many linear measurements ⟨f, sk⟩,
k = 1, . . . , N . Since {sk : k ∈ N} is an orthonormal basis, this immediately gives the truncated series
approximation

fN = y1s1 + · · ·+ yNsN ∈ SN (1)

where yk = ⟨f, sk⟩. In all the applications mentioned above, we have limited freedom in designing the sam-
pling basis {sk : k ∈ N} and the approximation fN may, therefore, suffer from unpleasant reconstruction
artefacts due to the characteristics of the sampling basis, slow convergence rates or the Gibbs phenomenon.

An example of such artefacts can be seen in Figure 1. Here we have chosen H = L2([0, 1]) and consider
the Fourier sampling basis {(2π)−1/2e2πin : n ∈ Z} and the Walsh sampling basis {wn : n ∈ Z+ :=

{0, 1, . . . , }}, where the wn’s are Walsh functions (see §3.1 for more on these functions, and their relation to
Hadamard matrices). In the figure, we can see how the Walsh sampling basis gives a blocky approximation
to the continuous hat functions, and how the Fourier sampling basis (no matter how large we choose N )
always produce the very characteristic O(1) Gibbs oscillations around the discontinuity. This is because fN
only converges to f in the ℓ2-norm, rather than the stronger uniform norm.

To resolve this issue, the idea of the aforementioned reconstruction techniques is to utilize prior knowl-
edge on f , in order to compute a better approximation in the reconstruction space RM , using the samples
{y1, . . . , yN}. Two examples of such improved reconstructions can be seen in Figure 2, where we have used
different wavelets to approximate the functions f and g from Figure 1.

In this work, RM is spanned by orthonormal wavelets and we consider H = L2([0, 1]d) for d = 1, 2.
This reconstruction space has several advantages:

(i) Orthonormal wavelets can be computed with any desired degree of smoothness, ranging from the
discontinuous Haar wavelet to higher-order Daubechies wavelets or symlets. This means that we can
tailor-make the smoothness of the reconstruction space.

(ii) In one dimension, orthonormal wavelets allow for optimal non-linear approximation of functions with
bounded variation [5, Ch. 10] (see also [24]) and while wavelets are not provably optimal in two
dimensions, their use and applicability in imaging is ubiquitous [33, 44, 53].
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Figure 1: (Undesirable artefacts). The two functions f and g (top row) are sampled using a Fourier and
Walsh sampling basis, respectively. Given the acquired samples, we use the native truncated Fourier series
fN and truncated Walsh series gN , known from (1), to approximate the functions. On the bottom row we
show reconstructions fN and gN , for different values of N . Notice how the truncated Fourier series causes
O(1) Gibbs oscillations around the discontinuity for every choice of N , and how the truncated Walsh series
produce a reconstruction with blocky artefacts.

(iii) For Walsh sampling (considered here) and orthonormal wavelet reconstruction the so-called stable
sampling rate (see Def. 2.2) is linear [35]. That is, to recover M wavelet coefficients using, e.g.,
generalised sampling, we require N ≥ CM Walsh samples, where C ≥ 1 is a constant. We note that
this rate is not necessarily linear for all reconstruction bases. For Fourier sampling and polynomial
reconstruction, the requirement is quadratic in M , i.e., N ≥ CM2 samples are required [38]. For
Walsh sampling and polynomial reconstruction, the stable sampling rate is not known.

1.1 Notation

Let ℓ2(N) denote the usual set of square summable sequences, and let B(ℓ2(N)), denote the set of bounded
linear operators between such sequences. For Ω ⊆ {1, . . . , N}, we let PΩ : ℓ2(N) → ℓ2(N) be the projection
onto the coordinates indexed by Ω. That is, for z ∈ ℓ2(N), (PΩz)i = zi if i ∈ Ω, and 0 otherwise. Let
m = |Ω|. We sometimes abuse notation slightly and say that PΩ : ℓ2(N) → Cm, by simply ignoring all the
zero entries. Furthermore, if Ω = {1, . . . , N} we simply write PN . Often we do not specify the domain and
range of PN , and let this be given by the context. Thus for an operator U ∈ B(ℓ2(N)), we write PNUPM
both to mean a finite dimensional N ×M matrix and an operator in B(ℓ2(N)), depending on the context.
When PM : ℓ2(N) → CM , we have that P ∗

M : CM → ℓ2(N), however, to unify the notation we still write
PNUPM , rather than PNUP ∗

M .
Finally, for some closed subspace V ⊂ H we let PV : H → H denote the projection onto V .

1.2 Computing approximations in RM

For f ∈ H, let xk = ⟨f, rk⟩ and yk = ⟨f, sk⟩ be the coefficients of f in the reconstruction basis and
sampling basis, respectively. Let x = {xk}k∈N and y = {yk}k∈N and notice that x, y ∈ ℓ2(N). The
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Figure 2: (Improved reconstruction in RM ). Given N = 16 Fourier samples from the function f in
Figure 1 and N = 64 Walsh samples from the function g in the same figure, we compute approximations
f̃ and g̃, respectively, using generalised sampling (GS). Here we use a Haar wavelet basis with M = 8

functions for f̃ , and a Daubechies 2 (DB2) wavelet basis with M = 32 basis functions for the function
g̃. Note how increasing N in Figure 1 can not remedy the O(1) Gibbs oscillation for the discontinuous
Haar scaling function f seen in the figure, whereas choosing a basis which spans this function enables us to
capture f , using only N = 16 samples.

change-of-basis matrix U ∈ B(ℓ2(N)) between {rk : k ∈ N} and {sk : k ∈ N} is given by

Ui,j = ⟨rj , si⟩ , and y = Ux

where U is unitary, since both bases are orthonormal.
Given a finite set of (noiseless) samples, the previously mentioned reconstruction techniques compute

an approximation to f by utilising the reconstruction space RM . We review three of the most modern
approaches.

(i) (Generalised sampling). In generalised sampling [3, 7] one has access to the N samples PNy and
using these we solve the least squares problem

min
z∈CM

∥PNUPMz − PNy∥2ℓ2 , where N ≥M. (2)

Let x̃ = {x̃k}Mk=1 be the minimiser of (2). In generalised sampling we approximate f with f̃ =

x̃1r1 + · · ·+ x̃MrM ∈ RM . Moreover, the error committed by f̃ , is bounded by [7, Thm. 4.5]

∥f − f̃∥ ≤ C1∥f − PRM
f∥, (3)

whereC1 > 0 is a constant depending on the subspace angle between SN and RM (see §2 for details).

(ii) (PBDW-method). The PBDW-method [15, 48] is a data consistent method, which approximates f
using the same N samples PNy as in generalised sampling. The approximation is computed as f̂ =

PSN
f + PS⊥

N
f̃ where f̃ is the generalised sampling approximation. As f̂ ∈ H does not lie in a finite

dimensional subspace, it can not be represented on a computer. We may, however, approximate f̂ , by
choosing some largeK > N , and use the truncated sum f̂ ≈

∑N
k=1 yksk+

∑K
k=N+1(PKUPM x̃)ksk

where x̃ is the minimizer form (2). It was shown in [48] that the error committed by f̂ is bounded by

∥f − f̂∥ ≤ C1∥f − PRM⊕(SN∩R⊥
M )f∥, (4)

where C1 is the same constant as in the generalised sampling error bound above.

(iii) (Infinite-dimensional compressive sensing). While the two methods above are linear reconstruction
methods, compressive sensing (and more generally sparse regularization) is an example of a non-
linear reconstruction method. In compressive sensing one computes an approximation in RM using
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m < N samples. Let Ω ⊂ {1, . . . , N} have cardinalitym = |Ω| and consider the measurements PΩy.
A standard way of computing a compressive sensing reconstruction is by solving the quadratically
constrained basis pursuit optimisation problem

min
z∈CM

∥z∥ℓ1 subject to ∥PΩUPMz − PΩy∥2ℓ2 ≤ η. (5)

Here η is chosen so that η ≥ ∥PΩUP
⊥
Mx∥2ℓ2 , to ensure that PMx is a feasible point. Given a minimizer

x♯ of (5), one approximates f with f ♯ = x♯1r1+. . . x
♯
MrM ∈ RM . Error bounds for compressive sens-

ing reconstructions are probabilistic in nature and depend on the number of measurements m, and the
bases {sk}k∈N and {rk}k∈N used. For concrete error bounds for Walsh sampling and wavelet recon-
struction, we refer to [58] for non-uniform and [1] uniform recovery guarantees in infinite-dimensions.
For a more general treatment of the subject, we refer to [5, 54].

1.3 Walsh sampling and its use in binary imaging

This work focuses on Walsh sampling (sometimes called Walsh-Hadamard, or just Hadamard sampling)
due to its applicability in binary imaging. By binary imaging we mean any imaging application whose
samples can be modelled with sampling functions whose range is binary (such as Walsh functions). The
first practical example of such a modality was the single-pixel camera [25], which could capture images in
the visible spectrum using a single pixel. Later the same principle of using a single sensor has been used
successfully in fluorescence microscopy [55], lensless imaging [16] and holography [20]. For an in-depth
treatment of binary imaging with a single sensor, see [31] for a recent review, or [5] for a mathematical
treatment of the subject.

1.4 Contributions

In this article we let H = L2([0, 1]d), d = 1, 2 and consider the recovery of orthonormal wavelet coefficients
from Walsh samples. As outlined above, this setup has numerous applications in binary imaging. However,
for any of the reconstruction methods mentioned above to work in practice, it is crucial to solve one of
the optimisation problems (2) or (5). To do this, we need to form the matrix PNUPM (potentially also
PΩUPM ), for different values of N and M . This can be computationally challenging since the entries of
PNUPM are given as the solution of MN integrals. Furthermore – ignoring the computational burden of
computing these integral – using a densely stored matrix PNUPM has several disadvantages.

(i) (Storage). In imaging applications it is not uncommon to have large dimensions, say N = 5122 and
M = 2562. However, naively storing a dense matrix PNUPM ∈ CN×M with these dimensions
requires approximately 137GB of memory. This is substantially more than most workstations can
handle.

(ii) (Computational complexity). When solving (2) or (5) iterative algorithms are often applied. For
(2), the conjugate gradient method [36] is a popular choice, and for (5) SPGL1 [62] or Chambolle
and Pock’s primal-dual [18] algorithm are well-known choices. However, all of these algorithms
rely on fast matrix-vector multiplications with PNUPM or PΩUPM , and their adjoints. However,
standard matrix-vector multiplication with a N ×M matrix require O(MN) operations, and for large
dimensions this cost can be substantial.

While some of these issues can be reduced in higher dimensions (d > 1) by considering tensor decom-
positions of the linear map PNUPM , none of these approaches can obtain a computational complexity of
O(N logN) and avoid storing the matrix PNUPM altogether. In this work we do exactly this. We present
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an algorithm which can compute matrix-vector multiplications with the matrix PNUPM in O(N logN)1

operations for Walsh sampling and orthonormal wavelet reconstruction in one and two dimensions without
storing the matrix PNUPM . Applying the reconstruction methods outlined above allows for fast reconstruc-
tion of wavelet coefficients from Walsh samples with inconsiderable memory usage and low computational
complexity.

The proposed algorithm extends the work of Gataric & Poon [30], who derives a similar algorithm
with the same computational complexity for Fourier sampling and wavelet reconstruction. The two cen-
tral ingredients in [30] allowing them to speed up the computation is (1) that the stable sampling rate (see
§2) scales linearly for Fourier sampling and wavelet reconstruction and (2) that the translational variable
m for scaling functions ϕj,m(x) = 2j/2ϕ(2jx − m) can be disentangled from ϕ under the Fourier trans-
form. That is, for a Fourier sampling function eω(x) = e2πiωx we have the equality ⟨ϕj,m, eω⟩L2[0,1] =

2−j/2ϕ̂(2−jω)eω(−2−jm), where m is disentangled from the Fourier transform ϕ̂ of ϕ. As we shall see in
Lemma 3.4, a similar splitting is possible under the Walsh transform. Moreover, it was proved in [35] that
for Walsh sampling and wavelet reconstruction the stable sampling rate scales linearly.

In [30] the analysis is restricted to orthonormal wavelets on the interval with vanishing moments pre-
serving wavelets at the boundaries [21]. While these boundary wavelets better approximate non-periodic
function at the boundaries, their use in practice have been limited [11]. In this work we, therefore, carry out
the analysis for both vanishing moments preserving boundary wavelets and periodic boundary wavelets [50,
Sec. 7.5.1].

The paper is accompanied by a software implementation in MATLAB, demonstrating how this can be im-
plemented in practice. It is a well known issue that MATLAB’s implementation of the fast Walsh-Hadamard
transform (FWHT), is extremely slow2. To mitigate this issue, the implementation also includes a MAT-
LAB interface to the C++ library FXT (https://www.jjj.de/fxt/) [12], for speeding up this part
of the code. Other time-critical parts of the code have also been written in C++ and interfaced with MAT-
LAB. All accompanying code and data are accessible from https://github.com/vegarant/cww

and https://github.com/vegarant/fastwht.

Remark 1.1 (Avoiding inverse crimes). Note that the proposed model avoids certain inverse crimes stem-
ming from too early discretisation of the considered inverse problem. Indeed, by considering an infinite-
dimensional model, we model measurements yk that come from continuous integral transforms yk =∫ 1

0
f(x)sk(x) dx, rather than discrete inner-products. This model is motivated by the observation that most

sensors do not compute pointwise samples of f , but rather integrate f over a short time or area [34, 40]. Dis-
cretising the problem at a too early stage using discrete inner products can result in measurement mismatch
[19].

Remark 1.2 (Measurement noise). Above, we have focused on noiseless measurements to make the math-
ematical model clear. However, any realistic measurement model should also incorporate noisy measure-
ments. Our overall goal in this manuscript is to develop an algorithm that can compute matrix-vector mul-
tiplications with the matrix PNUPM in O(N logN) operations. We will, therefore, not discuss noisy mea-
surements in any detail. We refer to the literature on each of the specific reconstruction methods for further
discussions on how the methods handle noisy measurements.

1Note that our bound here, is independent of M , but due to the stable sampling rate (see §2), we can take N = 2dqM for small
values of q, usually q ∈ {1, 2, 3, 4} (see Rem. 4.1).

2See https://ch.mathworks.com/matlabcentral/answers/395334-why-does-the-fwht-function-calculate-slower-than-the-fft-function-
even-though-the-documentation-say
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1.5 Outline of the paper

In §2 we define the subspace angle and the stable sampling rate, and we explain how these quantities dictate
how we must choose N in relation to M to achieve stable and accurate reconstruction. This is followed by
the definitions of the Walsh and wavelet sampling bases in §3, along with a key lemma used extensively in
the derivation of the algorithm. We then describe the algorithm in one and two dimensions in §4 and §5,
respectively, followed numerical examples in §6 and some concluding remarks in §7.

2 The subspace angle and the stable sampling rate

It is important to realize that stable and accurate recovery in RM , from samples yk = ⟨f, sk⟩, k = 1, . . . N ,
is not possible for arbitrary choices of bases {sk : k ∈ N} and {rk : k ∈ N}. What is crucial for accurate
and stable recovery in RM , is that the subspace angle between SN and RM is sufficiently small.

Definition 2.1 (Subspace angle). Let RM = span{r1, . . . rM} and SN =

span{s1, . . . , sN}. The subspace angle ω ∈ [0, π/2] between RM and SN is

cos(ω(RM ,SN )) := inf
h∈RM ,∥h∥=1

∥PSN
h∥

We set the reciprocal value as µ(RM ,SN ) := 1
cos(ω(RM ,SN )) , and if cos(ω(RM ,SN )) = 0, we set

µ(RM ,SN ) = ∞.

We note that a necessary condition for µ(RM ,SN ) < ∞ is that N ≥ M (see e.g. [56, Thm. 2.1]).
Furthermore, we have that µ(RM ,SN ) is related to the condition number of the matrix PMU∗PNUPM ,
used for solving the normal equations in generalised sampling and the PBDW-method. Indeed, let σ1(A) ≥
· · · ≥ σM (A) denote the ordered singular values of a matrix A ∈ CN×M , with N > M . Then, using
Parseval’s identity, we have that

cos(ω(RM ,SN )) := inf
h∈RM ,∥h∥=1

∥PSN
h∥ = inf

z∈CM ,∥z∥=1
∥PNUPMz∥ = σM (PNUPM ).

We also have that σ1(PNUPM ) = supz∈CM ,∥z∥=1 ∥PNUPMz∥ ≤ 1, since U is unitary, and hence the
condition number

cond(PMU∗PNUPM ) =
σ2
1(PNUPM )

σ2
M (PNUPM )

≤ µ2(RM ,SN ).

This directly relates to the numerical stability of the normal equations, used to solve the least-squares prob-
lem (2), and compute the generalised sampling and the PBDW-method’s solution.

Furthermore, the accuracy of these two methods is also related to the subspace angle. Indeed, the con-
stant C1 fund in the error bounds (3) and (4) equals C1 = µ(RM ,SN ). See [7, Thm. 4.5] and [15, Eq. (1.7)]
(and [48] for earlier work). Thus both the numerical stability and accuracy of these two methods hinges on
choosing RM in relation to the samples one can acquire.

The situation is the same in infinite-dimensional compressive sensing, but the quantity µ(RM ,SN ), is
camouflaged via the so-called balancing property, introduced in [4]. In infinite-dimensional compressive
sensing, the balancing property typically governs the required number of samples needed to satisfy the
restricted isometry property (RIP) [54], and its generalisations [1, 13, 59] for certain constants. These
constants will again affect the constants found in the error bound for the minimiser x♯ of (5), see, e.g., [54]
for details. To see the relation between the subspace angle and the balancing property, we refer to the proof
of Proposition 4.4 in [1].

From the above discussion, it is evident that the subspace angle between RM and SN , affects both the
accuracy and the stability of all the reconstruction methods. Thus, an important question is, therefore, how
we should choose N in relation to M , to ensure that µ(RM ,SN ) ≤ γ stays bounded. This relates to the
so-called stable sampling rate [4, 7].
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Definition 2.2 (Stable sampling rate). Let RM = span{r1, . . . rM} and SN = span{s1, . . . , sN}. The
stable sampling rate for M ∈ N and γ > 1 is

Γ(M,γ) = min{N ∈ N : µ(RM ,SN ) ≤ γ}.

For Walsh sampling and orthonormal wavelet reconstruction in H = L2([0, 1]d), d ≥ 1, it was shown
by Hansen & Thesing [35] that the stable sampling rate scales linearly in M . That is, for a fixed γ > 1 there
exist a constant qγ ≥ 0 such that wheneverN = 2d(r+qγ) ≥ 2dr =M for r ∈ N, we have µ(RM ,SN ) ≤ γ.
Hence for a fixed qγ > 0, we get a fixed bound on µ(RM ,SN ), for all M and N on the form above.

This is important, since it tells us that for a fixed number of reconstruction coefficients M , we need no
more than N = CM samples, where C = 2dqγ is a constant, to ensure that µ(RM ,SN ) ≤ γ. In Table
1 we have computed 1/σM (PNUPM ) = µ(RM ,SN ), for N = 2dqM , for d = 1, 2 and q = 1, 2, 3, 4,
for Walsh sampling and different wavelet reconstruction bases. From the table, we see that in all cases the
choice q = 1 or q = 2 is sufficient to ensure that 1 < γ < 2, indicating that the constant C is not necessarily
very large for these bases.

3 The sampling and reconstruction spaces

This section introduces the necessary notation and background on the Walsh sampling basis and the or-
thonormal wavelet reconstruction bases. We also present a few useful results, needed to derive the final
algorithm in later sections.

3.1 Walsh functions

Walsh functions (see [14] or [32] for an introduction) are closely related to dyadic representations of num-
bers. For an integer n ∈ Z+ = {0, 1, 2, . . .} its dyadic series is n = n(1)20 + n(2)21 + n(3)22 + · · · , where
the n(j)’s are 0 or 1. Similarly for x ∈ [0, 1) we can express its dyadic series as x = x(1)2−1 + x(2)2−2 +

x(3)2−3 + · · · , for x(j) ∈ {0, 1}. For rational numbers x, this expansion is not unique and in such cases we
consider the expansion not ending with infinitely many repeating 1’s.

There exist different orderings of Walsh functions, all of which leads to slightly different definitions. In
this manuscript, we use the sequency ordered Walsh functions. This ordering has the advantage that the n’th
Walsh function wn has n sign changes.

Definition 3.1. Let n ∈ Z+ and x ∈ [0, 1). The Walsh function wn : [0, 1) → {+1,−1} is given by
wn(x) := (−1)

∑∞
j=1(n

(j)+n(j+1))x(j)

We note that {wn : n ∈ Z+} is an orthonormal basis for L2([0, 1]), and we let

Wf(n) =

∫ 1

0

f(x)wn(x) dx

denote the Walsh transform of a function f ∈ L2([0, 1]).
When working with Walsh functions, the XOR operation applied to binary sequences has many uses.

We denote it by ⊕ and define it as follows.

Definition 3.2. Let x = {x(j)}∞j=1 ∈ {0, 1}N and y = {y(j)}∞j=1 ∈ {0, 1}N be binary sequences. The
operation ⊕ applied to these sequences is given by x⊕y := {|x(j)−y(j)|}∞j=1. For x, y ∈ Z+ or x, y ∈ [0, 1),
the operation x⊕ y is understood in the sense of x and y’s representation as binary sequences.
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Figure 3: (Relation between Walsh functions and Hadamard matrices). Left: The eight first sequency
ordered Walsh functions. Right: A 8× 8 sequency ordered Hadamard matrix, where black corresponds to 1

and white to −1. We can see that the Walsh functions’ sign changes correspond to the sign changes in the
matrix.

Lemma 3.3. For x, y ∈ [0, 1), n, j, l ∈ Z+, the following three equalities hold

wn(x⊕ y) = wn(x)wn(y), (6)

wn(2
−j l) = wl(2

−jn) if n, l < 2j , (7)

wn(2
−jx) = w⌊n/2j⌋(x). (8)

Proof. The two first equalities can be found in [32, Eq. 1.2.15 & §1.3]. The last equality follows from direct
computations, see e.g., [1, Prop. 6.4] or [5, Lem. F.3].

We also note that Walsh functions and Hadamard matrices are closely related, since the (n, k)’th entry
of a sequency ordered Hadamard matrix H ∈ R2j×2j is given by wn−1(2

−j(k − 1)). See Figure 3 for an
illustration of this relationship. Furthermore, for N = 2j we note that a matrix-vector product with H can
be computed in O(N logN) operations using the fast Walsh-Hadamard transform (FWHT) [14]. That is,
for x = {xk}Nk=1, the N sums {

N∑
k=1

wn((k − 1)/N)xk

}N−1

n=0

can utilize the FWHT algorithm to compute the result with O(N logN) operations, and without storing the
matrix H in memory. It is also worth noting that the FWHT algorithm can utilize parallel computations,
something which reduces the time needed to execute the O(N logN) operations.

3.2 Wavelets

Let ϕ : R → R and ψ : R → R be a compactly supported orthonormal scaling function and wavelet [22],
respectively, corresponding to an multiresolution analysis (MRA). We say that the wavelet ψ has ν vanishing
moments if it is orthogonal to all polynomials of degree ν − 1. That is, if ⟨xk, ψ⟩L2(R) = 0 for k =

0, . . . , ν − 1. For simplicity, we work with wavelets with minimal support. Thus, for ν = 1 the above
wavelet is the Haar wavelet, but for ν ≥ 2 there are different choices, ranging from the classical Daubechies
wavelet (which has minimum-phase) to symlets which are close to being symmetric, but with a larger phase
[50, p. 294].

If ψ generates a system of orthonormal wavelets with ν vanishing moments and minimal support, then
the support of ψ and ϕ is an interval of size 2ν − 1. For convenience, we use the convention that supp(ϕ) =
supp(ψ) = [−ν + 1, ν].

Let ϕj,m(x) := 2j/2ϕ(2jx − m) and ψj,m(x) := 2j/2ψ(2jx − m) denote the dilated and translated
versions of ϕ and ψ. To work on the interval [0, 1], we need to construct bases on this interval consisting of
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functions ϕj,m and ψj,m, with j ≥ J0 for some J0, chosen so that supp(ϕj,m) = supp(ψj,m) ⊂ [0, 1] for
at least one choice of m. It is readily seen that if J0 ≥ ⌈log2(2ν)⌉ for ν ≥ 2 and J0 ≥ 0 for ν = 1, then this
holds for at least one m.

Constructing an orthonormal wavelet basis on the interval requires special care at the boundaries, and it is
common to replace all wavelets and scaling functions intersecting the boundary with certain “replacement”
functions. Hence for j ≥ J0 we define the set of functions

Bϕ,j =
{
ϕrep
j,m

}ν−1

m=0

⋃
{ϕj,m}2

j−ν−1
m=ν

⋃{
ϕrep
j,m

}2j−1

m=2j−ν ,

Bψ,j =
{
ψrep
j,m

}ν−1

m=0

⋃
{ψj,m}2

j−ν−1
m=ν

⋃{
ψrep
j,m

}2j−1

m=2j−ν

where ψrep
j,m and ϕrep

j,m are replacement wavelets and scaling functions supported on [0, 1]. There are several
ways to construct these replacement functions so that they retain the orthonormality condition, and we con-
sider both a periodic boundary extension and the vanishing moments preserving (VMP) boundary wavelets
introduced by Cohen, Daubechies & Vial in [21].

The advantage of the former is that it is both easy to define and implement. Indeed, to compute a discrete
wavelet transform (DWT) using a periodic boundary extension, one simply use a periodic convolutions
between between the filters and the signal. The disadvantage of the periodic wavelets basis is that we lose
the vanishing moments property at the boundaries. This may result in a few high amplitude coefficients at
each scale. Another issue with these wavelets is that any ℓ2-approximation of a non-periodic function on
[0, 1] will have certain artefacts at the boundaries due to the underlying assumption of periodicity, see e.g.,
[50, Fig. 9.1] for typical artefacts at discontinuities.

The vanishing moments preserving boundary extension introduced in [21] circumvents this issue by
designing special wavelets at the boundaries, which retain both orthonormality, vanishing moments and
avoids any assumptions about periodicity. However, as pointed out by Antun & Ryan in [11], most wavelet
libraries do not support these wavelets. In [30] Gataric & Poon extended the WaveLab library [17] to
also include (Daubechies) vanishing moments preserving boundary wavelets with ν = 4, . . . , 8 vanishing
moments. In this work, we use the implementation from [11], to also include orthonormal wavelets such as
symlets.

For the periodic wavelet basis, we extend the wavelets and scaling functions at the boundaries periodi-
cally. That is, we let

ϕper
j,m = ϕj,m|[0,1]+ϕj,2j+m|[0,1] for m = 0, . . . , ν − 1,

ϕper
j,m = ϕj,m|[0,1]+ϕj,m−2j |[0,1] for m = 2j − ν, . . . , 2j − 1,

and similar for ψper
j,m. Here |[a,b] means the restriction to the interval [a, b]. Strictly speaking, we could have

omitted the definition of ϕper
j,ν , ψ

per
j,ν and ϕper

j,2j−ν , ψper
j,2j−ν , as these function are pure interior functions, but

we define these functions to unify the notation with the vanishing moments preserving boundary wavelets.
In [21] one constructs special boundary wavelets and scaling functions ϕleft

m , ψleft
m , ϕright

m , and ψrigth
m , for

m = 0, . . . , ν− 1. These functions are created using finite linear combinations of the interior functions, and
their supports are staggered. That is supp(ϕleft

m ) = [0, ν +m] and supp(ϕright
m ) = [−m − ν, 0] and similar

for ψleft
m and ψright

m . The corresponding boundary functions (similar for the wavelets) are defined as

ϕbd
j,m(x) = 2j/2ϕleft

m (2jx) for m = 0, . . . , ν − 1,

ϕbd
j,m(x) = 2j/2ϕright

2j−1−m(2j(x− 1)) for m = 2j − ν, . . . , 2j − 1.

With these functions well defined, we let “rep”, mean either “per” or “bd”.
Let Vj = span{Bϕ,j} and Uj = span{Bψ,j}, and note that by construction these satisfy Vj ⊕ Uj =

Vj+1. Now, let Cψ,j = Bϕ,J0 ∪ Bψ,J0 ∪ · · · ∪ Bψ,j−1. It should be clear from the previous discussion that
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Bϕ,j and Cϕ,j span the same space. We can perform a change-of-basis between the two bases using a DWT
matrix W ∈ R2j×2j .

Finally, note that no closed-form formula exists for the compactly supported orthonormal wavelets con-
sidered (except for the Haar wavelet). We can, however, compute approximations to ϕ(2jk) and ψ(2jk), at
dyadic grid points using the cascade algorithm [22].

3.3 A useful lemma

Before we proceed, we prove a lemma that lays the foundation for the fast computations derived in the
following sections. We note that the lemma is a generalisation of what is used in the proof of Lemma 6.6 in
[1].

Lemma 3.4. Let h ∈ L2(R) with supp(h) ⊂ [a, b] for integers a ≤ 0 < b. Denote by hj,m(x) =

2j/2h(2jx−m) a translated and dilated version of h. Suppose that j,m ∈ Z are chosen so that supp(hj,m) ⊂
[0, 1]. Then

⟨hj,m, wn⟩ = 2−j/2
b−1∑
l=a

wn

(
l +m

2j

)
Wh0,−l|[0,1)

(⌊
2−jn

⌋)
.

Proof. First notice that by assumption we have that supp(hj,m) ⊂ [2−j(a+m), 2−j(b+m)] ⊂ [0, 1]. This
implies that b − a ≤ 2j , and that m ∈ {−a,−a + 1, . . . , 2j − b} ⊂ {0, . . . , 2j − 1}, where have used the
assumption a ≤ 0 < b, in the final inclusion. Next notice that for any x ∈ [0, 1) we have the following
equality

x

2j
+
m

2j
=

∞∑
i=j

x(i−j+1)2−i−1 +

j∑
i=1

m(i)2−j−1+i

=

∞∑
i=j

x(i−j+1)2−i−1 ⊕
j∑
i=1

m(i)2−j−1+i =
x

2j
⊕ m

2j
,

(9)

where the second equality holds, since the support of the two numbers does not intersect when they are
represented as binary sequences. Utilising (9) and Lemma 3.3 now give

⟨hj,m, wn⟩ =
∫ 1

0

2j/2h(2jx−m)wn(x) dx

=

b−1∑
l=a

∫ 2−j(l+1+m)

2−j(l+m)

2j/2h(2jx−m)wn(x) dx

=

b−1∑
l=a

∫ l+1+m

l+m

2−j/2h (x−m)wn

( x
2j

)
dx

=

b−1∑
l=a

∫ 1

0

2−j/2h (x+ l)wn

(
x+ l +m

2j

)
dx

=

b−1∑
l=a

∫ 1

0

2−j/2h (x+ l)wn

(
x

2j
⊕ l +m

2j

)
dx

= 2−j/2
b−1∑
l=a

wn

(
l +m

2j

)
Wh0,−l|[0,1)

(⌊
2−jn

⌋)
.
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4 The one dimensional algorithm

Next, we describe an algorithm for computing a matrix-vector multiplication with the matrix

PNUPM =


⟨ϕrep
j,0, w0⟩ · · · ⟨ϕrep

j,M−1, w0⟩
...

. . .
...

⟨ϕrep
j,0, wN−1⟩ · · · ⟨ϕrep

j,M−1, wN−1⟩

 (10)

and its adjoint, using O(N logN) operations and without explicitly storing the matrix (10) in memory.
Throughout, we let M = 2j and N = 2j+q where j ≥ J0 and q > 0 are integers. Other values of M
and N can be considered by ultilizing appropriate zero padding. Below, we describe the algorithm stepwise
by defining different operators, which we combine to achieve the desired matrix-vector multiplication. The
complete algorithm is summarised in Algorithm 1.

Remark 4.1 (On the scaling between N and M ). In Table 1 we have computed the ratio between the largest
and smallest singular value of the matrix PNUPM , for different wavelets and choices for q, both in one
and two dimensions. We observe that in all cases, the matrix is well-conditioned for the simplest choice of
q = 1. This corresponds to N = 2M in one dimension and N = 4M in two dimensions. Moreover, since
we know that the stable sampling rate for Walsh sampling and wavelet reconstruction is linear, we have that
N = O(M), with a reasonable constant.

Remark 4.2 (Applications to compressive sensing). Note that a sparse representation of f is needed for
compressive sensing to achieve successful recovery. For this method it is, therefore, better to represent an
approximation to f in the basis Cψ,j , than the Bϕ,j basis used above. Changing the basis can easily be
achieved by using the matrix PNUPMW−1, where PNUPM is as above, and W−1 ∈ CM×M is the inverse
discrete wavelet transform (IDWT). As W−1 is a change of basis matrix from Cψ,j to Bϕ,j , this matrix will
simulate the desired matrix if Cψ,j is the reconstruction basis. Furthermore, the cost of applying W−1 is
O(M) using the cascade algorithm. This means that the overall cost of the matrix-vector multiplication does
not grow by applying this change-of-basis.

Remark 4.3 (Haar wavelet reconstruciton). For N = M = 2j , the Haar wavelet basis and Walsh sampling
basis, span the same space. For the Haar reconstruction basis there is, therefore, no benefit of applying
generalised sampling or the PBDW-method for reconstruction. Compressive sensing, on the other hand, can
be applied since it allows for reconstruction of M wavelet coefficients from m < M samples, under the
assumption of sparsity. Since many natural images are sparse in the Haar wavelet basis, this approach is
widely studied, see e.g. [9, 51, 57]. For Walsh sampling and Haar wavelet reconstruction using the basis
Cψ,j , the truncated change-of-basis matrix PMUPM = HW−1, where W−1 is the Haar IDWT matrix, and
H is the Hadamard matrix. This matrix can be computed using fast transforms with the FWHT and DWT.
Below we do, therefore, not consider Haar wavelet reconstruction.

4.1 The forward operator

The wavelet basis Bϕ,j with ν > 1 vanishing moments consists of three types of wavelets, the left boundary
corrected wavelets, interior wavelets and the right boundary corrected wavelets. The matrix-vector multipli-
cation PNUPMξ for ξ ∈ CM is, therefore, naturally divided into the three sums

ν−1∑
m=0

⟨ϕrep
j,m, wn⟩ξm +

M−ν−1∑
m=ν

⟨ϕj,m, wn⟩ξm +

M−1∑
m=M−ν

⟨ϕrep
j,m, wn⟩ξm (11)

for each 0 ≤ n < N . In this subsection we foucs on how to speed up the computations of the middle
summand. Throughout we take ν to be some small fixed number, usually in the range {2, . . . , 8}, and we
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The value of µ(RM ,SN ) = 1/ cos(ω(RM ,SN )) = 1/σM (PNUPM )

One dimension Two dimensions
M = 27, N = 27+q , L2([0, 1]) M = 22·5, N = 22(5+q), L2([0, 1]2)

Wavelet q = 1 q = 2 q = 3 q = 4

DB2 1.200 1.050 1.014 1.004
DB3 2.610 1.135 1.028 1.006
DB4 1.251 1.068 1.023 1.007
DB5 1.392 1.109 1.025 1.011
DB6 6.499 1.137 1.033 1.016
DB7 2.642 1.104 1.046 1.022
sym2 1.200 1.050 1.014 1.004
sym3 2.610 1.135 1.028 1.006
sym4 1.188 1.037 1.008 1.003
sym5 1.179 1.042 1.013 1.005
sym6 1.300 1.059 1.015 1.005
sym7 1.549 1.095 1.021 1.008

Wavelet q = 1 q = 2 q = 3 q = 4

DB2 1.439 1.102 1.028 1.008
DB3 6.814 1.289 1.057 1.013
DB4 1.565 1.141 1.047 1.013
DB5 1.937 1.230 1.050 1.022
DB6 42.233 1.292 1.068 1.032
DB7 6.980 1.220 1.094 1.044
sym2 1.439 1.102 1.028 1.008
sym3 6.814 1.289 1.057 1.013
sym4 1.412 1.075 1.016 1.006
sym5 1.389 1.085 1.026 1.009
sym6 1.690 1.121 1.029 1.009
sym7 2.400 1.199 1.043 1.015

Table 1: We compute the fraction 1/σM (PNUPM ) = µ(RM ,SN ), for the matrix PNUPM , where U is the
change-of-basis matrix between a Walsh sampling basis and an orthonormal wavelet basis with vanishing
moments preserving boundary wavelets. We consider both one and two-dimensional bases. We see that in
all the considered cases, the smallest singular value is not close to zero, indicating good conditioning of the
matrix. We also see that the two-dimensional values equals the square of the one-dimensional values. This is
expected since the two-dimensional matrix can be formed as the Kronecker product of two one-dimensional
matrices. Here DBX and symX , refer to a Daubechies or symlet wavelet, respectively, with X vanishing
moments.
omit the dependence on ν whenever we summarize the computational cost of the algorithm. The first and
third summand require O(Nν) = O(N) operations each, and their dependence is therefore independent of
M . We consider the edge scaling functions in §4.3.

We start by applying Lemma 3.4 to the middle summand in (11). This gives

M−ν−1∑
m=ν

⟨ϕj,m, wn⟩ξm = 2−j/2
M−ν−1∑
m=ν

ν−1∑
l=−ν+1

Wϕ0,−l|[0,1)(
⌊
2−jn

⌋
)wn

(
l+m
2j

)
ξm

= 2−j/2
ν−1∑

l=−ν+1

Wϕ0,−l|[0,1)(
⌊
2−jn

⌋
)

M−ν−1∑
m=ν

wn
(
l+m
2j

)
ξm.

Recall that M = 2j and N = 2j+q , and define the linear operator Hl : RM → RN by

Hl(ξ) =

[
M−ν−1∑
m=ν

wn

(
2q(l +m)

N

)
ξm

]N−1

n=0

, ξ ∈ RM ,

and the linear operator Dl : RN → RN by

Dl(α) =
[
2−j/2Wϕ0,−l|[0,1)(

⌊
2−jn

⌋
)αn

]N−1

n=0
, α ∈ RN .

Combining these operators, we can write the middle sum in (11) as[
M−ν−1∑
m=ν

⟨ϕj,m, wn⟩ξm

]N−1

n=0

=

ν−1∑
l=−ν+1

Dl(Hl(ξ)). (12)

Note thatHl can be implemented by embedding ξ ∈ RM in a zero-padded vector of lengthN , and apply
an N × N fast Walsh-Hadamard transform. Thus, evaluatning Hl can be done in O(N logN) operations.
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Also notice that the coefficients Wϕ0,−l|[0,1)(
⌊
2−jn

⌋
) are independent of the input, and can be computed a

priori. This reduces the cost of evaluating Dl to at most O(N) operations. The cost of computing (12) is,
therefore, O(N logN).

Also note that n < N = 2j+q , which implies that
⌊
2−jn

⌋
≤ 2q − 1. This means that for each l we

only need compute Wϕ0,−l(s)|[0,1) for s = 0, . . . , 2q − 1. Furthermore, from §2 we know that for a fixed
γ > 1 the stable sampling rate scales linearly. Hence for fixed q we may vary j without affecting the stable
sampling rate. This means that we only need to precompute these coefficients for some q > qγ′ where
γ′ > 1 is the smallest stable sampling rate of interest. Moreover, from Table 1 we see that even the simplest
choice of q = 1, results in 1 < γ < 2 in many cases.

4.2 The adjoint operator

Next we consider the matrix-vector multiplication PMU∗PNα for α ∈ CN . Since the computational burden
is on the M − 2ν middle columns, we once more foucs on these and prostpone the edge wavelet functions
until §4.3. That is, for m = ν, . . . ,M − ν − 1 we can write the matrix-vector product as

N−1∑
n=0

⟨wn, ϕj,m⟩αn =
1√
2j

N−1∑
n=0

ν−1∑
l=−ν+1

wn

(
l +m

2j

)
Wϕ0,−l|[0,1)

(⌊ n
2j

⌋)
αn

=
1√
2j

ν−1∑
l=−ν+1

N−1∑
n=0

w2q(l+m)

( n
N

)
Wϕ0,−l|[0,1)

(⌊ n
2j

⌋)
αn

(13)

by utilizing Lemma 3.4 and (7). Next define the operator Bl : RN → RM as

Bl(s) =


∑N−1
n=0 w2q(l+m)(n/N)sn for m = ν, . . . ,M − ν − 1

0 for m ∈ {0, . . . , ν − 1} ∪ {M − ν, . . . ,M − 1}

for s ∈ RN , and observe that Bl = H∗
l . Thus, from Equation (13) we now have[

N1∑
n=0

⟨wn, ϕj,m⟩αn

]M−ν−1

m=ν

=

ν−1∑
l=−ν+1

Bl(Dl(α)).

Finally, observe that Bl can be computed in O(N logN) operations by applying a fast Walsh Hadamard
transform of dimension N and selecting the appropriate output from this transform. Since the cost of apply-
ing Dl is O(N), the total cost of computing the output from the middle rows are of order O(N logN).

4.3 The edge operations

We now turn to the edge functions and consider the two boundary extensions given by the periodic and
vanishing moments preserving boundary wavelets. This gives us four different edge inner products, one for
each edge and boundary extension.

Consider the forward operator. According to (11) we can write the sum of the ν first and ν last columns
as [

ν−1∑
m=0

⟨ϕrep
j,m, wn⟩ξm

]N−1

n=0

and

[
M−1∑

m=M−ν
⟨ϕrep
j,m, wn⟩ξm

]N−1

n=0

, (14)

respectively, for ξ ∈ RM . Likewise for the adjoint operator we can write the ν first and ν last rows as[
N−1∑
n=0

⟨wn, ϕrep
j,m⟩αn

]ν−1

m=0

and

[
N−1∑
n=0

⟨wn, ϕrep
j,m⟩αn

]M−1

m=M−ν

, (15)
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respectively, for α ∈ RN .
At the edges, we could, – potentially – compute the inner products ⟨ϕrep

j,m, wn⟩ a priori and store the
result as dense matrices. A challenge with this approach, is that we need to compute and store the inner
products for every possible combination of j, m and n. This is infeasible in general, and would only
allows us to do computations for certain dimensions. However, by applying Lemma 3.4 once more, we
can disentangle j,m, n from the integral computation so that we only need to compute Wϕrep

0,−l|[0,1](s) for
s ∈ {0, . . . , 2q − 1}. In the next proposition we do just this. Note that we use the convention that if b < a

and we write
∑b
l=a(· · · ), then this should be interpreted as zero.

Proposition 4.4. Let ϕ be a scaling function, whose wavelet has ν > 1 vanishing moments. Let M = 2j

and N = 2j+q for positive integers j ≥ ⌈log2(2ν)⌉ and q > 0. Let n ∈ {0, . . . , N − 1}. Then for
m = 0, . . . , ν − 1,

〈
ϕper
j,m, wn

〉
=

−m−1∑
l=−ν+1

2−j/2wn

(
2j +m+ l

2j

)
Wϕ0,−l|[0,1)

(⌊ n
2j

⌋)

+

ν−1∑
l=−m

2−j/2wn

(
m+ l

2j

)
Wϕ0,−l|[0,1)

(⌊ n
2j

⌋)
and

〈
ϕbd
j,m, wn

〉
=

ν−1+m∑
l=0

2−j/2wn

(
l

2j

)
Wϕleft

m (·+ l)|[0,1)
(⌊ n

2j

⌋)
.

Furthermore, for m = 2j − ν, . . . , 2j − 1,

〈
ϕper
j,m, wn

〉
=

2j−m−1∑
l=−ν+1

2−j/2wn

(
l +m

2j

)
Wϕ0,−l|[0,1)

(⌊ n
2j

⌋)

+

ν−1∑
l=2j−m

2−j/2wn

(
l +m− 2j

2j

)
Wϕ0,−l|[0,1)

(⌊ n
2j

⌋)
,

and

〈
ϕbd
j,m, wn

〉
=

−1∑
l=m−2j−ν+1

2j/2wn

(
l + 2j

2j

)
Wϕright

2j−1−m(·+ l)|[0,1)
(⌊ n

2j

⌋)
.

Proof. For an interval I ⊂ R, let χI denote the characteristic funciton on I . The result follows by using
Lemma 3.4 on all the considered inner products. For all functions intersecting the left edge this is trivial,
the result follows by recalling that supp(ϕ) = [−ν + 1, ν] and supp(ϕleft

m ) = [0, ν + m]. The same can
be said, about the functions ϕper

j,ν−1 = ϕj,ν−1, and ϕper
j,2j−ν = ϕj,2j−ν , since these are interior functions.

Applying Lemma 3.4 to the right edges require slighly more care, since it is assumed that the function under
consideration is supported on an interval [a, b], with a, b ∈ N, and b > 0. On the right edges this can be
achived by using the change of variable y = 2jx − (2j − 1). We do not write out the details for all the
considered functions, but demonstrate the idea on ϕj,2j+m|[0,1], for m = 0, . . . , ν − 2 (used in ϕper

j,m). We
start by noticing that χ[0,1](x) = χ[−(2j−1),1](2

jx− (2j − 1)). This means that

ϕj,2j+m|[0,1](x) = 2j/2ϕ(2jx− (2j − 1)− (m+ 1))χ[−(2j−1),1](2
jx− (2j − 1)),

where the function ϕ(· − (m + 1))χ[−(2j−1),1] has support [−ν + 1 + (m + 1), 1]. Applying Lemma 3.4,
and using that Wϕ0,−l(· − (m+ 1))|[0,1)(s) = Wϕ0,−l+m+1|[0,1)(s) gives the result.
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Given the inner products
〈
ϕrep
j,m, wn

〉
and

〈
wn, ϕ

rep
j,m

〉
, the computational cost of (14) and (15), is O(N).

Furthermore, to compute these inner products we may use Proposition 4.4 for each n ∈ {0, . . . , N − 1}.
However, this can can be challenging since evaluating the above sums, require the computation of

wn(2
−j(m + l)) for many different choices of m, l and n, and – to the best of the author’s knowledge

– no software package implements the pointwise evaluation of Walsh functions. Moreover, a naive imple-
mentation in C++ using Definition 3.1 is rather slow. To speed up this part of the code we use the relation
between Walsh functions and Hadamard matrices, and use the FWHT algorithm to evaluate wn(2−j(m+ l))

for all the relevant values of m, l and n, simultaneously. However, this raises the computational cost of the
edge computations to O(N logN).

Algorithm 1 The one-dimensional forward and adjoint operator.
1: procedure THE FORWARD OPERATOR

2: Input: j, q ∈ N. M = 2j , N = 2j+q and ξ ∈ RM .
3: Output: α = PNUPMξ where PNUPM is given by (10).
4: Compute vectors βleft ∈ RN and βright ∈ RN from (14), using Prop. 4.4.
5: Compute the vector βmid =

∑ν−1
l=−ν+1DlHl(ξ).

6: return α = βleft + βmid + βright.

1: procedure THE ADJOINT OPERATOR

2: Input: j, q ∈ N. M = 2j , N = 2j+q and α ∈ RN .
3: Output: ξ = PMU

∗PNα where PNUPM is given by (10).
4: Compute ξ0, . . . , ξν−1 and ξM−ν , . . . ξM−1 from (15), using Prop. 4.4.
5: Compute ξ′ν , . . . , ξ

′
M−ν−1 extracting elements from ξ′ =

∑ν−1
l=−ν+1Bl(Dl(α)).

6: return ξ = [ξ0, . . . , ξν−1, ξ
′
ν , . . . , ξ

′
M−ν−1, ξM−ν , . . . , ξM−1]

5 Extension to two dimensions

We restrict our attention to d = 2 dimensions since it applies to any kind of imaging application. It is
certainly possible to extend the algorithm to any d-dimensional tensor product space, though its practical
relevance seems limited. We let H = L2([0, 1]2) and consider samples from the tensor product basis {wn1

⊗
wn2 : (n1, n2) ∈ Z2

+}. As for the one dimensional algorithm, we consider the case where the sampling and
reconstruction spaces are dyadic cubes. That is, forN = 2j+q andM = 2j we let the sampling space SN2 =

{wn1
⊗wn2

: 0 ≤ n1, n2 < N} and the reconstruction space RM2 = {ϕj,m1
⊗ ϕj,m2

: 0 ≤ m1,m2 < M}.
For a tensor ξ ∈ RM×M we can split the change-of-basis computation as

αn1,n2
=

M−1∑
m1=0

M−1∑
m2=0

ξm1,m2
⟨ϕj,m1

⊗ ϕj,m2
, wn1

⊗ wn2
⟩

=

M−1∑
m1=0

⟨ϕj,m1
, wn1

⟩
M−1∑
m2=0

ξm1,m2
⟨ϕj,m2

, wn2
⟩

(16)

for each n1, n2 ∈ {0, . . . , N−1}, so that it is a double sum of one-dimensional inner products. Thus, letting
G ∈ RN×M denote the forward operator we derived for the one dimensional case, and letting η ∈ CM×N

have components

ηm1,n2 =

M−1∑
m2=0

ξm1,m2 ⟨ϕj,m2 , wn2⟩ = G
(
[ξm1,m2 ]

M−1
m2=0

)
we see that the above computation simplifies to

αn1,n2
=

(
G
(
[ηm1,n2

]
M−1
m1=0

))
n1

, for n1, n2 ∈ {0, . . . , N − 1},
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or simply α = GξG∗ for ξ ∈ RM×M .
Now, sinceG can be evaluated in O(N logN) operations, we can computeα = GξG∗ in O(2MN logN)

operations. Furthermore, since N = 22qM , and q ∈ {1, 2} is a resonable choice, this is reduces to
O(N2 logN2), where N2 is the dimension of the sampling space.

By considering (16), it should be clear that we can do the same type of splitting also for the adjoint
operator. We do not do the full derivation, but notice that as an intermediate step one would need to compute

βn1,m2
=

N−1∑
n2=0

αn1,n2
⟨wn2

, ϕj,m2
⟩ = G∗

(
[αn1,n2

]
N−1
n2=0

)
for 0 ≤ m2 < M . Applying the same transform in the row direction, leads to a transform which can be
computed in O(N2 logN2) operations. The complete algorithm is summarized in Algorithm 2.

Algorithm 2 The two dimensional forward and adjoint operator.
1: Let G ∈ RN×M be the one dimensional truncated change-of-basis matrix (10).
2: procedure THE FORWARD OPERATOR

3: Input: j, q ∈ N. M = 2j , N = 2j+q and ξ ∈ RM×M .
4: Compute α = GξG∗.
5: return α.

1: procedure THE ADJOINT OPERATOR

2: Input: j, q ∈ N. M = 2j , N = 2j+q and α ∈ RN×N .
3: Compute ξ = G∗αG.
4: return ξ.

6 Numerical examples

We conclude with two numerical examples.

Example 1 (Computational cost) The proposed algorithm requires O(N logN) floating-point operations
to compute a matrix-vector multiplication with the N ×M matrix in (10). This is in contrast to the O(NM)

operations normally required for standard dense matrix-vector multiplication. In two dimensions with ten-
sor product bases, as considered here, it is customary to compute the change of basis as ξ 7→ GξG∗ for
ξ ∈ Rm×m and G ∈ Rn×m, rather than forming the Kronecker product matrix G ⊗ G. In this case the
computational cost, both for the forward and adjoint operator, reduces to O(N3/2), where N = n × n and
n = O(m).

In this example, we want to investigate if the savings offered by this new algorithm can be seen in
practice. To this end, we measured the computational time of both the forward and adjoint operator in one
and two dimensions, using the proposed algorithm and dense matrices. To get an accurate estimate of the
computational complexity of the algorithms, all computations were executed on a single core on a central
processing unit (CPU), to prevent the use of parallel computations.

The results can be seen in Figure 4. In all experiments we choose N = 2d(R+k+1) and M = 2d(R+k)

for different values of R, k and d. According to our estimates above, the computational time of the proposed
algorithm should scale roughly (ignoring the log factor) like 2dk ×Constant, when we increase k for these
choices of N and M . On the other hand, for dense matrix-vector multiplication we expect that the time
scales like 4k × Constant in one dimension and 8k × Constant in two dimensions, for these choices of N
and M . As we can see from the figure, these estimates agree well for all of the algorithms. It is, however,
necessary to choose a large R to observe the asymptotic behaviour for the proposed algorithm. This is most
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Figure 4: (Comparison of runtime). Given input of increasing size, we compare the proposed algorithm in
one and two dimensions with dense matrix-vector multiplication. In all experiments we use a periodic DB4
wavelet reconstruction basis, and all experiments are computed on a single CPU core. The two-dimensional
dense matrix-vector multiplication is computed using a tensor product decomposition, e.g., for the forward
operator ξ 7→ GξG for ξ ∈ Rm×m and G ∈ Rn×m, with N = n× n and M = m×m.

likely related to the fact that MATLAB’s dense matrix-vector multiplication is a highly optimized procedure,
written in a compiled language, whereas the proposed algorithm is implemented in MATLAB, something
which gives it a substantial constant overhead.

Example 2 (Two-dimensional reconstruction) We conclude with an example
showing how the proposed algorithm can be used for two-dimensional problems. In this example we let
f(t1, t2) = cos

(
3
2πt1

)
sin (3πt2), and we acquire the first 32 × 32 Walsh samples form f . Using these

samples, we compute a truncated Walsh series approximation to f as well as a generalised sampling recon-
struction with different wavelet smoothness. Note that the smoothness of the wavelet basis increases with ν
and since f is smooth we expect that the reconstruction improves with increasing values of ν. As expected,
we see this effect in Figure 5, where the reconstruction error decreases with increasing values of ν.

7 Concluding remarks

Reconstruction of functions from finitely many samples is a central problem in mathematics, which has be
tackled by numerous disciplines including approximation theory, signal processing, data science and inverse
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Figure 5: (Two-dimensional reconstruction). We consider the function
f(t1, t2) = cos

(
3
2πt1

)
sin (3πt2) and approximate f from its 32 × 32 first

Walsh samples using a truncated Walsh series (left column), and generalised
sampling with different wavelets (columns 2-4, rows 1-2). In the top row we
show the reconstructed functions and in the second row the show the absolute
difference |f−f̃ | between f and the computed approximations f̃ . The relative
error is computed as ∥f−f̃∥ℓ2/∥f∥ℓ2 , by evaluating f and f̃ in a large number
of points. To the right we show the function f . Notice how the reconstruction
error decreases with increasing values of ν.

problems. In this work, we have focused on the recovery of wavelet coefficients from binary measurements
and derived an algorithm for computing the matrix-vector product with an N ×M section of the change-
of-basis matrix between a Walsh and a wavelet basis using O(N logN) operations. As we have seen,
this matrix is used by numerous classical reconstruction algorithms and can model many real-life sampling
modalities. These days, a popular approach is to build reconstruction algorithms that approximate f using
neural networks. While the practical performance of these algorithms is not yet mature [2], the inclusion of
known operators into the network architectures can reduce the error bounds [49] of the learning algorithms.
A promising new avenue is, therefore, to make further investigations into how known operators, such as the
one considered in this work, can be utilized by modern machine learning. Future work could also consider
whether it is possible to derive fast matrix-vector multiplications for other classical reconstruction bases,
such as polynomials, splines, or bi-orthogonal wavelets etc. Such results would increase the use of these
reconstruction bases when approximating functions from Walsh samples.
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[38] T. Hrycak and K. Gröchenig. Pseudospectral Fourier reconstruction with the modified inverse polyno-
mial reconstruction method. J. Comput. Phys., 229(3):933–946, 2010.

21



[39] A. Jardine, H. Hedgeland, G. Alexandrowicz, W. Allison, and J. Ellis. Helium-3 spin-echo: Principles
and application to dynamics at surfaces. Prog. Surf. Sci., 84(11-12):323–379, 2009.
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