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A B S T R A C T

In-situ observations of subsurface ocean temperatures are, in many regions, inconsistently distributed in time
and space. These spatio-temporal inconsistencies in the observational network lead to difficulties in utilizing
those observations effectively for ocean model evaluation or understanding larger-scale ocean characteristics.
Model accuracy of subsurface ocean characteristics is especially important within regions that contain complex
ocean structures. One such region is the European Arctic which not only contains several types of water masses
with unique characteristics, but also wintertime sea ice coverage and complex bathymetry. This study presents
an unsupervised neural networking technique that can be used in combination with traditional ocean model
evaluation techniques to provide additional information on the accuracy of modeled vertical ocean temperature
profiles. Self-organizing maps is an unsupervised machine learning technique that we apply to approximately
twenty thousand Argo and CTD temperature profiles from 2012 to 2020 in the European Arctic to categorize
the observed vertical ocean temperature structures in the top 150 m. The observed ocean profile categories,
or neurons, defined by the self-organizing map show strong spatial and temporal dependencies. We then use
the neuron weights, or the learned temperature profile structure of each neuron, to validate the spatial and
temporal variability of modeled vertical temperature structures. This analysis gives us new insights about the
model’s capabilities to reproduce specific vertical structures of the top-most ocean layer within different regions
and seasons. Mapping modeled ocean temperature profiles onto the neuron-space of the observationally-defined
self organized map highlights the potential of this method to advance our understanding of model deficiencies
in that region.
. Introduction

In coupled ocean–atmosphere model systems many challenges are
onnected to the accurate representation of the air-sea heat, momen-
um, and mass fluxes (Cronin et al., 2019; Giorgi, 2019). In order to
dvance simulations of the ocean–atmosphere heat exchange, accu-
ately simulating the upper few hundred meters of the ocean water
olumn is necessary due to its large impact on sea surface temperature
ariability and in turn the heat and moisture fluxes to the atmo-
phere (D’Asaro, 2014). Thus, not only sea surface temperature, but
lso ocean subsurface observations are critical to understand coupled
cean–atmosphere model characteristics.

The main observation source for upper ocean temperature is pro-
ided by autonomous floats of the Argo program and ship-based CTD
easurements (Wong et al., 2020). The spatio-temporal patterns of

hose in-situ observations are, however, highly irregular in space and
ime. Thus, using observed profiles for model evaluation is difficult
nd further challenged by the issue of representativeness of a point

∗ Correspondence to: Fluid Dynamics and Solid Mechanics (T-3), Los Alamos National Laboratory, Los Alamos, NM, USA.
E-mail addresses: ethomas@lanl.gov (E.E. Thomas), maltem@met.no (M. Müller).

observation versus a gridded model solution. Due to these inconsis-
tencies, model verification studies often use climatological products,
e.g. the World Ocean Atlas, or ocean reanalysis products. However,
in order to preserve the fine-scale structure of upper ocean profiles,
which is crucial for the short-term development of the sea surface
temperature by vertical convective processes, it would be preferable to
not smooth-out, for example a sharp mixed layer which is presented in
the raw data, or other small spatial scale features such as eddies. This
is especially important, and especially challenging, within regions that
contain complex ocean structures and multiple types of water masses
with unique temperature characteristics.

Utilizing an unsupervised categorization methodology in order to
find systematic spatio-temporal patterns between upper ocean temper-
ature profiles has the potential to make additional use of the large
amount of existing Argo and CTD profiles (Jones et al., 2019; Son-
newald et al., 2021). The self-organizing map, hereafter referred to as
SOM (Kohonen, 2001), is an unsupervised artificial neural network that
is often used in meteorological and oceanographic applications (Liu
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and Weisberg, 2011; Iskandar et al., 2008; Richardson et al., 2003;
Liu et al., 2016) to simplify and map highly complex spatio-temporal
data onto a simplified 2-dimensional space. In the present study, we
apply SOM to a set of Argo and CTD profiles of the upper 150m
for the region of the Nordic and Barents Seas and show how this
method can be complimentary to more traditional ocean model eval-
uation techniques to provide additional information on the accuracy of
modeled vertical ocean temperature profiles. This paper is organized
as follows: Section 2 describes the data used. Section 3 describes
the SOM methodology. Section 4 presents the results of the SOM
analysis as well as the model evaluation while Section 5 contains a
discussion.

2. Data

2.1. Observations

We use a combination of in-situ temperature observations (primarily
Argo and CTD profiles) between 2012 and 2020 obtained through
the Copernicus Marine Service Monitoring Service (Wong et al., 2020;
Wehde et al., 2021). We interpolate each temperature profile within
the European Arctic domain to vertical coordinates every 1m and only
keep data in the top 150m of the water column. Profiles that either
do not reach a depth of at least 150m or do not contain temperature
data in the top 10m are ignored. The resulting total number of observed
temperature profiles used in this study equals 24,742.

2.2. Ocean model

Ocean model simulation output of the TOPAZ4 model is used for
comparison. The TOPAZ4 model is part of the Copernicus Marine Envi-
ronmental Monitoring Service (CMEMS) — Arctic Marine Forecasting
Center (ARC-MFC), which is a forecasting system producing daily 10-
day ensemble forecasts (Sakov et al., 2012). The forecasting system is
based on the hybrid coordinate ocean model (HYCOM) coupled to a
sea ice model with the sea ice thermodynamics and the elastic–viscous–
plastic rheology described in Hunke and Dukowicz (1997). The weekly
data assimilation system used in TOPAZ4 is the Ensemble Kalman
Filter. This is a multivariate assimilation technique that depends on the
100-member best estimate ensemble (Sakov et al., 2012). A suite of 10-
member 10-day forecasts is performed daily, forced by the European
Centre for Medium-Range Weather Forecasts (ECMWF) high resolu-
tion (HRES) weather forecast model (Bauer et al., 2013). TOPAZ uses
the turbulent mixing sub-model from the Goddard Institute for Space
Studies as described in Canuto et al. (2002).

The native horizontal grid of the TOPAZ model contains a resolution
of approximately 12–16 km. However, output products are interpolated
onto a grid with 12.5 km resolution. The native vertical resolution of
the TOPAZ model uses 28 hybrid layers. The hybrid layers are defined
so that the minimum thickness of the top most layer is 3 m, while
the maximum thickness of other layers is 450 m. The output products,
however, are only archived for 12 vertical z-layers. Sakov et al. (2012)
and Melsom et al. (2012) provide additional details about the native
TOPAZ model setup.

We use the daily ensemble-mean TOPAZ4 ocean temperature pro-
files for the year 2020. The TOPAZ model simulations are accessible
through the Copernicus Marine Environmental Monitoring service on
a z-level vertical grid with depths of 5, 30, 50, 100, 200, and 400m
in the upper ocean. We interpolate all TOPAZ temperature profiles (at
each spatial location for every day) to 1m depth intervals at spatial
ocations where temperature profiles are at least 200m (to ensure
orrect interpolation to a depth of 150m). Each interpolated TOPAZ
rofile is truncated at a depth of 150m.
 d

2

3. Self-Organizing Map

Self-Organizing Mapping is an unsupervised artificial neural net-
work that is used for pattern recognition, classification, and clustering
analysis (Kohonen, 2001). It has been widely used in the context of
meteorological and oceanographic observation and model analysis (Liu
and Weisberg, 2011; Liu et al., 2016; Landschützer et al., 2013, 2014).
Unsupervised machine learning algorithms, including SOM, are able to
learn and adjust their own classifications based on the input data alone,
without any external or user input. In order to learn without external
input, unsupervised algorithms assume that shared patterns exist within
the input data. This assumption is appropriate for our application since
temperature profiles within a given region share many characteristics.

SOMs are defined as a 2-dimensional map comprised of neurons.
Each neuron is defined with a neuron weight, which are trained using
a competitive learning algorithm. This means as each piece of data (in
our case, a ‘piece of data’ is a single observed vertical temperature
profile) is input during the iterative training process, there is only one
winning neuron, also referred to as the ’Best Matching Unit’, hereafter
referred to as the BMU, to which that piece of data is assigned. In
other words, only one neuron within the SOM can be activated during
each iteration of the training process. For each piece of input data,
the structure of the activated neuron is adjusted to closer match the
new data assigned to it. However, it is possible to allow each activated
neuron to also influence the structure of the neighboring neurons.
Neurons in a SOM are, therefore, more similar to their neighboring
neurons than they are to neurons located farther away in the 2-D SOM-
space. This competitive learning process and neighborhood influence
leads to the neurons within the SOM organizing themselves.

3.1. Defining the SOM

Before training the SOM to the observational temperature data,
the spatial structure of the 2-dimensional SOM-space must be defined.
In most cases, the best results occur when the physical space of the
observations is similar in shape to that of the SOM. Since our Arctic
domain is approximately square, the best results occur from a SOM also
containing a square shape.

Increasing the total number of neurons in the SOM generally results
in a better fit (meaning each individual temperature profile better
matches their assigned neurons), however, using too many neurons
does not sufficiently reduce the data to provide useful information
about the characteristics of the data. On the other hand, defining a SOM
with very few neurons generally results in a poor fit between any given
profile and its assigned neuron weight.

We use the SOM quantization error (Q-error) to determine the fit
of a data set to the trained SOM weights. The Q-error is calculated
as the mean euclidean distance between the data and neuron weights,
where smaller Q-error values indicate stronger fit of the data to the
neuron weight. The Euclidean distance (in units K) between any two
temperature profiles (such as an observation and a neuron weight) is
calculated as follows:

𝐷 =

√

√

√

√

𝑑𝑚𝑎𝑥
∑

𝑖=0
(𝑇𝑖,𝐴 − 𝑇𝑖,𝐵)

2, (1)

where 𝐷 is the Euclidean distance, 𝑑𝑚𝑎𝑥 is 150 m (the maximum depth
of the profiles), and 𝑇𝑖,𝐴 and 𝑇𝑖,𝐵 are the temperatures of profiles 𝐴 and

, respectively, at a depth of 𝑖m.
Although the size of the SOM is ultimately selected by the user, a

uite of sensitivity studies testing multiple SOM sizes, results shown
n Fig. 1, helps determine an appropriate size. Fig. 1 shows the Q-
rror is relatively constant at large SOM sizes. In other words, small
OM sizes result in large errors due to inadequate separation between
rofile types, however, very large SOM sizes are not useful either as
hey do not strongly improve the Q-error nor sufficiently reduce the
imensionality of complex data. Fig. 1 shows a SOM with the size
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Fig. 1. Self Organizing Map Quantization-Error (Q-error; in units K) plotted as a function of Self Organizing Map (SOM) Size. The Q-error is calculated as the Mean Euclidean
istance between each observation and the neuron weight of their best matching unit (BMU) and measures how well the data fits the trained SOM. The size of the SOM chosen
or use in this study is 6 neurons 𝑥 6 neurons for a total of 36 neurons. The 6 × 6 SOM size provides a low Q error (meaning the raw data agrees well with the trained neuron
eights) as well as provides a nice balance between simplifying the complexity of the original data while adequately separating different vertical temperature structures (important

or classification).
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f 6 × 6 neurons, for a total of 36 neurons, results in a low Q-error
meaning the raw data agrees well with the learned neuron weights).
his size both simplifies the complexity of the original data while
dequately separating unique vertical temperature structures which
s important for classification and model evaluation. The Q-error of
he 6 × 6 SOM trained to the observation temperature data is 5.75K
Fig. 1).

.2. Training the SOM

The first step of training the SOM is initializing each neuron weight.
e initialize the weights using a randomly selected observed tempera-

ure profile from the data set. The SOM is then ‘trained’ on the observed
emperature profiles through an iterative process: one randomly se-
ected temperature profile from the data set is input at a time and
he SOM algorithm determines which neuron weight it best matches.
he ‘winning’ neuron, or best matching unit (BMU), is determined by
inimizing the euclidean distance between the observation and the
euron weight (see Eq. (1)). The structure of the BMU weight is then
djusted toward the structure of the new data assigned to it.

During the training of the SOM, we allow the winning neurons to
eakly influence the structure of their neighbors. This results in the
OM organizing itself so that neurons will share similar characteristics
o their neighbors. The neighborhood function of the SOM defines
ow the winning neurons influence their neighbors. We define the
eighborhood function to be Gaussian in space with a sigma value of
.25.

The training process also depends on a learning rate parameter and
he total number of iterations. The 6 × 6 SOM in this study is trained
sing a learning rate of .7 and 20,000 iterations. Several sensitivity
ests (not shown) determined the structures of the SOM neuron weights
re not sensitive to adjustments in the learning rate or the number of
terations used assuming the number of iterations used to train the SOM
s appropriate for the size of the input data set. We found that for our
ata set, containing approximately 24,000 temperature profiles, values
etween 10,000 iterations and 20,000 iterations in the training process
ad a negligible impact on the results.

As previously mentioned in Section 3.1, the Q-error, which esti-
ates the fit of the data to the SOM weights, is strongly influenced

y the SOM size used. However, the structures identified within a
iven SOM size are robust. In other words, re-training a 6 × 6 SOM
n the observational temperature data consistently produces similar
emperature structures although the location of any given structures
ithin the 6 × 6 SOM-space changes. We have high confidence in the
bility of the SOM temperature classifications due to the robustness of

emperature structures that result.

3

. Results

.1. The study region: Nordic and Barents Seas

Our study region is a part of the European Arctic, including the
reenland Sea, Lofoten Basin and Barents Sea (Fig. 2). The Norwegian
eteorological Institute operates a convective-scale weather forecast-

ng system (Müller et al., 2017) for this region with future endeavors
o couple the atmospheric system to more realistic representations of
cean, sea-ice, and wave dynamics (Batrak and Müller, 2018, 2019;
homas et al., 2021b). The upper ocean in this area is characterized
y cold polar water masses from the North and the intrusion of warm
tlantic waters with its origin in the North Atlantic Current (NAC,
ossby, 1996). The boundary between the North Atlantic water mass
nd the Arctic water mass containing large gradients in temperature
nd salinity is called the Arctic Front (Swift and Aagaard, 1981; Raj
t al., 2019). The inflow of relatively warm Atlantic water into the
rontal region is through two NAC branches. First, the Norwegian
tlantic Slope Current (NwASC) following the Norwegian shelf edge
s a barotropic slope current (Skagseth et al., 2004), and, second, the
orwegian Atlantic Front Current (NwAFC) flowing as a topography
uided front current along the ridges dividing the Norwegian, Lofoten,
nd Greenland Basins (Mork and Skagseth, 2010). The NwASC further
ranches into a northward current towards the western side of the
valbard Archipelago (West Spitsbergen Current, WSC) and into the
arents Sea though the Barents Sea Opening (Helland-Hansen and
ansen, 1909; Aagaard et al., 1985).

The spatial characteristics of the sea surface temperature (SST) in
his area reflect the northward flowing warm Atlantic waters from
he NwASC and NwAFC, areas of seasonal sea-ice, and the Arctic
ront (Fig. 3). Again, the Arctic Front is characterized as the bound-
ry between warm Atlantic water and Arctic water, which is most
asily discussed through the behavior of the NwASC, NwAFC, and
SC (as seen in Fig. 2). The SST varies seasonally in all regions and
warm surface layer develops during summer. In particular, strong

ertical temperature contrasts develop seasonally in basins which are
ot strongly influenced by the NwASC and NwAFC, for example, the
reenland Basin or Eastern Barents Sea (Raj et al., 2019).

.2. Observed structures

In the following we highlight the potential of the SOM methods to
eveal insights into the vertical structure of the upper O(100m) of the
cean which can be further used for evaluation purposes of gridded
ubsurface temperature products. We will first show the spatial and
emporal patterns resulting from the SOM as applied to in-situ ocean
emperature observations. We note that we only characterize upper
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Fig. 2. The bathymetry of the study area in the European Arctic. It includes the Greenland and Barents Seas, as well as the Lofoten Basin. Ocean surface currents are indicated,
i.e. the Northwest Atlantic Front Current (NwAFC), the Northwest Atlantic Slope Current (NwASC) and the West Spitsbergen Current (WSC).
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ocean temperature profiles herein, thus the results and discussion below
only characterize the vertical thermal stratification in the top 150m of
he water column, and not the true stability of the water column as we
o not include salinity in this analysis.

Fig. 4 shows the result of the SOM as applied to the observed
emperature profiles. The SOM-learned profiles that define each neuron
numbered 1–36), also referred to as the neuron weights, are plotted
ith the thick black lines. The neuron weights represent the different

ypes of temperature profiles observed in our region. The thin colored
ines show each individual in-situ temperature profile sorted according
o their best matching unit. Again, the BMU is determined by minimiz-
ng the euclidean distance between the observed profile and the neuron
eight.

The structure of the 6 × 6 map of neurons can be summarized
s follows (see also schematic in Fig. 5): the upper left (neuron 1),
s characterized by a cold surface layer which deepens and becomes
older towards the right (moving from neuron 1 across the row towards
euron 6). Neuron 3 is unique in this series and contains a very distinct
hin, cold surface layer in the top 20m. This top row represents tem-
erature profiles that are non-thermally stratified. The neurons in the
econd and third rows (neurons 7 to 18) contain temperature profiles
oughly described as well-mixed. Similar to row 1, these well mixed
rofiles become colder towards the right, decreasing from approxi-
ately 5 ◦C to 0 ◦C. The bottom three rows (neurons 19 to 36) contain
rofiles with stable thermal stratification (temperature decreases with
ncreasing depth). These profiles typically become warmer as you move
own through the rows, and increase in thermal stratification as you
ove downward and towards the right. Neuron 36 in the lower right

orner of the SOM contains profiles that exhibit a relatively warm
 F

4

urface layer, a distinct thermocline at a depth of approximately 40m,
nd relatively cold water below the thermocline.

The boreal winter (DJF) and summer (JJA) distribution of observa-
ions sorted according to their BMU are shown in Supplemental Figures
2 and S3, respectively. Supplemental Figure S2 shows that wintertime
bservations are clustered in the neurons located in the top-left corner
f the SOM-space, indicating wintertime profiles in this region are
ominated by non thermally stratified and well-mixed temperature
rofiles. The summer observations contain larger spread in temperature
haracteristics and, thus, are distributed across a larger number of
eurons than the winter profiles. Furthermore, the summer profiles
ontain thermally stratified profiles seen in the bottom left corner of
he SOM; structures that are not observed during winter months.

The color scheme shown in Fig. 4 is specifically designed to be a
wo dimensional color gradient that visually represents similar charac-
eristics shared between neighboring neurons. This color scheme which
epresents profile similarities is useful in spatial plots of the BMU. In
he following discussion, we ask readers to refer to the neuron color
cheme as defined in Fig. 4.

Fig. 6 shows the spatial distribution of observed temperature pro-
iles for each season: DJF, MAM, JJA, SON. The color of each ob-
ervation is based on the profile’s BMU as defined in Fig. 4. Fig. 6
hows strong spatial and temporal patterns in the observed temperature
rofile characteristics captured by the SOM technique.

Temperature profiles north of 80N in every season are dominated
y characteristics of very cold SST and upper ocean temperatures and
ontain increasing temperatures with depth. These characteristics occur
rimarily in the ‘magenta’ colored neurons (i.e. neurons 4–6; see Fig. 4).

During DJF and MAM, Fig. 6 shows the Greenland Basin (refer to
ig. 2 for the location) is dominated by cold temperature profiles as
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Fig. 3. Mean seasonal sea surface temperature (in degrees C) obtained from the TOPAZ4 forecasting system for 2020.
een by the magenta and dark orange colored neurons (for example
eurons 11, 12, 17, and 18). These temperature profiles are either
hermally non-stratified or are cold and well-mixed to a depth of 150m.

Specifically, these profiles are characterized by surface temperatures
slightly above 0 ◦C while the waters below 50m are very close to 0 ◦C.

During JJA and SON, however, the Greenland Basin typically con-
tains profiles with high thermal stratification (characterized by light-
orange and yellow colored neurons; such as neurons 24, 30 or 36).
The upper ocean in this region during the summer and fall contains
relatively warm (with respect to the wintertime SST in the same re-
gion), shallow surface layers with depths of approximately 25m that
contain temperatures of approximately 5 ◦C. The water temperature
below the shallow surface layer is similar in structure and temperature
as observed in the winter months characterized by cold temperatures
of approximately 0 ◦C.

The Lofoten Basin (again, for the location refer to Fig. 2) is domi-
nated by profiles containing much warmer ocean temperatures through-
out the upper 150m during all seasons than observed in the Greenland
Basin (Fig. 6). During DJF, the ocean temperature structure is char-
acterized by well mixed profiles to a depth of 150m and contains
temperatures approximately 5 ◦C. These profiles are characterized by,
for example, neurons 7, 8, 13, and 14. During JJA, however, the
Lofoten Basin contains temperature profiles with slight temperature
stratification that the SOM categorizes as, for example, neurons 25,
26, and 31–33 (colored in royal-blue, and blue-gray). These stratified
profiles contain warmer SST than the corresponding winter profiles.
All the profiles in the Lofoten Basin, regardless of the season, share
a key characteristic: relatively warm temperatures between 50–150m
that remains above 5 ◦C all year (as opposed to the profiles in the
Greenland Basin, which contain very cold waters close to 0 ◦C at depths
below 50m).
5

The spatial and temporal patterns of observed ocean temperatures
captured by the SOM shown in Fig. 6 correctly identify several key
oceanographic characteristics of this region. The SOM captures the
relatively warm Norwegian Atlantic current flowing into the region
from the south, a portion of which continues as the West Spitsbergen
Current flowing northwards on the western side of Svalbard. SOM
clearly identifies a distinct separation between the upper ocean temper-
ature characteristics seen in Greenland Basin versus the Lofoten Basin.
Additionally, this technique captures the seasonal surface warming
throughout the domain during the summer months as well as the
persistent cold subsurface temperatures in the Greenland Basin.

The SOM technique described above is thus capable of identify-
ing observed characteristics of upper ocean temperature structure in
the European Arctic. Furthermore, SOM simplifies a potentially com-
plex analysis by clustering vertical temperature profiles with similar
characteristics together into neurons, essentially reducing the com-
plexity of the original data. In the following section we show how
the observationally-based neuron weights can be leveraged to provide
useful information to analyze the spatial and temporal characteristics
of gridded ocean products, for example from an ocean model.

4.3. Model evaluation

This section presents the results comparing the upper ocean temper-
ature simulated by the TOPAZ model against observations. Rather than
performing temporal or spatial averaging on the observations, which
smooths out important fine-scale spatio-temporal characteristics, we
leverage the observation-based SOM presented in the previous section.
We note the purpose of this section is not to provide a robust evaluation
of the TOPAZ model performance in the European Arctic, but rather,
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Fig. 4. Self Organizing Map neurons derived from Argo and CTD data (numbered 1–36). Neuron weights, or the temperature profile ‘learned’ by the SOM algorithm, are shown
with the thick black lines, while individual Argo and CTD temperature profiles are shown with the thin, colored lines. The observations are plotted according to their best matching
unit (BMU). See the text for details on how the BMU is determined.
we use the TOPAZ model to highlight additional insights of using
SOM which are complimentary to more traditional model evaluation
techniques.

While using the SOM neuron weights alone for evaluation may
not be sufficient since they only show dominant profile characteristics
smoothing out small scale features, Fig. 4, as well as Supplemental
Figures S2 and S3, also show the raw observations, providing an
estimate of the observed variability for any given neuron. We use these
figures to analyze the TOPAZ model’s ability to represent the fine scale
patterns of variability seen in observations.

We first plot all DJF and JJA TOPAZ temperature profiles sorted
according to the profile’s BMU. Fig. 7 shows the DJF profiles while
Fig. 8 shows the JJA profiles. The BMU of each TOPAZ profile is
determined by the minimum Euclidean distance between the TOPAZ
temperature profile and each SOM neuron weight. As in Fig. 4, the SOM
neuron weights are shown in the thick, black lines in each Figure.

The most striking feature of the DJF and JJA TOPAZ profiles seen
in Figs. 7 and 8 is the coarse vertical resolution of the model data.
To quantify how well the TOPAZ model data fits the observed neuron
weights we calculate the Q-error for each season for both observations

and TOPAZ data. Table 1 shows the TOPAZ model contains larger

6

Q-errors than the observations for every season. Unsurprisingly, this
indicates the coarse vertical resolution TOPAZ data fits the neuron
weights slightly worse than the observations do. The coarse vertical
resolution and spatial smoothness of the model results in a loss of small-
scale variability, thus, the TOPAZ data poorly captures the small-scale
vertical features observed, such as the exact depth and temperature
gradient of thermocline. Additionally, TOPAZ shows much greater vari-
ability in the SST for many neurons, especially neurons with thermal
stratification. This large spread in SST can be seen, for example, in
neurons 18, 24, 30 and 36.

To determine specific instances where the TOPAZ model may be
under performing, we compare seasonal temperature profiles plotted
in SOM-space. Supplemental Figures S2 and S3 are identical to Fig. 4,
however, only contain DJF or JJA observations, respectively, plotted
according to their BMU. Comparing Supplemental Figures S2 and S3
against Figs. 7 and 8 we can determine which observed temperature
structures TOPAZ captures poorly.

In both DJF and JJA, TOPAZ generally reproduces the non-stratified
and well-mixed profiles well. One exception to this is Neuron 3, where
TOPAZ systematically fails to generate the thin, cold surface layer,

seen in observations just north of the Svalbard archipelago. Another
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Fig. 5. Schematic showing the general characteristics of the neuron weights resulting from a 6 × 6 SOM trained on temperature observations in the European Arctic between
2012–2020. The term ‘stratification’ only refers to ‘thermal’ stratification, as we do not include salinity in this study to analyze the density stratification of the water column.
example of profile structures that are poorly represented in TOPAZ are
the strongly stratified profiles observed in JJA (i.e. neurons 30 and 36).
TOPAZ poorly represents the depth and gradient of the thermocline in
these structures. Lastly, TOPAZ overestimates the SST in many of the
thermally stratified neurons during JJA.

Next, we analyze how TOPAZ reproduces the observed spatial pat-
terns of the profile types during each season. Similar to Fig. 6, Fig. 9
shows the spatial distribution of the neurons classified by TOPAZ
for each season: DJF, MAM, JJA, and SON. Since we use ensemble-
mean daily TOPAZ data in order to retain high frequency temporal
variability, we determine TOPAZ model BMU for each day at every grid
cell. Fig. 9 plots the BMU that occurs most often at every spatial point
in each season (i.e. the colors represent the BMU ‘mode’ for the season).

Overall, TOPAZ captures the general spatial distribution of the
profiles well. Similar to observations, TOPAZ contains very cold, well
mixed profiles north of 80N. Additionally, it captures a general dif-
ference of profile characteristics between profiles in the Greenland
Basin versus the Lofoten Basin. In TOPAZ, similar to observations, the
Greenland Basin is generally dominated by non-thermally-stratified or
cold, well-mixed temperature profiles in DJF and MAM, while more
thermally stratified profile types occur during JJA and SON. As ob-
served in the Lofoten Basin, TOPAZ also contains profiles that are
well mixed or thermally-stratified. Lastly, TOPAZ captures the observed
seasonal warming patterns observed which are particularly apparent in
the Lofoten basin, where the top most ocean layer temperatures of the
stratified profiles are warmer in JJA and SON than the temperatures
captured in DJF and MAM.
7

Although TOPAZ captures some of the observed large scale temper-
ature patterns, Fig. 9 also shows that TOPAZ fails to capture several
key observed upper ocean temperature characteristics. For example,
TOPAZ does not capture the distinct separation of temperature char-
acteristics between in the Greenland basin and Lofoten basin profiles.
Instead, TOPAZ contains a gentle gradient of profile characteristics
between these two regions. Additionally, TOPAZ poorly captures the
ocean structures observed in the West Spitsbergen Current along the
west coast of Svalbard. Observations show the profiles in the West
Spitsbergen Current are dominated by either relatively warm, well
mixed profiles, or slightly stable profiles. TOPAZ, however, fails to
capture these profile characteristics in every season, with the worst
representation occurring during JJA, where the temperature structures
in TOPAZ contain too much vertical temperature stratification.

5. Discussion

A thorough understanding of the observed upper ocean temperature
patterns, especially in high latitude regions, is critical to accurately
model the upper ocean. The accuracy of simulated upper ocean tem-
peratures directly impacts the accuracy of modeled upper ocean mixing
and surface heat fluxes. Thus, accurately simulating the upper ocean
has large implications on the accuracy of coupled Arctic weather fore-
casts which are becoming increasingly critical as ship traffic in the
Arctic due to industry and tourism is increasing and will continue to
increase in the future (Hall and Saarinen, 2010; Smith and Stephenson,
2013; Stocker et al., 2020).
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Fig. 6. Spatial distribution of all observed temperature profiles for each season: DJF, MAM, JJA, SON. The color of each observation represents the profile’s best matching unit
(BMU; numbered 1–36) as defined in Fig. 4. The BMU for each temperature profile is determined by the minimum Euclidean distance between the profile and each neuron weight.
Unfortunately, many ocean models and gridded ocean tempera-
ture products are either spatially smooth (in the horizontal), tempo-
rally smooth (such as climatology products), and/or have relatively
coarse vertical resolution (such as the archived output from the TOPAZ
ocean model). These characteristics increase the difficulty of regional
model evaluation since gridded products typically under represent the
observed spatial and temporal variability in the upper ocean.

In this study we use a machine learning technique called self-
organizing maps, which has great potential in Earth and climate sci-
ences (Kohonen, 2001; Liu and Weisberg, 2011; Landschützer et al.,
2013, 2014). The use of SOM and other unsupervised machine learning
approaches are becoming increasingly common in oceanography and
have many possible applications in observational and model analy-
sis (Liu and Weisberg, 2011; Liu et al., 2016; Jones et al., 2019; Rosso
et al., 2020; Sonnewald et al., 2021; Boehme and Rosso, 2021). For
example, Lu et al. (2019) use unsupervised clustering and a neural
network to estimate subsurface temperature anomalies from surface

data. We show that SOM analysis not only improves understanding of
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observed patterns but also can be leveraged to aid in the evaluation of
a regional model.

To highlight the benefits of SOM in model evaluation, we train the
SOM against ARGO and CTD temperature profiles. The SOM, an unsu-
pervised neural network algorithm, is able to classify, or group, similar
ocean temperature profiles together. The SOM analysis highlights ob-
served spatio-temporal patterns within the upper ocean temperature.
We then leverage the ‘learned’ vertical temperature structures (as de-
termined by the SOM algorithm) in order to validate the TOPAZ ocean
model. The SOM technique better retains small scale features seen in
observations which are often lost due to spatial and temporal smooth-
ing when validating model performance against gridded reanalysis or
climatology products.

We show the TOPAZ ocean model captures the general spatial and
temporal distribution of observed upper ocean characteristics, however,
the SOM technique highlights several instances where the TOPAZ
model contains critical deficiencies that would benefit from further im-

provement. In particular, the SOM technique captures instances where
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Fig. 7. Winter (DJF) TOPAZ temperature profiles (thin colored lines) sorted according to their best matching unit (BMU). The color of each observation represents the profile’s
best matching unit (BMU; numbered 1–36) as defined in Fig. 4. The BMU for each temperature profile is determined by the minimum Euclidean distance between the profile and
each neuron weight. The neuron weights (shown with the thick black lines) are determined by the observation-based SOM as seen in Fig. 4.
the TOPAZ ocean model is unable to reproduce the spatial variability
and upper ocean temperature features seen in observations.

Most notably, TOPAZ fails to capture the distinct separation of
profile structures between the Greenland Basin and Lofoten Basin in all
four seasons. Additionally, the SOM technique highlights how TOPAZ
fails to simulate the observed upper ocean structures in the West
Spitsbergen Current. Observations show the West Spitsbergen Current
should be a tightly confined region with profiles closely representing
the characteristics observed in the Lofoten Basin extending northward
into the Arctic Ocean along the west and north sides of the Svalbard
archipelago. TOPAZ, on the other hand, shows the West Spitsbergen
Current contains characteristics of temperature profiles observed in the
Greenland Basin, while the Lofoten basin-like temperature structures do
not extend far enough north. Additionally, the current within TOPAZ
appears overly diffuse, covering a larger region than observed on the
west side of Svalbard. More generally, many structures simulated in
TOPAZ, especially in JJA, contain too much thermal stratification and
subsurface water temperatures below 50 m depth that are too cold.

Furthermore, TOPAZ struggles to capture the depth and temper-
ature gradient of the observed thermocline, not only in the West
9

Spitsbergen Current where TOPAZ performance is generally poor, but
throughout the domain. This is especially true during summer months
where warm SST is more prevalent. The poorly simulated thermocline
structure within our domain appears to be intricately linked to the
coarse vertical resolution archived from the TOPAZ model forecasts
(the native vertical resolution of the TOPAZ model uses 28 hybrid
layers but the TOPAZ output products are only archived at 12 vertical
levels). This suggests there is a need not only for archiving more vertical
levels from the TOPAZ ocean model to improve our understanding of
the model deficiencies, but also for maintaining a minimum vertical
resolution in the upper ocean within other ocean models used for
Arctic forecasting purposes. This will become increasingly important as
fully-coupled forecasting systems become more prevalent in the Arctic
region.

Failing to simulate the observed upper ocean temperature charac-
teristics in the Arctic could have serious implications on the accuracy of
short term forecasts. Not capturing the observed thermocline structures
suggests the model will likely also contain problems in simulating upper
ocean mixing and surface heat fluxes. The SOM analysis showed the
TOPAZ upper ocean stratification performs the worst in the boundary
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Fig. 8. Summer (JJA) TOPAZ temperature profiles (thin colored lines) sorted according to their best matching unit (BMU). The BMU for each TOPAZ temperature profile is
determined by the minimum Euclidean distance between the profile and each neuron weight. The neuron weights (shown with the thick black lines) are determined by the
observation-based SOM as seen in Fig. 4.
between the Greenland and Lofoten basins as well as in the West
Spitsbergen Current. The incorrect upper ocean temperature structures
and the spatially-diffuse nature of the simulated West Spitsbergen
Current in TOPAZ could also impact the model’s ability to simulate the
correct sea ice behavior (such as melting and freeze rates) in this region.
However, further analysis is needed to determine the exact relationship
between the modeled TOPAZ upper-ocean temperatures and any direct
impacts on the ocean mixing, surface heat fluxes or sea ice behavior.

We recognize that the TOPAZ ocean model forecasting product
contains data assimilation of Argo and CTD temperature data, thus
the TOPAZ forecast data used is not purely independent from the
observations used to train the SOM in this analysis. However, we would
like to mention the purpose of this study was not to perform a robust
evaluation of the TOPAZ model against independent observations, but
rather to highlight an underutilized, machine learning technique that
has great potential in oceanography and earth sciences. In this study we
highlight one potential application of SOM to the evaluation of gridded
ocean products.

We initially tested the SOM technique using normalized temperature
profiles. However, the observed separation (in SOM space) between the
10
Greenland and Lofoten basin profiles is much less distinct when using
normalized temperature profiles. In other words, the SOM is unable to
clearly categorize profiles in our region when using normalized temper-
ature profiles. Non-normalized temperature profiles provide clean spa-
tial and temporal separation between various oceanographic features
thus allowing the best assessment of model performance. However, we
expect many applications of self-organizing maps in earth sciences and
oceanography would benefit more from the use of normalized data.

One future effort utilizing normalized data will be to expand this
analysis to multivariate data, such as integrating salinity into the
SOM analysis. Although salinity profiles are neglected in the present
study, they will be included in future efforts in order to analyze the
density structure and vertical stability of this region similar to the
Gaussian mixture modeling technique used by Thomas et al. (2021a).
A multivariate approach may also help classify oceanographic features
identifiable through salinity or density characteristics as opposed to
temperature characteristics alone.

One benefit of SOM and other common unsupervised clustering
techniques, such as K-means clustering, over supervised machine learn-
ing techniques is requiring no user input during the training process.
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Fig. 9. Spatial distribution of TOPAZ temperature profiles for each season: DJF, MAM, JJA, SON. The colors represent the best matching unit (BMU) as defined in Fig. 4. White
spaces indicate locations where the TOPAZ ocean depth is less than 200 m which are ignored in our analysis. Since we use daily temperature data in out analysis, the BMU plotted
at any given spatial location shows the mode of all daily BMU values in the three month period (in other words, this figure shows the BMU that occurs most often during the
three month period).
This allows the model itself to identify and isolate characteristics and
patterns within complex non-linear data sets. One difference between
SOM and K-means clustering is the self-organizing nature of the neu-
rons in SOM. K-means clustering contains exclusive partitioning (where
each piece of data can only belong to one neuron or cluster) within
a pre-defined number of clusters. While SOM also contains exclusive
partitioning, the SOM training process allows the structure of each neu-
ron to influence the structures of the neighboring neurons. Therefore,
neighboring neurons in the SOM share common features which helps
when identifying large-scale spatial and temporal patterns and shared
characteristics within the data, without requiring the data to exist
within the exact same cluster or neuron. This self-organization of the
clusters and shared features between neighboring neurons made SOM
an appropriate choice for our purpose of quickly identifying spatial
and temporal patterns in observations and model data containing large
variability, such as upper ocean temperatures in the Arctic.
11
One significant caveat of SOM, and machine learning techniques in
general, is the inability of the algorithm to ‘learn’ when large gaps in
the training data exist. The types of temperature structures identified
by SOM (the neuron weights) are limited by the available observations
used to train the neural network. For example, the eastern Barents
Sea region is under sampled in every season. If unique temperature
structures exist in this poorly sampled region and are not represented
in the training data set, SOM is unable to identify and categorize these
types of profile structures. Like all model evaluation techniques, model
evaluation with SOM is particularly challenging and results in larger
uncertainties in regions with poor observational coverage. Another
limitation of SOM is the sensitivity to the number of neurons used.
Using too many neurons does not generate useful, distinct clusters and
provides little useful information about characteristics within the data.
On the other hand, too few neurons results in a poor fit between the
data and its assigned neuron weight. This is due to overly large volumes
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Table 1
Seasonal mean Q-errors (in K) comparing temperature observations and
TOPAZ data to the SOM neuron weights.

DJF MAM JJA SON

Obs 4.17 4.20 6.79 6.92
TOPAZ 5.07 4.99 7.57 7.23

of data assigned to any given neuron which smooths distinctive struc-
tures of the neuron weights. It is worth noting that K-means clustering
also suffers from this limitation.

Unsupervised machine learning techniques, like self-organizing
maps, have great potential in future oceanography and earth science
research. SOM can provide additional, beneficial knowledge when
used in combination with other evaluation techniques of modeled
subsurface ocean temperature. The SOM technique presented here is
able to classify upper ocean temperature characteristics while retain-
ing some of the observed small-scale variability that is typically lost
when validating models against reanalysis data sets which highlights
instances where ocean models under-represent observations. In order to
continue improving model representation of upper ocean temperature
variability and the accuracy of coupled forecasting systems, the results
shown here indicate continued need for ocean model development,
advances in data assimilation of ocean observations into ocean models,
and increased observational coverage in the Arctic.
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