
UNIVERSITY OF OSLO
Department of Informatics

How do software
practitioners value
research when
making decisions?

Master thesis

Kjetil Ree

August 3, 2009

Abstract

Because researchers in empirical software engineering need to better understand soft-
ware practitioners’ attitudes to research, we designed a personal opinion survey and
deployed it in two Norwegian software houses and a Norwegian Java users’ group.

Statistical analysis using the software package JMP showed that most practitioners
overwhelmingly rely on colleagues and friends when learning about and considering
implementing new technologies. They value the advice of experts over research, and
do not differentiate between industrial and independent (academic) research. Practi-
tioners rely almost equally on their own analysis, experts’ advice and intuition when
making important decisions.

A majority of software practitioners claim to apply research in software engineering in
their work. Neither the age, the education, nor the industry experience of practitioners
significantly influenced their attitudes to research. Being too busy meeting immediate
goals / deadlines and lack of personal time were the two most widely reported barriers
to applying research, while neither organizational inertia, attitudes of colleagues or
customers, nor the relevance of research were seen as barriers.

Topics related to management were mentioned most often by practitioners when asked
about which topics researchers should focus more on.

i

ii How do software practitioners value research?

Acknowledgements

I would like to express my gratitude to my supervisor Jo Hannay. Without his under-
standing and patience, this thesis would never have been completed. I would also like
to thank Magne Jørgensen and Stein Grimstad for valuable advice and feedback.

On extremely short notice, Trygve Laugstøl of javaBin provided invaluable help with
assisting me in deploying my survey. I owe my sincere thanks to javaBin and all my
anonymous respondents.

I would also like to thank both students and employees at Simula Research Laboratory
for a great social environment.

Oslo, August 2009
Kjetil Ree

iii

iv How do software practitioners value research?

Contents

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Objective . 1

1.3 Research Method . 2

1.4 Main Contributions . 2

1.5 Outline . 2

2 Background 5

2.1 Empirical software engineering . 5

2.2 Evidence–based software engineering . 6

2.3 The need for researchers to examine practitioners’ attitudes to research . 8

2.4 Attitudes in other industries . 9

2.5 The industry and rationality . 10

2.6 A silver bullet? . 10

2.7 Summary . 11

3 Related work 13

3.1 Cai and Card . 13

3.2 Osterweil et al. and The Impact Project . 16

3.3 Experts and intuition : always right? . 17

3.3.1 Kahneman and Frederick : Attribute substitution and substitu-
tion of representativeness for probability 18

3.3.2 Griffin and Tversky : Evidence and Confidence 19

3.3.3 Tversky and Kahneman : Belief in the Law of Small Numbers . . 22

3.4 Summary . 23

v

vi How do software practitioners value research?

4 Methodology 25

4.1 An overview of empirical software engineering methods 25

4.1.1 Surveys : an overview . 26

4.2 Questionnaire specification . 29

4.2.1 Objectives . 29

4.2.2 Questions and rationales . 29

4.2.3 The evaluation process . 36

4.2.4 Errors uncaught during the evaluation process 39

4.3 Questionnaire administration . 40

4.3.1 The survey framework: SurveyMonkey 40

4.3.2 Deployment . 43

4.3.3 Data quality . 44

4.4 Summary . 47

5 Results 49

5.1 A note on scales . 49

5.2 Demographic data . 50

5.3 Distributions . 51

5.3.1 Question 1 . 52

5.3.2 Question 2 . 53

5.3.3 Question 3 . 54

5.3.4 Question 4 . 54

5.3.5 Question 5 . 54

5.3.6 Question 6 . 54

5.3.7 Question 7 . 54

5.3.8 Question 8 . 54

5.3.9 Question 9 . 55

5.3.10 Question 10 . 56

5.4 Exploratory Modeling and JMP . 57

5.4.1 Recursive partitioning . 57

5.4.2 LogWorth . 57

How do software practitioners value research? vii

5.4.3 Partitioning examples . 58

5.5 Partitioning our data . 59

5.5.1 Y: Confidence in research, X: all items from Question 1 59

5.5.2 Y: Confidence in research, X: all items from Question 2 60

5.5.3 Y: Apply research in work, X: keep up with and confidence in
research . 61

5.5.4 Y: Recommendations for testing framework, X: barriers to ap-
plying research . 61

5.5.5 Y: Renewal of process model, X: barriers to applying research . 62

5.5.6 Y: Relying on colleagues and friends when making decisions, X:
all items from Question 2 . 63

5.5.7 Y: Apply research in work, X: age, education, and years of in-
dustry experience . 64

5.5.8 Y: Confidence in research, X: age, education, and years of indus-
try experience . 64

5.5.9 Y: Renewal of process model, X: age, education, and years of
industry experience . 65

5.5.10 Y: Recommendations for testing framework, X: age, education,
and years of industry experience 65

5.5.11 Y: Recommendations for testing framework, X: Renewal of pro-
cess model . 66

5.5.12 Y: Keeping up with research, X: Collector 66

5.6 Summary . 67

6 Discussion 77

6.1 How practitioners value research . 77

6.1.1 Learning about new techniques and technologies 77

6.1.2 Expert advice contra research . 78

6.1.3 Obstacles to use research . 81

6.1.4 Topics researchers should focus on 81

6.2 Threats to validity . 84

6.2.1 Construct validity . 85

6.2.2 Internal validity . 86

6.2.3 External validity . 86

viii How do software practitioners value research?

6.2.4 Conclusion validity . 88

6.3 Research ethics . 88

6.4 Summary . 90

7 Conclusion 93

7.1 Summary . 93

7.2 Contributions . 93

7.3 Future Work . 94

Bibliography 95

Appendices

A List of survey questions 99

A.1 #1. Intro . 99

A.2 #2. Part 1/2: Introductory questions . 99

A.3 #3. Part 2/2 . 100

B List of topics from Question 9 105

List of Figures

3.1 Excerpt form Cai and Card’s findings: The distribution of subject in-
dexes from journal and conference papers [4]. 15

3.2 Excerpt form Griffin and Tversky: Average confidence and average ac-
curacy for the three attributes [19]. 21

4.1 Screenshot from SurveyMonkey : how the survey appeared to the respon-
dents. 41

4.2 Screenshot from SurveyMonkey : designing the questions. 42

5.1 Demographical distribution of the respondents 68

5.2 Histograms of the responses, Question 1 69

5.3 Histograms of the responses, Question 2 70

5.4 Histogram of the responses from Question 3. 71

5.5 Histogram of the responses from Question 4. 71

5.6 Histogram of the responses from Question 5. 72

5.7 Histogram of the responses from Question 6. 72

5.8 The barriers reported in Question 8. 73

5.9 The topics from Question 9 categorized using the CCS system. 74

5.10 Example of recursive partitioning in JMP, nominal data. See section 5.4.3
for annotations. 75

5.11 Another example of recursive partitioning, this time on continuous data.
See section 5.4.3 for annotations. 76

6.1 Researched topics (light gray) and topics desired by practitioners (dark
gray). 84

ix

x How do software practitioners value research?

Chapter 1

Introduction

1.1 Background and Motivation

One of the current buzzwords in SE research is evidence–based software engineering (EBSE).
This paradigm was proposed by Dybå, Kitchenham and Jørgensen, and is inspired by
evidence–based medicine, the current practice in medical research [8]. The goal of EBSE
is that practitioners should improve decision making in software development and
maintenance by integrating current best evidence in research with practical experience
and human values [29].

An obvious goal of research in empirical software engineering is that it should be of
interest to software practitioners, including both developers and managers. This is
sometimes the case, but in other situations, software practitioners say that research in
empirical software engineering does not address the issues that concern them, or even
indicate that research in empirical software engineering is of no interest at all.

If evidence–based software engineering is to succeed, it is critical that practitioners
actually care about research. Other issues are also important (for instance that research
is applicable and relevant to the problems software practitioners encounter), but these
issues are of secondary significance if nobody uses research. If practitioners do not care
about research at all, the proponents of EBSE will have a very long way to go in order
to make any impact with this paradigm.

1.2 Objective

In this thesis, we look into how software practitioners make decisions, and whether
research influences these decisions. The objective of this thesis is to elicit practitioners’
attitudes to research, as researchers may work in vain if industry does not care about
their results.

In order to address these issues, we conducted a survey among software practition-
ers. The data collected in this survey was used for answering the following research

1

2 How do software practitioners value research?

question:

RQ 1 How do software practitioners value research when making decisions, hereunder:

SRQ 1 How do software practitioners learn about new techniques and technologies?

SRQ 2 Do software practitioners value experts’ advice more than they value research?

SRQ 3 Which obstacles exist for software practitioners to use research?

SRQ 4 Which topics do software practitioners feel that researchers should focus on?

1.3 Research Method

As described in chapter 4, we conducted a survey to elicit opinions from industry
practitioners. We deployed the survey in two Scandinavian consultant companies, and
in a Norwegian Java users’ group.

The data collected from 113 respondents was later analyzed quantitatively using JMP,
a statistical software package. We also did exploratory modeling, employing a sta-
tistical technique called recursive partitioning used for finding statistically significant
relationships between variables.

1.4 Main Contributions

A main finding is that ICT practitioners overwhelmingly rely on colleagues and friends
when learning about and considering implementing new technologies. Most practi-
tioners neither consult nor rely on researchers when making decisions about things
they have little prior knowledge of or when they are learning about new technologies;
but practitioners rely almost equally on their own analysis, intuition, and experts’ ad-
vice when making important decisions.

A majority of practitioners claim to apply research in software engineering in their
work. Being too busy meeting immediate goals / deadlines and lack of personal time
were the two most widely reported barriers to applying research. Many practitioners
feel that researchers should focus more on topics related to management.

1.5 Outline

In chapter 2, we give a quick introduction to empirical software engineering, and then
describe its industrial application, evidence-based software engineering. We discuss

How do software practitioners value research? 3

why practitioners’ attitudes are important, and also look at attitudes in other indus-
tries.

Chapter 3 summarizes some prior research that is relevant to our purposes. We discuss
a study that look at which research topics are popular in software engineering, and
also discuss a research project that aims to determine the impact of software engineer-
ing research on software engineering practice. We also look at three classic research
papers in the domain of cognitive science, and describe why these are important to the
understanding of experts and intuition.

Chapter 4 starts by briefly discussing some research methods in empirical software en-
gineering, and then gives reasons for why a personal opinion survey is suitable for our
purposes. We discuss some key aspects of surveys, and present a survey specification
that in an annotated form gives all the questions and their rationales. We then discuss
the evaluation process, and how we deployed the survey. The chapter ends with a
discussion on data quality.

In chapter 5, we present the results. We start by discussing why we treat our data
as being on continuous scales, briefly discuss some key statistical concepts, and then
show the distributions of the answers to the 10 questions and a summary of the demo-
graphic data. We then describe the statistical technique of recursive partitioning, and
report 12 scenarios where we have applied this technique to find statistically significant
relationships between variables.

In Chapter 6, we summarize the results and discuss our findings. We also look at some
possible validity threats, and briefly discuss research ethics.

Chapter 7 gives a short summary of our goal, method, and contributions. We also give
some ideas for future work.

4 How do software practitioners value research?

Chapter 2

Background

This chapter gives a short description of empirical software engineering in general (sec-
tion 2.1) and its industrial application evidence–based software engineering more specif-
ically (section 2.2). Section 2.3 discusses why practitioners’ attitudes to research is
important if they are to apply evidence–based approaches to software engineering.
Section 2.4 shows some findings from a survey about medical practitioners’ attitude
to the evidence–based paradigm, and section 2.5 quickly looks into the rationality of
industry.

2.1 Empirical software engineering

The world is increasingly becoming more computerized, in a scale that few could imag-
ine only 20 years ago. Information systems are prevalent in all branches of society, and
software and technology are driving forces in the modernization of the world we live
in.

The exponential growth in hardware capabilities starting in the late 1960s made it for
the first time possible to create major software systems. This presented a problem to
software practitioners, as the previously employed processes did not scale up well for
more complex systems. This coined the term “software crisis”, as it was a widespread
notion that software had become expensive, unreliable, unmaintainable, and under-
performing [7].

The “software crisis” forced industry and the research community to view software
development as something resembling traditional engineering processes, leading to a
major development of software process models and creating the new discipline of soft-
ware engineering (SE). As defined by Sjøberg et al., software engineering is about [44]

developing, maintaining, managing high–quality software systems in a cost–
effective and predicable way,

while research in software engineering concerns

5

6 How do software practitioners value research?

(1) the development of new, or modification of existing, technologies (pro-
cess models, methods, techniques, tools or languages) to support SE activi-
ties, and
(2) the evaluation and comparison of the effect of using such technology
in the often very complex interaction of individuals, teams, projects and
organisations, and various types of task and software systems.

Sjøberg et al. consider activities (1) and (2) mutually dependent, and notes that “[s]ciences
that study real–world phenomena, i.e. empirical sciences, of necessity use empirical
methods [. . .] if SE research is to be scientific, it too must use empirical methods”.

Perry et al. give the following description of an empirical study [37]:

[. . .] the essence of an empirical study is the attempt to learn something
useful by comparing theory to reality and to improve our theories as a re-
sult. Therefore, empirical studies involves the following steps:

• formulating an hypothesis or question to test,

• observing a situation,

• abstracting observations into data,

• analyzing the data, and,

• drawing conclusions with respect to the tested hypothesis.

Of these, the last step — drawing conclusions – is the most important
and too often the least well done.

The combination of software engineering research and empirical methods led to the
term empirical software engineering (ESE). According to Sjøberg et al., an empirical ap-
proach to software engineering started on a large scale in the 1970s, and there has later
been an increased focus on the need for applying empirical methods in software engi-
neering research. Despite of that, one is far away from their vision, which is that “[. . .]
scientific knowledge should guide the development of new SE technology and be a
major input to important SE decisions in industry and services.”

2.2 Evidence–based software engineering

Empirical software engineering has been applied to industrial needs by Kitchenham,
Dybå, and Jørgensen [29]. Their approach, known as evidence–based software engineering
(EBSE), is inspired by the evidence-based paradigm of medical research. Evidence–
based medicine developed in the late 1980s and the 1990s, when it became apparent
that systematic reviews were superior to the judgement of experts, where the latter
practice could result in medical failures and ultimately cost lives.

How do software practitioners value research? 7

The success of evidence–based practices in medical research has prompted such prac-
tices to be adopted in many other fields of research, including psychiatry, nursing, so-
cial policy, and education. This has lead Kitchenham et al. to sugest a similar practice
in software engineering, not just because “everyone else is doing it”, but because they
believe that “a successful innovation in a discipline that, like software engineering,
attempts to harness scientific advances for the benefit of society, is worth investigat-
ing” [29].

There are five basic steps of evidence–based software engineering [8]:

1. Convert a relevant problem or information need into an answerable question.

2. Search the literature for the best available evidence to answer the question.

3. Critically appraise the evidence for its validity, impact, and applicability.

4. Integrate the appraised evidence with practical experience and the customer’s
values and circumstances to make decisions about practice.

5. Evaluate performance and seek ways to improve it.

This procedure seeks to integrate current best evidence with practical experience and
human values, something which hopefully will lead to improved decision making re-
lated to software development and maintenance. Dybå, Kitchenham, and Jørgensen
do not however expect technologies to be universally good or universally bad, but
only “more appropriate in some circumstances and for some organizations.” They
also stress the need for practitioners who use EBSE to “accumulate empirical research
about a technology of interest and evaluate the research from from the viewpoint of
their specific circumstances” [8].

Dybå, Kitchenham, and Jørgensen point out several pitfalls for practitioners who would
like to use an evidence–based approach. One of these is that it could be hard for prac-
titioners to critically appraise evidence. This could be countered if the scientific com-
munity published more systematic reviews — one of the most convincing forms of
evidence [8]. Reviews can help practitioners to identify faulty research, and there are
several notable examples of such. One example is the GAO Study, a report by the
U.S. Government Accounting Office that described a terrible failure rate among stud-
ied software projects. It was later found that the much cited GAO Study was a study
of projects known to be failing, and when this was discovered, the study was quickly
dropped as a citation to support the notion of a “software crisis” [17]. Another, perhaps
even more problematic study, is the Standish Group’s 1994 Chaos Report. This report
is one of the most widely cited statistics in the IT industry. Jørgensen and Moløkken-
Østvold have compared the numbers of the Chaos Report with the findings of other
studies [26]. While the Chaos Report spoke of a “189% average cost overrun”, a sys-
tematic search for other estimation studies showed that these other studies found the
average cost overrun to be 33–34%. Even though the numbers were not directly com-
parable, there was no way of explaining the huge difference between the other studies
and the Chaos Report. Jørgensen and Moløkken-Østvold also evaluated the design of

8 How do software practitioners value research?

the Standish Group’s study, and found the design to be poorly described, in particular
how “cost overrun” was defined. When they contacted the Standish Group asking for
an explanation, they got the reply that “providing this type of information would be
like giving away their business free of charge”, and no clarification of how “cost over-
run” was defined. The incomplete description of the study and the lack of a definition
of the key concept “software overrun” make it hard for both researchers and practi-
tioners alike to evaluate its validity, and thus makes the Chaos Report unsuitable for
an evidence–based approach.

2.3 The need for researchers to examine practitioners’ at-
titudes to research

There are some conditions that need to apply if evidence–based software engineering
is to become a widespread and useful practice. These include (but are not limited to)
that (1) practitioners need to have faith in the value of proper scientific methods, (2)
research must be relevant and applicable to industry’s needs, (3) practitioners must
know how to find and appraise relevant research, and (4) the EBSE approach has to
prove itself useful — it must yield good results when it comes to developing, main-
taining, and managing software systems.

We spent a significant amount of time searching scientific databases for literature dis-
cussing software practitioners’ attitudes to research. We mainly searched in IEEE
Xplore (http://ieeexplore.ieee.org) and in ACM Digital Library (http://portal.
acm.org/), and also to some extent in Google Scholar (http://scholar.google.
com). IEEE and ACM were chosen because they are widely regarded as the most pres-
tigious publishers, and Google Scholar was chosen because of its breadth.

Our searches were mostly fruitless, and it appears that there has been published very
little or no research that addresses these issues. While all of the issues are important
and worthy of looking at, time constraints force our thesis to only focus on some of
them. As it was necessary to narrow down the research question (RQ) in order to
make an answerable question, we chose to add a “when making decisions” part to a
variation of (1), leading to RQ 1 — “how do software practitioners value research when
making decisions?”

We also included more specific research questions (SRQs), these do to some extent
cover (2) and (3). It was a natural choice to contrast research to experts’ advice (SRQ
2), as experts often make strong claims that they have little or no empirical evidence
to support. One example is agile hardliner Dave Astels, who claims that projects he
knows that use Test Driven Development “without exception” experience “dramatic
increases in quality and significant overall time savings” [15]. As far as we can see, this
claim is not supported by research. For example, in a summary of empirical studies of
TDD by Erdogmus et al., two of the three controlled experiments cited did not find any
difference between the TDD group and the control group when it came to productivity,
while the third experiment reported that TDD yields worse results [10].

How do software practitioners value research? 9

2.4 Attitudes in other industries

As there has been no previous SE research that addresses these issues, it is useful to
take a look at similar research in other disciplines that can give an understanding of
why these issues are important. As noted in section 2.2, evidence–based software en-
gineering has its origins in evidence–based medicine. There have been several stud-
ies regarding medical practitioners’ attitudes towards the evidence–based paradigm.
Among these are McColl et al., who conducted a questionnaire survey to determine
the attitude of general practitioners towards evidence–based medicine and their re-
lated educational needs [33]. They asked practitioners about

(A) their attitude towards current promotion of evidence based medicine,
(B) perceived attitude of colleagues towards evidence based medicine,
(C) if practicing evidence–based medicine improved patient care,
(D) the practitioners’ perceived usefulness of evidence based medicine in
day to day management of patients, and
(E) the estimated percentage of the respondent’s clinical practice that is ev-
idence based.

On a scale where 100 was “strongly agree” (C) and “extremely useful” (D) and 0 was
“strongly disagree” (C) and “totally useless” (D), the median value for (C) was 70 and
the median value for (D) was 63. The median value for (E) was 50%. While a clear
majority of the respondents found evidence–based practices useful, only 50% of the
respondents’ actual clinical practices were based upon the evidence–based approach.
McColl et al. also examined the practitioners’ reasons for not applying evidence–based
practices. The main barrier was “lack of personal time” (171 of 242 participants), while
other major barriers were “personal and organisational inertia” (35 of 242), “attitudes
of colleagues” (29 of 242), “patients’ expectations” (23 of 242), “lack of hard evidence”
(20 of 242), “evidence not related to context of primary care” (16 of 242), and “availabil-
ity and access to information” (14 of 242). (Respondents gave more than one answer.)

These findings are for many reasons not directly applicable to EBSE. A major reason is
that evidence–based medicine is a mature and well known practice, while evidence–
based software engineering still is in its infancy and probably mostly unknown to the
great majority of practitioners and researchers. This is indicated by the fact that Google
Scholar can find about 114.000 scientific articles mentioning the term “evidence–based
medicine”, but only 259 scientific articles that mention the term “evidence–based soft-
ware engineering”. The huge difference in the impacts of evidence–based practices in
these two disciplines makes it impossible to use the number of medical practitioners
that find evidence–based practices useful as in indicator of how many software practi-
tioners that have similar attitudes — we assume that if one asks software practitioners
whether practicing evidence–based software engineering improves software mainte-
nance, very few software practitioners would be able to give an answer.

There are however some interesting aspects of McColl et al.’s findings. Several of the
barriers reported by the medical practitioners have their equivalents in software engi-
neering. “Lack of personal time” is by far the most widely reported barrier by medical

10 How do software practitioners value research?

practitioners, and it is certainly reasonable to expect this barrier to be prevalent also in
the software community. It is possible that practitioners simply do not have the time
to stay updated on research. Some of the other barriers, such as “personal and organ-
isational inertia” and “attitudes of colleagues”, are also likely applicable in software
milieux. The same can be said about “patients’ (customers’) expectations” — if cus-
tomers want a particular strategy or solution, it could be quite hard for developers to
persuade them that research shows that their wishes are unfavorable.

2.5 The industry and rationality

It is not always obvious that managers and practitioners make rational decisions based
upon research. One example is the impact of agile practices. Dybå and Dingsøyr cite
studies that show that half of companies in Europe and the United Sates are consid-
ering a switch to agile methods, and note that the “Agile Conference” has grown to
be one of the largest software engineering conferences in just six years [9]. However,
the large interest in agile practices is not necessarily backed up by research. Dybå
and Dingsøyr conducted a review of published studies to summarize what currently
known about the benefits and limitations of agile software development. They found
that “the strength of the evidence in the current review regarding the benefits and lim-
itations of agile methods, and for decisions related to their adoption, is very low”, and
that “any estimate of effect that is based on evidence of agile software development
from current research is very uncertain.” Agile management methods, such as Scrum,
particularly need more attention.

Dybå and Dingsøyr’s review raises several important questions, as industry’s enthusi-
asm for switching to agile practices can seem irrational when one view their findings.
If virtually all studies of agile methods are based upon very weak evidence, why is in-
dustry so eager to adopt such methods? Could it be that industry does not care about
research, but rather choosees to have faith in agile evangelists? Or could it be that
they want to use research, but are unable to understand the “researcher lingo” or to
assess the validity of research? It is important that researchers get feedback on such
questions, something that SRQ 2 will provide.

2.6 A silver bullet?

The term “No Silver Bullet” was coined by Fred Brooks in his influential 1986 essay No
Silver Bullet — Essence and Accident in Software Engineering. In his essay, Brooks claimed
that [3, p. 179]

[t]here is no single development, in either technology or management
technique, which by itself promises even one order–of–magnitude improve-
ment within a decade in productivity, in reliability, in simplicity.

How do software practitioners value research? 11

Inspired by Aristotle, Brooks divided difficulties in software engineering into essence
and accidents. Brooks defined the essence of software as a “construct of interlocking
concepts: data sets, relationships among data items, algorithms, and invocations of
functions,” while accidents are “those difficulties that today attend its production but
are not inherent” [3, p. 182]. He believed the specification, design, and testing of this
construct to be the hard part, not the “labor of representing it and testing the fidelity
of the representation.”

As Brooks considers conceptual errors the most severe, he claims that building soft-
ware will always be hard, and that there is inherently no silver bullet. His claims have
however been challenged by others, among them Brad Cox. In 1995, Cox claimed that
there indeed is a silver bullet, and that [5, p. 378]

[t]he silver bullet is a cultural change rather than a technological change.
It is a paradigm shift — a software industrial revolution based on reusable
and interchangeable parts that will alter the software universe as surely as
the industrial revolution changed manufacturing.

Nearly 15 years after Cox’ bold claims, component–based software engineering (CBSE)
has far from revolutionized the discipline of software engineering. The open market
for components has not yet developed, and serious problems like component trust-
worthiness, component certification and emergent property prediction remain [45, p.
441].

The proponents of evidence–based software engineering have wisely avoided making
too strong claims about its possible impact. As discussed in section 2.2, the goal of
EBSE is merely to “improve decision making related to software development and
maintenance” by emphasizing methodological rigor [8], and it is thus not intended to
be a “silver bullet.”

In our opinion, EBSE concerns the “construct of interlocking concepts”; what Brooks
called the essence of software engineering. The New Oxford American Dictionary defines
the noun construct as “an idea or theory containing conceptual elements, typically one
considered to be subjective and not based on empirical evidence.” A change to an
evidence–based approach, which by design is founded on the use of objective and
empirical evidence, will hence be a revolution if it is viable.

Predictions like the one by Cox have without exemption turned out to be incorrect,
so we will certainly refrain from claiming EBSE to be a silver bullet. However, like
Kitchenham, Dybå, and Jørgensen, we think the idea is worth investigating. Our RQ
1 (“how do software practitioners value research when making decisions”) is derived
directly from the goal of EBSE.

2.7 Summary

We have seen how the perceived “software crisis” lead to the growth of software engi-
neering (SE) as a new engineering discipline, and how this was combined with empir-

12 How do software practitioners value research?

ical methods to form empirical software engineering (ESE). The industrial application
of empirical software engineering, evidence–based software engineering (EBSE), was
introduced in the 2000s and based upon evidence–based medicine.

If EBSE is to succeed, it is critical that researchers gain knowledge about practition-
ers’ attitudes to research. This thesis will look at this issue, more specifically at how
practitioners value research when making decisions.

We have seen that there has not been any published software engineering research
concerning this problem, and therefore had a quick glance at attitudes in medicine, a
“hard science” in many ways related to engineering and other physical sciences. A
majority of medical practitioners found an evidence–based approach useful, but there
were also many barriers to using research in their daily work. These barriers could very
well also exist among software practitioners. We have also seen an example of how the
software industry embraces new methods even though research does not necessarily
show clear benefits.

This chapter has shown that there is is a clear need for the research community to
better understand practitioners’ attitudes to research when making decisions. In the
next chapter, we will look at some relevant prior work that will help us design and
analyze a survey that can give us insight into this issue.

Chapter 3

Related work

In chapter 2, we looked at the background of evidence–based software engineering,
and why it is important for researchers to gain insight into how practitioners value
research.

This chapter summarizes some of the related work — that is, previous research that is
related to what we are doing and that it is important to take into consideration when
we design our survey and analyze our data.

Section 3.1 summarizes the work of Cai and Card, who have looked into which topics
researchers in software engineering focus on. This is important to take into considera-
tion when we analyze which topics software practitioners feel that researchers should
focus on (SRQ 4), as we can compare practitioners’ wishes to the actual production of
journal and conference papers in the field of software engineering.

In section 3.2, we look at how a project called The Impact Project has assessed the impact
of research in software engineering. We also see that it could take 10–20 years for
research to reach industrial applications, something which could make practitioners
feel that research is “irrelevant” and “outdated”, suggesting that they do not learn
about new techniques and technologies from research.

Section 3.3 enters the realm of cognitive science (“the nature of intelligence”). In this
section, we look at the work at some of the world’s most influential cognitive psycholo-
gists. The studies cited in the three following subsections look into how intuition often
is wrong and why experts could be overconfident, something which should make an
analytical approach based upon research more beneficial to practitioners (RQ 1, SRQ
2).

3.1 Cai and Card

Cai and Card have looked into what the active research focuses are within the field of
software engineering [4]. This main question further raised two subquestions, namely
“what are the popular research topics in the field of software engineering”, and “what

13

14 How do software practitioners value research?

are the evolving trends of these research topics”.

To gather data for analyzing these issues, Cai and Card selected a number of software
journals based upon their impact factor and cited half-life. They selected journals cov-
ering a broad range of topics, so that the results would not be biased. Their selection
included a total of seven journals. They also included seven top international confer-
ences, more or less subjectively chosen.

To classify the research papers from these seven journals and seven conferences, Cai
and Card used the ACM Computing Classification System, a classification system that
divides SE research topics into classes such as “design tools and techniques”, “testing
and debugging”, “metrics”, and so on.

From the seven top journals and seven conferences, Cai and Card examined all pa-
pers manually to identify their research topics and classify them. Each paper could be
put into one or more of the classes, or alternatively put into a special “N/A” class if
none of the ACM Computing Classification System classes were suitable. The classifi-
cation was done by using the papers’ keywords, and by using the abstract or full text
if no keywords were supplied. Some articles (such as the opinion items and column
comments of the IEEE Software magazine) were not counted, as these are not really
research articles. For the seven conferences, papers that were only presented during
satellite workshops were excluded.

Cai and Card’s distribution of subjects from the examined journals is shown in figure
3.1(a). The largest by far is the “N/A” class (123 papers). Among the topics proper,
“testing and debugging” and “management” are the largest with a count of 76 and 70,
respectively. Other topics that are popular are “software / program verification” (54),
“software architecture” (42), “design tools and techniques” (39), and “metrics” (35).
Among the topics that are less discussed in journals are “miscellaneous” (3), “general”
(6), “design” (10), “reusable software” (10), “interoperability” (11), and “programming
environments” (15).

There were considerable differences between the distribution of topics from conference
papers and the distribution from conference papers (see figure 3.1(b) for the latter).
The most popular topic of conference papers was “software / program verification”
(98 papers), while “testing and debugging” came second (93). The least popular topics
were “miscellaneous” (2), “design” (2), “interoperability” (6), “general” (8), “coding
tools and techniques” (12), and “reusable software” (12).

Combining the distribution of topics from conference papers and journal papers, it is
clear that some software engineering topics are vastly more popular than others. The
overall most popular topics are “testing and debugging” (169), “software / program
verification” (152), “management” (97), and “design tools and techniques” (85). Other
important topics such as “requirements / specifications” (52), “distribution, mainte-
nance, and enhancement” (51), “programming environments” (30), and “reusable soft-
ware” (22) were clearly less popular.

Cai and Card’s findings are interesting. There is for example published almost seven
times as many SE research papers on the topic of program verification as there is on
software reuse. In spite of that, it is not at all obvious that this is what the software

How do software practitioners value research? 15

(a) Journal papers

(b) Conference papers

Figure 3.1: Excerpt form Cai and Card’s findings: The distribution of subject indexes
from journal and conference papers [4].

16 How do software practitioners value research?

industry needs. Ian Sommerville notes in his widely used textbook Software Engineer-
ing that “whether or not to reuse is often a managerial rather than a technical issue”
because of the wide array of reuse techniques available, and that managers “may not
understand the risk associated with reuse as well as they understand the risk of orig-
inal development” [45, p. 421]. One can safely assume that research on the topic of
software reuse could be very interesting to the software industry, even though this
topic seems to get little priority from researchers. Similar cases can be made for many
of the other topics, there is no obvious correlation between what one can presume that
industry wants and what researchers publish. This underlines the need for researchers
to examine if their focuses are in line with the requirements of the software industry,
and is closely associated with our SRQ 4.

3.2 Osterweil et al. and The Impact Project

A research project called The Impact Project strives to determine what impact, if any, SE
research has had on SE practice. The project aims to be highly inclusive, involving the
efforts in all areas of software engineering. The project does not only include academic
researchers, but also industrial researchers and a wide range of practitioners. However,
limited resources have made it a necessity for The Impact Project to only select some
representative areas, such as software configuration management, inspections, reviews
and walkthroughs, middleware, and runtime assertion checking.

Some of the project’s preliminary findings and the project’s general organization and
research methods have been summarized by Osterweil et al. [36]. In each area, the
project is compiling one or more reports, each report being authored by six to eight
academic and industrial experts. The approach in each area is to start at a practice and
work backward in time to find the practice’s roots, and they have deliberately avoided
to start at the research and working forward in time to get to the practices, as the latter
procedure may be seen as an attempt to justify individual research ideas rather than to
find the genuine impact.

Osterweil et al. claim that even though the perception that research does not have an
impact on practice seems widespread, the early findings of the Impact Project suggest
that there is a substantial impact. Their main claim is that software engineering re-
search has significantly and positively affected software engineering practice. They
note that the “successful deployment of technologies that support practice clearly re-
quires many types of contributions from many types of participants”, while the studies
they cite supposedly “make it clear that researchers’ participation has been of consid-
erable importance” (even though they are very vague when it comes to the details of
these studies).

Another of the main claims by Osterweil et al. is that “lasting impact seems to come
most readily from ongoing interactions between research and practice”. They claim
that while technology transition could be thought of as moving a key idea or a pro-
totype out of the research environment, their studies indicate that “success in practice
seems to require continued interactions between research and practice, resulting in

How do software practitioners value research? 17

continued upgrading and improvement of a capability”.

Another important finding by Osterweil et al. is that “research impact might not be
fully felt for at least 10 years”, and that it “typically takes 10 to 20 years for a good idea
to move from initial research to final widespread practice”. These numbers are in line
with research from the mid 1980s. A number of case studies made by Redwine and
Riddle show that the average time from the emergence of a key idea until there was
substantial evidence of external value and applicability was 17 years, with a worst case
of 23 years and a best case of 11 years [38]. Redwine and Riddle do however note that
these times can be considerably shorter than the average in some special cases, such
as for example methodology technologies that can transfer quickly to a homogenous
target community if there is a clear need.

The long time frame from when basic research is conducted until the results are ap-
plicable in industry (10-20 years) may lead to negative attitudes from practitioners, as
they may have a hard time seeing the connection between what they do and what re-
searchers find. If practitioners thus perceive research as “irrelevant” or “outdated”, it
is reasonable to believe that they do not learn about new techniques and technologies
from research (SRQ 1). It could also be that practitioners believe that certain topics are
under–researched because it takes many years until recently invented ideas from these
topics are useful to them, thus making practitioners feel that relatively “hot” topics
that already are popular among researchers are under–researched (SRQ 4).

3.3 Experts and intuition : always right?

Evidence from studies in cognitive science suggests that experts and intuition are not
always trustworthy. The following three subsections summarize three papers that shed
light on these issues.

The concepts of attribute substitution, substitution of representativeness for probability, and
neglect of base rates are described in section 3.3.1. The examples given by Kahneman and
Frederick show how attribute substitution makes intuition unreliable, because people
who are asked difficult questions often unconsciously answer an easier, similar ques-
tion. Attribute substitution is also something one needs to have in mind when design-
ing a survey. A similar problem is that people often substitute representativeness for
probability. Kahneman and Frederick use the famous “Linda” problem to show that
reliance on representativeness make people violate basic rules of logics. Substitution
of representativeness for probability and neglect of base rates are concepts which show
that using intuition will yield inferior results in comparison to careful analysis.

In a series of studies by Griffin and Tversky (section 3.3.2), they show evidence for their
hypothesis that experts are more prone to overconfidence than ordinary people when
predictability is very low. They also show that people make decisions based upon
beliefs about individual events rather than about overall base rates, something that
makes intuitive judgment depart from normative theory. The strong evidence for how
intuition departs from normative theory should in an ideal world shift practitioners

18 How do software practitioners value research?

away from intuition and towards a more analytical approach (i.e. allocating more value
to research when making decisions). In a similar fashion, the overconfidence of experts
should discourage practitioners from valuing experts’ advice too much.

Tversky and Kahneman (section 3.3.3) describe how people have incorrect assump-
tions about the laws of chance; what they call “the law of small numbers.” In their
experiment, mathematicians and psychologists were given several scenarios and were
asked some questions about statistics and sampling related to these scenarios. These
groups are clearly acquainted with logics and statistical theory, but they nevertheless
believed that samples drawn form a population are more similar to another than sam-
pling theory predicts. This finding has implications for our research question: Software
practitioners should be acquainted with logics (either formally — for example through
college courses in predicate logic — or more informally, for example through practical
experience with algorithms) and to some degree also with statistics, but will still make
mistakes when making assumptions about the laws of chance.

The work of Tversky and Kahneman and their associates shows that the human mind
is riddled with cognitive biases, something which makes intuition unreliable. As this
also applies to experts, it should be rational to value rational analysis over intuition and
experts’ advice when making important decisions. This is important when discussing
and analyzing SRQ2.

3.3.1 Kahneman and Frederick : Attribute substitution and substitu-
tion of representativeness for probability

Kahneman and Frederick describe something called attribute substitution [27]. This phe-
nomenon makes people who are asked a difficult question answer an easier question,
often without the person being aware of the change. For example, a person who is
asked “What proportion of long–distance relationships break up within a year?” may
answer as if he had been asked “Do instances of failed long–distance relationships
come readily to mind?”. According to Kahneman and Frederick, “attribute substitu-
tion occurs when a relatively inaccessible target attribute is assessed by mapping a
relatively accessible and related heuristic attribute onto the target scale.”

Attribute substitution often make intuition unreliable. Kahneman and Frederick cite
an experiment where the subjects were given the following question:

If a sphere were dropped into a open cube, such that it just fit (the diameter
of the sphere is the same as the interior width of the cube), what proportion
of the volume of the cube would the sphere occupy?

The subjects’ mean estimate was 74%. This figure is scarcely different form the mean
estimate of a similar problem, namely “If a circle were drawn inside a square, what
proportion of the area of the square does the circle occupy?” (77%). The correct an-
swer of the sphere/cube/volume problem is 52%, way lower than the mean estimate.
This strongly indicates that respondents answer as if they were asked the simpler,

How do software practitioners value research? 19

“two–dimensional” question. Kahneman and Frederick note that when “the target
attribute in this judgment (the volumetric relation between a cube and a sphere) is sim-
ple enough to be understood but complicated enough to accommodate a wide range of
estimates as plausible answers” while “a relevant simpler computation or perceptual
impression exists”, the respondents “will have no strong basis for rejecting it as their
‘final answer’.”

Kahneman and Frederick also uses the example of the puzzle “a bat and a ball cost
$1.10 in total. The bat costs $1 more than the ball. How much does the ball cost?”.
Almost everyone will answer “10 cents”, as $1.10 split nicely in $1 and 10 cents, and
10 cents is in the right magnitude. 10 cents is of course incorrect, but even half of the
undergraduates at elite institutions make this mistake. And as the puzzle is not really
that hard (nor ambiguous), it is clear that the people who make the mistake did not take
the trouble to check their own answers. To explain the many mistakes with the “bat
and ball problem”, Kahneman and Frederick put forward the argument that “people
often make quick intuitive judgements to which they are not deeply committed.”

Similar concepts are the substitution of of representativeness for probability and the neglect
of known base rates. Kahneman and Frederick exemplify these concepts with the famous
Linda problem, first described by Tversky and Kahneman in 1982 [47]. A woman named
Linda was described as follows:

Linda is 31 years old, single, outspoken and very bright. She majored in
philosophy. As a student she was deeply concerned with issues of discrim-
ination and social injustice and also participated in antinuclear demonstra-
tions.

Two separate groups of respondents were asked to rank a set of eight outcomes by rep-
resentativeness and by probability. Six of these eight outcomes were fillers (“elemen-
tary school teacher”, “psychiatric social worker” etc.) while outcome #6 was “bank
teller” and outcome #8 was “feminist and bank teller”.

There was an almost perfect correlation (.99) between how the first group of respon-
dents ranked representativeness and how the second group ranked probability. The
most interesting part is that most of the respondents ranked the conjunction (“feminist
and bank teller”) higher than its constituent (“bank teller”), both in representativeness
(85%) and probability (89%). It is reasonable to say that Linda resembles a feminist
bank teller more than she resembles a bank teller, but she can not be more likely to be
a bank teller and a feminist than being just a bank teller! Kahneman and Frederick thus
notes that “reliance on representativeness yield probability judgments that violate a
basic logical rule.”

3.3.2 Griffin and Tversky : Evidence and Confidence

In a series of experiments, Griffin and Tversky looked into how people weigh evi-
dence and determine their confidence in a hypothesis by balancing arguments for and

20 How do software practitioners value research?

against it [19]. One of their findings is that people are better at predicting their own
behavior than predicting others. In one of their experiments, they made fourteen pairs
of same–sex students play a “Prisoner’s Dilemma”–type game where in a series of tri-
als, the students had to choose between cooperating and competing with the partner.
There were 20 possible strategies for choosing between cooperation and competition,
where some were designed to encourage cooperating, and others designed to encour-
age competition. The subjects were instructed to make predictions for the strategies,
in addition to stating their confidence in each prediction. Subjects were almost equally
confident in their self predictions (with a median value M of 84%) and in their predic-
tions of others (M = 83%). However, they were notably more accurate in predicting
their own behavior than predicting the behavior of others (M = 81% versus M = 68%,
respectively). This made Griffin and Tversky claim that people “exhibited considerable
overconfidence in predictions of others,” while they were “relatively well–calibrated
in predicting themselves.”

There are also situations where predictions of one’s own behavior may be underconfi-
dent. Griffin and Tversky asked a number of colleagues that were choosing between
job offers if they could estimate the probability that they would choose one job over
the other. The average confidence in the predicted choice was 66%, but in the end, 96%
retained their predicted choice. It seems thus clear that even a small advantage for job
X over job Y make people choose the former.

Griffin and Tversky also compared confidence and expertise when making predictions.
In their experiment, the subjects where given randomly selected pairs of American
states and told to choose the state that was higher on a particular attribute and to
assess the probability of their answer being correct. The three attributes were the num-
ber of people in each state (Population), the high–school graduation rate in each state
(Education), and the difference in voting rates between the states in the last presiden-
tial election (Voting). Griffin and Tversky expected people to be more knowledgeable
and confident about Population than about Education and Voting. They also expected
people to be more confident about Education than about Voting, because of typical
stereotypes about one state being more “educated” than the other. Such stereotypes
arise when a state has more famous universities and is associated with cultural events,
even though the correlation between these cues and the high–school graduation rates
is very low. Griffin and Tversky thus expected high accuracy and high confidence for
Population, low accuracy and low confidence for Voting, and low accuracy and higher
confidence for Education.

To test their hypothesis, Griffin and Tversky made 298 subjects each evaluate 15 pairs
of states on one of the attributes. After evaluating all of the attributes, the subjects were
told to estimate the number of attributes that were correctly guessed, and they were
reminded that by chance alone the expected number would be 7.5. Table 3.2 shows the
average confidence and average accuracy for the three attributes.

Griffin and Tversky claim the observed pattern to be consistent with their hypothesis.
For Population, people had an accuracy of 68.2 and a confidence of 74.7. For Voting,
the accuracy was 51.2 and the confidence 59.7, while the numbers were 49.8 for accu-
racy and 65.6 for confidence when it came to Education. It was thus a much greater

How do software practitioners value research? 21

Figure 3.2: Excerpt form Griffin and Tversky: Average confidence and average accu-
racy for the three attributes [19].

22 How do software practitioners value research?

overconfidence in judgements about Education than about Voting, even though the ac-
curacies were close to identical. The overconfidences in Voting and Population were
comparable.

According to Griffin and Tversky, their analysis shed light on the relation between
overconfidence and expertise. They claim that “when predictability is reasonably high,
experts are generally better calibrated than lay people,” but when “predictability is
very low, however, experts may be more prone to overconfidence than novices.” Grif-
fin and Tversky state that their analysis is consistent with cited studies of race odds-
makers, expert bridge players, clinical psychologists, and stock market analysts.

Griffin and Tversky also look at the neglect of base rates. A striking example is found
in the optimism that entrepreneurs express in their own ventures. Entrepreneurs are,
on average, highly optimistic (“overconfident”) about the success of their specific new
ventures, even though they are reasonable realistic about the general rule of failure
for ventures of that kind. Griffin and Tversky write that “the tendency to prefer an
individual or ‘inside’ view rather than a statistical or ‘outside’ view represents one of
the major departures of intuitive judgement from normative theory.”

3.3.3 Tversky and Kahneman : Belief in the Law of Small Numbers

In 1971, Tversky and Kahneman looked into how people have erroneous intuitions
about the laws of chance [48]. They claim that people have a perception that a ran-
domly drawn sample from a population is highly representative, and that people be-
lieve that any two samples drawn form a population is more similar to another than
sampling theory predicts.

Tversky and Kahneman deployed a questionnaire at meetings of the Mathematical Psy-
chology Group and the American Psychological Association. The subjects were given sev-
eral scenarios, including the following:

Suppose you have run an experiment on 20 subjects, and have obtained a
significant result which confirms your theory (z = 2.23, p < .05, two–tailed).
You now have cause to run an additional group of 10 subjects. What do you
think the probability is that the result will be significant, by a one–tailed test,
separately for this group?

The median answer of the two groups was 0.85. However, careful statistical analysis
shows that the most reasonable estimate is 0.48. Only 9 of 84 respondents gave answers
between 0.40 and 0.60, and similar questions (about statistics and sampling) to the
same groups gave similar results.

Tversky and Kahneman claim that their questionnaire “elicited considerable evidence
for the prevalence of the belief in the law of small numbers,” and that there is “prac-
tically no differences between the median responses of audiences at a mathematical
psychological meeting and at a general session of the American Psychology Associa-

How do software practitioners value research? 23

tion convention (. . .) Apparently, acquaintance with formal logic and with probability
theory does not extinguish erroneous intuitions.”

3.4 Summary

This chapter has shown some of the most relevant related work. Cai and Card (section
3.1) summarized the subjects of journal and conference papers in software engineer-
ing, and found that the most popular topics are “testing and debugging”, “software /
program verification”, “management”, and “design tools and techniques”.

Osterweil et al. claim that research in software engineering has a substantial impact on
practice, but that there is a widespread perception that this is not not the case (section
3.2). This notion could be explained by the findings of Redwine and Riddle, who found
that the average time for a key idea to move from research to practical applicability was
17 years.

The works cited by Tversky, Kahneman, Griffin, and Frederick in sections 3.3.1, 3.3.2
and 3.3.3 show that experts and intuition often are unreliable. People tend to believe
in a “law of small numbers”, and acquaintance with formal logic and with probabil-
ity theory does not extinguish erroneous intuitions — something which is unfavorable
to experts, who one could expect to know better. People are also violating basic log-
ical rules when relying on representativeness when providing probability judgments,
something that was illustrated by the famous “Linda” problem. Also, people tend to
be overconfident when making predictions, and neglect known base rates. These is-
sues have a strong impact on SRQ 2, as they show that experts’ advice and intuition —
the two strong competitors to research and analysis when making decisions — have
some significant, negative properties.

24 How do software practitioners value research?

Chapter 4

Methodology

This chapter describes why we chose a survey, and how we conducted, deployed and
administered it.

Section 4.1 gives a very short overview of some groups of research methods in empir-
ical software engineering. Section 4.1.1 describes in general the method of our choice;
the personal opinion survey.

Our questionnaire specification is found in section 4.2. This section includes all of
our questions (in an annotated form), and rationales for each question. Section 4.2.3
describes our evaluation process, where we in an iterative manner carried out two
rounds of pilot testing. There were unfortunately some errors that we did not catch in
this process, these are described in section 4.2.4.

Section 4.3 describes how we administered the survey. We used a framework called
SurveyMonkey for collecting data, and deployed the survey in one users’ group and
two companies. Section 4.3.3 briefly discusses the quality of the data we collected.

4.1 An overview of empirical software engineering meth-
ods

Empirical software engineering utilizes a wide array of research methods, each with
its own strengths and weaknesses. The different research methods can be grouped
in various ways. For example, Singer at al. divide data collection methods for field
studies into three main groups: direct techniques, indirect techniques, and independent
techniques [43]. The direct techniques (which are the most interesting to us) are fur-
ther divided into inquisitive techniques (e.g. brainstorming, interviews, and question-
naires), and observational techniques (e.g. work diaries, think aloud sessions, and par-
ticipant observation). According to Singer et al., “inquisitive techniques allow the ex-
perimenter to obtain a general understanding of the software engineering process”,
and they also claim that “such techniques are probably the only way to gauge how en-
joyable or motivating certain tools are”. Observational techniques, on the other hand,

25

26 How do software practitioners value research?

“provide a real-time portrayal of the studied phenomena”, but also make it “more dif-
ficult to analyze the data, both because it is dense and because it requires considerable
knowledge to interpret correctly”. Observational techniques may also lead to a change
of process simply by observing it, an effect known as the Hawthorne effect.

Both inquisitive and observational techniques could be suitable for answering our RQ
and SRQs. The disadvantages with observational techniques (Hawthorne, possible
difficulties with analyzing data) have made us choose inquisitive techniques for this
master thesis. Among the inquisitive techniques, many techniques are suitable for
our research. Table 4.1 shows the main areas of application for the five most common
inquisitive techniques. As one can see, interviews and questionnaires are the most
useful techniques for finding opinions, as we are going to do in our research question.

Technique Usage
Brainstorming and focus groups Understanding ideas and

general background about
the process and product,
general opinions

Interviews and questionnaires Finding general informa-
tion (including opinions
about process, product,
personal knowledge etc.)

Conceptual modeling Finding mental models of
product or process

Work diaries Finding time spent or fre-
quency of tasks, pattern of
activities, some goals and
rationale

Think–aloud sessions Finding mental mod-
els, goals, rationale and
patterns of activities

Table 4.1: Excerpt from the summary of data collection techniques by Singer et al. [43]

We were initially considering using a combination of interviews and questionnaires
in this master thesis, and were planning on using a structured interview technique
called repertory grids. However, logistical considerations made us focus fully on the
questionnaire approach, as the latter made it significantly easier to reach a good excerpt
of the population of software practitioners.

4.1.1 Surveys : an overview

As defined by Fowler, the purpose of a survey is to gather quantitative or numerical
descriptions about some aspects of a study population [14, p. 1 ff.]. This is achieved by
asking people questions, and the answers constitute the data to be analyzed.

How do software practitioners value research? 27

Data for a survey can be collected in several ways. Traditionally, surveys involved
face-to-face sessions, a practice which has some weaknesses. Most important of the
weaknesses is the possibility for the interviewer to influence the respondent so that he
or she could change the answers, introducing important biases. This has been known
for a long time, for example from an experiment by Stanton et al. who concluded that
“the bias of the interviewer exerts some determining effect upon the outcome of the
interview even when the interviewer is experienced, the direction of the bias known to
him, and the material has no personal or emotional connection” [46]. (The experiment
was later replicated by Friedman, who could not confirm the findings of Stanton et
al. [16]).

In the 1970s, as telephone ownership increased, telephone interviewing became a ma-
jor mode of data collection [14, p. 7]. Telephone interviews eliminate some of the
interview’s weaknesses, such as for example the effect of the body language of the in-
terviewer. Later, the Internet proved to be an even more suitable mode of survey data
collection. The use of the Internet for surveys could among other things extend access
to participants, defuse the embarrassment that some subjects may feel when asked sen-
sitive questions by the interviewer, and lead to easier handling of data [32, pp. 17–25].
There are of course also some disadvantages to Internet surveys, such as that Internet
access is not evenly distributed among socioeconomic groups, something which may
lead to a selection bias. The latter is nonetheless not a problem in our survey, as one
can reasonably expect that all or nearly all software practitioners have access to the
Internet.

A survey cannot reasonably cover all members of a population. There are some excep-
tions to this (such as the U.S. decennial census), but one does generally choose only a
small, representative part of population to participate in a survey — a practice known
as sampling. In our survey, we wanted to describe the population of software practi-
tioners — this should be reflected in the sample, which ideally should include all kinds
of practitioners from all kind of software companies.

Fowler describes several different sampling techniques [14, pp. 14–28]. Among these
are simple random sampling, that approximates drawing a sample out of a hat: members
of a population are selected one at a time independent of one another and without
replacement; systematic sampling, a less laborious variant of simple random sampling;
and stratified sampling, where the researcher deliberately chooses subjects so that the
sample will have exactly the same proportions as the whole population.

It would have been extremely hard for us to get a sample that was randomly dis-
tributed among the population. Our study thus used a more informal, ad hoc-approach
where availability was the most important consideration. See section 4.3.2 for the de-
tails on how we found subjects for our survey.

Best practices

Fowler lists five basic characteristics of the question of a survey that are necessary in
order to get a good measurement process [13, pp. 4–5]:

28 How do software practitioners value research?

1. Questions need to be consistently understood

2. Questions need to be consistently administered or communicated to respondents

3. What constitutes an adequate answer should be consistently communicated

4. Unless measuring knowledge is the goal of the question, all respondents should
have access to the information needed to answer the question accurately

5. Respondents must be willing to provide the answers called for in the question

Fowler mentions three main steps that can be taken to assess to which extent the ques-
tions meet these standards: (1) focus groups discussions, (2) intensive individual in-
terviews, and (3) field pretests under realistic conditions [13, p. 104]. For our purpose,
we chose a pilot study in two iterations, an approach that is closest to (3). The pilot has
been described in detail in section 4.2.3. We believe that the pilot will sufficiently take
care of characteristics 1–4, while characteristic 5 probably is of minor concern, as none
of our questions are likely to relate to highly sensitive matters.

Survey documentation

Kitchenham and Pfleeger describe a document called a questionnaire specification. This
document is best written before the questionnaire is administered, and should in-
clude [30]:

1. The objective(s) of the study

2. A description [of] the rationale for each question

3. The rationale for any questions adopted or adapted from other sources, with ap-
propriate citations

4. A description of the evaluation process

When the questionnaire is administered, the documentation should be updated to
record information about:

1. Who the respondents were

2. How it was administered

3. How the follow-up procedure was conducted

4. How complete questionnaires were processed

Preparing this documentation ensures that the researchers do not forget the details of
instrument creation and administration.

We have produced survey documentation as suggested by Kitchenham and Pfleeger.
The documentation can be found in sections 4.2 and 4.3.

How do software practitioners value research? 29

4.2 Questionnaire specification

The following subsections consist of our initial specification of the survey, as recom-
mended by Kitchenham and Pfleeger and summarized in section 4.1.1. The specifica-
tion is reproduced verbatim, with a few exceptions for the sake of readability. We omit-
ted a section for the rationales for questions adopted or adapted from other sources, as
there were no such questions.

The original questionnaire (without annotations) can be found in appendix A.

4.2.1 Objectives

The objective of our survey was to answer the research question that is found in section
1.2, hereunder SRQ1– SRQ4.

4.2.2 Questions and rationales

The following sections consist of the questions for the questionnaire, with annotations
that describe our rationales and motivations for including them. In this specification,
we have omitted the part of the questionnaire that asks about demographical data.

Question 1

1. You are considering a new technique or technology in IT development.
You have only superficial prior knowledge about this technique or technol-
ogy.

On a scale where 1 is “not at all” and 7 is “very much”, how important for
you is advice from the following persons and entities when you are making
your decision?

This question was aimed at answering SRQ2 (“do software practitioners value experts’
advice more than they value research”). We deliberately avoided to use a specific ex-
ample of a technique or technology, in order to make the question more universal and
suitable for all kinds of software practitioners.

It could be that the respondents concretize the question by substituting “a [unspecific]
new technique or technology” with a particular technology they are used to or a tech-
nology choice they have made recently. This would be unfortunate, as that choice
could have been influenced by other variables, outside of our control. As always, re-
searchers have to compromise when designing surveys, and we chose to use a unspec-
ified technique or technology for the sake of generalization.

30 How do software practitioners value research?

A colleague or friend with experience with this technique

In everyday life, it is natural to take the opinions of one’s friends and colleagues into
consideration. It is thus interesting to see if this also applies when making professional
decisions.

We implicitly meant “a friend with experience from the software industry” when we
wrote “friend”. During our pilot study, all subjects shared this implicit condition.

An external expert / guru

It was obvious to include this option, as experts’ are explicitly mentioned in SRQ2.

To define an “expert”, we have used some definitions from Meyer and Booker [34, p.
3]:

Expert judgement is data given by an expert in response to a technical
problem. An expert is a person who has background in the subject area and
is recognized by his or her peers or those conducting the study as qualified
to answer questions. Questions are usually posed to experts because they
can not be answered by other means.

Following the definitions of Meyer and Booker, an “expert” or “guru” must in our con-
text be understood as someone who the respondent recognizes as qualified to answer
a question regarding a technical problem, when the question is too difficult for the
respondent to fully or satisfyingly answer himself.

Independent researchers (MIT, The Norwegian University of Science and
Technology)

and

Industrial researchers (IBM, Sun) and commercial research companies (The
Standish Group)

We decided to split “research” as mentioned in SRQ2 into two options, as we con-
sider research made by independent researchers to be vastly different in nature from
research made by commercial entities.

We assumed that all Norwegian software practitioners know the Norwegian Univer-
sity of Science and Technology, perhaps the premier college for the technological sci-
ences in Norway. MIT (the Massachusetts Institute of Technology) should also be

How do software practitioners value research? 31

well known. We were also considering adding a non-university research organiza-
tion, namely SINTEF. SINTEF is probably well known among Norwegian practition-
ers in the ICT industry. The organization is however more renown for non–ICT disci-
plines (such as construction, materials and chemistry, economics, petroleum, and ma-
rine technology), so we ultimately decided against mentioning them, as this survey is
about ICT.

It was harder to find suitable, well known examples of commercial research entities,
apart from major companies that have large R & D divisions (IBM, Sun). We chose
The Standish Group because of their highly cited CHAOS report, but we do not really
expect many software practitioners to have heard about them.

Information from the vendor or supplier (success stories, product demon-
strations)

Success stories and product demonstrations are also possible sources of knowledge for
policy makers.

Other (please specify)

There are many additional sources of information, so this option is useful here.

We decided against requiring an answer to question 1. Unanswered questions can
be interpreted as “do not know” type answers, even though we did not instruct the
respondents in this matter.

Question 2

2. When looking for knowledge about new development techniques and
technologies, to what extent do you consult the following sources?

This question is directly derived from SRQ1 (“How do software practitioners learn
about new techniques and technologies?”).

Experts/gurus, colleagues, and friends in the IT industry

The same rationale applies here as in question 1.

Industrial conferences (JavaZone etc.)

JavaZone is a Norwegian conference for Java developers. We believe it to be perhaps
the most widely known Norwegian industrial ICT conference.

We were initially concerned that the respondents did not differentiate between indus-
trial conferences and scientific conferences, but our pilot showed that the respondents
had a good grasp of the difference.

32 How do software practitioners value research?

Popular scientific journals and magazines

We were originally naming some examples of popular scientific journals and maga-
zines. We used IEEE Software as our prime example. This is a bimonthly magazine
that aims to deliver “reliable, useful, leading-edge software development information
to keep engineers and managers abreast of rapid technology change” [21]. We later de-
cided against using IEEE Software as an example, as we do not really expect a majority
of practitioners to have heard about it.

During the first iteration of our pilot study, we asked one of the participants if she could
give an example of a popular scientific magazine. Her response was Teknisk Ukeblad, a
Norwegian magazine which we would put under the “Websites and IT newspapers”
option (see below). We thus assume that there is some disagreement in the population
about what a “popular scientific magazine” is, but an unambiguous definition of this
concept is not critical for our survey.

Scientific conferences

We chose not to provide any examples here. We did not expect many of the respon-
dents to learn about new techniques and technologies at scientific conferences, but we
expected the practitioners who actually attend such conferences to know what a scien-
tific conference is.

Scientific journals (IEEE Transactions on Software Engineering etc.)

Scientific journals could be a source of knowledge for professionals. We included an
example to help the subjects differentiate them from non–scientific journals.

Web forums, mailing lists, blogs and other social media

The World Wide Web is clearly a source of information for IT professionals. We also
assumed that many gain information from social media, such as Twitter.

We did not provide any examples of social media, as we expected everybody to under-
stand what this is. This item was added after the pilot, so we could not get feedback
on our assumption.

Websites and IT newspapers (Slashdot, Computerworld)

Computerworld is a Norwegian weekly newspaper, which claims to be Norway’s “largest
and oldest ICT Newspaper”. We did not look for external citations that could verify
this claim, but it was probably safe to assume that this newspaper is well known among
software practitioners and thus a safe choice as an example.

Slashdot is a technology oriented news website. It incorporates elements from social
media, and its “comments” sections often include hundreds of user submitted com-
ments. We would however use it as an example of a news site instead of lumping it
together with the “web forums, mailing lists, blogs and other social media” option.

How do software practitioners value research? 33

Other (please specify)

The same applies here as for question 1.

We did not require an answer to question 2.

Question 3

3. It has been decided that your organization needs to radically renew its
software development process model. You are responsible for evaluating
the alternatives, and there are two obvious alternatives, X and Y. You have
assessed the available literature, and while there are pros and cons to both
alternatives, your analysis of the literature shows that alternative X is prob-
ably the best choice for your organization.

Nevertheless, you have a strong feeling (gut feeling, “magefølelse”) that
alternative Y is best suited for your organization, even though you find it
hard to explain why.

On a scale where 1 is “gut feeling only” and 7 is “analysis only” how much
weight would you give to your analytical findings versus your gut feeling?

This question is related to SRQ 2. SRQ 2 is concerned with how practitioners value
experts’ advice compared to how they value research, and it is clearly interesting to
compare and contrast this to how they put weight to gut feeling.

The “Linda” problem and the trustworthiness of intuition that we discussed in chapter
3, section 3.3 are highly relevant to this question. “Linda” showed that intuition can
violate basic rules of logics, something which a careful analysis of a problem should
not do.

We deliberately chose “X” and “Y” to describe the alternatives instead of descriptions
as “A” and “B” or “1” and “2”, as “X” and “Y” are neutral terms and do not imply that
one alternative is better than the other.

When we deployed the survey, we became aware that this question had a potentially
serious typographical error that we did not catch during the pilot. See section 4.2.4 for
details.

Question 4

4. Your organization needs a new testing framework. You have found re-
liable research claiming that using framework F will most of the time find
more bugs and increase productivity.

34 How do software practitioners value research?

You have also consulted an expert whom you trust from previous experi-
ence. He claims that framework F is worthless, and strongly recommends
using framework G instead.

On a scale from 1 (“research only”) to 7 (“expert advice only”), how would
you give weight to the two recommendations?

This question concerns SRQ 2.

The question was modified after the evaluation process (see section 4.2.3). We origi-
nally intended to use TDD (Test Driven Development) as an example, and the original
wording was “Your organization is considering using test driven development (TDD)
in a large scale. You have found reliable research showing that TDD most of the time
find more bugs and increase productivity (. . .) ”.

We decided against using a specific example of a technique after the second iteration of
the pilot survey. Both subjects in this evaluation round had strong opinions about TDD,
and both claimed that their experience was that TDD indeed increased productivity
and found more bugs. We thus changed the wording to a neutral “testing framework”
to avoid introducing a possible bias.

Note that the original formulation was “Your organization is considering” making a
switch. Such a formulation is unfavorable, as one can easily imagine a manager to be
conservative and prefer a familiar yet suboptimal solution in favor of something new
and untested. We consequently changed the formulation so that the decision to switch
was already made.

Like for question 3, we chose neutral terms like “F” and “G” to describe the frame-
works instead of “A” and “B” or “1” and “2”.

Question 5

5. On an scale from 1 (“not at all”) to 7 (“very much”), how much do you
keep up with research in software engineering?

This question is related to all of the SRQs. How much practitioners keep up with
research in software engineering can certainly influence how they make decisions, and
we suspect that practitioners who closely keep up with research are more analytical in
their decisions than practitioners who do not keep up with research.

The question initially had an grammatical error, see section 4.2.4 for details.

Question 6

6. On an scale from 1 (“nothing”) to 7 (“very much”), how much confidence
do you have in research in software engineering?

How do software practitioners value research? 35

This question arises out of SRQ 3, but is also closely related to the main RQ (“how do
software practitioners value research when making decisions”). It is reasonable to hy-
pothesize that practitioners who have more confidence in research value research more
when making decisions than practitioners who do not have confidence in research do.

Question 7

7. Do you apply results from research in software engineering in your
work?

• Yes

• No

• Don’t know

This question is also related to the main RQ. It is likely that practitioners who have
confidence in research more often apply results from research in their work, and the
opposite is also likely to be true.

Question 8

8. Do one or more of these barriers prevent you from applying research in
your work? (choose all that apply, choose none if no alternative applies)

• My organization does not encourage the use of research

• Too busy meeting immediate goals or deadlines

• Research results are hard to find

• Lack of personal time

• Research is not relevant to my needs

• Attitudes of colleagues

• Attitudes or expectations of customers

• Other (please specify)

Question 8 is directly derived from SRQ 3. The options were adapted from the barriers
used by McColl et al. when they determined medical practitioners attitudes towards
evidence–based medicine (see section 2.4), as it can be interesting to compare software
practitioners’ and medical practitioners’ reasons for not applying research.

36 How do software practitioners value research?

Question 9

9. Name up to three topics that you feel software engineering researchers
should focus on more.

This question is directly taken from SRQ 4.

We initially considered providing a list of topics for the participants to rank, using the
SE topics of ACM’s Computing Classification System [2]. We lated changed our mind,
instead asking the respondents to express themselves more freely, not using predefined
categories. This made the questionnaire considerably shorter, giving more space to
other, more relevant questions. It is also unlikely that all respondents have opinions
about the state of all areas of SE research, and presenting all topics could have given
“don’t know” or random answers en masse.

Question 10

10. Which software engineering activity or job task is your main daily focus
at present?

This question acts as a “check and balance” to Question 9, as it is likely that respon-
dents often feel that it is their daily activities researchers should focus on.

4.2.3 The evaluation process

We conducted two iterations of field pretesting (“pilot testing”) of the survey. The in-
tention of such a process is to discover practical problems, such as typographic errors,
faulty instructions, and inadequate arrangements for recording answers [13, p. 115].

A pretest is done when the survey instrument is in a near final form. Fowler recom-
mends conducting 15 to 35 interviews with persons similar to those who will be re-
spondents in the planned survey, using similar data collection procedures [13, p. 115].

15 to 35 interviews would be way too many for our limited study, as we expected some-
where between 50 and 100 respondents. We decided upon using 4–6 interviews for the
pretest, split into two rounds. This iterative approach lessens the risk of introducing
new errors and ambiguities.

Round one

For the first round, we used three college students as subjects. They were in their
twenties, and had no industry experience. All were enrolled into a computer science
program at the University of Oslo, and were senior students in the final year of their
bachelor’s degree. They were told that the process would take approximately 15 min-
utes, and were promised a beer as a reward for participating.

How do software practitioners value research? 37

We did the three pilots sequentially in a quiet, dedicated room. The subjects were told
that the survey was about how software practitioners made decisions, but we specifi-
cally avoided telling that it was about how they valued research. We asked the subjects
to read the questions aloud, and to “think aloud” when answering. We also asked ad-
ditional questions, such as “what is a ‘software development process model’?”. The
goal of asking the additional questions was to make sure that the subjects had a com-
mon understanding of the most important terms used in the survey.

We learnt many lessons during this round of pilot testing. First of all, all three subjects
failed to mention even a single topic that software engineering researchers should fo-
cus more on (Question 9). When we asked them why, they answered “dont’t know”.
We then asked if they could mention some random topics in software engineering. All
were hesitating, but could after some consideration mention a couple of topics each
(“databases”, “programming”, “project management”, “modeling”, “problem analy-
sis”, and “testing” were mentioned, all of which are valid SE topics). Because of the
subjects’ inability (or reluctance) to answer question 9, we were considering removing
it. However, we chose to keep it for the second iteration, as practitioners are more
likely to be able to name SE topics than college students are.

All subjects shared a common understanding of what an “external expert or guru” is,
and described it as someone who was renown within the particular field. They did not
specify if this status was among practitioners or scientists (or both). All subjects were
also asking themselves if the “an experienced colleague or friend” option referred only
to colleagues and friends working in ICT.

It was also clear that the test subjects did not know what a scientific journal is. One
of the subjects stated that popular scientific journals “are about stuff”, while scientific
journals concern “how to use stuff”. Their confusion was was hardly surprising, as
the subjects were undergraduates. All subjects answered “1 – not at all” for “scientific
journals” in question 2, and we decided that the lack of understanding of what a sci-
entific journal is isn’t a problem as long as the subjects answer “not at all”. If they do
not know what scientific journals are, they are extremely unlikely to use them to learn
about new development techniques and technologies.

For question four, two of the three test subjects were unsure about what TDD is. When
we asked them to make a guess, one said “testing during development”, while the
other said “using automated tests instead of making users test the system.” We pre-
sumed that such misunderstandings were significantly rarer among practitioners, and
decided against switching to another example at this stage.

For question five and six, all test subjects had an adequate understanding of what
“software engineering” is. The first subject left question six blank and said he did not
know, the second subject said he did not know and gave it a four, and the third subject
said he would give it a five or a six. At the time, question six instructed the subjects
to “choose one, leave blank if you do not know”. Subject two thus misunderstood the
instructions, but we decided to await the second iteration of the pilot before possibly
clarifying.

The test subjects did not have any particular comments about question eight, but two

38 How do software practitioners value research?

of them noted that “it is too much of a hassle” was the obvious choice. This option was
removed from the final version of the survey, but we kept it for the second round of
pilot testing.

Round two

For the second round of pilot testing, we found two volunteers in a mid-sized Norwe-
gian company that make ERP systems. Test subject one had a variety of responsibilities,
including development, QA, and deployment, while test subject two was solely doing
programming.

As in the first round, we did the second round of pretesting as “think aloud” sessions,
one subject at a time. We did not offer any reward for participating this time.

Both test subjects interpreted an “expert / guru” as somebody independent, without
ties to a vendor or supplier. One of the subjects said that one had to have more than
ten years of industry experience to be considered an expert. He also asked if “an expe-
rienced colleague or friend” (in Question 1) meant someone with experience with this
particular technique or technology, or someone with more general experience. Similar
comments were made in round one, and we therefore changed the wording accord-
ingly to “a colleague or friend with experience with this technique”.

One of the test subjects was initially confused about the “industrial conferences” source
of knowledge (Question 2). He first gave it a “1 – not at all”, but when he saw the next
row (“scientific conferences”), he changed his response for “industrial conferences” to
a five. He then said that he often learnt about new technologies at Microsoft work-
shops, and that “industrial conferences” was the most fitting category for such events.

Test subject two remarked that a “gut feeling” could be both rational and irrational,
and asked if this perhaps should be defined clearer in Question 3. We agreed to some
degree, but nevertheless chose to leave the question in its original form. Test subject
one found the question too long.

Both test subjects said that they do not keep up with research in software engineering,
and that they thus felt that “four” was the natural option, as they did not know. This
made us change the “choose one, leave blank if you do not know” instruction into
“choose one”, with an explicit “don’t know” option to the far right. After some dis-
cussions with other researchers, we later chose to revert this change. The reason was
that some participants could mistake the “don’t know” option with “7 – very much”,
which normally is the option to the far right. We thus decided that standardization of
the questions is more important than making the “don’t know” option clearer.

For question eight, both test subjects said that “it is too much of a hassle” was the
obvious choice, and that it perhaps was too broad. We consequently removed this
option, so that the subjects would be forced to give more specific reasons.

For questions nine and ten, the test subjects claimed that they had a hard time under-
standing what we meant by “topic” and “job task”. Test subject two simply answered
“software engineering” as his job task, something which was way more general than

How do software practitioners value research? 39

what we wished for. Test subject one was more to the point, and answered “installation
/ deploy”. We were considering introducing some examples of what we considered
software engineering topics (“testing”, “requirement elicitation” etc.) to give the sub-
ject a gentle push in the right direction, but we later changed our minds and removed
the examples. This was because we were afraid that the subjects simply would choose
among the provided examples instead of giving more precise answers.

4.2.4 Errors uncaught during the evaluation process

After the second iteration of the pilot, we decided to change “two alternatives, A and
B” into “two alternatives, X and Y” in Question 3. This was because “alternative A”
may sound superior to “alternative B”. However, when making the change, we made a
copy and paste error. This caused the question to initially have the following erroneous
formulation (the error is emphasized in bold):

3. It has been decided that your organization needs to radically renew its
software development process model. You are responsible for evaluating
the alternatives, and there are two obvious alternatives, X and Y. You have
assessed the available literature, and while there are pros and cons to both
alternatives, your analysis of the literature shows that alternative X is prob-
ably the best choice for your organization.

You have assessed the literature you have available, and while there are
pros and cons of both alternatives, your analysis shows that alternative A
probably is the best choice for your organization.

Nevertheless, you have a strong feeling (gut feeling, “magefølelse”) that
alternative Y is best suited for your organization, even though you find it
hard to explain why.

On a scale where 1 is “gut feeling only” and 7 is “analysis only” how much
weight would you give to your analytical findings versus your gut feeling?

The first 20+ responses were collected using paper copies of the questionnaire. We
were available for questions, clarifications and feedback at this time, but received no
comments on the error. It was not until we started using a web version of the ques-
tionnaire that we were told about the error. At that time, we had collected some 40
responses. We then fixed the phrasing, so that it was in line with our intentions.

We also found another error in question five, which said “(. . .) how much do keep up
with research (. . .)” instead of the intended “(. . .) how much do you keep up with
research (. . .)”. We consider this error minor, at least compared to the error in question
three. This error was fixed after we had received approximately 100 responses.

40 How do software practitioners value research?

4.3 Questionnaire administration

4.3.1 The survey framework: SurveyMonkey

We had several options regarding which web framework we could use for collecting
data. We considered using Simula research Laboratory’s SESE (“Simula Experiment
Support Environment”), but in the end decided upon using SurveyMonkey (http:
//www.surveymonkey.com), a survey framework which has been recommended by
several independent reviewers. For example, Gordon describes SurveyMonkey as “an
excellent survey and evaluation tool for online learning environments and for research
in the field of online learning environments” and claims that it is “easy to configure,
has a rich array of options, and is easy to work with” [18]. It is also easy finding nu-
merous published, peer–reviewed studies that use it. Some, such as Abel et al. have
noted that SurveyMonkey “is not primarily targeted for academic research purposes”,
but nevertheless claim that “[t]he use use of Survey Monkey reinforces principles of
effective surveys as outlined by Dillman (2000), such as allowing questions in conven-
tional formats” [1].

SurveyMonkey supports over twenty types of questions, including multiple choice, rat-
ing scales and open–ended text. This was more than sufficient to meet our needs. All
questions could have their layouts customized, and professionally designed survey
templates were also available.

We designed the survey so that it had three distinct parts. Page one was introductory,
explaining that this was a survey from the software engineering department at Simula
Research Laboratory, and who it was aimed at. It also prompted for the participants’
email addresses, as one of them would win an Apple iPod. Stating one’s email address
was however totally voluntary, and the participants could choose to be anonymous if
they wanted to.

Page two asked for some basic demographical information, such as age, location, po-
sition, industry experience, and education. It was mandatory to answer all of these
questions.

The actual survey (as described in section 4.2.2) came on page three. Figure 4.1 shows
how the third page of the survey appears to the respondents. None of the questions
here were mandatory. Figure 4.2 shows how the questions were designed in Survey-
Monkey.

SurveyMonkey allows several collectors. A collector is basically a link that can be sent
to an audience. We created several such collectors, one for each organization that we
deployed the survey in (see section 4.3.2 for more about the deployment). Using dis-
junct collectors allowed us to keep the data collected from each organization separate.
Collectors can be of several types; we chose the type called a “web link”. Such links are
not unique for each participant, and are sent to the participants in an email or posted
on at web site. This allows the survey to be completely anonymous if the respondent
wishes to, with the one exception that the IP address associated with each respondent
is stored.

How do software practitioners value research? 41

Figure 4.1: Screenshot from SurveyMonkey : how the survey appeared to the respon-
dents.

42 How do software practitioners value research?

Figure 4.2: Screenshot from SurveyMonkey : designing the questions.

How do software practitioners value research? 43

We set the collectors so that only one response was allowed per computer. The Sur-
veyMonkey manual does not mention how the system enforces this; and we can easily
think of several possibilities, where HTTP cookies and some sort of IP address filter-
ing are the two most obvious. Some simple tests make us reasonably sure that HTTP
cookies are used to enforce this restriction. This makes it trivial for respondents to
participate several times if they so wish, but does not exclude persons who sit behind
routers that use network masquerading (NAT) from participating fully.

The participants could not go back and update the responses after the survey had fin-
ished. They could however go back to previous pages and edit their responses before
they finished the survey. The participants were redirected to a generic SurveyMonkey
“thank you” page after they had finished.

SurveyMonkey makes generating paper copies of the survey easy, as it can convert the
surveys into specially styled PDF versions. We gathered most of our data using the
web collectors, but also used paper copies for some 20 respondents (see section 4.3.2 for
details). The data collected using the paper copies was later punched into the system
by hand.

SurveyMonkey allows the responses to be downloaded in a spreadsheet format. This
makes it easy to migrate the data into the statistical software of our choice, namely
JMP. See chapter 5 for more on how we analyzed the data.

4.3.2 Deployment

We were initially working on deploying our survey in a major software development
company with thousands of employees, and offices throughout Europe (“Company
X”). We were told that Company X was planning to deploy the survey to QA man-
agers and developers in many countries, something which influenced some of the de-
sign choices we made. For example, we translated the survey from Norwegian into
English after the pilots to accommodate non–norwegian subjects, even though this
move reduced the value of the pilot process (but we nevertheless did our best to retain
the enhancements the process created). We also included “QA manager” in the “In
which position are you currently working” demographical question, and other similar
adaptations.

All of our initial contacts in this company were positive, but the company unfortu-
nately withdrew after our survey had been discussed at the executive level. This un-
fortunate withdrawal put us in a very difficult position, as we thus needed to find new
subjects, and time was short before the general staff vacation started in June. We nev-
ertheless do not hold a grudge against Company X, as we are fully aware that these
things happen all the time when doing research.

We were able to find new respondents at javaBin, a Norwegian Java users’ group. A
users’ group is a private, non-profit club where the members come together regularly
to share knowledge on a particular technology or set of technologies, in this case Java
and related technologies. We were on a short notice allowed to attend a member event,
where we distributed paper copies of our survey. A link to the online version of our

44 How do software practitioners value research?

survey was also placed prominently on javaBin’s web site. Nearly all members of
javaBin (and thus the majority of visitors to their web site) are software professionals,
and we urged the members not to participate if they were not professionals.

The short notice before the member event made it impossible to undo the changes we
had done to the survey when preparing it for deployment in Company X. For example,
some of the options were somewhat awkward — there is not likely to be many QA
managers in javaBin — but this was of minor concern. Before attending the javaBin
event, we added the possibility to win an iPod to the survey to introduce a stronger
incentive to participate.

At javaBin, we also got in touch with some practitioners who wished to introduce
the survey in their respective organizations. We pursued these opportunities, and
thus found two more software development companies that were willing to deploy
our survey in their organizations. The first company (“Company Y”) is a Scandina-
vian consultancy company specializing in object oriented systems development, while
the second company (“Company Z”) is a Scandinavian company providing services
in consulting, development services, training, support, and application management
for a wide range of products. The survey was deployed in these two companies in a
“semi-official” manner — that is, the deployments were authorized by the respective
managements, but all the practicalities were carried out by our initial contacts. These
contacts both sent appeals for participants to their respective companies’ internal mail-
ing lists.

In total, we got 145 respondents who started the survey, of which 113 completed it
(77.9%). 82 came from javaBin, 23 came from Company Y, and 40 from Company Z.
We closed the collectors three weeks after the javaBin event, and two weeks after we
sent out the invitations to companies Y and Z. At that time, there had been three days
since the last response.

This is an example of a non–probabilistic sampling method, as we chose respondents be-
cause they were easily accessible. The main problem with such convenience sampling is
that the people who are available and willing to take part may differ in important ways
from those who are not willing to participate [30, p. 86]. We nevertheless believe that
the sample is good enough, as we can not see that our sample strongly differs from the
general population of software practitioners.

4.3.3 Data quality

It is hard to assess the correctness of the answers in studies of subjective phenomena.
Nevertheless, de Leeuw and van der Zouven have identified five indicators for data
quality in telephone and face to face interviews. These indications are [31, p. 286]:

1. Accuracy, or response validity: for this indicator the answer of the respondent is
checked against the “true” value as found in official records (e.g. the possession
of a drivers license). This indicator is only applicable when validating informa-
tion is available (. . .)

How do software practitioners value research? 45

2. Absence of S(ocial) D(esirability) Bias; inversely proportional to the number of
socially desirable answers on a particular question. An answer is said to be so-
cially desirable when that specific answer is more determined by what is accept-
able in society than by the real situation. (. . .)

3. Item response, inversely proportional to the number of “no answer” or “missing
data” per question (excluding “do not know” responses)

4. Amount of Information, indicated by the number of responses given in response
to an open question or a checklist

5. Similarity of response distributions obtained by different modes. Indicated by
no significant difference between the proportions obtained under the different
modes. This indicator, though often used, is only a very rough indicator of data
quality.

We believe that these indicators could be useful for assessing the quality of our data,
even though they were originally created for telephone and face to face interviews. Of
the five indicators, four apply to us: (1) is not applicable, as none of our questions in-
volve answers that can be checked against a “true” value as found in an official records.

Doing a very formal and systematic assessment of the data quality is probably un-
necessary. We have however, in order to give the reader a short overview, done a
quick collation of the data for three of the four remaining indicators. We have also dis-
cussed the “Absence of Social Desirability Bias” indicator. Based upon the indicators
discussed below, we see no reason to doubt the quality of our data.

Social desirability bias A social desirability bias comes when respondents are asked
questions that they rather would not report accurately because of social undesirability.
A classic example is the 1989 Virginia gubernatorial election. On election day, all exit
polls showed the black candidate, Democrat Douglas Wilder, having a clear lead over
his white opponent, Republican Marshall Coleman. Estimates by four major survey
organizations showed an advantage to Wilder of 4–11 percentage points, but the ac-
tual results gave Wilder the victory by a narrow margin of 6,741 votes of a total of 1.79
million ballots [12]. According to Finkel et al., such errors arise in elections with black
and white opposing candidates because “white respondents are more reluctant to re-
port intentions to vote for the white candidate, and more willing to report intentions
to vote for the black candidate, than they are to cast their ballots for those candidates
on Election Day” [12].

Fowler claims that there is clear evidence that “having respondents answer questions
in a self-administered form rather than having an interviewer ask the questions may
produce less social desirability bias for some items” [14, p. 99]. We used a self-
administered questionnaire for our survey, thus reducing such biases.

Item response Excluding the open ended questions and the questions consisting of
a checklist (which are summarized under “Amount of Information”, see below), there

46 How do software practitioners value research?

were very few “no answer” or “missing data”. The following table shows the number
of “skips” for each question:

Question # Answered Skipped
1 113 0
2 113 0
3 112 1
4 109 4
5 110 3
6 106 7
7 113 0

The relative number of “no answers” was at most 7
113 = 0.061. This is very low.

Amount of Information There was one question that consisted of a checklist (Ques-
tion 8), and two questions that were open ended (questions 9 and 10).

Of the 113 complete responses, 103 ticked one or more items at Question 8. There
were 59 participants who answered Question 9, while 59 answered question 10. The
response rate at Question 8 (103

113 = 0.91) is very good, while the response rates at ques-
tions 9 and 10 (59

113 = 0.52) were mediocre. This is in line with research, which shows
that there are low response rates for open-ended sections located at the end of struc-
tured evaluation forms. See for example Darby, who found that 81.9% of open ended
questions were completed at the beginning of questionnaires, 63.0% at the middle, and
only 31.6 at the end of questionnaires [6].

Similarity of response distributions We obtained data using two different modes:
web collectors and a paper version of the questionnaire. The latter was only done for
the javaBin group, as we used a web collector only when we deployed the survey in
companies Y and Z. We can thus only look at the javaBin group when assessing this
indicator.

We arbitrarily chose three of the questions, and compared the mean m from the two
collection modes (see below).

Scale (Question 1) m, paper m, web Difference
A colleague or friend . . . 6.23 5.82 0.41
An external expert / guru 4.69 5.12 −0.43
Independent researchers 3.69 3.59 −0.10
Information from the vendor . . . 3.31 3.16 0.15
Industrial researchers . . . 3.69 3.39 0.30

Response (Question 7) Percentage, paper Percentage, web Difference
Yes 61.5% 52.9% 8.6
No 30.8% 29.4% 1.4
Don’t know 7.7% 17.6% −9.9

How do software practitioners value research? 47

Response (Question 8) Percentage, paper Percentage, web Difference
Does not encourage . . . 7.7% 18.8% −11.1
Too busy . . . 69.2% 58.3% 10.9
Hard to find 23.1% 45.8% −22.7
Lack of time 61.8% 39.6% 22.2
Not relevant 15.4% 29.2% −14.8
Attitudes of colleagues 7.7% 12.5% −4.8
Attitudes of customers 7.7% 16.7% −9.0
Other 30.8% 8.3% 22.5

There are no large differences in the distributions of replies to questions one and seven.
The differences are somewhat larger when it comes to Question 8. We nevertheless see
no reason to doubt the quality of our data.

4.4 Summary

This chapter has described our survey, and explained how we chose a survey as our
research method.

We created a survey consisting of 10 questions, and mapped each question to one or
more of the SRQs from chapter 1. We described the measures we implemented to
minimize possible biases, and the evaluation process that we conducted to make sure
that the questions were consistently understood and communicated. We also described
two errors we did not catch during the evaluation process; one that possibly is severe,
and one that is insignificant.

We described how we administered the questionnaire, and how we used the survey
framework called SurveyMonkey to deploy it. We deployed the survey at a users’ group,
and in two Scandinavian consultancy companies. We got 145 respondents, of which
113 completed the survey. In section 4.3.3, we did at quick assertion of the quality of
the data we collected.

Now that we have described the survey in this chapter, we will in the next chapter
describe how we analyzed the data and the results of our analysis.

48 How do software practitioners value research?

Chapter 5

Results

In chapter 4, we discussed why we chose a survey, and how we implemented and
administered it. This chapter summarizes the data we collected and shows results
from our exploratory modeling.

In section 5.1, we make a case for why we can treat some of our ordinal data as being
on a continuous scale. Such a practice is normally discouraged, but we cite studies that
suggest that it is relatively unproblematic to use parametric statistics on ordinal data.

Section 5.2 summarizes demographic data from the respondents, and section 5.3 shows
the distribution of the answers to each of the 10 questions. Most of the data is also rep-
resented graphically, using histograms. The data collected in Question 9 is somewhat
special, as classifying it involves some subjectivity; see section 5.3.9.

In section 5.4, we describe a statistical technique called recursive partitioning. This tech-
nique is good for exploring relationships between variables when one does not have
a good prior model. In section 5.4.3, we show how the statistical software JMP helps
us perform recursive partitioning. Section 5.5 shows 12 cases of recursive partitioning
that we have done on our data.

5.1 A note on scales

Basic statistical theory says that one should not treat data on an ordinal scale as being
continuous. This is partly because it is hard to quantify the differences between two
ordinal values; On an ordinal scale, 8 is more than 4, but not necessarily twice as much.
Accordingly, one can not properly calculate a mean value on numbers from an ordinal
scale.

However, the practice of treating ordinal scales as being interval scales — scales where
one unit on the scale represents the same magnitude across the whole range of the
scale — seems widespread. Jakobsson has looked at how ordinal scales were ana-
lyzed in nursing journals in 2003 [22]. Of 51 articles that used ordinal scales, only 57%
analyzed the data appropriately. Jakobsson notes that even though computing mean

49

50 How do software practitioners value research?

values and accompanying standard deviations are “very common” when dealing with
ordinal scales, such practices are incorrect.

Nevertheless, there is some justification for treating data from ordinal scales as being
continuous. Johnson and Creech have examined the correlation between categorized
variables and their continuous analogs [25]. Johnson and Creech claim that while cat-
egorization errors (i.e. errors that occur when continuous variables are measured by
indicators with only a few categories) to some degree produce distortions in multiple
indicator models, “under most of the conditions explored these distortions where not
of sufficient magnitude to strongly bias the estimates of the important parameters.”
This is especially true when five or more categories are used for each question.

Similar results were found by Zumbo and Zimmerman when they used computer sim-
ulations to compare results from applying non-parametric Mann–Whitney U tests with
results from using Student’s t-test [53]. Zumbo and Zimmerman conclude that

In general, the results indicate that for statistical hypothesis testing of two-
sample location problems (i.e., tests of mean differences) it is not detrimen-
tal to use parametric tests on ordinal data. That is, if a mean difference is
evident in the latent structure, then the t-test or Wilcoxon-Mann-Whitney
test performed on data from an ordinal representation will indicate a mean
difference, at least as often as a t-test on the empirical structure.

(. . .)

Of particular importance is the finding that the power functions for the t-
tests on the ordinal representations are very similar to the power functions
for the nonparametric Wilcoxon–Mann –Whitney test. This indicates that
there is no benefit to be gained from excluding the use of parametric statis-
tics on ordinal data. These findings are also true for various sample sizes
and significance levels.

Based upon the recommendations of Johnson and Creech as well as Zumbo and Zim-
merman and the fact that we used seven categories in our survey, we feel confident
that it is unproblematic to treat the scales used in questions 1–6 as continuous.

5.2 Demographic data

The vast majority of the 113 respondents were aged between 25 and 39. 34.5% of the
respondents were in the 25 → 29 group, while 26.5% were in the 30 → 34 group and
the same number in the 35→ 39 group. See figure 5.1(a) for the full distribution.

All respondents reported that they were working in Norway, with two exceptions: One
responded “Company Y”, and one responded “Turkey”.

For “current position”, most respondents (77) reported “developer”, while 31 reported
“other”. The most common answer among those who chose “other” was “system

How do software practitioners value research? 51

consultant”, with variants of “architect” as the second most common. Very few (< 10)
reported to be managers. The low number of respondents working in management
made us abandon our original strategy of testing “position” as an explanatory variable
when doing recursive partitioning, see section 5.4.

The majority of the respondents had 14 years or less of industry experience. 33.6% had
between 0 and 4 years, 31.0% had between 5 and 9 years, and 26.5% had between 10
and 14 years. See figure 5.1(b) for the full distribution.

Most respondents (66.4%) had a masters degree or equivalent. 25.7% had a bachelors
degree. See figure 5.1(c) for details.

5.3 Distributions

This section shows the distributions of the responses to each question.

All responses are presented in tabular form in the following subsections. Space restric-
tions forces us to to abridge some of the options to the questions, see Appendix A for
the unabridged list. The table columns use the following symbols and abbreviations:

Symbol Explanation
m Sample mean
M Sample median
s Sample standard deviation
SEM Standard Error Mean
U 95 Upper limit of the 95% confidence interval
L 95 Lower limit of the 95% confidence interval
N The number of responses

The sample mean m is the arithmetic mean of the observed values. If a sample consists
of the observations x1, x2, . . . , xn, the mean of the observed values is

m =
1
n

n

∑
i=1

xi =
1
n
(x1 + · · ·+ xn)

The median M is the midpoint of a distribution. The median is calculated by arranging
all observed values in order of size. If the number of observations n is odd, the location
of the median M is n+1

2 observations up from the bottom. If the number of observations
n is even, the median M is the mean of the two center observations.

The sample standard deviation s is a measure of the spread of the values in a sample.
s is large if the observations are widely spread about their mean, and small if all of the
observations are close to the observed mean.

The sample standard deviation s of n observations with a sample mean of m is

52 How do software practitioners value research?

s =

√
1

n− 1

n

∑
i=1

(xi −m)2

The sample mean m is an estimate of the mean µ of the population. The sample stan-
dard deviation s is an estimate of the standard deviation σ of the population, and s
decreases in proportion to the square root of the sample size n:

s =
σ√
n

L 95 and U 95 describe the lower and upper limits of a 95% confidence interval. Moore
and McCabe define a level C confidence interval for a parameter as [35, p. 387]

an interval computed from sample data by a method that has probability C
of producing an interval containing the true value of the parameter

A 95% confidence interval for m is thus the interval that has a probability of 0.95 of
containing µ.

Most of the questions have an additional column to the far right, referring to a figure
that shows the distribution of the respective responses.

Questions that have a “other (please specify)” field have the responses from these re-
produced verbatim directly beneath the aggregated responses. While some of these
responses are in Norwegian, the vast majority are in English.

5.3.1 Question 1

“You are considering a new technique or technology in IT development. You have only
superficial prior knowledge about this technique or technology. On a scale where 1 is
‘not at all’ and 7 is ‘very much’, how important for you is advice from the following
persons and entities when you are making your decision? ”

Item m M s SEM U 95 L 95 N Figure
Colleague or friend 6.000 6 1.026 0.097 6.191 5.809 113 5.2(a)
Expert 4.991 5 1.228 0.116 5.220 4.762 113 5.2(b)
Independent researchers 3.926 4 1.393 0.131 4.189 3.669 113 5.2(c)
Vendor / supplier 3.230 3 1.282 0.121 3.469 2.991 113 5.2(d)
Industrial researchers 3.566 4 1.231 0.116 3.796 3.337 113 5.2(e)

Other responses

• web search

• utvikler forum, 5

How do software practitioners value research? 53

• Private experiments with the technology

• My own prototyping of several of the technologies

• Independently published articles or videos

• Google

• Good documentation, tutorials, rich forums

• General opinion on forums/usergroups

• customer opinion

• blogs/newsgroup postings from people I trust

5.3.2 Question 2

“When looking for knowledge about new development techniques and technologies,
to what extent do you consult the following sources?” (1 → ‘not at all’, 7 → ‘very
much’)

Item m M s SEM U 95 L 95 N Figure
Industrial conferences 4.545 5 1.570 0.148 4.839 4.251 112 5.3(a)
Scientific conferences 2.482 2 1.335 0.126 2.732 2.232 112 5.3(b)
Experts, friends 5.991 6 1.081 0.102 6.193 5.790 113 5.3(c)
Popular sc. journals 3.265 3 1.421 0.134 3.530 3.001 113 5.3(d)
Websites, newspapers 4.401 5 1.510 0.142 4.689 4.123 113 5.3(e)
Scientific journals 2.459 2 1.320 0.235 2.708 2.211 111 5.3(f)
Web forums, social media 5.115 5 1.308 0.123 5.359 4.871 113 5.3(e)

Other responses

• The documentation of said technology

• technical websites liker infoq over computerworld!

• podcasts like javaposse

• meetups

• javabin :-)

54 How do software practitioners value research?

5.3.3 Question 3

“. . . On a scale where 1 is ‘gut feeling only’ and 7 is ‘analysis only’, how much weight
would you give to your analytical findings versus your gut feeling?”

m M s SEM U 95 L 95 N Figure
3.920 4 1.164 0.110 4.138 3.702 112 5.4

5.3.4 Question 4

“. . . On a scale from 1 (‘research only’) to 7 (‘expert advice only’), how would you give
weight to the two recommendations?”

m M s SEM U 95 L 95 N Figure
4.541 5 1.135 0.109 4.757 4.326 109 5.5

5.3.5 Question 5

“On a scale from 1 (‘nothing’) to 7 (‘very much’), how much do you keep up with
research in software engineering?”

m M s SEM U 95 L 95 N Figure
3.845 4 1.466 0.140 4.123 3.569 110 5.6

5.3.6 Question 6

“On a scale from 1 (‘nothing’) to 7 (‘very much’), how much confidence do you have
in research in software engineering?”

m M s SEM U 95 L 95 N Figure
4.104 4 1.187 0.115 4.332 3.875 106 5.7

5.3.7 Question 7

“Do you apply results from research in software engineering in your work?”

Response N %
Yes 61 53.9%
No 27 23.9%
Don’t know 25 22.1%

5.3.8 Question 8

“Do one or more of these barriers prevent you from applying research in your work?”

How do software practitioners value research? 55

Barrier N
My organization does not encourage the use of research 13
Too busy meeting immediate goals or deadlines 62
Research results are hard to find 36
Lack of personal time 56
Research is not relevant to my needs 26
Attitudes of colleagues 9
Attitudes or expectations of customers 20

Other reported barriers

• Ridiculously overly complicated result papers. KISS !

• Resarch comes to late i.e. after technology choices have been made and cannot
be changed for whatever reasons.

• Reaserching is plainly theorethical, reasearchers often has lack of industry expe-
rience

• Lots of research is naivé. 12 years of experience has taught me this. Researchers
should not be young people fresh out of school only. We need more researchers
with experience in many areas. Of course this is research that can be done with-
out experience but do take this “point” into consideration :-)

• interpretation of the research based on findings in other industries

• I’m very new, so I got enough to learn

• hard to find relevant research

• Har ofte andre forutsetninger enn det som kan bevises gjennom research, derfor
blir det ofte litt irrelevant

• goes to attitude. reluctance

5.3.9 Question 9

We used ACM’s Computing Classification System (CCS) for categorizing the responses to
Question 9 (“name up to three topics that you feel that software engineering researcher
should focus more on”) [2]. This is the same classification system that Cai and Card
used, see section 3.1.

59 respondents gave at least one topic. 45 gave at least two topics, and 29 gave three
topics. This makes the total number of topics given by the respondents 59 + 45 +
29 = 133. We classified these 133 topics into the categories of section D in the CCS,
as this section concerns software engineering. The topics we gathered that did not
concern software engineering (example: “learning”) were categorized as N/A (not

56 How do software practitioners value research?

applicable). Likewise, clearly ambiguous or frivolous replies (examples: “How the
real world works”, “High Availebility” [sic]) were also categorized as N/A, as well as
topics that did not fit into one of the categories (example: “open source”).

As some of the topics given fit into two or more of the CCS categories, there are some
trade-offs involved when assigning a category to a topic. We have included all of the
collected topics verbatim and our accompanying assessments in appendix B, so that
the reader may verify our categorizations.

The raw count of the categorized topics are presented below and in figure 5.9.

Category n
D.2.1 Requirements/Specifications 4
D.2.2 Design Tools and Techniques 1
D.2.3 Coding Tools and Techniques 11
D.2.4 Software/Program Verification 6
D.2.5 Testing and Debugging 5
D.2.6 Programming Environments 2
D.2.7 Distribution, Maintenance, and Enhancement 7
D.2.8 Metrics 1
D.2.9 Management 25
D.2.10 Design 1
D.2.11 Software Architecture 5
D.2.12 Interoperability 5
D.2.13 Reusable Software 0
N / A 60
∑ 133

5.3.10 Question 10

“Which software engineering activity or job task is your main daily focus at present?”

This question was included for the purpose of controlling that the the topics given in
Question 9 were not the same as the respondents’ current job task, as it is possible that
respondents overreport topics that they are working on at present.

Most responses from this question can be found in appendix B, where they are grouped
with the responses from Question 9. Responses to Question 10 from respondents who
did not give any topics in Question 9 are not shown, as these are unimportant.

We will not discuss the responses to Question 10 further in chapter 6, but a quick,
informal analysis suggests that the correlation between the responses to questions 9
and 10 is surprisingly low.

How do software practitioners value research? 57

5.4 Exploratory Modeling and JMP

Exploratory modeling is the process of using an automatic method to explore large amounts
of data, to find patterns and discoveries [40, p. 457].

There are several exploratory modeling techniques that one may choose among, such
as recursive partitioning and neural nets. We chose the former, as we have prior experi-
ence with this technique.

Similarly, there is a wide array of different statistical applications we could use for
doing this. Some of the most widely known are SAS and JMP. Even though the former
is more powerful, we chose the latter. The main benefits of JMP is that it is relatively
cost-efficient (both in terms of licensing and computing power), as well as easy to learn.

5.4.1 Recursive partitioning

JMP has a feature called the Partition platform. This feature recursively partitions a data
set, and is advantageous for exploring relationships when one does not have a good
prior model. The technique is very similar to techniques known as CART, CHAID, and
C4.5 [40, p. 458].

The data is partitioned according to the relationship between X and Y values, creating a
tree of partitions. Y values are response variables, while X values are explanatory variables
(or “factors”, as JMP calls them). Recall the definition of these terms: (from Moore and
McCabe [35, p. 103])

Response variable: measures an outcome of a study
Explanatory variable: explains or causes changes in the response variables

Recursive partitioning works with both nominal and ordinal scales (categorical data),
and also with continuous scales. Although most of our scales were ordinal, we chose
to treat them as being continuous. See section 5.1 for more about this.

For continuous Xs, the partitions (splits) are created by a cutting value. The sample is
divided into values below and above this value. For continuous Ys, the platform fits
means, and creates splits that separate the means by examining the sums of squares
due to the mean differences. The split is chosen so that the the difference in the re-
sponses between the two values are maximized. The Partition platform examines a very
large number of possible splits, and chooses the optimal (i.e. the most significant of the
alternatives) [42, p. 657].

5.4.2 LogWorth

An index called LogWorth is used as a significance measure for each split. LogWorth is
the negative log of the adjusted p-value:

58 How do software practitioners value research?

LogWorth = − log10 p-value

According to the JMP manual, [42, p. 667]

[t]he adjusted log–p–value is calculated in a complex manner that takes into
account the number of different ways a split can occur. This calculation
is very fair compared to the unadjusted p-value, which is biased to favor
X’s with many levels, and the Bonferroni p-value, which overadjusts to the
effects that it is biased to favor — those X’s with small number of levels.

This value is reported on a logarithmic scale to avoid values that underflow in machine
floating–point form, and as a negative log so that large values as associated with sig-
nificant terms.

p-values less than 0.05 are reflected by LogWorth-values greater than 1.30. See Hannay
et al. for details [20].

5.4.3 Partitioning examples

Figure 5.10 shows an example of recursive partitioning in JMP. In this example, we
have used question six — “How much confidence do you have in research in software
engineering?”) — as X (the explanatory variable), and question 7 — “do you apply
research in software engineering in your work?” — as Y (the response variable). (1)
shows the raw count of Y (excluding the “don’t know” responses). 69.3% of the re-
spondents claim to use research in their work, while 30.7% claim not to use research.
There were 88 responses.

These 88 responses were then split into (2) and (3). (2) shows the respondents with a
confidence in research of ≥ 4, while (3) shows the respondents who had a confidence
in research < 4. Among group (2), 79.4% claimed to use research in their work, while
20.6% claimed not to. In group (3), the corresponding numbers were 44.0% and 56.0%.

(4) shows the LogWorth value for the split into (2) and (3). As this value is > 1.30, the
difference between groups (2) and (3) is significant (P < 0.05). On the other hand, the
LogWorth values at (5) and (6) are ≤ 1.30, and further partitioning will therefore not
lead to significant results. If one of either (5) or (6) were > 1.30, we would have spilt the
corresponding group further into two subgroups, and recursively continued splitting
until there were no more significant differences — i.e. when no more LogWorth values
were > 1.30.

The example in figure 5.10 had nominal data as the Y variable. Ordinal Ys are han-
dled the same way. JMP does recursive partitioning slightly different on continuous
data. Figure 5.11 concerns partitioning of a continuous Y, in this example the testing
framework in Question 4 (“on a scale from 1 [research only] to 7 [expert advice only]
how would you give weight to the recommendations?”). The “scientific conferences”
source from Question 2 is used as X.

How do software practitioners value research? 59

(7) shows that there were 109 responses to the “scientific conferences” source in ques-
tion 2, with m = 4.54 and s = 1.13. This group was split into (8) and (9). As
LogWorth > 1.30, the difference between (8) and (9) is significant (P < 0.05). (8)
has m = 3.72, while (9) has m = 4.63. Note that the reported value “Difference” to
the right of (7) is the difference between the mean values of (8) and (9). Respondents
who report to use scientific conferences ≥ 5 when gaining knowledge about new de-
velopment techniques are thus shifted 0.905 in favor of giving weight to research when
choosing new technologies, in comparison to those who use scientific conferences < 5
when learning about new development techniques.

5.5 Partitioning our data

It might be tempting to do recursive partitioning on all questions and items, as the
number of candidate response variables is not overwhelming. However, time con-
straints forced us to select 12 interesting scenarios to perform this task on. These sce-
narios are described in the subsections below, each having a rationale for its inclusion.

For all partitioning, we used the “Maximize Significance” setting, set “Missing Value
Rule” to “Random”, and “Minimum Size Split” to 5.

The upper table in each subsection concerns the Y (response variable), and lists the
observed mean mY, sample standard deviation sY, and the number of responses NY.

The tables directly below show the LogWorth values for each of the response variables.
The response variables are denoted by X1, . . . , Xn. For each significant partitioning that
it is possible to make (LogWorth > 1.30, P < 0.05), there is an additional table showing
the relevant characteristics of the partitions. These partitions are denoted as Xna and
Xnb, where n refers to the X in question. Example: If a variable X5 is split, the partitions
are denoted by X5a and X5b.

5.5.1 Y: Confidence in research, X: all items from Question 1

Y : Question 6 — How much confidence do you have in research?
X1,2,3,4,5 :Question 1 — How important to you is the advice of the following
[when considering technologies]?

This scenario was chosen because we suspect a relationship between the
confidence practitioners have in research, and how they rate the advice of
researchers when choosing between technologies.

mY sY NY
4.104 1.187 106

60 How do software practitioners value research?

X Item, question 1 LogWorth
X1 Colleague or friend 0.02
X2 Expert 0.09
X3 Independent researchers 0.35
X4 Vendor / supplier 0.23
X5 Industrial researchers 0.45

All LogWorth values are ≤ 1.30. It is thus not possible to partition any of the Xs in a
way that creates a significant (P < 0.05) difference between two partitions.

5.5.2 Y: Confidence in research, X: all items from Question 2

Y : Question 6 — How much confidence do you have in research?
X1,2,3,4,5,6,7 :Question 2 — When looking for knowledge, [. . .] to what extent
do you consult the following sources?

This scenario was chosen because we suspect a relationship between the
confidence practitioners have in research, and how they look for knowl-
edge.

mY sY NY
4.104 1.187 106

X Item, question 2 LogWorth
X1 Industrial conferences 0.34
X2 Scientific conferences 0.48
X3 Experts, friends 1.53
X4 Popular sc. journals 0.02
X5 Websites, newspapers 0.63
X6 Scientific journals 1.61
X7 Web forums, social media 0.84

X3 and X6 have LogWorth values > 1.30. We will therefore partition these variables:

X N mY sY
X3a: Experts, friends < 5 10 3.20 0.79
X3b: Experts, friends ≥ 5 96 4.20 1.18

X N mY sY
X6a: Scientific journals < 4 84 3.94 1.20
X6b: Scientific journals ≥ 4 22 4.72 0.94

There is thus a significant (P < 0.05) difference when it comes to confidence in research
in software engineering between those who give less than 5 to “Experts, friends” and
those who give 5 or more. The difference is 1.00. Likewise, there is a significant differ-
ence between those who give less than 4 to scientific journals and those who give four
or more, the difference being 0.76 in favor of the latter group.

How do software practitioners value research? 61

5.5.3 Y: Apply research in work, X: keep up with and confidence in
research

Y : Question 7 — Do you apply results from research in software engineer-
ing in your work?
X1,2 : Question 5 — How much do you keep up with research?, and Ques-
tion 6 — How much confidence do you have in research?

This scenario was chosen because we suspect that practitioners who keep
up with and have confidence in research might be more inclined to apply
research in their work.

NYes NNo NDont know
61 27 25

X Question LogWorth
X1 Keep up with research 9.95
X2 Confidence in research 1.74

Both LogWorth values are > 1.30, and we partition:

X NYes NNo NDont know %Yes %No %Dont know
X1a: Keep up with research ≥ 4 51 10 4 78.5 15.4 6.1
X1b: Keep up with research < 4 10 17 21 20.8 35.4 43.8

X NYes NNo NDont know %Yes %No %Dont know
X2a: Confidence in research < 4 10 14 6 33.3 46.7 20.0
X2b: Confidence in research ≥ 4 51 13 19 61.4 15.7 22.9

It is a significant (P < 0.05) difference between practitioners who report to keep up
with research ≥ 4 and practitioners who report to keep up with research < 4. Among
the former group, 78.5% claim to apply research in their work, while only 20.8% of the
latter group do so.

Similar results are found when it comes to those who have a confidence in research
≥ 4; in this group, 61.4% apply results from research in their work. Among those with
less confidence in research (< 4), only 33.3% claim to apply results from research in
their work.

5.5.4 Y: Recommendations for testing framework, X: barriers to ap-
plying research

Y : Question 4 — On a scale from 1 (“research only”) to 7 (“expert advice
only”), how much weight would you give to recommendations [when con-
sidering a testing framework]?
X1,2,3,4,5,6,7 : Question 8 — Do one or more of these barriers prevent you

62 How do software practitioners value research?

from applying research in your work?

This scenario was chosen because practitioners who claim that barriers pre-
vent them from applying research could be more likely to value experts’
advice over research.

mY sY NY
4.541 1.135 109

X Item, question 8 LogWorth
X1 My organization does not encourage the use of research 0.04
X2 Too busy meeting immediate goals or deadlines 0.32
X3 Research results are hard to find 0.12
X4 Lack of personal time 0.07
X5 Research is not relevant to my needs 0.68
X6 Attitudes of colleagues 0.76
X7 Attitudes or expectations of customers 0.19

All LogWorth values are ≤ 1.30. It is thus not possible to partition any of the Xs in a
way that creates a significant (P < 0.05) difference between two partitions.

5.5.5 Y: Renewal of process model, X: barriers to applying research

Y : Question 3 — On a scale from 1 (“gut feeling only”) to 7 (“analysis
only”), how much weight would you give to analytical findings versus gut
feeling [when considering a renewed process model]?
X1,2,3,4,5,6,7 : Question 8 — Do one or more of these barriers prevent you
from applying research in your work?

This scenario was chosen because practitioners who claim that barriers pre-
vent them from applying research could be more likely to value gut feeling
over research/analysis.

mY sY NY
3.920 1.164 112

X Item, question 8 LogWorth
X1 My organization does not encourage the use of research 0.64
X2 Too busy meeting immediate goals or deadlines 0.81
X3 Research results are hard to find 0.11
X4 Lack of personal time 0.22
X5 Research is not relevant to my needs 0.06
X6 Attitudes of colleagues 1.89
X7 Attitudes or expectations of customers 0.12

How do software practitioners value research? 63

X6 has a LogWorth value > 1.30. We will therefore partition this variable:

X N mY sY
X6a: Yes, the attitudes of colleagues is a barrier 9 3.00 0.87
X6b: No, the attitudes of colleagues is not a barrier 103 4.00 1.15

It is a significant (P < 0.05) difference between practitioners who report that the atti-
tudes of colleagues is a barrier when applying research, and those who report that this
is not a barrier. Practitioners in the first group are shifted in favor of using gut feeling
when deciding on a new process model, while the latter group is shifted towards using
analysis.

5.5.6 Y: Relying on colleagues and friends when making decisions,
X: all items from Question 2

Y : Question 1a — On a scale from 1 (“not at all”) to 7 (“very much”),
how important to you is advice from [a colleague or friend] when you are
considering a new technique or technology?
X1,2,3,4,5,6,7 :Question 2 — When looking for knowledge, [. . .] to what extent
do you consult the following sources?

This scenario was chosen because we supect a clear relation between which
sources practitioners use when looking for knowledge about new develop-
ment techniques, and how they value the advices of the said sources when
making decisions.

mY sY NY
6.00 1.03 113

X Item, question 2 LogWorth
X1 Industrial conferences 1.76
X2 Scientific conferences 0.14
X3 Experts, friends 7.36
X4 Popular sc. journals 0.03
X5 Websites, newspapers 0.44
X6 Scientific journals 0.39
X7 Web forums, social media 1.01

X1 and X3 have LogWorth values > 1.30, we thus partition these variables:

X N mY sY
X1a: Industrial conferences < 3 17 5.35 1.66
X1b: Industrial conferences ≥ 3 96 6.11 0.83

X N mY sY
X3a: Experts, friends < 7 66 5.61 1.01
X3b: Experts, friends = 7 47 6.55 0.77

64 How do software practitioners value research?

Practitioners who look for knowledge at industrial conferences≥ 3 rely more on friends
and colleagues when making decisions than practitioners who look for knowledge at
industrial conferences < 3. The former group values advice from friends and col-
leagues at m = 6.55, while the latter values advice from friends and colleagues at
m = 5.61. This difference is significant (P < 0.05).

Practitioners who consult experts and friends = 7 when looking for knowledge con-
sider the advice of colleagues and friends more important than practitioners who con-
sult experts and friends < 7. The former group has a mean importance of advice of
colleagues and friends at 6.55, while the latter group assigns a mean importance of
5.61. The difference is significant (P < 0.05).

5.5.7 Y: Apply research in work, X: age, education, and years of in-
dustry experience

Y : Question 7 — Do you apply results from research in software engineer-
ing in your work?
X1,2,3: Age, highest level of formal education, and years of industry experi-
ence

This scenario was chosen because demographic characteristics could influ-
ence whether practitioners apply research.

NYes NNo NDont know
61 27 25

X Attribute LogWorth
X1 Age 0.18
X2 Level of formal education 0.12
X3 Industry experience 0.11

All LogWorth values are ≤ 1.30. It is thus not possible to partition any of the Xs in a
way that creates a significant (P < 0.05) difference between two partitions.

5.5.8 Y: Confidence in research, X: age, education, and years of in-
dustry experience

Y : Question 6 — How much confidence do you have in research?
X1,2,3: Age, highest level of formal education, and years of industry experi-
ence

This scenario was chosen because demographic characteristics could influ-
ence practitioners’ confidence in research.

How do software practitioners value research? 65

mY sY NY
4.104 1.187 106

X Attribute LogWorth
X1 Age 0.77
X2 Level of formal education 0.08
X3 Industry experience 0.20

All LogWorth values are ≤ 1.30. It is thus not possible to partition any of the Xs in a
way that creates a significant (P < 0.05) difference between two partitions.

5.5.9 Y: Renewal of process model, X: age, education, and years of
industry experience

Y : Question 3 — On a scale from 1 (“gut feeling only”) to 7 (“analysis
only”), how much weight would you give to analytical findings versus gut
feeling [when considering a renewed process model]?
X1,2,3: Age, highest level of formal education, and years of industry experi-
ence

This scenario was chosen because demographic characteristics could influ-
ence how practitioners give weight to analysis versus gut feeling.

mY sY NY
3.920 1.164 112

X Attribute LogWorth
X1 Age 0.61
X2 Level of formal education 0.45
X3 Industry experience 0.14

All LogWorth values are ≤ 1.30. It is thus not possible to partition any of the Xs in a
way that creates a significant (P < 0.05) difference between two partitions.

5.5.10 Y: Recommendations for testing framework, X: age, educa-
tion, and years of industry experience

Y : Question 4 — On a scale from 1 (“research only”) to 7 (“expert advice
only”), how much weight would you give to recommendations [when con-
sidering a testing framework]?
X1,2,3: Age, highest level of formal education, and years of industry experi-
ence

This scenario was chosen because demographic characteristics could influ-
ence how practitioners give wight to research versus expert advice.

66 How do software practitioners value research?

mY sY NY
4.541 1.135 109

X Attribute LogWorth
X1 Age 0.09
X2 Level of formal education 0.15
X3 Industry experience 0.38

All LogWorth values are ≤ 1.30. It is thus not possible to partition any of the Xs in a
way that creates a significant (P < 0.05) difference between two partitions.

5.5.11 Y: Recommendations for testing framework, X: Renewal of
process model

Y : Question 4 — On a scale from 1 (“research only”) to 7 (“expert advice
only”), how much weight would you give to recommendations [when con-
sidering a testing framework]?
X1 : Question 3 — On a scale from 1 (“gut feeling only”) to 7 (“analysis
only”), how much weight would you give to analytical findings versus gut
feeling [when considering a renewed process model]?

This scenario was chosen because we suspect a clear connection between
how practitioners choose between analysis and gut feeling and how they
choose between research and expert advice.

mY sY NY
4.541 1.135 109

X LogWorth
X1 1.29

The LogWorth value is ≤ 1.30. It is thus not possible to partition X1 in a way that
creates a significant (P < 0.05) difference between two partitions.

5.5.12 Y: Keeping up with research, X: Collector

Y : Question 5 — How much do you keep up with research in software
engineering?
X1 : Collectors (i.e. Company Y, Company Z, and javaBin)

This scenario was chosen as different organizational cultures may influence
how the employees keep up with research.

How do software practitioners value research? 67

mY sY NY
3.845 1.466 110

X LogWorth
X1 0.26

The LogWorth value is ≤ 1.30. It is thus not possible to partition X1 in a way that
creates a significant (P < 0.05) difference between collectors.

5.6 Summary

In section 5.1, we discussed scales, and showed why data that strictly speaking is on
an ordinal scale can be treated as being on a continuous scale.

Section 5.2 summarizes the demographic distribution of our respondents. Most re-
spondents were relatively young (age < 40) and had less than 15 years of industry
experience. Virtually everybody worked in Norway, and the overwhelming majority
reported to be developers. Less than 10 respondents worked in management.

Section 5.3 begins by defining some key concepts of statistics, such as sample means,
sample standard deviations, and confidence intervals. We then described the data dis-
tributions from the ten questions, and also reported the replies in the “other” fields.
For Question 9, we also categorized the topics we collected into ACM’s Computing
Classification System, so that we in the next chapter can compare these with Cai and
Card’s findings discussed in chapter 3.

We described exploratory modeling, recursive partitioning, and the software package
JMP in the first subsections of section 5.4, and gave an example of how to do partition-
ing in section 5.4.3. In section 5.5, we described 12 partitioning scenarios. The majority
of these scenarios involved several explanatory variables. It was possible to do statis-
tically significant splits on seven explanatory variables spanning four scenarios.

Now that we have reported the distributions of all questions and done a statistical
analysis of our data, we are ready to discuss the implications of our findings in chap-
ter 6.

68 How do software practitioners value research?

(a) Grouped by age

(b) Grouped by industry experience (years)

(c) Grouped by highest level of education

Figure 5.1: Demographical distribution of the respondents

How do software practitioners value research? 69

(a) “A colleague or good friend with experience with
this technique”

(b) “An external exert / guru”

(c) “Independent researchers” (d) “Information from the vendor or supplier”

(e) “Industrial researchers”

Figure 5.2: Histograms of the responses, Question 1

70 How do software practitioners value research?

(a) “Industrial conferences” (b) “Scientific conferences”

(c) “Experts, gurus, colleagues, and
friends in the IT industry”

(d) “Popular scientific journals”

(e) “Websites and IT newspapers” (f) “Scientific journals”

(g) “Web forums, mailing lists, blogs, and
other social media”

Figure 5.3: Histograms of the responses, Question 2

How do software practitioners value research? 71

Figure 5.4: Histogram of the responses from Question 3.

Figure 5.5: Histogram of the responses from Question 4.

72 How do software practitioners value research?

Figure 5.6: Histogram of the responses from Question 5.

Figure 5.7: Histogram of the responses from Question 6.

How do software practitioners value research? 73

Figure 5.8: The barriers reported in Question 8.

74 How do software practitioners value research?

Figure 5.9: The topics from Question 9 categorized using the CCS system.

How do software practitioners value research? 75

Figure 5.10: Example of recursive partitioning in JMP, nominal data. See section 5.4.3
for annotations.

76 How do software practitioners value research?

Figure 5.11: Another example of recursive partitioning, this time on continuous data.
See section 5.4.3 for annotations.

Chapter 6

Discussion

In the previous chapter, we presented the results of our survey. In this chapter, we
summarize the key points of our results, and discuss the implications of these findings.
To help us, we use the findings from the research papers discussed in chapter 3.

Our four SRQs are discussed individually in the four subsections of section 6.1.

Section 6.2 discusses the four relevant kinds of validity threats, with threats to con-
struct validity (section 6.2.1) and threats to the external validity (section 6.2.3) as the
most important.

We used ethical guidelines aimed at social researchers when conducting our survey;
these are shown in section 6.3. We then discuss how we have complied with these
guidelines.

6.1 How practitioners value research

The research question (RQ) of this thesis concerns practitioners’ attitudes to research:

RQ How do software practitioners value research when making decisions?

As described in section 1.2, the RQ was further divided into four specific research ques-
tions (SRQs). These four SRQs are discussed separately in the following subsections.

6.1.1 Learning about new techniques and technologies

SRQ1 How do software practitioners learn about new techniques and tech-
nologies?

This SRQ was addressed in Question 2 of the questionnaire. The by far mostly used
source was experts and friends, with m = 5.99. Other much used sources were web

77

78 How do software practitioners value research?

forums, mailing lists, blogs and other social media, with m = 5.12. Websites and
newspapers scored m = 4.40, while industrial conferences scored m = 4.55. Popular
scientific journals had a mean of m = 3.27. The two least used sources were scientific
conferences and scientific journals, with m = 2.48 and m = 2.46 respectively.

It did not surprise us that scientific conferences and scientific journals were the two
least used sources of knowledge about new development techniques and technolo-
gies. The exploratory analysis (see section 5.5.3) gave an interesting insight: Practi-
tioners who use scientific journals a lot to gain knowledge have more confidence in
research than practitioners who do not use scientific journals that much when looking
for knowledge: The respondents who gave < 4 to scientific journals as a source of
knowledge have a mean confidence in research of 3.94, while those who gave scientific
journals ≥ 4 have a mean confidence in research of 4.72. The difference is significant
(P < 0.05). It thus looks like reading about research gives confidence in it — something
which should be reassuring to researchers.

Unsurprisingly, there was a high correlation between those who sought advice from
experts and friends when making decisions, and those who to a great extent consult
friends and experts when learning about new technologies (see section 5.5.6).

6.1.2 Expert advice contra research

SRQ2 Do software practitioners value experts’ advice more than they value
research?

This SRQ was perhaps the most important to us, and several of the questions of the
questionnaire were related to it.

When considering a new technology Question 1 asked the respondents how they
valued the advice of colleagues, friends, experts, independent- and industrial researchers,
and the vendor or supplier when making a technology decision. It turned out that the
advices of colleagues and friends were the most important, with m = 6.00. Informa-
tion from the vendor or supplier was the least important, with m = 3.23. This seems
rational, as friends and colleagues supposedly are neutral, while the vendors or sup-
pliers will have a strong interest in the practitioner making a particular decision. For
experts, the sampled mean was m = 4.99.

Somewhat more surprising was the fact that the respondents did not see much of a
difference between independent researchers and industrial researchers, having m =
3.93 and m = 3.57 respectively. Industrial researchers will often have strong ties to
commercial interests, and we would hope that practitioners found them considerably
less trustworthy than independent (i.e. academic) researchers. However, the wide
use of untrustworthy numbers from for example the Chaos Report (briefly discussed
in section 2.2) do support the notion of practitioners who are unable to differentiate
between trustworthy and untrustworthy research.

How do software practitioners value research? 79

When choosing between analysis, gut feeling, and expert advice Choosing between
research and expert advice was the issue in Question 4. On a scale where 1 was “re-
search only” and 7 “expert advice only”, the mean reply was 4.54. Practitioners are
thus valuing research and experts’ advice about equally, with a small shift towards
experts’ advice.

Question 3 concerned giving weight to analysis versus gut feeling (intuition) when
making a decision. As noted in our questionnaire specification (see section 4.2), we
consider this question related to Question 4 and SRQ 2. The result from this question
was m = 3.92, which is about halfway between “gut feeling only” (1) and “analysis
only” (7).

From questions 3 and 4, it seems clear that practitioners value intuition, experts’ ad-
vice, and analysis/research about equally when making decisions. This is somewhat
surprising, as experts were reported to be considerably more used than research when
practitioners learnt about new technologies.

There is an apparent incompatibility between the results from Question 1 and the re-
sults from questions 3 and 4. While questions 3 and 4 showed little difference between
experts’ advice, gut feeling, and analysis, Question 1 showed that respondents valued
experts more than research. There are however some important differences between
the premises of the questions; in Question 1, the respondents were asked to rank ad-
vices when they had only superficial prior knowledge about the subject, while in
questions 3 and 4, the respondents were told that they made the analysis themselves.
It could thus be that practitioners value research / analysis more when they have as-
sessed it themselves than they do when they more or less passively are advised by
researchers.

The practitioners who claim that the attitudes of colleagues create a barrier to using
research are more prone to using gut feeling over analysis. This was shown in section
5.5.5. The difference, which was significant (P < 0.05), was quite large. Practitioners
reporting that colleagues created a barrier had m = 3.00 on the gut feeling / analysis
question when choosing a new process model, while those not reporting colleagues as
a barrier had m = 4.00.

We discussed intuition in section 3.3, and cited Tversky and Kahneman and their find-
ings that “acquaintance with formal logic and with probability theory does not extin-
guish erroneous intuitions.” ICT practitioners are probably familiar with logic (either
through formal logic or through practical experience with algorithms), but if Tversky
and Kahneman are right, this does not help practitioners putting an end to erroneous
intuitions. This suggests that it is unfortunate for practitioners to rely on intuition as
much as they do on analysis.

Kahneman and Frederick, the “ball and bat” puzzle, and the famous “Linda” exper-
iment further shows the untrustworthiness of intuition, and show how people rely
on representativeness, overruling basic rules of logics. In “Linda,” respondents were
given a description of a woman who was very representative of a feminist. This made
the respondents claim that it was more probable that she was a bank teller and a femi-
nist than that she was only a bank teller. One can easily imagine a similar fallacy when

80 How do software practitioners value research?

software practitioners choose between for example software process models: If process
model X seems more like a “typical” process model than process model Y does, peo-
ple will substitute process model X’s representativeness for suitability — instinctively
disregarding rational analysis, just like with “Linda”. Practitioners are unlikely to be
self-aware of this, and the number of practitioners who in practice rely on intuition
instead of analysis could be higher than the self-reported figure.

As noted in section 3.3.2, Griffin and Tversky claim that when “predictability is very
low, [. . .] experts may be more prone to overconfidence than novices.” The faith prac-
titioners have in experts is thus not necessarily always a good thing. But listening to
experts is of course valuable in many situations. The fact that experts systems — soft-
ware that “stores” expertise in an attempt to replicate experts’ conduct — is a major
field in computer science should be enough as evidence to support the value of ex-
perts’ advice. Also, researchers, experts, and practitioners have common goals, and all
parties should gain from closer collaboration. Such collaboration has been described
by Jarvis, who use the expression “practitioner–researcher” to describe practitioners
who also do research, typically “expert practitioners working toward graduate degrees
as part-time students” [23, p. 5]. Cooperation between industry and research is also
increasingly a priority for funding bodies.

Attitudes to and appliance of research 53.7% of the respondents claimed to apply
results from research in software engineering in their work (Question 7, section 5.3.7).
23.9% claimed not no, while 22.1% did not know.

The mean confidence in research in software engineering was m = 4.10 (on a scale
where 1 was “nothing” and 7 “very much”). On Question 5, where the respondents
were asked how much they kept up with research, the mean value was 3.85 (1 = “noth-
ing”, 7 = “very much”).

The exploratory analysis showed little or no correlation between the age, education
and industry experience of the respondents and their confidence in research or willing-
ness to apply research in their work. There is a connection between having confidence
in research and applying it: The partitioning example shown in section 5.4.3 shows
that among the group which have a confidence in research ≥ 4, 79.4% claim to apply
research in their work, while in the group that has a confidence < 4, only 44.0% apply
research. The latter connection is hardly surprising, but we found it more striking that
the education level did not affect the confidence in or appliance of research – we would
have guessed that practitioners with advanced degrees (i.e. a master or higher) would
be more positive towards research than those without advanced degrees.

Software practitioners’ attitudes could be compared to medical practitioners’ attitudes,
as discussed in section 2.4. On a scale from 0 (“strongly disagree”) to 100 (“strongly dis-
agree”), the median score that medical practitioners gave to the statement “evidence–
based medicine improves patient care” was 70. This could be interpreted as a measure
of how confident medical practitioners are in research, and their level of confidence
is comparable to (but somewhat higher than) the confidence SE practitioners have in
research (M = 4 on a scale from 1 to 7).

How do software practitioners value research? 81

Osterweil et al. (as discussed in section 3.2) claimed that “lasting impact [of research]
seems to come most readily from ongoing interactions between research and practice.”
If it is correct that there is such a high number of practitioners who use research in
their work, this is joyful news to both researchers and practitioners alike, as both gain
from ongoing interactions. Osterweil et al. found that it normally takes a long time
(typically 10 to 20 years) for new ideas to move from research into widespread practice.
This initially made us speculate about practitioners perceiving research as “irrelevant”
or even “outdated”; but our data analysis does not support these speculations.

6.1.3 Obstacles to use research

SRQ3 Which obstacles exist for software practitioners to use research?

This SRQ was covered by Question 8. The barriers are repeated (in descending order)
below for the sake of convenience, and are also shown in figure 5.8.

Barrier N
Too busy meeting immediate goals or deadlines 62
Lack of personal time 56
Research results are hard to find 36
Research is not relevant to my needs 26
Attitudes or expectations of customers 20
My organization does not encourage the use of research 13
Attitudes of colleagues 9

As reported in section 4.3.3, there was a total of 113 completed responses, of which 103
had one or more items ticked at Question 8.

The most widely reported barrier was “too busy meeting immediate goals or dead-
lines” (62/113), while “lack of personal time” came second (56/113). Attitudes of both
customers and colleagues as well as discouraging organizations were not seen as bar-
riers by many respondents. This is in line with medical practitioners, who had “lack of
personal time” as their by far most widely reported barrier (see section 2.4)

We consider the barriers reported as encouraging to researchers. Prejudices against re-
search are not at all widespread in organizations and among customers, and relatively
few practitioners see research as irrelevant to their needs. The most widely reported
barriers — both variants of the dreaded “time squeeze” — are outside researchers’ con-
trol. Eliminating these barriers is a managerial issue, if companies wish to encourage
wider deployment of research results in their organizations.

6.1.4 Topics researchers should focus on

SRQ4 Which topics do software practitioners feel that researchers should
focus on?

82 How do software practitioners value research?

The questionnaire elicited a number of topics that respondents felt that researchers
should focus more on. We then classified these topics into exactly one Software Engi-
neering category using ACM’s Computer Classification System (CCS), and removed all
topics that could not be fit into any of these. 73 topics were classifiable, while 60 were
dropped as too general, ambiguous, or frivolous.

Most desired topics The following table shows the topics our respondents felt that
researchers should focus on. All numbers are in percent of all applicable responses.
The raw count can be found in section 5.3.9.

Category Percantage
D.2.1 Requirements/Specifications 5.48
D.2.2 Design Tools and Techniques 1.37
D.2.3 Coding Tools and Techniques 15.07
D.2.4 Software/Program Verification 8.22
D.2.5 Testing and Debugging 6.85
D.2.6 Programming Environments 2.74
D.2.7 Distribution, Maintenance, and Enhancement 9.59
D.2.8 Metrics 1.37
D.2.9 Management 34.25
D.2.10 Design 1.37
D.2.11 Software Architecture 6.85
D.2.12 Interoperability 6.85
D.2.13 Reusable Software 0

The clear “winner” is “Management”, with 34.25%. Other topics of importance to prac-
titioners are “Coding Tools and Techniques” (15.07%), and “Distribution, Maintenance,
and Enhancement” (9.59%). The least mentioned topics were “Reusable Software”
(0%), “Metrics” (1.37%), “Design Tools and Techniques” (1.37%) and “Programming
Environments” (2.74%).

The “Management” section of the CCS consists of these sub-items:

• Copyrights

• Cost estimation

• Life cycle

• Productivity

• Programming teams

• Software configuration management

• Software process models (e.g., CMM, ISO, PSP)

• Software quality assurance (SQA)

• Time estimation

How do software practitioners value research? 83

We have not done a complete and formal classification of the “Management” answers
into these sub-topics, but it is our clear impression that “Software process models” is
the most desired sub-topic. 5 respondents mentioned Agile methods, clearly a topic of
interest for practitioners.

One should keep in mind that the total number of topics given in response to this
question was not that high (N = 133). One should thus not emphasize the internal
order of the least mentioned topics, as only a couple of respondents mentioned these.

A lot of the topics were put into the “N/A” class because they were not included in the
Software Engineering part of the CCS. The most obvious examples were concurrency
and parallelism, which were mentioned by many but are classified by the CCS under
“Operating Systems”. Our scope is software engineering, and the internal concepts
of Operating Systems are outside that particular academic discipline. We encourage
researchers in other, related disciplines to conduct similar surveys to get feedback on
practitioners’ wishes when it comes to the topics of research in the respective disci-
plines.

The many “not applicable” topics we collected could be caused by a much narrower
definition of “Software Engineering” used by us (as researchers) than what is com-
monly thought of in industry. This discrepancy could also be caused by confusing ter-
minology in Norwegian, where the disciplines that in English are known as “Computer
Science” and “Software Engineering” normally are lumped together as “Informatikk”
(English: Informatics). When we ask for topics in Software Engineering, respondents
could have a hard time differentiating between the different parts of “Informatics”.

Desired topics versus what researchers actually focus on The following table shows
a comparison of the desired topics and the topics of published research papers. All
numbers are percentages.

Category Cai&Card Desired topics
D.2.1 Requirements/Specifications 5.91 5.48
D.2.2 Design Tools and Techniques 9.66 1.37
D.2.3 Coding Tools and Techniques 4.77 15.07
D.2.4 Software/Program Verification 17.27 8.22
D.2.5 Testing and Debugging 19.2 6.85
D.2.6 Programming Environments 4.55 2.74
D.2.7 Distribution, Maintenance, and Enhancement 5.8 9.59
D.2.8 Metrics 8.3 1.37
D.2.9 Management 11.02 34.25
D.2.10 Design 1.36 1.37
D.2.11 Software Architecture 7.73 6.85
D.2.12 Interoperability 1.93 6.85
D.2.13 Reusable Software 2.50 0

Figure 6.1 shows the same data graphically. The abbreviations used in the figure
should be self-explanatory. The first column refers to CCS’s D.2.1 for actually re-
searched topics, the second column to D.2.1 for desired topics, the third column to

84 How do software practitioners value research?

D.2.2 for actual topics, the fourth to D.2.2 for desired topics, and so on.

Figure 6.1: Researched topics (light gray) and topics desired by practitioners (dark
gray).

The most apparent under-researched topic is “Management”. 11.02% of the research
papers examined by Cai and Card concerned this general topic, while 34.25% of the
(classifiable) topics mentioned by our respondents concerned it. “Coding Tools and
Techniques” is similarly under-researched.

Among the over-researched topic, the most prevalent are “Design Tools and Tech-
niques”, “Software / Program Verification”, and “Metrics”.

6.2 Threats to validity

According to Jedlitschka et al., “all threats that might have an impact on the validity
of the results need to be discussed” when reporting experiments in Software Engineer-
ing [24]. These include (1) threats to construct validity, (2) threats to internal validity, (3)
threats to external validity, and if applicable, (4) threats to conclusion validity.

How do software practitioners value research? 85

Even though a survey differs from an experiment in many important ways, we still use
these four groups of validity threats as our starting points when discussing the validity
of our survey. These four types of validity threats are discussed in the sections below.

6.2.1 Construct validity

Construct validity concerns whether the scales used in a study actually represents the
constructs in the real world, and include both design threats and social threats.

Fink and Litwin describe construct validity as “the most valuable and yet the most
difficult way of assessing a survey instrument” [11, p. 41]. They note that “[i]t is
difficult to understand, to measure, and to report”, and that “[t]his form of validity is
often determined only after years of experience with a survey instrument”.

The construct validity threats discussed below are adapted from Wohlin et al. [52, pp.
71–72].

Hypothesis guessing Some practitioners taking part in the survey may try to find
out the purpose or intended result of the study, and adjust their behavior, either pos-
itively or negatively, according to their attitudes. For example, noting that the survey
originated from a scholarly institution, some participants might want to please the sur-
veyors by stating that they value research more than experts’ advice. We found no way
of preventing this possible effect without sacrifying some of our ethical standards, as
discussed in section 6.3.

Researcher expectancies Researchers can bias the results of a survey (both consciously
and unconsciously) based upon the results they expect. We have countered this valid-
ity threat by involving different people with different expectations in the survey.

Inadequate pre-operational explication of constructs This concerns if the constructs
are sufficiently defined before being translated into measures. The two pilot iterations
(where we asked the pilot subjects about what terms like for example “scientific jour-
nal” and “expert” meant) made us reasonably sure that the constructs were both clearly
defined and consistently understood.

A related threat arises from the erroneous formulation discussed in section 4.2.4. How-
ever, the fact that nobody bothered to notify us at the javaBin event suggests that this
error either went unnoticed by respondents or that they clearly understood what we
meant. We see no apparent way this error can introduce an extra bias towards either
intuition or analysis.

86 How do software practitioners value research?

6.2.2 Internal validity

Wallen and Fraenkel claim that the four main threats to internal validity in survey
research are “mortality, location, instrumentation, and instrument decay” [51, p. 390].

Mortality is not a concern to us, as this threat only is applicable in longitudinal studies
(i.e. studies where one observe the same subjects over a long period of time). A location
threat arrises when the data collection is carried out in places that may affect responses
— Wallen and Fraenkel use the example of a survey concerning attitudes to the police
carried out in a police station. We cannot see that this applies to our survey.

Instrument decay is for surveys usually limited to interview surveys, where the inter-
viewer could get tired or be in a rush. This will of course not apply to a web form.
Instrument defects (i.e. bugs in SurveyMonkey’s software) cannot be completely ruled
out, but this is unlikely, given the system’s wide deployment.

6.2.3 External validity

King and He give the following definition of external validity [28]:

External validity refers to the generalizability of sample results to the popu-
lation of interest, across different measures, persons, settings, or times. Ex-
ternal validity is important to demonstrate that research results are applica-
ble in natural settings, as contrasted with classroom, laboratory, or survey-
response settings.

Coverage error Coverage error is introduced when the frame from which the sample
is drawn does not include all of the relevant characteristics in the population to which
inferences are to be drawn. According to King and He [28], coverage error affects the
external validity of the results of studies

• that rely on self-reporting by individual respondents, whether the measures be-
ing reported are factual (e.g. age) or perceptual (e.g. responses on a Likert scale),
and

• in which the population to which inferences are to be drawn may be individuals
operating in the “natural” world (e.g. managers or IT professionals) or organiza-
tions for whom individual responses are taken to, or aggregated to, be represen-
tative.

We believe that javaBin and companies Y and Z are highly representative of the ICT
industry. JavaBin’s membership base consists of practitioners from all kinds of Norwe-
gian ICT companies. Java technologies can be used in most phases of the software de-
velopment process, and javaBin comprises practitioners in a wide variety of roles. We
see no apparent reason why the population of Java practitioners should be inherently

How do software practitioners value research? 87

different from for example the population of .NET practitioners or other subpopula-
tions of Norwegian ICT practitioners. The same applies to companies Y and Z, which
we consider typical of Norwegian software houses with 100+ developers. However,
our sample was drawn from a young (age < 40 and industry experience < 15 years)
segment of the population, and we should ideally have included some more of older
and more experienced practitioners as well.

Access to computers, e-mail, and the World Wide Web is not evenly distributed in a
society, and it is reasonable to believe that richer persons have better access than poorer
people. This may in general lead to a coverage bias when using on-line surveys, as the
wealthy segment that has access to computers will be over-sampled. We believe that
this is not a problem among software professionals, and assume that all or nearly all
in the software industry have access to the World Wide Web. We are reasonably sure
that using this medium does not lead to any undue coverage error or response bias.
One could have offered the respondents the option of receiving the questionnaire by
regular mail just in case. However, Wade and Parent conducted an on-line survey
among ICT professionals in 2001 offering a regular mail option, and noted that no
respondents took advantage of this option [50]. With Internet coverage being much
more widespread now than eight years ago, we believe that such an offer would be
completely unnecessary.

Nonresponse error King and He remark that nonresponse error is introduced [28]

if non-respondents are different from respondents in terms of characteris-
tics that are relevant to the study [Dillman, 2000]. In general, error due to
nonresponses is presumed to be in direct relationship to increases in the rate
of nonresponse and the level of variation in the true attitudes, beliefs or per-
ceptions that are being assessed [American Association for Public Opinion
Research, 2004].

King and He further classify nonrespondents as “active” and “passive”: “Active (pur-
poseful) non-respondents may decide that completing a survey is too time-consuming,
or irrelevant to their job or organization or just that ‘I get too many surveys.”’, while the
passive nonrespondents “intend to respond, but forget or ’just didn’t get to it.”’ [28].

As discussed in section 4.3.2, 113 of the 145 respondents who started the survey com-
pleted it. Respondents were counted as “completed” if they pressed the “submit” but-
ton at the end of the questionnaire, and our statistical analysis was done on the set of
113 completed responses.

Describing non-repondents (i.e. those who did not complete the survey or did not an-
swer at all) is hard. There are several formal approaches that can be taken, such as
surveying a number of non-respondents by phone, or comparing late and early re-
spondents using the assumption that late respondents are more like non-respondents
than early responders are. We chose a simplified implementation of the latter method,
by calculating and comparing the means of questions 3 and 4 from the 20 first and 20

88 How do software practitioners value research?

last on-line respondents using the javaBin collector. These questions and the number
of respondents were chosen arbitrarily.

For Question 3, m20 f irst = 3.71 and s20 f irst = 1.25, while m20last = 4.00 and s20last =
1.00. The mean m of all responses was 3.92, with s = 1.16, U95 = 4.14 and L95 = 3.70.

For Question 4, m20 f irst = 4.60 and s20 f irst = 1.24, while m20last = 4.94 and s20last =
1.06. m was 4.51, s = 1.14, U95 = 4.76 and L95 = 4.33.

For both questions 3 and 4, the means of the 20 last javaBin respondents were higher
than the means of the 20 first javaBin respondents. If one uses the assumption that late
responders are more like nonresponders than early responders are, it could be that the
reported values are underreported. It could have been interesting to look further into
this issue, but time constraints forced us to focus on other things.

6.2.4 Conclusion validity

(Statistical) conclusion validity refers to whether the conclusions reached in a study are
correct. This is directly related to statistical hypothesis testing, and the possibility of
type I and type II errors (i.e. rejecting the null hypothesis when the null hypothesis is
true, and failing to reject the null hypothesis when the null hypothesis is false).

We did not do statistical hypothesis testing on our data, as we rather chose the ap-
proach known as exploratory data analysis. Exploratory data analysis eliminates the
possibility of type I and type II errors, but one should nevertheless discuss the suit-
ability of our statistical methods. The perhaps most controversial design choice we
made was using means instead of medians as a measure of the distribution centers. A
median is often a better measure of strongly skewed distributions, but using medians
has the clear disadvantage of giving us considerably weaker statistical tools at our dis-
posal. Both means and medians are reported in section 5.3. The difference between
these two measures was small for most variables, and we are thus confident that that
using means is good enough for our purpose.

6.3 Research ethics

According to Vinston and Singer, the Empirical Software Engineering community has
yet to develop its own code of research ethics [49]. They thus recommend ESE re-
searchers to apply codes from related disciplines.

We have used guidelines compiled by Sarantakos when conducting our study [41, pp.
18-24]. These guidelines, aimed at social researchers, list these seven basic principles
of ethical social research as the most important:

• Proper identification; not giving the respondents false impressions of the re-
searcher or the sponsor.

How do software practitioners value research? 89

• Clear information as to the type of questions, the degree of question sensitivity
or stress and the possible (true) consequences of the questioning and the research
in general.

• Concern with the welfare of the respondents, including having regard for men-
tal and physical health and safety, embarrassment, guilt, discomfort, hazards or
risks to the respondents [Bailey, 1982, 1988; Sproull, 1988; Vlahos, 1984].

• Free and informed consent; for example, not putting pressure on or deceiving the
respondents.

• Right of privacy regarding their private life, sensitive issues or answering ques-
tions they dislike.

• The right to anonymity, meaning that the respondents’ contributions must re-
main anonymous.

• The right to confidentiality; the respondents’ contributions should not be made
available to other people.

We can not see any major problems with our our study in regard to these principles.
The most relevant principles are the last two (anonymity and confidentiality), in addi-
tion to the “free and informed consent” principle.

Consent We did not include explicit consent forms, but believe that the implicit con-
sent given when the respondents choose to actively answer the online questionnaire is
sufficient.

The deployments in companies Y and Z were done in agreement with the respective
managements. We promised these access to the data we collected, and they thus had
some interest in getting as many of their employees as possible to participate. It is
therefore possible that there has been some (formal or informal) pressure on their em-
ployees to participate, but the low response rates suggest that there has not.

Anonymity Our questionnaire said that the survey would be anonymous, and we
did not record the respondents’ names. It was voluntary to state one’s email address.

It is technically possible for the survey administrators (i.e. ourselves and also possibly
members of the SurveyMonkey staff) to associate the respondents’ e-mail addresses with
their answers, but we have no reason to believe that this has been done.

Confidentiality We ensured confidentiality by not associating names, e-mail addresses
or IP addresses with data that is publicly available. We cannot see any way that data
can be linked to individual respondents.

90 How do software practitioners value research?

6.4 Summary

This chapter has summarized and discussed the implications of the results of our sur-
vey.

SRQ1 is discussed in section 6.1.1. Software practitioners mostly learn about new tech-
niques and technologies from experts and friends. Sources such as web forums, mail-
ing lists, blogs, and other social media are also important. Scientific conferences and
scientific journals are the least used sources of information, but practitioners who read
scientific journals have more confidence in research than practitioners who do not.
There is a high correlation between those who seek the advice of experts and friends
when making decisions and those who rely on experts and fiends when learning about
new technologies.

In section 6.1.2, we discussed SRQ2. Experts are valued more than research when prac-
titioners are considering new technologies. On average, practitioners do not differen-
tiate much between independent researchers and industrial researchers. Practitioners
give about equal weight to their own analysis, the advice of experts, and intuition
when making important decisions. Those who report that the attitudes of colleagues
crate a barrier to applying research are more likely to use gut feeling over analysis.

A majority of practitioners claimed to apply research from software engineering in
their work, and there is unsurprisingly a connection between having confidence in
research and applying it. However, we did not find a connection between neither
the education, age, nor industry experience of practitioners and their attitudes to or
appliance of research.

Section 6.1.3 described the obstacles to using research. “Too busy meeting immedi-
ate goals or deadlines” and “lack of personal time” were the most widely reported
barriers, while neither the attitudes of customer or colleagues, nor organizational dis-
couragement were seen as barriers. This should be encouraging to researchers.

As discussed in section 6.1.4, the most widely reported research topics of interest to
practitioners were related to management and to coding tools and techniques. How-
ever, many of the topics we collected were unclassifiable using ACM’s software engi-
neering categories, something which might have been caused by different terminology
in English and Norwegian.

In comparison to the list of topics from recent papers in research in software engineer-
ing (compiled by Cai and Card and discussed in section 3.1), topics related to man-
agement and to coding tools and techniques are under-researched. Design tools and
techniques, software / program verification, and metrics are over-researched.

We discussed threats to validity in section 6.2. Threats to construct validity are hard
to get rid of, and were discussed in section 6.2.1. We hope that our pilot testing made
the constructs clearly defined and consistently understood. Threats to internal validity
(section 6.2.2) are not that severe to us, but the coverage bias discussed under external
validity threats (section 6.2.3) is more important. We believe that companies Y and Z
and javaBin are highly representative of the Norwegian ICT industry, even though the

How do software practitioners value research? 91

sampled population was somewhat young. In section 6.2.4, we discussed why we used
means instead of medians when doing statistical analysis.

Section 6.3 concerned research ethics, and we discussed how we took care of the re-
spondents’ anonymity and how we ensured confidentiality.

92 How do software practitioners value research?

Chapter 7

Conclusion

7.1 Summary

This thesis has described a survey of software practitioners which the purpose of elic-
iting their attitudes to research. The study was motivated by the need for researchers
in empirical software engineering to better understand practitioners.

Researchers have proposed an approach to software engineering practice called evidence-
based software engineering (EBSE). Applying EBSE involves searching (scientific) lit-
erature, critically appraising the evidence, and integrating the appraised evidence with
practical experience and customers’ values to make decisions. However, if practition-
ers do not find research valuable, relevant, or trustworthy, they will certainly not ap-
prove of EBSE.

To elicit these opinions, we deployed a questionnaire in two Norwegian software houses
and in one Norwegian Java users’ group. There were 113 respondents, who answered
questions about how they make technology decisions, which sources they use for gain-
ing knowledge about new technologies, and how they rate research / analysis in com-
parison to intuition and experts’ advice. They also answered questions regarding how
much they keep up with research, whether they apply it, whether they have confidence
in research, and whether barriers prevent them from applying research. We also asked
the respondents to name topics that they feel software engineering researchers should
focus on more.

We analyzed the data using JMP, a software package offering a comprehensive set of
statistical tools. Utilizing JMP, we applied a statistical technique called recursive parti-
tioning on the data to explore relationships between variables.

7.2 Contributions

Software practitioners overwhelmingly rely on colleagues and friends when learning
about and considering implementing new technologies. The advice of experts is also

93

94 How do software practitioners value research?

important. Information form web sites, web forums, social media, and ICT newspapers
are also important sources of knowledge, along with industrial conferences.

Most practitioners neither consult nor rely on researchers when looking for knowledge
about new technologies, but those who do tend to have more confidence in research.
Most practitioners do not differentiate between industrial and independent (academic)
researchers when assessing information. Practitioners rely almost equally on analysis,
experts’ advice and intuition when making important decisions.

A majority of practitioners claim to apply research in software engineering in their
work. Being too busy meeting immediate goals / deadlines and lack of personal time
were the two most widely reported barriers to applying research, while neither orga-
nizational inertia, attitudes of colleagues or customers, nor the relevance of research
were seen as barriers. The reported confidence in research in software engineering
was moderate, and not fundamentally different from how medical practitioners value
research. Unsurprisingly, practitioners who have more confidence in research are also
more likely apply it in their work.

Topics related to management were mentioned most often when practitioners were
asked which topics researchers should focus more on. Topics related to coding tools
and techniques were also important. In comparison to the topics in demand from prac-
titioners, researchers focus too much on design tools and techniques, software/program
verification, and metrics.

Neither the age, the education, nor the industry experience of practitioners signifi-
cantly influenced their attitudes to research.

7.3 Future Work

Refining the survey and deploying it more widely could produce more interesting find-
ings. In particular, we would like to have it specifically deployed among managers, as
very few of the respondents reported working in management. Eliciting differences in
managers and lower level practitioners’ attitudes to research could be useful, as man-
agers are more likely to make important decisions than practitioners. We also suggest
doing more formal rounds of pilot testing, so that one can be more sure that the con-
structs are consistently defined and understood. Deploying the survey internationally
would also be interesting, as the findings may be more generalizable in an international
setting.

An interesting supplement to the survey would be Repertory Grid Analysis. This is
a semi–structured interview technique, where the interviewee himself determines the
most important concepts of the subject matter of the interview, and then ranks these
concepts according to his own value system. See for example Rognerud and Hannay
for more information [39]. We initially planned doing a round of such interviews, but
had to focus on our survey because of a tight schedule.

Bibliography

[1] A. L. Abel, N. B. Sardone, and S. Brock. Simulation in the college classroom:
Enhancing the survey research methods learning process. Information Technology
Learning and Performance Jornal, 23(2):39–46, 2005.

[2] How to Use the Computing Classification System : How to classify works
using ACM’s Computing Classification System. ACM website. [online]
http://www.acm.org/about/class/how-to-use. Archived at http://
www.webcitation.org/5ePp3xMQI. Accessed: 2009-02-05.

[3] Frederick P Brooks jr. The Mythical Man–Month : Essays on Software Engineering
Anniversary Edition. Addison–Wesley, 1995.

[4] Kai-Yuan Cai and David Card. An analysis of research topics in software engi-
neering – 2006. Journal of Systems and Software, 81(6):1051–1058, June 2006.

[5] Brad J. Cox. There is a silver bullet. In Nick Heap, editor, Information technology
and society, pages 377–386. SAGE, 1995.

[6] Jenny A. Darby. Open-ended course evaluations: a response rate problem? Journal
of European Industrial Training, 31(5):402–412, 2007.

[7] George E. M. Ditsa. Combating the software crisis: Service quality and force–field
approach. In Mehdi Khosrowpour, editor, Effective Utilization and Management of
Emerging Information Technologies, pages 752–773. Idea Group, 1998.

[8] T. Dybå, B.A. Kitchenham, and M. Jørgensen. Evidence-based software engineer-
ing for practitioners. Software, IEEE, 22(1):58–65, Jan.-Feb. 2005.

[9] Tore Dybå and Torgeir Dingsøyr. Empirical studies of agile software develop-
ment: A systematic review. Information and Software Technology, 50(9-10):833 – 859,
2008.

[10] H. Erdogmus, M. Morisio, and M. Torchiano. On the effectiveness of the test-first
approach to programming. Software Engineering, IEEE Transactions on, 31(3):226–
237, March 2005.

[11] Arlene Fink and Mark S. Litwin. The Survey Kit: How to assess and interpret survey
psychometrics. SAGE, second edition, 2002.

95

96 How do software practitioners value research?

[12] Steven E. Finkel, Thomas M. Guterbock, and Marian J. Borg. Race of interviewers
effects in a prediction poll virginia 1989. Public Opinion Quarterly, 55:313–330,
1991.

[13] Floyd J. Fowler Jr. Improving Survey Questions. Applied Social Research Method
Series, Volume 38. Sage Publications, 1995.

[14] Floyd J. Fowler Jr. Survey Research Methods. Applied Social Research Method
Series, Volume 1. Sage Publications, 2002.

[15] Steven Fraser, Dave Astels, Kent Beck, Barry Boehm, John McGregor, James
Newkirk, and Charlie Poole. Discipline and practices of tdd: (test driven devel-
opment). In OOPSLA ’03: Companion of the 18th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications, pages 268–270,
New York, NY, USA, 2003. ACM.

[16] Pearl Friedman. A second experiment on interviewer bias. Sociometry, 5(4):378–
381, 1942.

[17] Robert L. Glass. The standish report: does it really describe a software crisis?
Commun. ACM, 49(8):15–16, 2006.

[18] Alan Gordon. Surveymonkey.com–web-based survey and evaluation system:
http://www.surveymonkey.com. The Internet and Higher Education, 5(1):83 – 87,
2002.

[19] Dale Griffi and Amos Tversky. The weighing of evidence and the determinants of
confidence. Cognitive Psychology, 4(3):411–35, 1992.

[20] Jo E. Hannay, Erik Arisholm, Harald Engvik, and Dag I.K. Sjøberg. Effects of
personality on pair programming. IEEE Transactions on Software Engineering,
12 Jun. 2009. IEEE computer Society Digital Library. IEEE Computer Society,
<http://doi.ieeecomputersociety.org/10.1109/TSE.2009.41>.

[21] About IEEE Software. IEEE website. [online] http:
//computer.org/portal/site/software/menuitem.
538c87f5131e26244955a4108bcd45f3/index.jsp?&pName=software_
level1&path=software/content&file=about.xml&xsl=article.
xsl&. Archived at http://www.webcitation.org/5gaxurlFa. Accessed:
2009-05-07.

[22] Ulf Jakobsson. Statistical presentation and analysis of ordinal data in nursing
research. Scandinavian Journal of Caring Sciences, 18(4):437–440, 2004.

[23] Peter Jarvis. The Practitioner-Researcher: Developing Theory from Practice. Jossey-
Bass, 1998.

[24] Andreas Jedlitschka, Marcus Ciolkowski, and Dietmar Pfahl. Reporting exper-
iments in software engineering. In Forrest Shull, Janice Singer, and Dag I. K.
Sjøberg, editors, Guide to Advanced Empirical Software Engineering, pages 201–228.
Springer, 2008.

How do software practitioners value research? 97

[25] David Richard Johnson and James C. Creech. Ordinal measures in multiple in-
dicator models: A simulation study of categorization error. American Sociological
Review, 48(3):398–407, 1983.

[26] Magne Jørgensen and Kjetil Moløkken-Østvold. How large are software cost
overruns? a review of the 1994 chaos report. Information and Software Technology,
48(4):297–301, 2006.

[27] Daniel Kahneman and Shane Frederick. A model of heuristic judgment. In Keith J.
Holyoak and Robert G. Morrison, editors, The Cambridge Handbook of Thinking and
Reasoning, pages 267–294. Cambridge University Press, 2005.

[28] William R. King and Jun He. External validity in is survey research. Communica-
tions of the Association for Information Systems, 16:880–894, 2005.

[29] B.A. Kitchenham, T. Dybå, and M. Jørgensen. Evidence-based software engineer-
ing. Software Engineering, 2004. ICSE 2004. Proceedings. 26th International Conference
on, pages 273–281, 23-28 May 2004.

[30] Barbara A. Kitchenham and Shari L. Pfleeger. Personal opinion surveys. In Forrest
Shull, Janice Singer, and Dag I. K. Sjøberg, editors, Guide to Advanced Empirical
Software Engineering, pages 63–92. Springer, 2008.

[31] Edith D. de Leeuw and Johannes van der Zouwen. Data quality in telephone and
face to face surveys: A comparative meta–analysis. In Robert M. Groves, Paul P.
Biemer, and Lars E. Lyberg, editors, Telephone Survey Methodology, pages 283–300.
John Wiley and Sons, 2001.

[32] Chris Mann and Fiona Stewart. Internet Communication and Qualitative Research.
SAGE, 2000.

[33] Alastair McColl, Helen Smith, Peter White, and Jenny Field. General practitioners’
perceptions of the route to evidence based medicine: a questionnaire survey. BMJ,
316:361–365, January 1998.

[34] Mary A. Meyer and Jane M. Booker. Eliciting and analyzing expert judgment: a
practical guide. Society for Industrial and Applied Mathematics, 2001.

[35] David S. Moore and George P. McCabe. Introduction to the Practice of Statistics. W.
H. Freeman and Co, fifth edition, 2006.

[36] Leon J. Osterweil, Carlo Ghezzi, Jeff Kramer, and Alexander L. Wolf. Determining
the impact of software engineering research on practice. Computer, 41(3):39–49,
2008.

[37] Dewayne E. Perry, Adam A. Porter, and Lawrence G. Votta. Empirical studies of
software engineering: a roadmap. In ICSE ’00: Proceedings of the Conference on The
Future of Software Engineering, pages 345–355, New York, NY, USA, 2000. ACM.

98 How do software practitioners value research?

[38] Samuel T. Redwine, Jr. and William E. Riddle. Software technology maturation.
In ICSE ’85: Proceedings of the 8th international conference on Software engineering,
pages 189–200, Los Alamitos, CA, USA, 1985. IEEE Computer Society Press.

[39] Heidi Jacobsen Rognerud and Jo Erskine Hannay. Challenges in enterprise soft-
ware integration: An industrial study using repertory grids. In Empirical Software
Engineering and Measurement (ESEM), 2009.

[40] John Sall, Lee Creighton, and Ann Lehman. JMP Start Statistics. SAS Institute,
fourth edition, 2007.

[41] Sotirios Sarantakos. Social Research. Palgrave Macmillian, third edition, 2005.

[42] SAS Institute. JMP Statistics and Graphics Guide, Release 7, May 2007.

[43] Janice Singer, Susan E. Sim, and Timothy C. Lethbridge. Software enigneering
data collection for field studies. In Forrest Shull, Janice Singer, and Dag I. K.
Sjøberg, editors, Guide to Advanced Empirical Software Engineering, pages 9–34.
Springer, 2008.

[44] Dag I. K. Sjøberg, Tore Dybå, and Magne Jørgensen. The future of empirical meth-
ods in software engineering research. In FOSE ’07: 2007 Future of Software Engi-
neering, pages 358–378, Washington, DC, USA, 2007. IEEE Computer Society.

[45] Ian Sommerville. Software Engineering. Addison–Wesley, 8th edition, 2007.

[46] Frank Stanton and Kenneth H. Baker. Interviewer-bias and the recall of incom-
pletely learned materials. Sociometry, 5(2):123–134, 1942.

[47] A Tversky and D. Kahneman. Extensional vs. intuitive reasoning. In D. Kahne-
man, P. Slovic, and A. Tversky, editors, Judgment under uncertainty: Heuretics and
biases, pages 84–98. Cambridge University Press, 1982.

[48] Amos Tversky and Daniel Kahneman. Belief in the law of small numbers. Psycho-
logical Bulletin, 76(2):105–110, 1971.

[49] Norman G. Vinston and Janice Singer. A practice guide to ethical research involv-
ing humans. In Forrest Shull, Janice Singer, and Dag I. K. Sjøberg, editors, Guide
to Advanced Empirical Software Engineering, pages 229–256. Springer, 2008.

[50] M. R. Wade and M. Parent. Relationships between job skills and performance: A
study of webmasters. Journal of Management Information Systems, 18(3):71–96, 2001.

[51] Norman E. Wallen and Jack R. Fraenkel. Educational research: a guide to the process.
Lawrence Erlbaum Associates, second edition, 2001.

[52] Claes Wohlin, Per Runeson, Martin Høst, Björn Regnell, and Anders Wesslén.
Experimentation in software engineering: an introduction. Springer, 1999.

[53] Bruno D. Zumbo and Donald W. Zimmerman. Is the selection of statistical meth-
ods governed by level of measurement? Canadian Psychology, 34(4):390–400, 1993.

Appendix A

List of survey questions

This appendix shows the list of questions from the questionnaire discussed in chapter
4, section 4.3.

The questionnaire has been reproduced as faithful as possible. This means that the
wording is reproduced verbatim, and that the typography is preserved as much as
possible. There are however some typographic changes that are unavoidable when
converting it from a HTML format into LATEX.

A.1 #1. Intro

This survey is a part of a research project at the software engineering department at
Simula Research Laboratory in Oslo, Norway. It is aimed at software professionals,
both practitioners and managers / executives.

Participating will take approximately 10 minutes, and your participation is greatly ap-
preciated. One of the participants will win an Apple iPod nano 8GB.

1. If you would like a chance to win an iPod nano, please enter your email address
below. Your email address will not be associated with your responses to the ques-
tions.

• (Text field)

A.2 #2. Part 1/2: Introductory questions

1. Age How old are you?

• Drop down box : “19 or less”→ “71 or more”

99

100 How do software practitioners value research?

2. In which country are you currently working?

• (Text field)

3. What is your current position? (choose one)

• Developer

• Product Manager

• QA Manager

• Other (please specify)

4. Industry experience How many years of industry experience do you have?

• Drop down box : “0→ 4”→ “40 or more”

5. What is your highest level of formal education? (choose one)

• High school (Videregående skole) or less

• Some college, but no degree

• A bachelors degree or equivalent (Høyskoleingeniør, cand.mag. etc.)

• A masters degree or equivalent (Civil engineer, cand.real. etc.)

• A doctoral degree (ph.d, dr.ing, dr.scient etc.)

A.3 #3. Part 2/2

All scales in this section are ordinal. This means that the elements have a simple order,
so that for example 4 is better than 3, and that 3 is better than 2. However, it does not
mean that 4 is twice as good as 2.

1. You are considering a new technique or technology in IT development. You have
only superficial prior knowledge about this technique or technology.

On a scale where 1 is “not at all” and 7 is “very much”, how important for you is
advice from the following persons and entities when you are making your decision?

• A colleague or friend with experience with this technique

How do software practitioners value research? 101

• An external expert / guru

• Independent researchers (MIT, The Norwegian University of Science and Tech-
nology)

• Industrial researchers (IBM, Sun) and commercial research companies (The Stan-
dish Group)

• Information from the vendor or supplier (success stories, product demonstra-
tions)

• Other (please specify)

2. When looking for knowledge about new development techniques and technolo-
gies, to what extent do you consult the following sources?

• Experts/gurus, colleagues, and friends in the IT industry

• Industrial conferences (JavaZone etc.)

• Popular scientific journals and magazines

• Scientific conferences

• Scientific journals (IEEE Transactions on Software Engineering etc.)

• Web forums, mailing lists, blogs and other social media

• Websites and IT newspapers (Slashdot, Computerworld)

• Other sources (please specify)

3. It has been decided that your organization needs to radically renew its software
development process model. You are responsible for evaluating the alternatives,
and there are two obvious alternatives, X and Y. You have assessed the available lit-
erature, and while there are pros and cons to both alternatives, your analysis of the
literature shows that alternative X is probably the best choice for your organization.

Nevertheless, you have a strong feeling (gut feeling, “magefølelse”) that alterna-
tive Y is best suited for your organization, even though you find it hard to explain
why.

On a scale where 1 is “gut feeling only” and 7 is “analysis only”, how much weight
would you give to your analytical findings versus your gut feeling?

• (choose one, leave blank if you do not know)

102 How do software practitioners value research?

4. Your organization needs a new testing framework. You have found reliable re-
search claiming that using framework F will most of the time find more bugs and
increased productivity.

You have also consulted an expert whom you trust from previous experience. He
claims that framework F is worthless, and strongly recommends using framework
G instead.

On a scale from 1 (“research only”) to 7 (“expert advice only”), how would you give
weight to the two recommendations?

• (choose one, leave blank if you do not know)

5. On an scale from 1 (“not at all”) to 7 (“very much”), how much do you keep up
with research in software engineering?

• (choose one, leave blank if you do not know)

6. On an scale from 1 (“nothing”) to 7 (“very much”), how much confidence do you
have in research in software engineering?

• (choose one, leave blank if you do not know or do not keep up with research)

7. Do you apply results from research in software engineering in your work?

• Yes

• No

• Don’t know

8. Do one or more of these barriers prevent you from applying research in your
work? (choose all that apply, choose none if no alternative applies)

• My organization does not encourage the use of research

• Too busy meeting immediate goals or deadlines

• Research results are hard to find

• Lack of personal time

• Research is not relevant to my needs

• Attitudes of colleagues

How do software practitioners value research? 103

• Attitudes or expectations of customers

• Other (please specify)

9. Name up to three topics that you feel software engineering researchers should
focus on more.

• (Text field)

• (Text field)

• (Text field)

10. Which software engineering activity or job task is your main daily focus at
present?

• (Text field)

104 How do software practitioners value research?

Appendix B

List of topics from Question 9

This appendix shows the topics we collected in Question 9 and our categorization of
them. See section 5.3.9 for details.

All responses are reproduced verbatim in the column to the left. The corresponding
CCS categories, assigned by us, are in the center column. The column to the right
shows the respondents’ responses to Question 10, i.e. their main focus at present.

Response Category Current activity
Usability of software N / A Developing web ap-

plications
Time-saving (by software devel-
oping)

N / A Testing

Time to market with articles,
they are often dated when they
are published

N / A Development

Successful vs unsuccesful
projects

D.2.9 Management

software reliability D.2.4 Software/Program Verifi-
cation

infrastructure consul-
tancy

Software Quality Assurance D.2.9 Management Development
Software quality D.2.4 Software/Program Verifi-

cation
System development
(design - program-
ming - test)

smidige metoder i store prosjek-
ter

D.2.9 Management

Simplicity N / A data structure design;
data conversion

simplicity N / A Time estimates,
design and develop-
ment

105

106 How do software practitioners value research?

Security N / A programming
Scalability D.2.7 Distribution, Mainte-

nance, and Enhancement
Zimbra

Safe multi threaded program-
ming models

D.2.3 Coding Tools and Tech-
niques

ESI

reliability D.2.4 Software / Program Verifi-
cation

system deployment

Reducing complexity of soft-
ware development

N / A Development

Quality control D.2.4 Software / Program Verifi-
cation

TDD

product direction vs. develop-
ment direction

D.2.9 Management design software ar-
chitecture

Practical problems N / A Programming
Practical implications N / A System maintenance
Phasing out large legacy sys-
tems

D.2.7 Distribution, Mainte-
nance, and Enhancement

A&D

Persistent Object Storage D.2.3 Coding Tools and Tech-
niques

System administra-
tion

Performance N / A integration
OpenSource as movement, as
opposed to being bought by
large corporations as IBM and
Oracle

N / A At the time of writ-
ing, my main focus
is maintenance of
legacy code.

Multithreading performance N / A Web developing
multithreading N / A Java JEE5 develop-

ment (EJB3)
Multicore N / A Programming
Mashups, cload, new languages
on JVM

N / A Scala,
web/integration,
REST

JBoss clustering in relevance /
as an example of to advanced
topic of distributed computing
(e.g. group communication)

N / A Maintenance, self-
stud

integration D.2.12 Interoperability
increased automation N / A QA
Importance of methodology D.2.9 Management Development

(Java/J2EE)
Impact of iteration length and
delivery frequency on project
success

D.2.9 Management Coaching teams de-
livering internal GUI
application in tech-
nology and practices

How do software practitioners value research? 107

How to make software projects
deliver higher quality

D.2.9 Management

how to make businesses under-
stand the vital importance of
having technicall savy project
managers in development
projects

D.2.1 Requirements / Specifica-
tions

Developing applica-
tions in Java/GWT

How the real world works N / A Programming
Get industry practice N / A Software Mainte-

nance, Programming
Free and open source software N / A Using the software

for myself and my
customers.

Formal methods D.2.4 Software/Program Verifi-
cation

Web developing

F/LOSS N / A Web development
Efficiency & ROI N / A Sales & Marketing
Effective practices for develop-
ing well tested products

D.2.5 Testing and Debugging Delivering / devel-
oping well tested
products....

dynamic languages in large
scale projects

D.2.3 Coding Tools and Tech-
niques

Programming / ar-
chitecture

dynamic languages (practise) D.2.3 Coding Tools and Tech-
niques

development / archi-
tecture (integration)

distributed software dev. D.2.9 Management devel.
development processes D.2.9 Management Project leader
Developer-customer communi-
cation

D.2.1 Requirements / Specifica-
tions

Sales

Context awareness N / A
concurrency and parallellism N / A integration
Concequences of mixed technol-
ogy use (all apps have many
diffrent technologies in them
chosen at "random" based on
previous experiance or what is
knowin in the decistion mo-
ment)

D.2.12 Interoperability Development - main-
tanence, porting old
to new technology.

108 How do software practitioners value research?

Compiler time N / A
clustering N / A linux system admin-

istration
Better documentation D.2.7 Distribution, Mainte-

nance, and Enhancement
course material

Attitudes and tradition. Like
this! We make a lot of bad
choises and need to be told!

N / A Making accelerome-
ter controls usin Sun
SPOS and Wiimotes.
JavaFX

Application of software engi-
neering practices in free soft-
ware

D.2.9 Management management of de-
velopment

Agile development methods D.2.9 Management Integration
Agile development D.2.9 Management Java development
agile and lean methods D.2.9 Management programming, main-

tenance
A replacement for SOA (or im-
provement...)

D.2.11 Software Architectures Billing Applications
for the telecom in-
dustry

(Double) blind tests N / A programming
web application frameworks
(get rid of ajax)

D.2.11 Software Architectures Java JEE5 develop-
ment (EJB3)

the engineering aspects of stan-
dardization

D.2.3 Coding Tools and Tech-
niques

integration

Testing of multi threaded pro-
grams, performance and con-
currency

N / A ESI

Testing D.2.5 Testing and Debugging
team productivity D.2.9 Management design software ar-

chitecture
support / drift / deploy D.2.7 Distribution, Mainte-

nance, and Enhancement
project planning re-
source

Standards of integration D.2.12 Interoperability Billing Applications
for the telecom in-
dustry

Standards N / A Web development
Space/time metaphors in pro-
gramming / computer usage

N / A System administra-
tion

Software quality vs require-
ments

D.2.5 Testing and Debugging Delivering / devel-
oping well tested
products....

How do software practitioners value research? 109

Semantics on the web N / A Developing web ap-
plications

Scientific measuremens of the
benefits of Agile Development
(if there they are there)

D.2.9 Management Development

reducing complexity D.2.11 Software Architectures infrastructure consul-
tancy

Quantifying advan-
tages/disadvantages

N / A programming

Quality and testing D.2.5 Testing and Debugging Testing
project management D.2.9 Management devel.
Programming language com-
parisons

D.2.3 Coding Tools and Tech-
niques

Development
(Java/J2EE)

Productivity D.2.9 Management TDD
Prioritazation of tasks vs. ac-
tual tasks chosen to do. Non im-
porten tasks often get more time
tacitly.

D.2.9 Management Development - main-
tanence, porting old
to new technology.

performance N / A linux system admin-
istration

Ordering of words N / A System maintenance
Open data sources on the web N / A Scala,

web/integration,
REST

Making virtal machines more ef-
fecient

N / A

Make interesting research more
available - show up to confer-
ences and speak about it in
a non-scientific manner, make
code available in a Maven repos-
itory, and so on

N / A Programming

Load Balancing N / A Zimbra
Learning N / A Sales & Marketing
Integration D.2.12 Interoperability project planning re-

source
How to write good specification D.2.1 Requirements / Specifica-

tions
Development

How to make software systems
adaptable, and flexible for fu-
ture changes.

D.2.7 Distribution, Mainte-
nance, and Enhancement

Java development

110 How do software practitioners value research?

Globally distributed services D.2.11 Software Architectures Using the software
for myself and my
customers.

Formal methods D.2.4 Software/Program Verifi-
cation

Temporarily laid off
(permittert)

facial recognition N / A programming
Estimation D.2.9 Management Sales
Empirical measurements of
(working with) scripting lan-
guages: Perl vs Python vs Ruby
etc.

D.2.3 Coding Tools and Tech-
niques

Maintenance, self-
study

Efficiency N / A Time estimates,
design and develop-
ment

durability N / A data structure design;
data conversion

development tools D.2.6 Programming Environ-
ments

Project leader

Development teams D.2.9 Management System development
(design - program-
ming - test)

Developers and project own-
ers need good metrics to assess
complexity of technology stacks
and codebases to improve qual-
ity of software engineering pro-
cesses

D.2.8 Metrics Developing applica-
tions in Java/GWT

Benefits and drawbacks from
off-shoring

D.2.9 Management Integration

Balance between team level and
enterprise level decisions

D.2.9 Management Coaching teams de-
livering internal GUI
application in tech-
nology and practices

automatization N / A development / archi-
tecture (integration)

automation of processes (build,
testing, deployment)

D.2.7 Distribution, Mainte-
nance, and Enhancement

programming, main-
tenance

Algorithms and ways of im-
proving code itself, as opposed
to focus om processes

D.2.3 Coding Tools and Tech-
niques

At the time of writ-
ing, my main focus
is maintenance of
legacy code.

How do software practitioners value research? 111

Agile methods D.2.9 Management Making accelerome-
ter controls usin Sun
SPOS and Wiimotes.
JavaFX

Video over Internet N / A Developing web ap-
plications

User interfaces N / A Making accelerome-
ter controls usin Sun
SPOS and Wiimotes.
JavaFX

standardization N / A programming
Self-programming programs N / A Using the software

for myself and my
customers.

Scability N / A linux system admin-
istration

Realtime Systems N / A Billing Applications
for the telecom in-
dustry

Realtime shared computer inter-
action

N / A System administra-
tion

Project management D.2.9 Management Sales
Programming D.2.3 Coding Tools and Tech-

niques
System maintenance

Productivity (short and long
term) of dynamic vs. static lan-
guages

D.2.3 Coding Tools and Tech-
niques

Integration

Patterns / Best practises D.2.11 Software Architectures Sales & Marketing
Open Source software com-
pared to proprietary software

N / A Development
(Java/J2EE)

More (surveys) on (practical)
modeldriven development tech-
niques

D.2.2 Design Tools and Tech-
niques

Maintenance, self-
study

Intuitivity N / A Time estimates,
design and develop-
ment

interoperability D.2.12 Interoperability infrastructure consul-
tancy

I would like to see research
proving that software develop-
ers need quiet and comfort-
able working areas to be pro-
ductive. How can one solve
hard problems while sharing a
floor with 10-15 other slave-
developers buzzing with daily
scrums and what not.

N / A Developing applica-
tions in Java/GWT

112 How do software practitioners value research?

How to write good test scenar-
ios

D.2.5 Testing and Debugging Development

how to design for availability
and performance

D.2.10 Design programming, main-
tenance

High Availebility N / A Zimbra
functional programming D.2.3 Coding tools and Tech-

niques
Java JEE5 develop-
ment (EJB3)

Everchanging updgrades of all
technologies. Cost of never
knowing someting well before it
changes into someting new.

N / A Development - main-
tanence, porting old
to new technology.

Distributed computing N / A At the time of writ-
ing, my main focus
is maintenance of
legacy code.

Development environment D.2.6 Programming Environ-
ments

System development
(design - program-
ming - test)

Cost D.2.9 Management Testing
concurrency N / A development / archi-

tecture (integration)
Business - developer communi-
cation

D.2.1 Requirement / Specifica-
tions

Java development

Better operating systems N / A
Best practises N / A Web development
Auto-documentation D.2.7 Distribution, Mainte-

nance, and Enhancement
TDD

