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Abstract

Software is not perfect; any software system can be and probably is

vulnerable. Perfect security is very much improbable, no matter what you

do, how many flaws you patch, or the capital you invest. Finding bugs in

software is becoming exceedingly tricky; it takes researchers, developers,

and bug hunters endless hours of analyzing through many lines of code.

Finding a bug early in production is paramount; conversely, the potential

financial cost could be significant if the bug was discovered by triggering

an error post-production or a bad actor exploits it.

Automated bug discovery techniques exist, and there exists a plethora

of research into such techniques. However, the computational cost of using

these techniques is still expensive enough not to be standard practice.

In this thesis, we investigate if it’s possible to combine static code

analysis with a hybrid fuzzer to improve the efficiency of finding software

defects. We will also classify software defects, specifically memory defects,

based on observable properties. Next, we perform an empirical evaluation

on two datasets containing software defects.

After our empirical evaluation, we see that our direction does aid in

discovery time and the need for less exploration; however, not when it

comes to the number of bugs exposed. We also see a trend in the class

of memory bugs usually found by a hybrid fuzzer.

Integrating static code analysis with a hybrid fuzzer can find software

defects more efficiently and could be a valuable tactic for targeted software

analysis.
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Terminology

Fuzzing: Fuzzing is a software testing technique to validate software by

randomizing inputs to a given program [48]. The program’s execution is

monitored, too see if the randomized input reveals any bugs or software

vulnerability. We will describe fuzzing in greater detail in the background

chapter of this thesis.

Bug: A bug is a software or hardware defect that causes unintended

behavior of a program. A bug might be a vulnerability, or it might not be.

Bug and software defect will be used interchangeably throughout this thesis.

Symbolic execution: Symbolic execution is a technique to analyze a

program where the entire execution paths are evaluated symbolically, and

each program path can be evaluated[40]. This will also be explored in much

greater detail in the backgrounder chapter of this thesis. Concolic execution

is the simplification and more efficient variant of symbolic execution,

mixing of concrete and symbolic execution of a given software; again, this

will be explained in the background chapter.

Hybrid fuzzer: A hybrid fuzzer combines fuzzing and some analysis

technique(s), for example symbolic execution, to guide the generation of

inputs and make the fuzzing more effective. Again, this will be evaluated

in greater detail later in this thesis.
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Chapter 1

Introduction

1.1 Context

One might argue that humanity has a vested interest in keeping the digital

world equally secure as the physical one. The latter has quite literally

thousands of years as a head start but still cannot guarantee perfect

security. So it is not surprising that the digital world has a long way to

go.

Our financial system, food supply chain, electrical grid, and so much

more are dependent on our digital systems’ security. Most people will not

even think about digital security until something happens, like the Covid-

19 pandemic. The Cybersecurity and Infrastructure Security Agency issued

an alert early in the pandemic [28], in cooperation with the US department

of homeland security and the UK’s national cybersecurity center. They

argued that the shift from office work to working digitally during the

pandemic would escalate the use of vulnerable services. There is also

anecdotal evidence that links increased cyber attacks as a consequence of

the pandemic [46]. The pandemic exposed our need for reliable systems

and showed how fast a world tragedy could be monopolized by malicious

actors. Pandemic aside, there are indications that major events do indeed

affect cyber-security according to Lallie et al. [43].

Cybersecurity readiness is crucial, but it is not enough to be secure
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oneself; we depend on other people’s investment in security. The recent

SolarWinds hack showed us that [55]. Readiness demands talented people.

That demand is currently not satisfied. The world is suffering from a

shortfall of professionals to deal with the number of threats we face. 3,790

individuals that work in security responded to the (ISC)² cybersecurity

workforce study [1]. More than half (56 percent) have the opinion that the

shortage of talent is risking the safety of their organizations.

1.2 Motivation

The cybersecurity threat is huge, and the cybersecurity industry is still

young; we are still learning how to work jointly across countries and

businesses. In addition, there are challenges in sharing information; some

countries consider IP addresses personal information while others do not.

Other reasons to not share information are the perceived reputation loss

accompanying the aftermath of a cyber intrusion; an unwillingness to

help rival companies keep a competitive edge by increasing their security.

Many factors will prevent businesses from sharing information about

cyberattacks [66].

These hurdles help malicious actors and prevent professionals from

gaining valuable intel. Attackers are writing sophisticated viruses and

malware or using zero-day attacks. All of this takes plenty of personnel

resources along with an accurate view of the threat landscape to handle,

and the industry has neither. An automated cybersecurity system might be

our best hope. A system that can deal with code obfuscation, reason about

run-time errors, or logical security holes will probably save the companies

billions and consumers their privacy.

In 2016, Defense Advanced Research Projects Agency (DARPA) at-

tempted to address the issue mentioned above. They launched the cyber

grand challenge (CGC), a competition where automation was applied to

software analysis and repair.

The competition also focused on removing the human element as
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the principal defense mechanism. Instead, competitors built a cyber

reasoning system (CRS) to handle vulnerability discovery and repair of

said vulnerability. In other words, this was an attempt to leverage a

machine’s speed and efficiency while at the same time attempting to

implement reasoning abilities.

Automated vulnerability discovery is a central part of a system for bug

handling, and enhancing that is this thesis’s primary focus and motivation.

1.3 Problem statement

During the competition of the CGC, the teams developed powerful tools to

find exploitive bugs in a program. The competition’s goal was to automate

bug discovery and repair bugs that can be vulnerable. This thesis will focus

on discovering bugs in a program, using the techniques employed by the

competitors of this competition, and leveraging static code analysis.

Almost all teams used two main approaches, fuzzing and sym-

bolic/concolic execution, combining them into a hybrid fuzzer. Most of the

crashing inputs were found by leveraging both methods in tandem. The

fuzzer mutates and generates test cases as seeds for the symbolic execution

to trace the execution path and overcome conditions that the fuzzer can-

not find appropriate inputs for in a reasonable time; in turn, the symbolic

execution is limited to the test cases generated by the fuzzer.

Now, they caught some bugs because the program crashed by fuzzing

and some bugs caught because the program crashed because of the

symbolic execution. Why is that? Is it the way they integrated the tools? or

are some bugs inherently easier to catch using one method over the other?

Resources is another issue in automating bug discovery in a program;

in theory, if you had infinite computational power, we could leverage a

symbolic execution engine to explore all paths in a given program. But,

alas, reality forces us to follow the laws of physics and find ways to

use what we have as efficiently as possible, and it was the same in the

cyber grand challenge(CGC). However, the CGC also benefited from a
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competition framework, using resources that are not economically feasible

in real-world software. The servers had 1,280 physical cores, 16 TB of

memory, and 64 TB of disk space [61]. In addition, 300 kW was used

to power the monstrous servers and water-cooled to handle the heat

generated. Our focus is on bug discovery; this might reduce resource

concerns. However, we will evaluate the fuzzing and symbolic execution

techniques with static code analysis to see if we can increase the number

of bugs using a highly scalable technique as static code analysis without

increasing our resource consumption too much.

We choose to theoretically and empirically evaluate each of the

techniques to answer the issues raised in this section. Do each of the methods

find different kinds of bugs? and can we use static code analysis with a hybrid

fuzzer to increase the number of bugs found?.

1.4 Research questions

This thesis’s primary goal is to find bugs more efficiently by expanding

on hybrid techniques, specifically hybrid fuzzing. Can we make the

current tools even better? Will static analysis make them more efficient

in automatic bug discovery?

We pose the following research questions to set clear goals in this thesis:

Research question 1: What are the interesting hybrid combination of fuzzing

and analysis techniques? To answer this, we need to investigate what classes

of bugs these techniques find. Then, we will empirically evaluate to see if

our assumptions are valid. Doing so could indicate how we can integrate

these techniques more efficiently and if there is any merit to integrating

static code analysis with dynamic analysis.

Research question 2: Can we find the same occurrences of bugs with

static code analysis tools and dynamic analysis ? We can get valuable insight

into how different static and dynamic vulnerabilities analyzers detect

vulnerabilities by answering this question. We can also see if there are any

vulnerabilities each is better at finding. Based on the results from we get, it
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support the intention and thought behind RQ1 as-well.

Research question 3: How well do the different approaches compare in terms

of efficiency and bug discovery on real world software? After answering the first

two research questions, theorizing the properties of both the techniques

in questions (.i.e static analysis and dynamic analysis) and the properties

of bugs, and conducting an empirical evaluation, we are left with the last

question. How does this improve automated bug discovery on software?

1.5 Research objectives and scope

Answering the research questions in section 1.4 requires us to define a set

of objectives for us to evaluate our proposed direction successfully. These

objectives will describe how we will attempt to analyze our automated bug

discovery paradigm in-depth.

1. For the first research question, we will describe a theoretical frame-

work for bug classes. Look at the properties of a bug, how it behaves

and what kind of impact it has on software. Group them in general

classes, then look through our dataset containing software with al-

ready defined vulnerable bugs linking them to the classes we defined.

2. Then we will take a look at fuzzing, symbolic execution, and static

code analysis technique in detail; what are their properties? How do

they work? After this theoretical evaluation of the properties of bugs

and analysis techniques, we will conduct experiments to evaluate our

direction empirically.

3. We will also empirically evaluate each code analysis technique on

the whole dataset irrespective of the bug’s class and the technique’s

properties. This is to answer the second research question and try

to verify the findings of the first research question. Comparing the

results of using all analysis techniques on the entire dataset and the

results of them only being used on the part of the dataset that we
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deemed better suited for could indicate strategies to increase bug

discovery.

This thesis aims to improve the current understanding of bug discovery

using automated tools. To achieve this within the limited timeframe while

still generating usable results, we need to define the scope of this research.

The techniques will also be limited to one tool, meaning fuzzing,

symbolic/concolic execution, and static code analysis will be represented

by AFL++[34], QSYM [73] and Facebook’s infer [37] respectively. This

may or may not impact the study results; any result will be based on

the underlying structure of these tools. Meaning the tools themselves

may impact the result of the experiment. For example, could another tool

perform better? Are the strategies used in developing the tool a significant

factor in the kind of bugs it finds? We could use multiple tools with

different datasets in a more extensive study while still adhering to the

theoretical framework we built to get more generalizable results. However,

we will use the abovementioned tools and the dataset to limit the scope.

Moreover, we will focus on memory bugs, which limits our findings to

memory safety.

1.6 Research Method

This thesis aims to investigate if we can effectively optimize bug discovery

by combining static and dynamic analysis techniques. However, we aim to

use separate tools for each program analysis technique over the same data

sets and then compare. The tools (i.e., infer, QSYM, and AFL++) are not

engineered together or run in parallel (except for AFL++ and QSYM) but

use their independent results to ’enhance" their own discovery. We choose

this design to see if we can improve bug findings efficiently and without

more design sacrifice by combining the individual tools.

Look at bug discovery time and types of bugs found by each technique

individually and together to investigate the interesting combination of

techniques. We choose each individual tool based on some property we
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desire, for the static analysis tool:

• Able to handle large programs

• Able to analyse imperative programming languages

• Be open-source

• Present the analysis results in an easy accessible manner

By ’handle" i mean that the analysis results did not degrade too much

based on size, and to do this efficiently. And since our focus in this thesis

are memory based bugs we needed a static analysis tool to be able handle

imperative programming languages.

The requirements we have for the dynamic analysis tools:

• Be able to focus on parts where the static analysis found a potential

bug and the program as a whole

• Be fast compared to other tools

• Be open-source

• Be compatible with the languages and platforms supported by the

static analyser tool.

• Be able to work with the other tools

Regarding the first bulletin, the tool must be able to analyse the vulnerable

parts marked by a static analyser tools and in addition the whole source

code. So we can draw some conclusions on the effectiveness of our idea.

The second bulletin refers to selecting tools that have shown a focus on

speed, meaning, designed to be optimized(more on this in the background

chapter).

The data sets requirements:

• Contain bugs all ready found by other analysis tools

• Programming language and platform dependence compatibility with

analysis tools.
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• Accurate description of bugs contained in the source code

• Be open source

If the bugs contained in the data sets all ready where found by other

automated analysis techniques similar too the ones we use; then our tools

should in theory be able to discover them as well.

The Success Criteria would be to either prove or disprove our

approach. Meaning, if we could see an improvement in bug findings

either in number of bugs(For the LAVA data set) or when the bugs where

discovered(CVE files).

The difference in how we judge the LAVA data set and CVE files are

mainly that for the LAVA files [30] we will judge performance on:

• Which approach finds the first crash and LAVA bug first

• How many LAVA bugs where found

Note that, with only instrumenting part of the code it would make sense

that full instrumentation of the source code probably could find more

LAVA bugs overall.

The criteria for CVE files, we will only focus on detection time since we

are using the existence of the CVE as ground truth variable.

1.7 Main Contributions

Defects in software are a natural byproduct of writing code. Nothing

in this universe is perfect, and we are writing more and more lines of

code. Code which will run in applications, on top of operating systems.

Applications that will mix with other applications, running on different

operating systems. Finding bugs as early as possible is optimal, but it is

tough to write specific test cases. DARPA, with its competition, tried to do

what humans always do; automate the process of bug discovery. Which the

competitors did, mixing different software testing techniques. The result
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of the CGC was a promising glimpse into how the future could look and

contributed valuable learnings into the field of software testing.

This thesis’s main contribution is to study how we can better inte-

grate the different software testing techniques for an increased bug dis-

covery rate. For example, how can static code analysis, fuzzing, and sym-

bolic/concolic execution, coupled with a classification of bugs based on

their properties increase bug discovery? Answering this will build upon

the learnings from the CGC and explore the possibility of a more efficient

method of validating software using automation.

The novelty of this thesis is the use of static analysis to identify where

in the code a bug is and to analyze only that part and relevant other

regions dynamically. Similar research has been conducted like Chen et al.

[16] where the authors claim that 43% of explored code in the dynamic

analysis does not contain bugs; therefore, the code coverage-centric way

of hybrid fuzzing is inefficient. So instead, they propose a bug-driven

approach, where the concolic execution focuses on input seeds that are

more likely to uncover bugs; first, they statistically compute how far a

particular seed will go and uses UBSan violations to label the region with

a bug. Another is Corina et al. [19], where the authors use static ability to

generate structured inputs for fuzzing kernel drivers. However, I believe

no research has entirely been based on limiting the dynamic analysis and

sacrificing soundness for a more effective dynamic analysis of the code.

1.8 Thesis Outline

There are five chapters, the first one being the introduction chapter.

Chapter 2: Background This chapter will dive into the relevant

theoretical knowledge we need for this thesis. First, explain the DARPA’s

cyber grand challenge and what learnings we got from it that stimulated

our research questions. Then, we will move on to the techniques used in the

CGC, fuzzing and symbolic and concolic execution, and the respective tools

we will use in this thesis. After that, we will dive into static code analysis
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and the specific tool we will use. Lastly, software defect characterization.

What that entails and how we classify defects based on their properties.

Chapter 3: Project Execution and Evaluation Her we will explain how

we are going to perform our empirical evaluation. What resources we are

going to use, the datasets used, and the experimental design.

Chapter 4 & 5: Results and Conclusions The last chapters, we attempt

to answer our proposed research questions, go through our results and

present the findings. Then, we will discuss our findings. Lastly present

a summary, suggest any future work.
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Chapter 2

Background

This chapter will introduce DARPA’s Cyber Grand Challenge and how

the competition was structured. Then, we will look into what a bug

is and group the different bugs into classes based on the behavior and

the impact the bug has. Following will be an introduction to fuzzing,

symbolic execution, concolic execution, and static code analysis. After

each technique, an in-depth look into the tools that we use in this thesis.

A brief look into who the teams were and what strategies was prevalent

in the competition for bug discovery and vulnerability detection(however,

we will focus on bug discovery in this thesis). Finally, a framework of bugs

and the observable properties.

2.1 DARPA’s Cyber Grand Challenge

Hundreds of teams responded to DARPA’s challenge, and after three

qualifying events, seven teams remained to battle in the final round. The

challenge was essentially a “capture the flag event," but with a twist, the

players were machines only. The competitor’s task was to develop an

autonomous system that could reason about and patch vulnerabilities in

real-time.

Each of the teams had the same services running on the same

networked server with the same hardware. In this challenge, the

competitors cyber reasoning systems(CRS) played against each other by
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analyzing challenge binaries (CBs); they tried to exploit the CB to create

a proof of vulnerability (PoV). A PoV could be generated in two different

categories, type 1 and type 2. Type 1 vulnerability is where the competitors

prove control over the instruction pointer and control a general-purpose

register. A human could, in theory, craft an exploit based on a type 1

vulnerability. Type 2 is where the competition framework (CF) creates a

memory region. The CRS must prove it can read a specified length of

contiguous bytes in that region; before the CF judges the correctness of

the data.

The CRS also attempted to patch the binary before any other competitor

could exploit them. Points were gathered by either exploiting a competi-

tor’s CRS running services, patching binaries used by a CRS to the extent

that others could not exploit them and keeping their services available.

DARPA developed a custom operating system for the challenge called

DECREE, which is a lightweight OS open source project. Duplicability

and event recording possibilities of the OS make it an excellent platform

to research security in a scientific context. The Linux-like OS had only

seven system calls; its architecture was an intel x86 32-bit system. There

was no shared memory nor any file I/O operation. The virtual memory in

DECREE allocates the pages for the stack memory automatically and makes

it executable [72]. It may create an attack vector(stack buffer overflow) that

the teams must consider to safeguard their binaries and system.

In the final round stood 7 teams:

• ForAllSecure with their CRS Mayhem as number one

• TECHx comes in at second place with Xandra

• Shellphish became lucky number three, using CRS Mecaphish

• Deep Red and CRS rubeus comes in at fourth place

• CodeJitsu captures fifth with CRS galactica

• CSDS places sixth with their CRS jima
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• Disekt and Crscpy CRS coming in last.

When we discuss anything related to the competitors of the CGC, these

seven teams are whom we refer to. The teams used different approaches,

but every team used two main techniques: fuzzing and symbolic execution.

However, they approach it differently. The differences in strategies will be

explored later in the essay at section 2.8.

2.2 Fuzzing

Professor Barton Miller, in the 80s, conceived the term fuzzing; he

discovered that random inputs to UNIX utilities would crash the system.

He then, along with his students in his class on operating systems, created

a fuzzer. They found out that 25-33% of programs crashed or hung [48]

by using a simple fuzzer. The fuzzer also revealed some possible security

vulnerabilities when the system crashed.

The way fuzzing works is by providing a computer program with

random data as inputs, monitoring the system output or lack thereof, and

examining what happens. The technique gathers information on how the

program responds when it does not receive the expected inputs. Fuzzing

has risen in popularity in no small part to its simplistic nature; take some

input, mutate it and see what happens. There is no need to know any more

than that (assuming a primitive fuzzer). Developers may use the fuzzing

technique to test the quality of a piece of software, or it can be used by

hackers (both white and black hat hackers) to test the security of a given

software. What knowledge we gain from the crash of the program might

have a bearing on the security of the said program; it might leak some

information or possibly expose a vulnerability.

There are two main approaches to fuzzing [49]:

1. Mutation-based fuzzing also referred to as a ‘dumb" fuzzer, is when

you provide a program with random inputs only. It only requires

one or more templates of a correct input. It then mutates that correct

input at random places. The upside with a “dumb" fuzzer is that
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knowledge about the inner workings of that particular system is not

needed when fuzzing. Other advantages of a mutation-based fuzzer

are its ease of implementation, its portability, and ableness to find

surface-level implementation errors often [71]. A drawback is its low

code coverage.

2. Generation-based fuzzing produces inputs on its own, based on

a knowledge of the system inputs structure. Unlike mutation-

based fuzzing, generation-based fuzzing will have significantly more

extensive code coverage, up to 76% more according to Miller and

Peterson [49]. However, it requires a more intimate knowledge of the

software system. Work in fuzzers has moved away from pure random

fuzzers as it only would find simple programming errors. Input

validation would stop most of the naive implementations of a fuzzer.

The idea is to find flaws with “targeted" randomness, i.e., incorporate

some heuristics and decision making instead of pure randomness, to

increase efficiency and code coverage.

A fuzzer can be used either as a white, black, or gray-box testing

technique. White box fuzzing is when the source code for the program and

runtime information is available. The gray box is when the information is

not available, but it is guided by analyzing the program responses. Black-

box is fuzzing blindly, without access to the source code or analyzing the

program responses to improve future mutated inputs. Black-box fuzzing

is not an effective technique to be used by itself: essentially, an infinite

set of test cases might be generated, most of which will not be a valid

input. Most modern fuzzers in use are not a black-box testing technique

but rather a grey-box to target bugs that reside deeper in the program [8].

Input mutation is usually aided by some other “intelligent" technique like

static analysis, symbolic execution, or an evolutionary algorithm. Where

and when the fuzzer is applied also impacts the performance, meaning to

increase efficiency by actively choose when to start fuzzing and remove

unnecessary overhead, like fuzzing constant steps of the program. There
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might not be a need to mutate that which is constant for every execution.

Competitors like ForAllSecure demonstrated this by delaying the fuzzing

of a binary until user input was read in [4]. Limiting the fuzzing to certain

parts might miss some bugs that could be triggered if the whole process

was fuzzed. Nevertheless, like in all things in the universe, a balance must

be struck.

The competitors of the CGC have all employed fuzzing in their CRS;

they differ in how but all use some form of grey box fuzzer. More on that

in section 2.8.

2.3 AFL: American fuzzy loop

Michał Zalewski is a white-hat hacker and a computer security expert. He

worked for Google as the director for information security before moving

on to snap inc as a VP for information security. Under the pseudonym

lcamtuf developed a coverage-guided grey-box fuzzer known as AFL.

There were two main design principles in developing AFL, speed, and

reliability but also ease of use.

Coverage measurement AFL [74] calculates the coverage by injecting

two byte random code at each branch point. Figure 2.1 shows how the

injected value is calculated, so when a the code is executed and a new

branch is reached, the current and previous location is XOR’d.

Figure 2.1: AFL edge coverage [74]

The tuples(i.e branch source and branch destination) save the direction-

ality by doing a shift operation on the location values after they are stored,

which means that going from location A to location B differs from, loca-

tion B to location A(which is important because of edge coverage and not

block coverage). Shared_memory we see referred to in line 31 in Figure 2.1 is
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an bitmap where AFL calculates each byte set as a hit count for a tuple of

source and destination branch.

These tuples are stored in a 64KB shared bitmap, the size is for it to

fit in the L2 cache, however collisions will occur if the code base is large

enough. This goes to show the design decision to speed instead of accuracy.

This makes sure we can differentiate between inputs that executes the

same blocks, just in a different way. AFL does that by applying a hashing

function to the tuple to determine which path was taken and store the

amount of time that unique path frequenzy in execution. An input that

creates a new tuple(i.e new edge coverage) is prioritized while the rest are

discarded, even if the new input does have a unique execution path. The

developer argues that incorrect state transitions is fare more likely to trigger

bug rather than the number of basic blocks traversed by an input.

This adheres to the main design principle of speed gain for precision

trade-off, where edge coverage. AFL also calculates a hit-count, to calculate

the frequency of a basic blocks execution. This is one of the ways AFL

differs from other fuzzers used in the past, where it calculates code

coverage basd on edges and hitcounts instead of basic block coverage.

Figure 2.2: AFL workflow exploring a target program

Figure 2.2 illustrates the fuzzing process. AFL starts with a given

input from the, captures its code coverage, and begins. You can also

see in Figure 2.2 AFL implements a “fork server". That is to perform

all necessary libraries are linked, performs execve(), and reaches the first
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instrumented function. AFL does this to increase performance by 1.5x or

2x more efficiently instead of beginning the fuzzing process before even

reaching the first instrumented function [74]. AFL also supports using a

modified QEMU to gather the code coverage profile when the source code

is unavailable, Figure 2.2 describes the workflow only with source.

Genetic algorithm

AFL generates inputs using a genetic algorithm to mutate inputs that

are ’interesting". Interesting inputs being those that trigger a unique

coverage, inputs are still randomly created but guided using a fitness

function based on its code coverage. The inputs are also trimmed as much

as it can be without changing code path it generated post-trimming.

2.3.1 AFLplusplus

AFL has been built upon over the years; multiple improvements and spe-

cialization of the popular tools have been engineered since its concep-

tion [18, 35, 67]. The incremental nature of improvements in fuzzing tools

inspired AFL++ [34], an open-source community-driven fuzzing tool that

incorporates state-of-the-art fuzzing improvements. Over time other non-

AFL fuzzing research was incorporated into AFL++, even adding novel

features striving to make AFL++ a state-of-the-art fuzzing tool.

By using the community-driven approach of incorporating new novel

ideas into one fuzzer, AFL++ updated the comparison by using LAF-

intel [38]. LAF-intel splits up large comparisons into smaller chunks,

getting feedback for each chunk and evolving the mutation based on that.

For example, instead of comparing an unsigned integer with a bit width of

32-bit, it splits it up into chunks of 8-bit unsigned integer comparisons.

Another technique is to use AFLsmarts [56] to use the input structure in

the fuzzing campaign. The structure is guessed from the initial inputs and

falls back to raw fuzzing if the coverage is not improved. This means it can

fuzz an input’s structure rather than the raw bytes if coverage is increased.

Other than using AFL++ for its speed, coverage, and mutation, which

are superior to AFL. We choose AFL++ because of its ability to partially
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instrument a binary. This way, we can focus the fuzzer only on the part of

the code where we suspect there is a bug and not waste time elsewhere.

Also, AFL++ uses an evolutionary algorithm that evolves an input based

on coverage. This can be both a blessing and a curse. A curse is if

the code being fuzzed can handle different file types, and the file types

have different structures; if AFL++ evolves an input that does increase the

coverage but mutates the inputs magic bytes and not the structure, it can

lead to poor performance.

2.4 Symbolic execution

Symbolic execution is a program analysis technique proposed by King [40].

This technique allows to explore all execution paths in a given program.

The input values are represented as symbolic values, meaning that the

variables are not evaluated for their actual value but instead replaced

by a symbolic expression which results in a path condition for a given

executable path. A path condition is a boolean first-order logic of the

symbolic expressions in that path.

A path condition is solved by a constraint solver that produces a set of

concrete inputs satisfying the constraints of the program’s execution path.

If the end state is reachable given some input, then the path is feasible;

the path is infeasible if there are no inputs that can produce the execution

path. This makes it a powerful tool to explicitly test that certain conditions

will not occur for any given input. A symbolic execution tree is a way

to illustrate any feasible path; it is an excellent way to illustrate the idea

behind the technique.
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Figure 2.3: Symbolic execution tree

Figure 2.3 depicts a simple program expressed as a symbolic expression

tree. The top of the tree shows the first condition. The symbolic state has

a path condition (PC) that is empty; it will be populated with different

constraints along the execution path, all of which must be satisfiable. The

function void f unc starts with an i f − else condition; then two branches will

be created, the execution tree will follow both paths, the true branch, and

the false branch.

The PC is also updated with every constraint in the specific path,

meaning the PC in the true branch has (X > 5) while the false branch PC

consists of (X <= 5). Following the true branch deeper, we can see that

symbolic values stores the operation of adding the input variables y + x

symbolically as Y : Y + X but do not compute them. At every leaf node of

the execution, the tree will create a formula that can generate a set of test

cases that will guarantee that the program will follow the same executable

path if it is feasible.

The symbolic execution technique is a handy tool to verify that a given

execution path does not occur for any given input without ever having to

do a concrete execution (meaning execute the program with actual data).

Its completeness [7] can be a double edge sword.

There are some drawbacks to a classical symbolic execution. First,
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it has an exponential growth rate; even small programs might be too

computationally expensive to be worth it. The analysis needs to parse all

variables as symbolic values. If the program uses code that calls functions

outside of the control of the symbolic execution and alters some conditions,

then a later evaluation will fail. Furthermore, loops termination dependent

on a symbolic variable can create an infinite set of paths [13], and non-

linear arithmetic that the constraint solver cannot handle are some of the

limitations of a classical symbolic execution.

2.4.1 Concolic testing

Concolic testing [36] is a way of dealing with most of the abovementioned

issues. Instead of only handling the variables only as symbolic through-

out the execution, we complement symbolic execution with a concrete ex-

ecution. The concolic execution maps all the variables as concrete data; it

receives a random set of inputs at the beginning of execution. Both the sym-

bolic state and a concrete state are preserved; to force the execution away

where the symbolic values may deem a branch condition solvable when in

fact, it is not; it replaces the symbolic variables with concrete variables by

backtracking. Imagine a constraint that is theoretically solvable but com-

putationally infeasible. Such as finding the same hash for two separate

variables; in concolic testing, we can backtrack and negate a given branch

condition and replace the symbolic values with concrete ones, the branch

is not explored, and the path condition is updated.

Forcing the execution away from that given branch means it can return

a false negative, i.e., the program may contain an error, but finding an input

that satisfies the constraints of the branch cannot be solved in a reasonable

time. It means that we will lose completeness, although trading a false

positive with a false negative is suitable for saving resources.

Symbolic state explosion affects both classical symbolic execution and

concolic testing. An increase in conditional statements will exponentially

affect the number of alternative paths a program can take. The exhaustive

search approach applied by the technique will force an evaluation of all the
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feasible paths. Concolic testing is better than the classical way; however, it

still does not scale well. There are ways to deal with this issue, like using

heuristics when choosing a path or ignoring frequently used paths.

2.5 QSYM

QSYM [73] is a practical concolic execution engine designed to be

hybridized with a fuzzer. QSYM alleviated some known bottlenecks in

concolic execution and optimized with fuzzing to outperform conventional

concolic execution where these bottlenecks make it too computationally

expensive.

The design choices made by the developers where so QSYM could scale

to real world programs.

2.5.1 Bottlenecks in concolic execution addressed by QSYM

Slow symbolic emulation Symbolic emulation could be slow because of

different things like path explosion or constraint solving. However, it is the

opinion of Yun et al. [73] that intermediate representation(IR) is to blame

for much of the overhead. Traditional symbolic execution tools adopt an IR

to simplify symbolic modeling, but it incurs significant overhead. This is

because the number of instructions after translating increases dramatically.

In addition, the basic block (sequential instructions, with an entry and

exit) contains instructions that do not need to be represented symbolically,

resulting in unnecessary modeling of information not related to the

gathering of constraints. Meaning, useless information also symbolically

leads to more overhead.

Symbolic and non-symbolic instructions and translating the instruction

in itself also cause overhead.

The optimization made in QSYM was to remove IR and use what

they call Instruction-level symbolic execution. Of course, constraints

were gathered directly from the instructions, making the implementations

harder and limiting QSYM to one architecture(x86). However, this way
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freed them to only symbolically emulate instructions needed to create

symbolic constraints instead of emulating every instruction in a basic

block. Tools like angr and S2E do block-level emulation, meaning all

the instructions in a basic block are symbolically emulated, even if most

of the instructions are unrelated in gathering constraints. Unfortunately,

this would force them to rely on snapshots because overhead incurred

emulating, unlike QSYM, which can re-execute efficiently.

Snapshot Usually, when a concolic execution takes paths at a condi-

tional branch, it uses the snapshot as a starting point when the path is ade-

quately explored. This is to save the cost of having to re-execute the entire

program. Unfortunately, this does not work for a hybrid concolic execution

that relies on a fuzzer for its input.

When concolic execution saves the symbolic state(where all concrete

variables are mapped to symbolic ones), it is based on the input it got

from the fuzzer. When the concolic engine decides to abandon the current

execution and then loads the snapshot, the following input might not

lead to the same path as the previous test case. This is because of the

nature of how a fuzzer generates test cases(i.e., bit-flipping, mutations);

they make random(albeit minimal) changes to a seed input. Also, the

snapshot cannot just save the program state, recover from a snapshot

and then move to a different path. External variables, such as kernel

state(register values, file descriptors, system calls), can alter the symbolic

status that needs to be considered. Unfortunately, the solutions to saving

the external environment are expensive and increase overhead but have

completeness and soundness. QSYM’s approach is to re-execute as

compared to recovering from a snapshot. The result is less execution

overhead when using the external environment that a concolic execution

engine has. However, a precision loss is to be expected, but this is where the

hybrid nature of QSYM comes in because it QSYM will result in unsound

test cases with no new code coverage [73]; which fuzzing will alleviate by

eliminating test cases with no value to increased code coverage.

Soundness Soundness is for current concolic execution are a potential
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overhead as well. While it guarantees that an input will result in execution

path, if it can satisfy the constraints, strict soundness makes concolic

execution fail or time-out against logic that cannot be solved by the

constraints solver in a reasonable time [5].

Therefore, the designers of QSYM sacrifice strict soundness in pursuit of

better performance. Optimistic solving refers to it where QSYM only solves

a portion of the constraints to generate test cases, then hands them over to

the fuzzer to check if it is useful quickly. Another optimization is basic

block pruning, where the code repeatedly generates the same constraints.

Rarely does it lead to increased code coverage, so QSYM selects the most

frequent blocks and prunes those blocks. QSYM will no longer generate

constraints from these blocks unless the frequency is under the power of

two. Frequency derives its count from multiple executions, where the basic

block is seen as a group, meaning it has to execute N times for it to be

counted as one execution. For example, the basic block is A, and it belongs

to group G, G has an execution limit N=10. Now G has to be executed ten

times before A has a frequency count of 1. This limitation is built in to avoid

excessive pruning blocks that could lead to interesting paths. Context

sensitivity is another heuristic, where basic blocks are evaluated differently,

and frequency is counted separately regarding its context. QSYM uses the

call stack to handle the difference.

Figure 2.4: QSYM-architecture [73]

Figure 2.4 Depicts QSYM architecture; it shows an overview of how

QSYM handles analyzing a target binary. Here we can see that the dynamic
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binary translation is implemented using intel’s binary instrumentation tool.

Unfortunately, the version of PIN QSYM depends on is 2.14, which is quite

old. It is not compatible with newer versions of any Linux kernel equal

to or higher than 4.0, and intel made significant changes for versions 2 to

3. This means QSYM works best for Linux kernel version 3.13 and is not

guaranteed to produce good results for versions 4.4 or higher.

2.5.2 Satisfiability modulo theories

Qsym relies on Z3 [50] to solve the the feasibility of a certain path; Z3 is

based on Satisfiability modulo theory(SMT). It decides the satisfiability of

the contstraint on said path. You can view a SMT solvers core as a SAT

solver + theory solver. SAT solvers are NP-complete, so we use a theory

solver to try to intelligently brute-fore a given problem. Figure 2.5 shows a

high-level view of how a SMT solver works.

Figure 2.5: Overview of SMT solver architecture

SAT solver starts with a chain of N number of boolean variables with

either of the following connectives ¬, ∧, and ∨. It returns true if each

variable true/false value can return true for the entire chain; if not, it returns

that it is unsatisfiable. The chain can be based on many theories, and some

supported theories that Z3 supports are arrays theory, bit-vectors, lists,

arithmetic, partial orders, and tuples. Although the most used form of SAT

solver is to use the conjunctive normal form(CNF), there are other forms
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as well, such as the disjunctive normal form(DNF) and negation normal

form(NNF). CNF is the most popular because it can take a boolean formula

and convert it into CNF with polynomial size, meaning the formula can be

simplified while still having it in a reasonable size.

2.6 Static code analysis

Static code analysis evaluates computer software without actually execut-

ing or running the code. The technique checks for the correctness of the

program used but can also be applied to optimizing the code and trigger

warnings when compiling source code. A famous issue for static analysis is

that the technique suffers from a high number of false positives since it es-

sentially is ’guesswork " [6]. There are multiple paradigms for performing

static code analysis.

Control analysis is one of those paradigms of static code analysis. This

analysis refers to the representation of a script or a piece of code as a graph

in which the graph nodes represent the basic blocks of the program, and

the edges connecting the nodes represent the paths and connections that

exist between the graph nodes. It might happen that a node only has an

exit edge (a path to a different node from that node); in this case, this node

is known as the entry block. Similarly, if a node only has an entry edge (a

path to that node from a node), it is known as an exit block.

Data analysis Data analysis in static code analysis refers to the method

of data mining and learning relevant available codes to infer coding rules.

These inferred coding rules can then be used to create automated software

that takes the program to be analyzed as input and apply the inferred

coding rules to ensure that the program satisfies these criteria. Also, the

same method can be used to study past fixes that also help with revising

and correcting the issues found [42]. Also, data flow analysis can be used in

static software analysis in which run time data is collected about a program

in a static state by utilizing symbolic values.

Interface analysis is where the program is checked by a software that
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verifies interactive and distributive simulations. A subcategory of interface

analysis is user interface analysis analyses user interface model, that is

the elements and definitions that related to the interface defined in the

program code. This analysis tries to ensure that there are no problems in

the interaction of the user with the program. It is necessary to mention

that the model is also looked at as a whole and in the context of the entire

program to ensure that the relevant interactions of the interface with the

remainder of the program are also without vulnerabilities.

Most (if not all) static analyzers have a high false positive rate because

of trying to make the tool sound. This is because of Rice’s theorem, which

means that in software security analysis, we cannot guarantee that a piece

of code is bug-free, and a high false positive rate is far better than a high or

even moderate false negative rate. Yet we aim to alleviate this high rate of

false positive by combining static and dynamic analysis.

2.7 Facebook’s infer

In September 2013, Facebook acquired a company called Monoidics; they

were adapting academic research into usable industry program analysis

tools. The first iteration of infer was verifying memory safety in C code [14].

Later it was developed further at Facebook to handle various bugs and

issues. Such as buffer overflows, integer under/overflow, dead stores,

resource leaks, data races, and more. Infer is open source, coded in OCaml,

and can analyze C/C++, Objective C, and Java code.

A high-level description is that infer analyses code in two phases, cap-

ture and analysis phase. In Figure 2.6 the front end is where the compila-

tion commands for the target source code and builds the system. Then,

it translates into an intermediate language called Smallfoot Intermediate

Language (SIL); this is the capture phase. The backend in 2.6 is where the

second phase begins, infer takes in the SIL and analyzes it for any bugs.
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Figure 2.7: Infer call graph [17]

Figure 2.6: High level view of infer’s workflow [17]

Facebook deployed infer in their CI/CD pipeline, where in every

change made by a programmer, an instance of infer was deployed as well.

This made the requirements of infer strict; to analyze small changes while

still depending on the program context as a whole without re-analyzing,

i.e., if procedure A was changed, then only A and its direct dependencies

were to be analyzed again. They solved this issue by doing compositional

and incremental analysis on function summaries; this way, they could

achieve inter-procedural analysis; this is what happens in the backend

phase of 2.6. Figure 2.7 illustrates how infer handles inter-procedural
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analysis. It generates a call graph, the graph is directed to illustrate

dependencies, then it evaluates each procedure/function starting from the

leaf nodes. So, it starts from Func 4 and generates a function summary;

and since Func 4 depends on Func 3, it either uses a function summary or

generates one. Then it uses Func 3 summary and evaluates Fun 4 and Func

5. Some functions may also be run concurrently, which infer checks for.

This leads to parallelization.

The inter-procedural analysis may introduce cycles, which infer must

resolve before the analysis can terminate. Let us say Func 4 needs the

function summary for Func 5; the analysis of Func 4 is then paused;

however, Func 4 needs Func 3 summary, and now both Func 4 and Func

5 are paused. Now Func 3 needs Func 4 function summary, and with that a

cycle has occurred.Infer then uses a fixed point to break that cycle. Infer is

non-deterministic due to parallelism; a random selection of starting node

infer begins its analysis on and cycles.

2.7.1 Separation logic and bi-abduction

To reason about buggy code, the developers of infer choose separation

logic [54] for its pointer analysis capabilities, reason about computer

memory mutation and bi-abduction [15] to reason about data structures.

This formal verification and compositional analysis of the source code

allows us to reason about bounded correctness even in large programs with

thousands of lines of code. Although we are also dealing with imperative

programming, Hoare logic can handle this type of programming where the

programmer handles the control flow.

Separation logic builds upon Hoare logic, which has a set of logical

rules to reason and analyze computer programs’ correctness. Its main

feature is the Hoare triple, where where there are a pre and post-condition

separated by a command. It takes the form: {P} C {Q} where {P} is the

pre-condition, {Q} is the post-condition, and C is the command or program

code. The pre and post-conditions are regarded as assertions, essentially

a statement made about a true program before and after the program
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is executed, the command C, and terminated. With that, we get partial

correctness. Total correctness is when the pre-condition assertion is true,

and after the command C, the program must terminate, and post-condition

C also holds true.

For separation logic, using Hoare triplets, the logic is based on a

connective ∗, which can be read as "and separately". So that {P} ∗ {Q}

means that {P} and {Q} disjoint parts of the same memory; as such, the

proofs built using separation logic are much shorter than other techniques

that reason about correctness, especially when data structures are mutated

because of the separating conjunctions [57]. Since there are no ’sharing"

between disjoint parts {P} and {Q} when there is an update to {P}. This

local specification can be generalized and extended to any memory, the

rule known as the frame rule:

{P}C{Q}

{P} ∗ {R}C{Q} ∗ {R}

[57]

Where {R} is the frame, and if the program execution satifyes {P} then

same can be said for {P} ∗ {R}. Meaning, we can perform local reasoning

using the memory accessed while separately use the frame to describe

memory outside the footprint.

Infer uses an internal theorem prover to find and reason about the pre-

and-post condition; however, they use bi-abduction to find missing states

needed by the theorem prover and still be computationally feasible. Bi-

abduction [15] is where infer derives logical conclusions for separation

logic pre/post condition directly from the code. It is a form of abductive

reasoning using the frame rule, more specifically inverse of the frame rule.

This mix allows an automated way of gathering information about the code

without manually writing pre/post conditions, allowing the scalability

of infer’s bottom-up analysis. Even with a high number of incremental

changes to the code, the analysis is still feasible.
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2.8 Tactics employed in the CGC

Even though the ranking in the competition was clear, it does not mean

that team that placed first was exceptionally better than the last-place

team. This is because DARPA used a relatively complex scoring system

to decide points given and taken away, which took in uptime, how many

vulnerabilities they exploited in contestants’ systems, and more. This

section will explore how some of the competitors found vulnerabilities in

the challenge binaries (CB). Examining the design designs, they made to

increase performance.

2.8.1 Bug discovery

Fuzzing tools are one of two main techniques heavily used by the

competitors to discover bugs in a given CB; most of the competitors used

an “off the shelf" fuzzer but made some adjustments. American Fuzzy

Lop (AFL) was a popular choice; Shellphish, ForAllSecure, and TECHx

applied AFL as a basis for their fuzzer; all three teams ranked at the top

of the competition. The second technique was symbolic execution, mainly

custom-built by the competitors.

ForAllSecure used AFL as a basis for their fuzzing but went another

way to calculate the code coverage. They patched the binary with their

full-functioning rewriter (FFR); the FFR inserts a patch into the middle

of the binary. Of course, writing into the middle of the binary required

them to fix the now out-of-place addresses and offsets [4]. Rewriting a

binary does require much work, but it gave them an option to rewrite some

instructions to their benefit. Breaking apart 32-bit comparisons to 8-bit and

fuzzing them separately and delayed fuzzing until the user input was read

in gave them a 100-900% performance boost as opposed to AFLs QEMU

mode according to Avgerinos et al. [4].

ForAllSecures also utilized symbolic execution, more specifically con-

colic execution, to explore different paths for a given input that might trig-

ger a bug in the binary. Not only did they do the standard negation of
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branch conditionals, but they also modified memory pointers to find if the

modified memory accesses create an input that explores a new path. They

repeat the execution with all the different inputs their symbolic execution

engine generates; this will inevitably create exponential paths to explore.

To alleviate the “path explosion" problem, they used the technique Veritest-

ing [3]. Veritesting technique is a way to increase code coverage while still

dealing with the “path explosion" problem. It does so by merging paths

by alternating between dynamic symbolic execution (concolic execution)

and static symbolic execution. ForAllSecure tactic was to combine sym-

bolic execution with their modified AFL fuzzer and run them in parallel;

the fuzzing engine shared promising inputs with the symbolic execution

engine and vice versa.

Shellphish Shellphish used a fuzzer known as Driller [65]. Driller is

not a pure fuzzer; it exercises selective concolic execution to make it more

able to pass complex inputs. Its selectiveness is that it only applies concolic

execution on inputs the fuzzer deems interesting.

Driller’s fuzzing capabilities build upon a version of AFL. They altered

the QEMU emulation in AFL [60] by keeping the random seed consistent

for every execution until an input produces a crash; then, the concolic

execution steps in to handle any “Challenge-response" by looking for that

specific random string. Fuzzing for new execution paths is now possible

since the randomness behavior of the program can be kept consistent

for further exploration or proving a vulnerability. Keeping random seed

values consistent is similar to TECHx’s non-determinism strategy; both

strategies try to fuzz a minimal part of the process. All this allowed them

to move the AFLs fork server logic until the first call to receive. Similar to

the ForAllSecure team tactic of waiting for user input before implementing

fuzzing.

Angr, the symbolic execution engine used by Driller, assists the fuzzer

by finding new execution paths the fuzzer cannot reach. Meaning, if

Driller meets a branch condition, and the fuzzer cannot explore both paths,

it passes it over to angr. Angr then uses pre-constraining to match the
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execution path the input used by the fuzzer created, then tries to solve

the condition fuzzer could not solve, it then executes without the pre-

constraints to find a new possible path. If it succeeds, it tries to produce

input(s) with its constraints solver and passes it back to the fuzzer.

TECHx [53] made several modifications to the AFL fuzzer, as ForAllSe-

cure and Shellphish did. Some of the adaptations to AFL were to remove

non-determinism by replacing calls to the random number generator with

fixed values. Transmit (UNIX equivalent write) system calls were ignored,

and receive (UNIX equivalent read) system calls was replaced with a no-

operation instruction when it returned zero bytes. TECHx also moved the

AFLs fork server right before the first call to receive, sacrificing some pre-

cision for performance, which shares a similarity to ForAllSecure’s post-

ponement of fuzzing until the program reads in user input.

Like ForAllSecure’s approach of using FFR, TECHx also used binary

instrumentation to gather code coverage. However, ForAllSecures begins

with their custom FFR and defaults to emulation with QEMU, while

TECHx runs some instances QEMU based and some instances using a

binary instrumentation tool in parallel. Like Shellphish, their fuzzer

handles conditionals needing a specific input where a fuzzer might have

some trouble using symbolic execution; TECHx custom-built a symbolic

execution engine called Grace2. They differ when they use symbolic

execution; TECHx begins with assisting their fuzzer with symbolic

execution to find inputs that generate new paths unlike Shellphish more

conservative approach of waiting.

2.8.2 From Bug To Vulnerability

The competitors also needed to turn a bug into a vulnerability after fuzzing

the CB’s and executing them symbolically. Input that crashes a program

can be a design flaw and not necessarily a security flaw. Each of the teams

again leverages either symbolic execution or fuzzing to generate a PoV.

ForAllSecure feeds the input that crashed or exposed a bug in the

binary, along with the binary itself, into an automatic exploit generation
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(AEG). The crashing input is mutated to seek control over the EIP (type

1 vulnerability) or leak data from the CF specified memory range (type 2

vulnerability). With the given constraints, it symbolically executes the path

and tries to develop an exploit by generating a formula; if the constraints

solver deems the formula satisfiable, it can then prove a vulnerability.

TECHx has split this issue into two approaches, Quick Exploit Finder

(QEF) and Symbolic Exploit Finder (SEF). The QEF tried to exploit type 1

vulnerabilities by examining the relationship between register values and

input when crashing. A code injection attack was used when control over

the instruction pointer was proven and not a general-purpose register.

Type 2 POVs were explored using the output of the fuzzing during bug

discovery; QEF also tries to modify the contents of the memory range

to determine if it can generate a valid type 2 POV. QEF was fast and

simple but highly dependent on the crashing input. The remedy to QEF

sensitivity was the SEF; SEF used the crashing inputs to determine the

scope of control over the instruction pointer and registers related to the

crash it has. When it has sufficient control, it tries to generate a set of

constraints that must be solvable to craft a valid type 1 POV. TECHx found

out during the competition that the QEF was enough to craft POVs, even

with its sensitivity to changes to the crashing input.

Shellphish strategy was to use a fuzzer they named PovFuzzer. It

takes a crashing input and mutated one byte at a time while keeping

track of the register values; this is then repeated many times over. One

of the PovFuzzer limitations is not handling complex inputs well. Rex,

the symbolic execution engine, addressed that limitation. Rex symbolically

traces the execution path of the crashing input. After the crash, it uses

a constraint solver to generate a valid POV or find a set of inputs that

allows the continuation of execution. The team also symbolically traced

‘ìnteresting" inputs discovered by Driller that do no produce a crash. They

coined this technique Colorguard. After the trace, it evaluates if it can

produce a valid type 2 POV using symbolic formulas.
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2.9 Software defect characterization

In this section we are going to define what a bug or software defect is. How

a bug is understood in the context of bug discovery and why we choose to

classify bugs into categories

"A software bug is an error, flaw or fault in a computer program or

system that causes it to produce an incorrect or unexpected result, or

to behave in unintended ways." [70]

The term bug was made famous in computer science from an incident

on September 9, 1947, where a moth entered a computer named Mark II

and disrupted the electronics; it was one of the first recorded incidents

of a bug(in the world of computers), arguably the most famous one [68].

From that day, the term bug evolved with the evolution of software and

hardware. It is now a more complex entity; discovering a bug is a complex

task. A bug defined as a flaw or failure can mean anything, which means

any flaw or failure can be considered a bug. For example, it can be a failure

to convert imperial units to metric units between components like NASA’s

million-dollar disaster. The part of the software that calculated the total

impulse reported them in pounds-force seconds while another part that

calculated trajectory expected them in newton-seconds, resulting in total

mission failure [69]. Alternatively, a flaw can be benign, resulting from

a misunderstanding between parties involved in software development,

resulting in a working software product but not one that does the intended

job.

The current way we have defined a bug, being a flaw or failure, is

not good enough to accurately answer research question 1, nor is using the

individual explanation for each bug in the dataset. Furthermore, studying

the ’symptoms" of the bug is not a way to treat similar bugs. Instead, we

need to categorize them based on observable properties, allowing us to

group them to study the efficacy of the different automated bug discovery

tools.

There are different approaches to classifying a bug class, like Cotroneo
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et al. [20] did an empirical study on bug manifestation based on trigger

analysis. A trigger is what the bug needs to manifest, what input it needs,

the number of inputs, and what environment it requires. As they see it, the

bug chain consists of input, environment, and then the bug. The impact of

the bug chain is a failure, which means they do not consider bugs that do

not cause the software to fail but still could affect the program.

2.9.1 Bug type

This section will investigate the sub-categories of the bug dimensions used

to group similar bugs together. First, we will review the current literature

on these different bug types to gather observable and generalizable

properties of each bug type exhibit. Doing so creates an abstract way

of evaluating bugs as a group; and how that group could, in theory, be

discovered.

Memory bugs: In this thesis, we will define memory bugs based

on Bojanova and Galhardo [11] orthogonal classification of bugs that are

vulnerabilities. The authors define a vulnerability as a weakness type that

leads to unintended use of the software/hardware, i.e., security violation.

Weakness type is where different vulnerabilities can have the same or

multiple underlying weaknesses. Causality is the focus of Bojanova

and Galhardo [11], meaning understanding the causal relationship of the

underlying weaknesses that leads to a bug. Li et al. [45] cause-impact criteria

are similar to what is being described as cause-consequence in Bojanova

and Galhardo [11]. Where they differ is that Bojanova and Galhardo [11]

uses cause for the improper state(s) that leads to a failure and between the

chained improper states have operations that use ill-formed data.
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Figure 2.8: Figure describing the cause consequence classification in [10]

Meaning the first improper state, S1 leads S1 by transitioning because

of an operation using ill-formed data and, eventually, failure F, which is the

consequence, Figure 2.8 illustrates this.

Tracing the state transitions from failure to the first improper state

might fix or find the bug and could be used to predict which analyzing

technique might find that type of vulnerability or bug class more efficiently.

Similar to Cotroneo et al. [20] complexity analysis, the authors [11] mention

that for a bug to present itself, it may need several causes; this classifying

criterion might also be an essential variable in evaluating how the static

and dynamic analysis tools perform in finding the different bug classes.

The memory bug model: MAD, MAL, MUS, and MDL

Bojanova and Galhardo [11] define a memory bugs model, where they refer to

a bug as an operation(s) over a piece of memory storing a data structure or

some primitive data that a piece of memory has two attributes; a boundary

and a size. Where the address has a pointer or is calculated as an offset of

the stack, that is referred to as an object. When an object is under address

formation, this phase’s bugs refer to Memory Addressing Bugs (MAD). In the

phase where the object is allocated, the class is now Memory Allocation Bugs

(MAL). If the object is used under some process, Memory Use Bugs (MUS)

class. Finally, if the object is in the deallocation phase, the class is Memory

Deallocation Bugs. (MDL). Under each phase(i.e., MAD, MAL, MUS, and
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MDL), certain operations belong to and are separated by each phase. For

example, MAD consists of four operations in that phase; initialize a pointer

to an object addressee, and then there is reposition where the pointer

is moved within the boundary of the object, and lastly reassign when a

pointer shifts to another object addressee entirely.

The MUS phase has five operations; initialize, where it writes data in the

memory space of an object for the first time. The following two phases are

read and write; the former is when it reads data from within the boundary

of an object, and the latter is when it writes within the boundary of an

object. Clear is the operation of writing inside the boundary of an object for

the final time prior to the deallocation of an object. Finally, the operation

deference is when an object is inaccessible.

For MAL phase has tree operations. For example, it allocates creating

space for the object, extends, increases the object boundary and size by

extending the memory, and reallocates–extend similar to extend; however,

it allocates a larger piece of memory and passes the object’s data to the

newly allocated memory space.

The MDL phase has, where it releases part of the memory, the part

being the boundary and size of an object; this operation is referred to as

the deallocate operation. The reduced operation is similar to deallocating.

However, the difference is that the reduction in the object boundary and

size is only partial; furthermore, it redefines the original object’s new

boundary and size. Lastly, there is the reallocate–reduce, also bearing

similarity to the last two operations. Here, the distinction is that the object

gets moved to a newly allocated memory space by copying the contents,

moving the pointer, and deallocating the former memory space occupied

by the old object.

Each cause-consequence with a set of operations comes with attributes

with the memory bugs model. They give concrete context to the

operations that happen over state transitions. Shortly, attributes describe

the bug and its severity. Finally, these attributes describe the object and

operations. The attributes describe each class in three categories; source
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code, execution space, and location. These also have several subcategories

further explaining the attributes; for source code, we have a codebase, third-

party, standard library, and language processor. There are user-land, kernel

space, and bare metal for execution space. Lastly, the location: stack or the

heap. Memory addressing bugs(MAD) has one more attribute category,

and memory under use bugs(MUS) has two more. Firstly, the additional

category shared by MAD and MUS is referred to as a mechanism; it has

two descriptions, direct or sequential. The former is when the operation is

performed on a specific singular object, while the latter is after N number of

objects. MUS has again one last attribute called span, with the descriptors

little, moderate, and huge; it details the object’s size. Memory Allocation Bugs

(MAL) and memory deallocation bugs (MDL) also come with additional

attributes. They are referred to as Mechanism, and ownership, where

the former describes if it was an implicit operation(i.e., outside a function)

or explicit(i.e., within a function); the latter describes the ownership of the

object. The classification made in memory bugs model is an orthogonal

classification, meaning there should be no overlap between the classes

of memory bugs. Below we will try to showcase how we can use this

memory bugs model [11] to classify a CVE. Let us apply the memory bugs

model to CVE-2017-12762[22]. In the ISDN sub-system of multiple Linux

kernels(4.9, 4.12, 3.18, and 4.4), a buffer overflow vulnerability existed in

the ioctl handling. A user-supplied buffer is read in at isdn_common.c,

and the isdn_net_newslave function call strcpy; however, the operation is

performed without checking for length and the destination buffer has a

fixed size. This creates a buffer overflow that could lead to denial of service

or possibly arbitrary code execution.
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Figure 2.9: Shows the improper state transitions that leads to the software bug

CVE-2017-12762 [22]

In Figure 2.9, we can see how the memory bugs model works when

defining a vulnerability, where the classes of bugs encompass all the

needed components from the starting state (i.e., where the program went

from normal execution to improper execution) to failure. The chain

of transitions begins by copying the data to a fixed-size buffer without

checking the length of the user-supplied buffer; that is the cause. The

consequence is reading over-bonds, ending the MAD phase. Now the MUS

phase has the over bounds read as a cause, leading to a buffer overflow

consequence. Each of the phases had attributes that give context to how this

happens. Such as where it happens(i.e., kernel or user-land), which part of

the memory, and if the bug is in the source code or somewhere else(third-

party code).
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2.9.2 Evaluate static and dynamic analysis techniques with re-

gard to the memory bug model

To evaluate the techniques and their bug-finding abilities, we leverage

the orthogonal classification of the memory bugs model that we looked

into in detail in section 2.9.1. To find the most interesting combination of

automated bug discovery techniques, knowing if a particular technique is

usually better at finding a type of bug that might aid in the bug discovery

efficiency by combining techniques better. For example, let us say an

organization uses a static analyzer in their CI/CD pipeline and marks a

program as having a memory under use(MUS) type of bug causing a buffer

overflow. Then, instead of using human analysis, that possible buggy

program could be fuzzed if fuzzing is more likely finds that type of bug

instead of using a hybrid fuzzer, wasting more computation than could be

needed elsewhere.

Later, we will go through the empirical results from Yun et al. [73] to

evaluate concolic execution and classify the bugs according to our memory

bugs model. For AFL++, we will go through selected trophies caught by

the fuzzer and do the same. Finally, use infer on both QSYM’s and AFL++

results. That could give us insight into how we can better integrate the

different techniques. Since, according to our memory bug model, a crash

could have a chain of state transitions with multiple bug classes, we choose

to use the first bug class that appears from normal state to improper state.

For example, Figure 2.10 shows a crash with two states, SX and SY, both

are needed to produce a crash. However, we can avoid a crash if we resolve

SX earlier, even without resolving SY. Therefore, we choose to classify each

bug as the first bug class only and evaluate each tool’s effectiveness based

on that. Meaning the first transition from proper state to the improper state,

that bug class is what we will refer to as the bug for that program.

Let us look at the program vim and how we will classify the bug as

an example. Vim is a UNIX editor where AFL++ found a use-after-free

vulnerability. The auto-command feature executes automatically when
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some events occur. So, when a window is closed by auto-command, the

buffer regarding the window is de-allocated. However, the pointer to the

buffer is still being used. So, the cause of this bug is a dangling pointer since

the proper state is changed when auto-command executes as expected.

However, the freed object(i.e., the buffer) can still be used in later execution,

and when it does, a crash occurs. This can be classified as an MDL, with

the cause being a dangling pointer, the operation being deallocation, and the

consequence as an improper object for next operation. When the pointer is used

again, it transitions into a MUS class. Cause as a dangling pointer, operation

for state transition as either read or write and finally use after free as a

consequence. Resolving the bug when the class was an MDL would also

resolve the later vulnerability.

Figure 2.10: Connected state transitions [10]
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Chapter 3

Project Implementation and

Evaluation

3.1 Planning

There has been much research into fuzzing [8, 9, 49, 51], concolic

execution [47, 59, 73], and hybrid versions of these techniques. However,

evaluating the techniques on their bug-finding ability is a non-trivial task

because unless the datasets have ground truth, each ’interesting" input

must be manually debugged to see if it is a valid finding. Past research

into fuzzing tools usually has simple evaluation metrics such as unique

crashes; that do not speak to security vulnerability but more so to fault

tolerance; furthermore, it is not expressive enough to reason about the type

of bugs found and why. They may use automated exploration/exploitation

tools; however, that shifts focus on these tools and their soundness in their

reporting.

Using a heterogeneous dataset with many bug classes in real-world

software, both bugs deep in the program and surface-level trivial bugs.

That, coupled with ground truth to verify if the bug discovery tools found

is a bug, is a much better evaluation metric of the technique’s ability to find

bugs. Unfortunately, such datasets are rare and hard to produce; there are

some out there, like the LAVA dataset or CGC challenges binaries [53, 60,
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Datasets

Code CVE/LAVA bug

file < v.5.32 CVE-2017-

1000249

Stack-based

buffer overflow

yara.3.5.0 CVE-2017-

9438/CVE-

2017-9304

stack consump-

tion

lepton.1.2.1 CVE-2017-8891 DoS

gifdiff N/A null deference

openjpeg CVE-2017-14151 heap overflow

jpegs LAVA 125 bugs

yamlB4 LAVA 5 bugs

tinyexprB2 LAVA 4 bugs

Table 3.1: Table with number of files tested, their CVE or how many synthetic bugs

within the source

63]; however, they have weaknesses with the datasets mentioned above

that must be accounted for when evaluating using the techniques on

them. LAVA’s synthetic nature might not be comparable with real-world

bugs [12], and CGC challenges are modeled after real-world bugs; however,

it is still not naturally occurring bugs.

To try to get as accurate results as possible, we will evaluate our

empirical research on two datasets:

• Selected challenges from the LAVA dataset1

• Selected CVE-fixes that other bug discovery tools have evaluated [34,

73]

We will exclude the CGC challenges since Infer is incompatible with

the source code. In so doing, we can draw some conclusions about the

performance of each technique to find bugs alone and when they are used

1https://rode0day.mit.edu/archive 18.09, 19.07, and 19.03
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together. Table 3.1 describes the software, software version, CVE or LAVA

tag, and vulnerability description.

3.2 Ex3

For the experimental evaluation done in this thesis, we will use the Simula

Research Laboratory computing cluster called Ex3[32]. The Norwegian

research council funds the infrastructure. The Ex3 offers a heterogeneous

computing cluster; we will use AMD EPYC [31] 7601 32-core Processor; the

node has 64 cores, with 2TB ECC DRAM and 4TB NVMe DRAM. However,

we will not use all cores or memory in our evaluation as we are on a shared

resource.

3.2.1 Singularity

AFL, QSYM, and infer are tools with different dependencies and system

requirements. Therefore, running these tools on the same platform requires

us to employ a containerized application of the tools, not only for the

system dependencies but to circumvent the need to have root access.

Singularity [62] offers such virtualization, where we can install and use

the dependencies needed yet also bypass the need for root privileges a tool

might need to be installed. We build the container image remotely and

deploy the built image on the cluster for our empirical evaluation. Since

root privileges are needed to build an image, we made use of a remote

builder 2.

To build a singularity container, you need a definition file to specify the

base OS, dependencies, how to start the container, environment variables,

etc [62]. The definition file we used for AFL++ and QSYM was taken from

the GitHub repository with multiple fuzzing definition files 3.

2https://cloud.sylabs.io/
3https://github.com/shub-fuzz
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3.3 Datasets

This section will present the datasets we will use in our empirical

evaluation. Analyze and present the bug and its characteristics and classify

them according to our memory bug model defined in section 2.9.1.

3.3.1 CVE dataset

One of the real-world programs that we use in our datasets for the

empirical analysis is file [21], which contains a stack-based buffer overflow.

The program in question is the Unix file command that scans a data of

an input file to guess the file format. After a commit in 2016, a bug

was introduced where it became possible to produce a stack-based buffer

overflow. For example, an attacker could exploit 20 bytes on the stack by

creating a specially crafted .notes section in the ELF binary. This bug was

possible because of a condition that is always true. We classify this as a

MUS class using our bugs model. Meaning the cause of the transition into

an improper state is an erroneous check on the length of data being copied

into a fixed-size buffer. So then, according to our memory bugs model, the

cause being an memory error erroneous write to object; consequence being

a buffer overflow. We can see the attributes needed to expose this bug in

Figure 3.1.

Figure 3.1: file CVE bug class [11]

The following sample in the CVE dataset is yara[25], which is a helper

tool for, but not limited to, security research. It performs pattern matching

in text and binary files based on crafted rules. The code has a regular

expression module with a bug triggered by the mishandling of hex strings.

46



The mishandling grabs too much of the stack resulting in a crash. There

was no limit on the depth of the abstract syntax tree representing the hex

string. Therefore, we can classify this bug as a MAL class, with cause

no limit on the amount of space on the stack the program is allowed to

grab. Figure 3.2 shows the attributes and the single-state transition. The

state transition from proper execution into when the program erroneously

allocates memory, the consequence being a memory overflow.

Figure 3.2: yara CVE bug class [11]

Lepton [24] is part of Dropbox; the code performs compressions

losslessly on images. The application crashes by not setting up the correct

number of threads if a malformed file is passed to the program. The

number of threads might be more or less than the actual number of threads

used; however, the buggy version still iterates over N number of threads

and performs operations over their memory space. The cause was an

erroneous operation because the bug was caused by an implementation

error causing a reposition of a pointer to a wrong position. The consequence

is over/under bounds positions of the pointer. At this point, the bug is

a MAD class bug. Later in the execution, when the pointer is used to

read some data, is when the state transitions from a MAD to a MUS. The

cause of this transition is because improper pointer that is over/-under

bound. When the read operation is performed, causing a crash/failure is

the consequence. While still following the reasoning we defined in Section

2.9.2, we will consider the CVE as a MAD class bug, and Figure 3.3 shows

the attributes of the CVE.
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Figure 3.3: Lepton CVE bug class [11]

Gifsicle [41] is a application for manipulating GIF images. It can

merge GIFs, extract component frames, and more. The code has a null

deference bug caused by iterating over possibly non-initialized pointers

when setting up the color map, causing the application to crash. If we

apply our memory bugs model to this bug, it is a MUS class. The cause is an

improper pointer that reads over bounds, resulting in a consequence being

a pointer dereferenced. The proper state and improper state only have

one state transition. After that, the execution is normal until the pointer is

dereferenced. Figure 3.4 illustrates the cause-consequence and all attributes,

which shows that it is not a relatively deep hidden bug.

Figure 3.4: Gifsicle CVE bug class [11]

Lastly, the final target in the CVE dataset is openjpeg. openjpeg is

an image compression library for encoding and decoding images. The

code contains an of-by-one error that triggers a heap overflow. When

the program compresses a file and tries to encode blocks, there is a

possibility of allocating memory, causing an off-by-one error later. This

is possible because in opj_mqc_byteout() in lib/openjp2/mqc.c points to

before the buffer. However, this is not accounted for when setting the

buffer in opj_tcd_code_block_enc_allocate_data(). With that, the cause here
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transitions from proper state to improper state is an erroneous allocation,

where the consequence is not enough space allocated, a memory allocation

bug(MAL). However, the MAL bug transitions into a MAD class by cause

being an improper object. The consequence is an over-bounds pointer by

repositioning the pointer. The result is that this bug is both a MAL and a

MAD class.

Figure 3.5: Openjpeg CVE bug class [11]

However, we classify this bug as a MAL class, as shown in Figure

3.5; fixing this first would fix the entire bug. Therefore, it would be more

valuable for a bug discovery tool to expose this first.

3.3.2 LAVA dataset

Synthetic bugs

A famous problem with evaluating dynamic analysis techniques is suit-

able datasets with ground truth variables. Using software listed in com-

mon vulnerabilities and exposures database could provide valuable test

data, knowing a bug exists in a real-world software version; however, a

challenge of performing large-scale analysis on multiple programs. Fur-

thermore, there are no standards for describing a bug, making it time-

consuming to analyze the software and how the bug can be triggered;

moreover, triaging the results manually as there are no ground truth vari-

ables.
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LAVA

LAVA [30] tries to mitigate the abovementioned issues by synthesizing

bugs and injecting them into the source. Each injected bug has an

identification number serving as a ground truth variable. Furthermore, we

know what kind of bug it is and where it is. The concept of LAVA is to keep

it simple, where each bug should have one triggering input, the bug should

be as realistic as possible, and the effect of the bug should trigger behavior

such that it affects the program’s security.

LAVA uses static and dynamic analysis to find data an attacker can

control. The dynamic taint analysis uses what they refer to as liveness,

which refers to a particular byte in an input that decides what branches

are taken; doing so captures how a particular byte affects the control

flow. Modifying that value is part of generating bugs. Another metric

Taint compute number measures the amount of computation performed on a

variable at the current point in the program. Having both of these measures

combined gives out something called Dead Uncomplicated and Available data

(DUA); the DUA is at that point in the execution where specific byte(s) can

be used to trigger a bug without changing the normal program control flow.

When DUA is discovered, a dataflow relationship is created between the

DUA and the attack point. The DUA bytes have to represent a particular

value, such as not triggering the bug all the time and emulating real-world

bugs. The DUA must be able to affect the program at the time of the attack

point by doing operations that will lead to a bug (i.e., buffer overflow).

Furthermore, the DUA can be stored in a global variable, so it will be

available at the attack point if it is out of scope.

So in a high-level view, clang4 is used to instrument the source code

with taint queries. Then PANDA5 is used to record the program with a

particular input, try to discover the vulnerable parts (i.e., DUA), then use

clang again to inject the bug into the program source.

Let us assume we do a taint analysis of a particular program A, which

4https://clang.llvm.org/
5https://panda.re/
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at line 214 has a buffer where four bytes represent a DUA. Then, later on,

the bytes stored in the global variable could be used to corrupt pointer C,

causing an out-of-bounds read.

There were modifications done to LAVA bugs to increase bug realism.

Sridhar [64] improved LAVA by not storing the DUA in a global variable

but instead passing the DUA by reference between functions. So, after the

DUA is stored and the attack point(when DUA is used to corrupt a pointer).

LAVA only supports injecting buffer overflow type of bugs [30]. The

type of bug in the LAVA dataset are memory under use(MUS) type of bugs

according to our memory bug model defined in 2.9.1, the cause being a wild

pointer, the improper operating was a read and consequence resulting in a

buffer overflow.

Weaknesses with synthetic bugs

There is some criticism of synthetic bugs, issues such as limiting types of

bugs, bug realism, and ecological validity were raised by Bundt et al. [12].

The way LAVA injects bugs into code (i.e., DUA) limits the synthetic bug

types into buffer overflows. The realism of synthetic bugs where injected

code with auto-generated variable names differs from code with organic

bugs. This might affect a program’s data and control flow; fuzzers could be

optimized to find such semantic [12]. Another issue is that LAVA bugs rely

on global variables and magic bytes to trigger the bug [30]. In addition,

the simplicity of the data flow usually differs from organic bugs; this could

also taint the evaluation of automated bug-finding techniques. Also, the

distribution of LAVA bugs on the ”main path"; ’main path" defined as the

median discovery time of edges that are less than one hour., makes it easier

to discover by a fuzzer [12].

Even though it seems that LAVA bugs are easier to find than organic

bugs [12], we argue that using real-world programs and synthetic bugs

would still be enough to evaluate our approach. Even with the weaknesses

mentioned in the previous section, the evaluation between the dataset with

synthetic bugs and real-world bugs should show a similar trend. Meaning
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exposing bugs could happen faster in the LAVA dataset; however, the real-

world programs have more complex bugs, different types of bugs, and are

harder to find. The results should, then, be ecologically valid.

The files we will evaluate are selected challenges from the Rode0day [33]

competition. Rode0day was a bug-finding competition that produced a set

of buggy programs as challenges for competitors to compete. It was a joint

effort with researchers from MIT, MIT Lincoln Laboratory, and NYU. The

competition aimed to evaluate and learn about the different bug-finding

techniques. They primarily used LAVA to inject the synthetic bugs; how-

ever, there were also manually injected bugs along with Angora [58] bugs.

3.4 Experimental design

We choose a comparative experimental research design to determine if

the static analysis is improving the current hybrid way of automatic

vulnerability detection, i.e., hybrid fuzzing. All targets will be fuzzed over

a six hour period.

Figure 3.6: Overall view of how the tools are used together

Figure 3.6 shows the overall design of the tools used together.

The process happens in two stages:

• Stage one: download non-configured buggy source code, then we

configure the source (i,e. capture compiler path, libraries), infer
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performs its capture and analysis phases. Finally, the analysis results

get stored in a directory, along with logs and other information about

the process. File paths where infer marked possible buggy code

locations are written to a text file.

• Stage two: reconfigure the source as the singularity images differ

between the analysis tools. First, export the text file with file

paths as an environment variable; we compile the source to partial

instrument the binary(see section 3.4 for details) first. Next, unset the

environment variable with the text file and compile and instrument

the entire binary. Three processes are launched for the dynamic

analysis: first, on the fully instrumented binary, one AFL++ fuzzing,

and one hybrid fuzzing with AFL++ and QSYM. Next, hybrid fuzzing

with AFL++ and QSYM on partial instrumented binary. Each process

is run for six hours, and memory, time limit, and paths are given in

the JSON file format.

Partial and full instrumentation

The instrumentation done by AFL++ is the pivotal point when we use

static and dynamic analysis together in contradiction to only dynamic

analysis. A quick recap, by instrumentation, we refer to the injection of a

random value AFL++ injects at the start of a basic block. This is how AFL++

records coverage by evaluating an input’s edge coverage and prioritizing

the inputs that show they get an increase.

The way we do that is first to analyze with infer; then, after infer’s

analysis is concluded, a file with the vulnerable file names is generated.

Then, AFL++ uses an environment variable with a path to the file and

instruments said filenames only. This generates the partial instrumented

binary; then, we instrument across all files to generate a fully instrumented

binary. Since the AFL++ is an evolutionary coverage-guided fuzzer, inputs

generated while fuzzing the partial instrumented binary will be drawn

towards the part of the code infer marked as vulnerable. Creating a
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fully instrumented binary requires us to instrument every basic block,

and tracing the coverage-gaining inputs will have a performance cost.

However, even though we lose the ability to favor inputs that cover a

broader part of the entire program in producing a partial instrumented

binary, we gain in efficient and targeted fuzzing. For example, imagine

if we have a program A that has a total of 2000 basic blocks. Let us say

the functions infer marked consist of about 600 blocks total. Now, if we

had fully instrumented the binary, the randomness while fuzzing could

draw the fuzzing away from the functions; we want to explore because of

infer’s analysis. By only partially instrumenting, we improve our chances

of favoring the inputs we need and disregarding the inputs we do not

necessarily need.

Overall, partial instrumentation is low cost, implementation-wise, and

regarding resource consumption during fuzzing. This is because all we

need to do is pass a list of file names when compiling the source.

Infer’s issues

How infer [37] reports bugs depends on the options you use for the analysis.

Although there are several defaults and non-defaults, we choose two non-

defaults that only focus on memory safety issues; Pulse and bufferoverrun.

Pulse performs memory safety analysis. It reports issues such as

memory leaks, constant address dereference, null dereference, and more.

The Pulse option only reports when all conditions on the path are true.

Bufferoverun or InferBO performs out-of-bounds array access. InferBO

calculates an array’s bounds of size and offset and reports access violations.

There are several levels of warnings reported, L1 through L5 and U5. L1

is likely a true bug, for example, if the array size is [1,4] and the offset is

[5,5]. U5 is when the values are unknown, and S5 is when the values are

symbolic [37].
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Chapter 4

Results

In this chapter, we will describe our experimental results conducted on

both LAVA and CVE datasets and answer our research questions. We

first present the results form the LAVA dataset, CVE dataset, and finally

research questions.

4.1 LAVA files

In Figures 4.1 and 4.2, we refer partial_crash to crash where the executable

is partially instrumented based on infer results. Partial_LAVA refers to

when the crash is an actual bug, meaning the crash can be confirmed

with bug ID. Full_crash and full_LAVA are when the executable is fully

instrumented. Furthermore, in Table 4.1 multiple inputs can crash on the

same LAVA bug, creating duplicates, and discovery time records the first

input exposing an LAVA bug.

Software Number bugs found bugs found Discovery

of bugs Partial instr Full instr time

jpegS 125 46 30 85 sec1

yamlB4 5 12 10 25 sec1

tinyexprB2 4 0 0 N/A2

1 with partial instrumentation 2 crashes couldn’t be verified with bug ID

Table 4.1: LAVA experimental results
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Figure 4.1: jpegS dynamic analysis results.

jpegS:

After running infer over the source code of jpegS, it marked 23 of 69 files as

vulnerable. The analysis took 36.34 seconds across 32 cores and averaged

277.1 GB of memory. It found 102 issues with the code, mostly integer

overflow issues. After generating the list of files marked as vulnerable, we

instrumented the executable in those places and ran the dynamic analysis

phase. In the files marked by infer, there are 56 LAVA bugs. Hybrid fuzzing

of the partially instrumented binary produced 143 crashes(SIGNAL 11,

9, and 6), and bug ID could confirm 46 crashes. There are 125 LAVA

bugs in the entire source, and fuzzing with AFL++ alone on a fully

instrumented binary could not produce any crashes. However, with hybrid

fuzzing, that is, AFL++ and QSYM, 52 crashes and 30 confirmed with

bug ID. Furthermore, in Figure 4.1, we can see that fuzzing on a partial

instrumented binary shows better performance early in the fuzzing.

yamlB4:

Compared to jpegS 69 files, yamlB4 is smaller with 9 files. Infer took 33.7

seconds using 64 cores and had 2TB available. 7 of 9 files were marked as

vulnerable by infer with 100 issues. There were a total of 5 LAVA-bugs in

all 9 files, and 1 LAVA-bug in the files infer marked as having issues.
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Figure 4.2: yamlB4 dynamic analysis results.

Fuzzing the binary with AFL++, both partial and full instrumentation,

did not yield any crashes. However, combining AFL++ and QSYM did

produce some results. Moreover, as you can see in Figure 4.2, it did

produce numerous crashes when we tested the fully instrumented binary.

Using AFL++ and QSYM on the partial instrument produced fewer crashes

overall; however, most were LAVA bugs.

tinyexprB2:

Infer found 11 issues with the code; the analysis phase took 5.5 seconds,

averaging over 32 cores, and had 281 GB available during the analysis

process. Out of the three files containing bugs, it marked two as possibly

containing bugs. During the dynamic analysis, using ALF++ on the fully

instrumented binary did not produce any crashes. On the other hand,

combining AFL++ and QSYM did produce 43 crashes when the binary

was partially instrumented and eight crashes on the fully instrumented

part. However, we could not confirm that any of the crashes on partial

instrumented binary and fully instrumented binary was because of a LAVA

bug. However, the crashes were all reported as signal 11, meaning the

program tried to access memory not belonging to the current process.
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4.2 CVE files

gifsicle

Gifsicle is one of the real-world programs where fuzzed. The source

files contain a null dereference, and after running infer over the source

code, it did identify the bug; after the analysis phase had a duration of

33.19 seconds. Infer analyzed the code over 32 cores on average with 280

GB of memory available. After performing full instrumentation of the

binary with AFL++, AFL++ found 14.9 crashes on average after a fuzzing

campaign of 6 hours, and it produced a crash 12.6 minutes into fuzzing

because of the CVE.

Combining AFL++ and QSYM, the number of crashes increased to 39

crashes on average. However, the first instance of a crash that was because

of the CVE took 15.8 minutes compared to AFL++ alone, 12.6 minutes.

Now, fuzzing on the partially instrumented binary had a lower number

of crashes than fuzzing on a fully instrumented one; however, the first crash

because of CVE happened 11 minutes fuzzing campaign with AFL++ and

QYSM. A full 1.6 minutes before AFL++ in a fully instrumented binary and

4.8 minutes before the hybrid version(i.e., AFL++ and QSYM).

yara

As mentioned earlier, it has a bug that can cause a stack overflow. This time

we ran infer over the source files resulting in an analysis phase that elapsed

39 seconds, averaging over 64 cores with 2 TB of memory available. Libyara

contains a source file called re.c, where there is a function _yr_re_emit

which tries to emulate a regular expiration engine. The function is called

_yr_re_emit recursively and infer found a memory leak that could lead to

triggering the bug contained mentioned in the CVE. After 1.9 hours in a 6-

hour fuzzing campaign with AFL++, it did trigger the bug. However, only

on a fully instrumented binary. AFL++ and QSYM did not find the bug,

regardless of whether it was on a fully or partially instrumented binary.
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file

The Unix file command contains a stack overflow [21]. Infer analysis phase

took 14.9 seconds, averaging over 32 cores. During infer’s analysis, it did

not locate the local buffer with the vulnerability. However, it did mark

mget() in file/src/soft magic.c as having a buffer overflow bug. Since file

tries to match in the database, using mget() can expose the vulnerability.

However, we could not expose the bug after instrumenting(both partial

and full) the binaries and performing the dynamic analysis.

openjpeg

Infer analysis took 52 seconds and averaged over 32 cores; during the

analysis phase, infer marked the variable l_data_size that is the cause of the

off-by-one error as vulnerable to buffer/integer overflow; if the variable

was passed to allocating functions that cause the vulnerability.

Furthermore, the dynamic analysis found the bug only if the binary was

fully instrumented, specifically, hybrid fuzzing(i.e., AFL++ and QSYM).

lepton

The analysis of lepton took 4 minutes, averaging over 32 cores. Again,

infer marked variables such as luma_splits and functions related to exposing

the bug. However, neither the fully instrumented nor partial instrumented

binary could expose this bug.

4.2.1 Answering the Research Questions

In this section, we address the RQs described at section 1.4.

4.2.2 Research question 1

RQ1: What are the interesting hybrid combination of fuzzing and analysis

techniques?

Both in our empirical evaluation and other works done previously [12,

73], hybrid fuzzing with concolic execution and fuzzing outperforms tra-
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ditional fuzzing in most cases. However, it is more expensive concerning

resource usage, seeing that constraint solving is computationally expen-

sive. There is work that combines static and dynamic analysis [16, 39, 44],

that seems to improve the overall performance.

Our empirical results seem to show that combining the two analysis

techniques improves detection time but not the overall number of bugs

found. Now, this is to be expected. In combining static and dynamic

analysis, we favor inputs that increase code coverage in only the parts of

the code where the static part is deemed vulnerable. Combining AFL++

and QSYM did show an improvement in discovery time when evaluating

partial instrumented binary in the LAVA dataset and gifsicle. However,

fuzzing a fully instrumented binary outperformed fuzzing a partially

instrumented in the real-world experiment in the number of bugs found

overall.

Fuzzing a partially instrumented binary does not seem to increase a

specific type of bug class either. However, our datasets contain mostly MUS

class bugs, and performing experiments on datasets with a more balanced

number of bug classes could give more generalizable results.

4.2.3 Research question 2

RQ2: Can we find the same occurrences of bugs with static code analysis tools and

dynamic analysis ?

Here we will address RQ2 and what we mentioned in section 2.9.2. The

bugs in gifsicle, proftpd [27], vim [26], and yara were discovered by AFL++.

QSYM found the bugs in file, openjpeg, FFmpeg [23], and lepton. We can see

the distribution bug classes in table 4.2. The definitions for bug classes (i.e,

MAD, MAL) can be found in section 2.9.1

Infer did find almost all bugs, both found by QSYM and AFL++, more

specifically, 75% of all bugs across all files. This could indicate that infer can

find the same bugs. A reason could be that the heap and shape analysis

performed by infer [15, 54] is better at finding MUS bugs since most bugs

in the dataset are MUS class. Since the pre and post-conditions needed
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Memory bug classes

MAL MAD MUS MDL

yara openjpeg LAVA vim

lepton file

gifsicle

proftpd

FFmpeg

Table 4.2: Bug class distribution

to expose, mostly MUS bugs could more often than not be in the same

memory footprint; however, the results here are insufficient to draw that

conclusion.

An interesting observation is that most of the bugs across our dataset

are of the class memory under use (MUS), we can see that in Table 4.2. This

could indicate that fuzzers and hybrid fuzzers tend to find such bugs. The

reason for this could be because a MUS bugs operation is to read, write are

easier to ’guess" when mutating. We can see this trend in other research as

well; for example, the top two reasons behind CVE’s that OSS-fuzz found

were dangerous memory write and dangerous memory read [29].

The bugs found by QSYM are bugs where fuzzers failed, such as

openjpeg. OSS-fuzz could not find the bug because it could not meet the

complex constraints needed to expose this bug [73]. However, that is not

needed when analyzing with infer. Infer marked the variable l_data_size

that is used for the buffer and other parts in the code as possible to of

a buffer overflow. This could indicate that static analysis could handle

finding complex bugs where fuzzers fail. However, seeing that when

dynamic analysis reports a possibility of a bug, it usually crashes. While

a static analyzer could only report a possibility of a bug, and the resulting

information may be invalid without any ground truth variable or previous

information about an existing bug.
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Figure 4.3: Graph representing bug discovery over time for the LAVA-dataset.

4.2.4 Research question 3

For RQ3: How well do the different approaches compare in terms of efficiency and

bug discovery on real world software?

We can look through our results we present in Table 4.3. In the cases

where both full and partial instrumentation’s of binary exposed the bug,

fuzzing using partial instrumentation found the bug faster than fuzzing

with full instrumentation. We can see that in both the LAVA experiment

and real-world programs. However, overall the full instrumentation

exposed more bugs in most cases. For example, in Table 4.3, we can see that

a partial instrumented binary outperforms the fully instrumented binary

when evaluating the LAVA dataset.

An interesting observation is that when we fuzzed openjpeg the fully

instrumented binary, we could observe the crash caused by the bug.

However, no crash exposed the bug with fuzzing partial instrumented

binary. This could indicate that the partial instrumented binary missed

some dependencies by not instrumenting the whole binary, which leads

to input generation favoring inputs that could trigger the bug. Another

reason could be that the fuzzer missed the crash since we forward crash

dump notifications to an external utility, AFL++ could evaluate genuine
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Software Type of bug Partial instr Full instr Discovery time

jpegS LAVA Number of bugs: 46 Number of bugs: 30 85 sec1

yamlB4 LAVA Number of bugs: 12 Number of bugs: 10 25 sec1

tinyexprB2 LAVA Number of bugs: 0 Number of bugs: 0 N/A

file CVE × × N/A

gifsicle CVE ✓ ✓ 11 min1

yara CVE ✓ × 1.9 hours2

openjpeg CVE ✓ × 4.3 min2

lepton CVE × × N/A

1 with partial instrumentation 2 full instrumentation

Table 4.3: LAVA results (note that multiple inputs can crash on the same LAVA

bug, creating duplicates) and CVE results

crashes as timeouts. This could be rectified by modifying the kernel core

pattern as root, which we could not do.

Overall the eight files we evaluated, fuzzing the partial instrumented

binary could expose bugs 37.5% of the time, while fuzzing on a fully

instrumented binary had 62.5% discovery rate.

Figure 4.4: Graph depicting difference number of test cases generated under

fuzzing.

Figure 4.4 shows performance difference in inputs generated, the num-
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ber of generated inputs saw a substantial decrease with our approach. Par-

tial_inputs refers to inputs generated by fuzzing a partially instrumented

binary, and Full_inputs is when inputs are generated by fuzzing a fully

instrumented binary. The details about partial and full instrumentation is

defined in section 3.4.

The difference in instrumentation pushes the fuzzing to value inputs

that increase coverage in fewer files when partially instrumented. It would

stand to reason that this narrows the space in which mutated inputs

could increase coverage, resulting in fewer inputs overall. We see that

as well; across all experiments, when the binary is partially instrumented,

the number of generated inputs saw a 67.4% decrease as opposed to full

instrumentation. However, if we look at crashes, the decrease in crashes

only saw a 34.1% decrease when we compare the results from fuzzing full

and partial instrumented binary. Another interesting observation we can

make is that in Figure 4.4, we can see that LAVA experiments produce

more inputs than CVE experiments, even with partial instrumentation.

The trade-off in coverage overall does not impact the ability to produce

interesting inputs; this could also speak to the efficiencies difference

between the two approaches. The tracing done by the fuzzer could cause

unnecessary overhead, seeing that most inputs generated do not increase

coverage, work done by Nagy and Hicks [52] show that less than 1 in 10

000 generated input actually increase coverage.

4.3 limitations

In all research there are limitation and possible weaknesses that could be

improved upon. This section will attempt to show what the limitation are.

User privileges

Using Ex3 posed challenges, such as not having root access, and forced

us to use singularity images to be able to use different environments re-

quired to use the tool(i.e., infer, AFL++ and QSYM). However, not having
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root access comes with its own complications, one being increased com-

plications when configuring each target. For example, infer’s singularity

image is based on Debian OS, AFL++ is based on Ubuntu 18.04 LTS, and

QSYM is based on Ubuntu 16.04 LTS(because of QSYM dependencies on

old pin versions [73]). However, each image used the host systems ker-

nel, which is Linux 4.15.0-156-generic, infer, and AFL++ analysis is inde-

pendent, and QSYM is designed to work with a fuzzer. Furthermore, the

different source codes for the targets required different packages and com-

pilation commands. This forced us to manually compile each of the targets

to create the binaries.

Another limitation of user privileges is that since the system sends the

core dump notifications, an external utility and getting this information

through API can cause legitimate crashes to be misconstrued as timeouts

instead. Meaning we might lose some crashes that could be valuable.

The issues mentioned above could impact our analysis results and have

influenced what our targets were.

Simple design architecture

The design of combination infer with the hybrid fuzzing was by choice; the

information exchange between the tools relies almost entirely on the file

system. This way might be lightweight, however, infer’s analysis data and

how it reasoned about the vulnerabilities might be valuable to the fuzzing

process. For example, while analyzing openjpeg, infer did capture the heap

overflow bug. Nevertheless, fuzzing the partial instrumented binary did

not produce a crash because of the bug, and fuzzing the full instrumented

binary did. Some dependencies might have been needed for the bug to be

triggered that were not covered by any inputs generated while fuzzing the

partial instrumented binary.

Due to the simplicity of our experimental design, we focus on C/C++

code exclusively and only on x86-64 Linux distributions. Even though

Java is an imperative program language, the garbage collector might

significantly impact the memory bug model and the combination of static
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and dynamic analysis.

Other types of bugs

We chose to focus this thesis on memory bugs in this thesis. Concurrency,

algorithmic bugs, performance bugs, and all other types of bugs are valid

concerns regarding automatic bug detection. The results presented in this

thesis do not contribute to understanding how and if combining static and

dynamic analysis will positively impact efficacy concerning finding bugs

other than memory bugs.

Many of the mentioned limitations in this section boil down to the

desire to keep the experimental design simple and produce a sort of "proof-

of-concept" for our research objectives.
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Chapter 5

Conclusion

5.1 Summary

Software defects are and always have been a challenging problem in

software development. Causing security issues, billions of dollars lost, and

countless hours for the few security researchers. In 2016, DARPA launched

the cyber grand challenge(CGC) to learn more about the feasibility of

finding and patching software defects using automated techniques. Hybrid

fuzzing was a central technique used in the CGC and has been a hot topic

in academic research for the last few years. However, applying hybrid

fuzzing in the industry is a non-trivial task, and research into optimizing

dynamic analysis is still ongoing. In this thesis, we set out to investigate

if we could integrate static analysis with hybrid fuzzing for efficient bug

detection. We aimed to use the scalability of static analysis to target the part

of the code where the static analysis is deemed vulnerable. We empirically

evaluated a dataset containing synthetic bugs [30] and a dataset with real-

world bugs taken from reported CVEs. We also classified the bug in both

datasets with a memory bugs model [11] to see if we could learn what

type of bug each technique usually could find and if we could use that

knowledge to integrate the techniques better. We learned that our approach

usually could find a bug faster. However, the overall number of bugs is

still greater when the dynamic analysis covers the whole program, 62.5%
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to 37.5%, the former being the number of bugs found by using dynamic

analysis in the traditional way and the latter only focusing on vulnerable"

parts. The number of input seeds generated during fuzzing is also reduced

by 67.4% when we use a partially instrumented binary, yet the crashes were

only reduced by 34.1%, compared to fuzzing a fully instrumented binary.

This shows us that our approach produces less uninteresting input seeds.

5.2 Suggested Future Work

We mentioned in section 4.3 that losing the information gathered during

the static analysis phase could be valuable for the dynamic analysis phase.

There are other works that leverage static analysis more comprehensively

than presented in this thesis; work that supports the combination of

techniques. For example, Ji et al. [39] uses static analysis to extract semantic

information about the target program to aid in AFL’s seed selection.

Another use of static analysis is when Li et al. [44] uses static analysis

to collect comparison information to overcome magic bytes comparisons.

It shows that the dynamic analysis phase could benefit by using the data

gathered by static analysis. Future work could directly use the information

gathered about the code during the static analysis phase. More specifically,

how a particular function might contain a vulnerability, infer reasons about

code and attempts to build proof to prove correctness, and failed proof

is valuable information not directly used in this thesis. So, for example,

the failed proof that was reported as a bug by infer could be passed to the

dynamic analysis tools to build input seeds to prove a bug’s existence.

Chen et al. [16] label parts of the code as vulnerable and value seeds that

guide the execution toward those parts; they refer to their solution as the

bug-driven principle. Their solution also tries to reason the feasibility of

vulnerabilities labeled and generate concrete test cases. Adopting the test

case generation and seed selecting strategy of Chen et al. [16], together with

our list of vulnerable parts of code based on static analysis, might produce

some interesting results.
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The memory bug model [11] could be expanded to include other forms

of bugs so that the solution could be more generalizable. There are other

classifications of software bugs, like work done by Asadollah et al. [2] that

built a classification taxonomy of concurrency bugs. Going over literature

and building a comprehensive taxonomy that encompasses multiple types

of software bugs and builds a dataset based on this could enhance our

understanding of the most efficient use concerning static and dynamic

analysis techniques.
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Appendix A

Analysis tools

Infer

Synopsis: static analyzer to detect bugs in Java/C/C++/Objective-C code.

Version: version v1.1.0

Homepage: https://fbinfer.com/ and https://github.com/facebook/infer/

infer run --pulse --bufferoverrun -- make

Note: the argument "-- make" is for situations where a Makefile is present;

please refer to https://fbinfer.com/docs/infer-workflow for more compilation

commands.

AFL++

Synopsis: coverage guided grey-box fuzzer, community version of the orig-

inal AFL.

Version: version 3.11c

Homepage: https://aflplus.plus/ and https://github.com/AFLplusplus/AFLplusplus/

Environment variables: AFL_I_DONT_CARE_ABOUT_MISSING_CRASHES,

AFL_KILL_SIGNAL, AFL_NO_AFFINITY, AFL_LLVM_ALLOWLIST ,

and AFL_SKIP_CPUFREQ. All fuzzing used fixed seed 42, documentation

for environment variables can be found here: https://aflplus.plus/docs/env_

variables/.
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QSYM

Synopsis: practical concolic execution engine designed for hybrid fuzzing.

Version: commit-hash ea4a724170835336a60ec80d957b78b37651b955

Source: https://gitlab.com/wideglide/qsym

NB: QSYM relies on an old pin version for dynamic binary translation.

This means QSYM works best for Linux kernel version 3.13 and is not

guaranteed to produce good results for versions 4.4 or higher.

Singularity

Synopsis: container platform designed for replication and to run applica-

tions on high-performance computing clusters.

Homepage: https://docs.sylabs.io/guides/3.5/user-guide/introduction.html

Version: 3.10.0
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