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Abstract

This thesis investigates the use of packet header information in trace files
derived from Internet measurements at MAWI from the years 2020, 2021,
and 2022 and scrutinizes these information to report the key changes in
the Internet header fields over time. That is, by observing how certain
header fields are used, we can determine whether or not the Internet is
using newly developed network mechanisms. To do this, we parse the
trace files and gather all the unusual data that was discovered in the
packets to search for atypical data in the packets. Our research shows that
there are no recognizable patterns in the data, confirming no significant
changes in the header fields throughout the years. However, we get some
exciting findings which leave room for future deep analysis, and the tool
we implemented to carry out the analysis have a good chance for further
development.
Keywords: traffic captures, packet header, header fields, Internet protocols,
MAWI.
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Chapter 1

Introduction

1.1 Motivation

The paradigm shift in the 21st century has revolutionized the Tech-industry
but increased its vulnerability simultaneously. In the third generation of
computers, network support capabilities were introduced, as were com-
munication components integrated into operating systems [1]. Compu-
terized data transmission is significantly more complex than typical hu-
man communication because of the dynamic nature and communication
route. An administrator may analyze intercepted messages to determine
network architecture by evaluating network performance concerns such as
improperly configured devices, system faults, and network activity. The
passive analysis can be of different types depending on the protocol and
other specifications. It can be as simple as counting packets and examining
the TCP/IP headers or real-time analysis.

Data transmission via a network or communication channel is managed
by using packet headers in networking. In order to maintain a steady and
rapid data flow, the control data is bundled up into the packet’s header.
This data typically includes the packet’s source IP address, destination
IP address, routing information, protocol version, etcetera, enabling the
packet to reach its intended destination. Data plane forwarding devices
feature fine-grained packet forwarding and verification capabilities, allow-
ing for exact control of the forwarding behavior of network packets by veri-
fying the source authenticity and integrity of the forwarded packet [2]. De-
pending on the protocol, like TCP, UDP, ICMP, etcetera, headers have dif-
ferent formats. These formats may not be unique. Usually, one or more
fields are added or are absent. Thus, indicating that these header fields
have undergone many changes over time. Analyzing trace files can provide
insight into the changes header fields have undergone, and a pattern can
be determined from the data.

Even though the Internet was first created as an experimental packet-
switched network, many of its features are now considered "set in stone"
[3]. In addition, Internet ossification makes it almost impossible to deploy
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new protocols and extensions on the Internet, making transport layer evol-
ution harder. For this purpose, the header fields are to be evaluated to see
if any rarely used protocol techniques have changed or if any new mech-
anism has evolved. Furthermore, the observed anomalies can be converted
into a graphical or visual representation to develop trends for better under-
standing. Finally, these findings can be utilized to build sniffing tools and
software in the future.

1.2 Problem Definition

While working on a system and encountering a network issue, one must
maintain a high-level network and automate data and traffic monitoring.
The analytic tool enables one to obtain consistent traffic statistics across
several OSI layers without slowing down the network. With the aid of data
packets, it is possible to extract vital information regarding health and per-
formance that may be used to troubleshoot performance and track down
anomalous data packets. The header fields depending on the protocol, like
IPv4, IPv6, TCP, UDP, and ICMP, are analyzed for various purposes. Un-
fortunately, the headers do not maintain a consistent nature all the time.

To understand a bit more, think of a case where we want to inspect a TCP
header field. First, we need to find the TCP header skipping any preceding
headers, decode the header and then read the header field we are interested
in. Finally, continue with the next packet. However, the case becomes com-
plicated when it is a non-TCP packet or truncated before the TCP header.
These problems can alter the complete analysis if not taken care of properly.
Before handling the unfamiliar values in the header field, actions might be
required to keep things in line. For example, some packet header fields re-
quire bit-shifting to achieve the correct value. So, the program may require
the functionality to do right or left bit shift operations before bitwise oper-
ations, depending on the circumstances. All these steps are necessary for
the smooth transmission and receiving of the data.

1.3 Contributions

In this research, innovative and efficient methods are utilized in order
to retrieve the necessary information from the header. During another
research work, we developed a tool utilizing the python-libtrace (plt)
module to trace TCP connections. During this thesis, we developed
a tool modifying the last tool and added JSON configuration to make
the tool more dynamic in nature. The tool can utilize both python-
libtrace (plt) module and the JSON script to gain direct access to the
protocol’s header fields within the packet, thus giving an upper hand over
other available traffic analyzing tools. Furthermore, by utilizing python-
libtrace, which provides a class inheritance hierarchy, we have a substantial
advantage over the programs that handle encapsulated packets because
those programs have the potential to benefit from the hierarchy. It is also
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possible to generate Traces and Packets with the help of the libtrace API.
Moreover, we define a list of interesting header fields in various protocols,
which are analyzed to articulate a trend based on their behavior and to
propose future expectations from it.

1.4 Research Questions

The research questions for the study "On the Predictability of Network
Mechanism Deployment" are listed below:

How much have packet header fields changed over time?

1.5 Outline

The following is the structure of the rest of this thesis:

Chapter 2 - Background: This chapter describes the background in-
formation on the most relevant concepts behind the methods implemented
in this thesis.

Chapter 3 - Solution Approach: This chapter discusses related works
and gives an overall idea of what is implemented in this thesis.

Chapter 4 - Implementation: This chapter shows what has been done
in this thesis. We conclude with a description of the implementation.

Chapter 5 - Results: The test results with analysis after the implement-
ation in Chapter 4 are shown in this chapter.

Chapter 6 - Discussion and Conclusion: Finally, in this chapter, we
begin by summarizing how we responded to the study questions, discuss
the overall result and then conclude by suggesting possible future research
prospects.
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Chapter 2

Background

This chapter provides a concrete background for the development of the
work. It presents a summary of the technical and theoretical frameworks
related to this thesis. Besides this, the abbreviations used are also
elaborated.

2.1 Packet Switching

Packet switching refers to a networking device’s capacity to process pack-
ets independently of one another. It also implies that packets might follow
multiple network paths to the same destination as long as they all arrive
there. At the links’ inputs, the vast majority of packet switches employ
store-and-forward transmission. As each hop forwards a packet, it first
stores it, then sends it on its way. Packets can be dropped at any hop for
a variety of reasons, making this strategy extremely useful. There are mul-
tiple ways to get from one place to another. Source and destination ad-
dresses are included in each packet and are used to guide it through the
network on its own. Packets from the exact file can follow a different path.
If a path is congested, packets can choose any other route possible over
the present network if they so choose. The transmission rate of a link is
measured in bits per second, and different links can send data at varying
rates. As the result of packet-switched networking, no physical wires are to
be established on a network’s infrastructure. Nonlinear, non-time-slotted,
and irregular networks, like Ethernet, can use multiple packet connections
that end at a switch. Alternatively, sequential links could use frames to
begin and finish packet transfers at predetermined times. Studying packet
switch architectures is also convenient with time-slotted links [4]. Nodes
would switch packets based on their destination address instead of de-
livering each message as a single piece of data. To make a smart routing
choice, a node must know the entire network and its immediate surround-
ings. Each node has a certain amount of memory to store this data. As a
result, the routing protocol must carefully select which information about
the network and neighbors to keep and which information to discard. The
Internet was developed with time. It is the worldwide system of computer
networks that links billions of machines together. On the Internet, these
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gadgets are called hosts. The endpoint nodes are linked together by a com-
munication infrastructure or any form of physical media.

2.2 Performance Mechanisms

Network performance depends on queuing, traffic management, prioritiz-
ation, and scheduling. Meanwhile, some performance techniques include
control over resources and quality of service (QoS). The regulation of re-
sources, the establishment of SLAs, and the guarantee of service quality
are all performance metrics. The individual, group, or network-wide per-
formance can be improved by identifying traffic flow categories and meas-
uring their temporal features with these procedures. Besides this, Capacity,
latency, and RMA are all examples of performance parameters that may be
included in a service. Each characteristic is essentially a name for a specific
class of qualities. These qualities include bandwidth, throughput, good-
put, etcetera. Delay includes variable, end-to-end, and round-trip delays.
Reliability, maintainability, and availability are often referred to as RMA
qualities.

Differentiated services and integrated services are two common types of
QoS for IP-based traffic, which are meant to provide two different view-
points of network services. DiffServ prioritizes QoS by supporting aggreg-
ated traffic flows per hop based on traffic behavior, while IntServ prioritizes
QoS by supporting individual traffic flows throughout the network. Differ-
ent from individual traffic streams, aggregated traffic flows are the target
of DiffServ because network architecture and design evaluate how much
memory network nodes need to store and keep state information for each
unique flow. Resource consumption is unscalable due to linear network
growth. Identifying and categorizing communications facilitates storing
and keeping critical state data. State information includes network flows
and connections’ configuration, and maintenance [5]. When it comes to re-
source distribution, IntServ describes the values and methods used along
the entire flow’s path. Therefore, support for a flow at every network node
along a flow’s entire course is critical for IntServ’s operation.

Service level agreements, on the other hand, are legally binding contracts
between a service provider and an end-user that spell out the terms under
which the provider will be held liable for failing to meet its obligations.
While traditionally, SLAs have been deals between firms and clients, the
concept can be transferred to the business world. The client should out-
line their expectations for each service individually. Depending on the pro-
vider, this may differ. Often, customers want the highest possible levels
of performance. In theory, this is understandable, but it may be costly in
practice. The service provider may argue that service levels should be pur-
posely low to ensure that the service can be supplied at a competitive price.
Alternatively, it is all a matter of judgment, and the customer will have to
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analyze each service level carefully based on its commercial importance.
For example, an online service’s capacity to be available at all times is a top
priority for most companies because the customers depend on it. Other
services, which may not be as critical, can have lesser service levels estab-
lished for them.

2.3 The OSI Network Model

Part of what is recognized as network architecture is the process of develop-
ing a comprehensive, top-down framework for the network. This encom-
passes the interactions that exist both inside the main architectural com-
ponents of the network and between those components. Some examples
of these relationships include addressing and routing, network adminis-
tration, performance, and security. The next step in building our network
is network design, which is essential for integrating needs and traffic flows.

The OSI model has two layers: the upper and lower ones. When it comes to
applications, the upper layer of the OSI model is all about software imple-
mentation. In terms of end-user interaction, the application layer is closest
to the user [6]. End-users and application layers are both involved in soft-
ware development life cycles. This is the layer that is directly above the one
that came before it.

Figure 2.1: Open Systems Interconnection (OSI) Model

The OSI model’s lowest layer focuses on data transfer. The data link
layer, the physical layer, and the application layer are all implemented
using a combination of hardware and software. At each successive layer
of the communication exchange, one or more network protocols are put
into operation. Lower-layer protocols are included in the Internet protocol
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suite, as are typical applications like e-mail, terminal emulation, and file
transfer. The physical layer is the lowest level in the OSI model and has the
closest relationship to the underlying media. The information is primarily
placed on the physical media by the physical layer.

A layered architecture gives us the ability to talk about a clearly delineated
section of an extensive and complicated system. This simplification in and
of itself is of significant benefit since it provides modularity. Adjusting the
layer’s service performance is more effortless. Even if a layer’s implement-
ation updates, the rest of the system can stay working as long as it uses the
services provided by the layer beneath it and provides the identical service
to the layer preceding it. Network designers use layers to arrange proto-
cols and the hardware and software that implements them in order to give
structure to the design of network protocols. According to the networking
paradigm, there are several layers of network infrastructure where every
layer depends on the layers underneath it and supports the layers above it
[7]. Similarly, protocol suites offer comparable features. The application is
taken as a starting point and starts from the bottom up. Each layer, like each
protocol, has a defined job. One way to characterize a layer is by the func-
tions it provides to the layer over it, known as the layer’s service model. It
utilizes the services provided by the layer underneath and carries out vari-
ous tasks inside that layer. A protocol is an agreed-upon collection of rules
and practices for transmitting and receiving information via a network. De-
pending on whether transport protocol is used in conjunction with IP, pack-
ets are handled differently after they arrive at their destination. At several
layers of the OSI architecture, protocols attach packet headers. The most
important benefit of the OSI model is that it helps organize one’s ideas re-
garding networks and provides beginners, journeymen, and experts with a
shared vocabulary for discussing computer networking.

2.4 The TCP/IP Network Model

The TCP/IP model is one approach to simplifying the OSI architecture.
The OSI model has seven layers; however, this one only has four. There
are various tiers, the most basic TCP/IP Model shown in figure 2.2 is the
Application Layer, followed by the Transport Layer, the Internet Layer, and
finally, the Network Access Layer.
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Figure 2.2: TCP/IP Model

From an OSI viewpoint, the network access layer is functionally equi-
valent to the combination of the Data Link and Physical layers. It ensures
that hardware addressing is taken care of, and the protocols that are in-
cluded in this layer make it possible for data to be physically transmitted.
OSI’s network layer has several similarities to the Internet layer. Protocols
like IP, ARP, and ICMP govern the logical transport of data across the entire
network. This model has various protocols, and the protocol, Address Res-
olution Protocol (ARP), determines a host’s hardware address. There are
several forms of the Address Resolution Protocol signal, including reverse,
proxy, gratuitous, etcetera.

The transport layer of the TCP/IP model is equivalent to the OSI model’s
transport layer. End-to-end communication and error-free data transfer are
tasked to it. It acts as a barrier between the data and the higher-level applic-
ations. It can sequence and break data effectively. It has a method for flow
control and the acknowledging functionality to regulate data transmission.
It is a robust protocol, but the latency it takes is high. Costs rise as a dir-
ect result of increased inefficiency. The two main protocols residing at this
layer are TCP and UDP. Within the TCP/IP model, the application layer is
the topmost layer. The Application Layer combines functions from the top
three layers of OSI: Presentation, Application, and Session [8]. In addition
to controlling the user-interface specifications, it manages communication
between nodes. Some standard protocols used in the application layer are
HTTP, FTP, Telnet, SSH, SMTP, NTP, and DNS.

This model has many advantages and can be used for various purposes.
It is an industry-standard model that can be used to solve practical net-
working issues as it is interoperable, allowing cross-platform communica-
tion between heterogeneous networks. Any individual or organization can
utilize it because it is a set of open protocols which any specific institute
does not hold. It can be said that it is a client-server design that is scalable.
As a result of this, it is possible to install new networks without disrupting
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current services. Each machine on the network is given an IP address, al-
lowing it to be identified by the network. It also assigns a domain name to
each site.

2.5 Internet Protocol and Network Protocols

Protocols govern Internet interactions between autonomous computers. In
a protocol, two or more communicating entities establish the format and
order of messages exchanged, and the actions are taken when a message
or other event is transmitted or received. Endpoint congestion control
techniques manage data packet transmission speeds, while router routing
procedures determine a packet’s path from origin to destination [9]. The
Internet Protocol Suite is the most popular protocol of OSI because it can
be used to interact across various networks, from a single computer to a
vast area network. The Internet Protocol can also be used to route data
packets between networks as the internet packets carry data. Routers
can send packets to the correct destination because of the IP information
included in each one. IP addresses are assigned to every device or domain
connected to the Internet, and packets are routed to those addresses.
The communication process is broken down into separate tasks at each
layer of the OSI model by the protocols used by the networks. Besides
this, routing devices have typically been termed gateways in the Internet
world. The Internet’s routers are arranged in a hierarchical structure.
Using routers, data can be routed over a series of networks controlled by
the same administrative organization. A variety of protocols known as
"internal gateway protocols" are utilized by routers for information sharing
within autonomous systems. The external gateway protocol is used by
routers that transport data between autonomous systems. These routers
are known as exterior routers. Routing protocols in IP are dynamic. When
a route is calculated dynamically, the software on the routing devices must
do it frequently. Instead of dynamic routing, static routing relies on the
network administrator to set up the routes, which remain in effect until the
administrator changes them. Destination addresses and next hops are the
building blocks of an IP routing table.

2.6 Network Packets’ Structure

The transport-layer segment is made up of the application-layer message
as well as the information of the header of the transport layer. As a result,
the message of the application layer is incorporated into the transport
layer section. Some examples of this supplemental data are detection of
deviation bits that let the receiver to determine if bits in the information
have been modified during transport and information that allows the
transport layer of the recipient to transmit the message to the application.
This information may also include error-detection bits. After the segment
is delivered from the transport layer, the network layer generates a data
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packet on the network layer by adding details to the header of network
layer, such as the addresses of the end system devices i.e., source and
destination addresses. After that, the datagram is delivered to the link
layer, which will generate a link-layer frame by including its very own link-
layer header information before passing it on. This allows us to see that a
packet has two types of data, a field for header and a field for payload,
at every layer it traverses. A packet from a higher layer is often what
makes up the payload. The header, the data, and the trailer are the three
components of a network packet. The packet’s header specifies how to
handle the information contained within it. The following are examples of
possible instructions: [10]

• The internet protocol addresss;

• Header;

• Size of the payload;

• Packet length;

• Imprecision diagnosis by checksum;

• Offset-based fragmentation for restoration of the address;

• A packet’s utmost intermediary nodes;

• Source;

• Sequence number;

• Different flags to tell a router to break a packet;

• Protocol being used;

• Data packet details and mechanisms to keep networks in sync.

A router determines in which route to send a packet with the help of an
IP address. IP packets are processed independently, meaning packets from
the same application or link may be routed through different channels [11].
The term "payload" is commonly used to describe the information con-
tained within a packet. In a nutshell, this is the information that the packet
must convey in order to reach its intended recipient. Blank data is fre-
quently used to pad the payload in order to fit it into a fixed-length packet.
The header size has nearly doubled in Internet Protocol version 6, which
will have a significant impact on bandwidth. Payload Header Suppression
is a bandwidth saving technology that removes the redundant packet over-
head.

From section 2.7 to section 2.11, all the protocols we are interested for this
thesis work are described briefly.
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2.7 IP

The Internet Protocol (IP) is the core protocol used by the Transmission
Control Protocol or Internet Protocol suite. Internet Protocol (IP) is in
charge of exchanging information and messages between computers and
other devices on the same or different networks linked to the web. For ex-
ample, the data is transmitted from a sending party to a receiving party
server by checking the packet headers for the IP addresses of the respect-
ive domains. Internet Protocol (IP) addresses are unique numerical iden-
tifiers used by devices to transfer data across a network or connect to an-
other device over the Internet. Besides this, every IP address comprises two
parts: the network information and the host information.

IP defines the packet structure because network protocols divide each mes-
sage into numerous packets. A header and data are included in each IP
packet. The header contains all routing information, such as source and
destination addresses, that aids packet routing. In contrast, the data/pay-
load is either the actual data content or a portion of a higher-level transport
protocol. As a result, IP is also known as a routable protocol.

Two types of IP versions exist: IPv4 and IPv6.

2.7.1 IPv4

In developing the Internet Protocol (IP), IPv4 is the fourth version. It is
one of the foundational protocols of outcome-based networking systems
used on the Internet and other packet-switched networks. The Internet
Protocol version 4 (IPv4) is the primary protocol to direct Internet traffic.
Only 13 of IPv4’s 14 fields are essential; the others are either discretionary
or seldom-used alternatives. For example, depending on the options field
size as shown in 2.3, the IPv4 header might be 20–60 bytes. IPv4 is being
used by the vast majority of websites.

Figure 2.3: IPv4 Header

The following are various fields of IPv4 Packet header:

• Version: All internet protocol packet headers start with a 4-bit
version number. For IPv4 the field is always set to 0100 which
indicates 4 in binary.
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• IHL: IHL or Internet Header Length is the length of the entire IP
header, which is 4 bits in size. This field displays 32-bit header
words. For instance, a proper header must be of the value that is
32-bit multiplied by the realistic and possible minimum or maximum
value of a header.

• DSCP: The requested service type is coded in a 6-bit parameter called
the Differentiated Services Code Point, previously known as "Type of
service." For example, it provides real-time data streaming or VoIP
(Voice over IP). Networks can also use this field to define how to
handle a datagram during transport. Priority bits represent the first
three bits of a datagram.

0 1 2 3 4 5
Precedence D T R

Precedence:

Value Description
0 Routine
1 Priority
2 Immediate
3 Flash
4 Flash Override
5 CRITIC/ECP
6 Internetwork Control
7 Network Control

D – 1 bit: 0 = Normal Delay; 1 = Low Delay
T – 1 bit: 0 = Normal Throughput; 1 = High Throughput
R – 1 bit: 0 = Normal Reliability; 1 = High Reliability

• ECN: The 2-bit Explicit Congestion Notification field indicates data
congestion in a path without deleting the data. If the network
supports it and both destinations activate it, RFC 3168 allows this
added capability [12].

• Total Length: This 16-bit value specifies the total length of the IP
packet, along with the IP header and IP data. Bytes are used to
measure the length. The header can be as small as 20 bytes (without
data) and as large as 65535 bytes. Hosts require datagrams of 576
bytes in length and should be able to process it. However, newer
hosts can process packets of greater size.

• Identification: The 16-bit Identification field aids in the identification
of IP datagram fragments. This field’s value is exclusive to the source-
destination pair and protocol when the datagram is in transit across
the Internet. It has been used to add information to packet tracing in
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an experimental manner. RFC 6864, on the other hand, prohibits such
use [13].

• Flags: It is a 3-bit field that helps to identify and control fragments.
For instance, if an IP packet is too large to process, these flags indicate
whether it can be fragmented.

Bit 0 Reserved (R), must be set to zero
Bit 1 Don’t Fragments (DF)
Bit 2 More Fragments (MF)

DF - Control the fragmentation of the datagram.

Value Description
0 Fragment if necessary
1 Don’t fragment

MF – Indicates if the datagram contains additional fragments

Value Description
0 This is the last fragment
1 More fragments follow this fragment

The last fragment differs from unfragmented packets by having a
non-zero fragment offset field.

• Fragment Offset: This field indicates the number of bytes in the
datagram prior to the specified section, expressed as the number of 8
bytes of frames. The initial offset is a zero offset. A maximum offset
of 65528 bytes is possible with the 13-bit field.

• TTL: The IP packet’s lifespan is controlled by this 8-bit field. Every
packet is sent with some TTL values to avoid looping in the network.
TTL values are decremented by one each time a packet traverses an
intermediate hop, and once they reach 0, the packet is considered
obsolete and is deleted. The value of TTL can be 0 to 255.

• Protocols: The 8-bit Protocol field denotes which protocol has been
used in the data portion. The protocol numbers 1, 6, and 17
respectively represent ICMP, Transmission Control Protocol (TCP),
and User Datagram Protocol (UDP).

• Header Checksum: To ensure the header is error-free, this 16-bit field
is used. A router verifies the integrity of a packet by checking the
checksum field in the IP header. The packet is discarded if somehow
the respective values are different.
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• Source Address: In IPv4, this is the 32-bit address of the source of the
packet.

• Destination Address: This is a 32-bit IPv4 address of the destination
of the packet.

• IP options: This field is used if the internet header length is greater
than 5. Nonetheless, this field is frequently overlooked. The size of
this field varies based on whether there are zero or many selections.
The options field format can take one of two forms.
Case 1: An option-type octet.
Case 2: There are interestingly three different fields for the option-
type. Each byte contains information about the option’s type, length,
and data.

0 1 2 3 4 5 6 7
C Class Option number

C - On disintegration, the Copied flag specifies whether or not this
option should be replicated in all child pieces.

Value Description
0 Don’t Copy
1 Copy

Option classes are:

Value Description
0 Control
1 Reserved for future use
2 Debugging and measurement
3 Reserved for future use

Table 2.1 shows a few examples of options.

Number Class Length Description
0 0 1 End of Option list
1 0 1 No Operation
2 0 11 Security
3 0 var Loose Source Routing
4 2 var Timestamp
8 0 4 Stream ID
9 0 var Strict Source Routing

Table 2.1: IP header options.

• Data: This field stores data from protocol layer.
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2.7.2 IPv6

Each IPv6 packet comprises addressing control information as well as user
data in the payload. Besides this, IPv6 is on the rise since the quantity
of IPv4 addresses are far less than the number of users. A fixed header
and optional extension headers make up the control information in IPv6
packets. The length of the permanent header is 40 bytes long. The IPv6
header as descried in RFC 8200 [14] are shown in Figure 2.4.

Figure 2.4: IPv6 fixed header

• Version: This field identifies the version of the Internet protocol. It is
a 4-bit field that carries the value six or binary value 0110.

• Traffic class: The 8 bits traffic class field indicating priority of IPv6
packet can be broken up into two distinct sections. In order to classify
packets, a Differentiated Service (DS) field is utilised, and it makes
use of the 6 bits that are most relevant defined in RFC 2474 [15].
The least significant two bits are used to store the Explicit Congestion
Notification (ECN) information as defined in RFC 3168 [12]. There
are two different kinds of traffic, namely congestion controlled traffic,
and uncontrolled traffic. At present, traffic class only uses four bits,
with 0 - 7 corresponding to congestion controlled traffic and 8 - 15
corresponding to uncontrolled traffic [16].

Priority Value Description
0 No Specific traffic
1 Background data
2 Unattended data traffic
3 Reserved
4 Attended bulk data traffic
5 Reserved
6 Interactive traffic
7 Control traffic

Table 2.2: IPv6 Priority Assignment

• Flow label: The creation of this massive 20-bit field is for the purpose
of identifying packet flow in a sequential order. To determine
whether or not a given packet is part of a particular information flow,
a unique flow label must be applied to the packet in question. If a
packet does not belong to any flow in the network, it will have the
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unique flow label i.e., label 0. Flow Labels are described in RFC 3697,
which provides details on their use [17].

• Payload length: This 16-bit unsigned numeric field contains the
packet’s octet payload length. Any extension headers are included
in the Payload length but not the main IPv6 header. Besides this,
using the Jumbo payload option in the Hop-by-Hop Extension header
allow payloads above sixty-five thousand bytes. The large packets
are referred to as jumbograms in RFC 2675 [18]. They are commonly
found in supercomputers, and data centers run at very high speeds.

• Next Header: The 8-bit "next header" field can be used in two ways.
Without an extension header, it functions similarly to the one present
in IPv4. If not, it will tell you what kind of header comes after the
IPv6 one.

• Hop limit: This field is composed of 8 bits and is equivalent to IPv4´s
TTL. Each packet sender node decreases values by one. The packet is
dumped when the counter reaches zero.

• Source Address: This source address field is 128 bits and stores the
unicast address belonging to IPv6 protocol of the source of the packet.

• Destination Address: This destination address field is 128 bits and
holds the unicast or multicast IPv6-protocol address of the packet’s
intended recipient.

• Extension Header: The shortcomings of the IPv4 Option Field
prompted the development of Extension Headers, which were sub-
sequently incorporated into IPv6. The extension header comes
between the fixed header and the protocol header of the higher layer.
Where the upper layer protocol header is in charge of relaying any
extraneous data about the network layer to the user [19]. Each Exten-
sion Header has a value that is completely unique to it.

In the case where extension headers are being used, the next header
value of an IPv6 protocol’s fixed header will refer to the first extension
header being used. The next header field of the first extension header
will lead to the second extension header, and vice versa if additional
extension headers are present. Besides this, the header of upper layer
is indicated in the final extension header’s next header value. As a
consequence of this, in the shape of a linked list, each of the header
points to the following one. Figure 2.5 illustrates how the sequence
of IPv6 extension header looks like.

Figure 2.5: IPv6 Extension Header
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Table 2.3 shows the sequence of Extension Headers.

Order Header Type
Next
Header
Code

Description

2
Hop-by-Hop
Options

0
Examined by all devices
on the path

3

Destination
Options (with
Routing Op-
tions)

60
Examined by destination
of the packet

4
Routing
Header

43
Methods to take routing
decision

5
Fragment
Header

44
Contains parameters of
fragmented datagram
done source

6
Authentication
Header

51 Verify authenticity

7
Encapsulating
Security Pay-
load

50 Carries encrypted data

8
Destination
Options

60
Options that need to be ex-
amined only by the destin-
ation of the packet

9
Mobility
Header

135
Parameters used with Mo-
bile IPv6

-
No next
header

59 -

Upper
Layer

TCP 6 -

Upper
Layer

UDP 17 -

Upper
Layer

ICMP 58 -

Table 2.3: Sequence Order of IPv6

2.8 TCP

TCP or transmission control protocol is a connection-oriented protocol of
the transport layer that allows a reliable exchange of messages between
application programs and computing devices over a network. Due to this
factor, a connection must be established between the sender and receiver
before any information can be transmitted. Besides this, the reliable con-
nection is to be maintained until the data has been exchanged. It uses a
three-way handshake technique to develop a valid connection between the
sender and the receiver (active open). During the data transmission pro-
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cedure, TCP divides large data into numerous small packets to ensure data
integrity.

TCP enables one-to-one connectivity at the Transport layer, which means
we can’t exchange data with more than one device simultaneously. In
short, TCP can’t send messages to numerous network recipients. In this
case, UDP (User Datagram Protocol) might be utilized instead. TCP in-
creases latency while ensuring data reliability through handshakes, re-
transmission of missing data, and waiting for out-of-data. As a result, TCP
is inconvenient for real-time applications; instead, UDP is preferable, while
it is less dependable.

TCP Header: TCP segments are formatted as data in IP packets. A TCP
segment contains a Header and data section. There are ten mandatory
fields in the header, as well as an optional extension field. The header can
vary in size on the basis of the options field’s size and range from twenty
and sixty bytes.

Figure 2.6: TCP Header

• Source port: This field specifies the sender’s port number in 16 bits.

• Destination port: This is a 16-bit field that specifies the receiver’s
port number.

• Sequence number: The sequence number field contains 32 bits that
represent the amount of data transferred during a TCP connection.
For a new TCP connection (three-way handshake), a random 32-bit
value is used as the initial sequence number. This sequence number
is used by the receiver, who responds with an acknowledgment. If
the segments are not received in the correct order, this is used to
reassemble the message at the receiving end.

• Acknowledgment number: The receiver uses this 32-bit field to
request the next TCP segment. This value will be the sequence
number incremented by one. It’s a confirmation that the previous
bytes were received correctly.

• DO: Data offset (DO) field or header length has 4 bits. It signifies the
length of a TCP header using 32 bits words, allowing us to determine
when the actual payload begins.
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• RSV: This 3-bit reserved field is always set to 0 because it is unused.

• Flags: This 9-bit flags field consists of six original 1- bit flags known
as control bits and three additional flags, including one experimental
flag defined in RFC 3560 [20] and two congestion control flags defined
in RFC 3168 [12]. These flags are used to initiate connections, send
data, and terminate connections.

1. NS (1-bit): ECN-nonce - concealment protection; An optional
field to prevent the TCP sender from accidentally or maliciously
concealing marked packets [21].

2. CWR (1-bit):Congestion Window Reduced - Whenever a TCP
segment forwarded by the sending node includes the ECE bit,
the CWR flag is set.

3. ECE (1-bit): Explicit Congestion Notification (ECN)- Echo. TCP
connections only use this flag to indicate ECN capability from
the sending node.

4. URG (1-bit): When this bit is set for a packet, that means the
packet should process with any latency over all other packets.

5. ACK (1-bit): This bit is used for acknowledgment upon receiv-
ing an SYN packet.

6. PSH (1-bit): The PSH flag is used to facilitates immediate data
transmission without any buffering.

7. RST (1-bit): Setting the reset flag results in the abrupt termina-
tion of an open connection.

8. SYN (1-bit): This 1 bit is used to set the initial sequence number
(ISN) and for initiating a TCP connection.

9. FIN (1-bit): A TCP connection is terminated using this finish bit.
Because TCP is a full-duplex protocol, both sides must utilize the
FIN bit to terminate the connection. This is the standard way of
terminating a connection.

• Window size: The maximum number of bytes that the receiver will
accept is determined by the 16-bit window field. It is used to inform
the sender that the receiver requires more data than is currently
available. It accomplishes this by specifying the number of bytes
in the acknowledgment field that are not included in the sequence
number.

• Checksum: 16-bit checksum is used to determine whether the TCP
header is valid.

• Urgent pointer: This 16-bit urgent pointer field is used to identify
where the urgent data terminates when the URG bit is set.

• Options: This field is optional and can range from 0 and 320 bits.
The data offset field determines the length of this field. There are
three fields available for each option: 1 byte of ‘option kind’, 1 byte of
‘option length’, and variable ‘option data’ field.
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2.9 TCP/IP Suite

TCP and IP are two different protocols, but TCP is mostly used when
coupled with IP to guarantee accurate and correct relay of data to
its intended destination within a network. The IP part is responsible
for moving of data packets between nodes, on the other hand TCP is
responsible for verifying the delivery of packets. The initial objectives of
TCP and IP are: [22]

• If a network fails or in case of a node failure, connectivity must still
be possible.

• There has to be a wide range of communication options available over
the Internet.

• The underlying design of the Internet must be able to: Support
multiple network topologies.

• Allow for decentralized control of its resources.

• Use resources efficiently.

• Allow easy host connectivity.

• Internet infrastructure resources must be traceable.

TCP/IP has become the fundament of the Internet. So today, the Inter-
net Protocol Suite is also referred to as TCP/IP. However, there are other
related protocols as well in the suite. In networking, TCP/IP Suite use a
four layered framework that is analogous to the OSI model’s 7 layers [23].

Below is a brief discussion of how a packet is transmitted over TCP/IP [24].

Step-1: Connection Establishment
Using three-way handshake, a client established a connection with the
server.

1. SYN: The client initiates communication by sending a packet to the
server with the SYN flag set to 1. The client initiates the series by
setting sequence number to a chosen arbitrary number.

2. SYN-ACK: The server responds with a ‘synchronized acknowledge-
ment’, both flags set to 1. Then the server sets the acknowledge num-
ber to ‘random number+1’ and the sequence number to another ran-
dom number.

3. ACK: The client replies with an ACK or an acknowledgement. The
acknowledgement number is set to the received sequence value
incremented by 1. The three-way handshake only uses control
packets, which generally include no payload. Once the connection
is established, the actual data transfer is started.
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Figure 2.7: TCP/IP connection establishment

Step -2: Send data packets
It is crucial that the recipient always acknowledges what they have
received. So, when a packet is sent with data and sequence number, the
recipient sends back the ACK to the sender and increases the acknowledge
number by the length of the received data.

Figure 2.8: TCP/IP sending data packets

The acknowledge number is the next byte of the sequence number the
receiver expects to receive. The sequence number in a packet is always
valid, but the acknowledge number is only valid when the ACK flag is set
to one.

Step -3: Closing connection
Connections in TCP are full-duplex. Each side of the connection can in-
dependently terminate the connection. Thus, if one end of the connection
wishes to discontinue the connection, it will send the other end a FIN flag.
Usually, TCP uses a four-way handshake to close the connection from both
endpoints. There can be two scenarios here:

1. Full close: The client (or Server) sends the FIN packet. The Server
acknowledges it with an ACK, and then Server also sends a FIN
packet. Then the client ACK’s the Server’s FIN. Consequently, in
order to terminate a TCP connection, both ends must exchange FIN
and ACK combined.

Figure 2.9: TCP/IP connection termination
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2. Half close: This happens when one endpoint closes the connection
but the other does not. The Client (or Server) sends a FIN, and the
Server ACK’s the FIN.

Problems with packets exchange: Several packet-based messaging is-
sues can be resolved through TCP, including lost packets, out-of-order
packets, packet duplication, and corrupted packets.

• Detecting lost packet: The sender sets a timeout and places the
packet in a resend queue after sending. If the sender does not
receive an Acknowledgment from the receiver before the timeout
period ends, the packet is resent with a new timeout threshold set
to double the original value. But if the packet was actually not lost
but just taking a slower route to arrive or be acknowledged, then
re-transmission can lead to data duplication. Then the recipient can
simply use the sequence number to discard the duplicate packets.

• Out of order packets: Using the sequence number and acknowledge
number, TCP can detect out-of-order packets. If the receiver gets a
sequence number that is greater than the sequence number it has
acknowledged, it will respond with an acknowledgment with the
projected sequence number. It’s possible that the lost packet was
simply delayed in transit or that it was never sent at all. In either
scenario, though, the receiver can use the sequence number to put
the data back together in the proper order.

2.10 UDP

The UDP or User Datagram Protocol is a simplified protocol for the
Internet’s transport layer that is used to transfer data packets. The
transmission of data with UDP relies on a straightforward connectionless
approach that employs a minimal protocol mechanism. Transactions are
the focus of the protocol, and there is no assurance that messages will be
delivered in the correct order or that duplicates will be avoided [25]. If the
application doesn’t need reliable transport, UDP is the more resourceful
protocol to utilize. Furthermore, it is beneficial in situations when data
only flows in one direction and recognition of the data is not important.
UDP is extremely important to the operation of streaming applications like
VoIP and multimedia streaming.

UDP Header: When compared to TCP, which can have a header any-
where from twenty bytes to sixty bytes in length, UDP’s is fixed at eight
bytes and extremely straightforward. UDP datagram headers consist of
4 fields of 2 bytes each. Together, these 8 bytes encompass all necessary
header information [26]. After the header is the data section, which con-
tains the payload data for the application.
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Figure 2.10: UDP Header

• Source Port: The Source Port field is 16 bits in length and is used
to identify the port number of sources. Since its use is entirely
discretionary, if this field is left blank, the default value will be 0 [25].

• Destination Port: This field is 16 bits in length and is used to identify
the port of the destined packet.

• Length: This field is 16 bits in length and determines the length of
UDP, including the header and the data.

• Checksum: Checksum field is 16 bits in length and is the sum of the
pseudo-header of IPv4, the UDP header, and the data.

2.11 ICMP

Every IP module implements the Internet Control Message Protocol
(ICMP) to diagnose network communication issues at the network layer.
ICMP as of IP datagrams, transmits host-specific information regarding
network difficulties. The most common usage of ICMP is to relay error
messages, but it can also provide operational information on the IP pro-
tocol layer’s configuration and IP packet disposition.

ICMP is different from other transport layer protocols like TCP or UDP, as
this protocol usually does not exchange any data between network devices.
Also, ICMP does not provide IP with any level of reliability [27]. The In-
ternet Control Message Protocol (ICMP) can be exploited by malicious act-
ors in the network to perform a variety of attacks, including flood attacks,
pings of death attack, and other methods that can compromise essential
system operations and expose their network configuration.
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Figure 2.11: ICMP used in IPv4 and IPv6 Packets

2.11.1 ICMPv4

In IPv4, if the value of the protocol field is 1, then it indicates that the da-
tagram carries ICMPv4. There is an IPv4 header followed by an ICMPv4
header. An ICMP packet begins with a header of 8 bytes and then carries
information of varying sizes. There is a fixed format for the first 4 bytes of
the header, but the last 4 bytes are determined by the ICMP packet type/-
code [28].

Figure 2.12: ICMP Header

ICMPv4 Header:

• Type: The type of message is represented by this 8-bit field. The
remaining data’s format can be determined based on the value. The
Type field in ICMPv4 is designated for 42 distinct values that identify
the specific message. Only around 8 of them are used on a daily basis.

• Code: The Code field is used in a variety of ICMP messages. This field
is used to provide additional details about the message’s meaning. It
is a 8-bit field.

• Checksum: The 16-bit Checksum field covers the entire ICMPv4
message.

Data-32bit: ICMP error messages contains a copy of the IPv4 header and
the first 8 bytes of the packet that generated the error. ICMP error messages
can be up to 576 bytes long. The host uses this data to match the message
to the relevant process.
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Control Messages: The value in the Type field is used to identify control
messages. The message’s code field provides further context information.
Since the protocol’s introduction, some control messages have been deprec-
ated. Some example of common control messages are given in Table 2.4.

Type Code Status Description

3 - Destination
Unreachable

0 Network unreachable
1 Host unreachable
2 Protocol unreachable
3 Port unreachable
4 Fragmentation required and

DF flag set
5 Source route failed

5 - Redirect Message

0 Redirect Datagram for the
Network

1 Redirect Datagram for the
Host

2 Redirect Datagram for the
ToS and network

3 Redirect Datagram for the
ToS and host

11 - Time Exceeded
0 TTL expired in transit
1 Fragment reassembly time

exceeded
12 - Parameter
Problem: Bad IP
header

0 Pointer indicates the error
1 Missing a required option
2 Bad length

Table 2.4: ICMP Control Massage

2.11.2 ICMPv6

Each ICMPv6 message begins with an extension header of IPv6 and may
begin with 0, one, or more IPv6 extension headers. The ICMPv6 header
can be recognised from the previous header by looking for the next header
value of fifty-eight [29].

ICMPv6 headers are essentially identical to ICMPv4, except that in
ICMPv6, the checksum also includes a pseudo-header derived from the
IPv6 header.

Errors in packet processing are reported using ICMPv6, and other internet-
layer services like diagnostics are performed using ICMPv6 (ICMPv6
"ping"). Because it is an essential feature of IPv6, every IPv6 node must
implement the full ICMPv6 base protocol, including all messages and be-
haviours specified below. Error and information messages are the two
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types of ICMPv6 messages. The entries in the message type field are dis-
tinguished by errors by setting the highest order bit to 0. The types of
messages for error messages range from 0 to 127, whereas message Types
for informative messages range from 128 to 255.

The destination and the source Addresses of IPV6 must be recognized by
the node that transmits the message of ICMPV6 prior to the calculation of
checksum. It is imperative that the node choose the source address of the
message if it has more than one unicast address. Node’s unicast IP address
must be the source of the ICMPv6 packet. The address of the destination
of the packet, the source address should be selected in the same way as the
source address would be for any other packet generated by the node. There
are other ways to select an IP address that is reachable from the destination
of an ICMPv6 packet, but this is not mandatory. Reducing the bandwidth
and transmission cost of ICMPv6 error messages produced by the node of
IPv6 is a top priority. This could happen if the originator of a flood of in-
correct packets ignores the ICMPv6 error messages that result from sending
them. When the transport protocol fails to find a receiver for a packet, the
node at the endpoint should send back a message about the out of reach
with a code 4 and inform the source. Error situations may or may not be re-
solved in the near future, depending on the specific situation. It is therefore
possible that an ICMP error message’s response may be affected by a vari-
ety of factors, including the time at which the error message is received as
well as previous knowledge of the network error conditions that are being
reported, as well as an understanding of how the receiving host operates
in its current network scenario.

2.12 Packet Header and Packet Trace Analysis

Using packet tracing, one may check that a packet followed the correct
route across all layers before arriving at its endpoint. The absolute control
impact can be accomplished among adjoining junctions by regulating these
vital throughways. Depending on the level of traffic, we can employ a
variety of control methods. Even basic scientific tasks, such as calculating
the traffic observed on a particular port of TCP, can necessitate complex
algorithms in order to decrypt the packet headers and derive information
from the basic binary code. In packet header processing, the output link
and quality of service are defined by the packet’s route identification and
categorization [30]. That is why most packet trace analysis is done with the
aid of a software library that can decode and handle collected packets in
an abstract form. Most commonly, libtrace, a library that can read packet
traces in the PCAP format, is used. Libtrace overcomes the shortcomings
of libpcap and other trace-processing libraries by reading, processing, and
publishing packet traces [31]. A more brief discussion about Libtrace is
given in section 3.3.2.
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2.13 Packet Analyzers

As a critical error detection approach in information security, packet ana-
lysis can recreate even the entirety of traffic flow at a given moment, assum-
ing the collected packet information is adequate. Concerns like which pro-
tocols can be understood, which is the ideal platform to use given the level
of experience, and which packet sniffer would function best for the net-
work environment must be addressed before a packet analysis can begin.
Packet analysis involves many internal processes and exchanges at various
levels. When a packet goes through a node, all network data is received
by the node’s ’network interface card,’ but all the hardware and addresses
are ignored in permissive mode. However, traffic-filtering switches com-
plicate network data collecting, and the kernel passes control to the OS ker-
nel once a network interface card copies a packet into driver memory [32].
Each packet that passes over a network can be intercepted using a packet
sniffing technique. Packet sniffing is a method by which a user examines
the data of other network users. On both switched and non-switched net-
works, it runs perfectly. Packet sniffers are versatile tools that can be used
either for administrative or malicious reasons. It is dependent on the goals
of the user. An attacker may use packet sniffing’s several applications, such
as breach detection and system administration, to gather sensitive inform-
ation such as passwords, IP addresses, and current protocols [33].

Packet capture and visualization are the primary objectives of network
packet analysis. Some packet sniffers like ‘WireShark’ are user-friendly,
and the user can go through the packet details quickly. The packet-header
details window in Wireshark includes information about the packet spe-
cified from the packet list. An IP datagram and Ethernet frame are in-
cluded in this packet’s detailed information. The amount of Ethernet and
IP-layer information presented in the packet details window can be modi-
fied by clicking on the right or down-pointing arrowheads next to each line
of the Ethernet frame or IP datagram. Each Ethernet frame or IP datagram
line’s arrowheads on the packet details window can be used to change the
amount of Ethernet and IP layer detail shown in the window. In addition,
TCP or UDP information about the packet’s transmission is shown if it was
sent using one of those protocols. Besides this, Wireshark has a capabil-
ity that allows it to distinguish between different types of communications
based on their protocol. Wireshark’s color codes are helpful when study-
ing packets. Three distinct types of network traffic are represented: DNS,
UDP SNMP, and HTTP. In Wireshark, one can choose from various color
schemes that can be customized.

Sniffing methods can be divided into three categories. The first method
of packet sniffing is IP-based. In the IP-based sniffing method, all packets
matching the IP filter are sniffed when the network card is in promiscuous
mode. When the IP address filter is enabled, it is set to capture all pack-
ets regardless of their source. Only networks without switches can make
use of this technique. While the network card is in promiscuous mode,
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the MAC-based sniffing method can sniff all packets that meet the MAC
address filter. Lastly, the ARP-based sniffing method used a different ap-
proach. In this method, the network card does not need to activate in a
permissive state due to the statelessness of the ARP protocol. Because of
this, sniffing is still feasible on a network switch.

An administrator of an operational network can use data gathered from
network monitoring to take proactive measures to keep it running well and
to provide users with usage statistics. Some metrics used by network ad-
ministrators include link activity, error rates, and link status. This data can
be used in the long run to see and forecast growth and detect and replace
a faulty component before it entirely fails. Detailed and thorough records
of Internet traffic across a link are provided by packet traces, which are
commonly utilized in Internet measurement data. They cannot be handled
and analyzed with simple scripting or statistical languages since they are
collected and kept exactly as they occurred on the network. The user can
send out packets with an incorrect address. Machines running sniffers will
receive the packets; therefore, we can assume they are sniffers.

2.14 Packet Loss and Delay

During any communication we do on the internet, packets carry data over
networks. Packet loss occurs when these communications are dropped, or
distorted [34]. In the chain of servers, packets face a variety of delays as
they move from server to server. These delays can occur at any node along
the path. As a result of network congestion and packet delivery delays,
packet loss occurs, which prevents the video decoder from properly de-
coding the video stream and directly impact the video quality [35].

The total nodal delay consists of processing, queueing, transmission, and
propagation delay [36]. It is necessary to analyze the packet’s header in or-
der to determine where it should be sent, which accounts for a part of the
delay in processing. Other factors can affect the processing time, such as
the time it takes to check for bit-level errors made during the transmission
of the packet from the upstream node to the router. The amount of time
required to perform this check is typically on the order of microseconds or
less in high-speed routers.

As the packet waits to be transmitted onto the link, it is subjected to a delay
known as queuing delay while it is located in the queue. The time a packet
spends in the queue depends on how many other packets have arrived
since it entered the queue and are waiting to be sent across the link. For
example, if there is no other packet sent at the same time as ours and the
queue is empty, then the amount of time our packet spends in the queue
will equal zero.

The transmission latency is the time it takes to send every bit of data in
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a packet through the network. Transmission delays tend to fall somewhere
on the order of microseconds to milliseconds. After a bit has been put into
the link, it must then propagate to the router to whom it is being sent. Data
travels from the link’s origin to the router in the propagation delay. Bit
propagation matches link speed, and then the transmission medium de-
termines link propagation speed. Packet loss has a variety of effects on
different applications. For example, a 10% packet loss might add only one
second to a ten-second data download. Delays can become more signific-
ant if there is a higher packet loss or latency rate. Especially vulnerable to
packet loss are real-time applications like speech and video. Even a two
percent packet loss might cause the discussion to become stilted and inco-
herent to the average listener or spectator.

2.15 Anomalies in Packet

Any deviation from a network’s usual data transmission pattern is known
as an anomaly. Trojans and cyber threats are just two examples of an-
omalies; incorrect information packets and changes in transmission due
to network issues, delivery delays, and malfunctioning hardware. Net-
work operators need help to detect and diagnose threats due to a large
amount of network flow and reduced network infrastructure efficiency
caused by Anomalies. Newer anomaly identification methods use empir-
ical network analysis to find new or unexpected anomalies [37]. When it
comes to network operators and end-users, identifying abnormalities is es-
sential. However, this is challenging to solve due to the vast amount of
high-dimensional, unpredictable data.

Not all packets are helpful or safe, and network communication is not al-
ways secure. Malicious network traffic data packets are designed to com-
promise or overwhelming a network. This can take the form of a DDoS
assault, exploitation of a vulnerability, or a variety of other cyber-attacks.
Traffic anomalies must be recognized quickly and accurately to maintain
network health; otherwise, these can pollute networks and hosts with false
data [38]. High-speed file transfers are critical to large-scale scientific pro-
cedures. Quality factors like guaranteed bandwidth and no packet loss or
data duplication are required for these transmissions. Successful file trans-
fers require procedures such as thresholds and statistical analysis to detect
aberrant patterns. Network administrators who use their knowledge and
experience to make judgments on how to diagnose and remedy problems
regularly monitor and analyze network data.

2.16 The Analysis of Network Traffic

Reading data packets sent over a network is known as network sniffing.
Sniffing can be accomplished with the use of specialized software tools
or hardware. Sniffing can be used to grab login passwords, eavesdrop
on chat messages, or capture files while they are being transmitted across
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the network. The machines communicate with each other by broadcast-
ing messages over a network using IP addresses. Computer and network-
ing administrators continuously monitor system traffic to maintain net-
work health, safety, and growth. This analysis has become complex with
open-source technologies due to the amount of data transported by today’s
networks. Network administrators need tools that monitor and evaluate
traffic aggregations with headers and payloads [39].

The device monitoring application can be created to use its distinct net-
work using wireless technology, which allows it to operate independently
of the customer’s underlying wired network. Each of the large networks
that make up the Internet is in control of a block of IP addresses, and
these networks collectively are known as autonomous systems. Packets
are routed across ASes depending on their destination IP addresses using
several routing protocols, including BGP. Routing tables on routers specify
which ASes packets should travel through to reach their desired destina-
tion as rapidly as possible. Each AS takes responsibility for a different IP
address, so packets travel amongst them until they reach a single AS with
that address. Those packets are subsequently routed internally by the AS to
their final destination. Using the packet sniffer, we can capture and analyze
traffic. And then, reports are generated based on traffic analysis. Protocol-
based filtering is also implemented for a variety of protocols, such as TCP,
IP, and UDP. The system generates an alert when suspicious activity is de-
tected.
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Chapter 3

Solution Approach

In this chapter, we discuss related works and provide a general overview of
what is done in the thesis. Last but not least, it discusses the methodology
used in this thesis.

3.1 Related Work

Certain tools have been developed for the convenience of communication
between two endpoints. These tools have different features and specific-
ations depending on the services required. ‘BruteShark’ [40] is a cross-
platform, open-source network forensics tool. It can harvest passwords,
display a network map, reconstruct TCP sessions, and convert encrypted
password hashes to Hashcat format for offline Brute Force attacks. Secur-
ity researchers and network administrators will benefit from this project
because it enables them to analyze network traffic more efficiently. At the
same time, the tool helped them to look for vulnerabilities in the network
that would make it possible for an attacker to gain access. ’eCAP’ [41] is
a software interface for outsourcing content analysis and adaptation to a
loadable module to be used by network applications, such as HTTP prox-
ies and ICAP servers. But ‘eCap’ is an outdated platform that does not
incorporate new protocols and technologies. Thus, leaving a large room
for improvement.

Data Plane Development Kit (DPDK) [42] is another collection of libraries
and drivers for handling large amounts of data in a short amount of time.
It was created to run on a variety of processors. It started with the sup-
port for the Intel x86 and has since added international business machine
power, Advanced RISC Machine (ARM), etcetera. Linux is the predom-
inant operating system to run it. A FreeBSD port is available for several
DPDK features. Whereas, ’IPsumdump’ [43] is a system for transforming
TCP or IP dump files into a ASCII format. IPsumdump reads packets from
network interfaces, tcpdump files, and existing ipsumdump files. It trans-
parently decompresses tcpdump or ipsumdump files when needed. It may
randomly sample traffic, filter it by masking IP addresses, and organize
packets from separate sources by using timestamp. besides this, it can also
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create a tcpdump file with packet data.

Furthermore, ’tcptrace’ [44] is a tool developed at Ohio University by
Shawn Ostermann for analyzing TCP dump files. It can read files created
by tcpdump, snoop, etherpeek, HP Net Metrix, and WinDump, among
other common packet-capture programs. Tcptrace can display total time,
bytes, and fragments given and collect, re-transmissions, round trip reg-
ulations, window ads, outputs, and more for each identified connection.
It also generates graphs for further research. Tcpflow [45], another tool,
records TCP connection details and saves them in a format that makes pro-
tocol study and troubleshooting easy. A program such as ’tcpdump’ [46]
displays an overview of the packets observed on the wire, but it does not
typically store the data in the process of being delivered. On the other
hand, tcpflow will recreate the raw data streams and save each flow in its
own individual file so that it may be analyzed later. However, it has the
capability to optionally isolate pcap flows on a per-tcp-flow basis for gran-
ular analysis.

The ’fling’ [47] tool helped others learn how verified protocols and UDP en-
capsulations worked across Internet channels. A fling test specification has
two files: json and pcap. Sending info to fling’s endpoints. Fling customers
download and perform tests from fling servers using HTTPS/TCP. In case
of failure, the json file defines a three-time communication sequence (us-
ing pcap packets). These iterations helped to discover ’random’ disruptive
behavior, like a drop caused by a short interruption and sometimes con-
gestion. If three packets are dropped, the test fails. Adding tracebox [48]
to traceroute identifies middlebox interference along nearly every route.
Tracebox transfers IP packets with different TTLs and examines the ICMP
responses to calculate a TCP packet’s TTL. Tracebox can detect upstream
middlebox tampering since current routers include the entire IP packet in
the ICMP transmission. Tracebox can also detect the network hop where
middlebox interference occurs. In addition to this, the end results show
unusual middlebox types on an internet-connected testbed.

3.2 Research Gap

Analyzing the data as it travels over the network can be done by using
packet sniffing. A sniffing tool is an excellent way to do that. It can
be used for a variety of tasks, including traffic monitoring, analysis, and
troubleshooting. Packet sniffers can intercept passwords, usernames, and
other private data. A packet sniffer can be improved in the future by im-
plementing new features. Thus, sniffing should be done in a way that im-
proves network performance and security. Both the network operations
and research groups benefit significantly from the usage of network packet
traces. Full packet traces have been captured using various tools and soft-
ware libraries, such as libpcap [46].
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Libtrace [31], a new open-source software library that attempts to improve
both usability and speed over libpcap, was designed in response to the
many shortcomings of libpcap. It is possible to construct portable trace
analysis tools using libtrace’s expanded programming API without hav-
ing to worry about specifics such as file compression or intermediate pro-
tocol headers. When performing I/O-bounded analytic activities, libtrace
uses threaded I/O and caching techniques to enhance speed even further.
Libtrace-based programs can use any available capture format. In other
words, they can be run on any supported capture source without the need
for any additional code. Reading from a PCAP trace file is no different
from reading from a live capture interface or Endace DAG card [49]. Be-
sides this, network packet debugging may be done quickly and easily by
using the library called libpacketdump. Stdout will be flooded with the
data from a libtrace_packet_t, which will be parsed for any layers it is
aware of (such as Ethernet or TCP). Newer protocols can easily be suppor-
ted because they were designed as modules. Moreover, Tracepktdump, a
libpacketdump-based alternative to tcpdump, can be used to gather packet
data. All these features make the tool developed in this thesis of dynamic
nature and unique as compared to the already developed sniffers.

The packet sniffers are of various kinds depending on the desired outcome
of the network. The utilization of network layer protocols differs from net-
work to network. IPV6 addresses are used to identify and track machines
on the internet. For the internet to function, each device connected to it
must have its unique IP address. Still, most of the networks use orthodox
IPv4. Moreover, some of the packet sniffers do not read the ICMP and com-
plicate the procedure. Nevertheless, with this tool, in addition to ICMP,
our application will be capable of supporting dynamic protocol versions
IPV4, IPv6, and TCP. This feature makes this a valuable tool in various
fields deploying different types or models of the networks that could be
OSI network model or TCP network model. Because of this, the tool be-
comes user-friendly. By making even a minor change to the JSON script,
one will generate the result that we get to alter. Despite this, we need to
make some modest adjustments to our tools in order to update the TCP
option fields and the UDP header.

This research utilizes unique and efficient methods to get the desired fields
of the header. Instead of using the JSON script to gain access to the TCP
option number included in the packet, the python-libtrace (plt) module is
directly utilized. This will allow us to determine which TCP option num-
ber is contained in the packet. As the name suggests, JSON is an abbre-
viation for "JavaScript Object Notation," a messaging format derived from
the JavaScript programming language. In today’s world, JSON messages
can be transmitted in any text format and are supported by almost every
computer language but this only makes it beneficial in some conditions.
In some scenarios, JSON does slow processing, which could be harmful to
the network analysis. Using python-libtrace gives us a clear edge as it is
a set of rules and tools to define and exchange these messages rather than
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just a message format. Programs that deal with encapsulated packets can
benefit from the class inheritance hierarchy provided by python-libtrace.
It is possible to produce Traces and Packets with libtrace’s API, which is a
collection of functions for reading and writing packets, as well as extract-
ing ’decodes’ for various portions of the packets, such as IP (IPv4) and TCP
and UDP headers. In addition to this, a set of Python classes called python-
libtrace (plt) gives Python access to the libtrace objects they need. There are
methods in each class that enable access to libtrace functions and fields in
libtrace decodes. Only the Trace class procedures are used to describe the
trace itself; the Trace object reads or writes python-libtrace packets. One
should use higher-level techniques in one’s methods if one wants to work
with TCP objects. That way, Python will not have to garbage-collect an IP6
object, for example, during the method’s execution.

The different studies and research papers reviewed by the researcher are
very inspiring and thought-provoking. The studies related to this topic
were focused on mechanisms that lacked the wholesome approach toward
networking and packet sniffing. Anomaly detection and other techniques
lack the base for improvement and further development. With this, it
could be said that large-scale flow capture is becoming increasingly real-
istic, opening the door to traffic analysis tools that may detect and identify a
wide range of irregularities. Nevertheless, the difficulty of adequately eval-
uating this enormous data source in order to diagnose anomalies has yet to
be met. In light of the preceding discussion, the research gaps were suc-
cessfully identified. There needed to be more data available for the packet
anomalies and handling various protocols simultaneously. The study aims
to fill this research gap and explore the various future aspects of advance-
ment in computer networking.

3.3 Proposed Solution

The Trace processing and analysis can be accomplished using any number
of libraries and tools, but this tool is different on various levels and deploys
diverse techniques. Subsequent are the unique dimensions of this tool.

3.3.1 Python

Executing a pcap programmatically can come in handy in some circum-
stances. Hence, in such cases, a custom program will be extremely helpful
in parsing the pcaps and yielding the relevant data points. For our thesis,
we are analyzing the network traces using Python.

Python is used in this tool as it interprets code line by line. Errors stop exe-
cution and are reported. It only shows one mistake if the program has nu-
merous. This simplifies bug-hunting. Python framework that makes work-
ing with online or offline network data simple and easy to understand by
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providing data structures that are quick, flexible, and expressive. It aspires
to be the primary high-level building element for doing realistic network
data analysis in Python in the real world. In addition to this, its overarching
objective is to evolve into a standard framework for the analysis of network
data used by researchers, so ensuring the consistency of data across differ-
ent trials. Furthermore, Python is cross-platform. It allows developers to
work on one device and implement on another without modifying code. It
supports Windows, Mac, and Linux and can be distributed without an in-
terpreter on any OS. Python can develop executable programs for popular
platforms.

3.3.2 Libtrace

Our tool is based on libtrace. Libtrace is an open-source software library by
the WAND network research group from The University of Waikato [50].
The C programming language was used to create Libtrace.
In contemporary practice, there is no artificial measurement of traffic is
used to analyze network behavior. Two key steps can be identified here:
capture, which involves pulling information from the network, and ana-
lysis, which involves using some measure to evaluate the information.
Users of the libtrace API can link the protocol header for every layer on
or around the transport layer without intermediary headers. Both layer-
specific and protocol-specific header extraction utilities exist.

The same libtrace program can be used with all supported capture formats;
there is no difference between offline and live capture formats, there are ad-
vantages for development, analysis programs can be tested offline before
being put into live operation, protocol layers are directly accessible, and so
on. In addition, the following trace formats are supported and can be read
from or written to: legacy ATM trace file, PCAPNG trace file, PCAP inter-
face, PCAP trace file, DAG live capture and ERF trace file. Legacy Ethernet
and POS trace files, ATM cell header files, etcetera are all examples of read-
only trace formats. Besides this, Libtrace is capable of reading and writing
compressed trace files natively. lzo, bzip2, Gzip, etcetera are the compres-
sion formats that are supported (lzo supports is write only). Compression
and decompression on a separate thread, libtrace allow file operations to
be performed much faster. This is very helpful for analysis tasks where
input and output performance is a bottleneck. It simplifies tractable as-
sessment and eliminates the issue of repetitive code. Also, libtrace takes
care of it properly, so we do not have to worry about managing special
scenarios like Internet protocol segmentation, malformed headers, etcetera.
Libtrace programs can read and write any supported trace format without
user code changes or recompilation because the API is ’capture format ag-
nostic’. The application adapts to command line inputs for trace format and
placement. Libtrace can also automatically recognize various input sources
capture formats, so there is rarely a need to specify the capture format [31].
Since the main program does not have to wait around for a packet to arrive,
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it is helpful that the libtrace API’s trace event method supports concurrent
processing from initial data providers. Libtrace’s API will produce a count-
down if packets are not present. This is extremely useful when making a
graphical user interface for a monitoring application.
The supported headers are Ethernet, 802.11, VLAN (802.1q), MPLS, PPPoE,
IPv4, IPv6, ICMP, ICMP6, TCP, UDP, OSPF [31].

3.3.3 plt-libtrace Module

A Python module known as python-libtrace (plt) [51] gives us the ability
to work with packet trace data by utilizing the libtrace library that is
provided by WAND. It is not meant to be a straightforward translation
of the libtrace calls from C into Python; instead, it is designed to give a
clean, straightforward, and Python-like method of dealing with libtrace.
For the purpose of decoding protocol headers, for instance, the field names
from the RFCs are utilized rather than the names provided by libtrace. In
addition, programs that deal with encapsulated packets can benefit from
the class inheritance hierarchy provided by python-libtrace. In a python-
libtrace program, trace() is used to create a trace object, and then we can
open the trace simply by using trace.start() and trace.close() to close the
trace file. Below we are listing some methods we have used in our tool
from the plt-libtrace module other than the ones mentioned above:

• start_output() - open a trace file for writing.

• close_output() - closes a trace file.

• write_packet() - Writes the data from a Packet to an OutputTrace.

• pkt.ip - gets an IPv4 header from the packet.

• ip.src_prefixip.src_prefix - gets an IPv4 source address.

• ip.src_port - gets an IPv4 source port .

• ip.pkt_len - gets an IPv4 total packet length.

• ip.hdr_len - gets an IPv4 header length.

By using plt-libtrace, packet headers can be examined directly at the
metadata, the link, the IP, and the transport layers.

3.4 Dataset

As part of our thesis research, we analyzed traffic statistics collected by
the Measurement and Analysis of the Wide Internet (MAWI) Working
Group Traffic Archive. However, in the beginning, we considered two
different datasets, the CAIDA and MAWI datasets. CAIDA, widely used
in many graphical representations and modeling tools, enables the smooth
development of software. Moreover, while preserving the confidentiality
of the consumers and institutions that give data or network access, CAIDA
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collects multiple types of data in regionally and topologically dispersed
sites and makes this data available to the academic community [52].
All the traffic collections are not public in CAIDA and lacks daily trace
collection. On the other hand, the MAWI dataset has a vast collection of
daily traces which are easily accessible, making it a perfect fit for traffic
anomaly detection. So, due to the higher efficiency level coupled with the
availability of a wide range of internet traffic traces, MAWI is selected for
the analysis. And we used samplepoint-F, which has been running since
2006. This is because samplepoint-A was ceased in 2000, and samplepoint-
B was discontinued in 2006 and substituted by samplepoint-F. The MAWI
Working Group of the WIDE Project is responsible for this traffic data
repository [53].

3.4.1 The WIDE Project

We are approaching an era of qualitative transformation for Internet tech-
nologies as we observe the end of an era of rapid deployment and growth
and the beginning of a new phase. The WIDE Project has been around for
thirty years providing significant impact in all aspects of network envir-
onments. The WIDE Project’s fundamental premise is to provide a world-
wide connection not just between computers and humans but by connect-
ing everything to each other. This project intends to create a highly public
information infrastructure that will perform a beneficial role from an indi-
vidual and societal standpoint, as well as bring to the forefront the related
difficulties and challenges that must be addressed in order to make this
a reality [54]. The "WIDE Internet" also serves as a location for scientific
research and testing. The findings of the research are incorporated into op-
erational procedures to create a more effective network environment for
the benefit of society and the commercial sector.

Working groups steer the research activities of the WIDE Project. Through
collaboration with a range of other areas, each of the working groups
fosters research activities and identifies new research subjects. A robust
network is required to convey the massive quantity of data created in our
daily lives to the rest of the globe. As a result, the Network Operation In-
frastructure group is working on enhanced Internet operating technologies
through R&D (Research and Development). MAWI is one of the research
working group for the Network Operation Infrastructure which is based
on Traffic Measurement and Analysis [55]. It is a shared research base that
links individuals participating in separate projects together. The WIDE In-
ternet is a network that allows users to connect with one another in order
to share and discuss information on a regular basis. It is run through a pro-
cess that involves repeated trial and demonstration.
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3.4.2 MAWI Working Group

Since the start of the WIDE Project, the MAWI Working Group has been
measuring, analyzing, evaluating, and verifying network traffic. Their aim
is to bring together what they’ve learned from network operations and
evaluate the study findings against the actual traffic. In addition, by study-
ing the behaviors of the network, they are able to determine whether the
network performs as intended or learns from unexpected outcomes. How-
ever, considering how challenging it is to perform measurements at the site
of operation, the MAWI Working Group was formed with the goal of fo-
cusing on measurement and evaluation. Furthermore, the MAWI working
group is required to facilitate the exchange of measurement and analytic
information across all working groups since all studies require some sort
of measurement [56].

MAWILab is a database that provides academics with assistance in eval-
uating the effectiveness of their approaches for detecting traffic anomalies.
It is made up of a series of labels that can identify traffic irregularities in-
side the MAWI archive. The labels are derived from the data by employing
a sophisticated graph-based process that evaluates and integrates a num-
ber of separate and distinct anomaly detectors. The data set is updated
every day to incorporate the latest traffic from forthcoming applications as
well as any anomalies that may have occurred. Commodity traffic and re-
search experiment traffic coexist in the WIDE backbone as their respective
types of traffic. The majority of Japanese universities get their upstream
via SINET (AS2907), and all of the universities that are members of WIDE
also have multi-homed connections to SINET as well as WIDE. Therefore,
not all of the traffic coming from these universities is carried by WIDE. In
terms of international connectivity, WIDE is linked to Internet2 by way of
TransPAC, and as a result, traffic to and from academic sites in the United
States, the European Union, and Asia-Pacific travels along this route. Dif-
ferent sampling points are used to accumulate traffic traces from the MAWI
traffic archive. We used traces from sample point F for our thesis.

3.5 Implementation

This section presents our python tool created to scrutinize the trace files
derived from Internet Measurement. Different sections will explain the
process of parsing a trace file and elucidate how each component of the
system is being implemented. Sub section 3.5.1 will illustrate the json file
and the fields essential for smooth functioning. Furthermore, sub section
3.5.2 will elaborate on the main source code and its performance.

3.5.1 Json Configuration

The JSON script is the initial and fundamental need for executing the pro-
gram. Pertaining to the header fields of interest, the means by which we
will retrieve their values, or the desired end result, the JSON script must
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not contain any ambiguity for any discernible reason. A fragment of the
system’s required JSON file is below for reference. Detailed descriptions of
the functionality of each field follow the code snippet.

1 {"proto":{
2 "ipv4":{
3 "and":[
4 {
5 "offset":0,
6 "length":1,
7 "value":5,
8 "bitmask":15,
9 "equal":"False",

10 "fn": "ihl"
11 },
12 {
13 "offset":9,
14 "length":1,
15 "value":[1,6,17],
16 "equal":"False",
17 "fn": "protocol"
18 }]
19 },
20

21 "ipv6":{
22 "and":[
23 {
24 "offset":1,
25 "length":3,
26 "value":0,
27 "ls":4,
28 "rs2":4,
29 "bitmask":1048575,
30 "equal":"False",
31 "fn": "flow_label"
32 }]
33 }
34 }
35 }

Listing 3.1: JSON Script

The field "proto", will remain unchanged.

Succeeding it is the name of the protocol, the header information of which
will be examined. The focus of this thesis will be on five protocol headers:
IPv4, IPv6, TCP, UDP, and ICMP.
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Function and name of the fields:

"name of the protocol": It depicts the protocol being used. There should be
the following formats for the field names: ipv4, ipv6, tcp, udp and icmp

"and": This is an array-type JSON because, for various protocols, we
needed to inspect multiple header fields. (Field name can’t be changed.)

"offset": This field defines the header field’s offset number. Its value can
be in numbers only.

"length": It represents the length of the header field in bytes. It can have
numerical value only.

"value": This field contains the value that needs to be found or the value
that is to be excluded. Besides this, if we need to compare several values,
the "value" field can alternatively take the form of an array.

"rs": "Right Shift"; This field is essential as the value for a header field is
not always straightforward. For example, there can be two or more header
fields in the same offset number. So, Bit-shifting is needed to get the correct
packet’s value for some header fields. The program is written in a manner
that right/left shift needs to be done before the bitwise operation. So first,
we will do all the bit-shifting and then the bitwise operation.

"ls": This field specifies the left shift.

"rs2", "ls2": This field specifies the left shift. For some header fields, we
need to do bit-shifting more than once. In the program, the order of doing
the bit-shifting operation is RS - LS - RS2 - LS2. A slight deviation from the
established order is possible but must be avoided. For example, suppose a
field needs two right shifts or two rights and one left shift; then the order
for the above situation will be RS-RS2 or RS-RS2-LS2. If no bit-shifting is
required, one can skip the whole section.

"bitmask": Simply put, a ‘bitmask’ is a binary representation of data. It
is what we get after doing AND operation with the value we get from the
packet.

"equal": It can only be either true or false. If the resulting value needs
to be the same as "value" in the JSON script, then equal will be "True"; oth-
erwise, "False."

"fn": It represents a name for the header field.
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3.5.2 Implementation Details

This section presents our design and implementation of the python tool.
Figure 3.1 shows the flow of our code. The program is initiated by reading
the trace file in its entirety and the json file. Then, using a function from
python’s plt_module, we start the trace file for analyzing each packet.
Following this, an object is created specifically for the protocol being used
by the packet and sent to its designated function for further processing.
Once the object is inside its intended function, it creates a key to distinguish
the packet from the rest of the packets and a json list from the json file. A
copy of the object, json list, and an empty dictionary is passed to the main
function.

Start

Read trace & Json

Open Trace

Read packet

object specified
function

main function

Create object for pkt's

protocol header



End of Loop


?

End

No

YesExport result

Figure 3.1: Flow Chart of the Tool

The main function is the heart of our tool. Inside the function, using the
json configuration, we could look further into the packet’s header fields to
search for anomalies. If the specified header field value matches the json
description, we save the value in the dictionary. When all the header fields
defined in the json script are done evaluating, the function returns the dic-
tionary storing all the unusual values. The unusual values are stored in a
new dictionary with the key created before.

The process mentioned above continues for each packet until the loop ends.
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After the loop is finished, we export the result and end the program. To bet-
ter grasp how all the functions work, we will break down the source code
into many code snippets and explain the tool more thoroughly with an ex-
ample.

Assume we commenced the program by reading a pcap file and passing
the json script shown in listing 3.1. We initialize two new pcap files named
"sniffed" pcap to capture all the unusual values and "interesting_ip" to cap-
ture all the IP packets whose version is not 4 or 6, as "plt_module" can only
handle IP packets with versions 4 and 6. Suppose the first packet we have
is an IPv4 packet. In accordance to the listing 3.2, an ip object for the IPv4
packet’s header is created and passed onto ipv4funtion.

1 startTime = time.time() #Calculate the time of the trace
parsing

2 ot = plt.output_trace(f’pcapfile:sniffed_ ’+str(sys.argv [1]).
rsplit(’.’, )[0]+’.pcap’) #store all the connections with
intersting header field

3 ot_ip = plt.output_trace(f’pcapfile:interesting_ip_ ’+str(sys.
argv [1]).rsplit(’.’, )[0]+’.pcap’) #ip conncetions whose
version is not 4/6

4 ot_ip.start_output ()
5 ot.start_output ()
6

7 for pkt in t:
8 ip = pkt.ip #to get the ipv4 object
9 ip6 = pkt.ip6 #to get the ipv6 object

10 tcp = pkt.tcp #to get the tcp object
11 udp = pkt.udp #to get the udp object
12 icmp = pkt.icmp #to get the icmp object
13

14 if ip:
15 ipv4function ()
16 if udp:
17 udpfunction ()
18 if ip6:
19 ipv6function ()
20 if tcp: #for both ipv4 and v6
21 tcpfunction ()
22 if icmp:
23 icmpfunction ()

Listing 3.2: Read Packets

Since there are five distinct categories of objects, we have also
defined five distinct functions. When the ipv4funtion object reach
ipv4funtion a unique ip_pair key is generated with the packet’s
source address, destination address, and IP identification number. Des-
pite the similarity between IPv4, IPv6, TCP, UDP, and ICMP in terms of
their functions, the ip_pair format differs slightly between the five. It is
depicted in listing 3.3 that as we are storing our data in dictionaries and the
ip_pair is serving as a key.

An ipv4_list is also generated from the JSON script because this packet
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utilize the IPv4 protocol. This list will be used to parse the JSON data. We
also declare a variable to count the total IPv4 packets in the trace file. Then
the list and empty dictionary are passed to the mainfunction.

1 def ipv4function ():
2 try:
3 ip_pair = (str(ip.src_prefix), str(ip.dst_prefix), ip.

ident)
4 ipv4_list = jsonData[’proto’][’ipv4’][’and’]
5 global ipv4_pkt_count
6 ipv4_pkt_count += 1
7 mainfunction(ipv4_list ,test_dict ,ip)
8 if test_dict:
9 #print(test_dict)

10 ipv4_output[ip_pair] = dict(test_dict)
11 ot.write_packet(pkt)
12 test_dict.clear ()
13 except:
14 ot_ip.write_packet(pkt)

Listing 3.3: IPv4 function

The piece of code in the listing 3.4 is critical. Our main task to look
for anomalies in the header fields start here. We start by parsing the
test_list. The first index of the list has all the important information
to look for strange value in the internet header length (ihl) field. We used
offset and length values from our JSON array to get the binary data
from header’s zero offset. IHL and version field share the same offset in
IPv4 packet’s header but to access the ihl in the header is pretty straight-
forward and we do not need any bit shift operation for this header field.
So after the "AND operation" we accurately get packet’s internet header
length. After further inspection, if this is not the value we want, the packet
will be ignored, and the entry will be recorded in the test_dict if it is the
value of our interest.

1 def mainfunction(test_list , test_dict , pckt):
2 #print(pckt)
3 for i in range(len(test_list)):
4 equal = "False"
5 val_list = test_list[i][’value’]
6 #list_check = isinstance(val_list , list)
7 length = test_list[i][’offset ’] + test_list[i][’length ’

]
8 data_buffer = int.from_bytes(pckt.data[test_list[i][’

offset ’]: length], byteorder=’big’)
9 if "rs" in test_list[i]:

10 data_buffer = data_buffer >> test_list[i][’rs’]
11 if "ls" in test_list[i]:
12 data_buffer = data_buffer << test_list[i][’ls’]
13 if "rs2" in test_list[i]:
14 data_buffer = data_buffer >> test_list[i][’rs2’]
15 if "ls2" in test_list[i]:
16 data_buffer = data_buffer << test_list[i][’ls2’]
17 value = data_buffer & test_list[i][’bitmask ’]
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18 if isinstance(val_list , list) == True:
19 for j in range(len(val_list)):
20 if value == val_list[j]:
21 equal = "True"
22 else:
23 if value == test_list[i][’value’]:
24 equal = "True"
25 if equal == test_list[i][’equal’]:
26 test_dict.update ({ test_list[i][’fn’] : value})
27 return test_dict

Listing 3.4: Main Function

Now the packet repeat the same procedure for the next header field
"protocol". When the packet is done checking all the header fields men-
tioned in the json file, the test_dict is sent back to the ipv4function.
At that point, first we evaluate to see if the test_dict is empty. If the
test_dict dictionary is not empty, we store that in a separate dictionary
called ipv4_output. As for the other four protocols, we also have dic-
tionaries for them, such as tcp_output, udp_output and so on and so
forth. In addition to this, the packet is written into the sniffed trace file.
Finally, the test_dict is clear out completely before proceeding on to the
next packet.

The procedures and operations described above are similar to all
ipv6function, tcpfunction, and icmpfunction functions.

All the result produced by this tool entirely depend on the JSON script.
SO we may alter the output by just modifying the JSON script. However,
we needed some tool updates for UDP headers.

For UDP, we are checking if the UDP length is equal to the total IP packet
length minus IP header length, if yes then we check for checksum value
otherwise store the length udp_output. We decided to make use of the
python-libtrace (plt) module in order to directly access length and check-
sum fields through udp.len and udp.checksum from the UDP header,
as shown in figure 3.5.

1 def udpfunction ():
2 ip_pair = (str(udp.src_prefix), str(udp.dst_prefix), udp.

src_port , udp.dst_port)
3 udp_length = ip.pkt_len - ip.hdr_len - 15
4

5 if udp.len != udp_length:
6 udp_output[ip_pair] = {"Lenght": udp.len}
7 ot.write_packet(pkt)
8

9 else:
10 if (udp.checksum != 0 or udp.checksum == 0):
11 udp_output[ip_pair] = {"checksum": udp.checksum}
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12 ot.write_packet(pkt)

Listing 3.5: UDP Function

We will begin by generating a pandas dataframe from the dictionaries,
as illustrated in listing 3.6, and then move on to generating the final find-
ings.

1 ipv4 = pd.DataFrame.from_dict ({i: ipv4_output[i]
2 for i in ipv4_output.keys()},
3 orient=’index’)
4 ipv4.to_csv(r’output_ipv4_ ’+str(sys.argv [1]).rsplit(’.’, )[0]+’

.csv’)

Listing 3.6: Generate output

3.5.3 Result Code

In this section, the observations from our research will be analyzed. We
need to organize the data in a meaningful way. We select pandas for our
data analysis and visualization. Panda’s python library includes data struc-
tures designed to speed up, generalize, and expressly work with "rela-
tional" or "labeled" data. This is a fundamental building block for conduct-
ing practical, everyday data analysis in Python. The data types that pandas
can process are pretty extensive. In addition, custom packages built atop
pandas are used more frequently to address data preparation, analysis, and
visualization. After we get all the output data files from the main program,
we process them in a substantial manner. The analysis of the results is con-
ducted in two stages, i.e., the results are initially broken down by month
and subsequently by the entire year.

Since we have parsed daily data from June to December in 2020, January
til March in 2021 as well as in 2022, we can say that we have a good grasp
of the situation. The information for each day of the month is included in
the output generated by the primary program. In addition, the number of
days varies between months, not only due to the actual number of days per
month but also the fact that not every one of these days has an out-of-the-
ordinary value in the header field.

The code snippet 3.7 is an example of how we process IPv6 outputs. For
IPv6 protocol we are specifically interested in "flow label", "traffic class" and
"next header" fields. A detailed description of the interesting header fields
we examine in this thesis and why they were selected is given in Section 4.1.

First, we check if the column exists in the dataframe. As not all days
have strange values, so output files for same protocol may not have same
columns. Then we read the column values from the dataframe. For the
"flow label" and "traffic class" columns, we are only interested when the val-
ues are not zero, so counting all the non-zero values and putting them in a
new column name count_non_zero. Moreover, we want all the distinct
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values for the "next header" column. value_counts() function counts
how many times each unique value appears for that day. to_frame().T
is used to interchange the rows and columns, so the unique values become
columns and their value count become row data. To make the data process
more manageable in the future, we insert three new columns named year,
month, and date.

Repeating the same manner, we process the output files for other protocols.

1 try:
2 df = pd.read_csv(filename)
3

4 if ’flow_lable ’ in df.columns:
5 column = df[’flow_lable ’]
6 count_non_zeros = column[column != 0]. count()
7 result_flow_lable.loc[len(result_flow_lable), [

’year’,’month’, ’date’, ’count_non_zero ’]] = year , month ,
date , count_non_zeros

8

9 if ’traffic_class ’ in df.columns:
10 column = df[’traffic_class ’]
11 count_non_default = column[column != 0]. count()
12 result_traffic_class.loc[len(

result_traffic_class), [’year’,’month’, ’date’, ’
count_non_default ’]] = year , month , date , count_non_default

13

14 if ’next_hdr ’ in df.columns:
15 data_next_hdr = df[’next_hdr ’]. value_counts(

dropna=False)
16 data_next_hdr = data_next_hdr.to_frame ().T
17 result_next_hdr = pd.concat ([ result_next_hdr ,

data_next_hdr],ignore_index=True)
18 result_next_hdr.at[b, ’date’] = date
19 b += 1
20 except:
21 pass

Listing 3.7: Generate Result

Figure 3.8 depicts an essential phenomenon. The total packet counts
from the output_packet_count.csv file are essential to calculate the
total default value before processing the final result. For example, suppose
df1 is the dataframe for the "packet count" file for IPv6 and df2 is the data-
frame of the "result" file we obtained from the last code. Then, we define
the same index for both dataframes. However, the index count is not exact
for both dataframes because we counted the total number of packets for all
days regardless of whether that day had any strange values. So, by match-
ing the indexes (year, month, date), we calculate the default values and join
total and default_val in the previous result file.

1 #define columns as index
2 df1 = df1.set_index ([’year’, ’month’, ’date’])
3 df2 = df2.set_index ([’year’, ’month’, ’date’])
4 #list of the index
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5 i1 = df1.index
6 i2 = df2.index
7

8 val_sum = df2[col_list ].sum(axis =1)
9 default_value = df1.loc[i2][ protocol] - val_sum

10 total = df1.loc[i2][ protocol]
11

12 result = df2.assign(default_val=np.where(i2.isin(i1),
default_value , 0),

13 total=np.where(i2.isin(i1), total , 0))
14

15 #reset the multi index
16 final_df = result.reset_index ()
17 #exporting the csv
18 final_df.to_csv(f’final_{year}_{protocol}_{field}.csv’, index =

False)

Listing 3.8: Join Files

After all the processing done so far, we have created a separate CSV file
for each header field for a given year. This will come in handy if we need
to inspect results more thoroughly for a specific year. In the final stage of
our result finding, which is depicted in listing 3.9, we will first take into
consideration all of the days that are contained within a month, and then
we will divide the total number of packets for the targeted protocol by the
total number of items contained within each column.

1 for year in years:
2 fn2 = f’final_{year}_{protocol}_{field}.csv’
3 df2 = pd.read_csv(fn2)
4 col_list= list(df2)
5 col_list = [e for e in col_list if e not in (’year’, ’month

’, ’date’)]
6

7 df2 = df2.fillna (0)
8 df = df2.groupby ([’year’, ’month’])[col_list ].apply(lambda

x : x.astype(int).sum()).reset_index ()
9 month_df = pd.concat ([month_df , df],ignore_index=True)

10

11 month_df = month_df.fillna (0)
12 col_list1= list(month_df)
13 col_list1 = [e for e in col_list1 if e not in (’year’, ’month’,

’total ’)]
14

15 percentage_df = month_df.copy()
16 for col in col_list1:
17 percentage_df[col]= month_df[col]/ month_df[’total’]*100

Listing 3.9: Final Result
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Chapter 4

Result

This section describes the findings from the overall analysis done in this
thesis.

4.1 Interesting Header Fields

Usually in the analysis of the Header Fields, ‘anomalies’ probably mean
that "a new functionality is used", but in this thesis, an "anomaly" is defined
as a relatively rare or unusual event, instead of the occurrence of an ex-
tremely rare event. After some deliberation, we settled on a set of header
fields to examine in this thesis, all with the aim of discovering whether any
seldom used protocol mechanisms have evolved over time.

Following are the crucial results inferred from the research and categor-
ized under respective protocols:

Subsequent are the interesting header fields for IPv4:
"IHL": This option sets a fixed header length because IPv4 header sizes can
fluctuate. The length of IPv4 headers might vary. The header grows pro-
portionally to the number of configurable parameters. An option instructs
intermediary devices on how to forward or handle data packets. A value
other than 5 will indicate the use of IPv4 options.

"DSCP": This 6-bit field indicating a packet’s network quality can store
and retrieve values from 0 to 63. Values other than 0 are of interest to us
and represent the extent to which it has evolved.

"ECN": Notification of congestion can be sent via ECN, without packet
loss. ECN-capable Transport (ECT) and Congestion Experienced (CE) bits
make up an ECN-specific IP header field. These two bytes match IP header
DSCP bits 6 and 7. If the value is not 0, it is valuable for our analysis.

"Protocol": We find that the protocols Transmission Control Pro-
tocol(TCP), User Datagram Protocol (UDP), Internet Message Access Pro-
tocol version 4 (ICMPv4), Generic Route Encapsulation (GRE) and IPv6
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Encapsulation (IPv6) are the most typical; we speculate if any out-of-the-
ordinary protocols have become increasingly popular or are in use.

Header fields to be investigated for IPv6:

"Flow Label": A source can utilize the Flow Label field to mark packets
that need non-standard quality of service (QoS) or real-time support from
intermediary IPv6 routers. Multiple flows may exist between a source and
a destination due to simultaneous activities. Besides this, default routers
and hosts that don’t implement the flow label field leave it at 0. If the value
is not equal to 0, it’s useful for our analysis.

"Traffic Class": This field is the IPv6 equivalent of ’DSCP’.

"Next Header": With some additional options, the field is similar to the
IPv4 Protocol field. So, it is interesting to see what protocols are used most
other than TCP, UDP, ICMP and Fragment header (44).

For TCP, we are interested in the following header fields:

"RSV": The reserved field uses three digits. They are never utilized and
always have a value of 0. If it’s not 0, further analysis is done.

"CWR, ECE": Not defined in the initial TCP specification, ECE and CWR
were once known as XMAS or YMAS. ECE is used to notify senders of net-
work congestion, preventing packet loss and subsequent re-transmissions.
The sender uses CWR to indicate reception of ECE = 1. If it is not 0 then it
is of our interest.

The header field we are interested in for UDP is:

"Length field": The field is ignored if the length is equal to the total packet’s
length minus the IP header length. But if that’s not the case then its inter-
esting, possibly meaning a UDP option is being used. UDP option is a
somewhat new concept, so we wanted to see if the use of this field has
changed over time.

We are interested in the following header field for ICMP:
"Type": The ICMP packet type is specified in the type field. A type 3 is
assigned to ICMP Destination Unreachable packets, for instance. This vari-
able length (in bytes) field has a total of 8. The usage of these values and
the variants in them are of interest.
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4.2 Result Analysis

This section will explain the ultimate outcome for all the header fields
mentioned in 4.1. The results deduced from the regular analysis of the
selected significant fields are explained below.

IHL: We have looked at every possible value except five that might
interest us. And from the analysis we found the percentage of our interest
values or non default values of the IPV4’s total packets range from 0.000
to 0.014 and there is no clear trend. Despite the negligible deviation from
the default value, the fact that IPv4 options are being used in any way is
indicated by this small percentage.

ECN : Figure 4.1 shows that CE and ECT(1) are consistently near zero,
while the increasing prevalence of ECT (0) is intriguing. The usage of
ECT(0) remained relatively stable between 0.75% and 1.25% during 2020
and 2021, before increasing in the first two months of 2022, only to fall back
below 1% by the third month of that year. Despite the lack of a consistent
trend, we can reasonably assert that ECT(0) is employed more frequently
than CE and ECT (1).
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Figure 4.1: IPv4 ECN values

DSCP: The percentage of non default or interesting values range from
0.34 to 1.04. From June, 2020 until December, 2020 the values always remain
between 0.4 and 0.6 with an increase in November 2020 to 1.04 percent.
Then in 2021 the values drop below 0.4 percent and increased above 0.6
percent in 2022. There is no discernible pattern.
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Protocol: IPsec consists of the Authentication Header (51) and the
Encapsulating Security Payload (50). For this reason, we have combined
ESP and AH as IPsec in the graph. IPsec’s value went from 0.04 percent to
0.11 percent between June 2020 and March 2021. In 2022, however, it fell
below 0.03 percent and appeared to continue falling. Though an increase
in Stream Control Transmission Protocol (SCTP) usage would have been
intriguing, the value consistently trended downwards. The trend of IPsec
and SCTP is depicted in Figure 4.2.
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Figure 4.2: IPv4 Protocol

Flow Label: Figure 4.3 depicts the percentage of the non-default value,
defined as anything other than zero for the flow label, fluctuating from
1.4% to 2.2% in the year 2020. After staying flat in 2021, the graph dropped
to 1.07% in February 2022 before beginning an upward trend once more
in March of that year. Seeing the graph we assume that this occurs either
because of the use of quality of service (QoS) or because the flow’s source
node assigns a flow label.
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Figure 4.3: IPv6 flow label

Traffic Class: Traffic class analysis yields no significant results. Between
0.02 percent and 0.10 percent of all IPv6 packets had traffic class inform-
ation. However, the result showed a continuous decline throughout the
years.

Next Header: Table 4.1 shows the cumulative occurrences of all the
protocols listed there. While these numbers are tiny compared to the
overall quantity of IPv6 packets, they do show the consistent use of
Protocol Independent Multicast (PIM) with IPv6 over time, which is
noteworthy. PIM, or Protocol Independent Multicast [57], is a multicast
forwarding protocol suite for specific use cases. As opposed to including
its own topology identification process, PIM relies on routing parameters
provided by other protocols used in the routing process. It facilitates
multicast routing without requiring the use of specialized unicast routing
techniques. It also constructed both source and shared distribution trees,
which are used to forward packets from numerous sources. Furthermore,
each network group address is represented in PIM as a node in the shortest
path tree.

TCP ECE & CWR: Assuming an ECN-aware network, routers, for
example, will set the IP header’s CE flag when they encounter high data
volumes that could lead to congestion or dropped packets. The receiver
informs the sender of such a CE-mark using the ECE flag. This may trigger
a TCP Slow Start. Upon receiving a TCP segment with the ECE flag set,
the sender sets the CWR flag, halving the send window and reducing the
slow start threshold. Nevertheless, both ECE and CWR are rarely seen in
connections. The graph indicates correct use of ECE and CWR among very
few hosts who are using it.
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Year Month
Total IPv6
Packets

IPv6 hop-
by-hop
option (0)

Destination
Options
for IPv6
(60)

Protocol In-
dependent
Multicast
(103)

2020 6 142.67M 0 0 290
2020 7 104.28M 1 2 299
2020 8 93.30M 2 0 298
2020 9 63.93M 9 0 269
2020 10 77.83M 2 0 261
2020 11 93.84M 8 0 260
2020 12 86.42M 4 0 267
2021 1 92.63M 1 0 242
2021 2 88.68M 0 0 243
2021 3 98.14M 0 0 289
2022 1 66.17M 3 1 213
2022 2 81.61M 0 22 189
2022 3 67.84M 0 12 178

Table 4.1: IPv6 next header field
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Figure 4.4: TCP ECE & CWR Field

Reserved: Typically the RSV field is always set to 0. We have plotted two
y-axis in the graph shown in figure 4.5. Left side shows the percentage of
the total TCP packets and right side is the total Number of packets have
set RSV field not zero. There is no visible trend but from December 2020 til
January 2021 there was a rise for all the RSV field values. It is also visible in
the graph that RSV 1 is always higher than other RSV values except January
2021 and March 2022.
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Figure 4.5: TCP Reserved Field

Length/Option: There is no header option space available for UDP. An
option extends the capabilities of a transport protocol. Besides this, a
UDP header provides only ports and a checksum to detect errors, adding
minimal functionality to the IP. A trailer area is included after the UDP user
data in an IETF draft [58] to enable such options. The results of our research
show that the length field percentage might be anything from 0.01 to 0.13
percent. This option field is still an experiment work, so it is fascinating to
see the use of a UDP option.

Type: Findings for ICMP type header field is quite interesting. Source
Quench messages are used to control congestion. But this type 4 source
quench messages are deprecated [59]. But from the table we see the use
of this type 4 throughout 2020. When a host encounters difficulty parsing
a packet’s header information, it will issue a message of type 12. This is
exactly what we were on the lookout for in this thesis; thus, it will be really
illuminating to take a look at those packets. In addition, the widespread
adoption of Network Time Protocol (NTP) raises the question of why the
concepts of the Timestamp and the Timestamp reply are still in use.
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Year Month Total
Source
Quench
(4)

Unassigned
(1)

Parameter
Problem
(12)

Timestamp
and
Timestamp
Reply
(13+14)

2020 6 1000.41M 376 1 35 599
2020 7 1034.22M 356 0 61 13746
2020 8 1051.28M 424 1 52 4005
2020 9 946.09M 430 0 25 1035
2020 10 975.17M 307 0 30 1198
2020 11 977.19M 314 1 43 1181
2020 12 122.91M 36 2 78 1259
2021 1 14.25M 0 0 3 173
2021 2 14.89M 3 0 10 62
2021 3 16.39M 0 6 15 101
2022 1 35.53M 0 339 38 76
2022 2 32.00M 1 317 27 57
2022 3 29.64M 0 254 4 152

Table 4.2: ICMP Type
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Chapter 5

Discussion and Conclusion

Different conclusions are drawn based on what has been discussed and
analyzed in this thesis, and potential prospects for future work are
proposed.

5.1 Result Findings

At the very first chapter, in section 1.4, there was a research question that
this thesis will address.

Research Question: How much have packet header fields changed
over time?

Answer: There are no discernible patterns suggesting a likely shift in
protocol mechanism. Also, no distinct changes in header fields are
visible after analyzing the data.

However, some of the discoveries in Chapter 4 are noteworthy, as
presented by the result.

• A great scope lies related to IPv6’s next header field and PIM. The
default setting in PIM triggers a message to be sent every 60 seconds.
Our finding showed that there were always some PIM values with
IPv6. First of all, it is unusual for PIM to use more in IPv6 than IPv4.
And secondly, someone is out there using PIM.

• The result from the ICMP type field is quite interesting. We found
usage of forbidden source quench messages; some packets have
anomalies in their header field and the use of Timestamp and
Timestamp reply. It is possible to look deeper into these packets to
determine the exact timing and what happened at that time with
what environment configuration they had.

• Even though RSV findings are insignificant compared to the total
number of packets. However, from our findings, we noticed that
during a specific period, there was a sudden rise for all RSV field
values, which indicates either a measurement test campaign or
someone is experimenting with them.
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• Findings for IPv4’s IHL, DSCP and protocol fields and IPv6’s traffic
class is not worthy of more inspection. However, IPv4’s ECN, TCP’s
ECE & CWR, IPv6’s flow label, and UDP’s option fields can be an
interest of research for the future.

• While parsing data for 2021, we got some IP packets with version
fields other than 4 and 6. After inspecting the "interesting_ip" pcap
file, we found Bogus packets with version 7.

5.2 Limitations

While these results are promising, they should be interpreted cautiously,
and some limitations should be kept in mind.

• This thesis relies on MAWI trace files, yet each day’s worth of data
only amounts to fifteen minutes’ of traces. It is essential to have a
sufficient sample size in order to draw valid conclusions, which our
thesis lacks. A larger dataset may improve the outcomes.

• Our dataset was scattered. A continuous dataset might have helped
us get a more precise result.

• There are limited prior research works related to this topic. Even
though we have lots of traffic analyzing tools available, only a few
studies have been done to detect anomalies in today’s internet traffic.

• The functionality of the software is also restricted. When processing
bigger pcap files, the software may become unresponsive or even
crash. We faced this mainly because of hardware problems. Using
a better and more powerful machine while working with trace files is
recommended. It would be feasible to obtain an update on this tool’s
version.

5.3 Future work

This research on the packet header fields was carried out by us using traffic
captures from the MAWI dataset. Therefore, one can use different datasets,
such as CAIDA, to compare the findings for future work. On the other
hand, developing a traffic analysis tool is challenging due to the slight dif-
ferences between each header format. However, more analysis tools could
be developed for the research applications using the tool developed and
portrayed in this thesis. Furthermore, advanced visualization and graph-
making techniques could be used by adding more features to the developed
tool.

This thesis investigates the use of packet header fields in trace files. The
outcome of the thesis result may be insignificant due to insufficient sample
size, but that leaves considerable room for improvement. However, the res-
ult shows that by making changes to the Json file, one can gain access to the
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offsets and perform a more in-depth analysis of the packet. Also, our tool
provides us with several sniffed pcap files containing all anomalous pack-
ets, allowing us to investigate them further. In light of these arguments,
it can be established that more research can be done to develop this thesis
fully.
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Appendix A

Source Code

The source code for the program can be found here: https://github.com/
naimans/packet-trace / �
Files needed for the program:

• plt_testing.py

• main.py

• json_data.json

To make use of the tool, one will need to execute the shell command
that is provided below:

1 sudo python3 main.py X.pcap json_data.json
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