
1

UNIVERSITY OF OSLO
Department of informatics

Quality definitions and

defect classes used in

experiments on software

inspection

Master thesis
<60 credits>

Morten Hordnes Bakken

<3. May 2009>

2

3

Summary
Quality in software engineering is a relevant topic because quality contributes to develop

good, usable IT-systems and to satisfy customer expectations. To achieve this, we have to

understand the term quality, what it means. To understand it, we have to have a clear

definition of what quality is, which is easier said than done. Even though if we were about to

understand it, we also have to know how to measure it, to determine whether one instance of

quality is better than another. This is the quality issue in a nutshell.

Defects (or errors as he called them) were specified by Fagan in his original paper on formal

inspection [fagan_76] as “any condition that causes malfunction or that precludes the

attainment of expected or previously specified results. Thus, deviations from specifications

are clearly termed errors.” He made no further attempt to classify defects by type or severity.

As far as I know, no widely adopted standard has been developed for classification of defects,

but research on the field of inspection in later years often try to classify defects to some

degree. This classification often tries to deal with the severity of the defects, its consequences

for the development project and with where a type of defect often tends to appear. A good

definition of what a defect is, and a solid classification scheme for defects is vital for

performing good research on software inspection.

The objective of the research in this thesis was to study how quality is defined and how

defects are classified and measured in a set of papers on formal experiments on software

inspection.

In my opinion quality should get much more attention when researching software inspection

than it has gotten in my selection of papers as software inspection is essentially a tool to

enhance quality of a given software engineering artifact.

How much effort that were put into making solid classification schemes for defects varied

wildly and some papers did not use classification of defects at all.

In my opinion a unified scheme for defect classification would serve the field of software

inspection well.

4

5

Acknowledgements
I would like to thank my supervisor, Dag Sjøberg, for his guidance, support, contributions and

discussions. I would also like to thank my good friend and fellow student Mili Orucevic for

his comments, support and cooperation on this thesis, his help has been invaluable. Thanks to

the students and employees at Simula Research Laboratory for making a nice work

environment during the time I have worked on my thesis. Last but not least, thanks to my

family, friends and my fiancée Stine for support and keeping out with me during this period.

Stabekk, May 2009

Morten H Bakken

6

7

Contents

1 Introduction .. 11

1.1 Motivation ..11

1.2 Pair Programming ... 11

1.3 Problem formulation .. 12

1.4 Structure .. 13

2 Software Quality ……………………………………………………………………… 15

 2.1 The concept of quality ……………………………………………………..… 15

 2.1.1 Popular view …………………………………………………….…. 16

 2.1.2 Professional view ……………………………………………….….. 16

 2.2 Measuring quality ………………………………………………………..…... 17

 2.3 Standards and measurements of Software Quality………………………..….. 18

 2.3.1 ISO 9126 standard ………………………………………..………....18

 2.3.2 Comparison of quality models …………………………...………….21

 2.3.3 Other standards and models ……………………………….….…….….22

 2.4 Defects in software engineering artifacts …………………………………..….22

3 Related work …………………………………………………………………….……. 23

4 Research method ………………………………………………………………………25

 4.1 Systematic review ……………………………………………………….……..25

 4.2 Review Protocol ……………………………………………………….……...26

 4.3 How articles were selected and analyzed ………………………………………26

 4.3.1 Inclusion and exclusion criteria ……………………………………..26

 4.3.2 Data sources and search strategy ……………………………………27

 4.3.3 Study identification and selection ………………………………..…27

4.3.4 Data extraction strategy ……………………………………….……27

5 Analysis of the articles ..29

 5.1 Summary of the studies ………………………………………………………29

 5.1.1 Population selection …………………………………………...……31

 5.2 Quality Metrics ……………………………………………………….………34

 5.2.1 Analysis of findings regarding quality metrics ……………………..34

 5.3 Defect classification ……………………………………………………….….35

 5.4 Distribution of defect classifications used ……………………………………36

 5.4.1 Analysis of defect classifications used ………………………….….36

 5.4.2 Defect classification by severity ……………………………………36

 5.4.3 Defect classification by type ……………………………….……….37

6 Discussion ………………………………………………………………………..…….39

 6.1 Discussion regarding findings related to research question 1 ………………..39

 6.2 Discussion regarding findings related to research question 2 ………………..40

 6.2.1 Classification of defects by severity ……………………..…………40

 6.2.2 Classification of defects by type ……………………………………41

7 Threats to validity ………………………………………………………………...…..43

 7.1 Selection of Articles ……………………………………………………...…..43

 7.2 Data extraction ……………………………………………………………..…43

8 Conclusion ……………………………………………………………………..………45

 8.1 Objective of research …………………………………………………………45

 8.2 Findings ………………………………………………………………………45

 8.3 Future work …………………………………………………………………..46

8

Appendix A – Analysis of the selected articles ………………………………………47

The empirical investigation of perspective based reading ……………………....……...47

A controlled experiment to assess the effectiveness of inspection meetings ………...…47

Using inspection data for defect estimation …………………………………..………...48

Evaluating the accuracy of defect estimation models based on insepction data from two

inspection cycles ………………………………………………………………………..48

Investigating the influence of inspector capability factors with four inspection techniques on

inspection performance …………………………………………………………………49

Investigating the cost-effectiveness of reinspections in software development ..………49

Further investigations into the development and evaluation of reading techniques for object-

oriented code inspection ……………………………………………………..…………50

Object-oriented inspection in the face of delocalization …………………………….…51

A replicated experiment to assess requirements inspection techniques ………..………51

Assessing software review meetings: A controlled experiment using CSRS …….……52

A comparison of tool-based and paper-based software inspection …………..……...…52

Further experiences with scenarios and checklists ……………………………….….…53

Comparing detection methods for software requirements inspections: a replicated experiment

……………………………………………………………………………..……………53

Assessing software review meetings: Results of a comparative analysis of two experimental

studies …………………………………………………………………………………..54

Perspective-based usability inspection: An empirical validation of efficacy ..…………54

Appendix B – Disclaimer on collaborative work in master thesis ………………….55

Literature list ………………………………………………………………..…………57

9

List of tables
Table 1: Comparison between criteria/goals of the McCall, Boehm and ISO9126 quality

models …………………………………………………………………………………..21

Table 2: Summary of all the studies ……………………………………………………29

Table 3: Quality metric per article ……………………………………………………...34

Table 4: Defect classification per article ………………………………………...……...35

List of figures
Figure 1: Main factors in ISO 9126 …………………………………………………….19

Figure 2: Main and sub-factors in ISO9126 ……………………………………………19

Figure 3: Number of population types in the experiments ……………………………..31

Figure 4: Number of subjects (professionals) used in the experiments ……………...…32

Figure 5: Number of subjects (students) used in the experiments ………………...……33

Figure 6: Distribution of defect classifications used …………………………………...36

10

11

1 Introduction

1.1 Motivation

Quality in software engineering is a relevant topic because quality contributes to develop

good, usable IT-systems and to satisfy customer expectations. To achieve this, we have to

understand the term quality, what it means. To understand it, we have to have a clear

definition of what quality is, which is easier said than done. Even though if we were about to

understand it, we also have to know how to measure it, to determine whether one instance of

quality is better than another. This is the quality issue in a nutshell. Quality is such a wide

defined term in computer science, especially in software engineering. Whenever someone

mentions quality, they tend to use their own instances and definitions of quality. Still, we

don‟t have a clear definition of what quality is. When two or several experiments in the same

research area use different quality definitions, it is nearly impossible to compare these

measurements and results they provide to each other.

Measuring length, height, age etc. is easy, because they have only one measurement to

consider, and people have a common understanding of how to measure these terms. Length

and height are measured in meters, age in years, but when it comes to software quality

measurement; there are no common understandings of how to measure quality. Some

standards have appeared like ISO9126, just to mention one, but it is not easy to change a

whole industry over night. The main goal of this Master‟s thesis is to find out how articles

describing the effect of pair programming have defined and measured software quality. Are

there some equality in these definitions and measurements, or have the articles focused on

different measurements of quality?

1.2 Software inspection

Software engineering artifacts (both documentation and source code) have been read and

searched for defects as long as they have been produced. In 1976 however, Fagan, proposed a

structured way to do this [fagan_76]. This is generally referred to as a “Formal Technical

Review” or FTR [porter_et_al_97]. The process consists of five steps:

 Overview. The author presents an overview of the scope and purpose of the work product.

 Preparation. Reviewers analyze the work product with the goal of understanding it

thoroughly.

 Inspection meeting. The inspection team assembles and the reader paraphrases the work

product. Reviewers raise issues that are subsequently recorded by the scribe.

 Rework. The author revises the work product.

 Followup. The moderator verifies the quality of rework and decides if reinspection is

required.

This process has been the base of more or less all inspections carried out since Fagan

published his paper.

12

Even though the process still is quite equal to what Fagan proposed, several refinements have

been proposed through the years. Some researchers say that an ad-hoc approach is the best,

where you just read through the material and search for defects, others say that a detailed

checklist is better and then some say that scenarios are the best. Different reading techniques

have also been proposed. When inspections first started, programming languages where

procedural, meaning that reading sequentially was effective. For object-oriented code this is

harder so some researchers have suggested that you follow the flow of execution when

reading such code [dunsmore_et_al2_00] [dunsmore_et_al_02]. For requirements

documentation some have proposed a perspective based reading technique, where you assume

a perspective, for instance as a tester, a developer and so on.

Some researchers have also proposed to skip the meeting step in Fagan‟s original process, as

their experience is you “lose” more defects during these meetings than you “gain” (meaning

that defects proposed by individual inspectors are turned down during the meeting)

[Johnson_et_al_97]. Meetings however are good for filtering out false positives, training

novices and increasing confidence of the team, so some researchers say that they might serve

a purpose afterall [bianchi_et_al_01.pdf].

1.3 Problem formulation

This thesis studies the concept of the term quality used in a set of selected research papers on

software inspection. To best answer this it is also necessary to find out how these papers

define and classify a defect, since detecting them is the purpose of software inspection.

Reducing the amount of defects in a software engineering artifact is a key activity for

improving the quality of it. I present an overview that characterizes what authors and

researchers call quality and how they define defects in these research papers. On the basis of

this overview, other authors and researchers may decide further research for improving and

narrow the use of the terms quality and defect.

The objective of the investigation is to get an overview of how quality and defects is defined,

described and measured in research papers on software inspection.

In order to address these issues, I have analyzed a set of research papers on software

inspection. The set consist of 15 articles, which are selected from a larger set (214 articles). In

section 4.2 review protocol, it is explained how these 15 articles were selected. The data

collected during analysis of these articles, was used to answer the following research

questions:

RQ1: How is quality defined in a set of research papers on software inspection?

RQ2: How are defects defined and classified in a set of research papers on software

inspection?

13

1.4 Structure

The first Section gives a brief introduction to the thesis, as well as a short introduction to pair

programming and the problem formulation. Section 2 “Software Quality” investigates the

history of quality, what quality is, how it is understood up to today‟s date, and describes

different standards of quality. Section 3 “Related Work” sums up relevant and related work to

this thesis done by different authors. Section 4 “Research Methods” describes the systematic

review, and review protocol which describes how the articles were selected, analyzed and

processed, as well as describing the data extraction strategy. Section 5 “Analysis of the

articles” presents the analysis of the articles, raw and processed data found. Detailed analysis

regarding quality metrics used and classification of quality metrics. Section 6 “Discussion”

discusses the findings done in the previous Section, what authors call quality, their affiliations

and more. Section 7 “Threats to Validity” addresses the issue regarding validity in this thesis,

and in Section 8 “Conclusion” I present the conclusion of this thesis where I discuss the

findings, what is learned from the thesis and how it can be used in the future by others.

14

15

2 Software Quality

2.1 The concept of quality

One historian of ideas suggests that it was Plato who should be credited with inventing the

term quality.

The more common a word is and the simpler its meaning, the bolder very likely is the original

thought which it contains and the more intense the intellectual or poetic effort which went into

its making. Thus, the word quality is used by most educated people every day of their lives,

yet in order that we should have this simple word Plato had to make the tremendous effort (it

is perhaps the greatest effort known to man) of turning a vague feeling into a clear thought.

He invented a new word „poiotes‟, „what-ness‟, as we might say, or „of-what-kind-ness‟, and

Cicero translated it by the Latin „qualitas‟, from „qualis‟. [bar_88]

Plato also debated over the definition of quality through his dialogs. One example is the

dialog in the Greater Hippias, where there is a dialog between Socrates and Hippias.

Socrates, after criticizing parts of an exhibition speech by Hippias as not being fine, asks the

question "what the fine is itself?”.

Even though the word “quality” has not existed as long as humans have, it has always been

around.

One of the earliest quality movements can be traced back to Roman crafters, such as

blacksmiths, shoemakers, potters etc. They formed groups which they called collegiums,

emphasizing in its etymology a group of persons bound together by common rules or laws.

This helped the crafters/members to achieve a better product, because of the tighter

collaboration with each other. Achieving a better product can be interpreted as gaining better

product quality, within a marked [eps_91]. This was also a phenomenon in the 13
th

 century,

where European groups/unions, called guilds, were established with the same purpose as the

Romans collegiums. These groups had strict rules for product and service quality, even

though they didn‟t call it that. Craftsmen themselves often placed a mark on the goods they

produced, so that it could be tracked back to crafter in case it was defect, but over time this

came to represent craftsman‟s good reputation. These marks (inspection marks, and master-

crafter marks) served as proof of quality (like today‟s ISO) for customers throughout

medieval Europe, and were dominant until the 19
th

 century. This was later transformed into

the factory system, which emphasized product inspection. In the early 20
th

 century the focus

on processes started with Walter Shewhart, who made quality relevant not only for the

finished product but for the processes as well [asq_1]. Shortly after the WW2 in 1950, W.

Edwards Deming provided a 30 day seminar in Japan for Japanese top management on how to

improve design, product quality, testing and sales. Beside Deming, Dr. Joseph M. Juran also

contributed to raise the level of quality from the factory to total organization. Eventually the

U.S.A. adopted this method, from the Japanese, and expanded it from emphasizing only

statistics, to embrace the entire organization. This became known as Total Quality

Management (TQM). In the late 1980s, the International Organization for Standardization

(ISO) published a set of international standards for quality management and quality assurance,

16

called ISO 9000. This standard underwent a major revision in 2000, now this includes ISO

9000:2000 (definitions), ISO 9001:2000 (requirements) and ISO 9004:2000 (continuous

improvement). [asq_2]

Even today, decades after the quality standards entered the market; the term quality is an

ambiguous term. Many organizations, researchers and authors have trough out the years

defined the term quality as they envision it. Phil Crosby [cro_79] defines it as “conformance

to user requirements”, Watts Humphrey [hum89] refers to it as “achieving excellent levels of

fitness for use”, IBM use the phrase “market-driven quality”, and the Baldrige criteria is

similar to IBMs “customer-driven quality”. The most recent definition of quality is found in

ISO9001-00 as “the degree to which a set of inherent characteristics fulfills requirements”.

Kan has also a definition on quality, which is perhaps broader than those defined in the past;

"First, quality is not a single idea, but rather a multidimensional concept. The dimensions of

quality include the entity of interest, the viewpoint on that entity, and the quality attributes of

that entity. Second, for any concept there are levels of abstraction; when people talk about

quality, one party could be referring to it in its broadest sense, whereas another might be

referring to its specific meaning. Third, the term quality is a part of our daily language and

the popular and professional uses of it may be very different"[kan_04].

Kan [kan_04] describes quality from two viewpoints, the popular and the professional.

2.1.1 Popular view

As one may see, the notation of “quality” is not as simple as it may seem. In everyday life

people use the term quality, as an intangible trait; it can be discussed, felt and judged, but

cannot be weighed or measured. Too many people use the terms good quality, bad quality

without even wanting to define what they mean by good/bad quality, I am not even sure that

they themselves know what they mean by it, but their view on quality is simply; “I know it

when I see it”. Another popular view is that quality often is associated with luxury and class.

Expensive and more complex products are regarded as products with higher quality. If we

take cars as an example, most of us will agree that BMW is somehow a higher quality car than

Honda, but according to Initial Quality Study (IQS), [nett_0607] Ranking made in 2007

where they surveyed new car owners about their cars, to find out problems per 100 vehicles,

Honda scored 108/100 and BMW scored 133/100. 25 more defects were found per 100

vehicles in BMW then in Honda. Since BMW is a more expensive car, and holds a higher

status in the western world, it is considered to be a car with more quality. Simple, inexpensive

products can hardly be classified as quality products.

2.1.2 Professional view

The opposite of the popular view is the professional view. Because of the vagueness,

misunderstanding and misconception of the popular view, the quality improvement in the

industry are not evolving at a great pace. Due to this quality must be described in a workable

definition. As mentioned earlier, Crosby [cro_79] defines quality as “conformance to

17

requirements”, and Juran and Gryna [jur_gry_70] defines quality as “fitness to use”. These

definitions are essentially similar and consistent, and are there for adopted by many

professionals.

“Conformance to requirements” states that requirements must be clearly stated in a way that

they cannot be misunderstood. Everything that is non-conformant is regarded as defects or

lack of quality; because of this, measurements are regularly taken under the production and

development processes to determine the level of conformance. For example a new light bulb

enters the market, and one of the requirements is that it should last at least 300 hours. If it fails

to do so, will this be seen as a lack of quality, it does not meet the quality requirements that

are set and there for should be rejected. Taking this in regard, if a Honda conforms to all

requirements that are set for it, then it is still a quality car. The same thing also counts for

BMW, if all requirements are fulfilled, then it is a quality car. Even though these two cars are

different in many ways, comfort, economics, style, status, etc. If both measure up to the

standard set for them, then both are quality cars.

The term “fitness for use” implies a more significant role for the customer‟s requirements and

expectations, then the “conformance to requirements” definition. Different customers have

different views and different use of the product. This means that the product must have

multiple elements of fitness for use. Each of these elements is a quality characteristic, and can

be categorized as parameters for fitness for use. The two most important parameters are

“quality of design” and “quality of conformance”. Quality of design can be regarded as

determination of requirements and specification. In popular terminology these are known as

grades or models, and are often linked to purchasing power. Taking the cars example again,

all cars are designed to transport one or several persons from A to B, but models differ in

several things. These things can be size, comfort, style, economics, status, performance etc.

Quality of conformance is simply the conformance to the requirements set by the quality of

the design.

2.2 Measuring quality

To measure something, one must know what “it” is, then develop a metric that measures “it”.

This applies to the quality issue as well. If there was a simple way to measure quality, it

would already been known and used, but since there are many definitions on what quality is,

the measurements varies a lot. Even though several standards exist today, the industry has not

been able to adopt it, not to mention the academic field as well. At this point most companies

within the computer sector have some form for quality assurance. They define quality

according to what they believe it is, and measure it the same way. Not many have adopted the

international standards yet. Since this thesis is not about what quality measurements are used

in the industry, I will not be digging more into this subject but rather investigate how this is

done in an academic setting, regarding experiments about pair programming efficiency.

18

The bottom line is that since few companies follow same standards for what quality is and

how to measure it, it is extremely difficult to compare both processes and products with

different definitions and i.e. claim that one product/process is better than another.

2.3 Standards and measurements of Software Quality

2.3.1 ISO 9126 standard

ISO 9126 is an international standard for the evaluation of software. One of the fundamental

objectives of this standard is to address human biases that can affect the delivery and

perception of a software project. The standard is divided into four parts which addresses,

respectively, the following subjects;

- Quality model

- External metrics

- Internal metrics

- Quality in use metrics

Quality model

The ISO 9126-1 software quality model identifies 6 main quality characteristics (figure 1),

namely:

- Functionality

A set of attributes that relate to the existence of a set of functions and their specified

properties. The functions are those that satisfy stated or implied needs [sqmap].

- Reliability

A set of attributes that relate to the capability of software to maintain its level of performance

understated conditions for a stated period of time [sqmap].

- Usability

A set of attributes that relate to the effort needed for use, and on the individual assessment of

such use, by a stated or implied set of users [sqmap].

- Efficiency

A set of attributes that relate to the relationship between the level of performance of the

software and the amount of resources used, under stated conditions [sqmap].

- Maintainability

A set of attributes that relate to the effort needed to make specified modifications [sqmap].

- Portability

A set of attributes that relate to the ability of software to be transferred from one environment

to another [sqmap].

19

Figure 1: Main factors in ISO 9126

Each factor in the ISO 9126 contains several sub-factors, which are all shown in figure 2.

Figure 2: Main and sub-factors in ISO9126

20

If one is interested in a more detailed explanation on all these factors and sub-factors, one can

visit the www.iso.org site.

External metrics

External metrics are applicable to running software.

Internal metrics

Internal metrics are those which do not rely on software execution (static measurements)

Quality in use metrics

Quality in use metrics, are only available when the final product is used in real conditions.

Ideally, the internal quality determines the external quality and this one determines the results

of quality in use [scalet_etal_00].

http://www.iso.org/

21

2.3.2 Comparison of quality models

The ISO 9126 standard is based on McCall and Boehm models. Besides being structured in

basically the same manner as these models (figure 2), ISO 9126 also includes functionality as

a parameter, as well as identifying both internal and external quality characteristics of

software products. Table 1 presents an comparison between the quality models.

Table 1 – Comparison between criteria/goals of the McCall, Boehm and ISO9126 quality

models [sqmap]

Criteria/goals McCall, 1977 Boehm, 1978 ISO 9126, 1993

Correctness * * Maintainability

Reliability * * *

Integrity * *

Usability * * *

Efficiency * * *

Maintainability * * *

Testability * Maintainability

Interoperability *

Flexibility * *

Reusability * *

Portability * * *

Clarity *

Modifiability * Maintainability

Documentation *

Resilience *

Understandability *

Validity * Maintainability

Functionality *

Generality *

Economy *

22

2.3.3 Other standards and models

Both old and new standard and models are listed below. I will not elaborate more on these

models, as it is not a part of my thesis. One can read more about these models elsewhere. The

reason I mention them is to point out what standards and models are out there which help

improve quality definitions and measurements. Also worth noticing is that some of these

models build upon one other. As listed in [sqmap]:

- McCall‟s Quality Model

- Boehm‟s Quality Model

- FURPS / FURPS +

- Dromey‟s Quality Model

- ISO – standards

o ISO 9000

o ISO 9126

o ISO / IEC 15504 (SPICE)

- IEEE

- Capability Maturity Model(s)

- Six Sigma

...

2.4 Defects in software engineering artifacts

Defects (or errors as he called them) were specified by Fagan in his original paper on formal

inspection [fagan_76] as “any condition that causes malfunction or that precludes the

attainment of expected or previously specified results. Thus, deviations from specifications

are clearly termed errors.” He made no further attempt to classify defects by type or severity.

As far as I know, no widely adopted standard has been developed for classification of defects,

but research on the field of inspection in later years often try to classify defects to some

degree. This classification often tries to deal with the severity of the defects, its consequences

for the development project and with where a type of defect often tends to appear. A good

definition of what a defect is, and a solid classification scheme for defects is vital for

performing good research on software inspection.

23

3 Related work

I have not been able to find any research resembling what I have undertaken with this master

thesis. Exploring the quality and defect classification used in controlled experiments on

software inspection is groundbreaking work.

Sjøberg et al [sjøberg_et_al_05] did a survey of controlled experiments in software

engineering in 2005, but they did not focus only on software inspection, neither did they focus

on quality metrics or defect classification.

Much research has been done in the field of software inspection however. Formal software

inspection was incepted in 1976 by Fagan, so it is an ancient field in the world of software

engineering. In the search done by Sjøberg et al [sjøberg_et_al_05] they found 103 formal

experiments. 37 of those were on some form of inspection.

I have not done any exhaustive searches but a simple search for “inspection” gives 6641 hits

in the ACM portal and a search for “software inspection” gives 4832 hits.

Much of the later research on the field seems to be in the direction of the effectiveness of new

variants of Fagan‟s original method, but the measurements that is done is perhaps a bit crude,

and does not give a complete picture of the capability of the different methods. I will get back

to this in later chapters.

24

25

4 Research method

As the purpose of this research is to examine how quality is defined and measured in a set of

software engineering experiments, a systematic review was chosen as the research method.

Before examining the selection of articles, I carried out several literature investigations about

the term quality, how it is defined, how it is measured, what kind of standards exist today etc.

4.1 Systematic review

Systematic review is the means of evaluating and interpreting all available research relevant

to a particular research question, topic area or phenomenon of interest [kitchenham_04].

Furthermore she also states that the aim of systematic review is to present a fair evaluation of

a research topic using a trustworthy, rigorous, and auditable methodology. A systematic

review must be undertaken in accordance with a predefined search strategy [kitchenham_04].

The major advantage of systematic review is that they provide information about the effects

of some phenomenon across a wide range of settings and empirical methods [kitchenham_04].

Important features of a systematic review [kitchenham_04]:

- Systematic reviews start by defining a review protocol that specifies the research questing

being addressed and the methods that will be used to perform the review

- Systematic reviews are based on a defined search strategy that aims to detect as much of the

relevant literature as possible.

- Systematic reviews document their search strategy so that readers can access its rigor and

completeness.

- Systematic reviews require explicit inclusion and exclusion criteria to assess each potential

primary study.

- Systematic reviews specify the information to be obtained from each primary study including

quality criteria by which to evaluate each primary study

- A systematic review is a prerequisite for quantitative meta-analysis.

26

4.2 Review Protocol

General/Background

The reasons why I have decided to include a review protocol are to avoid research bias and to

avoid the analysis to be driven by researcher‟s (my) expectations [SEG_97]. Also, with a

strict structure of how to analyze the articles, it will be easier to compare the articles to each

other.

Review supervisor

Name Current position Skills relevant to

SLR

Role

Dag Sjøberg Research Director

at Simula Research

Laboratory

Research methods for

empirical software

engineering,

theoretical

foundations for

empirical software

engineering

Master

thesis

supervisor

and

mentor

Research questions

RQ1: How is quality defined in a set of research papers on software inspection?

RQ2: How are defects defined and classified in a set of research papers on software

inspection?

4.3 How articles were selected and analyzed

The selection of the articles is done in a prior study, [sjøberg_et_al_05], which was a survey

of controlled experiments in software engineering. Since the selection has been done without

my involvement I will just replicate the method used in [sjøberg_et_al_05].

4.3.1 Inclusion and exclusion criteria

The authors of [sjøberg_et_al_05] selected 103 controlled experiments from 5453 scientific

articles published in a selection of journals between 1993 and 2002. The inclusion criteria

were that the article was a controlled experiment. Excluded from the search were editorials,

prefaces, article summaries, interviews, news, reviews, correspondence, discussions,

comments, reader‟s letters, and summaries of tutorials workshops, panels, and poster sessions.

27

4.3.2 Data sources and search strategy

The authors selected all scientific articles published in EASE, EMSE, ICSE, IEEE Computer,

IEEE Software, ISESE, IST, JSME, JSS, METRICS, SP&E, TOSEM and TSE between 1993

and 2002.

4.3.3 Study identification and selection

All of the scientific articles (5453) had their title and abstract systematically read by one

researcher. If it was unclear from the title or abstract whether a controlled experiment was

described, the entire article was read by both the same researcher and another person in the

project team. In the end, 103 articles were selected. The process of identifying relevant

articles was not as straightforward as it might seem, as several authors claimed to report on an

experiment even though no treatment was applied in the study.

Of these 103 experiments, 15 were randomly selected for me with the only criteria being that

it was on software inspection.

4.3.4 Data extraction strategy

I will extract all the data myself, and have not the possibility to send these extractions to

another person for verification, which would be the optimal thing to do. Ideally one external

person should have reviewed the data extractions, to verify and to exclude research bias. I will

probably use this method when I write future papers, if the settings allow it.

In this assignment I will focus on extracting the following data:

- General information

o Title, authors, experiment setting

- Main Research Questions

o Quality descriptions

o Defect definitions and classifications

- Other Specific information

The main goal of this paper is to find out how quality and defects are defined and also if the

definitions are similar to each other.

28

29

5 Analysis of the articles

Every article is analyzed according to the review protocol, with the purpose of being able to

compare the results to each other. For those who are interested in reading a complete and

detailed analysis of the articles, this can be found in Appendix A at the end of the thesis.

This section summarizes the findings done by the analysis. At first I‟ll presents an overview

of all the articles in general. This to get the reader familiarized with all of the articles

analyzed. The article‟s name can be found in the literature list, following the reference. Then I

will present all quality and defect classification findings per article. Afterward I will provide

information about any common use of quality attributes and defect classifications.

5.1 Summary of the studies

Table 2: Summary of all the studies

Study Subjects Total amount

of subjects

Study setting

Basili_96_b Professionals 26 NASA employees using a

perspective based reading

technique vs. their usual

technique

Bianchi_et_al_01 Students 100+ Groups of students doing

individual and then group

inspection

Biffl_00 Students 169 Students doing inspection of an

object representative of real

world development specifications

Biffl_01 Students 169 Students doing inspection of an

object representative of real

world development specifications

Biffl_et_al Students 177 Students doing checklist and

scenario-based inspection

Biffl2_01 Students 169 Students doing two cycles of

inspection, to measure the

effectiveness of reinspection

Dunsmore_et_al_02 Students 69 Students performing inspection

with checklist, use-cases or a

systematic technique. Compare

effectiveness

Dunsmore_et_al2_00 Students 47 Students performing inspection

with three techniques, ad-hoc,

checklist and scenario-based

Fusaro_et_al_97 Students 30 Students performing inspection

with three techniques, ad-hoc,

checklist and scenario-based

Johnson_et_al_97 Students 72 Students doing real group review

and nominal group review

assisted by a tool called CSRS.

Macdonald_et_al_98 Students 43 Students split into two groups,

one doing tool-based inspection

30

and the other paper-based

inspection

Miller_et_al_98 Students 50 Students doing inspection with

checklist and scenario based

inspection

Porter_et_al_95 Students 48 16 groups of students doing two

inspections with a combination

from three possible techniques,

ad-hoc, checklist and scenario-

based

Porter_et_al_97_b N/A N/A Comparative analysis of two

experiments on inspection

Zhang_et_al_99 Students/professionals 7/24 Pilot experiment with students,

then real experiment with

professionals. Usability

inspection with different

perspectives.

31

5.1.1 Population selection

As we can see in fig. 3, 13 of the experiments uses students as subjects and 2 of the

experiments used professionals. This is quite common as an experiment can be implemented

as part of university curriculum or students might be willing to participate in an experiment

for no or very little compensation. Professionals however will often require monetary

compensation for participating in an experiment and it is harder to coordinate because they

have a job to attend to.

Professionals will of course give the best picture of how professionals respond to treatments

in an experiment, but students are the professionals of tomorrow so their responses should

also have some validity.

Figure 3: Number of population types in the experiments

13

2

0

2

4

6

8

10

12

14

Students Professionals

Population type in experiments

Population type in experiments

32

Fig. 4 shows many subjects participated in the experiments where professionals were used.

The numbers is quite similar, and they reflect the size of an average development department

in an IT organization well.

Figure 4: Number of subjects (professionals) used in the experiments

26

24

23

23,5

24

24,5

25

25,5

26

26,5

Number of subjects (professionals)

Basili_96_b

zhang_et_al_99

33

Fig. 5 shows the distribution of subjects in those experiments that used students. As expected

it varied quite a lot. Some of the experiments used the participants of a large two-semester

workshop on a university and integrated the experiment as a part of that. None of the

experiments had so few subjects that the results should be completely irrelevant.

Figure 5: Number of subjects (students) used in the experiments

100

169 169
177

169

69

47

30

72

43
50 48

0

20

40

60

80

100

120

140

160

180

200

Number of subjects (students)

Bianchi_et_al_01

Biffl_00

Biffl_01

Biffl_et_al

Biffl2_01

Dunsmore_et_al_02

Dunsmore_et_al2_00

Fusaro_et_al_97

Johnson_et_al_97

Macdonald_et_al_98

Miller_et_al_98

Porter_et_al_95

34

5.2 Quality Metrics

A metric is a measurement of some property of a piece of software, its specification or the

process.

Quantitative methods have proved to be very powerful in other science, computer scientists

have worked hard to bring software development similar approaches. In the set of articles

provided for this thesis, just a few of the authors used any quality metrics. Every metric used

is mentioned and explained in table 3. The table shows which article use which metric, and

how the author define and measure this metric.

Quality metric usage per article

Table 3: Quality metric per article

Study Quality Metric Definition and measurement

Basili_96_b None None

Bianchi_et_al_01 None None

Biffl_00 Project Cost

Number and type of

defects

Time to complete project

Count of defects distributed by severity

Biffl_01 None None

Biffl_et_al None None

Biffl2_01 Project Cost

Number of defects

Time to complete project

Count of defects

Dunsmore_et_al_02 None None

Dunsmore_et_al2_00 None None

Fusaro_et_al_97 None None

Johnson_et_al_97 None None

Macdonald_et_al_98 Efficiency Brief mention that defects can affect efficiency, no

complete definition or measurement

Miller_et_al_98 None None

Porter_et_al_95 None None

Porter_et_al_97_b None None

Zhang_et_al_99 Usability A list of 9 attributes that relate to a systems

usability. Subjective measurement, “experienced

usability”

5.2.1 Analysis of findings regarding quality metrics

Out of the 15 experiments only in 4 of them is any quality attributes used. The attribute

project cost is discussed twice, number of defects twice and efficiency and usability is used in

one experiment each. The rest of the papers do not focus on how software inspection can

affect the quality of software engineering artifacts at all. There is not much data regarding my

first research question: “How is quality defined in a set of research papers on software

inspection?” I will discuss these finding to greater extent in chapter 6.

35

5.3 Defect classification

Here I will give a list of how the defects are classified in the different experiments. Under the

column defect classification I will report if defect classification is used and under the column

definition I will report how it is defined if it is defined.

Table 4: Defect classification per article

Study Defect classification Definition

Basili_96_b Defect classification by

type and severity

Nothing defined or used in the experiment, but it

is mentioned as a target for future work

Bianchi_et_al_01 None None

Biffl_00 None None

Biffl_01 Defects classified by

type

Either missing, unnecessary, wrong, ambiguous or

inconsistent information.

Biffl_et_al Defects classified by

severity

Some discussion that one of the techniques can

find the most severe defects, but this is not

measured

Biffl2_01 Defects classified by

severity

Four severity levels

Dunsmore_et_al_02 Defects classified by

type

Some mention that a defect can be of different

types, but not much elaboration on this. They

separate between localized and delocalized

effects, caused by object-oriented code.

Dunsmore_et_al2_00 Defects classified by

type

Defects are classified by how they appear in the

code. Local or non-local. Whether they are in

small or large methods, caused by wrong use of

inheritance and so on.

Fusaro_et_al_97 Defects classified by

type

Taxonomy by [Schneider_et_al_92]

Johnson_et_al_97 Defects classified by

type and severity

It is mentioned in the paper that defects found is

of certain types, but there are no exhaustive list of

types given or any discussion about defect types.

The software they use to inspect has an attribute

for severity level of defect but this is not further

discussed in the paper

Macdonald_et_al_98 Defects classified by

type and severity

They make a difference between defects that make

the program erroneous and defects that affect the

quality of the program.

It is also mentioned that there are different levels

of defects related to how hard they are to find, but

no list of these levels are given

Miller_et_al_98 Defects classified by

type

Taxonomy by [Schneider_et_al_92]

Porter_et_al_95 Defects classified by

type

Taxonomy by [Schneider_et_al_92]

Porter_et_al_97_b Defects classified by

type

Discussion on whether there exists a type of

defects that are easier to find with group

inspection

Zhang_et_al_99 Defects classified by

severity

Usability problems as defects are called in this

paper is ranked by Nielsen‟s rating scale

[Nielsen_93] on a 5 level scale.

36

5.3.1 Distribution of defect classifications used

Of the 15 studies only 2 used no defect classification at all. The rest used defect classification

to some extent. Fig.6 shows that 3 of the papers classified defects by severity only, 10 of the

papers classified defects by type only and 3 of the papers classified defects by both severity

and type.

Figure 6: Distribution of defect classifications used

5.3.2 Analysis of defect classifications used

In this section I will give an overview of how the different experiments classify defects,

whether it is by severity or type.

5.3.2.1 Defect classification by severity

The authors of the experiments that classified defects by severity either used a small scale

with 3 to 5 levels ranging from minor irrelevant defects to critical defects, or they just

mentioned that there exists defects of different severity without making a framework for

describing the severity.

0

1

2

3

4

5

6

7

8

Used defect
classification by

severity

Used defect
classification by type

Used defect
classification by both

severity and type

Distribution of defect classifications used

Distribution of defect
classifications used

37

5.3.2.2 Defect classification by type

Those authors who classified defects by type used varying types. The types used did of course

differ depending on what kind of software engineering artifact that was inspected. For

requirements documentation, there was three papers that used a common set of defect types, a

taxonomy proposed by Schneider et. al in their paper “An experimental study of fault

detection in user requirements documents” [Schneider_et_al_92]. The taxonomy looks like

this:

Class 1 Faults. Missing Information

(a) Missing Functionality or Missing Feature (MF). Information describing the desired

internal operational behavior of the system has been omittedfrom the URD.

(b) Missing Interface (Ml). Information describing how the proposed system will interface

and communicate with objects outside the scope of the system has been omitted from the

URD.

 (c) Missing Performance (MP). Information describing the desired performance

specifications has either been omitted or described in a way that is unacceptable for

acceptance testing.

(d) Missing Environment (ME). Information describing the required hardware

/software/database/personnel environment in which the proposed system will run has been

omitted from the URD.

Class 2 Faults. Wrong Information

(e) Ambiguous Information (WA). An important term, phrase, or sentence essential to an

understanding of system behavior has either been left undefined or defined in a way that can

cause confusion and misunderstanding. (Note, these are not merely language ambiguities such

as an uncertain pronoun reference, but ambiguities about the actual system and its behavior.)

(f) Inconsistent Information (Wl). Two sentences contained in the URD directly contradict

each other or express actions that cannot both be correct or cannot both be carried out.

This is a rather good taxonomy that should cover a lot of defects related to requirements

documentation. The other papers that experimented on inspection of documentation and

classified defects by type, used similar types to the ones found in Schneider‟s taxonomy.

Another type of software engineering artifact that was experimented on was source code. The

experiments on these artifacts that defined defect classes by type all used their own types and

none of them had a very well defined and exhaustive taxonomy of defect types.

[Dunsmore_et_al_02] and [Dunsmore_et_al2_00] that experimented on inspection of object-

oriented source code made a difference between defects that were local and non-local. Other

papers that reported on inspection of source code used types that were related to where in the

source code the defects was found, for example in small or large methods or wrong use of

inheritance and so on.

38

39

6 Discussion

I will divide this chapter into two main parts, one for each of my research questions:

RQ1: How is quality defined in a set of research papers on software inspection?

RQ2: How are defects defined and classified in a set of research papers on software

inspection?

6.1 Discussion regarding findings related to research question 1

As shown in section 5.2, only 4 of the 15 experiments analyzed discussed the impact software

inspection can have on quality. 2 of the papers [biffl_00] and [biffl2_01] used the same terms

for quality:

 Project Cost

 Number of defects

These papers both had good arguments for how project cost can be lowered by using

inspection and how number of defects in a software engineering artifact can be lowered by the

use of inspection. This was however not part of their main research and was mainly discussed

in the motivation section of their papers.

Yet another paper [macdonald_et_al_98] used this term when talking about quality:

 Efficiency

This is just mentioned in a short sentence in the section about the experiment materials. They

say that subjects should look at only functional defects and not defects related to other

qualities such as efficiency.

One paper [zhang_et_al_99] used another term:

 Usability, with following sub attributes:

o Speak the users‟ language

o Consistency

o Minimize the users‟ memory load and fatigue

o Flexibility and efficiency of use

o Use visually functional design

o Design for easy navigation

o Validation checks

o Facilitate data entry

o Provide sufficient guidance

This paper experimented on usability inspection of user interfaces and focused a great deal on

usability. It is unquestionably the most quality focused experiment in my selection and the

authors defines very well what they mean with the term usability. As it is quite a broad term it

is even expanded to a list of nine sub attributes that they assign usability problems to.

40

So out of the four papers that took quality into account, two had a small discussion on how

software inspection can improve quality, one mentioned it in an off sentence and the final one

discussed it to a great extent. The other eleven papers did not discuss how software inspection

affects quality at all, but only focused on how efficient the different software inspection

methods were.

I think it is strange that software quality gets so little attention in these papers. One of the

main goals for any software engineering undertaking should be to achieve as good quality as

possible within the constraints that exists. Software inspection is a great tool for improving

quality in many software engineering artifacts such as requirements documentation, source

code, user interfaces, user documentation and so on. It is one of the best ways of detecting

defects at an early stage of development and can help avoid many problems. In the

organization I am employed in we among other use software inspection on critical pieces of

source code, to ensure that no critical security loopholes or other critical bugs are deployed to

a live environment, and it has proved to be very efficient at that for us.

It would be interesting to see formal experiments on exactly how quality and what forms of

quality is impacted by software inspection, and for instance if any methods of software

inspection is more suited to improving certain aspects of quality.

6.2 Discussion regarding findings related to research question 2

As shown in section 5.3, thirteen of the fifteen papers used some form of defect classification.

Three of these papers exclusively classified defects by severity, seven exclusively classified

by type and three classified by both severity and type.

6.2.1 Classification of defects by severity

Three of the papers that classified defects by severity used a scale of severities. One with

three levels of severity [Johnson_et_al_97]:

 Low

 Medium

 High

One used a scale with four levels of severity [biffl2_01]:

 Trivial

 Minor

 Major

 Critical

The last one that used a scale used five levels of severity [zhang_et_al_99]:

 Not a usability problem

 Cosmetic problem only

 Minor usability problem

 Major usability problem

 Usability catastrophe

41

The first of these scales was an attribute in a computer tool for software inspection, and the

meanings of the different severity levels was not discussed or defined in the paper. The

second scale is discussed to some extent in the section about experiment materials and the

meaning of the different severity levels is well defined. The last scale is very well defined and

is part of a framework described by Nielsen et al [Nielsen_et_al_94] for usability inspection.

The other papers that had some mention of defect severity levels did only have brief

discussions on how different inspection methods relate to defects of different severity levels,

and did not use any scale or measure any severity levels for defects found.

I think that the severity level of defects should be a very natural thing to consider when

researching software inspection. Almost all the papers measured how many defects a given

inspection method found out of a known total. This is of course vital information, but it is

probably just as interesting to know if an inspection method is good at finding defects of a

certain severity level. Information about this would be helpful for project planners and

managers in organizations to decide on which software inspection methods to use.

6.2.2 Classification of defects by type

Of the papers that classified defects by type, three ([Fusaro_et_al_97], [Miller_et_al_98] and

[Porter_et_al_95]) actually used the same taxonomy which was originally proposed by

Schneider et al [Schneider_et_al_92]. This taxonomy was made for inspection on

requirements documentation and it is well defined and covers most types of defects related to

requirements documentation. The other papers that reported on experiments on inspection of

requirements documentation and used classification of defects by type used types similar to

those in Schneider‟s taxonomy, but did not define them so well.

Those papers that was on software inspection of source code and classified defects by type

([Dunsmore_et_al_02], [Dunsmore_et_al2_00] and [Macdonald_et_al_98]) defined defect

types based on where in the code they were located and what kind of coding errors was done.

This seems like a reasonable thing to do, but the types could have been better defined in all of

these papers.

Some of the papers mentions defect types ([Johnson_et_al_97] and [Porter_et_al_97_b]) but

gives no effort to explain what they mean by these types or how they are defined.

In my selection of papers there has been some more effort to define defect types than defect

severity levels, but much of the same can be said for the work on defect types as for the work

on defect severity levels. Some papers have explained it rather well, some have scraped the

surface and some have not given it any thought at all.

For all of the experiments the authors have been very eager to report the “raw efficiency”

(how many defects from the total amount of defects existing in the inspection object that is

found) of the software inspection methods they have researched, and this is perhaps the

easiest metric to measure. But their research would be much more valuable in my eyes, and

probably for decision makers and project managers in software organizations also, if they had

reported in more detail what defect types and of which severity levels the different inspection

methods is good at uncovering. If an inspection method excels at finding obvious defects that

can be corrected by a project manager or system developer in a few minutes work time, but

cannot be used for uncovering critical defects then it is not much worth.

42

43

7 Threats to validity

This section will discuss the most important threats to the validity of the results found in this

thesis.

7.1 Selection of Articles
The review consisted of analyzing fifteen papers that reported on formal experiments on

software inspection. Those papers was a subset of 37 papers on software inspection from an

original 103 papers reporting on formal experiments on software engineering found for the

study [Sjøberg_et_al_05]. The authors of that study had a very well defined strategy for

finding as broad a selection as possible of controlled experiments on software engineering,

but they report selection of articles as a possible threat to validity, so that concerns this thesis

as well. Besides that I analyzed a “random” selection of the 37 possible papers where the

randomization consisted of my supervisor sending me fifteen arbitrarily chosen papers. There

is a risk that those fifteen papers is not representative of the original 37.

7.2 Data extraction
During the analysis I extracted data from fifteen papers. The data provided answers to various

questions in the thesis. Considering the lack of related work to this thesis, guidelines and

standards on how to extract data about quality metrics and defect classifications from research

papers, it is possible that the data extraction may be tainted by subjectiveness from me. The

most common way to address this validity issue is to have more reviewers to do the data

extractions independently, which can be later compared and discussed. This was unfortunately

not a possible option for this thesis.

I am also relatively inexperienced at conducting systematic reviews so it is possible that both

my review protocol and extraction process is below professional scientific standard. A way to

address this issue would have been to get help from a professional academic to write the

review protocol and extract the data. The review protocol have been reviewed by my

supervisor, but the data extraction could only be performed by me. To minimize the

probability of extracting different data from the papers I have followed a pattern and a scheme

throughout every analysis of each article. This can be seen if reading Appendix A or the

review protocol.

44

45

8 Conclusion

8.1 Objective of research

The objective of the research was to study how quality is defined and how defects are

classified and measured in a set of papers on formal experiments on software inspection.

I have done this by performing a systematic literature review on a selection of fifteen papers

reporting on formal experiments on software inspection. The fifteen papers was a random

subset of papers used in another research paper reporting on formal experiments on software

engineering [sjøberg_et_al_05]. The data collected from the systematic review was used to

answer my research questions:

RQ1: How is quality defined in a set of research papers on software inspection?

RQ2: How are defects defined and classified in a set of research papers on software

inspection?

8.2 Findings

Population:

 13 of the papers used students as subjects, 2 used professionals

 The number of subjects ranged from 30 to 177 for students and from 24 to 26 for

professionals

Quality

 Only 4 of the 15 papers used any form of quality attributes

 The papers that used quality attributes did not define or explain why they used them

very well

 In my opinion quality should get much more attention when researching software

inspection than it has gotten in my selection of papers as software inspection is

essentially a tool to enhance quality of a given software engineering artifact

Defect classification

 3 of 15 papers classified defects exclusively by severity

 7 of 15 papers classified defects exclusively by type

 3 of 15 papers classified defects by both severity and type

 2 of 15 papers did not give any effort to classifying defects

 3 papers used the same classification scheme for defect types

 Some of the papers used classification schemes that resembled each other, both for

severity and type

 How much effort that were put into making solid classification schemes for defects

varied wildly and some papers did not use classification of defects at all

46

 In my opinion a unified scheme for defect classification would serve the field of

software inspection well.

8.3 Future work

As my finding shows, there is very little attention given to software quality in my selection of

papers. As software inspection is essentially a tool to enhance software quality I think more

attention should be given to what kinds of software quality is benefited in what way from

software inspection in future research on software inspection.

There is a little more attention given to classification of defects, but the classification schemes

vary a lot, even for experiments that are more or less replications of each other. The lack of

reporting how inspection methods perform in relation to defect types and severity levels

makes the results hard to interpret and of low value both for other researchers and for decision

makers in software organizations. I think it would be wise to make an effort to make unified

defect classification schemes. They would of course need to differ according to what kind of

software engineering artifact is inspected.

To validate the findings in this review it should be repeated with an even broader selection of

papers. It would also be good to include more reviewers to do the data extraction in order to

reduce the threats to validity.

47

Appendix A – Analysis of the selected articles

The empirical investigation of perspective based reading

Authors: Victor R. Basili, Scott Green, Oliver Laitenberger, Filippo Lanubile, Forrest Shull,

Sivert Sørumgård, Marvin V. Zelkowitz

Setting: Two runs of the experiment with professionals from the NASA SEL environment,

where the first run was a pilot experiment. No randomization of subjects as they had to accept

whoever volunteered to participate. 12 subjects took part in the pilot run and 14 took part in

the second run. Some of the subjects used perspective based reading technique from one of

three perspectives, designer, user or tester and some subjects used what is referred to as the

usual NASA technique.

Findings regarding research question 1:

This paper had no discussion on quality related to software inspection.

Findings regarding research question 2:

Defect classes are mentioned when talking about other reading techniques than those used in

this experiment. This experiment did not look into what defect classes was detected, only the

total sum of defects detected. However they say that defect classes will be the subject of

future work.

A controlled experiment to assess the effectiveness of inspection meetings

Authors: Alessandro Bianchi, Filippo Lanubile, Giuseppe Visaggio

Setting: More than 100 students taking a two-semester software engineering course at the

Univeristy of Bari. Students were randomly assigned to groups of either three or four subjects.

All subjects first conducted an individual inspection, then a group inspection with their team.

Findings regarding research question 1:

This paper had no discussion on quality related to software inspection.

Findings regarding research question 2:

No mention or discussion of defect types or class in the paper. They used a premade lab

package however, which might contain some information about this, but it is not looked

further into or taken account for in the paper.

48

Using inspection data for defect estimation

Authors: Stefan Biffl

Setting: 169 undergraduate students divided into 31 teams ranging from 4 to 6 members

doing inspection on an object representative of real world development specifications.

Findings regarding research question 1:

This quote summarizes what thoughts they have put into how software inspection relates to

product quality.

“Product quality directly relates to project cost and schedule estimation; for example,

undetected defects in a key work product – such as a requirements document might lead to

time-consuming adjustments. Thus from the early project stages on, developers and project

managers need to update their estimates of software project schedules and activities with

feedback from the development process. A major aspect of this feedback is data on work-

product quality levels (number and type of deviations from specified quality goals).”

Findings regarding research question 2:

This paper used no classification of defects.

Evaluating the accuracy of defect estimation models based on insepction data

from two inspection cycles

Authors: Stefan Biffl, Willfried Grossman

Setting: 169 undergraduate students divided into 31 teams ranging from 4 to 6 members

doing inspection on an object representative of real world development specifications.

Findings regarding research question 1:

This paper had no discussion on quality related to software inspection.

Findings regarding research question 2:

This quote from the paper describes how they classified defects. There were no further

discussion on the defect classes.

 “A defect in the requirements document was classified as missing, unnecessary, wrong,

ambiguous, or inconsistent information.”

49

Investigating the influence of inspector capability factors with four inspection

techniques on inspection performance.

Authors: Stefan Biffl, Michael Halling

Setting: 177 undergraduate students from the University of Vienna. The experiment setup is

not very well described, but checklist and scenario-based inspection techniques was used.

Findings regarding research question 1:

This paper had no discussion on quality related to software inspection.

Findings regarding research question 2:

There is a brief mention that during planning of inspection some should maybe focus on

different defect types. Later it is mentioned that the scenario based reading technique instruct

inspectors what defect class to uncover without explaining further what classes they mean.

The paper found that a scenario-based reading technique helps inspectors find the most severe

defects (defined as defects that cause considerably more rework later on, if not detected

during inspection).

Investigating the cost-effectiveness of reinspections in software development.

Authors: Stefan Biffl, Bernd Freimut, Oliver Laitenberger

Setting: 169 students attending a two-semester university software development workshop on

how to develop medium-sized software. They were split into 31 groups with 4 to 6 members.

Teams were randomly assigned to using checklist or scenario-based inspection. A second

cycle of inspection was carried out, a reinspection.

Findings regarding research question 1:

The paper says that the success of a software development project among other depend on the

quality of the resulting product. This can be achieved by doing inspection, which can help

with detection and removal of defects at an early stage. This saves rework efforts in later

phases of the project. It is also said that the number of defects has something to do with

quality level, “The objective of a second inspection cycle is to reduce the number of

remaining defects to an acceptable quality level”.

Findings regarding research question 2:

Defects are categorized by 4 severity levels 0, 1, 2 and 3, where 0 is a trivial and unimportant

defect, 1 is a minor defect representing a local problem, 2 is a major defect which could be

hard to find during development and could require multiple changes and finally 3 is a critical

defect that may require reimplementation of the system. There is no discussion on how

defects of the different severity levels impact the product quality; they are more focused on

how they impact the cost of development.

50

Further investigations into the development and evaluation of reading

techniques for object-oriented code inspection

Authors: Alastair Dunsmore, Marc Roper, Murray Wood

Setting: 69 3
rd

 year students from the University of Strathclyde. They were split into three

groups of 23 based on their ability. Each of the three groups focused on one review technique,

either checklist, use-case based or a systematic technique.

Findings regarding research question 1:

This paper had no discussion on quality related to software inspection.

Findings regarding research question 2:

The paper discusses three different approaches to inspection, one of them being checklists.

When introducing that they say that “a checklist is often limited to the detection of defects

that belong to particular defect types”. What these types are is not further discussed in the

paper.

Later it is said that the checklists are divided into three sections that deal with issues on the

class-level, method-level and finally method overriding issues. This does not seem to have

any correspondence with the paragraph above, nor are any of these three sections deemed to

be more or less important or critical than the others.

When the describing the experimental setup, they briefly discuss how the defects were

introduced into the material. The only classification to be found here is that some of the

defects have a delocalized nature. This because the paper studies inspection on object oriented

work, which has a tendency to contain delocalized defects. Other information on the defects

is not found in the paper, except for in the conclusion, where two of the inspection methods is

said to be weak when encountering defects caused by missing lines of code.

51

Object-oriented inspection in the face of delocalisation

Authors: Alastair Dunsmore, Marc Roper, Murray Wood

Setting: 47 3
rd

 year students from the University of Strathclyde. No grouping, only

individual inspection. All groups used three review techniques, ad-hoc, checklist and scenario

based both as individuals and as a team.

Findings regarding research question 1:

This paper had no discussion on quality related to software inspection.

Findings regarding research question 2:

Some natural defects (actual mistakes) and some artificially seeded in the code. Defects are

classified where and how they appear in code, eg. their locality, whether they are in a small or

large methods, wrong use of inheritance and so on. Defects are not classified by severity.

A replicated experiment to assess requirements inspection techniques

Authors: Pierfrancesco Fusaro, Filippo Lanubile, Giuseppe Visaggio

Setting: A replicated experiment, using 30 undergraduate students divided into 10 groups of

three subjects each. The teams used a combination of ad-hoc, checklist and scenario-based

inspection.

Findings regarding research question 1:

This paper had no discussion on quality related to software inspection.

Findings regarding research question 2:

The paper gives a definition of a detected defect as an “unstructured English description of

what the subject believes to be incorrect, and it is required that an accurate description of the

fault is supplied”. Defects are classified according to a taxonomy originally proposed by

Schneider et. al [schneider_et_al_92] and Basili and Weiss [basili_et_al_81].

52

Assessing software review meetings: A controlled experiment using CSRS

Authors: Philip M. Johnson, Danu Tjahjono

Setting: 72 undergraduate students from the University of Hawaii. They were divided into

groups of 3, making a total of 24 groups. Each group was exposed to two treatments, real

group review and nominal group review. A tool called CSRS (Collaborative Software Review

System) was used to standardize the review process for both methods.

Findings regarding research question 1:

This paper had no discussion on quality related to software inspection.

Findings regarding research question 2:

In both rounds, the defects were mostly logic, computation, and data handling problems, such

as missing or incorrect condition tests, forgotten cases or steps, and incorrect data access.

Some of these defects were specific to the C/C++ languages, such as memory leaks. None of

the defects, however, involved an incorrect specification. In fact, the participants were told

beforehand that when the code did not conform to the specification, then the specification

should be assumed correct, and the code was therefore incorrect.

This is not mentioned in the paper, but a screenshot of the software used for the reviews,

shows that each defect must have a criticality level: High, medium, low or none. It must also

have a confidence level of high, medium, low or none. It is not documented what the

confidence level means, but probably it means how confident the reviewers are that the defect

is actually a defect.

A comparison of tool-based and paper-based software inspection

Authors: Fraser Macdonald, James Miller

Setting: 43 3
rd

 year students from the University of Strathclyde, split into two sections of 21

and 22 subjects. The two sections were balanced according to the subject‟s abilities. One of

the sections used tool-based inspection while the other used paper-based inspection.

Findings regarding research question 1:

They do relate defects to certain quality attributes, like efficiency, but there is no complete

discussion or taxonomy of this, just a brief mention in the description of the experiment setup.

Findings regarding research question 2:

They make a difference between defects that makes the code erroneous and defects relating to

other qualities, like efficiency. Defects are also given a type and a level of how difficult they

should be to discover, but this is not explained in detail.

53

Further experiences with scenarios and checklists

Authors: James Miller, Murray Wood, Marc Roper

Setting: 50 students divided into 16 groups. Each subject participated in two inspections

using the same technique. The techniques applied in this experiment was checklist and

scenario bases inspection

Findings regarding research question 1:

This paper had no discussion on quality related to software inspection.

Findings regarding research question 2:

Defects are classified according to a taxonomy originally proposed by Schneider et. al

[schneider_et_al_92] and Basili and Weiss [basili_et_al_81].

Comparing detection methods for software requirements inspections: a

replicated experiment

Authors: Adam A. Porter, Lawrence G. Votta, Victor R. Basili

Setting: 48 graduate students divided into 16 groups of three subjects. Each team participated

in two inspections using a combination of two out of three possible inspection methods, ad-

hoc, checklist and scenario-based.

Findings regarding research question 1:

This paper had no discussion on quality related to software inspection.

Findings regarding research question 2:

Defects are classified according to a taxonomy originally proposed by Schneider et. al

[schneider_et_al_92] and Basili and Weiss [basili_et_al_81].

54

Assessing software review meetings: Results of a comparative analysis of two

experimental studies.

Authors: Adam A. Porter, Philp M. Johnson.

Setting: Comparative analysis of two experiments on software review.

Findings regarding research question 1:

This paper had no discussion on quality related to software inspection.

Findings regarding research question 2:

One of the hypotheses of the analysis says that some defects might be easier to find with

group inspection than with individual inspection: “It remains an open question as to whether

classes of defects exist whose detection costs and importance alone justify the use of

meetings.” Further the paper says that this is an important question for further research. If a

class of defects that are more easily found with group inspection can be identified, then

special purpose meetings for detecting these defects can designed and all other defects can be

handled with individual inspection.

Perspective-based usability inspection: An empirical validation of efficacy

Authors: Zhijun Zhang, Victor Basili, Ben Shneiderman

Setting: Pilot experiment with 7 undergraduate students. Main experiment conducted with 24

professionals in a real organization. Each subject inspected two different artifacts in a random

order, using one of three inspection perspectives, novice, expert or error handling.

Findings regarding research question 1:

The paper focuses on the quality attribute usability. Usability is a broad term and this is

handled in the paper by breaking it down to more specific heuristics:

1. Speak the users‟ language

2. Consistency

3. Minimize the users‟ memory load and fatigue

4. Flexibility and efficiency of use

5. Use visually functional design

6. Design for easy navigation

7. Validation checks

8. Facilitate data entry

9. Provide sufficient guidance

Findings regarding research question 2:

This paper does not use the term defect, but rather usability problem. The usability problems

are classified using Nielsen‟s rating scale [nielsen_93], which is a 5 level scale ranging from

no usability problem to usability catastrophe.

55

Appendix B – Disclaimer on collaborative work in master

thesis

This is a disclaimer on partly collaborative work in master thesis together with Mili Orucevic.

The reason why we chose to do parts of the master thesis collaboratively is that the theses

proposed to us by our supervisor, was quite similar. Both would require us to analyze a

selection of papers describing controlled experiments, to find out how quality was described.

We thought it would be an interesting addition to compare the findings of our theses. To be

able to compare we had to have a similar understanding of quality and do the analysis as

equally as possible. Therefore we decided to write the introduction, motivation and the parts

about quality in general collaboratively. The review protocol for the papers was also made as

similar as possible, so we could get data that was easily comparable.

So these sections of the theses are the same for both candidates:

 Introduction

 Software Quality

A section that is not completely similar but that was written in close collaboration is

 Research Method

56

57

Literature list

[asq_1] http://www.asq.org/learn-about-quality/history-of-

quality/overview/overview.html

[asq_2] http://www.asq.org/learn-about-quality/iso-

9000/overview/overview.html

[bar_88] Barfield , Owen. History in English Words. Great Barrington, MA:

Inner Traditions/Lindisfarne Press, 1988. Reprint of original 1953

edition, Faber & Faber, London.

[basili_96_b] V.R. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull,

S.Sørumgård, M.V. Zelkowitz, 1996:The empirical investigation of

Perspective-Based Reading

[Basili_et_al_81] V.R. Basili and D.M. Weiss, “Evaluation of a software requirements

document by analysis of change data”, Proc. Fifth Int‟l Conf. Software

Eng., San Diego, Calif., Mar. 1981, pp. 314-323

[bianchi_et_al_01] A. Bianchi, F. Lanubile, G. Visaggio 2001: Proceedings of the Seventh

International Software Metrics Symposium (METRICS .01): A

Controlled Experiment to Assess the Effectiveness of Inspection

Meetings

[biffl_00] S. Biffl 2000: IEEE SOFTWARE November/December 2000: Using

Inspection Data for Defect Estimation

[biffl_01]: S. Biffl, W. Grossmann 2001 IEEE: Evaluating the Accuracy of Defect

Estimation Models Based on Inspection Data From Two Inspection

Cycles

[biffl_et_al] S. Biffl, M. Halling 2002: Proceedings of the Eighth IEEE Symposium

on Software Metrics (METRICS.02): Investigating the Influence of

Inspector Capability Factors with Four Inspection Techniques on

Inspection Performance

[biffl2_01] S. Biffl, B. Freimut, O. Laitenberger 2001 IEEE: Investigating the Cost-

Effectivenessof Reinspections in Software Development

[cro_79] P.B. Crosby, Quality is Free, McGraw-Hill, 1979

[dunsmore et al 02] A. Dunsmore, M. Roper, M. Wood 2002: ICSE‟ 02, May 19-25, 2002,

Orlando, Florida, USA: Further Investigations into the Development

and Evaluation of Reading Techniques for Object-Oriented Code

Inspection

58

[dunsmore_et_al2_00] A. Dunsmore, M. Roper, M. Wood 2000: ICSE 2000, Limerick,

Ireland: Object-Oriented Inspection in the Face of

Delocalisation

[eps_91] Steven A. Epstein: Wage & Labor Guilds in Medieval Europe

[Fagan_76] M. E. Fagan, “Design and Code Inspections to Reduce Errors in

Program Development”, IBM Systems Journal, 15(3):182–211, 1976.

[fusaro_et_al_97] P. Fusaro, F. Lanubile, G. Visaggio 1997: Empirical Software

Engineering, 2,19-57 (1997):A Replicated Experiment to Assess

Requirements Inspection Techniques

[hum89] W. Humphrey, “Managing the Software Process”, Addison-Wesley

1989

[Johnson_et_al_97] P.M. Johnson, D. Tjahjono 1997: ICSE 97 Boston MA USA: Assessing

software review meetings: A controlled experimental study using CSRS

[jur_gry_70] Juran and Gryna: Quality Planning and Analysis: From product

development through use, McGraw-Hill, 1970

[kan_04] Stephen H. Kan: Metrics and Models in Software Quality Engineering,

pp. 1-4, Published 2002 Addison-Wesley

[kitchenham_04] Kitchenham B.A., Procedures for Performing Systematic Reviews,

Keele University,Technical report TR/SE-0401 and NICTA Technical

Report 0400011T.1, 2004

[Macdonald_et_al_98] F. Macdonald, J. Miller 1998: Empirical Software Engineering,

3, 233–253 (1998): A Comparison of Tool-Based and Paper-Based

Software Inspection

[miller_et_al_98] J. Miller, M. Wood, M. Roper 1998: Empirical Software Engineering,

3, 37–64 (1998): Further Experiences with Scenarios and Checklists

[nett_0607] http://www.nettavisen.no/bil/article1097164.ece

[Nielsen_93] Nielsen, J. 1993. Usability Engineering. San Diego: Academic Press,

Inc.

[porter_et_al_95] A.A. Porter, L.G. Votta, V.R. Basili 1995: IEEE TRANSACTIONS ON

SOFTWARE ENGiNEERING, VOL. 21, NO. 6, JUNE 1995 :

Comparing Detection Methods for Software Requirements Inspections:

A Replicated Experiment

59

[porter_et_al_97_b] A.A. Porter, P.M. Johnson 1997: IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, VOL. 23, NO. 3, MARCH 1997:

Assessing Software Review Meetings: Results of a Comparative

Analysis of Two Experimental Studies

[scalet_etal_00] Scalet et al, 2000: ISO/IEC 9126 and 14598 integration aspects: A

Brazilian viewpoint. The Second World Congress on Software Quality,

Yokohama, Japan, 2000.

[Schneider_et_al_92] G.M Schneider, J. Martin, and W.T. Tsai, “An experimental study of

fault detection in user requirements”, ACM Trans. Software Eng. and

Methodology, vol. 1, no. 2, pp 188-204, Apr. 1992.

[SEG_97] SEG and Department of Computer Science, University of Durham,

“Guidelines for performing Systematic Literature Reviews in Software

Engineering”, 9.July 2007

[sjøberg_et_al_05] D.I.K. Sjøberg, J.E. Hannay, O. Hansen, V.B. Kampenes, A.

Karahasanovic, N-K. Liborg and A.C. Rekdal, ”A survey of controlled

experiments in Software Engineering”, IEEE Trans. on soft. eng. vol.

31, no. 9 Sept. 2005

[sqmap] Software quality models and philosophies,

http://www.bth.se/tek/besq.nsf/(WebFiles)/CF1C3230DB425EDCC125

706900317C44/$FILE/chapter_1.pdf

[zhang_et_al_99] Z. Zhang, V.R. Basili, B. Shneiderman 1999: Empirical Software

Engineering, 4, 43–69 (1999): Perspective-based Usability Inspection:

An Empirical Validation of Efficacy

