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Abstract. We propose a neural network architecture in infinite dimensional spaces for

which we can show the universal approximation property. Indeed, we derive approxima-
tion results for continuous functions from a Fréchet space X into a Banach space Y. The

approximation results are generalising the well known universal approximation theorem

for continuous functions from Rn to R, where approximation is done with (multilayer)
neural networks [16, 28, 20, 35]. Our infinite dimensional networks are constructed using

activation functions being nonlinear operators and affine transforms. Several examples

are given of such activation functions. We show furthermore that our neural networks
on infinite dimensional spaces can be projected down to finite dimensional subspaces

with any desirable accuracy, thus obtaining approximating networks that are easy to

implement and allow for fast computation and fitting. The resulting neural network
architecture is therefore applicable for prediction tasks based on functional data.

1. Introduction

The universal approximation theorem shows that any continuous function from Rn to
R can be approximated arbitrary well with a one layer neural network. More precisely,
for a fixed continuous function σ : R → R and a ∈ Rn, ℓ, b ∈ R, a neuron is a function
Nℓ,a,b ∈ C(Rn;R) defined by x 7→ ℓσ(a⊤x+ b). The universal approximation theorem states
conditions on the activation function σ such that the linear space of functions generated by
the neurons

N(σ) := span{Nℓ,a,b; ℓ, b ∈ R, a ∈ Rn}
is dense with respect to the topology of uniform convergence on compacts. This means that
for every f ∈ C(Rn;R) and compact subset K ⊂ Rn and a given ε > 0, there exists N ∈ N
and ℓi, bi ∈ R, ai ∈ Rn for i = 1, . . . , N such that

sup
x∈K

∣∣∣∣∣f(x)−
N∑
i=1

Nℓi,ai,bi(x)

∣∣∣∣∣ ≤ ε.

Possibly the most widely known property of σ that was shown in Cybenko [16] and Hornik,
Stinchcombe, and White [28] to lead to the density of N(σ) ⊂ C(Rn;R) is the sigmoid
property, which requires σ to be such that limt→∞ σ(t) = 1 and limt→−∞ σ(t) = 0. This
condition has later been relaxed to a boundedness condition Funahashi [20] and a non-
polynomial condition Leshno et al. [35]. All these results are on finite-dimensional shallow
neural networks that consist of one or two layers with many neurons (bounded depth, arbi-
trary width). In contrast stands the analysis of networks with arbitrary depth and bounded
width which has also recently received attention [38, 23, 30]. We refer the reader to Pinkus
[44] for an overview of the earlier literature on neural network approximation theory and to
Berner et al. [5] for a more recent account. See also Kratsios [32] for a unified approach of
approximation results for a wide class of network architectures.

In this paper we are concerned with more general functions f ∈ C(X;Y), where X is an
F-Fréchet space, i.e., a Fréchet space over the field F and Y an F-Banach space. We start
with Y = F. In the definition of a neuron, we replace a⊤x + b by an affine function on X,
the activation function σ : R → R by a function in C(X;X), and the scalar ℓ by a linear
form. With ⟨·, ·⟩ the canonical pairing between X′ and X (X′ denoting the topological dual
of X), for ℓ ∈ X′, A ∈ L(X), b ∈ X we then define a neuron Nℓ,A,b by

Nℓ,A,b(x) = ⟨ℓ, σ(Ax+ b)⟩
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and ask for conditions on σ : X → X that ensure that N(σ) := span{Nℓ,A,b; ℓ ∈ X′, A ∈
L(X), b ∈ X} is dense in C(X;F) under some suitable topology. We thus treat the infinite-
dimensional shallow neural network case (bounded depth, arbitrary width).

To indicate the conditions we obtain for σ, recall that any map ψ ∈ X′ defines a hyperplane
by the set of points Ψ0 := {x ∈ X; ⟨ψ, x⟩ = 0}. This hyperplane splits the space X into
the sets Ψ− := {x ∈ X; ⟨ψ, x⟩ < 0} and Ψ+ := {x ∈ X; ⟨ψ, x⟩ > 0}. We show that
the main property for the activation function to ensure that N(σ) is dense in C(X;F) is,
informally, that an ψ ∈ X′ exists such that the value σ(x) converges, as x moves away from
the hyperplane that is defined by ψ. The limiting values on both sides of the hyperplane need
to be different. We provide several simple examples of easy to calculate activation functions
with the required property. In a second step, we extend our results to f ∈ C(X;Y), where
Y is an F-Banach space.

While such an approximation result might be of interest in its own, from a practical
perspective it is not clear how the functions Nℓ,A,b, which involve infinite dimensional quan-
tities, can actually be programmed. We therefore address the question of approximating the
maps Nℓ,A,b by finite dimensional, easy to calculate quantities. Under the assumption that
the Fréchet space X admits a Schauder basis, we show that such an approximation is possi-
ble. The resulting neural network has an architecture similar to classical neural networks,
with the exception that the activation function is now multidimensional. It does however
still permit for an easy to calculate gradient, which is crucial for training the network via
a back-propagation algorithm. Finally, we also derive the approximation property for deep
neural networks with a given fixed number of layers.

Possible applications of our results are within the area of machine learning, in particu-
lar in the many situations where the input of each sample in the training set is actually a
function (see e.g. Ramsey and Silverman [45] for an account on functional data analysis
and examples). In our accompanying paper [2] we use the results obtained here to derive
numerical solutions of partial differential equations for a range of initial conditions or coeffi-
cients at once (see Han, Jentzen and E [22], Hutzenthaler et al. [29], Cuchiero, Larsson and
Teichmann [15], Beck et al. [1] for papers on neural networks and partial differential equa-
tions). There are other instances where functional data appears naturally. For example grey
scale images can be understood as a function I : [0, 1]2 → [0, 1]. For imagine classification
or recognition problems (see Müller, Soto-Ray and Kramer [41] and Tian [49]) one is now
interested in approximating the function f that assigns to each image its classification f(I).
Additional examples are stock price prediction (see Yu and Yan [52]), option pricing and
hedging (see Buehler et al. [9] and Benth, Detering and Lavagnini [4]), and many others.
We present in this paper an example from commodity markets option pricing.

If the function space of the inputs is a Fréchet space with a Schauder basis, this basis
provides structural information about the elements. Traditional neural networks must be
of very high dimension (large input dimension, large number of neurons) to approximate
a function well. The more variability there is in the function, the larger the number of
parameters that is needed. Therefore, instead of using a classical network to approximate
a function on a grid, our approach allows one to use information in the basis functions
instead to capture the structure and get theoretical convergence results. Our approximation
thus focuses on features of the function related to the coefficients in the basis expansion.
Moreover, we show that there is a large class of possible activation functions σ : X → X
and a choice that is suitable for the approximation problem at hand can significantly reduce
the number of nodes required to approximate a given function f sufficiently well. We refer
to our accompanying paper [3] where this idea is used to price flow forward derivatives in
energy markets.

Related literature: The approximation with neural networks of functionals and oper-
ators that are defined on some general (possibly infinite dimensional) space X goes back to
Sandberg [46]. In Sandberg [46] in the context of discrete time systems, non-linear func-
tionals on a space of functions from N ∪ {0} to N are approximated with neural networks.
In Chen and Chen [11, 12] the authors consider the approximation of non-linear operators
defined on infinite dimensional spaces and use these results for approximating the output of
dynamical systems. Among other results they approximate functions f : K ⊂ X → R, where
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X is Banach, K is compact and f is continuous. In Mhaskar and Hahm [40] the authors
derive networks that approximate the functionals on the function spaces Lp([−1, 1]s) for
1 ≤ p < ∞ and C([−1, 1]s) for integer s ≥ 1. The recent article by Kratisos [32] considers
a space M(X,Y) of functions from a metric space X to another metric space Y. Among
other results, under the assumption that this functions space is homeomorphic to an infinite-
dimensional Fréchet space, the author derives properties of neural network architectures that
are dense within this space. We would like to stress however that in the situation we consider
in this paper, the domain space X is a Fréchet space. The function space C(X,R) however is
usually not a Fréchet space unless X is finite dimensional. Infinitely wide neural networks,
with an infinite but countable number of nodes in the hidden layer have been studied in the
context of Bayesian learning, Gaussian processes and kernel methods by several authors, see
e.g., Neal [43], Williams [51], Cho and Saul [13] and Hazan and Jaakola [24]. Hornik [27]
provides approximation results for such infinitely wide networks. Guss and Salakhutdinov
[21] prove the universal approximation property for two-layer infinite dimensional neural
networks. They show their approximation property for continuous maps between spaces of
continuous functions on compacts.

Recently so-called DeepONets for the approximation of operators between Banach spaces
of continuous functions on compact subsets of Rn have been proposed and analyzed by
Lu et al. [37], and Lauthaler, Mishra and Karniadakis [34]. DeepONets follow a similar
structure as the one used in Chen and Chen [12] of a branch net that uses signals to extract
information about the functions in the domain, and a trunk net to map to the image. In
DeepONets both the branch and trunk nets are deep neural nets. In Kovachki et al. [31]
and Li et al. [36], the authors propose a neural network method to approximate the solution
operator that assigns to a coefficient function for a partial differential equation (PDE) its
solution function. This leads again to the approximation of an operator between Banach
spaces of functions that are defined on a bounded domain in Rn. The neural network that
is presented in [31, 36] is tailor-made for the specific problem at hand and its structure is
motivated by the Green function which defines the solution to the PDE. We also refer the
reader to Kratsios and Bilokopytov [33] for approximations on manifolds in Rn.

Our approach differs in several ways from those previously proposed: We allow for very
general spaces X going beyond Banach spaces, which extends the scope of applications. We
provide an example of a continuous function on Fréchet space in Section 6 where this general-
ity is needed. In contrast to most currently available neural networks for infinite spaces, our
architecture focuses on information inherit in the basis decomposition. This decomposition
carries important structural information that helps in the learning process. Moreover, the
network architectures in the works discussed above have in common an activation function σ
with image in R instead of X as we propose it here. Our notion of a neural network in infinite
dimensions is additionally motivated by the relationship with controlled ordinary differential
equations, which points towards an activation function σ : X → X rather than the classical
one-dimensional maps (possibly on basis coordinates). We refer to E [17] for a connection
between ordinary differential equations and deep neural networks. Lastly, our networks are
structurally very similar to classical neural networks. This allows to easily adapt widely
available and efficient packages as TensorFlow or PyTorch to approximate maps between
infinite dimensional spaces. From a theoretical perspective our results allow us to separate
two approximations. First, the approximation of arbitrary functions f ∈ C(X;Y) with a su-
perposition of infinite dimensional neurons, and second, the approximation of the resulting
infinite dimensional neural network with computable, finite dimensional quantities.

The outline for the paper is as follows. In Section 2 we derive our first main result
Theorem 2.3, which shows that if σ has a property called discriminatory property, then N(σ)
is dense in C(X;F). The main technical challenge is then to derive conditions that ensure
that a given function σ : X → X is actually discriminatory, which is done in Theorem 2.8.
We also provide some first examples of discriminatory functions in this section. We then
extend these results in Section 3 to functions f ∈ C(X;Y), Y Banach space. In Section 4
we address the question of finite dimensional approximations to the neural network which
can easily be computed and trained. In most generality, only under the assumption that
the Fréchet space X has a Schauder basis, the approximation is covered in Theorem 4.3.
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In Section 5 we cover the approximation with multi-layered neural networks. Finally, in
Section 6 we discuss an application from commodity markets, where continuous functions
on Fréchet spaces appear.
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2. An abstract approximation result

Let F ∈ {R,C}, and let X be an F-Fréchet space. Let (pk)k∈N be an increasing sequence
of seminorms that generates the topology of X. We can then consider a metric d on X (that
generates the same topology) given by

(1) d(x, y) :=

∞∑
k=1

2−k
pk(x− y)

1 + pk(x− y)
,

for x, y ∈ X.
Let us consider σ : X → X continuous function. Let A : X → X be in L(X), i.e. a linear

and continuous operator, b ∈ X and ℓ ∈ X′, where X′ denotes the topological dual of X. Let
us consider the following function:

(2) Nℓ,A,b : X → F, Nℓ,A,b(x) := ⟨ℓ, σ(Ax+ b)⟩ = ℓ(σ(Ax+ b)), x ∈ X,

where ⟨·, ·⟩ is the canonical pairing between X′ and X. We will call such function a neuron.
Every neuron Nℓ,A,b is clearly continuous by composition of continuous maps, i.e. Nℓ,A,b ∈
C(X;F), the space of F-valued continuous functions on X.

We define

N(σ) := span{Nℓ,A,b; ℓ ∈ X′, A ∈ L(X), b ∈ X},
namely, we consider all linear combinations of the form

N∑
j=1

αjNℓj ,Aj ,bj , αj ∈ F, N ∈ N.

Evidently, N(σ) ⊂ C(X;F). The maps Nℓ1,A1,b1 , . . . ,NℓN ,AN ,bN build a hidden layer with N
neurons.

We endow C(X;F) with the topology of uniform convergence on compacts. Being X
metrizable, it is clearly Tychonoff, and in particular completely regular. For a given compact
subset K ⊂ X, define

qK(f) := sup
x∈K

|f(x)| , f ∈ C(X;F).

This is a seminorm on C(X;F). We consider the topology generated by the family of semi-
norms {qK ;K ⊂ X, compact}, which is the coarsest topology that makes all the seminorms
continuous functions on C(X;F). This is also called the projective topology induced by the
maps qK for K compact or the topology of compact subsets. Thus, we obtain a locally
convex topology on C(X;F), namely C(X;F) is an F-locally convex space. Conway [14,
Proposition 4.1, p. 114] provides us with the following Riesz representation theorem, which
we are going to employ in the sequel:

Proposition 2.1. If ϕ : C(X;F) → F is a continuous and linear functional, then there is a
compact set K ⊂ X and a regular Borel measure µ on K such that ϕ(f) =

∫
K
f dµ for every

f ∈ C(X;F). Conversely, each such measure defines an element of C(X;F)′. (Observe en
passant that |µ| (K) <∞.)

We recall that for a locally compact space Y equipped with its Borel σ-algebra B(Y ), a
positive measure ν on B(Y ) is a regular Borel measure if

(1) ν(F ) <∞ for every F ⊂ Y compact,
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(2) for any E ∈ B(Y ), ν(E) = sup{ν(F );F ⊂ E,F compact},
(3) for any E ∈ B(Y ), ν(E) = inf{ν(U);U ⊃ E,U open}.

If ν is complex-valued or signed instead, then it is regular if |ν| is.
In the following the expression (µ,K) will denote a compact subset K ⊂ X and a regular

F-valued Borel measure µ on K. We say that σ : X → X continuous is discriminatory if for
any fixed pair (µ,K) ∫

K

⟨ℓ, σ(Ax+ b)⟩µ(dx) = 0

for all ℓ ∈ X′, A ∈ L(X), b ∈ X implies that µ = 0.

Remark 2.2. It would be tempting, albeit more challenging, to establish our universal ap-
proximation result (Thm 2.3) in the space of bounded continuous functions Cb(X;F), en-
dowed with the supremum norm (upon imposing suitable boundedness conditions on the
non-linearity σ), rather than approximating on a compact subset K as we are doing in this
paper. The main obstruction that prevented us from employing this approach is explained
by the succeeding observation: If we aim at following Cybenko’s blueprint [16] (refer to the
proof of Thm. 2.3 below) to establish our result, then in that case we would be required to
work with the space

rba(X) := {µ : B(X) → F; µ(∅) = 0,finitely additive, finite and regular}

which is known to be the dual of Cb(X;F), i.e. Cb(X;F)′ = rba(X). Dealing with finitely
additive measures is more involved, because many standard results from classical measure
theory cease to hold. In particular, at this stage it is not clear to us to envisage a suitable
set of conditions that the non-linearity σ must satisfy in order to be discriminatory (see Def.
2.6).

Nonetheless, we deem this potential extension of our result to be interesting and worthy
to be explored (most likely by deviating completely from Cybenko’s strategy of proof), and we
hope to be able to come back to this question in the future.

The following first main result shows the density of N(σ) if σ is discriminatory. The
result takes inspiration from Cybenko [16] (see also [20], [28] and [35]), where a similar
result has been shown for the case X = Rn. For general X however, showing that a function
σ : X → X is actually discriminatory can be involved. Later, in Theorem 2.8 we therefore
state conditions that can easily be verified and give rise to a large family of discriminatory
functions.

Theorem 2.3. Let X be an F-Fréchet space, and let σ : X → X be continuous and dis-
criminatory. Then N(σ) is dense in C(X;F) when equipped with the projective topology
with respect to the seminorms qK . In other words, given f ∈ C(X;F), then, for any com-

pact subset K of X, and any ε > 0, there exists
∑M
m=1 αmNℓm,Am,bm ∈ N(σ) with suitable

αm ∈ F, ℓm ∈ X′, Am ∈ L(X) and bm ∈ X such that

M∑
m=1

αmNℓm,Am,bm ∈ {g ∈ C(X;F); qK(g − f) < ε}.

Proof. We assume that cl(N(σ)) ⊊ C(X;F), and observe that cl(N(σ)) is clearly still a vector
subspace.

We choose u0 ∈ C(X;F) \ cl(N(σ)). Since the complement of cl(N(σ)) is open, we may
find n ∈ N, seminorms qK1 , . . . , qKn on C(X;F) and ε1, . . . , εn > 0 such that

U :=

n⋂
j=1

{u ∈ C(X;F); qKj
(u− u0) < εj} ⊂ C(X;F) \ cl(N(σ)).

Clearly u0 ∈ U , U is convex, open and disjoint from cl(N(σ)). From one of the Corollaries
of the Hahn-Banach Theorem (see e.g. Narici [42, Thm. 8.5.4]) there exists ϕ : C(X;F) → F
linear and continuous such that

ϕ
∣∣
cl(N(σ))

= 0, ℜ(ϕ) > 0 on U .
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Here, ℜ(ϕ) means the real part of ϕ. In particular, ϕ is not identically zero. Then by
Proposition 2.1, there exists a compact subset K ⊂ X and a regular Borel measure (complex
or signed) µ ̸= 0 on K such that

ϕ(f) =

∫
K

f(x)µ(dx), f ∈ C(X;F).

In particular, for any ℓ ∈ X′, A ∈ L(X), b ∈ X it holds∫
K

⟨ℓ, σ(Ax+ b)⟩µ(dx) = 0.

But σ was assumed to be discriminatory. Thus we infer µ = 0, and this is a contradiction
to ℜ(ϕ) > 0 on U . We conclude that N(σ) is dense in C(X;F) with respect to the topology
of compact subsets of X. This implies that there exits M and αm ∈ F, ℓm ∈ X′, Am ∈ L(X)
and bm ∈ X for m = 1, . . . ,M such that (2.3) holds. □

Example 2.4. Because Theorem 2.3 allows us to approximate continuous functions on
compact subsets of X with neural networks, let us outline a typical example of an infinite
dimensional compact subset. First recall that for X Banach space, a subset S ⊂ X is compact
if and only if (i) S is closed and bounded, (ii) for all ε > 0, there exists a finite dimensional
subspace Xε ⊂ X such that for all s ∈ S, it holds that d(s,Xε) < ε. Let now X be a separable
Hilbert space and let (ek)k∈N be an orthonormal basis for X. Then every x ∈ X can be
represented as x =

∑∞
k=1 xkek with coefficients xk ∈ F. Let us choose (sk)k∈N ∈ ℓ2 with

sk ≥ 0 for all k ∈ N. Here ℓ2 denotes the space of square integrable sequences. The set

(3) S := {x ∈ X : |xk| ≤ sk, ∀k ∈ N}

is then compact. To see this, first observe that S is clearly bounded. Now, let y ∈ cl(S). Then
we may find a sequence (x(n))n∈N in S such that x(n) converges to y. This in particular
means that xk(n) converges to yk for all k ∈ N. But this implies that |yk| ≤ sk and hence
y ∈ S and S is closed (i.e., (i) holds). Finally, let ε > 0, then choose Nε ∈ N such that

∞∑
k=Nε+1

s2k < ε2

and set Xε := span{e1, . . . , eNε
}, which is clearly finite dimensional. For any x ∈ S it holds

that ∥∥∥∥∥x−
Nε∑
k=1

xkek

∥∥∥∥∥
2

=

∞∑
k=Nε+1

x2k < ε2,

which clearly implies that d(x,Xε) ≤
∥∥∥x−

∑Nε

k=1 xkek

∥∥∥ < ε and hence (ii) holds.

For the sequel, we need a boundedness assumption on the activation function σ. First,
recall that a set A ⊂ X is von Neumann-bounded if for any k ∈ N there exists ck > 0 such
that supx∈A pk(x) ≤ ck. We assume that the set

(4) σ(X) ⊂ X

is von Neumann-bounded.

Remark 2.5. We have another concept of metric-boundedness available: A subset A of a
metric space (X, d) is bounded if there exists R > 0 such that for all x1, x2 ∈ A it holds
d(x1, x2) < R. This concept is not sufficiently stringent, because diam(X) ≤ 1 under the
metric defined in (1), and thus any subset of X is bounded. von Neumann-boundedness is
more well-suited when one works with metrizable topological vector spaces.

Assuming von Neumann-boundedness is convenient because it enables us to interchange
limits and integrals. Observe that in the case in which X is normed, we are back to the
classical concept of boundedness.

In view of the von Neumann-boundedness assumption on σ, for any ℓ ∈ X′, A ∈ L(X), b ∈
X

|Nℓ,A,b(x)| ≤ Cℓ pkℓ(σ(Ax+ b)), x ∈ X
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for some constant Cℓ ≥ 0 (compare Schaefer [47, Thm. 1.1, p. 74]), and thus, for a constant
C(ℓ, σ) depending on ℓ and σ

|Nℓ,A,b(x)| ≤ C(ℓ, σ), x ∈ X.

We next investigate under which conditions a non-linear function σ is discriminatory.
From now on, we assume that F = R, because we need that hyperplanes disconnect the
space X. If F = C, this of course, cannot hold.

We now state a condition that ensures that σ is discriminatory. In order to develop some
intuition for this condition, first recall that any ψ ∈ X′ \ {0} defines a hyperplane in X by
the set Ψ0 = ker(ψ). This hyperplane splits X between the two half-spaces Ψ+ = {x ∈
X; ⟨ψ, x⟩ > 0} and Ψ− = {x ∈ X; ⟨ψ, x⟩ < 0}, which lie on either side of the hyperplane. It
turns out that measures on B(X)∩K are fully determined by their values on the half-spaces
arising from all shifted hyperplanes. If now σ splits the space X in the sense that there exists
one particular hyperplane Ψ0 such that on either side of this hyperplane, the function σ(λx)
converges as λ→ ∞, then this implies that σ(λx) converges pointwise to a function that is
constant on both half-spaces separated by Ψ0. Integrating this pointwise limit over either
of those spaces determines the value of the measure on them. The maps A ∈ L(X), b ∈ X
now allow to rotate, shift and project to all possible half-spaces and determine the measure
on them (see Lemma 2.10).

The following separating property is the infinite-dimensional counterpart to the well
known sigmoidal property for functions from R to R (see Cybenko [16]):

Definition 2.6. Separating property: There exist ψ ∈ X′ \{0} and u+, u−, u0 ∈ X such that
either u+ /∈ span{u0, u−} or u− /∈ span{u0, u+} and such that

(5)


limλ→∞ σ(λx) = u+, if x ∈ Ψ+

limλ→∞ σ(λx) = u−, if x ∈ Ψ−

limλ→∞ σ(λx) = u0, if x ∈ Ψ0

where we have set as above

Ψ+ = {x ∈ X; ⟨ψ, x⟩ > 0}, Ψ− = {x ∈ X; ⟨ψ, x⟩ < 0}
and Ψ0 = ker(ψ).

We point out that as a particular case of the Separating property we may choose u0 =
u− = 0 and u+ ̸= 0 for instance. We now provide a first example of a function σ that fulfills
the Separating property. It is in the spirit of the classical Sigmoid activation function. More
examples are provided in Section 2.1.

Example 2.7. We are going to give a construction of a continuous and von Neumann-
bounded function σ : X → X satisfying the Separating property in Definition 2.6, for
u+, u−, u0 ∈ X such that either u+ /∈ span{u0, u−} or u− /∈ span{u0, u+}.

Let us recall this abstract result first: given a metric space (Z, d) and ∅ ≠ Y ⊂ Z, define

Fε(x) := max(1− ε−1d(x, Y ), 0), x ∈ Z, ε > 0.

Then Fε is Lipschitz continuous, Fε ∈ [0, 1] and Fε(x) → IY (x) for any x ∈ Z as ε→ 0.
Consider ψ ∈ X′ \ {0} arbitrary. We approximate with this trick the indicator functions

I{ψ≥1}, I{ψ≤−1} and I{ψ=0}, obtaining respectively Fε,1, Fε,−1 and Fε,0. The scaling param-
eter ε is chosen small enough such that the supports of these functions do not meet. This
is clearly possible. Indeed: suppose first that d({ψ = 1}, {ψ = 0}) = 0. Then we might find
(zn, yn) ∈ {ψ = 1} × {ψ = 0} such that d(zn, yn) → 0, namely pk(zn − yn) → 0 for any
k ∈ N. But on the other hand, for some j ∈ N and cj > 0

1 = |⟨ψ, zn⟩ − ⟨ψ, yn⟩| ≤ cjpj(zn − yn) → 0

and thus d({ψ = 1}, {ψ = 0}) > 0. Since suppFε,1 = cl({ψ ≥ 1}ε) and suppFε,0 = cl({ψ =
0}ε) (for an arbitrary subset Y , Yε denotes its ε-neighborhood), for 4ε < d({ψ = 1}, {ψ = 0})
we obtain that the supports do not meet. The same holds for the other cases.

Define

σ(x) := Fε,1(x)u+ + Fε,−1(x)u− + Fε,0(x)u0, x ∈ X.
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Then σ is continuous and von Neumann-bounded, because for any k ∈ N and x ∈ X we
clearly have

pk(σ(x)) ≤ pk(u+) + pk(u−) + pk(u0),

and the condition (5) is satisfied.

The following theorem shows that a function σ that satisfies Definition 2.6 is discrimina-
tory, from which the density of N(σ) follows by Theorem 2.3.

Theorem 2.8. Let X be a real Fréchet space. Let σ : X → X be continuous, von Neumann-
bounded and satisfying the separating property in Definition 2.6 above. Assume that for a
given compact subset K ⊂ X and a given regular Borel measure µ on K it holds∫

K

⟨ℓ, σ(Ax+ b)⟩µ(dx) = 0

for all ℓ ∈ X′, A ∈ L(X), b ∈ X. Then µ = 0.

Before we can prove Theorem 2.8 we need two preparatory lemmas.

Lemma 2.9. Given ϕ, ψ ∈ X′ \ {0} there exists z ∈ X such that ϕ(z) = 1 and ψ(z) ̸= 0.

Proof. Linearity of ϕ implies that the set Φ+ ∪ Φ−, where Φ+ = {x ∈ X; ⟨ϕ, x⟩ > 0}
and Φ− = {x ∈ X; ⟨ϕ, x⟩ < 0}, is actually dense. To see this, we need to show that each
x ∈ Φ0 = ker(ϕ) can be approximated with a sequence in Φ+∪Φ−. Consider un = n−1u ∈ X
with some u ∈ X such that ϕ(u) = 1 and define xn = x + un. Then clearly xn ∈ Φ+ and
xn → x and hence we get that cl(Φ+ ∪ Φ−) = X. Suppose that ψ vanishes on the set
Φ+ ∪ Φ−. Again by continuity of ψ we would get ψ = 0 identically. Therefore, there must
exist w ∈ Φ+ ∪ Φ− such that ψ(w) ̸= 0. The element z = w/ϕ(w) does the job. □

The next lemma is crucial for the proof of Theorem 2.8 as it allows us to rotate, shift
and project to all possible half-spaces and show that the measures on them is zero if certain
conditions are satisfied.

Lemma 2.10. Let X be a real Fréchet space. Let ψ ∈ X′ be not identically zero. Then, for
arbitrary γ ∈ X′, the equation

γ = ψ ◦A
is solvable for some A ∈ L(X).

Proof. For arbitrary ϕ ∈ X′, t ∈ R we write ϕt := {x ∈ X; ⟨ϕ, x⟩ = t}. Clearly, we can
assume γ not identically zero, otherwise the problem is trivial. Therefore, let z ∈ X be such
that ⟨γ, z⟩ = 1 and ⟨ψ, z⟩ ≠ 0. Clearly, such z exists in view of Lemma 2.9 above. Moreover,
let w ∈ X such that ⟨ψ,w⟩ = 1.

Let Ψ0 = ker(ψ) and Γ0 = ker(γ). We observe that

(6) X = Γ0 + ⟨z⟩ = Ψ0 + ⟨w⟩

where ⟨z⟩ = {sz; s ∈ R} ⊂ X and ⟨w⟩ = {sw; s ∈ R} ⊂ X. Furthermore, Γ0 ∩ ⟨z⟩ = {0}
and Ψ0 ∩ ⟨w⟩ = {0}, namely Γ0 and ⟨z⟩, are algebraic complements. The same holds for Ψ0

and ⟨w⟩. Furthermore, Γ0 and Ψ0 are closed by continuity, and have codimension one. By
Schaefer [47, Prop. 3.5., page 22], it follows that Γ0 and ⟨z⟩ (respectively, Ψ0 and ⟨w⟩) are
also topologically complemented.

Therefore, any x ∈ X may be written in a unique way as

x = xΓ0
+ γ(x)z = xΨ0

+ ψ(x)w,

where xΓ0
∈ Γ0, xΨ0

∈ Ψ0. We can therefore define the following projections operators:

ΠΓ0
: X → Γ0, x 7→ xΓ0

,

Π⟨z⟩ : X → ⟨z⟩ x 7→ γ(x)z,

ΠΨ0
: X → Ψ0, x 7→ xΨ0

,

Π⟨w⟩ : X → ⟨w⟩ x 7→ ψ(x)w.
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Since ψ, γ and the identity operator are continuous, it follows that ΠΨ0
(x) = x − ψ(x)w,

ΠΓ0
(x) = x−γ(x)z, Π⟨z⟩ and Π⟨w⟩ are in L(X). Define A0 := ΠΨ0

◦ΠΓ0
+Π⟨w⟩◦Π⟨z⟩ ∈ L(X).

Let x ∈ X arbitrary, and write it as x = xΓ0
+ γ(x)z. Write z = zΨ0

+ ψ(z)w. Then,

A0x = ΠΨ0
xΓ0

+ γ(x)Π⟨w⟩z = ΠΨ0
xΓ0

+ γ(x)ψ(z)w,

and
ψ(A0x) = γ(x)ψ(z)ψ(w) = γ(x)ψ(z), x ∈ X.

But ψ(z) ̸= 0, and thus A := ψ(z)−1A0 ∈ L(X) does the job. □

We are now ready to prove Theorem 2.8:

Proof of Theorem 2.8. Consider λ > 0. Then for any ℓ ∈ X′, A ∈ L(X), b ∈ X it holds∫
K

⟨ℓ, σ(λ(Ax+ b))⟩µ(dx) = 0.

Observe that, as λ→ ∞, pointwise in x ∈ X,

⟨ℓ, σ(λ(Ax+ b))⟩ →


⟨ℓ, u+⟩, if Ax+ b ∈ Ψ+

⟨ℓ, u−⟩, if Ax+ b ∈ Ψ−

⟨ℓ, u0⟩, if Ax+ b ∈ Ψ0

Since, σ is von Neumann-bounded, then there exists a constant C(ℓ, σ) such that

|⟨ℓ, σ(λ(Ax+ b))⟩| ≤ C(ℓ, σ),

uniformly in λ and x. By the Hahn-Jordan decomposition (see Bogachev [6, Thm. 3.1.1.,
Cor. 3.1.2]), we can write the measure µ = µ1 − µ2 for two positive measures µ1, µ2 on K.
This implies that∫

K

⟨ℓ, σ(λ(Ax+ b))⟩µ(dx) =
∫
K

⟨ℓ, σ(λ(Ax+ b))⟩µ1(dx)−
∫
K

⟨ℓ, σ(λ(Ax+ b))⟩µ2(dx)

Since we are integrating on the compact setK, and µ is a regular Borel measure, constants
are integrable with respect to µ on K. The same holds then for µ1 and µ2.

Therefore, by Lebesgue’s dominated convergence theorem applied to each integrand above,
it follows that

(7) ⟨ℓ, u+⟩µ[K∩A−1(Ψ+−b)]+ ⟨ℓ, u−⟩µ[K∩A−1(Ψ−−b)]+ ⟨ℓ, u0⟩µ[K∩A−1(Ψ0−b)] = 0

for any ℓ ∈ X′, A ∈ L(X), b ∈ X.
Let us first assume that u+ /∈ span{u0, u−}. Then by the Hahn-Banach theorem (see

e.g. Conway [14, Chap IV, Cor. 3.15]) we can choose ℓ ∈ X′ such that ⟨ℓ, u+⟩ = 1 and
⟨ℓ, u−⟩ = ⟨ℓ, u0⟩ = 0. This leads us to conclude from (7) that

µ[K ∩A−1(Ψ+ − b)] = 0

for all A ∈ L(X), b ∈ X. Let now t ∈ R and b ∈ X such that t = ψ(−b). Then, it is immediate
to see that

Ψ+ − b = ψ−1(t,∞)

and thus
µ[K ∩ (ψ ◦A)−1(t,∞)] = 0

for each t ∈ R and A ∈ L(X). By Lemma 2.10, we therefore deduce that

(8) µ[K ∩ γ−1(t,∞)] = 0

for each t ∈ R and γ ∈ X′. In the case that u− /∈ span{u0, u+} instead, a similar line of
reasoning leads to conclude that

(9) µ[K ∩ γ−1(−∞, t)] = 0.

Observe in particular that µ(K) = 0. For the sake of convenience, we trivially extend µ to
the whole X, namely

µext(E) := µ(K ∩ E), E ∈ B(X)
and notice that |µext| (X) = |µ| (K) <∞, where |µext| = µext,1 +µext,2, and µext = µext,1 −
µext,2 is the Hahn-Jordan decomposition for the extended measure (µext,1 and µext,2 are
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positive finite measures on B(X)). Clearly, then it follows from µ(K) = 0 that µext(X) = 0.
Recall also that B(K) = B(X) ∩K.

Because µ is regular Borel measure, it follows in particular that for every E ⊂ K and
ε > 0, there exists compact Kε ⊂ K such that |µ| (E \Kε) < ε. This property extends to
E ∈ X for µext as we may use that |µext| (·) = |µ| (· ∩K) and choose Kε ⊂ E ∩K such that
|µ| ((E ∩K)\Kε) < ε and it follows that |µext| (E \Kε) = |µext| ((E ∩K)\Kε)+ |µext| (E ∩
Kc) = |µ| ((E ∩K) \Kε) < ε. This shows that µext is a Radon measure in the sense of [7,
Def. 7.1.1].

Moreover, (8) or (9) is now telling us that µext = 0 on σ(X′) ⊂ B(X), the sigma-algebra
generated by all the elements of X′. We want to show that actually µext = 0 on B(X) as
well. We argue by contradiction and assume there exists E ∈ B(X) such that µext(E) ̸= 0.
In virtue of Bogachev [7, Prop. 7.12.1] we may find B ∈ σ(X′) such that

|µext| (E∆B) = 0,

namely
µext,i(E∆B) = 0, i = 1, 2.

Since E∆B = (E ∪B) \ (E ∩B) and µext,i are positive finite measures, we infer

µext,i(E ∪B) = µext,i(E ∩B), i = 1, 2,

which implies, i = 1, 2,{
µext,i(E) ≤ µext,i(E ∪B) = µext,i(E ∩B) ≤ µext,i(E)

µext,i(B) ≤ µext,i(E ∪B) = µext,i(E ∩B) ≤ µext,i(B)

and finally µext,i(E) = µext,i(B) for i = 1, 2. Therefore,

0 ̸= µext(E) = µext1(E)− µext,2(E) = µext1(B)− µext,2(B) = µext(B)

and at the same time µext(B) = 0, because B ∈ σ(X′). Thus, it must hold µext = 0 on
B(X), and hence, µ = 0 on B(K), which concludes the proof.

□

2.1. Additional examples of functions with Separating property. We now provide
a few more examples of function that satisfy the Separating property Definition 5. The first
example resembles the well known rectified linear activation function (ReLU).

Example 2.11. We consider the following example: let (X, ∥·∥) be a real Banach space now.
Consider ψ ∈ X′ with ∥ψ∥ = 1 (the dual norm). For R > 0, let BR denote the open ball of
radius R around the origin. First of all we notice that

d(cl(BR+1); {x ∈ X; |⟨ψ, x⟩| ≥ R+ 2}) ≥ 1.

Indeed, given y : ∥y∥ ≤ R+ 1 and x : |⟨ψ, x⟩| ≥ R+ 2, it follows that ∥x∥ ≥ R+ 2 and thus

∥y − x∥ ≥ |∥y∥ − ∥x∥| ≥ 1.

In particular these sets are disjoints.
Set F0 := X \ BR+1 and F1 := cl(BR): these closed sets are disjoint. Since we are in a

normal space, Urysohn’s lemma ensures that there exists U : X → [0, 1] continuous such that

U
∣∣
F1

= 1, U
∣∣
F0

= 0.

In particular, since {x ∈ X; |⟨ψ, x⟩| ≥ R + 2} ⊂ X \ cl(BR+1) ⊂ F0, U = 0 on {x ∈ X :
|⟨ψ, x⟩| ≥ R+ 2}.

Let I≥ and I≤ be the indicator functions of the sets {x ∈ X : ⟨ψ, x⟩ ≥ R + 2} and
{x ∈ X : ⟨ψ, x⟩ ≤ −R−2} respectively. And let Iε≥ and Iε≤ be their Lipschitz approximations,
as in Example 2.7. Since, with the same notation as above, it holds

supp Iε≥ = cl({ψ ≥ R+ 2}ε), supp Iε≤ = cl({ψ ≤ −R− 2}ε),
elementary computations show that

supp Iε≥ ⊂ X \BR+2−ε, supp Iε≤ ⊂ X \BR+2−ε

and thus for ε < 1

supp Iε≥ ∩ cl(BR+1) = ∅, supp Iε≤ ∩ cl(BR+1) = ∅.
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We can also easily get that

supp Iε≥ ⊂ {ψ ≥ R+ 2− ε}, supp Iε≤ ⊂ {ψ ≤ −R− 2 + ε},

showing that supp Iε≥ ∩ supp Iε≤ = ∅.
We choose linearly independent vectors u≥ and u≤ and define

σ(x) := U(x)x+ Iε≥(x)u≥ + Iε≤(x)u≤, x ∈ X.

Then σ ∈ C(X;X), and it is bounded because

∥σ(x)∥ ≤ R+ 1 + ∥u≥∥+ ∥u≤∥ , x ∈ X.

Clearly, σ(x) = x if ∥x∥ ≤ R.
Moreover, for x ∈ X such that ⟨ψ, x⟩ > 0, then for all λ ≥ ⟨ψ, x⟩−1(R + 2) we have

σ(λx) = u≥. Similarly, for x ∈ X such that ⟨ψ, x⟩ < 0, then for all λ ≥ ⟨ψ, x⟩−1(−R − 2)
we have σ(λx) = u≤. Finally, if ⟨ψ, x⟩ = 0, then for any λ > 0 we have ⟨ψ, λx⟩ = 0. Thus
λx /∈ supp Iε≥ ∪ supp Iε≤ and so

σ(λx) = U(λx)λx.
If x = 0, then σ(λx) = σ(0) = 0. If x ̸= 0, then for all λ larger than ∥x∥−1

(R+ 1) it holds
σ(λx) = 0.

This shows that σ satisfies (5).

Example 2.12. Let us give some further concrete applications of our abstract framework.
Let now for the sake of simplicity X be a real separable Hilbert space with inner product
denoted by ⟨·, ·⟩ and corresponding norm by ∥·∥. Further, we denote by (ek)k an orthonormal
basis for X. Any x ∈ X may be uniquely written as x =

∑
k∈N xkek, where xk = ⟨ek, x⟩.

Consider βi ∈ C(R;R), i = 1, 2, 3 such that
limξ→∞ β1(ξ) = 1, limξ→−∞ β1(ξ) = −1, β1(0) = 0,

limξ→∞ β2(ξ) = 1, limξ→−∞ β2(ξ) = 1, β2(0) = 1,

limξ→∞ β3(ξ) = −1, limξ→−∞ β3(ξ) = 2, β3(0) = 0,

and define

σ(x) = β1(x1)e1 + β2(x2)e2 + β3(x1)e3, x ∈ X.

Evidently, σ ∈ C(X;X); besides, since ∥σ(x)∥2 = β2
1(x1) + β2(x2)

2 + β3(x1)
2, it holds

supx ∥σ(x)∥ < ∞, because β1, β2 and β3 are bounded. Thus σ is von Neumann-bounded.
Consider now the linear bounded functional

ψ(x) := ⟨e1, x⟩ = x1, x ∈ X.

Clearly, Ψ+ = {x ∈ X;x1 > 0},Ψ− = {x ∈ X;x1 < 0} and Ψ0 = {x ∈ X;x1 = 0} and, as
λ→ ∞

σ(λx) →


e1 + e2 − e3, if x ∈ Ψ+

−e1 + e2 + 2e3, if x ∈ Ψ−

e2, if x ∈ Ψ0

which are linearly independent. We can therefore apply our results to infer that N(σ) is
dense in C(X;R) with respect to the topology of uniform convergence on the compact subsets
of X.

We can even go further. By the comment after Definition 2.6 indeed it is enough to
consider a function β ∈ C(R;R) such that

lim
ξ→∞

β(ξ) = 1, lim
ξ→−∞

β(ξ) = 0, β(0) = 0,

and arbitrary z ∈ X in order to define

σ(x) = β(ψ(x))z = β(x1)z, x ∈ X

which still enables us to conclude that N(σ) is dense in C(X;R). Example 4.4 below extends
this example for more general choices of ψ. A natural question now would be to find “op-
timal” β and z such that the convergence of the approximation to the function we want to
learn is “fast”.
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Example 2.13. The above example can be extended to an activation function that operates
on infinitely many different directions zj ∈ X. More precisely, let now X be a real Banach
space with norm denoted by ∥·∥. As above, we consider an arbitrary ψ ∈ X′ \{0}. Moreover,
suppose we have a sequence (βj)j∈N ⊂ C(R;R) such that

lim
ξ→∞

βj(ξ) = 1, lim
ξ→−∞

βj(ξ) = 0, βj(0) = 0, j ∈ N

and supj ∥βj∥∞ =: B <∞.

Let (zj)j∈N ⊂ X be such that Z :=
∑∞
j=1 ∥zj∥ <∞. Set

z :=

∞∑
j=1

zj ∈ X

and assume z ̸= 0.
We show that the map X ∋ x 7→ σ(x) :=

∑∞
j=1 βj(ψ(x))zj is an activation function.

(1) Well-defined: since it holds

∞∑
j=1

∥βj(ψ(x))zj∥ =

∞∑
j=1

|βj(ψ(x))| ∥zj∥ ≤
∞∑
j=1

∥βj∥∞ ∥zj∥ ≤ BZ

we have absolute convergence and so σ(x) is well-defined.
(2) Boundedness: ∥σ(x)∥ ≤

∑∞
j=1 ∥βj(ψ(x))zj∥ ≤ BZ for any x ∈ X.

(3) Continuity: we have∥∥∥∥∥∥σ(x)−
N∑
j=1

βj(ψ(x))zj

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∞∑

j=N+1

βj(ψ(x))zj

∥∥∥∥∥∥ ≤ B

∞∑
j=N+1

∥zj∥ ,

and thus

sup
x∈X

∥∥∥∥∥∥σ(x)−
N∑
j=1

βj(ψ(x))zj

∥∥∥∥∥∥ ≤ B

∞∑
j=N+1

∥zj∥ → 0

as N → ∞, namely the convergence is uniform. Since x 7→
∑N
j=1 βj(ψ(x))zj is

continuous, σ must be continuous as well.
(4) Separating property: Let λ > 0. Consider first x ∈ Ψ+. From the computations just

done, we have

∥σ(λx)− z∥ ≤

∥∥∥∥∥∥σ(λx)−
N∑
j=1

βj(ψ(λx))zj

∥∥∥∥∥∥+

∥∥∥∥∥∥
N∑
j=1

βj(ψ(λx))zj − z

∥∥∥∥∥∥
≤ B

∞∑
j=N+1

∥zj∥+

∥∥∥∥∥∥
N∑
j=1

βj(ψ(λx))zj − z

∥∥∥∥∥∥ .
Fix ε > 0 and chose Nε ∈ N such that if N ≥ Nε it holds

∑∞
j=N+1 ∥zj∥ ≤ ε

B . For
such N we have:

∥σ(λx)− z∥ ≤ ε+

∥∥∥∥∥∥
N∑
j=1

βj(ψ(λx))zj − z

∥∥∥∥∥∥
and thus

lim sup
λ→∞

∥σ(λx)− z∥ ≤ ε+

∥∥∥∥∥∥
N∑
j=1

zj − z

∥∥∥∥∥∥
because evidently as λ→ ∞

N∑
j=1

βj(ψ(λx))zj − z
X→

N∑
j=1

zj − z.
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Hence

lim sup
λ→∞

∥σ(λx)− z∥ ≤ ε+

∥∥∥∥∥∥
∞∑

j=N+1

zj

∥∥∥∥∥∥ ≤ ε+
ε

B

and by the arbitrariness of ε

lim
λ→∞

∥σ(λx)− z∥ = lim sup
λ→∞

∥σ(λx)− z∥ = 0

i.e. σ(λx) → z as λ→ ∞, if x ∈ Ψ+.
The cases x ∈ Ψ− and x ∈ Ψ0 are treated similarly (with z = 0 now).

Example 2.14. In view of the previous example, we further expand on the idea of an
activation function operating on each coordinate. Let X be a separable Hilbert space with an
orthonormal basis (ek)k∈N and inner product naturally denoted ⟨·, ·⟩. For x ∈ X, we define
the activation function as

σ(x) =

∞∑
k=1

σ̂(xk)ek

where xk := ⟨x, ek⟩ and σ̂ : R → R. For a linear operator A ∈ L(X), we can introduce a
family of linear functionals ρk ∈ X′ by

ρk(x) = ⟨Ax, ek⟩

to obtain

Ax+ b =

∞∑
k=1

(ρk(x) + bk)ek

with bk := ⟨b, ek⟩. But then a neuron becomes, with ℓ =
∑∞
k=1 ℓkek ∈ X,

(10) ⟨ℓ, σ(Ax+ b)⟩ =
∞∑
k=1

ℓkσ̂(ρk(x) + bk)

We remark that the representation on the right-hand side above links to infinite wide neural
networks. Williams [51] proposes and studies such networks using weighted integral repre-
sentations of the infinite layer to encode the sum, and relates such networks to Gaussian
processes (see also Cho and Saul [13]). As ℓ defines a linear functional, we can represent it as
an integral operator rather than a sum which shows that our definition of neural networks is
a generalisation of this class. Infinitely wide neural networks are based on the approximation
results of Hornik [27].

Observe that we must require σ̂(0) = 0, otherwise σ(0) = σ̂(0)
∑∞
k=1 ek /∈ X. Moreover, if

σ̂ is Lipschitz continuous, it follows readily that σ becomes Lipschitz continuous. We have
that,

|σ̂(xk)| = |σ̂(xk)− σ̂(0)| ≤ K|xk|
and therefore σ(x) ∈ X as

(11)

∞∑
k=1

σ̂2(xk) ≤ K2
∞∑
k=1

x2k <∞.

To stay within the framework developed in this paper, we also need to have a bounded acti-
vation function. However, in the infinite dimensional setting this does not come for free. In
light of (11) one could ask for an activation function σ̂ which is bounded and goes sufficiently
fast to zero around the origin. However, let σ̂ = 0 on [−ε, ε] with 0 < ε < 1 say. Then, for
x ∈ X,

|σ(x)|2 =
∑

k: |xk|>ε

|σ̂(xk)|2

If now x =
∑N
k=1 ek, then

|σ(x)|2 = N |σ̂(1)|2

which blows up when N grows. It is an interesting question to generalise our activation
functions to go beyond boundedness and allow for linear or polynomial growth, say.
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3. Approximation for general codomain

In this section we are going to show that our results can be extended to functions f ∈
C(X;Y) where (Y, ∥·∥Y) is an F-Banach space.

As a first step, we need the following simple lemma, which enables us to approximate
with our neural network continuous functions from X into Fd, d ∈ N:

Lemma 3.1. Let X be an F-Fréchet space, and let σ : X → X be continuous and dis-
criminatory. Then, given f ∈ C(X;Fd), a compact subset K of X, and ε > 0, there exist

N i =
∑M
m=1 α

i
mNℓim,A

i
m,b

i
m

∈ N(σ), i = 1, . . . , d, with suitable αim ∈ F, ℓim ∈ X′, Aim ∈ L(X)
and bim ∈ X such that

sup
x∈K

∥∥f(x)− (N 1(x), . . . ,N d(x))
∥∥
Fd < ε

where for all ξ ∈ Fd we have ∥ξ∥Fd =
∑d
i=1

∣∣ξi∣∣.
Proof. We write f = (f1, . . . , fd) with f i ∈ C(X;F), i = 1, . . . , d. Given K ⊂ X and ε > 0,
Theorem 2.3 guarantees the existence of N i ∈ N(σ) such that

sup
x∈K

∣∣f i(x)−N i(x)
∣∣ < ε/d

and we are done. □

We are now ready to prove the following:

Theorem 3.2. Let X be an F-Fréchet space, and let σ : X → X be continuous and dis-
criminatory. Let (Y, ∥·∥Y) be an F-Banach space. Then, given f ∈ C(X;Y), a compact
subset K of X, and ε > 0, there exist d ∈ N, v1, . . . , vd linear independent unit vectors of Y,
N 1, . . .N d ∈ N(σ), such that, by defining

N (x) :=

d∑
i=1

N i(x)vi, x ∈ X,

it holds

sup
x∈K

∥f(x)−N (x)∥Y < ε.

Proof. We recall the following general approximation result (see for example Brezis [8, Ch.
6.1]): given a topological space (Z, τ), an F-Banach space (Y, ∥·∥Y) and a continuous map

T : Z → Y

such that T (Z) is relatively compact in Y , then, given ε > 0 there exists Tε : Z → Y
continuous, with Tε(Z) contained in a finite-dimensional subspace of Y, and such that

∥Tε(z)− T (z)∥Y < ε, z ∈ Z.

To apply this result in our present setting, we first restrict f to K

f
∣∣
K

: K → Y,

obtaining a continuous function whose range is compact in Y. Therefore, we may find
fε : K → Y continuous and such that

(1) fε(K) ⊂ span{v1, . . . vd} ⊂ Y for suitable linear independent elements v1, . . . , vd,
whose norm we assume to be equal to 1.

(2) supx∈K ∥f(x)− fε(x)∥Y = supx∈K
∥∥f ∣∣

K
(x)− fε(x)

∥∥
Y
< ε/2.

We set for convenience V = span{v1, . . . vd}, and we write fε as

fε(x) =

d∑
i=1

f iε(x)vi, x ∈ K

with suitable f iε ∈ C(K;F), i = 1, . . . , d. Being X metrizable, it is clearly normal. Therefore,
by the Tietze extension theorem (since K is closed), there exist giε ∈ C(X;F) extensions of
f iε, i = 1, . . . , d.
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We define gε(x) :=
∑d
i=1 g

i
ε(x)vi, x ∈ X. Then gε ∈ C(X;Y), gε(X) ⊂ V and

sup
x∈K

∥f(x)− gε(x)∥Y < ε/2.

By Lemma 3.1 we may approximate on K

X ∋ x 7→ (g1ε(x), . . . , g
d
ε (x)) ∈ Fd

with (N 1, . . . ,N d) such that

sup
x∈K

∥∥(g1ε(x), . . . , gdε (x))− (N 1(x), . . . ,N d(x))
∥∥
Fd < ε/2.

We define

N (x) :=

d∑
i=1

N i(x)vi, x ∈ X,

which has the required property, since we have

sup
x∈K

∥f(x)−N (x)∥Y ≤ sup
x∈K

∥f(x)− gε(x)∥Y + sup
x∈K

∥gε(x)−N (x)∥Y

< ε/2 + sup
x∈K

d∑
i=1

∣∣giε(x)−N i(x)
∣∣ ∥vi∥Y

= ε/2 + sup
x∈K

d∑
i=1

∣∣giε(x)−N i(x)
∣∣

= ε/2 + sup
x∈K

∥∥(g1ε(x), . . . , gdε (x))− (N 1(x), . . . ,N d(x))
∥∥
Fd

< ε.

□

4. Approximation with finite dimensional neural networks

In this section we prove a result that ensures that one can approximate a given abstract
neural net arbitrary well via a neural network that is constructed from finite dimensional
maps and can thus be trained. Of course, this can only work if we can approximate any
given x ∈ X sufficiently well with a finite dimensional quantity as otherwise we could not
even represent x in a computer. It is therefore plausible that we can derive such results
only if some kind of approximation property holds on X. This approximation property
must ensure that one can approximate the identity map on X by continuous linear maps
of finite rank, uniformly on some subset K ⊂ X of interest. In spaces with a countable
Schauder basis (en)n∈N, the approximating linear maps are usually the projections ΠN :
X → span{e1, . . . , eN}. Unfortunately, not every Fréchet space has a Schauder basis as
shown by Enflo [18]. We refer the reader to Schaefer [47, Ch. III, Sec. 9] for a discussion
of the approximation property and existence of a Schauder basis for Fréchet space, which
was an open problem until answered in [18]. Whenever the space X has a Schauder basis,
however, we can actually derive an approximation of our abstract neural network with a
trainable finite dimensional neural network as we shall see in this section.

To start, we are first going to work in a Banach space setting. Let therefore X be a real
separable Banach space with norm denoted by ∥ · ∥ that admits a normalized Schauder basis
(ek)k∈N, namely each x ∈ X has a unique representation x =

∑∞
k=1 xkek and ∥ek∥ = 1 for

all k. It follows as in Schaefer [47, Thm. 9.6, p. 115] that

ΠN : X → span{e1, . . . , eN}, x 7→
N∑
k=1

xkek, N ∈ N

is linear and bounded with supN∈N ∥ΠN∥op ≤ C for some suitable constant C ≥ 1, and that

for any K ⊂ X compact we have supx∈K ∥x−ΠNx∥ → 0 as N → ∞.
While we know by [18] that there exist Banach spaces without a Schauder basis, it is

also true that “all usual separable Banach spaces of Analysis admit a Schauder basis” (see
Brezis [8]). For example for the Banach spaces Lp(Rn), where 1 ≤ p <∞, as well as for the
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Sobolev and Besov spaces, a basis is given by wavelets (see Triebel [50]). See Heil [25] for
many more examples.

We assume now that the activation function σ : X → X is Lipschitz, namely

(12) ∥σ(x)− σ(y)∥ ≤ Lip(σ) ∥x− y∥ , x, y ∈ X.

where 0 ≤ Lip(σ) < ∞. Of course since X is already a metric space, we do not use the
metric d defined in (1), but the one implied by the norm, i.e. d(x1, x2) = ∥x1 − x2∥.

Observe also that the activation functions in Example 2.12 become Lipschitz as soon as
we impose that the βi’s are Lipschitz. The activation function in Example 2.7 is already
Lipschitz, as soon as X is assumed to be a normed space, as we are doing here. Therefore,
this condition does not seem very restrictive.

We are ready to prove:

Proposition 4.1. Let X be a real separable Banach space that admits a normalized Schauder
basis (ek)k∈N and let σ be Lipschitz. Let f ∈ C(X;R), K ⊂ X compact and ε > 0. Assume

N ϵ(x) =

M∑
j=1

⟨ℓj , σ(Ajx+ bj)⟩, x ∈ X

with ℓj ∈ X′, Aj ∈ L(X) and bj ∈ X such that

sup
x∈K

|f(x)−N ϵ(x)| < ε.

Fix δ > 0. Then there exists N∗ = N∗(N ϵ, δ) ∈ N such that for N ≥ N∗

(13) sup
x∈K

∣∣∣∣∣∣f(x)−
M∑
j=1

⟨ℓj ◦ΠN , σ(ΠNAjΠNx+ΠNbj)⟩

∣∣∣∣∣∣ < ε+ δ.

Proof. For j = 1, . . . ,M , N ∈ N and x ∈ K we indeed have

|⟨ℓj , σ(Ajx+ bj)⟩ − ⟨ℓj ◦ΠN , σ(ΠNAjΠNx+ΠNbj)⟩|
≤ |⟨ℓj , σ(Ajx+ bj)−ΠNσ(Ajx+ bj)⟩|

+ |⟨ℓj ,ΠNσ(Ajx+ bj)−ΠNσ(ΠNAjΠNx+ΠNbj)⟩|
≤ ∥ℓj∥ ∥σ(Ajx+ bj)−ΠNσ(Ajx+ bj)∥

+ ∥ℓj∥C ∥σ(Ajx+ bj)− σ(ΠNAjΠNx+ΠNbj)∥ ,

where in the last line we have used that supN∈N ∥ΠN∥op ≤ C. Thus, as far as it concerns
the second term, it holds

∥ℓj∥C ∥σ(Ajx+ bj)− σ(ΠNAjΠNx+ΠNbj)∥
≤ C ∥ℓj∥Lip(σ) ∥Ajx+ bj −ΠNAjΠNx−ΠNbj∥
≤ C ∥ℓj∥Lip(σ) {∥Ajx−ΠNAjx∥+ ∥ΠNAjx−ΠNAjΠNx∥+ ∥bj −ΠNbj∥}
≤ C ∥ℓj∥Lip(σ) {∥Ajx−ΠNAjx∥+ C ∥Ajx−AjΠNx∥+ ∥bj −ΠNbj∥}

≤ C ∥ℓj∥Lip(σ)
{
∥Ajx−ΠNAjx∥+ C ∥Aj∥op ∥x−ΠNx∥+ ∥bj −ΠNbj∥

}
≤ C ∥ℓj∥Lip(σ)

{
sup
x∈K

∥Ajx−ΠNAjx∥

+C ∥Aj∥op sup
x∈K

∥x−ΠNx∥+ ∥bj −ΠNbj∥
}

= C ∥ℓj∥Lip(σ)

{
sup

y∈AjK
∥y −ΠNy∥

+C ∥Aj∥op sup
x∈K

∥x−ΠNx∥+ ∥bj −ΠNbj∥
}
.
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Setting for convenience σj := σ(AjK + bj), and noticing that it is compact, we eventually
arrive at

|⟨ℓj , σ(Ajx+ bj)⟩ − ⟨ℓj ◦ΠN , σ(ΠNAjΠNx+ΠNbj)⟩|

≤ ∥ℓj∥Lip(σ)

{
sup

y∈AjK
∥y −ΠNy∥

+C ∥Aj∥op sup
x∈K

∥x−ΠNx∥+ ∥bj −ΠNbj∥
}

+ ∥ℓj∥ sup
y∈σj

∥y −ΠNy∥

Observe that AjK ⊂ X is compact. By the approximation property provided by the
Schauder basis (ek)k∈N, we may find N(j) ∈ N such that:

supy∈AjK ∥y −ΠNy∥ < δ
4M∥ℓj∥Lip(σ)

supy∈σj
∥y −ΠNy∥ < δ

4M∥ℓj∥

supx∈K ∥x−ΠNx∥ < δ
4M∥ℓj∥C∥Aj∥opLip(σ)

, if ∥Aj∥op ̸= 0

∥bj −ΠNbj∥ < δ
4M∥ℓj∥Lip(σ)

for all N ≥ N(j). With this choice, we then have

sup
x∈K

|⟨ℓj , σ(Ajx+ bj)⟩ − ⟨ℓj ◦ΠN , σ(ΠNAjΠNx+ΠNbj)⟩| < δ/M.

Therefore, setting N∗ := max{N(1), . . . , N(M)}, we conclude that for all N ≥ N∗

sup
x∈K

∣∣∣∣∣∣f(x)−
M∑
j=1

⟨ℓj ◦ΠN , σ(ΠNAjΠNx+ΠNbj)⟩

∣∣∣∣∣∣ < ε+ δ.

□

We mention that the function N ε : X → R, which is required in the proposition above,
exists for instance in view of Theorem 2.3, as soon as we assume that σ is discriminatory.

Remark 4.2. The terms appearing in the sum in (13) can now easily be programmed in a
computer. We see that for large N , it is sufficient to consider the finite dimensional input
values ΠN (x) instead of x, and then successively the restriction of the operators ΠNAj , σ
and ℓj to span{e1, . . . , eN} instead of the maps Aj , σ and ℓj for j = 1, . . . ,M . The maps
ΠNAj , σ and ℓj are finite dimensional when restricted to span{e1, . . . , eN} and the sum above
thus resembles a classical neural network. However, instead of the typical one dimensional
activation function, the function ΠN ◦ σ restricted to span{e1, . . . , eN} is multidimensional.

With an extra effort it is possible to generalize this result to real separable Fréchet spaces
that admit Schauder basis. Examples include for instance the Schwartz space of rapidly
decreasing functions, for which a basis is given in terms of Hermite functions (see Schwartz
[48]) and the Hida test function and distribution space (see Holden et al. [26, Def 2.3.2.]).

Let us now see how to do this generalization. Following Meise and Vogt [39, 28.10, p.
331], a Schauder basis for a real separable Fréchet space is a sequence (ek)k∈N ⊂ X, such
that each x ∈ X has a unique representation x =

∑∞
k=1 xkek. As above, we define

ΠN : X → span{e1, . . . , eN}, x 7→
N∑
k=1

xkek, N ∈ N

which is linear and bounded. Still from Meise and Vogt [39, 28.10, p. 331], we see that for
any j ∈ N there exists m ∈ N and C > 0 such that for any x ∈ X

(14) sup
N∈N

pj (ΠNx) ≤ Cpm(x)

Moreover, we can easily see that for any K ⊂ X compact and any j ∈ N we have

sup
x∈K

pj(x−ΠNx) → 0
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as N → ∞. Indeed, following Schaefer [47, p. 81] and from (14) we see that

sup
N∈N

sup
x∈S

pj (ΠNx) ≤ C sup
x∈S

pm(x) <∞

for any j ∈ N and S ⊂ X with finite cardinality. Trivially, supx∈S pj (x) <∞. We therefore
deduce that the subset {ΠN}N ∪ {I} ⊂ L(X) is simply bounded, with I being the iden-
tity map. By Schaefer [47, Thm 4.2, p. 83], it is equicontinuous, being X a Baire space.
By Schaefer [47, Thm 4.5, p. 85] we therefore conclude that we have convergence on all
precompact subsets of X.

We are now going to impose the following “graded” Lipschitz condition on the non-
linearity σ:

(15) ∃k0 ∈ N : ∀k ≥ k0 ∃Ck ≥ 0 : pk(σ(x)− σ(y)) ≤ Ckpk(x− y), x, y ∈ X.

Notice that such a map σ is automatically continuous.
We are ready to prove:

Theorem 4.3. Let X be a real separable Fréchet space that admits a Schauder basis (ek)k∈N
and let σ satisfy condition (15). Let f ∈ C(X;R), K ⊂ X compact and ε > 0. Assume

N ε(x) =

M∑
j=1

⟨ℓj , σ(Ajx+ bj)⟩, x ∈ X

with ℓj ∈ X′, Aj ∈ L(X) and bj ∈ X such that

sup
x∈K

|f(x)−N ε(x)| < ε.

Fix δ > 0. Then there exists N∗ = N∗(N ϵ, δ) ∈ N such that for N ≥ N∗

sup
x∈K

∣∣∣∣∣∣f(x)−
M∑
j=1

⟨ℓj ◦ΠN , σ(ΠNAjΠNx+ΠNbj)⟩

∣∣∣∣∣∣ < ε+ δ.

Proof. For j = 1, . . . ,M , N ∈ N and x ∈ K we indeed have, for suitable integers r(ℓj),
t(ℓj),m(ℓj , σ) and n(ℓj , σ, Aj),

|⟨ℓj , σ(Ajx+ bj)⟩ − ⟨ℓj ◦ΠN , σ(ΠNAjΠNx+ΠNbj)⟩|
≤ |⟨ℓj , σ(Ajx+ bj)−ΠNσ(Ajx+ bj)⟩|

+ |⟨ℓj ,ΠNσ(Ajx+ bj)−ΠNσ(ΠNAjΠNx+ΠNbj)⟩|
≤ C(ℓj)pr(ℓj)(σ(Ajx+ bj)−ΠNσ(Ajx+ bj))

+ C(ℓj)pr(ℓj)(ΠNσ(Ajx+ bj)−ΠNσ(ΠNAjΠNx+ΠNbj))

≤ C(ℓj)pr(ℓj)(σ(Ajx+ bj)−ΠNσ(Ajx+ bj))

+ C(ℓj) sup
N∈N

pr(ℓj)(ΠNσ(Ajx+ bj)−ΠNσ(ΠNAjΠNx+ΠNbj))

≤ C(ℓj)pr(ℓj)(σ(Ajx+ bj)−ΠNσ(Ajx+ bj))

+ C(ℓj)Cpt(ℓj)(σ(Ajx+ bj)− σ(ΠNAjΠNx+ΠNbj)),

where in the last line we have used the fact that the constant C in (14) is independent of
N and x. Therefore, for the second term in the last expression we have

C(ℓj) pt(ℓj)(σ(Ajx+ bj)− σ(ΠNAjΠNx+ΠNbj))

≤ C(ℓj) pt(ℓj)∨k0(σ(Ajx+ bj)− σ(ΠNAjΠNx+ΠNbj))

≤ C(ℓj)Ct(ℓj)∨k0 pt(ℓj)∨k0(Ajx+ bj −ΠNAjΠNx−ΠNbj)

≤ C(ℓj , σ)
{
pt(ℓj)∨k0(Ajx−ΠNAjx) + pt(ℓj)∨k0(ΠNAjx−ΠNAjΠNx)

+pt(ℓj)∨k0(bj −ΠNbj)
}

≤ C(ℓj , σ)
{
pt(ℓj)∨k0(Ajx−ΠNAjx) + C ′(ℓj , σ)pm(ℓj ,σ)(Ajx−AjΠNx)

+pt(ℓj)∨k0(bj −ΠNbj)
}

≤ C(ℓj , σ)
{
pt(ℓj)∨k0(Ajx−ΠNAjx) + C ′(ℓj , σ, Aj)pn(ℓj ,σ,Aj)(x−ΠNx)
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+pt(ℓj)∨k0(bj −ΠNbj)
}

≤ C(ℓj , σ)

{
sup
x∈K

pt(ℓj)∨k0(Ajx−ΠNAjx)

+C ′(ℓj , σ, Aj) sup
x∈K

pn(ℓj ,σ,Aj)(x−ΠNx) + pt(ℓj)∨k0(bj −ΠNbj)

}
≤ C(ℓj , σ)

{
sup

y∈AjK
pt(ℓj)∨k0(y −ΠNy)

+C ′(ℓj , σ, Aj) sup
x∈K

pn(ℓj ,σ,Aj)(x−ΠNx) + pt(ℓj)∨k0(bj −ΠNbj)

}
.

Observe that AjK ⊂ X is compact. Setting for convenience σj := σ(AjK+bj), and noticing
that it is compact, we eventually arrive at

|⟨ℓj , σ(Ajx+ bj)⟩ − ⟨ℓj ◦ΠN , σ(ΠNAjΠNx+ΠNbj)⟩|

≤ C(ℓj , σ)

{
sup

y∈AjK
pt(ℓj)∨k0(y −ΠNy) + sup

y∈σj

pr(ℓj)(y −ΠNy)

+C ′(ℓj , σ, Aj) sup
x∈K

pn(ℓj ,σ,Aj)(x−ΠNx) + pt(ℓj)∨k0(bj −ΠNbj)

}
.

By the approximation property provided by the Schauder basis (ek)k∈N, we may find
N(j) ∈ N such that:

supy∈AjK pt(ℓj)∨k0(y −ΠNy) <
δ

4MC(ℓj ,σ)

supy∈σj
pr(ℓj)(y −ΠNy) <

δ
4MC(ℓj ,σ)

supx∈K pn(ℓj ,σ,Aj)(x−ΠNx) <
δ

4MC(ℓj ,σ)C′(ℓj ,σ,Aj)
, if Aj ̸= 0

pt(ℓj)∨k0(bj −ΠNbj) <
δ

4MC(ℓj ,σ)

for all N ≥ N(j). With this choice, we then have

sup
x∈K

|⟨ℓj , σ(Ajx+ bj)⟩ − ⟨ℓj ◦ΠN , σ(ΠNAjΠNx+ΠNbj)⟩| < δ/M.

Therefore, setting N∗ := max{N(1), . . . , N(M)}, we conclude that for all N ≥ N∗

sup
x∈K

∣∣∣∣∣∣f(x)−
M∑
j=1

⟨ℓj ◦ΠN , σ(ΠNAjΠNx+ΠNbj)⟩

∣∣∣∣∣∣ < ε+ δ.

□

Again, the required function N ε : X → R exists in view of Theorem 2.3. However, we
need to enhance Example 2.12 to show that activation functions σ satisfying condition (15)
exist.

Example 4.4. Let X be a real Fréchet space (not necessarily admitting a Schauder basis).
Consider a function β ∈ Lip(R;R) such that

lim
ξ→∞

β(ξ) = 1, lim
ξ→−∞

β(ξ) = 0, β(0) = 0,

and arbitrary z ∈ X, z ̸= 0. Let ψ ∈ X′ \ {0}. Define

σ(x) = β(ψ(x))z, x ∈ X.

Evidently, σ is continuous and von Neumann-bounded, because for any j ∈ N

pj(σ(x)) ≤ |β(ψ(x))| pj(z) ≤ ∥β∥∞ pj(z) <∞
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uniformly in x ∈ X. Furthermore, it is clear that σ satisfies (5). Let us finally check that
condition (15) is met. To this aim, let k ∈ N. We have

pk(σ(x)− σ(y)) = |β(ψ(x))− β(ψ(y))| pk(z)
≤ Lip(β)pk(z)) |ψ(x)− ψ(y)|
≤ Lip(β)pk(z)Cψ pm(ψ)(x− y)

:= C(β, z, ψ; k) pm(ψ)(x− y), x, y ∈ X

for some m(ψ) ∈ N. Therefore, for any k ≥ m(ψ), since the seminorms are non-decreasing,
we have

pk(σ(x)− σ(y)) ≤ C(β, z, ψ; k) pk(x− y), x, y ∈ X.

5. Multi-layer Neural Networks

In this section we are going to show that results analogous to Theorems 2.3 and 2.8 hold
also for multi-layer (deep) neural networks with a fixed number n > 1 of layers. We consider
the following n-layer neural network

Nℓ,A1,b1,...,An,bn : X → F, Nℓ,A1,b1,...,An,bn(x) := ⟨ℓ, (σ ◦ T1 ◦ · · · ◦ σ ◦ Tn)(x)⟩, x ∈ X,

with ℓ ∈ X′, A1, . . . , An ∈ L(X), b1, . . . , bn ∈ X, σ : X → X continuous, and where we have
set

Tj(x) := Ajx+ bj , x ∈ X, j = 1, . . . , n.

Define

N(σ) := span{Nℓ,A1,b1,...,An,bn ; ℓ ∈ X′, A1, . . . , An ∈ L(X), b1, . . . , bn ∈ X}.
Before embarking on the proof of the density of N(σ), we need to establish the following
result, which will turn out to be very fruitful in the sequel.

Lemma 5.1. Assume that X is a real separable Fréchet space. Let σ : X → X be continuous
and satisfying the following condition: there exist ψ ∈ X′ \ {0} and 0 ̸= u+ ∈ X such that

limλ→∞ σ(λx) = u+, if x ∈ Ψ+

limλ→∞ σ(λx) = 0, if x ∈ Ψ−

limλ→∞ σ(λx) = 0, if x ∈ Ψ0

Let 0 ̸= y ∈ X be arbitrary. Then there exists A ∈ L(X) such that σ(Ay) ̸= 0.

Proof. We need to distinguish two cases:

(1) y ∈ Ψ0,
(2) y /∈ Ψ0.

In the first case, let ϕ ∈ X′ : ϕ(y) ̸= 0. By Lemma 2.9, choose z accordingly, i.e. ϕ(z) =
1, ψ(z) ̸= 0. Consider the projection onto Φ0 = ker(ϕ)

ΠΦ0 : X → Φ0, x 7→ xΦ0 = x− ϕ(x)z,

which we know belongs to L(X). Thus, ψ(ΠΦ0y) = −ϕ(y)ψ(z) ̸= 0, namely ΠΦ0y /∈ Ψ0.
If ΠΦ0

y ∈ Ψ+, set A = λΠΦ0
, where λ > 0. Then σ(λΠΦ0

y) → u+ ̸= 0 as λ → ∞, and
therefore for λ≫ 0 we obtain σ(Ay) ̸= 0. If on the other hand ΠΦ0

y ∈ Ψ−, set A = −λΠΦ0

this time, to get the same conclusion, i.e. σ(Ay) ̸= 0.
If y /∈ Ψ0, then define A = ±λI with λ≫ 0, accordingly if y ∈ Ψ+ or ∈ Ψ−. □

With this result at hand, we are now ready to prove:

Proposition 5.2. Let X be a real and separable Fréchet space, and let σ : X → X be von
Neumann-bounded and satisfy the conditions of Lemma 5.1. Then N(σ) is dense in C(X;R)
with respect to the topology of compact subsets of X.

Proof. Evidently, N(σ) ⊂ C(X;R). Assume once again that cl(N(σ)) ⊊ C(X;R). Then,
once again we obtain the following∫

K

⟨ℓ, (σ ◦ T1 ◦ · · · ◦ σ ◦ Tn)(x)⟩µ(dx) = 0,
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for all ℓ ∈ X′, A1, . . . , An ∈ L(X), b1, . . . , bn ∈ X.
Observe that σ(0) = 0. Reasoning as in the proof of Proposition 2.8, this time we get

that, as λ→ ∞, pointwise in x ∈ X,

⟨ℓ, (σ ◦ T1 ◦ · · · ◦ σ)(λTn(x))⟩ →

{
⟨ℓ, (σ ◦ T1 ◦ · · · ◦ σ)(Tn−1(u+))⟩, if Tn(x) ∈ Ψ+

⟨ℓ, (σ ◦ T1 ◦ · · · ◦ σ)(bn−1)⟩, otherwise

and hence, since σ is von Neumann-bounded, by the dominated convergence theorem (for
finite signed measures)

⟨ℓ, (σ ◦ T1 ◦ · · · ◦ σ)(Tn−1(u+))⟩µ[K ∩ T−1
n (Ψ+)]

+ ⟨ℓ, (σ ◦ T1 ◦ · · · ◦ σ)(bn−1)⟩
{
µ[K ∩ T−1

n (Ψ−)] + µ[K ∩ T−1
n (Ψ0)]

}
= 0

for any ℓ ∈ X′, A1, . . . , An ∈ L(X), b1, . . . , bn ∈ X.
Choosing b1 = b2 = · · · = bn−1 = 0 results in

⟨ℓ, (σ ◦A1 ◦ · · · ◦ σ ◦An−1)(u+)⟩µ[K ∩ T−1
n (Ψ+)] = 0

for any ℓ ∈ X′, A1, . . . , An ∈ L(X), and bn ∈ X. Define iteratively backward{
yn−1 = σ(An−1u+)

yj = σ(Ajyj+1), j = 1, . . . , n− 2,

where A1, . . . , An−1 ∈ L(X) are chosen in such a way that

yn−1 ̸= 0, yn−2 ̸= 0, . . . , y1 ̸= 0.

This is achievable in virtue of Lemma 5.1. At the last step of the iteration we arrive at

⟨ℓ, y1⟩µ[K ∩ T−1
n (Ψ+)] = 0

for any ℓ ∈ X′, An ∈ L(X) and bn ∈ X, and hence µ[K ∩ T−1
n (Ψ+)] = 0, namely

µ[K ∩A−1(Ψ+ + b)] = 0

for any A ∈ L(X), b ∈ X. Following the steps in the proof of Proposition 2.8, we conclude
once more that µ = 0 and hence that N(σ) is dense in C(X;R). □

6. An example

In modelling the dynamics of forward rates in fixed-income markets, or forward and
futures contract prices in commodity markets, one is concerned with a stochastic process
taking values in a suitable space of functions, (x(t, ·))t≥0. Here, for every t ≥ 0, x(t, ·) is a
random variable with state space being real-valued functions on R+, i.e., each sample defines
a function ξ 7→ x(t, ξ), ξ ≥ 0. The minimal condition on the state space of curves is that
they are locally integrable functions, see Carmona and Tehranchi [10] and Filipović [19] for
forward rates. Local intergrability allows for defining zero-coupon bond prices, and swap
prices in power and gas markets.

Following Benth, Detering and Galimberti [3], the price of a typical financial derivative
in the power market can be expressed by the functional

F (x) = E[χ(x)]
where χ is a random field and x is a real-valued function on R+. In practice, x denotes
the current term structure of power forward prices. Following the discussion above, we may
choose the space of such functions to be L1

loc := L1
loc(R+). Thus, F : L1

loc → R. The random
field χ, may be compactly expressed as (see Benth, Detering and Galimberti [3]),

χ(x) = P(ZID(x))),
where Z is a real-valued integrable random variable, P : R → R is a Lipschitz continuous
function (being the option’s payoff) and ID is a linear functional on L1

loc defined as an
integral of x over a compact set D ⊂ R+, namely ID(x) =

∫
D
x(ξ) dξ, x ∈ L1

loc.
We observe the following lemma, which shows continuity of F with respect to the natural

locally convex topology of L1
loc:

Lemma 6.1. The functional F (x) = E[χ(x)] is locally Lipschitz on L1
loc.
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Proof. We first remind that when L1
loc is endowed with the following set of seminorms

qm(x) :=

∫ m

0

|x(ξ)| dξ, x ∈ L1
loc, m ∈ N

it is a Fréchet space with metric d given by

d(x, y) :=

∞∑
m=1

2−m
qm(x− y)

1 + qm(x− y)
, x, y ∈ L1

loc

(compare (1)).
Thus, we have for x, y ∈ L1

loc,

|F (x)− F (y)| ≤ ∥P∥LipE[|Z|]
∫
D

|x(ξ)− y(ξ)|dξ.

and hence

|F (x)− F (y)| ≤ ∥P∥LipE[|Z|] qm0
(x− y)

where D ⊂ [0,m0],m0 ∈ N. Clearly, it also holds

|F (x)− F (y)| ≤ ∥P∥LipE[|Z|]2m0 [1 + qm0(x− y)] d(x, y)

But from the general theory of locally convex vector spaces we know that the set {y :
qm0(x− y) < 1} is an open neighborhood of x. Thus, for all y in this set we get

|F (x)− F (y)| ≤ ∥P∥LipE[|Z|]2m0+1 d(x, y)

showing that our function is locally Lipschitz.
□

When considering forwards and options on these, the set D is typically a contractually
specified week, month, quarter or year. Due to the continuity result above, we are in the
context of our neural networks on a Fréchet space.
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