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Onset of turbulence in channel flows with scale-invariant roughness
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Using 3D direct numerical simulations of the Navier–Stokes equations, we study the effect of a self-affine
wall roughness on the onset of turbulence in channel flow. We quantify the dependence of the turbulent intensity
(proportional to the mean-squared velocity fluctuations) on the Reynolds number Re for different roughness
amplitudes A. We find that for sufficiently high amplitudes, A > Ab, the transition changes its nature from being
subcritical (as is known at A = 0) to supercritical, i.e., the boundary roughness renders the flow unstable for
Re > Rel , where the critical Rel decays nontrivially with increasing A. The dependence of the friction factor
on Re is found to follow a generalized Forchheimer law, which interpolates between the laminar and inertial
asymptotes. The transition between these two asymptotes occurs at a second critical Rec which is comparable
in magnitude to Rel . This implies that transitional flow is an integral part of flow in open fractures when Re is
sufficiently high, and should be accounted for in effective modeling approaches.
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I. INTRODUCTION

Since the early experiments by Reynolds [1], the on-
set of turbulence in wall-bounded flows has been an open
problem in fluid dynamics with recent breakthroughs in our
understanding of the flow between smooth walls [2–5]. In
the smooth-wall limit, the onset of turbulence is via a sub-
critical transition, meaning that the laminar state is linearly
stable and nonlinear perturbations are necessary in order to
produce proliferation of self-sustained velocity fluctuations.
These localised turbulent structures spread or decay and fill
the system through spatiotemporal intermittency. Recently,
the subcritical transition in flows bounded by smooth walls
has been connected to the directed percolation phase tran-
sition, and is generally thought to belong to the same
universality class [6–12]. Much less is known about the nature
of the onset to turbulence in the presence of wall roughness.
The classical Nikuradse measurements [13] of the friction
factor in pipe flows with discrete wall asperities remain the
main benchmark in this field, and most efforts have focused
on the high Reynolds number (Re) regime rather than the tran-
sitional regime [14]. Recent work [15,16] has reported that
the addition of a sufficient amount of particles to pipe flows
may render the laminar base flow unstable and the transition
to turbulence as supercritical, directly passing to turbulence
without spatiotemporal intermittency.
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In this paper, we present a systematic study on the tran-
sition to turbulence in 3D flows bounded by rough walls
that have a continuous and self-affine roughness. This can
be considered as a prototypical, minimal model for flow in
fractured materials. Although flow in open fractures has been
extensively studied, most computational work has been done
in the low Re regime [17–19] or for steady state flows [19–22].
In contrast, unsteady flow in open fractures is much less stud-
ied and understood [18,20], hence its impact on macroscopic
transport properties remain elusive, particularly around the
turbulent transition point. For instance in Ref. [18], the authors
simulated high-velocity flow in a self-affine fracture joint, and
found that the relationship between average forcing f and
mean flow ux was well described by a cubic form [23,24],
f ∼ ux + ku3

x (k being an empirical constant) at low Re, and
the empirical Forchheimer law,

f = aux + bu2
x, (1)

at higher Re (a, b are empirical coefficients). However, the
assumption of a 2D, time-independent flow field precluded
a realistic resolution of turbulent or transitional flows, which
we, in this paper, will show is necessary.

Using 3D direct numerical simulations (DNS) of the
time-dependent Navier–Stokes equations, we characterize the
transition to turbulence in channels with self-affine boundary
roughness (the model system and equations are described in
Sec. II). By looking at the turbulent intensity, defined to be
proportional to the mean-square fluctuations, we show that
the transition to turbulence changes its nature from subcriti-
cal to supercritical for sufficiently large roughness amplitude
(Sec. III). Furthermore, we determine robust scaling behav-
ior of friction factor with Re and roughness amplitude in
the steady and time-dependent transitional regimes (Sec. IV).
Based on our simulations, we sketch a phase diagram of the
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transition (Sec. V) and discuss implications and limitations of
our results (Sec. VI).

II. GOVERNING EQUATIONS AND SYSTEM SETUP

As a simple idealisation of open fracture, we consider two
identical self-affine surfaces that are shifted vertically along
the z axis by a fixed distance d . They form a channel which
is periodic in the x and y in-plane directions. This type of
geometry is known as a fracture joint, resulting from mode
I fracture, in contrast to a fault, where the surfaces would be
shifted both vertically and in the xy plane [18]. The self-affine
fracture surface denoted as a z = h(x, y) [25] is a random
surface that is statistically invariant under the scale trans-
formation (x, y, z) → (λx, λy, λH z), [26,27]. Here, H is the
Hurst exponent, which we set to H = 0.8, representative for
most fractures in 3D [28,29].

We define the roughness amplitude as the root-mean-
square height deviation, A = L−1(

∫ L
0

∫ L
0 h2(x, y) dx dy)1/2.

Due to the self-affine nature of the surface, the amplitude
scales with the system size as A ∼ LH . We therefore expect
that the flow properties dependent on the roughness ampli-
tude will also indirectly scale nontrivially with the system
size. This has been investigated in the lubrication approxi-
mation (see e.g., [30]), but is computationally much more
challenging to do in 3D DNS. Due to the inherent com-
putational complexity, we limit our study to a fixed size
L. The roughness amplitudes have been chosen to be A ∈
{0, 0.1d, 0.2d, 0.5d, 0.8d}, as compared to the channel width
d = 1.

We perform DNS of the incompressible Navier–Stokes
equations,

∂t u + u · ∇u − ν∇2u = 1

ρ
(−∇p + f ), (2)

∇ · u = 0, (3)

in a channel with self-affine walls using a finite element
method and unstructured tetrahedral meshes [31] (see the
Supplemental Material [32] for details on numerical imple-
mentation). Here u is the velocity field, ν is the kinematic
viscosity, ρ is the constant density, and p is the pressure. The
flow is driven by a constant, uniform body force f = f êx,
where êx is the streamwise direction, either to a laminar or
a transitionally turbulent flow depending on the magnitude of
f . The force f is in the steady state (where the velocity is at , or
temporally fluctuating around, a constant value) compensated
by the friction between the flow field and the rough walls.
At the same time it controls the injected energy per time,∫
�

f · u dV (V is volume), which is compensated by the (tur-
bulent or laminar) dissipation rate, both at the walls and in the
bulk. We quantify our results using the flux-based Reynolds
number Re = 〈ux〉d/ν, where ux = u · êx is the streamwise
velocity, here the overbar is the time average and 〈·〉 is the
spatial integral over the computational domain.

In all simulations, no-slip conditions are applied at the
boundaries, u = 0 for x ∈ ∂�. We have also made sure that
our results are insensitive to whether we start simulations from
below, i.e., either at Re = 0 or from a steady laminar or a
transitional state below the sought Re, or above.
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FIG. 1. The fluctuation strength q (indicator of turbulence) as
a function of the Reynolds number Re. The main panel shows a
zoomin at the near-critical region for roughness amplitude A = 0.1.
The shaded region indicates the region where a bistable behav-
ior is observed. Both the standard force-controlled ( f -controlled)
simulations and two flux-controlled (Re-controlled) simulations are
included. The inset shows q for all considered roughness amplitudes
A, except the bistable region for visual clarity. Only force-controlled
simulations are included in the inset. The absolute size of the shaded
region is the same in both panels.

III. NATURE OF THE ONSET TO TRANSITIONAL FLOWS

We discern between steady (laminar) flow and unsteady
flow, which can in principle mean both time-periodic laminar
flow (where there is essentially no nonlinear transfer of energy
across scales) or turbulent flow. However, we assume that for
flow over a sufficiently large rough surface (with high enough
amplitude to produce detaching vortices), a time-periodic sig-
nal from a single defect will not contribute significantly to the
overall transport properties. Above this, there will be several
(for an infinitely large domain, infinitely many) interacting
“defects” that produce vortices, and thus no time-periodic
signal should be found. By using Reynolds decomposition,
the velocity field u(x, t ) can be decomposed into its expec-
tation value u(x) and the velocity fluctuations u′(x, t ), i.e.,
u(x, t ) = u(x) + u′(x, t ).

We measure flow fluctuations by the strength of the root-
mean-square velocity variations. We define the dimensionless
quantity which measures the strength of fluctuations as

q(Re, A) =
√

〈|u′(x, t )|2〉d
ν

,

which depends on the Re number and roughness amplitude.
This quantity is zero in the laminar state and nonzero near and
above the onset of unsteady flow, and thus can be used as a
global order parameter for the transition to unsteady flows.

In the inset of Fig. 1, we show the dependence of q on
Re for all simulated roughness amplitudes A. For sufficiently
high Re, the data for all roughness amplitudes obey linear
relationships. For A = 0, it is well known that the transition
to turbulence is subcritical, which in a finite system would
manifest as a discontinuous jump in the order parameter (see
[33,34]). However, for high roughness amplitudes, A > 0.1,
the linear relationships extend all the way down to q = 0. This
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implies that the flow is linearly unstable, i.e., that any pertur-
bation away from a stationary velocity profile will grow. Thus,
unsteady flow is continuously produced by the boundary for
Re > Rel , where Rel is a first critical Re which quantifies the
point where transitional flow sets in. Based on the adequacy
of linear fits (as outlined above) to describe the q(Re) data
over roughly an order of magnitude, we propose the following
relation for each amplitude A:

q(Re) =
{

0 for Re < Rel ,

kq(Re − Rel ) for Re � Rel ,
(4)

which holds for amplitudes A � 0.2. Here, both the pro-
portionality coefficient kq and Rel depend only on A. The
dependence of Rel on A is nontrivially decaying and shown
in Fig. 3.

For the lowest nonzero amplitude investigated, A = 0.1,
the linear relationship does not extend down to q = 0, and
instead there seems to be jump consistent with a subcritical
transition (as for A = 0). However, upon closer inspection
shown in the main panel of Fig. 1, the transition is indeed
continuous but curves sharply towards q = 0 for Re � 750,
meaning that the flow is still linearly unstable at this (Re, A).
The vertical “error bars” show the standard deviation in
the time signal for the instantaneous turbulent intensity, i.e.,
qt (t ) =

√
〈|u′|2(t )〉d/ν, and are seen to increase closer to the

transition. This indicates the presence of metastable turbulent
structures whose intensity varies strongly in time. In particu-
lar, it reflects the bistable flow dynamics that we observe close
to the transition (indicated in Fig. 1): relatively long periods
of almost quiescence (slow buildup) interrupted by short du-
rations of turbulence that fills the whole system and quickly
decays to restart the buildup. Further, the horizontal “error
bars”, which show the standard deviation in the instantaneous
Reynolds number Ret = 〈u · êx〉d/ν, also increase close to the
transition. To rule out whether the variations in the global
flow rate is what mainly contributes to q and its fluctuations,
we have carried out a set of simulations with fixed flow rate
(i.e., Re-controlled simulations, cf. Fig. 1; see Supplemental
Material [32] for details). The results are consistent with the
standard, force-controlled ( f -controlled, cf. Fig. 1) simula-
tions, strengthening the notion that the transition is indeed
supercritical even at amplitude A = 0.1. However, for this
A there exists an interval in Re where turbulent structures
that would otherwise decay are retriggered by the boundary
defects. This is not the case for A > 0.2 where there is no sign
of bistability: once the base flow becomes linearly unstable,
turbulence starts to fill the bulk of the system.

IV. FRICTION FACTOR

We define a dimensionless geometrical friction coefficient,

Cf = f d2

12ν〈ux〉 , (5)

which is a dimensionless measure of the hydraulic resistance
of the channel [22] (see the discussion of different definitions
in Appendix B). In Fig. 2, we present a diagram of the sta-
tistical steady-state relationship between Re and the friction
factor Cf for the various roughness amplitudes. For low Re,
Cf attains a constant value Cf ,0 dependent on the roughness A,
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FIG. 2. Friction factor Cf plotted against Reynolds number Re
for the five roughness amplitudes A. The data for PPF marked with
star symbols are taken from Xiong et al. [35]. Inset: Purely geomet-
ric contribution to the friction factor, i.e., Cf ,0 = Cf (Re → 0). The
numerical simulations using the Navier–Stokes equations (NS) are
compared to the parallel plate law (PPL) and the local cubic law
(LCL), which yields reasonable agreement. A parabolic fit to the
simulation data (blue line) is shown as a guide to the eye.

whereas at higher Re, there is a crossover where Cf increases
linearly with Re. As shown in the inset of Fig. 2, the purely
geometric friction factor Cf ,0 is well predicted by the local
cubic law based on local effective apertures (see Supplemental
Material [32]), and the parallel plate law based on mean aper-
ture. However, the crossover between the two regimes, where
the flow becomes non-laminar and the inertial effects begin
to take over, cannot be predicted from Cf ,0 alone. By fitting
the data in Fig. 2 to a generalized Forchheimer equation (see
Appendix A),

Cf

Cf ,0
=

[
1 +

(
Re

Rec

)β]1/β

, (6)

we identify a second critical Reynolds number Rec indicating
where nonlinear effects become important for the friction
factor. This is in contrast to Rel which quantifies the point
where the base flow becomes linearly unstable. Similarly to
Rel (A), the dependence of Rec on A is decaying and shown
in Fig. 3. The other parameters in Eq. (6) are discussed in
Appendix A.

V. COMPARISON BETWEEN CRITICAL REYNOLDS
NUMBERS AND A PHASE DIAGRAM OF

THE TRANSITION

In Fig. 3, the two critical Reynolds numbers Rel and Rec

found in this work (and for the A = 0 case, in the literature
[36]) are compared. Additionally, we superimpose a third
critical Re, Re×, found in the literature [37]. Re× corresponds
to the Re where an isolated turbulent structure is equally likely
to spread as to decay, which underpins the statistical nature of
the transition [38]. The value of Re× is only estimated for
A = 0 and, to guide the eye, it is extrapolated by a constant
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FIG. 3. Comparison of different critical Reynolds numbers Re
for varying roughness amplitude A. The critical Re for linear stability,
Rel , is based on literature (A = 0 from [36]) and our measurements
of q (A � 0.1). The critical Re for the statistical transition to tur-
bulence, Re×, is only available at A = 0 [37] and is extrapolated
as a constant to guide the eye. The critical Re for the transition
between the two scalings of the friction factor, Rec, is superimposed
and qualitatively follows the lower of Rel and Re×. In the figure, we
have also sketched the interval in A where the transition is subcritical
(orange shade) and supercritical (white shade). The hashed region
indicates where the transition goes from being subcritical (through
supercritical bistable) to supercritical.

for finite A. Using these curves it is possible to sketch a
phase diagram of the turbulent transition in rough channels.
When Re× < Rel , that is, for amplitudes A < Ab where the
bifurcation amplitude Ab is slightly below 0.1, the transition
is subcritical. It is hard to give a more precise estimate of Ab

due to the lack of data for Re× for A > 0. For A > Ab, the
base flow is linearly unstable and the transition is supercritical.
However, for a limited range of A < 0.2 the flow is in a
bistable state, as discussed in Sec. III.

We also note from Fig. 3 that Rec, associated with the
change in the scaling of Cf , trails the lowest of Rel and
Re×. In particular, there is only a narrow range, Re ∈
[Rec, Rel ] (for sufficiently high A), where the flow is time in-
dependent and where simultaneously Cf departs significantly
from Cf ,0.

VI. DISCUSSION AND CONCLUSION

In this paper, we have investigated the transition to turbu-
lence in self-affine channels representative of open fractures,
and quantified its effect on the friction factor. One major ad-
vancement of this study compared to previous ones is that we
focus on time-dependent transitional flow for various rough-
ness amplitudes. Our main result is that the nature of the
transition changes character at a given roughness amplitude
A = Ab which we estimate to be slightly below 0.1. In par-
ticular, by inspecting the turbulent intensity q (mean-square
velocity fluctuations), we show that the transition goes from
being subcritical, as is known for smooth walls (A = 0), to
being subcritical at sufficiently high A. For values of A slightly
above Ab, the transition has a bistable character where the
flow varies between slow build-up and quick decay of domain-
filling turbulence.

We found that self-affine wall roughness has significant
impact on the macroscopic flow properties. The critical Re

number Rec where inertial effects come into play decreases
monotonously with A in a similar manner as Rel , consistently
with our understanding of roughness-induced turbulence. The
observation that Rec and Rel have a comparable magnitude
and dependence on A, implies that there is only a narrow
region in Re ∈ [Rec, Rel ] where inertial effects are present
but where the flow remains laminar. For effective modeling
approaches aiming to use friction factor correlations, this
implies that turbulent effects must be accounted for when
estimating transport processes such as mixing, dispersion, and
heat transfer even at moderate Re. The crossover region from
the constant asymptote, Cf ∼ Cf ,0 for Re 	 Rec, to the linear
asymptote Cf ∼ Re for Re 
 Rec, can be described by a
generalised Forchheimer equation (6). The purely geometric
friction factor Cf ,0 scales approximately quadratically with
the roughness amplitude A. For future work, it would be
interesting to investigate the applicability of this description
to other geometries and whether it could be justified on more
rigorous grounds.

It is also important to emphasise the current computational
limitations associated with this problem. At present, we con-
sider a single realisation of a self-affine surface and varied
only the roughness amplitude. A more quantitative analysis
will require taking ensemble averages of many realisations
of self-affine surfaces and other types of roughness (e.g.
Nikuradse-type roughness [13,39]). A consequent limitation
relates to the system size, which in our simulations is fixed
to L = 10d . As a comparison, the length scale of the domain
considered in a recent study of Waleffe (simplified Navier–
Stokes) flow [33] was roughly equivalent to L � 1280d (in
our units). Such domain sizes are out of reach with the finite
element method used here.

It is known that transport properties of self-affine channels
scale nontrivially with the system size [30]. Thus, further
studies are needed for variable system sizes to better under-
stand how the scaling behavior of friction factors and the sub-
and supercritical transitions depend on the system size. Fur-
thermore, it is an open question how the bistability observed
at moderate A depends both on the system size and on the
particular realization of a self-affine surface. A possible route
to achieving large system sizes with reduced computational
cost compared to the finite element method used here might be
to follow in the lines of Ref. [40]. Here, instead of resolving
the complex boundary directly, an effective body force was
used to model boundary friction [41]. However, this way of
modeling roughness cannot produce vortices that are released
into the bulk, and will thus be unrealistic when the roughness
amplitude is sufficiently large.
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APPENDIX A: UNIFIED DESCRIPTION OF THE
FRICTION FACTOR AND ITS CROSSOVER REYNOLDS

NUMBER Rec

In order to quantify the crossover in Re, we consider the
functional form Eq. (6) as a good fit to the entire range of
data, at each roughness. Here, Cf ,0 is the purely geometric
friction factor, identified in the limit Re → 0, while Rec is a
critical Re number where the inertial effects come into play.
The exponent β in Eq. (6) controls the width of the transition
region between the two regimes; a high (low) exponent indi-
cates a narrow (broad) region. Note also that when β → ∞,
Cf /Cf ,0 = max(1, Re/Rec). When β = 1, Eq. (6) is consis-
tent with the Forchheimer law (1) (see also Section B and
Eq. (B2) for an alternative formulation). Further, when β = 2,
Eq. (6) attains a quadratic correction term for Re/Rec 	 1,
which is consistent with the weak inertia law. It is thus clear
that Eq. (6) can be seen as a generalized Forchheimer equa-
tion. While Eq. (6) does not have a direct physical motivation,
it describes the data well and provides an unbiased determina-
tion of Rec for all roughness amplitudes A. Cf ,0 can be read off
directly from the simulation data in the Re � 0 limit, which
means that β and Rec can be considered as the only two fitting
parameters in the expression, and are readily calculated using
a nonlinear least squares method.

A final test of the unified description of the data presented
in Fig. 2 is to inspect how well they collapse when rescaled
by the parameters Cf ,0 and Rec. In Fig. 4, we plot for all
simulated roughness amplitudes A, Cf /Cf ,0 as a function of
Re/Rec. For all A, the data is seen to follow the same asymp-
totic behavior, differing only in the transition region (which
in the least squares fit was captured by β). In particular, the
transition region becomes wider as the roughness is increased,
consistent with the quantitative observation of the behavior of
β(A), shown in the inset of Fig. 2.

APPENDIX B: DEFINITIONS OF THE FRICTION FACTOR

We choose the definition Eq. (5) of Cf , because for Stokes
flow (Re → 0), this Cf = Cf ,0 comes out as a purely geomet-

100

101

10−2 10−1 100 101

1
2
3
4
5
6

0 0.2 0.4 0.6 0.8 1

102

103

C
f
/C

f
,0

Re/Rec

A = 0.1
A = 0.2
A = 0.5
A = 0.8
Xiong et al.

β

A

R
e c

FIG. 4. Data collapse of the scaled geometric friction factor,
Cf /Cf ,0, as function of Re/Rec for all roughness amplitudes A con-
sidered in the present work (replotted data of Fig. 2). The insets show
two fitted parameters using Eq. (6) (Cf ,0.

ric quantity. The prefactor 1/12 is chosen such that Cf = 1
for plane Poiseuille flow (i.e., A = 0).

Another commonly applied quantity (especially for pipe
flows) is the Darcy friction factor fD, defined through the
Darcy–Weisbach relation fD = f d/( 1

2 〈ux〉2). These two quan-
tities are related to each other by

Cf = fDRe

24
. (B1)

For the special case of laminar flow between two parallel
plates (PPL), we thus have fD = 24/Re.

Using Eq. (B1), Eq. (6) can be written in terms of the Darcy
friction factor as

fD

fD,∞
=

[(
Rec

Re

)β

+ 1

]1/β

, (B2)

which attains the qualitatively correct asymptotes fD ∼ Re−1

for Re 	 Rec, and fD ∼ fD,∞ = const. for Re 
 Rec, cf. [42,
Eq. (5)]. The asymptote is then given by fD,∞ = 24Cf ,0/Rec.
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