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1 Introduction

When an ultrasound beam from a transducer reaches tissue, the signal will
be attenuated. This attenuation is partly caused by absorption, and partly by
scattering. For most soft tissues absorption accounts for most of the attenu-
ation [Ophir et al., 1984].

Research has shown that different types of tissues will display different attenu-
ation characteristics. For instance, cirrhotic liver tissue will absorb more of the
ultrasonic signal than healthy tissue [Wells et al., 1976]. Accurate non-intrusive
measurement of attenuation could thus be an important diagnostic aid.

In this thesis we will review various methods for estimating this attenuation,
and compare their efåcency under various conditions. To facilitate this com-
parison we will be using the ultrasound simulation program Field II [Jensen,
1996, Jensen and Svendsen, 1992].

1.1 Our work in summary

We wil start off by quickly reviewing the research that has been done so far
on the subject of ultrasonic attenuation, with a particular focus on attenuation
estimation. Because of the extensive research that has been done on this subject,
a thorough review of the literature published would warrant a thesis in its own
right. We will, however, provide an overview of some of the methods that can
be used to estimate the ultrasonic attenuation in soft tissues.

Themain focus of this thesis will be on a simulation framework for applying dif-
ferent attenuation estimators. Our main goal has been to make an easy-to-use,
generic framework where it is easy to add new estimators, rather than provid-
ing a large set of estimators from the outset. We have also aimed for making
it simple to compare the performance on various estimator functions on sim-
ilar datasets, optionally complicating simulations by adding noise or modifying
other simulation parameters. Ideally these simulations should be done using
soft tissue-like reýector clusters and their backscattered data, to maximise the
similarities to real-world conditions. The fact is unfortunately that it has proven
difåcult to get any sort of consistent results in this manner, so instead we resor-
ted to using more narrowly deåned “phantom reýectors”. This can be seen as
being a middle ground between the shadowed reýector method and the backs-
catter approach.

We will conclude the thesis with a summary of our results and suggestions for
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further research.

1.2 A birds-eye view of research into ultrasonic attenuation

Research into the ultrasonic attenuation properties of soft tissues has been go-
ing on since the late 1930s, at the very least [Pohlman, 1939]. The use of these
properties for tissue characterisation, however, was only suggested much later.
In the early 1970s several articles and presentations were presented concern-
ing the likely use of attenuation estimation as a medical diagnostics tool. This
generated a lot of interest in the subject—Melvin Linzer even went so far as to
call it “perhaps the last major frontier in medical ultrasound” in his introduc-
tion to the proceedings of the årst international Seminar on Ultrasonic Tissue
Characterization [Linzer, 1976].

The attenuation in soft tissues was at årst thought to increase linearly with
frequency, with initial studies conårming this [Colombati and Petralia, 1950,
Esche, 1952]. It was later discovered that an exponential increase was more
generally applicable, with the attenuation taking the form of Equation (1).

|H(f)| = e−2α0fnZ (1)

In this equation, |H(f)| represents the attenuation, α0 is the attenuation coef-
åcient and n represents the exponent of frequency dependence [Narayana and
Ophir, 1983]. However, one can assume linearity for most types of soft tis-
sue in the low megahertz range [Linzer and Norton, 1982], and in our dis-
cussion this is what we will concentrate on. “Low” is also a relative term, of
course—for instance, kidney tissue has been shown to be be linear up to around
100 Mhz [Dunn, 1976].

Research into soft tissue attenuation has as we see it been focused mainly on
two things:

P Estimating the attenuation coefåcient

P Cataloguing the coefåcients for different tissues

The cataloguing element is important in that it provides the driving force for
the estimation techniques, for instance by detailing differences in attenuation
between healthy and sick organs [Miller et al., 1983]. A signiåcant overlap
between the two types of articles also exists. However, in this thesis our focus
will be primarily on the estimation techniques.
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There has been no shortage of research on the subject since it was årst intro-
duced, with several researchers contributing different estimation methods. The
attenuation is most easily measured in the frequency domain, but several time-
domain methods for estimation have been suggested, using various types of
centre frequency estimators. The subject is still being actively researched, and
new techniques were still being proposed at the time of writing. In vivo ap-
plication of the methods still prove problematic, however, because of the many
different parameters involved.

1.3 Thesis outline

Section 2 acts as an overview of some of the methods for attenuation estimation.

Section 3 presents a selection of methods for centre frequency estimation.

Section 4 introduces the simulation tools we have used and created.

Section 5 discusses the simulations we’ve performed and their results.

Section 6 concludes the thesis with a review of what we’ve done and suggestions
for future work.

At the very end an Appendix is presented, containing the Matlab source åles for
the simulation framework.

9



10



2 Methods for attenuation estimation

All methods used for attenuation estimation are similar in that they all require
the same information to function - two signals, s1 and s2, and a depth differ-
ence, ∆z. The methods for obtaining the two signal measurements can differ,
but the essence of the estimate is the same.

2.1 The transmission method

This is the most basic way of measuring attenuation, and also the most accurate.
An ultrasonic transmitter and receiver are set up as in Figure 1, with the tissue
sample to be analyzed submerged in ýuid in between. Using this setup, the
signal s1 is årst recorded with the tissue sample removed, travelling through
the ýuid only. The s2 signal is then recorded with the tissue in place. The ∆z
parameter is then the width of the tissue.

2.2 The shadowed reflector method

This is similar to the transmissionmethod, but requires only a single transducer.
Refer to Figure 2 for the setup. As in the transmission method, the signals s1

and s2 are recorded with and without the tissue sample in place, but the ∆z
parameter is now double the width of the tissue, as the signal has to travel
through it twice [Lele et al., 1976].

2.3 Backscattered signal

What the previous two methods both have in common is that they are mostly
suitable for in vitro application, seeing as they require the tissue sample to be
isolated for measuring. While there are some in vivo applications for the trans-
mission and shadowed reýector method—for instance in ultrasonic mammo-
graphy [Green and Taenzer, 1984]—the backscatter method is generally the
most applicable for this. Here, no reýector is used, instead the backscattered
signal from the tissue itself is recorded. The s1 and s2 measurements are simply
scatter measurements from different parts of the tissue, a shallow part and a
deep part. Often, they are just two different windowed segments of the same
measurement (see Figure 3). As for ∆z, it is now double the depth difference
between the shallow and the deep sample.
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Figure 1: Setup for measuring attenuation using transmitted ultrasound

Figure 2: Setup for measuring attenuation using reflected ultrasound

Figure 3: Windowed signal segments
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Wewill be concentrating on the backscatter method, as this is the most interest-
ing method for diagnostic use; if we would like to use attenuation measurement
for internal organ diagnosis—for instance to investigate the possibility of liver
disease—it is preferable for the patient if the organ in question does not årst
need to be removed.

2.4 Log spectral difference

The log spectral difference is a conceptually simple way of estimating the atten-
uation coefåcient. First, we calculate the log power spectra of s1 and s2, using
the Fourier transform. Then, we take the difference between these spectra, and
divide it by ∆z, giving the formula

α(f) =
P1(f) − P2(f)

∆z
(2)

where f is frequency and P1 and P2 are the power spectra of s1 and s2. This
gives us the attenuation for a given frequency. As we assume linear attenuation,
a line can be åtted to α(f). The slope of this line is the attenuation coefåcient
α [Miller et al., 1976]. See Figure 4 for an illustration. In most cases, especially
when using backscattered signals, a least squares line will need to be åtted to
the difference to estimate the attenuation slope.
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Figure 4: Log spectral difference. The amplitude is given in dB and the attenu-
ation is measured in dB/(cmMhz).
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2.5 Spectral shift

This method makes use of the frequency-dependence of attenuation. In es-
sence, the tissue behaves like a lowpass ålter, as higher frequencies are attenu-
ated more than lower ones. The average and peak frequencies of the transmit-
ted pulse will decrease the further the signal travels through the medium. A
Gaussian pulse shape is assumed, which ensures that the spectrum shape and
variance is preserved. The frequency shift ∆f will be proportional to the slope
of attenuation β, the distance travelled x and the pulse variance. The aver-
age centre frequency has been shown to be a better basis for the estimate than
the peak frequency. To calculate the average centre frequency or centroid, the
formula

cf =

∫ f2

f1
fP (f)df∫ f2

f1
P (f)df

(3)

is used [Ophir et al., 1984]. The discrete equivalent to this is

cf =

∑Fs/2
0 fP (f)∑Fs/2
0 P (f)

(4)

If linearly frequency dependent attenuation and constant bandwith is assumed,
the characterization reduces to estimating and tracking the mean frequency.
This can be done in several ways, one of the simplest is the zero crossings
method [Ophir et al., 1984]. Other methods include various types of auto-
regressive models, and the adapted estimator presented by Baldeweck et al.
[1994]. The centre-frequency estimation part of the spectral shift method can
in fact be done in such diverse ways that it warrants it own section, and an
overview of some estimators can be found in section 3.

Once the centre frequencies fc1 and fc2 have been established for our two sig-
nals s1 and s2, the attenuation coefåcient can be calculated by the following
formula [Ophir et al., 1984]

α =
fc1 − fc2

σ2∆z
(5)

2.6 Matched filter pulse compression

As a work-around for the trade-offs between depth resolution and spectral res-
olution, this method was proposed. This method transmits bursts of chirps
in place of the usual Gaussian pulse. The received signals are then processed
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with two amplitude weighted matched ålters to estimate the attenuation. Ad-
justments are made iteratively to “whiten” the received spectrum over the use-
ful system bandwith. This way the attenuation coefåcients can be calculated
through several tissue segments iteratively, in real time [Meyer, 1979, Ophir
et al., 1984].

2.7 Amplitude methods

These methods attempt to estimate the attenuation from only the amplitude
of the received signals, not knowing anything about the frequency content. In
essence a large number amplitudemeasurements are taken for a series of depths.
Then the average ln(A) of the amplitudes is calculated for each depth, and a
least squares model is used to åt this data to a linear model [Mountford and
Wells, 1972]. This will give you the attenuation in dB/cm, but tells you nothing
of the frequency-dependent attenuation.

The amplitude methods are separated into wideband and narrowband meth-
ods. What separates them is the pulse width transmitted. Assuming a Gaussian
spectrum, the backscattered energy can be described by the equation

E(α0, ℓ) ∝ A0e
−(α0ℓf0−α2

0ℓ2σ2/2)

where ℓ is the measurement depth. This implies that the spectral energy decay
is not simply linear in α and ℓ, but has an additional quadratic term (α0ℓσ)2.
This means that this has to be accounted for in estimations, or that the meas-
urements are taken over a narrow enough region where the quadratic term can
be neglected [Ophir et al., 1984]. Narrowband amplitude methods get around
this problem by instead transmitting a pulse with a narrow enough bandwith
that the quadratic term can be ignored, because σ2 is close to zero.

2.8 Echo Envelope Peak method

He and Greenleaf introduced a method based on ånding the peaks of the echo
envelope [He and Greenleaf, 1986]. This is an iterative method with relatively
low overhead. It takes advantage of indications that the variance of the mean
power of the backscattered echoes can be found from the noise-to-signal ratio
of the echo envelope.
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2.9 Entropy difference method

This method was introduce by Jang et al. in 1988. It uses the entropy of sample
values from the envelope to estimate the attenuation, by “ånding the minimum
difference of the entropies for two adjacent regions as the attenuation is con-
tinuously compensated for” [Jang et al., 1988].
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3 Centre frequency estimation

3.1 The zero crossings method

The centre frequency can be estimated by measuring the change in the amount
of zero crossings in the received signals, if we assume a Gaussian spectrum. It
can be shown that the square root of the second moment in the power spectrum
of a waveform is related to the density of zero crossings. This gives us the center
frequency estimator [Ophir et al., 1984]

λ ≃ 2
√

f 2
c + σ2 ≃ 2fc

where λ denotes the zero crossings density. We originally made efforts to in-
clude this estimator as part of our framework, but unfortunately it requires long
transmitted pulses or at least a very large amount of pulses to give accurate res-
ults, leaving it cumbersome to work with in Field II. One study mentioned
counting about 3.5 × 106 zero crossings at each studied depth [Ophir et al.,
1985].

3.2 Autoregressive estimators

An autoregressive estimator, or AR estimator essentially works by åtting the
signal to an AR model and calculating the power spectrum of this model. The
centre frequency can then be found by calculating the average frequency of the
spectrum.

When considering an AR estimator, it is important to årst understand the idea
of an AR model. The difference equation describing an AR model is

x(n) = −
p∑

k=1

ap(k)x(n − k) (6)

where p is the model order and ap(k) are the called the prediction coefåcients
or AR coefåcients [Kay and Marple, 1981, Proakis and Manolakis, 1996, Hayes,
1996, Wear et al., 1995]. Using ålter design terminology, this can also be de-
scribed as a ålter having the system function

H(z) =
b(0)

1 +
∑p

k=1 ap(k)z−k
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Autoregressive in this context means that we are using previous samples of x(n)
to calculate the new output, the process is thus regressing upon itself [Wear
et al., 1995].

When applying an AR model such as this as a predictor for a sampled signal
x(n)—which will most likely not perfectly match the model output—there will
be an error involved. This error is given by

e+
p (n) = x(n) − x̂(n) (7)

which is called the forward prediction error, and can be extended to the backward
prediction error involving predicting previous values x(n−j) of the signal, given
by [Hayes, 1996]

e−j (n) = x(n − j) − x̂(n − j) (8)

All of the various AR methods are based on the same underlying model given
in Equation (6). Where they differ is in how the prediction coefåcients are
determined. The idea behind determining the coefåcients is to minimize the
errors e(n), but as we shall see there are several ways to do this.

To calculate the power spectrum from an AR model, the following equation is
used [Wear et al., 1995]

P (F ) =
ρ∆t

1 +
∑p

k=1 ap(k)e−j2πfk∆t
(9)

where ρ is the variance of the error, f is frequency and ∆t is the sampling
interval.

There is a potentially large speed advantage to be gained if we instead of cal-
culating the entire spectrum focus on what we are interested in, which is the
centre frequency. One way of detecting the centre frequency is by ånding the
maximum energy frequency, which is the frequency that has the highest energy in
the spectrum - the top peak in the frequency plot. It is possible to evaluate this
frequency directly by differentiating Equation (9) with respect to f and setting
it to zero, which gives us [Girault et al., 1998]

fmax(n) =
fs

2π
cos−1

(
−a1(n)

4

(
1 +

1

a2(n)

))

We will now discuss three possible ways of calculating the AR coefåcients.
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3.2.1 Burg’s algorithm

The essence of Burg’s algorithm is that it minimizes the sum of the forward and
backward prediction errors. This sum is deåned by [Hayes, 1996]

εB
j = ε+

j + ε−j =
N∑

n=j

∣∣e+
j (n)

∣∣2 +
N∑

n=j

∣∣e−j (n)
∣∣2 (10)

To calculate the AR coefåcients keeping this restriction in mind, the Levinson-
Durbin recursion is used [Proakis and Manolakis, 1996]. In this way, the AR
coefåcients are calcuated one by one, i.e. the lower-order coefåcients are kept
the same while higher-order ones are calculated. For instance, in a third-order
and åfth-order AR model based on Burg’s algorithm, the AR coefåcients a1, a2

and a3 will be the same.

3.2.2 The modified covariance method

The modiåed covariance method, like Burg’s algorithm, seeks to minimize the
sum of the forward and backward prediction errors [Hayes, 1996],

εM
p = ε+

p + ε−p

However, in contrast to Burg’s algorithm, it doesn’t use a sequential approach, so
for a given model order the whole set of AR coefåcients are determined. There
is thus a chance that higher-order models created by this method can perform
better than Burg’s algorithm.

3.2.3 Yule-Walker

The Yule-Walker algorithm uses the autocorrelation rx(k) of the data to cal-
culate the AR coefåcients. In most cases the statistical autocorrelation is not
known, and we need to estimate it from the sampled data. It is then used to
solve the Yule-Walker equations

rx(k) +

p∑
l=1

a(p)(l)rx(k − l) = |b(0)|2 δ(k); k ≥ 0

for the AR coefåcients ap(k)[Hayes, 1996].
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4 Simulation tools

4.1 Field II and simulated attenuation accuracy

Field II is a ultrasound simulation toolkit for Matlab that is frequently used in
the academic ultrasound community. Although it does support simulations of
attenuation, not much has been published on the accuracy of these simulations.

When we started our initial work on this thesis, we had a simulation framework
in place for a while that was quite different from the one presented in this article.
Not to put too åne a point upon it, it was severely broken. Unfortunately, like
a broken clock happens to be right twice a day, those simulations did indeed
perform very well for one set of data - our initial test case. Needless to say,
when we started trying to extend those simulations it did not work out too
well. This prompted us to adopt a more rigorous approach.

4.1.1 Applicability of Field II for attenuation estimation

To investigate whether or not Field II is suitable for attenuation estimation, we
thus decided to run some initial tests. What we were interested in ascertaining
was the accuracy of the attenuation simulation in the program, and in which
ranges we could expect realistic results.

As a starting point, we used program settings taken from one of the examples
in the Field II manual, namely Example 6.1 - Phased Array Imaging[Jensen,
2001, p. 57]. This entails a 100 MHz sampling rate, a 3 MHz centre frequency,
and a 128-element linear array. The array elements are 5 mm high by half a
wavelength wide, with a kerf of 0.1 mm. The speed of sound is set to 1540
m/s. To minimize the potential for error, we also used direct measurement of
the spatial response instead of relying on scatterers. This can be seen as an
analogue of the transmission method. To minimize any source of error and to
avoid introducing any dependence on the various estimators at this point, we
used the simplest method that came to mind to measure the attenuation. This
entailed calculating the power spectra using FFT and directly comparing the
power levels for various attenuations, depths and frequency.

Initially, we tested attenuation for the centre frequency, depending on depth,
with a åxed α of 0.5 dB/cm/Mhz. We set up Monte Carlo simulations of a
random set of 1 000 depths in the range [0, 1000] mm. We then calculated
the power spectrum of the attenuated and unattenuated spatial responses at
the given depths. The difference between these responses were compared with
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the expected attenuation. These differences were then plotted against depth,
the results can be seen in Figure 5. The sweet spot for experiments with these
settings seem to lie in the 0-400 mm region, with a rapid decrease in accuracy
after about 450 mm.

We then set out to see whether these results were consistent over the rest of the
frequency range. As a quick check, we åxed the depth at 100mm and compared
simulations of a random set of 1 000 frequencies in the 2 - 4 MHz range to
the expected attenuation. We used the attenuation at 3 MHz as a baseline for
comparisons. The results are shown in Figure 6.

Seeing as the errors in these results are small enough to suggest that Field II’s
attenuation simulations are working, at least within a certain range, we ran a
test varying the α parameter as well. Soft tissue attenuation coefåcients usually
lie in the range 0.5-1.0 dB/(cm Mhz)[Papadakis, 1999, p. 58], so this is the
range we will be examining. Looking at the results of simulations for depths 0-
450 mm, we further narrowed the depth range for best results down to 50-100
mm. However, within this range we still had a mean average error (MAE) of
around 0.19 dB/(cm Mhz) compared to the real α. Suspecting that this could
be improved, we started tweaking the simulation parameters. Thinking that
interactions between array elements could lead to inaccuracies, we reduced the
number of elements to 16. This brought the MAE down to 0.15 dB/(cm Mhz),
still more than we would like. The next step was to increase the length of the
emitted signal from 2 wavelengths to 5, to increase the energy around the cen-
ter frequency. This had a huge impact on accuracy, bringing the MAE down to
0.016 dB/(cm Mhz) with a standard deviation (σ) of 0.002. As interesting dif-
ferences in attenuation often are more pronounced than that, 0.1 dB/(cm Mhz)
or above[Wilson et al., 1987], we acknowledge that the attenuation simulation
in Field II is more than accurate enough for our purposes. Of course, it is also
a very clear possibility that the accuracy could be further improved if the trans-
ceiver setup or the methods used for estimation were different.

During the tweaking of parameters, we also discovered that the sampling rate
could be lowered to around 80 Mhz without affecting the accuracy, giving us
a speed boost of about 10 %. Further lowering of the sample rate did however
have an adverse effect on the accuracy. Adjustments were also done to the num-
ber of elements, which were brought down to 4. Adding more elements after
that did not help accuracy in our simulations, and removing more elements de-
creased it. The fact that we can get by with so few elements is an artifact of
our simple test setup. We only have a few reýectors, so we only get a reýected
signal from a narrow, well deåned direction. Under normal conditions more
elements would be needed to get accurate data. However, as our test setup al-
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lows it, we will be using a reduced number of elements to reap the speed and
accuracy beneåts this provides.

4.2 Simulation implementation details

We wanted to use simulated bakscattered signals for the estimations, as this is
the most interesting method when one takes real-world applications into ac-
count. We used examples from the manual as a starting point, which described
a 40 x 10 x 50 mm phantom, but soon discovered that we needed more narrow
phantoms to ensure the accuracy we wanted. In fact, in our setup estimators
broke down at phantom thicknesses well below a micrometer. We thus needed
a set of very narrow reýectors to get any useful data out of the estimators when
using the Field II backscatter simulation functions. Because of this, we set up
two sharply deåned “phantom reýectors” instead of using one bigger phantom.
We eventually arrived at a working solution using two very small, effectively
two-dimensional phantoms of 0.3 x 0.3 x 0 mm each. We realise that this is
more an analogue of the shadowed reýector method than it is similar to the
varied ways soft tissues would interact with the signal inside the human body.
However, implementing the simulations in this manner meant that we could
compare the estimators in a best-case scenario, so we know that we have a
functioning framework before starting to introduce complications.

On implementing the centre frequency detection-based estimators, we had to
make further adjustments to the simulation model. The problem was that the
number of FFT bins we were using (initially 4096) was insufåcient to distin-
guish the drops in centre frequency between measurements. The number was
adjusted up to 215, where diminishing returns started to come into play with
regard to accuracy/speed concerns. The reason such a high number of bins is
needed is as follows. Recall the formula from Equation (5). In our system, we
have estimated the bandwith σ2 at about 12 kHz. ∆z is set to 1.5 cm. Let’s
say that we would like our estimator to have a resolution of 0.01α. Solving for
d = fc1 − fc2, we get

d = 0.01 · (12000 · 1.5) = 180

In other words, a change in attenuation of 0.01 dB/(cm Mhz) corresponds to
a centre frequency shift of around 180 Hz. Considering that we have a 40Mhz
range of useful values with an 80 Mhz sampling frequency, 4096 bins gives us
a resolution of

40Mhz/4096 ≈ 10kHz
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Figure 5: Deviation from expected attenuation in simulations, according to
depth. Deviation unit is dB/(cmMhz).

Figure 6: Deviation from expected attenuation in simulations, according to fre-
quency. Deviation unit is dB/(cmMhz).
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To get the wanted resolution, we would need

40Mhz/180Hz ≈ 218

bins. However, experiments have shown us that 215 gives us good enough res-
ults with a signiåcant speed boost compared to higher bin numbers.

4.3 The simulation framework

Because wewere interested in running several types of comparisons between the
various estimators, we thought it prudent to create a small framework around
Field II in Matlab to facilitate the comparisons. The criteria envisioned for the
framework was that it should be easily conågurable, with little work involved
in creating new estimators and changing simulation settings. In addition, it
should be easy to identify the settings used to run the simulation from a plotted
graph. We ended up with three parts:

P A conåguration åle for program settings, sim config.m

P An estimator testing function, test estimator.m

P Comparison tests comparing the MAE of various estimators

The estimator testing function runs a given estimator a number of times within
a certain depth range, for a certain range of α. On completing these runs, a
3D scatterplot of errors are created, annotated with the mean absolute error
and standard deviation. Vectors of errors, depths and alphas are returned in
case further analysis should be required. The estimator to use is passed to the
function as a parameter. The other settings are speciåed in the conåguration
åle.

The estimator test function and the comparison tests all accept function handles
as parameters, making it easy to extend the framework with new estimators.
For instance, if you would like to compare the logpsd and burg estimators for
a range of noise levels, you would run

noise comparison({@log estimator, @burg estimator})

Adding a new estimator is relatively simple. You need to create a Matlab func-
tion taking two signals as parameters, the shallow reýection and the deep reýec-
tion. The årst thing the estimator needs to do is declare which conåguration
settings from sim config.m it requires, using the Matlab global statement. For
instance, the depth difference between these two is stored in the global variable
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SIM DELTAZ. This value will most likely need doubling in the estimator, as we
are dealing with backscattered signals.

As an example, consider a simple estimator guess estimator.m:

function estimate = guess estimator(s1, s2)

global SIM MINALPHA SIM MAXALPHA
estimate = SIM MINALPHA + rand(1) ∗ (SIM MAXALPHA-SIM MINALPHA);

This particular estimator has the advantage of being very fast, conceptually
simple, and more accurate than other estimators under a number of circum-
stances.

4.4 Simulation framework construction

The internal process of running an estimator test is as follows:

1. The emit and receive apertures are initialized using the create aperture
helper function.

2. The reýector phantoms are created using the create phantom helper func-
tion.

3. The helper function simulate backscatter is called to set up the Field II
parameters and run the backscatter simulation.

4. Finally, find bs pulse is called to “cut out” the two signals from the backs-
catter data and the estimator function is called.

The create aperture function is very simple, just a wrapper around the Field II
aperture creation function that takes the conåguration settings into account.

create phantom sets up the “phantom reýectors”. They are created as evenly
weighted point scatterers. To better emulate the scattering characteristics of soft
tissues this should ideally be made into a single, larger phantom containing a
set of randomly weighted scatterers. However, determining a good size for this
phantom and choosing the right number of point scatterers to include in it is
not necessarily a simple task.

simulate backscatter is again a simple function. One minor detail is that it sets
up the frequency dependent and frequency independent attenuation parameters
in the form that Field II requires [Jensen, 1996]. The frequency dependent term
is linearized through the center frequency of our transmitted pulse, as was done
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in the examples in the Field II Users’ Guide, however as α isn’t åxed in our
simulations we need to recalculate these parameters for every backscatter call.

find bs pulse naïvely cuts out a bit of the backscattered signal from the depth
we’re interested in. Let’s call this received pulse bp. The length of bp—that
is, the length of what we cut out from the backscattered signal—is currently
hardcoded to four transmitted pulse lengths, to compensate for the increased
length that comes from the convolution with the transmitter’s impulse response.
Ideally this should be made into a conågurable parameter at a later stage, as
some estimators work better with different lengths. The same goes for the win-
dowing function, which is not applied at the moment - i.e. a rectangular win-
dow is used. Most likely applying a Hanning window and slightly shorter win-
dow length here would improve the performance of the AR estimators—initial
experiments conårm this.
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5 Simulations

5.1 The log spectral difference estimator

The årst estimator we implemented was the log spectral difference estimator.
As stated earlier, it is based on åtting a line to the difference between two signals
at different depths. For an illustration, see Figure 7. For our purposes, we have
hardcoded the starting and ending points of the line åtting to± 0.3 MHz of the
emitted signal’s centre frequency. This simple method gives remarkably good
results in a simulation environment.

Figure 7: Calculating the log spectral difference. y-axis is in dB.

Running this estimator through our test framework, we found a mean abso-
lute error of only 0.01 dB/(cm Mhz), with a standard deviation of about 0.009
dB/(cm Mhz). The error plot (Figure 8a) looks evenly distributed over the
whole tested range.

5.2 Center frequency estimation

Secondly, we implemented estimators based on center frequency shift measure-
ment. For the centre frequency detection, we settled on a trifecta of AR based
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methods - Burg’s algorithm, the modiåed covariance method and Yule-Walker.
The reason for choosing these three algorithms in particular is that they have
been used earlier in attenuation estimation, and have been shown to perform
similarly [Wear et al., 1995]. The results of testing can bee seen in Figure 8b,
8c and 8d.

When implementing the AR based estimators, we needed to know the vari-
ance—or bandwidth—of the emitted pulse. We decided to estimate this from
simulations, running the AR simulations “in reverse”, estimating the variance
from a known α. The code to do this is in estimate variance.m.

5.3 Noise tolerance

After having run an initial set of simulations to conårm that our estimators were
working well, we set out to measure their tolerance to noise. We added white
noise to the received signal, and set out to ånd the level at which the estimators
would start to break down.

We considered two types of noise level references - an absolute reference, and
a relative reference. For the absolute reference, we used the received signal
level in the centre of our simulation åeld (depth 70 mm, α 0.7 dB/(cm Mhz)).
The relative noise reference is the received signal level at the site of simulation.
The absolute noise reference is intended as a simulation of systemic noise -
for instance electrical noise inýuencing the ultrasonic transducer. The relative
noise reference is meant to represent noise introduced at the site of reýection.

The AR based estimators all performed similarly, with degradation setting in
around -70 dB using the relative reference. A comparative plot can be seen in
Figure 9a. A similar plot for the log PSD estimator is in Figure 9b—we sep-
arated the plots to give some idea of the degradation in the log PSD method,
otherwise it would disappear as a thin line in the bottom of the AR methods
plot. Looking at the plot of the estimator based on Burg’s algorithm for a relat-
ive noise level of -58 dB in Figure 9c, one can see that it starts to underestimate
the coefåcients for larger actual values of α. This is in stark contrast to the
log spectral difference method, which only degrades to similar results at much
higher noise levels, around -26 dB. A plot of this can be seen in Figure 9d. This
is perhaps to be expected, as white noise should be spectrally ýat, introducing
no major artifacts into the spectral difference between shallow and deep meas-
urements. One might assume that the AR based estimators would also be more
reistant against these types of error, as they are modeling a process driven by
white gaussian noise. However, if we look at Equation 9, which tells us how the
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power spectrum for an AR model is calculated, we notice that the magnitude of
the power spectrum increases with the variance of the noise [Clecom, 2009].
This might be a factor in the low error tolerance we are observing.

When it comes to absolute error performance, the results underline what we
saw in the relative performance test. The AR methods all perform equally badly,
while the log PSD method shines. The mean absolute error for the AR methods
is much too high for comfort already at -80 dB, where the log PSD method still
produces usable results. The MAE rates at different noise levels can be seen in
Figure 10a and 10b. To illustrate just how badly the methods start to fail when
errors start to creep in, plots of the Burg’s algorithm-based estimator and the
log PSD-based estimator at an absolute noise level of -54 dB can be found in
Figure 10c and 10d.

One point to be made here, however, is that the error here is added after sum-
ming the individual transducer elements, as the signal we get from Field II
is already added together. It is possible get the individual element data from
Field II, however this incurs a signiåcant performance penalty. Had we applied
the noise at each individual element before summing, the error performance
would probably have been a lot better, as the white noise would have been re-
duced by a factor proportionate to the number of elements.

5.4 Irregularity tolerance

As stated earlier, we had a lot of problems with getting Field II to work con-
sistently with backscattered signals. Eventually we ågured out that the only
way to get adequate results was to work with very thin phantoms, well below
one micrometer thick. Because of this we thought it could be interesting to
see how the different estimators would cope with different phantom widths, to
introduce irregularities in the way signals are reýected. We ran a series of tests
on the different estimators with phantom depths varying from 0 to 200 nano-
meters, or just below half a wavelength. What this showed was that the AR
based estimators performed similarly, but the log spectral difference method
was less tolerant, giving more errors as the phantom thickness increased. This
is because the randomly placed point scatterers that make up the phantoms
introduce irregularities in the received spectra that can be quite severe, disturb-
ing the difference line enough to throw off the estimator signiåcantly in some
cases. However, the disparities between the estimators only started increasing
signiåcantly at MAEs more than 0.1, which can already be considered broken
for our purposes. The comparison chart can be seen in Figure 11.
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(a) Log spectral difference estimator results

(b) Burg AR estimator results

Figure 8: Estimator test results
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(c) Modified covariance AR estimator results

(d) Yule-Walker AR estimator results

Figure 8: Estimator test results, cont.
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(a) Relative noise performance of AR based estimators

(b) Relative noise performance of log PSD estimator

Figure 9: Relative noise performance
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(c) Relative noise plot of Burg’s algorithm

(d) Relative noise plot of log PSD estimator

Figure 9: Relative noise performance, cont.
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(a) Absolute noise performance of AR based estimators

(b) Relative noise performance of log PSD estimator

Figure 10: Relative noise performance
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(c) Absolute noise plot of Burg’s algorithm

(d) Absolute noise plot of log PSD estimator

Figure 10: Absolute noise performance, cont.
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5.5 Gate length tolerance

In the article byWear et al. [1995], it was found that ARmethods performed bet-
ter at short gate lengths than the traditional DFT method. We thought it would
be interesting to try to reproduce these results in a simulation environment.
After running some experiments with progressively shorter gate lengths—that
is, reducing ∆z—we could initally not ånd any such discrepancies. However,
we discovered that the ARmethods could be made usable at shorter gate lengths
through windowing the received pulses with a Hanning window, whereas this
did not help as much for the spectral difference method. Windowing also de-
creased the overall accuracy of the log PSD method, but didn’t affect the AR
methods performance noticably. Actually applying the Hanning window to the
received pulses hurt the accuracy of the log PSD method overall, even though
it improved it slightly for short gate lengths. For the AR the windowing had
a noticably positive effect, especially after changing the variance parameter to
compensate for the smaller bandwith of the received pulses. Positioning the
phantoms only 3 mm apart, where the two pulses are noticably overlapping on
a plot before windowing, the Burg ARmethod had anMAE of 0.03 dB/(cmMhz),
while the log PSD method measured around 0.25 dB/(cm Mhz).
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Figure 11: Estimator MAE for various thicknesses. The unit of the deviation is
dB/(cmMhz).

Figure 12: Log PSD estimator performance with ∆z = 3mm. Deviation unit is
dB/(cmMhz).
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6 Conclusion

It is not by chance that many of the papers referenced in this article have chosen
to include, either in their introduction or in their closing remarks, a sighing
note about the difåculties they have encountered. I will proceed to join in their
chorus. Attenuation estimation is indeed a difåcult subject. and all of the es-
timation methods have some tradeoffs. First of all, attenuation can only be
accurately measured with the transmission method. The backscatter methods
that are most useful for in vivomeasurements are only estimates, and will never
be completely accurate. This is especially true seeing as most of the attenuation
in soft tissues is caused by absorption, while all of the information used for the
estimate comes from scattering. A change in scattering could thus lead to a large
change in the estimates while overall attenuation could stay near constant.

Our attempts at implementing a proper comparative simulation framework us-
ing backscatter have mirrored the difåculties that arise in the real world with
these estimations. It is obvious that more measures need to be taken to alle-
viate the spectrum changes that occur when larger areas of randomly spread
scatterers exist. There is also the question of whether the groups of distributed
point scatterers that Field II uses as analogues for soft tissue phantoms accur-
ately reproduce the scattering that would occur in real soft tissues. Clearly more
research is needed.

As far as we have been able to test our selection of estimation methods, per-
formance seem to be similar. In fact, you can say that they have performed
similarly badly in backscatter simulations, all breaking down when the thick-
ness of our scatterer collections increase beyond a few hundred nanometers.
From our experiments it would seem that the log spectral difference method
has an advantage over the AR methods in that it is much more resistant to white
noise. If our theory about the role of the noise variance in the bad error per-
formance of the AR algorithms is correct, however, this might be improved by
somehow normalizing the spectrum depending on the noise. Despite the AR
methods being time domain methods, they also perform slower than our log
spectral difference implementation as it now stands. This also has potential for
improvement, however, for instance by implementing the center frequency cal-
culation optimization mentioned in Girault’s paper cited earlier [Girault et al.,
1998].

In the simulation framework that we have created, there are also several pos-
sibilities for improvement. A good start would be to rework the way conågura-
tion åles are stored and parsed. The current way of parsing conåguration åles
while running estimators makes it cumbersome to run simulations with differ-
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ent parameters alongside each other, for instance to take advantage of multiple
processors or processor cores on a workstation. A good way to proceed for-
ward could be to use a structure for the options instead of global variables, and
passing this structure to the simulation methods as a parameter. The existing
conåguration åles could be used as default settings in case no conåguration
parameter was provided.

There are also other settings that could be included, which the program as it
stands lacks. As commented on in Section 5, a choice of windowing function for
the received signals would be a welcome addition. Preferably this should be a
parameter of the estimation function, to facilitate easy comparisons of methods
where the ideal windowing function for each method might differ.

What is perhaps themost important part to improve, however, are the simulated
phantoms. As it is now, the “phantom reýectors” we have created are not a
good analogue for the way the signal would be scattered and dispersed by the
inhomogenous media—our vital organs—inside the human body. It would be
preferable to use larger phantoms, preferably one phantom that is large enough
to include both measurement points. A place to start might be to try to improve
the existing methods, for instance by adding åltering or averaging, to the point
where they can be used for a thicker, more irregular phantom than what is
possible now.

7 Errata

Unfortunately, much like the estimates we have studied this thesis is not error-
free. A bug has found its way into the variance estimator and the AR based es-
timators, so the unit of the pulse bandwidth SIM SIGMA2 is off by one decimal
digit. Plot annotations which read σ2 = 1.221 kHz are thus actually supposed
to read σ2 = 12.21 kHz. We apologize for the mistake.
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A Source code

A.1 Configuration and helper functions

A.1.1 calculate freqdep att.m

function freq att = calculate freqdep att(alpha)

freq att = alpha∗100/1e6;

A.1.2 calculate indep att.m

function indep att = calculate indep att(alpha)

sim config;
global SIM F0;

indep att = alpha∗(SIM F0/1e6)∗100;

A.1.3 create aperture.m

function aperture = create aperture()

sim config;
global SIM C SIM F0 SIM ELWIDTH SIM FS SIM PULSES SIM ELEMENTS ...

SIM ELHEIGHT SIM ELKERF SIM WINDOW;

lambda = SIM C/SIM F0; % Wavelength [m]
width = SIM ELWIDTH ∗ lambda;

% Set the sampling frequency
set sampling(SIM FS);
% Set the impulse response and excitation of the emit aperture
impulse response = sin(2∗pi∗SIM F0∗(0:1/SIM FS:SIM PULSES/SIM F0));
impulse response = impulse response .∗ ...

feval(SIM WINDOW, max(size(impulse response)))’;

excitation = sin(2∗pi∗SIM F0∗(0:1/SIM FS:SIM PULSES/SIM F0));
% The focus will be adjusted during simulations, but we need an initial
% dummy value as it is a required parameter.
focus = [0 0 50];
aperture = xdc linear array ...

(SIM ELEMENTS, width, SIM ELHEIGHT, SIM ELKERF, 1, 1, focus);
xdc impulse (aperture, impulse response);
xdc excitation (aperture, excitation);
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A.1.4 create phantom.m

function [points, amplitudes] = create phantom(depth)

sim config;
global SIM PHANTOM POINTS SIM PHANTOM X SIM PHANTOM Y SIM PHANTOM Z;

N=SIM PHANTOM POINTS; % Number of scatterers per phantom
z start = depth/1000; % Start of phantom 1 surface [mm];

% Create the general scatterers
x = (rand(N,1)-0.5) ∗ SIM PHANTOM X;
y = (rand(N,1)-0.5) ∗ SIM PHANTOM Y;
z = z start + (rand(N,1)-0.5) ∗ SIM PHANTOM Z;

points = [x y z];
amplitudes = ones(N,1);

A.1.5 estimate variance.m

function [variance, stddev] = estimate variance(estimator)

sim config;
global SIM MINALPHA SIM MAXALPHA SIM MINDEPTH SIM MAXDEPTH;
global SIM FS SIM DELTAZ SIM EXPERIMENTS SIM NFFT;

emit aperture = create aperture();
receive aperture = create aperture();

depths = SIM MINDEPTH + (SIM MAXDEPTH-SIM MINDEPTH) ...
.∗ rand(SIM EXPERIMENTS, 1);

alphas = SIM MINALPHA + (SIM MAXALPHA-SIM MINALPHA) ...
.∗rand(SIM EXPERIMENTS, 1);

variances = zeros(SIM EXPERIMENTS, 1);

tic
for idx=1:SIM EXPERIMENTS

% Define two small phantoms with scatterers
[p1, a1] = create phantom(depths(idx));
[p2, a2] = create phantom(depths(idx) + SIM DELTAZ);
points = [p1; p2];
amplitudes = [a1; a2];

[s, t] = simulate backscatter(emit aperture, ...
receive aperture, alphas(idx), depths(idx), points, amplitudes);

s1 = find bs pulse(s, t, depths(idx));
s2 = find bs pulse(s, t, depths(idx) + SIM DELTAZ);
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maxl = max(length(s1), length(s2));
nfft = max(SIM NFFT, 2ˆ(nextpow2(maxl)));

[psd1, f1] = pburg(s1, 2, nfft, SIM FS);
[psd2, f2] = pburg(s2, 2, nfft, SIM FS);
cf1 = sum(f1 .∗ psd1) / sum(psd1);
cf2 = sum(f2 .∗ psd2) / sum(psd2);

variances(idx) = (cf1 -cf2) / (alphas(idx) ∗ SIM DELTAZ ∗ 1000);

if (mod(idx, floor(SIM EXPERIMENTS/100)) == 0)
disp([num2str((idx/SIM EXPERIMENTS)∗100) ’% done’]);

end
end
toc

figure;
scatter3(depths, alphas, variances, 2, variances);
caxis(’auto’);
h = xlabel(’Depth (mm)’);
set(h, ’FontName’, ’Candara’);
h = ylabel(’\alpha (dB/(cm∗Mhz))’);
set(h, ’FontName’, ’Candara’);
h = zlabel(’Deviation’);
set(h, ’FontName’, ’Candara’);
h = title([’Variance estimation, ’ ...

num2str(SIM EXPERIMENTS, ’%i’) ’ runs -Estimated variance’]);
set(h, ’FontName’, ’Candara’);
annotate graph(variances(:));
colorbar;

variance = median(variances(:));
stddev = std(variances(:));

A.1.6 find bs pulse.m

function p = find bs pulse(s, t, depth)

sim config;
global SIM C SIM FS SIM F0 SIM PULSES
pulselength = floor(4∗SIM PULSES∗SIM FS/SIM F0);

pos = floor((((depth∗2)/(1000∗SIM C)) -t) ∗ SIM FS)+1;
p = s(max(pos,1):min(length(s),pos+pulselength));
% wdow = hanning(length(p))’;
% p = p .∗ wdow;
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A.1.7 logpsd.m

function [mx, f] = logpsd(x, fs, nfft)
% Based on code in Matlab Technote 1702, ”Using FFT to Obtain Simple
% Spectral Analysis Plots”
% http://www.mathworks.com/support/tech-notes/1700/1702.html

Fs = fs / 1e6; % Sampling freq in mHz
% Take fft, padding with zeros so that length(fftx) is equal to nfft
fftx = fft(x,nfft);

% Calculate the numberof unique points
NumUniquePts = ceil((nfft+1)/2);
% FFT is symmetric, throw away second half
fftx = fftx(1:NumUniquePts);
% Take the magnitude of fft of x and scale the fft so that it is not a
% function of the length of x
mx = abs(fftx)/length(x);
% Take the square of the magnitude of fft of x.
mx = mx.ˆ2;
% Since we dropped half the FFT, we multiply mx by 2 to keep the same
% energy. The DC component and Nyquist component, if it exists, are
% unique and should not be mulitplied by 2.
if rem(nfft, 2) % odd nfft excludes Nyquist point

mx(2:end) = mx(2:end)∗2;
else

mx(2:end -1) = mx(2:end -1)∗2;
end
% Take the logarithm to obtain dB scale.
mx = 10 ∗ log10(mx + (mx==0)∗eps);
% This is an evenly spaced frequency vector with NumUniquePts points.
f = (0:NumUniquePts-1)∗Fs/nfft;
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A.1.8 sim config.m

function sim config()
%SIM CONFIG Set some global variables used in simulations

global SIM FS SIM F0 SIM C;
SIM FS = 80e6; % Sampling rate [Hz]
SIM F0 = 3e6; % Centre frequency for emitted wave [Hz]
SIM C = 1540; % Speed of sound [m/s]

global SIM ELEMENTS SIM ELHEIGHT SIM ELWIDTH SIM ELKERF SIM PULSES;
SIM ELEMENTS = 4; % Number of elements in transducer
SIM ELHEIGHT = 5 / 1000; % Element height [m]
SIM ELWIDTH = 0.5; % Element width [wavelengths]
SIM ELKERF = 0.1 / 1000; % Element kerf [m]
SIM PULSES = 5; % Number of pulses to transmit

global SIM WINDOW;
SIM WINDOW = @hanning; % Window used for transmitted pulse

global SIM SIGMA2;
SIM SIGMA2 = 1.2212; % Bandwidth, used for cf \alpha estimation [kHz]
%SIM SIGMA2 = 1.1457; % Bandwidth, used for cf \alpha estimation [kHz]

global SIM MINALPHA SIM MAXALPHA SIM MINDEPTH SIM MAXDEPTH;
SIM MINALPHA = 0.5; % Minimum \alpha for tests [dB/(cm∗Mhz)]
SIM MAXALPHA = 1.0; % Maximum \alpha for tests [dB/(cm∗Mhz)]
SIM MINDEPTH = 50; % Minimum depth for tests [mm]
SIM MAXDEPTH = 100; % Maximum depth for tests [mm]

global SIM DELTAZ SIM EXPERIMENTS SIM NFFT;
SIM DELTAZ = 15; % Distance between phantoms [mm]
SIM EXPERIMENTS = 100; % Number of experiments to run in tests
SIM NFFT = 2ˆ15; % FFT points to use for AR estimations

global SIM PHANTOM X SIM PHANTOM Y SIM PHANTOM Z SIM PHANTOM POINTS;
SIM PHANTOM X = 0.3 / 1000; % Width of phantoms [m]
SIM PHANTOM Y = 0.3 / 1000; % Height of phantoms [m]
SIM PHANTOM Z = 0; % Depth of phantoms [m]
SIM PHANTOM POINTS = 200; % Number of scatterers per phantom

global SIM NOISE SIM NOISE LEVEL SIM PLOT SIM SILENT SIM NOISE REF;
SIM NOISE = 0; % Simulate noise?
SIM NOISE LEVEL = -58; % Noise level [dB]
SIM PLOT = 1; % Plot graphs for tests
SIM SILENT = 0; % Do not output progress info
%SIM NOISE REF = ’absolute’; % Noise level relative to simulation centre
SIM NOISE REF = ’relative’; % Noise level relative to received signal
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A.1.9 simulate backscatter.m

function [signal, time] = simulate backscatter( ...
emit aperture, receive aperture, alpha, depth, points, amplitudes)

freq att = calculate freqdep att(alpha);
indep att = calculate indep att(alpha);

% Set attenuation according to alpha
if alpha == 0

set field(’use att’, 0);
else

set field(’use att’, 1);
set field(’att’, indep att);
set field(’Freq att’, freq att);

end

% Generate aperture for emission
focus = [0 0 depth] / 1000;
xdc focus(emit aperture, 0, focus);
xdc focus(receive aperture, 0, focus);

% Calculate spatial response
[signal, time] = ...

calc scat(emit aperture, receive aperture, points, amplitudes);
signal = signal .’;

A.1.10 simulate point measurement.m

function [signal, time] = ...
simulate point measurement(emit aperture, alpha, depth)

freq att = calculate freqdep att(alpha);
indep att = calculate indep att(alpha);

% Set attenuation according to alpha
if alpha == 0

set field(’use att’, 0);
else

set field(’use att’, 1);
set field(’att’, indep att);
set field(’Freq att’, freq att);

end

% Generate aperture for emission
focus = [0 0 depth] / 1000;
xdc focus(emit aperture, 0, focus);

% Calculate spatial response
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[signal, time] = calc hp(emit aperture, focus);
signal = signal .’;

A.1.11 annotate graph.m

function h = annotate graph(deviations)

sim config;
global SIM ELEMENTS SIM ELHEIGHT SIM ELWIDTH SIM ELKERF SIM WINDOW;
global SIM PHANTOM X SIM PHANTOM Y SIM PHANTOM Z SIM PHANTOM POINTS;
global SIM DELTAZ SIM SIGMA2 SIM NFFT SIM FS SIM F0 SIM C SIM PULSES;
global SIM NOISE SIM NOISE LEVEL SIM NOISE REF;

h = annotation(’textbox’, [.02 .75 .40 .18]);
set(h, ’BackgroundColor’, [0.9 0.9 0.9]);
%set(h, ’FaceAlpha’, 0.8);
set(h, ’FontName’, ’Candara’);
set(h, ’HorizontalAlignment’, ’Center’);
set(h, ’FontSize’, 6);
lastline = [’Impulse window: ’ func2str(SIM WINDOW)];
if SIM NOISE ˜= 0

lastline = [lastline ’ , ’ ...
’ Noise=’ num2str(SIM NOISE LEVEL, ’%i’) ’ dB’];
if strcmpi(SIM NOISE REF, ’relative’)

lastline = [lastline ’ rel. ’ ];
else

lastline = [lastline ’ abs.’ ];
end

end
set(h, ’String’, { ...

[ ’f s=’ num2str(SIM FS/1e6, ’%i’) ’ Mhz, ’ ...
’f 0=’ num2str(SIM F0/1e6, ’%i’) ’ Mhz, ’ ...
num2str(SIM PULSES, ’%i’) ’ \lambda long, ’ ...
’c=’ num2str(SIM C, ’%i’) ’ m/s ’] ...
[ ’Array: ’ ...
’ ( ’ num2str(SIM ELHEIGHT∗1000,0) ...
’ mm x ’ num2str(SIM ELWIDTH, 0) ’ \lambda, ’ ...
num2str(1000∗SIM ELKERF, 0) ’ mm kerf) x ’ ...
num2str(SIM ELEMENTS,’%i’)], ...
[ ’Phantoms: ’ ...
num2str(SIM PHANTOM X ∗ 1000, 1) ’ x ’ ...
num2str(SIM PHANTOM Y ∗ 1000, 1), ’ x ’ ...
num2str(SIM PHANTOM Z ∗ 1000, 1), ’ mm, ’ ...
num2str(SIM PHANTOM POINTS, ’%i’), ’ points’], ...
[ ’\Deltaz=’ num2str(SIM DELTAZ, ’%i’) ’ mm, ’...
’ \sigmaˆ2=’ num2str(SIM SIGMA2, 4) ’ kHz, ’ ...
’ NFFT=2ˆ{’ num2str(log2(SIM NFFT), ’%i’) ’}’], ...
lastline ...
});
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h = annotation(’textbox’, [.58 .83 .20 .1]);
set(h, ’BackgroundColor’, [0.9 0.9 0.9]);
%set(h, ’FaceAlpha’, 0.8);
set(h, ’FontName’, ’Candara’);
set(h, ’HorizontalAlignment’, ’Center’);
set(h, ’FontSize’, 7);
set(h, ’String’, { ...

[ ’Est. MAE = ’ num2str(mean(abs(deviations)), 3)], ...
[ ’Est. \sigma = ’ num2str(std(abs(deviations)), 3)]...
});
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A.2 Testing functions

A.2.1 test estimator.m

function [deviation, depths, alphas] = test estimator(estimator)

sim config;
global SIM MINALPHA SIM MAXALPHA SIM MINDEPTH SIM MAXDEPTH SIM SILENT;
global SIM DELTAZ SIM EXPERIMENTS SIM NOISE SIM NOISE LEVEL SIM PLOT;
global SIM NOISE REF;

emit aperture = create aperture();
receive aperture = create aperture();

depths = SIM MINDEPTH + (SIM MAXDEPTH-SIM MINDEPTH) ...
.∗ rand(SIM EXPERIMENTS, 1);

alphas = SIM MINALPHA + (SIM MAXALPHA-SIM MINALPHA) ...
.∗rand(SIM EXPERIMENTS, 1);

deviation = zeros(SIM EXPERIMENTS, 1);

if SIM NOISE && ˜strcmpi(SIM NOISE REF, ’relative’)
halfway = SIM MINDEPTH + ((SIM MAXDEPTH -SIM MINDEPTH)/2);
midalpha = SIM MINALPHA + ((SIM MAXALPHA -SIM MINALPHA)/2);
% Use most shallow, least attenuated signal as reference level
[p1, a1] = create phantom(halfway);
[p2, a2] = create phantom(halfway + SIM DELTAZ);
[s, t] = simulate backscatter(emit aperture, ...

receive aperture, midalpha, halfway, p1, a1);
sigpow = mean(s.ˆ2);
noiselvl = sqrt(10ˆ(SIM NOISE LEVEL/10) ∗ sigpow);

end

tic
for idx=1:SIM EXPERIMENTS

% Define two small phantoms with scatterers
[p1, a1] = create phantom(depths(idx));
[p2, a2] = create phantom(depths(idx) + SIM DELTAZ);
points = [p1; p2];
amplitudes = [a1; a2];

[s, t] = simulate backscatter(emit aperture, ...
receive aperture, alphas(idx), depths(idx), points, amplitudes);

if (SIM NOISE ˜= 0)
if strcmpi(SIM NOISE REF, ’relative’)

% Use received signal as reference level
sigpow = mean(s.ˆ2);
noiselvl = sqrt(10ˆ(SIM NOISE LEVEL/10) ∗ sigpow);

end
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noise = randn(size(s)) ∗ noiselvl;
s = s + noise;

end

% plot(s)
% error(’Halting for debug plot’);

s1 = find bs pulse(s, t, depths(idx));
s2 = find bs pulse(s, t, depths(idx) + SIM DELTAZ);

% figure;
% plot(s1)
% figure;
% plot(s2)
% error(’Halting for debug plot’);

deviation(idx) = alphas(idx) -feval(estimator, s1, s2);
if ˜SIM SILENT

if (mod(idx, floor(SIM EXPERIMENTS/10)) == 0)
disp([num2str((idx/SIM EXPERIMENTS)∗100) ’% done’]);

end
end

end
toc

if SIM PLOT
figure;
scatter3(depths, alphas, deviation, 2, deviation);
caxis(’auto’);
h = xlabel(’Depth [mm]’);
set(h, ’FontName’, ’Candara’);
h = ylabel(’\alpha [dB/(cm Mhz)]’);
set(h, ’FontName’, ’Candara’);
h = zlabel(’\epsilon [dB/(cm Mhz)]’);
set(h, ’FontName’, ’Candara’);
h = title([strrep(func2str(estimator), ’ ’, ’\ ’) ’, ’ ...

num2str(SIM EXPERIMENTS, ’%i’) ...
’ runs - Estimate error \epsilon’]);

set(h, ’FontName’, ’Candara’);
annotate graph(deviation(:));
colorbar;

end
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A.2.2 test field accuracy.m

function [deviation, depths, alphas] = test field accuracy()

tic;
sim config();
global SIM MINALPHA SIM MAXALPHA SIM MINDEPTH SIM MAXDEPTH;
global SIM F0 SIM FS SIM EXPERIMENTS SIM NFFT;

depths = SIM MINDEPTH + (SIM MAXDEPTH-SIM MINDEPTH) ...
.∗ rand(SIM EXPERIMENTS, 1);

alphas = SIM MINALPHA + (SIM MAXALPHA-SIM MINALPHA) ...
.∗rand(SIM EXPERIMENTS, 1);

deviation = zeros(SIM EXPERIMENTS, 1);

emit aperture = create aperture();

f0 = SIM F0 / 1e6;

for idx=1:SIM EXPERIMENTS
[s1, t1] = simulate point measurement(emit aperture, 0, depths(idx));
[s2, t2] = simulate point measurement(emit aperture, ...

alphas(idx), depths(idx));

% Calculate power spectrum
[freqs, findex] = logpsd(s1, SIM FS, SIM NFFT);
[freqs2, findex2] = logpsd(s2, SIM FS, SIM NFFT);

[val, ind] = min(abs(findex-f0));
deviation(idx) = (alphas(idx) ∗ f0 ∗ depths(idx)/10) ...

- (freqs(ind) - freqs2(ind));
if (mod(idx, floor(SIM EXPERIMENTS/10)) == 0)

disp([num2str((idx/SIM EXPERIMENTS)∗100) ’% done’]);
end

end
toc

figure;
scatter3(depths, alphas, deviation, 2, deviation);
caxis(’auto’);
h = xlabel(’Depth (mm)’);
set(h, ’FontName’, ’Candara’);
h = ylabel(’\alpha (dB/(cm∗Mhz))’);
set(h, ’FontName’, ’Candara’);
h = zlabel(’\epsilon [dB/(cm Mhz)]’);
set(h, ’FontName’, ’Candara’);
h = title([’Field accuracy test, ’ ...

num2str(SIM EXPERIMENTS, ’%i’) ...
’ runs - Deviation from expected \alpha’]);
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set(h, ’FontName’, ’Candara’);
annotate graph(deviation(:));
colorbar;

figure;
plot(depths, deviation, ’k.’);
h = xlabel(’Depth (mm)’);
set(h, ’FontName’, ’Candara’);
h = ylabel(’\epsilon [dB/(cm Mhz)]’);
set(h, ’FontName’, ’Candara’);
h = title([’Field accuracy test, ’ ...

num2str(SIM EXPERIMENTS, ’%i’) ...
’ runs - Deviation from expected \alpha’]);

set(h, ’FontName’, ’Candara’);
annotate graph(deviation(:));

figure;
plot(alphas, deviation, ’k.’);
h = xlabel(’\alpha [dB/(cm∗Mhz)]’);
set(h, ’FontName’, ’Candara’);
h = ylabel(’\epsilon [dB/(cm Mhz)]’);
set(h, ’FontName’, ’Candara’);
h = title([’Field accuracy test, ’ ...

num2str(SIM EXPERIMENTS, ’%i’) ...
’ runs - Deviation from expected \alpha’]);

set(h, ’FontName’, ’Candara’);
annotate graph(deviation(:));
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A.2.3 test field accuracy fixed alpha.m

function [deviation, depths] = test field accuracy fixed alpha()

tic
sim config();
global SIM MINDEPTH SIM MAXDEPTH;
global SIM F0 SIM FS SIM EXPERIMENTS SIM NFFT;

alpha = 0.5;
depths = SIM MINDEPTH + (SIM MAXDEPTH-SIM MINDEPTH) ...

.∗ rand(SIM EXPERIMENTS, 1);
deviation = zeros(SIM EXPERIMENTS, 1);

emit aperture = create aperture();

for idx=1:SIM EXPERIMENTS
[s1, t1] = simulate point measurement(emit aperture, 0, depths(idx));
[s2, t2] = simulate point measurement(emit aperture, ...

alpha, depths(idx));

% Calculate power spectrum
nfft = max(SIM NFFT, 2ˆ(nextpow2(s1)));
[freqs, findex] = logpsd(s1, SIM FS, nfft);
[freqs2, findex2] = logpsd(s2, SIM FS, nfft);

[val, ind] = min(abs(findex-(SIM F0/1e6)));
deviation(idx) = (alpha ∗ (SIM F0/1e6) ∗ depths(idx)/10) ...

- (freqs(ind) - freqs2(ind));
if (mod(idx, floor(SIM EXPERIMENTS/100)) == 0)

disp([num2str((idx/SIM EXPERIMENTS)∗100) ’% done’]);
end

end
toc

figure;
plot(depths, deviation, ’k.’);
h = xlabel(’Depth (mm)’);
set(h, ’FontName’, ’Candara’);
h = ylabel(’Deviation’);
set(h, ’FontName’, ’Candara’);
h = title([’Field accuracy test, ’ ...

num2str(SIM EXPERIMENTS, ’%i’) ...
’ runs - Deviation from expected \alpha’]);

set(h, ’FontName’, ’Candara’);
annotate graph(deviation(:));
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A.2.4 test field accuracy fixed freq.m

function [deviation, freqs] = test field accuracy fixed freq()

tic
sim config();
global SIM FS SIM EXPERIMENTS SIM NFFT;

minfreq = 2;
maxfreq = 4;
depth = 100;

alpha = 0.5;
exfreqs = minfreq + (maxfreq -minfreq) .∗ rand(SIM EXPERIMENTS, 1);
deviation = zeros(SIM EXPERIMENTS, 1);

emit aperture = create aperture();

for idx=1:SIM EXPERIMENTS
[s1, t1] = simulate point measurement(emit aperture, 0, depth);
[s2, t2] = simulate point measurement(emit aperture, alpha, depth);

% Calculate power spectrum
nfft = max(SIM NFFT, 2ˆ(nextpow2(s1)));
[freqs, findex] = logpsd(s1, SIM FS, nfft);
[freqs2, findex2] = logpsd(s2, SIM FS, nfft);

[val, ind] = min(abs(findex-exfreqs(idx)));
deviation(idx) = (alpha ∗ (depth/10) ∗ exfreqs(idx)) ...

- (freqs(ind) - freqs2(ind));

if (mod(idx, floor(SIM EXPERIMENTS/100)) == 0)
disp([num2str((idx/SIM EXPERIMENTS)∗100) ’% done’]);

end
end
toc

figure;
plot(exfreqs, deviation, ’k.’);
h = xlabel(’Frequency (MHz)’);
set(h, ’FontName’, ’Candara’);
h = ylabel(’Deviation’);
set(h, ’FontName’, ’Candara’);
h = title([’Field accuracy test, ’ ...

num2str(SIM EXPERIMENTS, ’%i’) ...
’ runs - Deviation from expected \alpha’]);

set(h, ’FontName’, ’Candara’);
annotate graph(deviation(:));
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A.2.5 delta comparison.m

function [maes, deltas] = delta comparison(estimators)
% Please comment out the SIM DELTAZ line in sim config.m before
% running this function.

min delta = 2.5; % minimum thickness [mm]
max delta = 4; % maximum thickness [mm]
steps = 11;
stepsize = (max delta -min delta) / (steps -1);
margin = (max delta -min delta) ∗ 0.1;

global SIM DELTAZ SIM PLOT SIM SILENT SIM EXPERIMENTS;
SIM PLOT = 0;
SIM SILENT = 1;

deltas = min delta:stepsize:max delta;
maes = zeros(steps, length(estimators));

for idx = 1 : steps
SIM DELTAZ = deltas(idx);
for estidx = 1 : length(estimators)

estfunc = estimators{idx};
errs = test estimator(estfunc);
maes(idx, estidx) = mean(abs(errs));

end
end

SIM PLOT = 1;
SIM SILENT = 0;

figure;
barh(deltas, maes, 1);
ylim([(min delta -margin) (max delta + margin)]);
set(gca, ’ytick’, deltas);
set(gca, ’YDir’, ’reverse’);
h = legend(’Burg’, ’Log PSD’, ’Mod. cov.’, ’Yule-Walker’, ...

’Location’, ’SouthEast’);
set(h, ’FontName’, ’Candara’);
h = title([’MAE, varying \Deltaz- ’ ...

num2str(SIM EXPERIMENTS, ’%i’) ’ runs’]);
set(h, ’FontName’, ’Candara’);
h = ylabel(’\Deltaz [mm]’);
set(h, ’FontName’, ’Candara’);
h = xlabel(’MAE [db/(cm Mhz)]’);
set(h, ’FontName’, ’Candara’);
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A.2.6 noise comparison.m

function noise comparison()
% Please comment out the SIM NOISE LEVEL line in sim config.m before
% running this function.

min nl = -60; % minimum noise level [dB]
max nl = -46; % maximum noise level [dB]
steps = 8;
stepsize = (max nl-min nl)/(steps-1);

global SIM NOISE SIM NOISE LEVEL SIM PLOT SIM SILENT SIM EXPERIMENTS;
SIM PLOT = 0;
SIM SILENT = 1;

levels = min nl:stepsize:max nl;
maes = zeros(steps, 4);

for idx = 1 : steps
SIM NOISE LEVEL = levels(idx);
dburg = test estimator(@burg estimator);
dlogpsd = test estimator(@logpsd estimator);
dmcov = test estimator(@mcov estimator);
dyulear = test estimator(@yulear estimator);

maes(idx, 1) = mean(abs(dburg));
maes(idx, 2) = mean(abs(dlogpsd));
maes(idx, 3) = mean(abs(dmcov));
maes(idx, 4) = mean(abs(dyulear));

end

SIM PLOT = 1;
SIM SILENT = 0;

figure;
barh(levels, maes, 1);
set(gca, ’YDir’, ’reverse’);
h = legend(’Burg’, ’Log PSD’, ’Mod. cov.’, ’Yule-Walker’, ...

’Location’, ’NorthEast’);
set(h, ’FontName’, ’Candara’);
h = title([’MAE after adding noise -’ ...

num2str(SIM EXPERIMENTS, ’%i’) ’ runs’]);
set(h, ’FontName’, ’Candara’);
h = ylabel(’Noise level [dB]’);
set(h, ’FontName’, ’Candara’);
h = xlabel(’MAE [db/(cm Mhz)]’);
set(h, ’FontName’, ’Candara’);
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A.2.7 thickness comparison.m

function [maes, thicknesses] = thickness comparison()
% Please comment out the SIM PHANTOM Z line in sim config.m before
% running this function.

min th = 0; % minimum thickness [mm]
max th = 0.0002; % maximum thickness [mm]
steps = 11;
stepsize = (max th-min th)/(steps-1);
margin = (max th -min th) ∗ 0.1;

global SIM PLOT SIM SILENT SIM EXPERIMENTS SIM PHANTOM Z;
SIM PLOT = 0;
SIM SILENT = 1;

thicknesses = min th:stepsize:max th;
maes = zeros(steps, 4);

for idx = 1 : steps
% SIM NOISE LEVEL = levels(idx);

SIM PHANTOM Z = thicknesses(idx);
dburg = test estimator(@burg estimator);
dlogpsd = test estimator(@logpsd estimator);
dmcov = test estimator(@mcov estimator);
dyulear = test estimator(@yulear estimator);

maes(idx, 1) = mean(abs(dburg));
maes(idx, 2) = mean(abs(dlogpsd));
maes(idx, 3) = mean(abs(dmcov));
maes(idx, 4) = mean(abs(dyulear));

end

SIM PLOT = 1;
SIM SILENT = 0;

figure;
barh(thicknesses, maes, 1);
ylim([(min th -margin) (max th + margin)]);
set(gca, ’ytick’, thicknesses);
set(gca, ’YDir’, ’reverse’);
h = legend(’Burg’, ’Log PSD’, ’Mod. cov.’, ’Yule-Walker’, ...

’Location’, ’NorthEast’);
set(h, ’FontName’, ’Candara’);
h = title([’MAE, varying phantom thickness -’ ...

num2str(SIM EXPERIMENTS, ’%i’) ’ runs’]);
set(h, ’FontName’, ’Candara’);
h = ylabel(’Phantom thickness [mm]’);
set(h, ’FontName’, ’Candara’);
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h = xlabel(’MAE [db/(cm Mhz)]’);
set(h, ’FontName’, ’Candara’);
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A.3 Estimator functions

A.3.1 logpsd estimator.m

function estimate = logpsd estimator(s1, s2)

sim config();

global SIM F0 SIM FS SIM NFFT SIM DELTAZ
% Calculate power spectrum
maxl = max(length(s1), length(s2));
nfft = max(SIM NFFT, 2ˆ(nextpow2(maxl)));

bottom = (SIM F0/1e6) -0.3;
top = (SIM F0/1e6) + 0.3;

[freqs, findex] = logpsd(s1, SIM FS, nfft);
[freqs2, findex2] = logpsd(s2, SIM FS, nfft);

% Calculate log power spectral difference
psdiff = freqs -freqs2;
[val, linebegidx] = min(abs(findex -bottom ));
[val, lineendidx] = min(abs(findex -top));

p = polyfit(findex(linebegidx:lineendidx), psdiff(linebegidx:lineendidx), 1);
estimate = (p(1) ∗ 10) / (2∗SIM DELTAZ);

% figure
% subplot(2,1,1);
% h = title(’Log PSD -Signal log power spectra’);
% set(h, ’FontName’, ’Candara’);
% hold on
% plot(findex, freqs, ’r ’);
% plot(findex2, freqs2, ’g-.’);
% xlim([2.2 3.8]);
% h = xlabel(’Frequency (MHz)’);
% set(h, ’FontName’, ’Candara’);
% subplot(2,1,2);
% h = title(’Log PSD -Difference and fitted line’);
% set(h, ’FontName’, ’Candara’);
% hold on
% plot(findex, psdiff, ’r ’);
% plot(findex, p(1).∗findex + p(2), ’g- .’);
% xlim([2.2 3.8]);
% h = xlabel(’Frequency (MHz)’);
% set(h, ’FontName’, ’Candara’);
% error(’LogPSD debug plot’);
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A.3.2 burg estimator.m

function estimate = burg estimator(s1, s2)

sim config;
global SIM FS SIM NFFT SIM SIGMA2 SIM DELTAZ

fs = SIM FS;
sigma2 = SIM SIGMA2;
deltaz = SIM DELTAZ;
maxl = max(length(s1), length(s2));
nfft = max(SIM NFFT, 2ˆ(nextpow2(maxl)));

[psd1, f1] = pburg(s1, 2, nfft, fs);
[psd2, f2] = pburg(s2, 2, nfft, fs);
cf1 = sum(f1 .∗ psd1) / sum(psd1);
cf2 = sum(f2 .∗ psd2) / sum(psd2);
plot(f1, psd1)
error(’asdf’)
estimate = ((cf1 -cf2) / (sigma2 ∗ deltaz ∗ 1000));

A.3.3 mcov estimator.m

function estimate = mcov estimator(s1, s2)

sim config;
global SIM FS SIM NFFT SIM SIGMA2 SIM DELTAZ

fs = SIM FS;
nfft = SIM NFFT;
sigma2 = SIM SIGMA2;
deltaz = SIM DELTAZ;

[psd1, f1] = pmcov(s1, 2, nfft, fs);
[psd2, f2] = pmcov(s2, 2, nfft, fs);
cf1 = sum(f1 .∗ psd1) / sum(psd1);
cf2 = sum(f2 .∗ psd2) / sum(psd2);

estimate = ((cf1 -cf2) / (sigma2 ∗ deltaz ∗ 1000));
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A.3.4 yulear estimator.m

function estimate = yulear estimator(s1, s2)

sim config;
global SIM FS SIM NFFT SIM SIGMA2 SIM DELTAZ

fs = SIM FS;
nfft = SIM NFFT;
sigma2 = SIM SIGMA2;
deltaz = SIM DELTAZ;

[psd1, f1] = pyulear(s1, 2, nfft, fs);
[psd2, f2] = pyulear(s2, 2, nfft, fs);
cf1 = sum(f1 .∗ psd1) / sum(psd1);
cf2 = sum(f2 .∗ psd2) / sum(psd2);

estimate = ((cf1 -cf2) / (sigma2 ∗ deltaz ∗ 1000));
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