
UNIVERSITY OF OSLO

Department of Informati
s

E�
ient parallelisation

te
hniques for

appli
ations running

on GPUs using the

CUDA framework

Master thesis

Alexander Ottesen -

alexao�i�.uio.no





Contents

Abstract ix

Acknowledgements xi

1 Introduction 1

1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Graphic processing units 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Evolution of GPUs and their impact on GPGPU frameworks . . . . . . . 8

2.3 General GPU architecture overview . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Abbreviations / definitions / concepts . . . . . . . . . . . . . . . 12

2.3.2 NVIDIA GPU architecture . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.3 AMD GPUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.4 Intel Larrabee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Capacities and processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 NVIDIA Compute unified device architecture 21

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Thread organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Single-instruction multiple-thread . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Memory model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 GPU occupancy and capabilities in CUDA . . . . . . . . . . . . . . . . . 29

3.6 Software stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.7 Language extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

i



3.8 The CUDA toolkit and compiler . . . . . . . . . . . . . . . . . . . . . . . 31

3.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Advanced encryption standard 35

4.1 Background information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Rijndael . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.2 AES Cipher overview . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.3 Block cipher modes of operation . . . . . . . . . . . . . . . . . . . 39

4.2 Implementations - software basis . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 GPU implementation using CUDA . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1 Standard AES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.2 Lookup table-based AES . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4.1 GPU Lookup table based AES (GPU-L) . . . . . . . . . . . . . . . 46

4.4.2 GPU Standard AES (GPU-S) . . . . . . . . . . . . . . . . . . . . . 49

4.4.3 Memory spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5 Lessons learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Optimisation of memory accesses in CUDA 55

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.1 Half-warps and coalesced accesses . . . . . . . . . . . . . . . . . . 56

5.2 Memory spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.1 Global memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.2 Constant memory and texture memory . . . . . . . . . . . . . . . 60

5.2.3 Shared memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.5 Lessons learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Concurrency with CUDA applications 73

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 Performance of concurrent CUDA applications . . . . . . . . . . . . . . . 75

6.3 Static scheduling of concurrent applications on the GPU . . . . . . . . . 78

6.4 Lessons learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7 Optimising applications with CUDA streams 85

ii



7.1 Introduction to CUDA streams . . . . . . . . . . . . . . . . . . . . . . . . 85

7.2 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.4 Lessons learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8 Discussion 93

8.1 Developing with CUDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.1.1 Optimising code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.1.2 The memory spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.1.3 Tools to analyse code . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8.1.4 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8.2 Concurrent CUDA applications on the GPU . . . . . . . . . . . . . . . . . 97

8.3 Future developments with CUDA . . . . . . . . . . . . . . . . . . . . . . 102

9 Conclusion 105

9.1 Summary and contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 105

9.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

A Future directions: OpenCL 109

B Source code and test results 113

iii



iv



List of Figures

2.1 Floating-point Operations per Second and Memory Bandwith for the CPU and

GPU [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 The GPU devotes more transistors for data processing [1]. . . . . . . . . . . . 8

2.3 The modern graphics hardware pipeline, vertex and fragment stages are pro-

grammable [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Overview of the NVIDIA GT200 GPU architecture. Figure based on [3] . . . . 13

2.5 Illustration of the GT200 die . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 A schematic of the Larrabee many-core architecture, with the CPU core on the

left. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 The AMD SIMD core in figure a), and the NVIDIA SM core in figure b) . . . 18

2.8 The cores of NVIDIA, AMD and Intel Larrabee GPUs . . . . . . . . . . . . . 19

3.1 Example of CUDA thread organisation [1] . . . . . . . . . . . . . . . . . . . . 23

3.2 The scalability of CUDA [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 An illustration on warps of threads assigned to an SM [3] . . . . . . . . . . . 26

3.4 The CUDA Memory Model [1] . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 The CUDA software stack [1] . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 The nvcc toolchain [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 The SubBytes step. The function S is a lookup operation in the S-box table.

Illustration from Wikipedia [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 The ShiftRows step. Illustration from Wikipedia [6]. . . . . . . . . . . . . . 38

4.3 The MixColumns step. Illustration from Wikipedia [7]. . . . . . . . . . . . . 38

4.4 The AddRoundKey step. Illustration from Wikipedia [8]. . . . . . . . . . . . 39

4.5 Comparison on encrypting using two different modes of operation . . . . . . . 40

4.6 Cipher Block Chaining (CBC) encryption and decryption. Illustration from

Wikipedia [9]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.7 Counter (CTR) mode encryption and decryption. Illustration fromWikipedia [10]. 42

4.8 Throughput of the GPU-L and CPU-L implementations. Note the non-linear

x-axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

v



4.9 Throughput of the GPU-S and CPU-S implementations. Note the non-linear

x-axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.10 Using different memory spaces affect the performance on the lookup table im-

plementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.11 Using different memory spaces affect the performance on the standard imple-

mentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1 A coalesced access pattern in figure a) and an uncoalesced access pattern in

figure b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Figure a) showing a scattered pattern within a memory segment. Figure b)

shows how the memory transaction protocol will issue memory transactions

across segments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3 A coalesced access pattern with idle threads. . . . . . . . . . . . . . . . . . . . 60

5.4 Figure a) shows an access pattern from a warp of threads with no bank conflicts.

Figure b) shows a warp of threads with maximum possible bank conflicts . . . . 62

5.5 The total gputime for the kernels running with 10000 iterations on a compute

capability 1.1 GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.6 The total gputime for the kernels running with 10000 iterations on a compute

capability 1.3 GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.7 The number of global memory loads in each kernel. Loads from constant and

texture memory are not listed in the profiler, and therefore not graphed. . . . . 69

5.8 The number of global memory stores in each kernel. The kernels that are not

graphed follow the same pattern as similar coalesced or uncoalesced kernels . . 70

5.9 The number of bank conflicts in the kernels running on different GPUs . . . . 70

6.1 An illustration of how concurrent CUDA processes are executed on the CPU. . 74

6.2 Concurrent execution of different workloads in different processes. The runtime

consists of GPU execution and memory transfers . . . . . . . . . . . . . . . . 77

6.3 A view of the grid of thread blocks when executing the generic-kernel. . . . . . 79

6.4 Total runtime when using different approaches to combine workload1 and work-

load2 in one kernel launch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.1 How the CPU and GPU overlap in execution with the use of streams. . . . . . 86

7.2 Throughput of pageable and pinned memory on CPU to GPU (CTG) and GPU

to CPU memory transfers (GTC). . . . . . . . . . . . . . . . . . . . . . . . . 89

7.3 Illustration of the runtime using streams compared to other approaches. . . . . 90

7.4 Illustration on how the runtime of the kernel affects overlap in execution. . . . 91

8.1 The different architectural personalities of the GPU in CUDA [11]. . . . . . . 98

vi



A.1 Conceptual OpenCL device architecture [12]. . . . . . . . . . . . . . . . . . . 110

vii



viii



Abstract

Modern graphic processing units (GPU) are powerful parallel processing multi-core

devices that are found in most computers today. The increase in processing resources

of the GPU, coupled with improvements and flexibility of the programming frame-

works, has increased the interest in general purpose programming on the GPU (GPGPU).

In this thesis, we investigate how the GPU architecture and its processing capabilities

can be utilised in general purpose applications using the NVIDIA compute unified de-

vice architecture (CUDA) framework. With the large number of CUDA applications

being developed, we investigate how CUDA applications can share the GPU resource

and see what challenges are connected with concurrent applications executing on the

GPU. As a basis for our investigation, we implement the advanced encryption stan-

dard (AES) to learn how to use the framework, and how to increase performance of a

CUDA application.

Our results show that there is little support for concurrency in the CUDA framework

at present time, as the GPU accesses are serialised, with no support for preemption

or sharing of the resource. We have implemented a static scheduler to see if it could

improve concurrency, but due to the hardware abstraction CUDA offers we could not

control the scheduling as we wanted. When developing the AES application we saw

the importance of memory optimisations in CUDA applications, and we present ways

of optimising memory accesses together with optimisation concurrent execution be-

tween the CPU and GPU.

ix



x



Acknowledgements

I would like to thank my advisors Håkon Kvale Stensland, Carsten Griwodz and Pål

Halvorsen for their valuable feedback, discussion and help. Without them this thesis

would not have been possible. In addition, thanks to Paul Beskow and Håvard Es-

peland for taking their time in reading this thesis and providing valuable comments.

Thanks to my fellow student Magne Eimot for the discussions and support when

working with the CUDA framework. And also the guys and girls at the Simula lab

for providing motivation, input and making the lab a nice workplace.

Finally, I would like to take the opportunity to thank my friends and family for always

supporting me.

Oslo, May 4, 2009

Alexander Ottesen

xi



xii



Chapter 1

Introduction

1.1 Background and motivation

From the introduction of the integrated circuit in 1958, there has been a continuous

need for increased processing power. According to Moore’s law, the number of tran-

sistors on an integrated circuit has increased exponentially, almost doubling every two

years. This trend has continued until this day, and is likely to continue for at least

the next years. Physical properties in single core CPUs limit the number of transistors

that can fit into a circuit. In addition, issues like heat design and power density lim-

its the clock frequency of a CPU. This has introduced computers with multiple CPUs

and CPUs with multiple cores, known as multi-core. The focus of the microprocessor

industry has shifted from maximising single-core performance to using multiple cores

on a die.

There are both advantages and disadvantages of using a multi-core architecture on a

CPU. The main advantage is the improved response time of CPU intensive applica-

tions, and the possibility for concurrency. One a single-core CPU, it is more likely for

processes to be a victim of starvation as CPU intensive applications will be assigned to

the same core for computation. A disadvantage with the multi-core model is the need

for adjustments in operating systems, and software to better utilise the computational

resources available. The operating system can perform load balancing between differ-

ent cores, but to fully utilise the multi-core CPU processors, applications have to be

designed with multiple threads in mind.

The need for more processing power and the development of parallel architectures on

CPUs, has increased the development of parallel applications and focus on parallel al-

1



gorithms. Developing applications that can run in parallel is more challenging than

sequential code, as the concurrency introduces potential issues like race conditions

and challenges with synchronisation and communication. There is also the challenge

in finding parts of an algorithm that can be executed simultaneously. Usually when de-

signing parallel algorithms, the algorithm is decomposed into smaller tasks that can be

executed simultaneously, known as partitioning. The partitions are usually designed

based on the data dependencies in the algorithm. A dependency occurs if a value can-

not be computed until a previous element has been calculated. An application cannot

be run more quickly than the longest chain of dependent calculations. Before applica-

tions can be offloaded to multi-core architectures, the developer needs to identify data

dependencies and adjust the algorithm to contain partitions that can be computed in

parallel.

With the increased focus on parallel computation, offloading computation to co-processors

with parallel capabilities, have followed the same pattern. This is not a new idea as

network processors have been used to handle parts of the network stack, and graphics

cards have handled graphics processing for a long time. However, using the devices

for general purpose applications have not always been applicable due to program-

ming APIs and hardware being limited in functionality, and not designed for general

purpose programing.

Modern day graphical processing units (GPUs) are powerful parallel processing units

designed to transform input data in the form of geometric shapes into pixels on the

screen. Rendering a typical High Definition image today that contains 1920x1080

pixels at least 30 times per seconds, preferably 60 times per second, requires a huge

amount of processing power. The GPU is specially designed for compute-intensive,

highly parallel computations, which is what rendering graphics requires. Therefore,

the hardware is designed to have a larger amount of transistors devoted to data pro-

cessing, unlike the CPU that needs many transistors for flow control and data caching.

Traditionally, the GPU has been programmed through graphic APIs like OpenGL [13]

and DirectX [14]. These frameworks are suitable for graphics, but can be challenging

when mapping general purpose applications to the APIs. Recently GPU vendors have

tried tomitigate this challenges for GPGPUdevelopers by creating frameworks that are

aimed at general purpose applications. NVIDIA and Advanced Micro Devices (AMD)

are vendors that have focused on this area, and have released frameworks based on

the C programming language aimed at GPGPU developers for easier development.

CUDA [1] and FireStream [15] from NVIDIA and AMD are the most common used

frameworks today.

2



GPGPU has been an important topic in research for several years [2]. The release of

high level programming APIs like CUDA have increased the number of applications

and made it easier for developers to use the GPU for processing. Curry et al. [16] have

used CUDA in Reed-Solomon coding in RAID 6 systems with GPUs and gained up to

over 5 times the throughput than an Intel Core 2 Quad Q6600. Falcao et al. [17] have

shown that CUDA can be used in developing a decoding algorithm and data structure

suited for the GPU in Low Density Parity Check (LDPC) decoding. They received a

performance increase up to three orders of the magnitude compared to a modern day

2,4 GHz CPU. LDPC codes are powerful for error correcting codes, used in satellite

broadcasting systems and in WMAN standards like WiMax. Another research project

using CUDA is the distributed computing folding@home project designed to perform

computationally intensive protein folding [18]. There are also examples of commercial

products using CUDA. Elemental Technologies have developed an application using

CUDA to accelerate H.264 encoding in Adobe Premiere Pro [19]. The application is

designed to free up the CPU for other tasks than encoding video, by offloading it to

the GPU with CUDA.

The main focus of CUDA applications has been to increase the performance of a single

application by offloading computation to the GPU. We want to investigate how the

GPU can be used as a non-exclusive resource, by examining howmultiple applications

can share the many cores of the GPU. To achieve this we need to understand how

concurrent applications in todays framework are executed.

1.2 Problem statement

Most of the CUDA applications today assume that the application will have exclusive

access to the GPU, but with the increase in applications offloading processing to the

GPU there might be a need for the applications to share the GPU resource. We want

to investigate howmultiple applications are executed with the framework today, what

challenges are connected with concurrency on the GPU, and see if we can improve the

performance of concurrent applications. To reach our goal of scheduling the resources

among CUDA applications, we want to understand how to use the CUDA framework

and how to gain optimal performance with CUDA applications.

3



1.3 Main Contributions

In this thesis, we have focused on how the CUDA framework can be used most ef-

ficiently. With the growing number of CUDA applications released, there is a higher

probability of multiple applications requesting the GPU resource concurrently. We in-

vestigate how multiple applications are scheduled by the CPU and GPU when they

offload processing concurrently, and see how this affects the performance. To improve

efficiency, we create a prototype of a static scheduler to combine the GPU processing

from different applications to run concurrently on the GPU. We discuss the alternative

to this approach, and investigate the limitations.

To be able to schedule different applications on the GPU, wewant to gain experience in

using the framework. In this thesis, we examine the processing capabilities of the GPU

and how they can be used with the CUDA framework. We achieve this by porting two

different implementations of the advanced encryption standard (AES). The implemen-

tations have different characteristics, and therefore different requirements to achieve

good throughput. By examining the requirements of the applications, we show how

to increase the throughput of the applications by focusing on memory access patterns

of the application and memory placement. We provide insight in how to experiment

with applications to gain optimal occupancy of the GPU, and see what challenges the

developer needs to be aware of in doing so.

As optimisations are important in CUDA applications, we examine how memory ac-

cess patterns are efficiently executed on the GPU, and what properties in algorithms

the different memory spaces are optimised for. We look at the hardware requirements

for memory accesses on the different memory spaces, and how an algorithm can be

mapped to fit the requirements.

Additionally, we investigate the asynchronous capabilities of the GPU, where the CPU

and GPU can execute concurrently and see how this affects the performance of appli-

cations. We use our AES implementations to show how concurrent execution between

the devices can increase the performance, and what properties affect the amount of

concurrency achieved.

1.4 Outline

The rest of this thesis is organised as follows; Chapter 2 introduces the GPU architec-

ture we use, and the different GPGPU frameworks available. In chapter 3 we describe

4



the CUDA framework and how to use it for developing applications. Chapter 4 is

a study of two block cipher encryption implementations of AES for the GPU using

CUDA. In chapter 5, we look at optimisations of memory accesses on the GPU, and

the memory spaces CUDA offers. Chapter 6 focuses on CUDA applications used in a

system where multiple applications use CUDA, and how this affects the performance.

In chapter 7 we investigate how the CPU and GPU can execute concurrently to in-

crease the performance of the AES implementations in chapter 4. Finally we discuss

our results and what we have learned in chapter 8, before concluding in chapter 9.

5



6



Chapter 2

Graphic processing units

In this chapter, we look at themany-core architecture of the GPU.We focus on the latest

generation of GPUs fromNVIDIA, AMD and the future Intel Larrabee architecture. By

investigating the different architectures, we can highlight the features and limitations

of the GPUs. In addition, we look at the development of GPGPU frameworks, and

what is available today to determine what framework we want to work with.

2.1 Introduction

The GPU is a dedicated hardware device for rendering graphics on computers like PCs,

game consoles and mobile devices. It can be found as a part of a dedicated graphics

card, or integrated directly into the motherboard of a computer.

Through time the GPU has evolved into a highly parallel architecture, with many cores

and very high memory bandwidth. Computer graphics can easily benefit from a par-

allel architecture, as thousands of pixels in an image can be computed in parallel as

they are independent of each other. This feature leads to a processing unit that can

outperform a CPU in operations per second, as seen in figure 2.1. The latest chips from

the big vendors in the GPU market contain up to 240 cores as of February 2009 [11].

Owens et al. [2] ask the question why graphics hardware performance is increasing

more rapidly than that of CPUs, as semiconductors for both architectures have the

same amount of transistors available. The disparity in the performance can be at-

tributed to fundamental architectural differences between CPUs and GPUs. The CPU

is optimised for executing high performance sequential code, so many of the transis-

tors are dedicated for flow control, branch prediction and caching. As for the GPU, it

7



Figure 2.1: Floating-point Operations per Second and Memory Bandwith for the CPU and
GPU [1].

has a more parallel nature for its applications, enabling the transistors to be used for

computation as illustrated in figure 2.2.

Figure 2.2: The GPU devotes more transistors for data processing [1].

2.2 Evolution ofGPUs and their impact onGPGPU frame-

works

Early GPUs had fixed-function graphic pipelines, which were limited to a predefined

set of functions used for images and graphics. The pipeline design usedwas hardwired

on the GPU to accomplish specific tasks. The goal was to maintain high computation

rates through the use of parallel execution. Each stage in the pipeline is a designated

piece of hardware on the GPU chip. The pipeline has evolved from being fixed to flex-

ible. This was accomplished by making the vertex and fragment stages programmable

as illustrated in figure 2.3.

Vertex and fragments are not terms often seen in general purpose applications, as most

8



programmers work with standard programming APIs that do not have specialised

code distinctions like texture mapping and geometric objects. The vertex and fragment

stages in the flexible pipeline can be programmed by running custommade shader pro-

grams, which were originally intended to alter vertex shapes and colours of fragments.

One of the first GPUs that offered programmable shaders was the GeForce 3 chip from

NVIDIA [20].

The graphics pipeline is designed to take a three-dimensional scene or image as in-

put and output the image as a rasterized 2D image. Vertices are used as input, which

are coordinates used as building blocks of primitives in 3D geometry, e.g., a three-

dimensional scene or image. They are handed to the vertex processor to undergo

transformation before they are processed by the rasterizer, which outputs fragments. A

fragment is a piece of data that is used to update a pixel in the frame buffer at a specific

location. The fragment processor determines the final pixel values before outputting

to the frame buffer. The frame buffer is a video output device that contains a complete

frame of data, typically consisting of colour values for every pixel in an image.

Figure 2.3: The modern graphics hardware pipeline, vertex and fragment stages are pro-
grammable [2].

Programming APIs

Most of the programming APIs that have been available until recently focused on

graphics, and have been mapped to use the graphics pipeline pictured in figure 2.3.

The intended use of the APIs were for designing graphics, but as developers started

using the GPU for non-graphical applications the term general purpose computation

on GPU (GPGPU) was founded in 2002. Developers successfully managed to map

general purpose applications to the graphical API and gained performance in their

applications by doing so due to the processing power of the GPU. Mapping general

purpose applications to graphical APIs is challenging, as the API is not designed for

general purpose applications.

9



OpenGL [13] is an example of a typical API that is designed for graphics. By combining

it with the OpenGL Shading Language (GLSL) [21], one can fully program the graphics

pipeline. GLSL is a high level shading language based on the C programming language

and is meant to provide an easier approach of programming shaders than using low

level assembly languages. However, GLSL does not remove the necessity of having

detailed knowledge about the graphics pipeline and preferably experience writing 3D

applications. Thus limiting, and creating added challenges for the developer when

using the APIs for GPGPU development [2]. Microsoft have also developed a similar

API, called DirectX [14]. The latter is a collection of APIs that Microsoft offer to handle

multimedia applications on Microsoft Windows. Direct3D is the API that is used for

graphics.

Graphical mapping, parallelisation of algorithms and adapting to a new hardware ar-

chitecture imposes challenges for many developers when writing GPGPU code. To

make the GPU an attractive development platform for other applications than graph-

ics, there is a need for a programming model that adapts easily and scales to use the

computation power the GPU offers. The learning curve for the programmer should be

low so the developer can focus on adapting the tasks to the GPU, rather than details of

the graphics APIs.

NVIDIA and AMD both offer ways of programming the device aimed at GPGPU de-

velopers. They focus on giving the developer a framework using industry standard

programming languages to develop applications. NVIDIA has a development frame-

work containing a compiler and development tools for writing applications to execute

on the GPU. It is based on the C programming language, with extensions suited for

the GPU architecture. CUDA was made public in a beta version in 2007 [22] for Win-

dows and GNU/Linux. As of 2008, it has been released as a stable version and added

support for Mac OS X.

CUDA is not the only API that has tried to make life easier for GPGPU developers.

AMD is NVIDIA biggest rival in the GPU market. Together with NVIDIA, AMD have

also focused on trying to get their technology used for general purpose programming.

ATI technologies (ATI) started off by developing Close To Metal (CTM) [23], before

they were acquired by AMD in 2006. CTM is no longer in use by ATI, but is available as

an open source project. CTM lets the developers interface the GPGPU directly, through

a low-level programming API. AMD used the CTM framework as their basis for their

FireStream SDK [15]. FireStream was released in 2007, after rewriting the software

stack to enable both a low level and high level programming API. FireStream uses

Brook+, which is a hardware-optimised version of the Brook programming language

10



developed at Stanford University [24]. Brook is an open source language developed

to offer GPGPU capabilities for the GPU independent of the manufacturer. Unlike

CUDA, it is not an extension to the C language, but a variant. It is also released under

a BSD license, so it is free to use for everyone.

Intel is developing a GPU based on the x86 architecture called Larrabee. For the pro-

grammer, it will appear as a set of x86 processors with SIMD units. The programming

model for Larrabee will consist of an x86 compiler that will generate applications for

the Larrabee x86 instruction set [25]. As Larrabee is based on the x86 architecture,

many applications can be recompiled and work on Larrabee [25]. Such application

portability can be of advantage when trying to parallelise existing code. Larrabee will

have the same challenges that other GPGPU programming models have, as certain

tasks are not always suited for the parallel architecture. For Larrabee to support exist-

ing GPU software, libraries to handle DirectX and OpenGL have to be developed, as

the graphics pipeline will be different than on a traditional GPU. A software renderer

will be used so applications designed for the graphics pipeline used today, will run

on the Larrabee architecture. This shows that Larrabee is not a GPU in the traditional

sense, but rather a set of x86 compatible cores that are connected. By having front-ends

for DirectX andOpenGL, it will enable Larrabee to work like a GPU. The programming

model proposed, is very flexible and lets the developer specify thread affinity with a

particular core [25]. By using the well known POSIX threads API (P-threads) [26] and

extending it to fit Larrabee’s needs, Intel will offer a familiar programming API to de-

velopers. Intel anticipate that developers will use the Larrabee programming model

to implement higher level programming models that may automate some aspects of

parallel programming [25] in addition to offering low level thread and core control.

More details on the programming API for Larrabee will most likely be released closer

to launch of the architecture.

Open Computing Language (OpenCL) [12] is an open standard for parallel program-

ming of heterogeneous systems, managed by the Khronos group. Khronos is an in-

dustry consortium that manages open standards like OpenGL. OpenCL provides a

programming environment to write code that will run on a series of devices all from

CPUs, GPUs, embedded devices and the cell broadband engine (CBE). It is the first step

in providing a common standard to be able to develop platform-neutral applications

for heterogeneous systems. OpenCL was created by a working group that recruited

a number of participants from the likes of AMD, NVIDIA, Intel, Apple, Texas Instru-

ments, Sony and ARM. They managed to create an API that was released at the end

of 2008, however at present time there is no public runtime environment or compiler

11



available. Like CUDA, the OpenCL language is an extension of the C programming

language.

2.3 General GPU architecture overview

To make it easier to understand the differences in the various GPU architectures, it is

useful to understand a few concepts and definitions that are general to the architectures

we investigate.

2.3.1 Abbreviations / definitions / concepts

Single instruction multiple data (SIMD) is a technique employed to achieve data level

parallelismwhere one instruction is applied to many instances of data in parallel.

Kernel is a set of instructions run on the GPU in several threads. Whenever we refer

to a kernel we mean code being run on the GPU unless explicitly stated.

Stream processing is a computer programming paradigm closely related to SIMD. It

that allows applications to use multiple processing units like the GPU offers,

without having to take into memory allocation, synchronisation and communica-

tion between the units. Usually a set of data to be computed is given as a stream,

and a kernel function is applied to every element of the stream.

Stream processor (SP) is an individual streamprocessor designed to handle lightweight

threads running a programmed kernel. A GPU normally contains multiple SPs.

Arithmetic logical unit (ALU) is a digital circuit that performs arithmetic and logical

operations like addition, multiplication, subtraction and division. Together with

bitwise operations, these are essential operations needed for computation.

The GPU is often considered a stream processor as it can only process independent

vertices and fragments, but can process many of them in parallel. In the same sense,

the GPU can run a single function in parallel on many data elements. This function is

known as a kernel. The framework used determines how the kernel is programmed

and executed, but in general the kernel is executed as many threads that run in parallel

on the GPU. Detailed examples will be discussed in chapter 3.

12



2.3.2 NVIDIA GPU architecture

In figure 2.4, we see the GPU core of the NVIDIA architecture. To understand the

figure and the rest of this thesis, the following abbreviations, definitions and concepts

are essential to have in mind:

Figure 2.4: Overview of the NVIDIA GT200 GPU architecture. Figure based on [3]

Stream multiprocessor (SM) is a multiprocessor that contains 8 streaming processors,

on-chip shared memory and instruction and data/constant cache.

Texture unit (TEX) is used for fetching instructions and data to the streaming multi-

processors.

Texture processing cluster (TPC): is a cluster containingmultiple streamingmultipro-

cessors and a texture unit.

Stream processing array (SPA): is the GPU core, also known as the stream processing

array, and is a set of texture processing units.

Super function unit (SFU) is responsible for executing transcendental functions, si-

nus, cosines and other mathematical functions.

13



The GPU core of the NVIDIA GT200 also known as the SPA, can be seen in figure 2.4.

It consist of a number of TPCs, each containing a group of SMs. An SM is made up

of 8 individual SPs. These SPs are the cores that make up the processing power of

an NVIDIA GPU. An SM has 16kB shared memory available for the SPs to share data

across the cores in the SM, without having to read or write to or from external DRAM

memory subsystems. The DRAM is located off-chip, and therefor has a higher latency

than the on-chip shared memory. Every SM includes a texture unit used for graphics

processing, but can be useful for general purpose applications. It assists in speeding up

memory reads when the data is mapped as textures by using a level 2 texture cache to

combinememory access achieving a higher bandwidth. A picture of the die can be seen

in figure 2.5, where the core is illustrated together with the texture units, frame buffer

and raster operation units (ROP). The ROP is a processor responsible for compression

and decompression of textures.

Figure 2.5: Illustration of the GT200 die

NVIDIA G92 and GT200 architecture

NVIDIA released the GeForce 8800 GT [27], in October 2007. It was the first GPU to

support PCI-express 2.0 and to use a 65nm process. The GPU core used in the 8800GT

is the same as in the G92 core. The GT200 was released in 2008 together with GeForce

GTX 280, built with a 65 nm process, but uses a 512-bit Graphics Double Data Rate 3

(GDDR3) interface. The G92 has in total 112 SPs, divided on 8 TPCs with 2 SMs on

each TPC. This gives a total of 128 cores, but on each SM one SP is disabled as the G92

14



is basically a die shrinkage of the G80. The GT200 has 10 TPCs, each with 3 SMs and

all 8 SPs enabled giving a total of 240 SPs available.

2.3.3 AMD GPUs

AMD uses the same terms for their architecture, but call the SM a SIMD Core. The

SFU is referred to as a special functions unit, but performs the same operations. AMD

develop GPUs, but sell them under the ATI brand. The first AMD FireStream processor

was announced on the 15th of November 2006. It was first sold as an add-on unit to

existing ATI chips, and designed to solve scientific and general purpose tasks. The

second generation FireStream code named 9170 [28], is based on the RV670 core. The

GPU core of the RV670 contains 64 SPs. The SP on an AMD core differs from a SP

on an NVIDIA chip, as the AMD SP contains 5 ALUs, giving a total of 5 * number of

SPs ALUs on the GPU. The SP designed by AMD is pictured together with other GPU

processing cores in figure 2.8. The 5 processing units, enables the AMD SP to handle

five instructions in parallel, while executing the same thread. The units that are similar

to ALUs, are pictured in figure 2.8. The x, y, z and w are similar to ALUs, but the t

unit is a special functions unit. The SPs are grouped into a SIMD core, as depicted in

figure 2.7(a).

The third generation FireStream, code named RV770 has a total of 10 SIMD cores, giv-

ing a total of 160 SPs. ATI Radeon HD4800 series uses the RV770 core, and can in

theory produce a total of 1 TFLOPS on single precision floating point numbers with its

160 SPs [29].

2.3.4 Intel Larrabee

Intel are keeping details to aminimum on their future x86many core GPU, as it will not

be released until early 2010. However, a few details are known. As seen in figure 2.6,

it will differ from Intel’s regular line of GPUs, as it is not going to be integrated into

the motherboard chipset, but will be released as a stand alone graphics card. Larrabee

will first and foremost be a many-core x86 architecture designed for parallel processing

and visual computing. It will use an extended version of the x86 instruction set. Even

though the Larrabee core supports the x86 instruction set, it will not support branch

prediction and out-of-order execution. However, this is functionality that is not found

on regular GPUs [25].

15



According to Anand Shimbi et al. [30] at Anandtech, there will be room for between

16 and 32 cores on the die. The architecture is built on the original Pentium, but uses

a 45 nm process instead of the original 800 nm. Unlike the original Pentium, Larrabee

will have an L2 cache on the die, while the latter relied on external memory, which was

placed on the motherboard. Modifications were made to the Pentium core to support

4-way simultaneous multi-threading (SMT), which is a mechanism to improve the ef-

ficiency of modern processors by hiding memory latency and letting instructions from

more than one thread execute at any given time in the pipeline.

Figure 2.6: A schematic of the Larrabee many-core architecture, with the CPU core on the left.

Each Larrabee core will contain a vector ALU that can process 16 floating point op-

erations in parallel, known as the vector processing unit illustrated in figure 2.8. The

vector processing unit gives high parallel throughput of data due to the wide ALU.

The design of the Larrabee core is essential for Intel to be able to achieve the process-

ing power a GPU provides, as 16 – 32 cores is not enough to compete with the amount

of instructions that can be executed on an AMD or NVIDIA GPU.

The Larrabee architecture contains a ring bus that connects the cores. The ring is a

high-bandwidth interconnect network between the fixed function logic, memory I/O

interfaces and an unique 256 KB coherent L2 cache per core. The ring bus is used

to handle cache coherency between the cores, and for communication. Each core will

have access to its own subset of the L2 cache, and can facilitate communication between

the cores through the ring bus. If there is a cache miss in the local L2 cache, the request

will be put out onto the bus, and checked to see if the data is in the L2 cache of the

other cores. If found, it is transferred back to the correct cache. The L1 cache is built up

16



by an I-cache (instruction cache), and D-cache (data cache), giving a total size of 64KB.

This enables support for execution of four threads in parallel per CPU core.

2.4 Capacities and processing

The GPUs all offer very high computation power, but differ in architectural design.

NVIDIA have more cores in their GPUs compared to AMD due to the different design

of the SP. As seen in figure 2.8, the ALU of the SP on an AMDGPU is wider than on the

NVIDIA SP. AMD offers a higher theoretical processing power with their RV770 chip

compared to the NVIDIA GT200, due to the ALU of the AMD SP that can in theory

issue five instructions in parallel. The GT200 contains 240 SPs, but the ALU of the

NVIDIA SP is limited to one instruction.

The design of each SP is important when considering what kind of workload is as-

signed to each core. The simpler SP of NVIDIA will work best if it can execute thou-

sands of simple instructions in parallel, while the AMD architecture prefers workloads

that are instruction heavy as it can process five instructions in parallel. This enables

AMD to use instruction level parallelism (ILP) instead of using thread level parallelism

as NVIDIA. ILP is parallelism that can be extracted from a single instruction stream. If

there is a sequence of instructions that are independent, they can be executed in par-

allel. However, the use of ILP is challenging both for the hardware and the compiler,

and may not always be beneficial. Another reason for why NVIDIA have opted for a

simple core design is due to the clock frequency of each core. A simpler core design

can run a higher clock frequency.

The Intel Larrabee architecture will be a very different GPU architecture. It uses x86

cores, with a 16-wide vector ALU that can process 16 instructions in parallel. The num-

ber of ALUs in each SP determines the theoretical computation power of the GPU, it

also creates a challenge when there is a wider pipeline to fill. Since both the Intel

Larrabee and AMD architecture will have a wider processing unit than the NVIDIA

architecture, it may be challenging when it comes to pipelining data so that one in-

struction can be run on each of the ALUs in parallel. In the case of Larrabee, it will be

challenging for the compiler to find instructions that can be executed in parallel. As

the Larrabee GPU is yet to be released, it is impossible to determine if this will be case

when released.

17



(a) (b)

Figure 2.7: The AMD SIMD core in figure a), and the NVIDIA SM core in figure b)

2.5 Summary

GPUs have evolved into a highly parallel architecture, withmany cores and highmem-

ory bandwidth to fill the demand for real-time and high-definition 3D graphics. There

has also been a growing interest in using the processing power of the GPU for general

purpose applications. In this chapter, we have taken a closer look at the architecture of

the GPU offered by NVIDIA and AMD see how they differ and how they can achieve

high processing ability. In addition, we look at the future Larrabee GPU from Intel.

We have investigated the development of the programming APIs, and seen what is

available today and in the future.

After investigating the different frameworks and GPUs, we have decided to work with

the NVIDIA CUDA framework to investigate the challenges connected to GPGPU de-

velopment. NVIDIAs CUDA framework is the framework with the largest market

share at present time. The number of applications using CUDA, the advancement of

the framework, the quality of the documentation and the experienced development

community are important reasons for choosing CUDA. We believe that if there is a

market leader at present time, it is CUDA.

18



Figure 2.8: The cores of NVIDIA, AMD and Intel Larrabee GPUs

The best choice would have been to use OpenCL, as it will be a platform-neutral frame-

work with support for other hardware devices. We believe OpenCL will bring more

attention to the research area of GPGPU computing. However, at the time of writing

there is no public working runtime environment or compiler.

19



20



Chapter 3

NVIDIA Compute unified device

architecture

In this chapter, we investigate theNVIDIACompute Unified device architecture (CUDA)

framework and software environment. CUDA is aimed to assist developers who want

to use the processing power of the GPU for general purpose applications. We exam-

ine what the framework offers in terms of tools, and how the developer should map

algorithms to run on the GPU.

3.1 Introduction

CUDA was released by NVIDIA in November 2006. It is a general purpose parallel

architecture aimed at overcoming the challenges of creating parallel applications that

scale their parallelism to multi-core GPUs. The architecture consists of a software en-

vironment that lets developers use C as a high-level programming language, but will

support C++, OpenCL and Fortran in the future [1]. By using the C programming lan-

guage, CUDA provides a familiar programming model for developers unaccustomed

to graphics APIs like OpenGL. CUDA extends C by using qualifiers to tell the compiler

what code is assigned to the GPU.

To offload processing to the GPU using CUDA, developers define normal C functions

called kernels. The kernels should be data-parallel compute intensive functions to get

the benefit of the parallel hardware used, and are run as lightweight threads on the

GPU. Data parallelism is a form of parallelisation where the same function is executed

on different sets of data. Typical candidates for a kernel are functions that are executed

21



many times, but on independent data. This is also known as SIMD, where the same

code is run in every thread, but the threads compute on different data. The CUDA

programming guide uses matrix multiplication as a typical application that can fit this

pattern. The kernels are executed n times on the GPU depending on how many times

the programmer wants the kernel to run. In normal applications a function call usually

means the function is executed once, unless it is a recursive function. In CUDA an

execution configuration is used to specify the number of times the function should be

executed as threads on the GPU. The execution configuration also specifies the how the

threads are organised, known as the thread hierarchy. Kernels are run as threads on

the GPU, while memory copying and the execution configuration is done by the CPU.

This separates the code into code executed on the CPU and code executed on the GPU.

CUDA refers to the CPU and GPU as host and device. Both the host and the device

manage their own memory space, but data can be copied between them. In a typical

CUDA application the host allocates memory on both the host and device. This is

done due to the fact that the GPU has its own DRAM on the video card. Data therefore

has to be copied from the host to the allocated device memory. Similarly, data has to

be transferred back to the host when computation is terminated. So in simple steps

a typical CUDA applications starts off with the host allocating memory and doing

the necessary steps, before executing the kernels that are run as a large number of

threads on the GPU. When the kernel is terminated, the host can continue execution

and transfer data back to the host from the device.

3.2 Thread organisation

To manage the large number of threads executed on the GPU, CUDA uses a thread

hierarchy to identify and organise the threads. The execution of the threads is also

referred to as a kernel launch. As all the threads launched execute the same function,

they rely on unique coordinates to distinguish themselves from each other, and to assist

the programmer in addressing memory. For every launch, the threads are lined up in a

grid. The grid is divided into a two level hierarchy of thread blocks and threads, iden-

tified by coordinates called blockIdx and threadIdx given to them by the CUDA

runtime system. These coordinates are accessible in the kernel to identify the different

threads.

To give a brief overview on how the the hierarchy looks like. Two example grids are

illustrated in figure 3.1, where the grids are divided into thread blocks of threads. The

22



1 kernel_ funct ion <<< gridDim , blockDim , sharedMemory >>>(kernel_param ) ;

Listing 3.1: Example of a execution configuration

thread blocks use the blockIdx as coordinates, while threads within a thread block

use the threadIdx for indexing. The combination gives the opportunity to index a

thread across the grid.

Figure 3.1: Example of CUDA thread organisation [1]

In figure 3.1, the thread blocks are lined up in a 3x2 and 2x3 array of thread blocks

on the grid, where each thread block has coordinates consisting of blockIdx.x and

blockIdx.y. The threads in a thread block use threadIdx.x and threadIdx.y

as coordinates. The grid layout is determined by the parameters of the execution con-

figuration, which can be one or two-dimensional. An example of a execution config-

uration launching a kernel can be seen in listing 3.1. The parameters gridDim and

blockDim determine the number of thread blocks and threads in each thread block.

The sharedMemory parameter is optional if the programmer wants to dynamically

allocate shared memory for each thread block.

We have seen how the thread blocks are organised in a grid, but threadswithin a thread

block may also use multiple dimensions to organise the threads. The threads can be

organised in a one, two or three-dimensional array. It should be noted that each thread

block is of the same dimension. To specify the dimensions in the execution config-

uration, the gridDim and blockDim variables must use the built-in variable dim3,

23



1 dim3 gridDim (64 , 64) ;
2 dim3 blockDim ( 8 , 8 , 2 ) ;
3 . . .
4 . . .
5 in t gridDim = 4096 ;
6 in t blockDim = 256 ;

Listing 3.2: Example of a grid setup

which is an integer vector type. This is to provide a natural way to invoke computa-

tion across elements in a domain such as vector, matrix or field [1]. In listing 3.2 we see

two different examples of setting up a hierarchy within a grid of 64x64 = 4096 threads

blocks with 8x8 = 256 threads in each. The first approach uses a two-dimensional grid

of thread blocks, with a three-dimensional array of threads within each thread block,

while the second approach uses both a one-dimensional grid and thread block setup.

The developer should note that there are limitations in the dimensions of the execution

configuration. In one kernel launch a dimension in the grid cannot exceed 65535 and

the size of a thread block is limited to 512.

One of the reasons for the grouping of threads in blocks is hardware related, but it

is also to give the developer easier ways to synchronise computation. CUDA allows

threads in the same thread block to coordinate their processing steps through using a

barrier to synchronise computation, by using a built-in function called __synctthreads().

In many applications there are data dependencies, meaning data may depend on other

data elements to be computed before it can proceed, in these cases synchronisation is

essential to make sure data has been computed. If not, a race condition might occur.

The barrier is implemented with a single instruction to make sure it is not a bottleneck

for performance. This ensures all the threads in a thread block wait until all the threads

have reached the same part of the code before continuing. An advantage with the the

thread block abstraction, is that threads are processing in close proximity limiting the

cost of synchronisation.

Even though the grid and thread blocks are hardware abstractions for the developer,

they are closely connected to the hardware architecture of the GPU. When the grid of

thread blocks are launched, each thread block is assigned to an arbitrary SM. Every

thread within the thread block is computed on the same SM. This means the thread

blocks can be computed in any order relative to each other even if there are synchroni-

24



sation points in the code, as the synchronisation is done within an SM. Each thread in

the thread block is assigned an SP within the SM the thread block is assigned to.

Scalability

Another advantage by assigning the thread blocks to an arbitrary SM, is the scalability

of the application. As GPUs differ in the number of SMs they contain, the thread blocks

will still be computed in the same way, but with another amount of thread blocks per

SM as seen in figure 3.2. In this example there are two different GPUs computing the

same kernel, but with a different allocation of thread blocks to different SMs. This

is a useful feature if CUDA is to scale to mobile devices, and future devices with an

increased number of SMs. The developer just has to make sure enough thread blocks

are generated to keep the cores busy. The parallelisation is scalable due to the way

thread blocks are assigned, with more SMs available the faster the code will run.

Figure 3.2: The scalability of CUDA [1]

3.3 Single-instruction multiple-thread

We have mentioned how the thread blocks are assigned to the SMs for execution, but

not how the threads assigned to each SM are scheduled by the SPs available on the

SM. To schedule the threads the SMs use a technique NVIDIA call single-instruction

25



multiple-thread (SIMT). It is similar to SIMD, but SIMT specifies the execution and

branching behaviour of each thread. This enables the programmer towrite thread-level

parallel code, and to coordinate operations between threads unlike vectormachines [1].

All the threads issue the same instructions, but the programmer can specify what data

to compute and may also control the execution of each thread.

The SMs are allocated thread blocks, and the SIMT unit splits the threads into groups of

32 threads called warps. Each warp is created in the same way, and consists of threads

with consecutive increasing thread IDs with the first warp of a thread block containing

thread ID 0-31. For every clock cycle, the SM chooses a warp that is ready to execute

for scheduling, and hands each SP a thread. Across the warp the same instruction is

performed, meaning best performance is achieved if all the threads within the warp

follow the same execution path and avoid branching in the code.

Figure 3.3: An illustration on warps of threads assigned to an SM [3]

To make sure all the SMs have threads to compute the number of thread blocks should

be large. Figure 3.3 illustrates how different thread blocks are assigned to the SM,

as there are usually a larger number of thread blocks than SMs. The SIMT unit cre-

ates warps from different thread blocks, and can schedule warps from different thread

blocks interleaved. This is done for efficient scheduling if one of the warps is waiting

on a memory fetch or a barrier.

It should be noted that there is a limit to how many thread blocks an SM can handle

concurrently. The run-time system in CUDA maintains a queue of thread blocks to be

processed, and assign new thread blocks to the SMs when a thread block has finished

computation.

26



Memory space Access time On chip On card

Register - dedicated HW single cycle yes no

Shared memory - dedicated HW single cycle yes no

Local memory - DRAM, no cache slow no yes

Global memory - DRAM, no cache slow no yes

Constant memory -DRAM, cached 1-100 of cycles depending on location no yes

Texture memory - DRAM, cached 1-100 of cycles depending on location no yes

Table 3.1: Access times for the different memory spaces on the GPU [3]

3.4 Memory model

The memory model in CUDA differs from earlier legacy GPGPU programming mod-

els. In OpenGL memory accesses are performed as pixels through the API, and it did

not support scatter/gather operations. CUDA offers scatter/gather read and write

operations, enhancing programming flexibility and resembles memory accesses seen

in standard programming languages. Like the organisation of threads, the memory

model in CUDA is also a hardware abstraction. As seen in figure 3.4, there are differ-

ent memory spaces, but the CUDAmemory model differs from physical memory seen

in figure 3.3.

Figure 3.4: The CUDA Memory Model [1]

There are three main types of memory in CUDA. Global memory, shared memory that

is on-chip on each SM and the cached memory spaces constant and texture memory.

The accesses time for each memory space can be seen in table 3.1.

The memory spaces at the bottom of figure 3.4 are the ones the host has read and

27



write access to. Global memory is the most frequently used memory space, as it is

the only memory space that is both read and writable for both host and device. Mem-

ory can be allocated in global memory from the host using CUDA API functions like

cudaMalloc and freed with cudaFree.

Constant and texture memory is read-only on the device, and is setup from the host

for read-only data. The constant and texture memory is located in the same physical

memory (DRAM) as global memory, but uses the texture unit in combination with a

cache available to each SM to increase speed up reads from the memory spaces. Each

SM has an 8kB working set of constant and texture memory that is cached, making it

useful for algorithms using data patterns that are read-only. Global memory, texture

and constant memory can all be accessed from any thread on the grid.

Shared memory is the only memory space that is available on the actual GPU core as

it resides on each SM. As it is on-chip, shared memory is local to each SM, meaning

it is limited to be accessed within a thread block. The shared memory is very quick,

but limited in size with 16 kB on each SM. The shared memory is optimal for sharing

data across a thread block, or for performing computation before writing back to global

memory. Due to the latency of global memory, a good way to compute data is to load

data from global memory into shared memory, perform the computations in shared

memory, synchronise each thread block and then write the result to global memory for

the host to read when done. The developer can explicitly use the fast on-chip memory

in CUDA, which is something that OpenGL does not offer, increasing programming

flexibility.

The local memory pictured in figure 3.4 is not an actual hardware component, but

local as in the scope of variables available for each thread. The actual variables may be

allocated in global memory if there is not enough room in registers or shared memory.

Local memory is not a memory space the developer can explicitly use, but the runtime

places the data in the memory space if there are limited resources available.

The memory model and the thread organisation are closely linked together. To hide

memory latency from global memory, other warps are scheduled while waiting for

memory fetches. The thread block distinction is also designed for easier use of the

shared memory space. For some algorithms this may enforce a redesign to fit the

memory spaces to gain optimal performance. In a scenario where an algorithm may

need synchronisation across thread blocks, synchronisation will need to be performed

through global memory, as it is not possible to synchronise across thread blocks. A

global memory mutex is not something very efficient, and it would be wise to launch

more than one kernel as an alternative. It is therefore important to make sure the algo-

28



rithm fits the pattern of threads blocks to be able to benefit from shared memory.

3.5 GPU occupancy and capabilities in CUDA

NVIDIA use the term occupancy to describe howmuch parallelisation is achievable on

the GPU in an application. It is the number of warps running concurrently on an SM

divided by the maximum number of warps that can run concurrently. This means that

a higher occupancy increases the probability of hiding memory latency in an efficient

manner. There are many factors that determine the occupancy of the GPU, but the

most important are:

• Number of thread blocks on the grid

• Size of the thread block

• Register usage per thread

• How much shared memory is used per thread block

As multiple thread blocks are assigned to an SM, each SM will have multiple thread

blocks to compute. As the devices increase the number of SMs, it is recommended to

have a large number of threads blocks assigned to each SM to scale to future devices.

With multiple blocks running concurrently, it is important that each thread block does

occupy all of the resources available on the SM. If they do, it limits the parallel capa-

bility. To assist in finding how well a kernel occupies the GPU, NVIDIA have released

a occupancy calculator [31] to assist in finding the right balance of thread blocks and

threads based on how much resources a kernel uses.

Compute capability

Compute capability is determined by howmuch of the CUDAAPI is supported by the

GPU. At present time there are four different versions of compute capability ranging

from 1.0 to 1.3. The main differences are howmemory transactions are executed by the

memory controller, the support for atomic instructions and better precision in floating-

point numbers. There is no documentation on what will be supported in future com-

pute capabilities, but since CUDA’s release there has been an continuous development

in what functionality the GPUs support. Thus creating new compute capabilities that

are backwards compatible, andmaking it easier for GPGPU developers to increase per-

29



formance of their applications. We show examples of how the compute capabilities can

affect the performance in chapter 4 and 5.

3.6 Software stack

The CUDA framework is composed of several layers as illustrated in figure 3.5. The

developer can use the runtime API or driver API. Using the latter is harder to program

as it provides more control in how the framework is used, while the runtime API is

aimed at delivering a higher-level API that is run on the top of the CUDA driver. The

framework is used as a stack, as the runtime API functions are automatically mapped

to the driver API, easing the development process for developers who are not inter-

ested in low level instructions.

Figure 3.5: The CUDA software stack [1]

3.7 Language extensions

The CUDA programming framework provides simple extensions for the developer to

be able to write code to run on the GPU. This is accomplished by a small number of

extensions to the C language. The extensions provide qualifiers that specify what func-

tions are run on the GPU, either through the use of the __device__ or __global__

qualifiers. Global is the qualifier that determines a kernel, but a kernel can use func-

tions or variables declared with __device__ qualifiers. The kernel is callable from the

host only, and is executed on the device. If the developer wants to specify parts of the

30



code that is only available for the host, the __host__ qualifier is available. Variables

and functions with these qualifiers are assumed to be part of the host code.

To use a specific memory spaces, the developer must specify the memory space using

a qualifier. The __constant__ or __shared__ qualifier will allocate variables into

the given memory space. The global memory space does not use a qualifier, as it is

allocated through API calls. Texture memory is setup by the host through specific API

calls and declarations that are CUDA specific.

3.8 The CUDA toolkit and compiler

CUDA comes with a toolkit containing a compiler, the mentioned occupancy calcula-

tor and a visual profiler that analyses a kernel in runtime. The CUDA visual profiler

gives results from hardware profile counters on CUDA-enabled devices. The profiler

reads counters from one SM on the GPU during execution of the kernel. Each counter

contains the number of occurrences of a transaction executed on the given SM. Since

only one SM is used, it is necessary to launch many thread blocks, so the counters can

work on a good percentage of the total work. We use the visual profiler in chapter 5.

The CUDA framework uses the NVIDIA-written compiler, nvcc [32]. CUDA code

contains a combination of host dedicated for the GPU and the CPU. The nvcc compiler

therefore needs to delegate the right parts of the source file to the right compiler. A

view of the nvcc tool chain can be seen in figure 3.6

A CUDA source file has a .cu extension, the nvcc compiler supports several exten-

sions, but triggers the CUDA compilation trajectory when working on a .cu extension.

The CUDA compilation trajectory starts with invoking the CUDA front-end (cudafe),

which is a preprocessor that splits the application into a CPU and a GPU part. Cud-

afe supports both C++ and C in the .cu file, but translates the code into C. Only C is

supported for the code running on the GPU. The host code is compiled by the native

C host compiler, and the GPU code is processed by NVIDIAs Open64 [33] based com-

piler nvopencc. Open64 is an open source optimising compiler, and is often used by

compiler and computer architecture researchers.

The nvopencc compiler takes the GPU part from cudafe, as .gpu files. Depending

on the parameters given to nvcc, these can be written as output files, or just be used

as intermediate steps. The .gpu files are processed by nvopencc, which emits an as-

sembly language called Parallel thread execution (PTX) [34]. Since CUDA can be run

31



on several GPU architectures, PTX has an advantage of generating a virtual machine

model that can be used independent of NVIDIA GPU architecture. Once generated,

the PTX output it is passed to a PTX assembler (ptxas), which outputs to the optimised

code generator (OCG). It handles register allocation, scheduling and peephole optimi-

sations that are tasks specific for a particular chip. Peephole optimisation is a compiler

optimisation that is performed over a very small set of instructions that can be replaced

to generate a leaner instruction set.

The PTX code is useful, as the programmer cannot always predict the NVIDIA archi-

tecture of the GPU that will run the application at compile time. There are several

ways of making sure you are in control of the architecture. One way is to make sure to

generate PTX files as intermediate code, and let the CUDA runtime system compile it

for the current GPU. Alternatively, it is an option to compile executables for different

architectures and let the runtime system decide what executable to use. In nvcc terms,

this is is referred to as a device code repository [32].

The code generated from the OCG is GPU object code, also known as a CUDA binary

(cubin). The cubin file is linked with the output from the host compiler into an exe-

cutable. A cubin file contains not only GPU object code, but details about the resource

usage for each thread. This is helpful when using the CUDA occupancy calculator.

Figure 3.6: The nvcc toolchain [4].

The host code is compiled by the nvcc supported native host compiler for compilation

and linking. A list of supported host compilers is shown in table 3.2.

32



Operating system Compiler

GNU/Linux and OS X The GNU compiler, gcc [35]
Microsoft Windows The Microsoft Visual Studio compiler, cl

Table 3.2: List of supported host compilers [32]

Emulation mode

A problem with the execution model of CUDA, is that there is no stack for the code to

use on the GPU [4]. This prevents recursive functions and frequently used functions

that use a stack based calling convention like printf() from working. The latter

creates a challenge when it comes to debugging CUDA code. NVIDIA has tried to

solve this problem by supporting a device emulation mode. The mode runs only on the

CPU, and tries to emulate the execution pattern of the GPU. It removes the need for

an actual NVIDIA and CUDA supported GPU, as each thread is emulated using a host

thread.

When running in device emulation mode, the developer has access to all the native

debugging tools that host applications offer, e.g., GDB [36]. As code compiled for the

host has a stack available, host functions like printf() work. The emulation mode

runs all the threads in sequence, meaning it cannot emulate the parallel execution of

the GPU. This causes problems when trying to debug race conditions. Additionally,

the emulation mode does not offer proper support for a memory space like texture

memory.

To generate an executable that uses the device emulation mode, there is a flag nvcc

-deviceemu that must be set during compilation. Since there is no code generated for

the GPU, there will also be a slight difference in code generated by the compiler since

there are different instruction sets for the different architectures.

NVIDIA have also released their own GDB version for CUDA called CUDA-GDB [37].

It is currently in beta, but lets the developer use a familiar GNUGDB interface to debug

threads running on the GPU in runtime. However, not all memory spaces are available

through the debugger, and 64-bit applications are currently not supported.

3.9 Summary

In this chapter, we have investigated the CUDA framework and how it offers devel-

opers a scalable programming API for the multi-core architecture of the GPU. By ex-

33



amining how CUDA organises threads, memory and code structure, we can develop

applications that benefit from the parallel capabilities of the GPU architecture. In chap-

ter 4, we investigate the challenges a developer faces when using CUDA, and how

much performance increase can be achieved by implementing two different versions

of the advanced encryption standard (AES). Two different implementations are ported

to see how different characteristics and requirements fit the memory spaces and thread

organisation. Additionally, We focus on how the applications map to the GPU archi-

tecture explained in chapter 2.

CUDA is also the focus in chapter 6, where we examine how CUDA applications are

executed from a system perspective to see how multiple applications use the frame-

work concurrently.

34



Chapter 4

Advanced encryption standard

In this chapter, we look at the advanced encryption standard (AES) and show how the

algorithm maps to the parallel architecture of the GPU. We explain the algorithm, and

look at the modes of operation that can be used with AES for parallelisation. As the

AES algorithm itself is not our focus, we base our work on existing single threaded im-

plementations run on the x86 architecture, and port the code to the GPU using CUDA.

We implement two versions of the algorithm to test different characteristics of the GPU,

and assess our results. Our goal is to implement AES to learn how to use the CUDA

framework, and discuss how to obtain good performance.

4.1 Background information

4.1.1 Rijndael

AES is a symmetric block cipher encryption algorithm developed by two Belgian cryp-

tographers, Joan Demen and Vincent Rijmen. The standard is also known as Rijndael,

which was its original title when submitted for the AES selection process. It is called a

block cipher as the data being encrypted is divided into blocks that are encrypted indi-

vidually. The standardisation process started on January 2nd, 1997, when the national

institute of standards and technology (NIST) announced that they wanted a successor

to the data encryption standard (DES). DES was becoming vulnerable to brute force at-

tacks, since it only uses a short 56-bit key, which limits the possible combinations, thus

easier to break. NIST chose a successor after holding a competition where fifteen dif-

ferent designs were submitted from several countries and research communities. Each

design was investigated by cryptographers, for security issues and on performance in

35



various scenarios. They were looking for a design that would be able to run on devices

with different capabilities, ranging from normal computers to devices with limited,

and slow resources like smart cards.

The fifteen designs were narrowed down to five finalists after NIST held two confer-

ences to solve the matter. The finalists were then again subjected to a new round of

reviews, which resulted in Rijndael being announced as the winner on October 2nd,

2000. By the end of 2001, Rijndael was standardised and became known as the AES

standard.

4.1.2 AES Cipher overview

In cryptography, an algorithm for performing encryption or decryption is referred to

as a cipher. The algorithm in the cipher usually consists of a series of steps that are im-

plemented as one or more functions. In encryption, plain text is converted to a cipher

text by passing the plain text together with a key to the cipher, and getting a cipher text

in return. Different keys used with the same plain text give different cipher text, mak-

ing the original message unreadable for anyone who does not have the key to decrypt

the message. In AES, depending on the mode of operation (explained in section 4.1.3),

the same function can be used as a cipher for encryption and decryption. When using

a symmetric-key algorithm, the same key is used for both encryption and decryption,

while asymmetric algorithms use different keys for encryption and decryption.

The AES standard [38] specifies the Rijndael algorithm, a symmetric block cipher that

processes data blocks of 128 bits, using a cipher key of length 128, 192 or 256 bits. Data

is encrypted in blocks. In AES the block size is fixed at 128 bits, which are organised in

a 4x4 byte array referred to as the state.

The cipher in AES is a repetition of processing steps, called rounds. The number of

rounds is determined by the cipher key length (128, 192, 256), respectively 10, 12 or 14

rounds. Each round consists of the following processing steps:

1. Substitute Bytes (SubBytes)

2. Shift Rows (ShiftRows)

3. Mix Columns (MixColumns)

4. Add Round Key (AddRoundKey)

Before any of these rounds are executed, there is an initial phase called the Key Ex-

36



pansion or Rijndael key schedule. Here the cipher key is expanded into an unique key

for each round, hence it is referred to as the round key. All the steps are performed

in every round, apart from the first and in the last round. In the first round only the

AddRoundKey step is performed, while the mixColumns is omitted in the last. The

steps are explained in detail below.

Key Expansion

The AES algorithm takes the cipher key and performs a key expansion routine to gen-

erate unique keys for each round. The number of keys depends on the size of the cipher

key. This step is referred to as the Rijndael key schedule, described in detail in the AES

standard [38].

Substitute Bytes

In the SubBytes transformation, each byte in the state is updated using an 8-bit sub-

stitution box, also called the Rijndael S-Box. Each byte is looked up in the table by

using the same index in the state array (Illustrated in figure 4.1).

Figure 4.1: The SubBytes step. The function S is a lookup operation in the S-box table.
Illustration from Wikipedia [5].

The SubBytes transformation provides non-linearity in the cipher, and is important

to prevent cryptographic attacks based on algebraic properties. The S-Box is created as

described in the AES standard [38].

37



Shift Rows

The ShiftRows step (shown in figure 4.2) operates on the rows of the state, it shifts

each byte on the row by a certain offset. The first row is left unchanged, the second

row is shifted one space to the left, the third row is shifted two spaces and the fourth

row is shifted three spaces. This effect moves the highest byte in the row to the lowest

position, and the other way around.

Figure 4.2: The ShiftRows step. Illustration from Wikipedia [6].

Mix Columns

MixColumns is a transformation that operates on the state on column-by-column ba-

sis, where the four bytes of a column are combined using a polynomial function de-

scribed in section 4.3 in the AES standard. The MixColumns function takes four bytes

as input and output four bytes, where each byte affects all the others (illustrated in

figure 4.3).

Figure 4.3: The MixColumns step. Illustration from Wikipedia [7].

38



The combination of the three mentioned functions creates an output that has a crypto-

graphic diffusion property. According to Shannon, diffusion is associated with depen-

dency of bits of the output on bits of the input [39]. In a cipher with good diffusion,

flipping an input bit should change the cipher text significantly. This is referred to as

the Strict Avalanche Criterion (SAC). If a block cipher does not exhibit the criterion to

a certain degree, it suffers from poor randomisation and can be subject for an attack by

a cryptoanalyst.

Add Round Key

The sub keys that are generated from the key expansion step are used in the AddRoundKey

function. The sub keys are referred to as the round key in every round. The round key

is added to the state by a simple bitwise XOR operation on every byte of the state to a

corresponding byte of the round key. An illustration is shown in figure 4.4.

Figure 4.4: The AddRoundKey step. Illustration from Wikipedia [8].

4.1.3 Block cipher modes of operation

Different modes of operation provide confidentiality for messages of arbitrary length.

When encrypting different cipher blocks that contain the same byte pattern and key,

the output will be the same. The modes of operation are designed for different pur-

poses, and therefore vary in how well they are suited for parallelisation. Important

properties for parallelisation is to try and avoid data dependencies between the blocks.

In the simplest mode of operation, electronic codebook (ECB), the plain text is divided

into blocks, and each block is encrypted individually. There are no chaining or depen-

39



dencies between each block, so if a similar data pattern exists, then plain text will gen-

erate the same cipher text. An example of ECB is shown in the encryption performed

from the original figure 4.5(a) to figure 4.5(b).

(a) Original (b) Encrypted using ECB
mode

(c) Encrypted using CTR

Figure 4.5: Comparison on encrypting using two different modes of operation

One way to hide data patterns is to provide some randomisation for each block. Fig-

ure 4.5(c) shows how randomisation can give a better encryption result All the modes

of operation apart from ECB require that an initialisation vector (IV) is used to pro-

vide an unique cipher text if the same key is re-used. The Cipher-block chaining (CBC)

mode of operation is an example of how an IV can be used. However, the mode of

operation uses dependencies between the blocks to assure randomisation. Figure 4.6

illustrates the dependencies between the blocks. Each cipher block is XORed with the

previous cipher text block before being encrypted, giving a dependency between each

block, which will force the algorithm to be run sequentially. The IV is used on the first

block to make each block unique. One of the issues with CBC is that a single bit error

can corrupt subsequent blocks, as the bits are used in the next sequence.

The ECB mode of operation does not hide data patterns in the encrypted message, and

since CBC has sequential dependencies it is not optimal to parallelise due to depen-

dencies between blocks.

One mode of operation that can be easily parallelised is the counter (CTR) mode of

operation. It avoids the problems from both ECB and CBC, and benefits from the inde-

pendent blocks as seen in ECB and the randomisation of CBC. An example is picture

in figure 4.7.

Normally the plain text is encrypted in a cipher, but in the counter mode a counter

value is used. The counter is initialised with a nonce (a random value used with each

IV), and is incremented for every block. The combination of the counter and the nonce

40



Figure 4.6: Cipher Block Chaining (CBC) encryption and decryption. Illustration from
Wikipedia [9].

is the data that is encrypted, and not the plain text. The encrypted counter is then

XORed with the plain text that results in a cipher text. By encrypting a counter that

is separate for each cipher block, with no dependencies between the blocks, the algo-

rithm can run in parallel and produce a cipher text that hides the original message.

An advantage with the counter mode, is that the same algorithm can be used for both

encryption and decryption, because of the properties of the XOR operation. We will

therefore refer to both encryption and decryption as encryption from now on.

4.2 Implementations - software basis

There exist implementations of AES for the GPU implemented both using OpenGL [40]

and CUDA [41]. The OpenGL version is an example on how OpenGL can used as a

GPGPU framework using newly added support for integer operations and bitwise log-

ical operations. Yamanouchi [40] shows a significant performance gain over CPU im-

41



Figure 4.7: Counter (CTR) mode encryption and decryption. Illustration from Wikipedia [10].

plementations in his implementation executing on the GPU. The CUDA implementa-

tion by Manavski [41] uses an optimised implementation of the algorithm and reaches

a throughput of 8.28 Gbit/s on a NVIDIA 8800 GTX.

As our goal was to learn the challenges connected to developing with CUDA, we

wanted to write our own application. But as our focus is not on the AES algorithm

itself, we wanted to base our work on code that was easy to understand and not al-

ready ported to CUDA.

To increase our understanding of the algorithm, we first ported an implementation

that followed the AES standard to point with regard to names on functions and defi-

nitions. Then, to further benefit from the processing power of the GPU, we ported an

implementation that focused on efficiency. This left us with two AES implementations,

one written for efficiency, using pre-defined lookup tables,and one implementation fo-

cusing on simplicity and following the AES standard [38]. The lookup tables are used

to combine the SubBytes, ShiftRows, and MixColumns steps into pre-calculated

values that are suitable to fit in a header file. Each round in the cipher requires 16 table

42



lookups that are XORed 12 times, followed by an XOR operation with the round key.

With two implementations, taking such different approaches, we test both the pro-

cessing power of the GPU, and how it deals with tasks that are more memory bound.

We will refer to the lookup table-based implementation as AES-lookup and the stan-

dard implementation as standard-AES. The AES-lookup implementation has a higher

requirement to efficient memory accesses, as it access the lookup tables in every round,

while the standard-aes implementation has a high processing requirement as it does

most of the calculation in the cipher. This means we have a memory access bound al-

gorithm in the AES-lookup implementation, and a computational bound algorithm in

the standard-AES implementation.

The choice for the standard-AES implementation fell on an open source project written

by Niyaz PK [42], which is an implementation that follows the AES standard imple-

mentation manual. It was easy to understand and modify to the counter mode of

operation.

The AES-lookup implementation is based on a public domain implementation written

by Philip J. Erdelsky [43]. Unlike the standard implementation, it focuses on efficiency

and not simplicity. We used a modified version of this code [44] written by Håvard

Espeland at Simula Research Laboratory. He used this version to run AES on the Cell

Broadband Engine Architecture.

The AES-lookup and standard AES implementations were ported to run on the GPU

using CUDA. We also modified the x86 implementations to use the counter mode of

operation and use P-threads to compare the parallel environments the architectures

offer. Giving us four different implementations. We refer to standard implementations

as GPU-S and CPU-S, while the lookup table implementation is referred to as GPU-L

and CPU-L.

4.3 GPU implementation using CUDA

As we see in section 4.1.3, the AES algorithm using the counter mode of operation is

suitable for parallelisation. Each cipher block can be computed in parallel, making the

cipher a clear candidate for a kernel in our GPU implementations. When designing

CUDA code, the developer needs to be careful to specify suitable code to be run on

the GPU (kernel), and what part of the code should be executed on the CPU. As we

based our work on existing code, we did not have to modify the algorithm, but we

43



had to map the right parts of the algorithm to the GPU and CPU. We used the given

cipher as a kernel, modifying it to be executed in parallel, meaning each thread com-

putes one cipher block. An alternative would be to follow the AES implementation in

Manavski [41]. It uses four threads per cipher block. This was not applicable with-

out modifying the lookup tables used in the code. Both implementations use lookup

tables, as the standard implementation uses lookup tables in the SubBytes step.

The modifications done in the code is to map memory accesses to the GPU in the ker-

nel, and setup from the host to make sure memory is allocated and the kernels are

launched correctly. For the memory accesses, it is important to consider what vari-

ables are used frequently in the algorithm, and how they may affect the access pat-

terns. In both implementations there are four variables that are used in every round.

They are the round key, the counter, the nonce and the state. As they are accessed in

every round, it is important that they do not affect the performance by using a mem-

ory space with latency. The nonce and round key are calculated once by the CPU, and

are not altered during execution. This makes them suitable to be placed in a read-only

memory space like texture memory, as they are calculated on the CPU, limited in size

and can be copied to the memory space before the kernels are launched.

The combination of the counter and nonce is the data that is encrypted. In each thread,

the nonce is read from texture memory, and the counter is calculated by the index val-

ues available from the CUDA runtime. The computation is done on the state, allocated

for each thread, in the remaining steps of the cipher. The state is also independent

for each cipher block, meaning there is no need for synchronisation between thread

blocks. This makes the state a good candidate to be placed in the on-ship shared mem-

ory space. Each thread allocates 16 bytes of shared memory, which fits into the shared

memory space even if each thread block consists of the maximum number of threads

CUDA permits.

The amount of global memory available on the device restricts how much data can be

processed in one kernel launch. To be able to encrypt an arbitrary large file, we split

the encryption into a number of launches, where each launch fits on the GPU. The

launches always use the same number of threads in a thread block, but the number of

thread blocks may differ. To implement the counter in the counter mode of operation,

we use a combination of the block and thread ID that are built in the CUDA runtime

system. As these identifiers are reset for each launch, we add an offset for each launch

to get the right counter.

In our implementations the host reads data from a file, allocates memory on the GPU

before copying the data over. Each thread then calculates a cipher block, reading data

44



GPU 8800 GTX 8600GT 8800GT 8800GT-OC GTX 280

Chip G80 G84 G92 G92 GT200

Stream processors 128 32 112 112 240

Core Clock (MHz) 575 540 600 660 602

Shader Clock (MHz) 1350 1180 1500 1674 1296

Memory Clock (MHz) 900 700 900 950 1107

Memory Amount (GDDR3) 768MB 256MB 256MB 512MB 1024MB

Memory Interface 384-bit 128-bit 256-bit 256-bit 512-bit

Memory Bandwidth (GB/sec) 86.4 22.4 57.6 60.8 141.7

Compute capability 1.0 1.1 1.1 1.1 1.3

PCI express bus used 1.0 1.1 1.1 2.0 2.0

Table 4.1: Hardware specifications for the GPUs we have run tests on [45] [11]. The 8800GT-
OC is over-clocked by the manufacturer.

from an unique place in memory based on a combination of the thread block and

thread index. The cipher is then executed on the GPU, and the result written to global

memory for the CPU to read.

Both implementations follow the mentioned pattern, but they differ in how they use

the cached memory space for lookup tables.

4.3.1 Standard AES

The standard implementation uses a substitution box (sbox) in the SubBytes func-

tion, which is used for byte substitution operation explained in the AES standard [38].

The sbox is placed in the cached constant memory space, as it is read-only, small in

size and used in every round.

4.3.2 Lookup table-based AES

The lookup table implementation uses lookup tables to efficient calculate the steps of

the cipher. A total of five lookup tables are used, each 1kB in size making it a good

candidate for the constant memory space.

4.4 Testing

We test the GPU implementations on the GPUs listed in table 4.1, to see how the num-

ber of cores and compute capability affects the performance. To see how well the al-

gorithm scales to the many cores of the GPU, we compared the results with our CPU

45



implementations. We are also interested in seeing how the different characteristics of

the algorithms affect the results. The standard implementation focuses on computa-

tion, while the lookup table is more memory access bound to the number of lookups.

To avoid an unfair comparison of the implementations, we only measure the runtime

of the cipher. This is due to the fact that our CPU implementations use threads on

the CPU, while the CUDA implementations are single threaded. Another difference

is that the implementations differ in how data is transferred to the cipher. An option

would be to avoid using multiple threads in the CPU implementations, but as CPUs

have an increasing number of cores available we believe it is interesting to test the

parallel capabilities of ordinary multi-core CPUs. To test we encrypted a 512MB file

and measure the throughput of the encryption, we run the test ten times and plot the

average values.

As mentioned previously, the file is divided into a number of launches due to memory

constraints. The launches are similar in how many threads are used in each thread

block, but the number of thread blocks in each launch vary.

The CPU implementations were tested on a 4x 2,6 GHz AMD Opteron 8218, with the

number of threads equal to the number of CPU cores.

4.4.1 GPU Lookup table based AES (GPU-L)

Figure 4.8 shows the throughput of our GPU-L and CPU-L implementations. Note

that the CPU implementations are plotted on the y-axis due to the limited number of

threads. The throughput in mbit/s is shown on y-axis, and the number of threads in

each thread block is shown on the x-axis. As seen in the figure, only one GPUmanages

to execute the kernels when using more than 384 threads in each thread block. This is

due to resource constraints on the GPUs. The resource needs are dependent on each

threads register usage, the amount of shared memory used by the thread block and

how many threads are executed on the device. Usually, when there is not enough reg-

isters available, data will be placed in local memory that is located in the same physical

location as global memory. This increases memory latency, and the performance might

be affected. In the case of not enough shared memory, the kernel will fail to launch.

Shared memory usage is not only determined by how much is used per thread block,

but the parameters of the kernel, the indexes used in the grid all allocate shared mem-

ory.

The graph indicates that the GPUs with compute capability 1.1 or lower (all except

46



Figure 4.8: Throughput of the GPU-L and CPU-L implementations. Note the non-linear x-
axis

GTX 280), scale the same way when comparing the number of cores on the GPUs. An

example can be seen when comparing the 8600GT and the 8800GT. They follow the

same pattern using different thread block sizes, but the added number of cores and

higher clock frequency assists in achieving better performance for the 8800GT. We see

that the 8800GTX has a higher amount of cores than the 8800GT(-OC), but yet it does

not reach the same throughput. This is because the cores on the 8800GTX run at a

lower core clock speed, which decreases the performance on an algorithm that is more

memory access bound than computation-bound. A lower clock frequency on the core

will also slow memory reads. This shows that in some algorithms the number of cores

is not always the most important, but the clock frequency can play an important role.

To achieve good performance on the GPU, the processors need threads to process when

waiting for memory latency. This means having a good occupancy of threads. As the

lookup table algorithm is memory access bound, it is important to try and hide the

memory latency by having a high occupancy of the GPU. A low occupancy makes it

difficult to hide the latency, as computation will wait for memory fetches. By studying

the performance of the GTX 280. It is by far the most powerful GPU, yet it achieves a

lower throughput than for instance the 8800GT. This indicates that with the resource

usage of our implementation, the memory access bound algorithm does not perform

very well with a low occupancy.

47



However, with an increased thread block size, the GTX 280 performs excellent. It

achieves a large speedup compared to the CPU implementation. From the GTX 280

performance we can see how small changes in the execution configuration can affect

the throughput. The performance increase using a thread block size of 480 and 512 is

most likely due to a good occupancy of the GPU. The dip when using 496 threads is

not easy to explain, but we believe a plausible reason is because warps are scheduled

in groups of 32 threads. This means that the last warp of the 496 threads on each SM

will only run with 16 threads as 496%32 = 16, causing a divergent branch in the warp.

Another explanation for the surges could be that the data placed in the cached mem-

ory spaces are not actually cached when using the specific amount of threads, and that

every read suffers from the global memory latency.

As for the 8600GT, it generally performs bad in all scenarios. The GPU is cheap, and not

aimed at high-end users. This is confirmed by looking at the hardware specifications. It

does not have a large number of cores, runs at a slow clock speed and has lowmemory

bandwidth.

Figure 4.9: Throughput of the GPU-S and CPU-S implementations. Note the non-linear x-
axis

48



4.4.2 GPU Standard AES (GPU-S)

The GPU-S and CPU-S implementation results are illustrated in figure 4.9. As with the

lookup table implementation, it is only the GTX 280 that manages to run with a thread

block size higher than 384. The graph shows that the implementation is computation-

bound, as the GPUs with the highest number of cores produces the highest through-

put. The performance of the implementations are similar when using a different size

of threads per block, indicating that memory latency is not an large issue as all the

threads use shared memory on computation and limit the use of the cached memory

spaces. As the implementation does not fetch a lot of data from global memory or the

cached memory spaces, there is a higher probability that data can be loaded directly

into registers and reside in shared memory.

The difference between each GPU is about the same as in the lookup table implemen-

tation, the 8600GT suffers because of the lack of processors and slow clock frequency.

The 8800GTX benefits from the extra 16 processors compared to the 8800GT. And as

expected, the GTX 280 gives the best throughput due to the many cores.

4.4.3 Memory spaces

During development of the two implementations, we experimented with the different

memory spaces CUDA offers, by changing the placement of data. The constant mem-

ory space was used for lookup tables, while the texture memory space was used for the

nonce and round key. Additionally, we tested to see how the performance was affected

when the state was placed in global memory. The difference in throughput can be seen

in figure 4.10 for the GPU-L implementation. As expected, a memory access bound

algorithm achieves an increase in the performance of caching mechanisms.

One optimisation that did not give any improvement on the GPU-L implementation,

was using shared memory. We believe this due to the memory latency of the other

memory spaces used in the implementation, meaning the benefit of shared memory is

negligible due to the latency from the other memory spaces. The GPU-S implemen-

tation though benefits from using shared memory, as seen in figure 4.11. We can see

from the output of the cubin file, that the GPU-S implementation uses a larger amount

of registers than the GPU-L implementation. When not using shared memory, there is

not enough registers available, so data is placed in global memory. This is most likely

due to the fact that the GPU-S uses (unsigned char) as data type, whereas the GPU-

L uses 32-bit words (uint32). A register on the device is 32 bits large, while the word

49



Figure 4.10: Using different memory spaces affect the performance on the lookup table imple-
mentation

size in the standard AES implementation is 8 bits large. Depending on the compilers’

optimisations, this could mean that the compiler needs to use four registers for one op-

eration, rather than one 32-bit register in one operation. A higher number of registers

in use, increases the probability of data being placed in global memory.

By not using shared memory in both implementation, the number of registers used

drops from 15 to 10 while in the GPU-S implementation, while the GPU-L implemen-

tation decreases from 18 to 15. We believe that both implementations try to place data

in registers as often as possible, when not using shared memory. Since the GPU-S im-

plementation has a higher amount of computations, and uses a shorter length on each

word, it needs a larger amount of registers and therefore place more of the data in

global memory. We will discuss the affects of using an 8-bit data type in chapter 5.

In conclusion, we believe that using shared memory is more beneficial for the GPU-S

implementation because the state is accessed more often in this implementation, and

using variables with a word length that does not fit the size of registers on the device.

The GPU-L implementation has fewer computations and has a longer word length,

which gives amore optimal usage of the registers, and thus limiting the need for shared

memory.

50



Figure 4.11: Using different memory spaces affect the performance on the standard implemen-
tation

4.5 Lessons learned

There are many ways to offload an algorithm to the GPU. As seen in our approaches,

both implementations experience an increase in the performance by offloading the

computation to the GPU. However, the optimised lookup table implementation does

not experience the same increase in the performance compared to the standard imple-

mentation, like the implementation did on the CPU. The lookup table-based imple-

mentation is memory access bound, which is a challenging area for the GPU when it

comes to performance. A GPU is designed to perform well on computation, which is

shown in the performance increase of the standard AES implementation on the GPU

compared to the CPU implementation. It shows that to achieve good performance

using CUDA it is essential to have a highly parallel algorithm that utilises the large

number of cores the GPU offers. This is achieved by hiding global memory latency

by using a large number of threads, and making sure the right memory space is used

for the data being computed. Hiding the latency is done by using the right balance

between the number of thread blocks, the size of the thread block and trying to limit

each thread’s resource usage. The more resources a thread uses, a lower number of

threads can be run in parallel.

As seen in figures 4.8 and 4.9, the performance differs with the same grid setup when

run on different GPUs. Therefore, it is difficult to give a general indication for what is a

good grid setup and resource usage for each thread. The occupancy calculator lets the

developer experiment with various grid setup and to see how much of the resources

51



are used in each permutation.

We used the different memory spaces for optimisations, but we did not think about

how to optimise the access pattern within each memory space. The compute capability

of the GPU also affects how the access pattern is transferred intro transactions by the

memory controller.

The NVIDIA GTX 280 compute capability 1.3 GPU, gave us such an increase in speed,

that we investigated if the cause was only down to the increased number of cores. To

do this we used the Visual Profiler [46]. When running our AES implementations in

the profiler, it reported that our access patterns in the kernel were not optimal. There-

fore, we will investigate access patterns and the use of the different memory spaces in

chapter 5.

Another optimisation we did not make was on how to transfer data to and from the

GPU. We could have implemented a double buffering scheme to limit the delay of input

and output operations to the GPU. A simple optimisation would be to transfer data to

the GPU while reading new data from a file, and to output data to file while waiting

for data to be copied from the GPU.

TheGPU also offers asynchronous transfers to the GPU through the CUDA streamAPI.

This is done by using asynchronous memory copy operations and kernel launches.

Due to time constraints, we have not had time to test a double buffering scheme, but

we investigate the use of streams further in chapter 7.

Offloading this algorithm showed us that the easiest way to work with CUDA is to

start off by implementing a simple version of the algorithm, and look at optimisations

in steps after the code is working. This is done to achieve good performance, and is an

easier way for the developer to debug CUDA code. A typical CUDA development pro-

cess involves a lot of experimentingwith the number of threads, fitting the algorithm to

the memory model and using the right access patterns in the different memory spaces.

4.6 Summary

In this chapter, we have investigated how to use the CUDA framework to offload the

AES algorithm to the GPU. We have gained knowledge on using the framework, and

seen ways to best utilise the resources on the GPU. The AES algorithm is explained,

and shown how the different modes of operation used in AES are suitable for paral-

lelisation. By implementing two different versions of AES, we see how different char-

52



acteristics in the algorithms affect the performance gain on the GPU, and what the

developer needs to consider.

Results show an increase in the performance for both implementations, but also pin-

points the importance of optimising code when it comes to memory placement. We

have evaluated the resource usage of each implementation, and seen how it affects

the occupancy of the GPU and the performance. The results show us that we need to

further investigate optimisation of memory access patterns, and see what the differ-

ences are in the various compute capabilities. In the next chapter we focus on memory

optimisations, and further investigate the properties of the memory spaces.

53



54



Chapter 5

Optimisation of memory accesses in

CUDA

In this chapter, we investigate how to efficiently use the memory spaces CUDA offers.

We look at the properties of each memory space, and how they are optimised for var-

ious access patterns. From the results of our AES implementation in chapter 4, we see

that the access patterns used in our kernels are treated differently on GPUs with dif-

ferent compute capabilities. Therefore, we run tests on the different memory spaces,

with specific access patterns to investigate how performance is affected on GPUs with

different compute capability, and see what patterns are optimal.

5.1 Introduction

To get the best possible performance from an application ported to the GPU, develop-

ers need to be careful when it comes to resource usage. Registers per thread, occupancy

of the GPU, memory placement and access patterns are all properties of a kernel that

are crucial for achieving optimal performance. The results from our different AES im-

plementations in chapter 4, indicate a large difference in how the memory accesses are

handled by GPUs with different compute capabilities. We will therefore look at the

requirements for optimising memory access patterns in the various memory spaces

CUDA offers.

55



5.1.1 Half-warps and coalesced accesses

To have an understanding of optimising memory accesses, the developer needs to be

aware of how memory instructions are executed by the memory controller. This is es-

pecially the case for global memory, as it is used by every thread, and is the memory

space with the highest latency. In chapter 3, we mentioned how threads are sched-

uled in groups of 32 threads called warps. To make the scheduling more flexible, the

memory transactions from a warp are executed on a half-warp basis. This is due to

the design of shared memory, and to ease the handling of memory transactions from

threads in a divergent warp. Divergence within a warp means threads execute differ-

ent instructions that can be caused by branching in the code, or idling of threads.

The half-warps are most efficient when memory accesses from simultaneous running

threads can be combined into a single memory transaction on global memory. This is

known as an coalesced memory transaction. There are certain requirements the half-

warp must oblige to be able to coalesce the memory transaction. These requirements

are determined by the compute capability of the GPU. The compute capability also

affects how the transactions are issued if the requirements are not met. This is referred

to as an uncoalesced memory transaction. An example of a coalesced and uncoalesced

access pattern is illustrated in figure 5.1(a) and 5.1(b). In this example, the coalesced

access is achieved by having each thread access a 32 bit word in sequence within a 64

byte segment. The uncoalesced access reads values from different segments, which is

not possible for the memory controller to coalesce.

In the next section we explain the different requirement for coalesced transactions on

global memory and examine the different memory spaces.

5.2 Memory spaces

The memory spaces available in CUDA are global, shared, constant and texture mem-

ory. In this section we will take a closer look at what sort of data they are designed

for, and how the memory spaces should be used in the different compute capabilities.

We mentioned the latency of the memory spaces in chapter 3, where we showed the

latency in clock cycles in table 3.1.

56



(a) (b)

Figure 5.1: A coalesced access pattern in figure a) and an uncoalesced access pattern in figure
b).

5.2.1 Global memory

Global memory is commonly used by every thread executed on the GPU as it is the

only writable memory space that is shared across thread blocks, and the only memory

space accessible for the CPU. The memory space is not cached and has high latency, so

it is important to use the right access pattern to limit latency.

The GPU is capable of reading 32, 64 and 128-bit words from global memory into reg-

isters in a single instruction. To have the compiler generate assignments into a single

instruction the data type must be such that the sizeof(type) is equal to 4, 8 or 16

bytes. If using an array structure, it is important to have the variables aligned to the

same size, meaning the address for each index is a multiple of sizeof(type). The

alignment requirements can be automatically fulfilled for built-in types supported by

the CUDA API, or by the use of __align__ quantifier. This can be useful if a kernel

needs to collect data in structures, where size and alignment can be enforced by the

compiler using the align quantifier.

Global memory is used most efficiently when all the threads of a half-warp can issue a

coalesced memory transaction. The size of a memory transaction that can be executed

depends on the compute capability supported by the GPU. A 64 and 128 byte transac-

tion can be performed in compute capability 1.0 and 1.1, while compute capability 1.2

also supports 32 byte transactions. The transaction size is important, as global memory

is considered to be partitioned into segments of size equal to 32, 64 or 128 bytes.

57



Compute capability 1.0 and 1.1

When accessing global memory, the data type used for the variables being accessed is

important. This is referred to as the word size as it is a fixed size group of bits that are

treated as one word. To achieve an efficient coalesced access pattern there are some

requirements that need to be fulfilled for kernels running on a compute capability 1.0

or 1.1 GPU:

• Threads must access 32, 64 or 128-bit words resulting in one 64, 128 or two 128-

byte memory transactions.

• All the 16 words being accessed by the half-warp must reside in the same mem-

ory segment of size equal to the memory transaction size, or twice the size if

accessing 128-bit words.

• Threads must access the words in sequence within the segment, meaning the kth

thread of a half-warp must access the kth work.

If the requirements are not fulfilled, a separate memory transaction will be issued

for each thread, and throughput will suffer. According to the CUDA programming

guide [1], a coalesced 64-bit access delivers slightly lower bandwidth than a coalesced

32-bit access, and a 128-bit coalesced access delivers a noticeably lower bandwidth.

Compute capability 1.2 and higher

There are similar requirements for higher compute capabilities, but they are more flex-

ible when it comes to access patterns and the amount of transactions needed if require-

ments are not met. Threads must access 8, 16, 32 or 64-bit words that reside in the same

memory segment of size 32, 64 or 128 bytes. Unlike lower compute capabilities, the ac-

cess pattern within the segment does not have to be sequential. If the access pattern

accesses n different segments, it will lead to n transactions as a transaction for each seg-

ment is needed. In lower compute capabilities 16 different transactions are executed

as soon as n is greater than one. Additionally, compute capability 1.2 and higher can

execute a coalesced access if multiple threads access the same address, unlike lower

capabilities where accesses need to be in sequence within the memory segment. An

example of a scattered pattern within a segment can be seen in figure 5.2(a), and access

patterns across segments can be seen in figure 5.2(b)

Another improvement in compute capability 1.2 is the reduced waste of bandwidth

if there are idle threads in a half-warp. To reduce waste of bandwidth, the memory

58



controller will automatically issue the smallest memory transaction possible for the re-

quested words. Waste is reduced by issuing the smallest memory transaction possible

in a half-warp. There is no need for a 128-byte memory instruction if a half-warp only

issues requests for words that reside in the upper side of the memory segment. In this

case it would be more efficient if the hardware issued a 64-byte instruction. Figure 5.3

shows an example of an access pattern with idle threads.

The protocol for memory transactions is as follows:

• Find the memory segment that contains the address requested by the lowest

numbered active thread.

• Find all other active threads whose requested address lies in the same segment

• If possible, reduce the transaction size

• Carry out the transaction and mark the serviced thread as inactive

• Repeat until all threads in the half-warp are serviced

(a) (b)

Figure 5.2: Figure a) showing a scattered pattern within a memory segment. Figure b) shows
how the memory transaction protocol will issue memory transactions across segments.

A common access pattern for CUDA applications, which also ensures coalesced ac-

cess, is when each thread (identified by the tid = threadIdx.x) accesses a value

from global memory located at a base_address. The value should be read into

shared memory, by fetch data from the following address: base_address + tid.

The base_address is common for all the thread blocks as it is normally given as

59



Figure 5.3: A coalesced access pattern with idle threads.

a parameter to the kernel, or can be computed in each thread. Each thread block

will do the same operations, but on different values, so the base_address needs

an offset for each thread block giving the following declaration: base_address +=

blockIdx.x * num_threads.

5.2.2 Constant memory and texture memory

The constant and texture memory space are designed for read-only data structures that

have elements that reside close together in memory. The memory spaces are limited in

size, are read-only and therefore not always applicable for certain applications. Both

memory spaces use a caching mechanism, where a up to 8kB cache is available for both

texture and constant memory on each SM. If there is a cache miss, a read costs the same

as a fetch from global memory, as both memory spaces are subsets of global memory.

An advantage of using these read-only memory spaces is that the requirements to get

optimal performance are not as strict as in global memory, but there are recommenda-

tions on how to access the memory spaces to avoid unnecessary latency. Threads of

a warp that read texture addresses that are close together will achieve the best perfor-

mance, so mapping the read-only data to fit this alignment is a good optimisation.

The texture and constant cache differ in the kind of locality that they are optimised

for. According to the programming guide [1], the constant cache is as fast as reading

a register, as long as all the threads in a half-warp read the same address, and the cost

60



scales linearly with the number of different addresses that are read. Additionally, it is

recommended that a whole warp reads the same address, and not just one half warp

as future devices will require this access pattern for full speed read.

Texture cache is a more flexible cache, as it does not require each thread to read the

same address to achieve full speed. However, it is recommended to have threads read

addresses that are close to each other as the cache is optimised for 2D spatial locality

used in imaging. Texture memory is normally used for storage of texture data used for

rendering of images. The memory space is designed for mapping 2D images onto a 3D

model andwork together with the texture units on the GPU. CUDA offers mechanisms

so GPGPU developers can benefit from this feature for read-only data used in their

applications, and also using 1D data like a linear array. Additionally, the programmer

has an advantage that texture memory can be set up very dynamically by the host, and

has several different options for storing data in different patterns.

5.2.3 Shared memory

One way to limit the latency from global memory is to stage computation by loading

data from global memory to shared memory for processing. Alternatively, the source

data can be read from one of the cached memory spaces depending on the application.

Shared memory is not accessible across thread blocks, as it is per SM only. This leads to

the need of a synchronisation point after loading the data. The synchronisation point

is implemented as a barrier, meaning threads of a thread block must have reached

the same point in the code, before executing further. This ensures that data is loaded

correctly.

The on-chip memory space is almost as quick as accessing a register depending on

what the data is used for and how it is accessed. To achieve high memory bandwidth,

the shared memory space is divided into equally-sized memory modules called banks,

which are designed to be accessed simultaneously. If n shared memory requests fall

into n different banks, they can all be served simultaneously. However, if two or more

accesses from the same half-warp fall into the same bank (same address or multiple

of the address that maps to the same bank), we have a bank conflict and the accesses

have to be serialised. Examples of a warp with and without bank conflicts can be seen

in figure 5.4(a) and 5.4(b).

Successive 32-bit words in shared memory are mapped to successive banks. In the cur-

rent compute capabilities 1.x, the warp size is 32 and the number of banks is 16, but

61



this might be subject to change in future revisions. The number of banks is a reason

why the warps are divided into half-warps, to make it is easier to avoid bank conflicts

as requests are split into one request for the first half and one for the second. An ad-

vantage of this model is that it is not possible to have bank conflicts between different

half-warps, as the requests will not be served simultaneously.

(a) (b)

Figure 5.4: Figure a) shows an access pattern from a warp of threads with no bank conflicts.
Figure b) shows a warp of threads with maximum possible bank conflicts

It should be noted that sharedmemory is optimised to use 32-bit words, as a __shared__

char data[32] declaration will have a bank conflict if different threads try to access

data[0], data[1], data[2] ... data[15] in a half-warp. This pattern will cause

a 4-way bank conflict as data[0], data[1], data[2] and data[3] all belong to

the same bank. One solution is to access the data with a certain stride that avoids ac-

cesses falling into the same 32-bit bank. Our GPU-S implementation in chapter ?? uses

an 8-bit data type, which affects the performance due to the number of bank conflicts.

Shared memory also features a broadcast mechanism, which reduces bank conflicts by

letting several threads read the same shared memory address by broadcasting the data

to all the threads after one read. The hardware automatically detects a broadcast word,

62



and it is automatically passed to other threads reading from that word.

5.3 Tests

To test various access patterns on the different memory spaces mentioned in the pre-

vious section, we developed a simple CUDA application that is based on code used in

a paper by Boyer et al. [47]. The authors developed a tool to detect bank conflicts in

CUDA kernels. They showed how bank conflicts can decrease performance in a kernel.

We wanted to extend their work to show similar trends on other memory spaces, and

to test access patterns we used in our AES implementation, and to see how kernels

react when adapting to the requirements set by the compute capabilities mentioned.

Listing 5.1 shows pseudo-code of how the kernels test the memory spaces.

We used the kernel in listing 5.1 as a basis, and they do essentially the same, the differ-

ence being the memory space they use as source, and where they perform computation

before writing the result back to global memory. It should be noted that the tmp vari-

able is unnecessary, but is added to spend some time on additional computation. The

initialisation phase is used to add to the number of accesses performed. Each thread

should read a value in a loop, for number_reads times. The value will be read from

a source, incremented and then stored. In all the kernels apart from ones using shared

memory, the computation is performed in global memory, but data is not necessarily

read from global memory. Every value is stored in different addresses in global mem-

ory, giving a total of threads * blocks * num_reads write and read operations.

Global memory has more space available than the cached memory spaces, and the lat-

ter are designed to have threads read the same values or values close together in a

smaller memory space. So constant and texture memory allocates a smaller amount of

memory, and works on a smaller set of values.

We developed the following kernels with different benchmarking targets:

• global coalesced is a kernel designed to show how fast a coalesced read and

write pattern on global memory can perform. The kernel follows the pattern of

figure 5.1(a).

• global idle coalesced is similar to global coalesced, but with 2 idle threads per

half-warp. Tested to see how different compute capabilities handle warps with

idle threads. The kernel follows the pattern of figure 5.3.

• global uncoalesced is similar to global coalesced, but with an uncoalesced read

63



1 # include "mem. h"
2

3 __global__ void memtest_kernel ( in t * data , in t i t e r a t i on s , in t threads
,

4 in t blocks , in t number_reads )
5 {
6 in t i , j ;
7 in t index = blockIdx . x * threads + threadIdx . x ;
8 in t tmp = 0 ;
9

10 / * A l l a c t i v e t h r e a d s i n i t a l i z e r e s u l t d a t a t o 0 .
11 * I f us ing s h a r e d memory , d a t a i s a s h a r e d memory l o c a t i o n
12 * /
13 for ( i =0 ; i < number_reads ) {
14 i f ( coa lesced )
15 data [ index + blocks * threads * i ] = 0 ;
16 else

17 data [ index * number_reads + i ] = 0 ;
18 }
19

20 / * A l l a c t i v e t h r e a d s r e ad and wr i t e d a t a . Memory_src can be
21 * g l o b a l memory , t e x t u r e memory , c o n s t a n t memory or s h a r e d
22 * memory . I f we a r e us ing s h a r e d memory , d a t a i s a s h a r e d
23 * memory l o c a t i o n
24 * /
25 for ( i =0 ; i < i t e r a t i o n s ; i ++) {
26 for ( j =0 ; j < number_reads ; j ++) {
27 i f ( coa lesced ) {
28 tmp = memory_src [ index + blocks * threads * j ] + 1 ;
29 data [ index + blocks * threads * j ] = tmp ;
30 }
31 else {
32 tmp = memory_src [ index * number_reads + j ] + 1 ;
33 data [ index * number_reads + j ] = tmp ;
34 }
35 }
36 }
37 / * I f us ing s h a r e d memory , w r i t e r e s u l t from g l o b a l t o
38 * s h a r e d memory
39 * /
40 for ( i =0 i < number_reads ; i ++) {
41 . . . .
42 }
43 }

Listing 5.1: A pseudo code of the test kernels

64



and write pattern. The kernel follows the pattern of figure 5.1(b).

• global shared is a kernel that performs computation in shared memory and

writes the results back to global memory in a coalesced manner. Benchmarked to

see how fast doing computation in shared memory can be performed. The kernel

follows the pattern of figure 5.4(a).

• global shared bank is similar to global shared, but with maximum possible bank

conflicts on shared memory. The kernel follows the pattern of figure 5.4(b).

• constant caching is a kernel where each thread block reads from the same address

in constant memory to try and see the benefits from the constant cache. The result

is written back to global memory in a coalesced manner, showing the benefits of

reading data from a cached memory space. The kernel is very similar to global

coalesced apart from the fact that the block index is used as index in the constant

memory space to limit the number of different accesses and fit a pattern that is

suitable for the memory space.

• constant various is a kernel where each thread reads the address equivalent to its

thread index from constant memory, and writes the result to global memory in a

coalesced manner. This shows the same as constant caching, but with a spread

read pattern on the cache. The kernel is similar to constant caching but every

thread will use the thread id as index in the constant memory space.

• constant uncoalesced is similar to constant various, but writes the result back to

global memory in an uncoalesced manner.

• texture coalesced is similar to constant caching, but each thread reads different

values from texture memory.

• texture uncoalesced is similar to texture coalesced, but reads from the texture

in an uncoalesced manner, and writes the result to global memory in an uncoa-

lesced pattern. The kernel is designed show how an uncoalesced pattern can kill

performance from an efficient source.

• scatter coalesced is similar to global coalesced, but in each half-warp the access

are crossedwith each other to see how the different compute capabilities optimise

the pattern. The kernel follows the pattern of figure 5.2(a).

• segment coalesced is a kernel where we test how accesses across different seg-

ments in a half-warp is executed using the memory transaction protocol in com-

pute capability >= 1.2. The kernel follows the pattern of figure 5.2(b).

65



• char coalesced is similar to global coalesced, but using an 8-bit data type to show

the latest compute capability supports coalesced 32-byte transactions.

The kernels are designed to benchmark how different access patterns perform on the

different memory spaces, so we want to ignore any operations that are connected to

the host. To achieve this we used the NVIDIA visual profiler [46] and monitored the

following hardware counters from the counters it offers:

• gld_incoherent is the number of uncoalesced loads on global memory.

• gld_coherent is the number of coalesced loads on global memory.

• gst_incoherent is the number of uncoalesced stores on global memory.

• gst_coherent is the number of coalesced stores on global memory.

• local_load is the number of local loads from local memory.

• local_store is the number of local stores from local memory.

• branch is the number of branched events taken by threads.

• divergent_branch is the number of divergent branches within a warp.

• instructions is the number of instructions.

• warp_serialize is the number of threads that are serialised because of address

conflicts on constant memory or shared memory.

• cta_launched is the number of threads blocks that have been profiled.

In addition, the profiler outputs the total time the profiled kernel spends on the GPU,

CPU and the occupancy of the GPU. We are looking for the number of coalesced

and uncoalesced instructions. We are also interested in investigating the number of

bank conflicts. So the counters we are interested in are the gld_incoherent, gld_coherent,

gst_incoherent, gst_coherent, warp_serialize and cta_launched. Not only do wewant to see

how the different values affect the total gputime, but also see how the different com-

pute capability properties can improve the number of loads and stores needed. The

loads and stores indicate if instructions have been combined into a coalesced access.

The lower number of instructions means that the GPU has managed to coalesce the

instructions.

We profiled the kernels on a compute capability 1.1 GPU (NVIDIA 8800GT-OC) and a

compute capability 1.3 GPU (NVIDIA GTX 280), with the parameters number_reads

and iterations set to 4 and 10000 – 40000 respectively. The reason we only choose 4

as the number_reads was because the combination of register usage per thread and

66



the block size limited the amount of shared memory available. The results plotted

are the average values of ten runs of each kernel, with a grid size of 60 thread blocks

containing 256 threads.

5.4 Results

Figure 5.5: The total gputime for the kernels running with 10000 iterations on a compute
capability 1.1 GPU

The total GPU time from the kernels running on a compute capability 1.1 and a 1.3

GPU can be seen in figure 5.5 and 5.6. The figures are plotted separately for readability.

There is a significant difference in the GPUs when it comes to processing ability as it

contains more processors, so the actual GPU time will always be lower on the GTX 280

card. The speed difference becomes very clear by looking at the scale on the y-axis for

both figures. We will focus on how the access patterns are treated differently on the

GPUs, and how the compute capability affects performance rather than the number of

cores.

To help explain the GPU time results, we have also plotted the number of load and

store transactions that are issued on an SM for each of the kernels in figure 5.7 and 5.8.

As a coalesced load or store will issue considerably less transactions.

Both figures show that a coalesced access will improve performance due to the reduced

number of transactions. In the global coalesced and global uncoalesced kernels there

67



Figure 5.6: The total gputime for the kernels running with 10000 iterations on a compute
capability 1.3 GPU

is no difference in the compute capabilities, but the runtime of the kernels are affected

by the number of transactions issued.

In the global coalesced idle kernel, bandwidth is wasted in compute capability 1.1, as

each thread spends time processing data even if it does not need it. The improvement

in how to split memory transactions is seen in the GPU time of the same kernel in

compute capability 1.3. The number of loads are equal, but due to a smaller transaction

size the speed improves.

The kernels char coalesced, scatter coalesced and segment coalesced show how per-

formance is affected by not following the requirements for a coalesced access in com-

pute capability 1.1. Breaking the requirement of word size, sequential accessing across

threads and reading words within a certain segment size gives the same kind of per-

formance as an uncoalesced kernel. The requirements are not as strict in compute ca-

pability 1.3, which is shown by the GPU time of the different kernels in figure 5.6. The

performance increase can be explained by the added support of 8-bit words, support

for scattered transactions within a segment and having the memory transfer protocol

issuing a smaller number of requests.

Reading from a cached memory space is quicker than reading from global memory.

From our results, we do not see a difference between the access pattern in the constant

or texture memory. However, we see that writing back to global memory in an uncoa-

lesced fashion is expensive as to be expected. We were surprised to see that the stride

68



Figure 5.7: The number of global memory loads in each kernel. Loads from constant and texture
memory are not listed in the profiler, and therefore not graphed.

used in constant various did not reduce performance compared to constant caching.

These results show that the use of cached memory spaces also allow a more flexible

access pattern, as the different patterns do not show any different results. We believe

this may be due to the size of the memory allocated, and that all the data elements

were placed in the cache after the first cache miss. Due to time constraints we have not

been able to test this at present time.

As illustrated in figures 5.5 and 5.6, doing computation in shared memory is very effi-

cient. Even with a high amount of bank conflicts the kernels perform very well. Nor-

mally there would be the added transactions of moving data from global memory to

shared memory, which would increase the total GPU time. But as we wanted to show

how quick the shared memory space is for doing computation, we did not add this

step. We compared how the shared memory space performs isolated, with and with-

out bank conflicts. Our results did not show that bank conflicts have as a severe affect

on performance as Boyer et al. [47] illustrated. They claim a kernel with the maximum

possible bank conflicts can perform as bad as the same kernel only using global mem-

ory. However, they have not explained how they tested their code to see the affect of

the bank conflicts.

From our results we can conclude that a bank conflict pattern is almost as twice as in-

efficient, and with a higher number of computations the performance would decrease

noticeably and we might have seen the same pattern as Boyer et al. [47]

69



Figure 5.8: The number of global memory stores in each kernel. The kernels that are not
graphed follow the same pattern as similar coalesced or uncoalesced kernels

Figure 5.9 shows how the different kernels experience bank conflicts. It should be

noted that when profiling the compute capability 1.3 shared memory kernels, we only

managed to get a GPU occupancy of 0.75, compared to all the other kernels where we

got an occupancy of 1. Not reaching full occupancy means that the SMs might spend

time idling, because resources are not available, and the CUDA runtime cannot find

warps to schedule. This means a thread will in average have to wait for a longer time

to get processed, but as a side effect will avoiding as many bank conflicts as there are

not as many threads trying to access the same bank as with a full occupancy of the

GPU.

Figure 5.9: The number of bank conflicts in the kernels running on different GPUs

70



5.5 Lessons learned

We have seen what access patterns perform well in the different memory spaces, and

what usage the memory spaces are designed for. Our results indicate that following

requirements for coalesced memory accesses on global memory are crucial for the per-

formance of an algorithm. However, the added flexibility in support of different access

patterns in compute capability 1.3 helps the developer limit memory latency. This clar-

ifies some of the performance issues regarding our AES implementations in chapter 4,

and gives us indications on how to map our algorithms.

It should be noted that it is not always possible to adapt the algorithm to fit the re-

quirements for to gain the optimal accesses. In some cases the algorithm itself is not

suited for GPU offloading, but we have seen that one way to limit memory latency is

to use the cached constant or texture memory space. They are restricted in size and

are read-only, but offer good performance even when requirements are not followed

100%. Unlike global memory, which suffers in performance when the required pattern

is not followed. Another solution for accesses that do not fit with the requirements, is

to pad the allocated memory so alignment is assured, and to make the access patterns

easier to program. This will use more global memory, but could be worth the tradeoff

in performance.

Overall the memory spaces have their qualities, and different usage areas. In combi-

nation, they can give great performance, but also added complexity as the algorithm

needs to be adapted to the access patterns and properties of each memory space used.

From our results we can see an optimal pattern is to load data in a coalesced fashion

from global memory into shared memory, or if applicable use a cached memory space

as source. The use of the texture memory for reading can help the developer if the ac-

cess patterns are difficult to adapt to global memory. The computation should be done

in shared memory, without bank conflicts, which according to Boyer et al. [47] can give

as high latency as using global memory.

To summarise, the developer needs to make sure every memory access is correct ac-

cording to the specifications, and use the tools available like the CUDA profiler to see

how the kernels performs. Boyer et al. [47] have proposed a tool that detects bank con-

flicts in CUDA code. Tools like these is something that would be of great benefit for

CUDA developers. We also considered extending their work to detect coalesced and

uncoalesced accesses, but we leave this for future work.

71



5.6 Summary

In this chapter, we have clarified how to gain optimal memory access in a kernel. We

have run isolated tests to show how various access patterns in memory affect the per-

formance on GPUs with different compute capabilities. We have explained how to

obtain efficient and coalesced memory transactions, by following the requirements set

by the compute capabilities. The results show that it is very important to follow the

requirements, and that every memory transaction should be evaluated to see if it fol-

lows the an efficient pattern. If applicable, a cached memory space should be used for

reading data into shared memory, while avoiding bank conflicts, for computation. The

results should then be written back to global memory in a coalesced manner.

Additionally, we have seen that the latest hardware from NVIDIA eases the restric-

tions on the algorithms for easier performance gains making it easier to get good per-

formance from the GPU.

Memory optimisations is important for efficient CUDA applications, but there is also

optimisations that can be done when it comes to transferring data to the GPU for com-

putation. In chapter 7 we investigate another possible optimisation we mentioned in

chapter 4, which is to have memory transfers overlap with kernel execution through

the use of the asynchronous API called streams.

72



Chapter 6

Concurrency with CUDA applications

In this chapter, we investigate how the CUDA framework executes applications that

try to access the GPU concurrently. If CUDA is to become popular for offloading com-

putations, it is important that applications can run concurrently without negating the

performance the offloading was originally set to enhance. We look at scenarios similar

to a situation where a CUDA application like our AES encryption is run concurrently

with another CUDA application like the badaboom h.264 encoder [48]. We investigate

alternatives for running concurrent processes, and look at how the applications use the

resources in todays framework.

6.1 Introduction

As CUDA applications increase in popularity, there is a higher possibility that there

will be a need for support of concurrent execution of kernels on the GPU. GPGPU ap-

plications use the GPU to increase performance in their applications, so it is important

that concurrency does not diminish the advantage GPU processing offers. In CUDA

at present time, CUDA applications are context switched like other applications on the

CPU, but on the GPU the accesses are executed in first come first serve basis, with-

out preemption or context switching between applications executing on the GPU. This

leads to serialising of accesses by the CUDA driver as access to the GPU is exclusive

and the applications executes until it is finished.

When executing CUDA applications, the CUDA memory copy operations block the

CPU thread, and the kernel launches are asynchronous. Due to the asynchronous ca-

pabilities, we believe that it is possible to have CUDA memory copy operations and

73



kernel launches overlap between different CUDA processes. In addition to the fact

that they are executed independent processes in the operating system. To see how

the CUDA processes are run when executing concurrently, we ran a script that ex-

ecutes four identical CUDA processes simultaneously. The process used for testing

is a generic workload that calculates a value based on the thread index and thread

block index before writing the result to global memory. Our focus is on how the CPU

schedules the applications when the GPU is busy, and not how the GPU executes the

workload. We want to monitor how each process executes on the CPUwhen they com-

pete for the GPU resource, to investigate the scheduling pattern of each application on

the CPU. The monitoring was performed by outputting when a functionality like a

kernel launch or memory copy was performed. We refer to the outputs as steps in the

execution. The steps we monitor in each application are the following:

• cudaMemcpyHostToDevice operations, where data is transferred to the GPU

for computation

• The asynchronous kernel launch

• cudaMemcpyDeviceToHost operations, where data is transferred from theGPU

after computation

• Output to mark the end of an iteration

Figure 6.1: An illustration of how concurrent CUDA processes are executed on the CPU.

The steps were chosen to see a combination of synchronous and asynchronous calls,

74



and because they are functions that are used in most CUDA applications. We are not

interested in monitoring all the context switches on the CPU, but want to see an outline

on how the processes are scheduled on the CPU when multiple applications try to

access the GPU. In each process we iterate the same code ten times giving a total of

240 steps. We ran the script five times to see if there was any variation of scheduling

patterns.

The graph in figure 6.1 indicates an outline of how different CUDA processes may be

scheduled on the CPU. The y-axis contains the process ID, and the x-axis shows the

steps in each process to give a time line of the execution. Note that different processes

may be context switched on the CPU between the steps measured, and that we only

monitor the mentioned CUDA specific steps to see how they are scheduled compared

to each other.

The figure 6.1 shows that CUDA applications are scheduled on the CPU in a random

order, where some applications may suffer starvation before getting scheduled. What

is important to note from the figure, is that even though GPU access are serialised,

the CPU still schedules the other CUDA applications to limit the affect of serialisation

of GPU accesses. In certain cases an application is not scheduled by the CPU before

almost one quarter of the execution steps have passed. An example of this can be seen

in run 4, where themonitored steps of process 1 is not scheduled before around step 80.

In the same run process 3 is scheduled for a long time in the start of execution, which

is not very fair towards the other processes. However, we can see from the various

patterns that even though the GPU accesses are serialised, the CPU still schedules the

other applications on the CPU. It should be noted that because of the random order

of the CPU scheduling, in combination with the serialising of the GPU accesses, it is

difficult to predict performance limitations.

6.2 Performance of concurrent CUDA applications

Accesses to the GPU are serialised, but as seen in the previous section, CUDA oper-

ations performed on the CPU can be overlapped between different applications. We

want to investigate what affect context switching, like in figure 6.1, has on the perfor-

mance of concurrent CUDA applications.

There are different ways to achieve concurrency for the applications. If an applica-

tion needs to offload different functions or sets of data, the accesses can be offloaded

in sequence by the algorithm. The difference in a concurrent launch compared to a

75



sequential launch is how many CUDA processes are run. In a concurrent approach,

different processes try to offload computation to the GPU in the same fashion CPU

processes try to access the CPU. In this case, the requests are serialised by the CUDA

driver. In the sequential approach, the same computation is offloaded, but we execute

the GPU requests in one process and the serialisation of the GPU accesses is controlled

by the application. An example of an sequential kernel launch in an application can be

To see how the different approaches affect the performance of the applications, we have

tested different combinations of CUDA processes using the mentioned approaches.

The processes are referred to as workloads to give generic examples on applications

that are offloaded to the GPU for computation. We choose the following workloads as

they have different characteristics in how they use the GPU, to emulate a real world

scenario where different applications might offload concurrently.. Our workloads ex-

plaining the characteristics are the following:

Workload1 is our GPU-L implementation from chapter 4. A memory bound applica-

tion that uses lookup tables in the cached memory spaces and performs compu-

tation in shared memory.

Workload2 is our GPU-S implementation from chapter 4. A computation bound ap-

plication that focuses on computation in shared memory.

Workload3 is a sequential execution of workload1 and 2. To illustrate an application

using the GPU twice during execution.

Workload4 is a matrix multiplication, a typical application that the GPU can perform

well. Rahmani [49] shows in his proposal that a CUDA based matrix multiplica-

tion implementation outperforms a CPU implementation with the same matrix

dimension. Using a matrix dimension of 3072, the CPU has a runtime of 98.5 sec-

onds while the GPU uses 3.67 seconds. Unlike the other applications, it uses a 2D

grid of thread blocks, where each thread reads from global memory, computes in

shared memory before writing the result back to global memory.

To test the affect of serialised accesses we run the four different workloads in various

combinations. We compare the runtime of the concurrent execution with how the ap-

plication runs when it accesses the GPU exclusively. To see if the scheduling of the

different workloads on the CPU affects the runtime, we also run the workload combi-

nations in one process offloading the computation of the workloads sequentially.

76



Figure 6.2: Concurrent execution of different workloads in different processes. The runtime
consists of GPU execution and memory transfers

workload combination runtime concurrent runtime sequential increase

1+ 2+ 3+ 4 8.0178s 8.5040s 6.0640 %
2+ 3+ 4 6.1412s 6.2164s 2.8865 %
1+ 3 5.8036s 5.9874s 3.1660 %
1+ 2 4.1088s 4.2274s 1.2245 %
1+ 4 2.3588s 2.3754s 9.1305 %
2+ 4 2.3416s 2.5554s 0.7037 %

Table 6.1: The total runtime for the applications with different approaches

Results

The results of concurrent execution can be seen in figure 6.2, where the reference col-

umn is the runtime of the workload when the workload has exclusive access to the

GPU. The kernel column is the same as reference, but only showing the time spent ex-

ecuting on the GPU. The figure illustrates an increased runtime for all the workloads

when GPU accesses are serialised. There are variations in how much increase each

workload experiences, and what workload is affected the most. An example can be

seen in the concurrent execution of workload1 + workload3 (1+3) compared to workload2

+ workload3 + workload4 (2+3+4), where the concurrent execution of the two processes

1+3 suffer more than 2+3+4. As we saw of the CPU patterns earlier in figure 6.1, we

think it is plausible to believe that the difference in result can be caused by how the

workloads are scheduled by the CPU. Table 6.1 shows the total execution time of pro-

cesses launched concurrently compared to sequentially launching of kernels. There is

not a large difference in the runtime. The concurrent approach benefits from having

execution overlapped by the CPU and GPU, but pays a penalty in serialised GPU ac-

cess and unpredictable scheduling from the CPU. The sequential approach does not

overlap execution on the CPU, but experiences instant access to the GPU due to de-

77



sign of the algorithm and because there is only one process running. Even though the

results are affected by the scheduling of the CPU, we can conclude that if a kernel is

serialised, the increased runtime each workload experiences is equal to the runtime(s)

of the kernel(s) that are queued ahead of the workload.

6.3 Static scheduling of concurrent applications on the

GPU

In scenarios like real-time computing, reaching deadlines is critical. The overhead

caused by the CUDA driver serialising kernel executions might not be acceptable in

such systems. Therefore, we have looked at the possibility to run kernels from differ-

ent applications in one kernel launch. This will ensure that the applications will gain

access to the GPU concurrently instead of having the CUDA driver serialize the access

requests for GPU processing. The concurrency is provided by having a generic kernel

that combines two kernels into one, launches the generic kernel and statically sched-

ules processes to different SMs based on the index of the thread block. An example can

be seen in figure 6.3 where we have grouped 4 thread blocks to the same application.

The GPU still only runs one kernel, but the generic kernel makes sure different appli-

cations can be processed concurrently by dividing thread blocks to different functions

that are declared with __device__ qualifiers and contain the original kernel code of

the application. As there is one launch instead of multiple, the number of threads in

each thread block will be the same for each process. This means the original kernels

must support the same size of thread block, and the grid setup will be the same for

both processes. This might require adaptation in a kernel so it can fit the grid setup

used by the generic kernel. An example can be a 2D grid used in a matrix multipli-

cation that needs to be combined with 1D grid setup used in AES encryption. Each

kernel is mapped towards a specific grid setup, and will not work when the grid is

setup differently, due to the different indexing of threads and thread blocks.

To avoid unnecessary idling of the GPU, each application should also use the same

number of thread blocks. For instance, if an application needs 100 thread blocks, we

will need to launch 200 threads for the indexing in each kernel to be correct. If the

application is executed together with an application that only uses 50 thread blocks,

there will be 50 thread blocks launched that would idle.

There are different alternatives in scheduling the thread blocks to different SMs. Since

the information on how thread blocks are mapped to different SMs is disclosed by

78



NVIDIA, we have opted to try and see if we can execute different workloads by as-

signing a number of sequential thread blocks to the same application. In our approach,

this number is variable because thread blocks assigned to SMs divide the threads into

warps that can be scheduled at any time. We believe that if the thread blocks assigned

to an SM belong to the same workload, there is a better chance of hiding memory la-

tency. The processing steps in the warps are similar, and there is a better chance of

achieving more efficient scheduling as there is less context switching on the SMs be-

tween applications. Context switching in this context, means that thread blocks from

different applications are handed to the SM, and then scheduled in warps. Not con-

text switching like when an application is preempted on the CPU. By grouping the

assignment of thread blocks to applications, there is a better chance of having an SM

containing a majority of warps assigned to a specific application.

Each process allocates its own memory on the GPU, and passes its own pointers to

the generic kernel. The different processes are handed their parameters through calls

to __device__ functions that are in-lined during compilation. These functions con-

tain the same code as the original kernels, including shared memory allocation, but

have been adjusted to give the right thread block index. The latter is done due to the

added number of thread blocks launched, and because the thread blocks are handed

to different applications.

Figure 6.3: A view of the grid of thread blocks when executing the generic-kernel.

79



Results

Figure 6.4 shows how the combined kernel performs compared to a sequential launch-

ing approach, which is an alternative way of mapping the applications. Job split refers

to the number of sequential thread blocks that are grouped together and assigned

the same workload. Overall the sequential kernels perform better than the combined

generic kernels. It is difficult to pinpoint the exact cause of this, but we believe a few

factors may affect the performance. The first issue is that we do not know how the

thread blocks are assigned to the SMs. We see a pattern when we use a larger group

size of thread blocks with the same workload, as we get better performance compared

to assigning every second thread block to a different application. This shows that it

is easier to hide memory latency if warps from the same workload can be scheduled,

rather than context switching between different applications on the GPU. However,

there are also occurrences that indicate that a larger group may not be beneficial in the

case of using 7000 thread blocks. Since the scheduling is like a black box performed

by the driver and hardware units, we do not know enough of low level scheduling to

give a clear answer to what is the cause.

Figure 6.4: Total runtime when using different approaches to combine workload1 and work-
load2 in one kernel launch.

The scheduling of thread blocks will also affect caching. As both workloads use con-

stant and texture memory, the applications will most likely suffer from cache misses

if different workloads are using the caches concurrently. In other words, the cached

memory spaces also suffer when there is frequent change in applications running on

the SM.

Another reason is that the combined kernel has a larger resource demand than the

sequential kernels, as it needs to allocate shared memory for both applications and

80



also has an increase in register usage because of the added logic needed in the static

scheduler. This is not the case for the sequential offloading, as the kernels allocates

GPU resources when they are launched.

6.4 Lessons learned

The CUDA framework today has a few limitations when it comes to concurrent exe-

cution of applications. We believe that the GPU should support concurrent execution

of applications without killing the performance that was the motivation for offloading

the algorithm in the first place. As accesses to the GPU are serialised if the GPU is

executing another process. This affects the performance depending on the number of

applications trying to use the GPU concurrently. Our attempt to limit the performance

of serialisation with our static scheduler was not very successful. However, it should

be noted that the generic kernel is not a typical approach for writing CUDA applica-

tions. As we have no control on how the thread blocks from the different applications

are assigned to the SMs, it is plausible to believe that thread blocks from different ap-

plications are assigned to the same SM. This leads to context switching of applications

when warps from different thread blocks are executed on the SM. As both of the appli-

cations use the cached memory spaces on the SM, and warps of threads from different

applications are scheduled between each other, there is a chance that the data being

requested is not in the cached memory space due to context switching of applications

on the SM. So we believe that we need to be able to assign thread blocks from the same

application on the SM to limit the performance penalty as it would mean all the warps

are from the same application. Memory latency is also hidden in a better way if warps

from the same application can combine execution. This is the case when the same ap-

plication is run across all the SMs on the GPU, as different warps are scheduled when

another warp is awaiting a memory fetch.

The structure of the code in our implementation is also very static, meaning it is not

dynamically adjustable for other applications without rewriting and recompiling code.

However, it is a way of showing that combining workloads is possible, even though

it has to be done by hand as it is basically a combination of two applications. With

better support in the API, or through another way of handing the GPU workloads, it

is possible to run concurrent applications.

This leads us to believe that in systems where multiple applications will use CUDA

concurrently, it is recommended to have multiple GPUs available. The framework has

81



good support for multiple GPUs by using an abstraction called context. A context can

be attached to a certain GPU through the API making it easier allocate one GPU per

thread if the application is threaded.

The multiple GPU approach might be feasible for supercomputers, but personal com-

puters are still mostly installed with a single GPU unit. If CUDA increases in popular-

ity, the serialising of the computation will affect the benefit of using CUDA. The same

problem occurs today when CUDA applications are launched together with graphics

applications like computer games. Both the performance of the CUDA application

and computer games suffer in performance, but they are interleaved in a better fash-

ion than concurrent execution of CUDA applications. According to NVIDIA in their

CUDA 2.1 FAQ, CUDA is client of the GPU just like OpenGL and Direct3D drivers

and share the GPU through time slicing. However, for the time slicing mechanism to

be efficient for concurrent use, there is a need for interleaving of computation within

CUDA applications. We discuss this matter further in chapter 8.

The support for time slicing on the GPU is interesting, and has been mentioned as an

alternative for CUDA applications. There have also been rumours from NVIDIA 2008,

NVIDIAs event to promote visual computing, that they have planned support for pre-

emption of CUDA applications and a virtual pipeline. This might assist in achieving

better performance for concurrent execution of CUDA applications in the future. How-

ever, it is not known how the preemption will be implemented, or what the virtual

pipeline will offer.

In our view, context switching with preemption like on a CPU is too expensive to

perform due to the nature of the architecture as the amount of state needed to be saved

is too large. This could be solved by context switching between the execution of warps,

but as shown in our results in section 6.3 we see that this affects the performance in

a negative manner. Another issue is the limited runtime environment on the GPU.

It would be better to preempt between contexts within an application, like between

thread blocks. We discuss further alternatives to scheduling in chapter 8.

6.5 Summary

In this chapter, we have investigated how concurrent CUDA applications are executed

both on the CPU and GPU. As CUDA applications increase in popularity there is a

higher probability that applications will issue processing requests to the GPU concur-

rently. We have investigated how multiple requests for GPU are handled by the de-

82



vice driver in todays framework, and what impact this has on the performance. Our

findings show that in concurrent executing CUDA processes on the CPU, performing

computation on the GPU is exclusive for one application, meaning the accesses are

serialised on a first come first serve basis without preemption or context switching be-

tween applications. While the GPU accesses are serialised, the CPU can execute other

CUDA applications. We see a penalty in the performance depending on how many

CUDA applications are competing for the resources, and how the CPU parts of the

CUDA applications are scheduled by the CPU. In most cases we see a added runtime

of the applications equal to the number of kernels that are executed while the appli-

cation awaits GPU time. To see if we could increase concurrency of the applications,

we created a static scheduler that computes two different applications in one kernel by

trying to allocate a set of streaming multiprocessors on the GPU to each application.

Our attempt was unsuccessful due to the limited control the developer has scheduling

thread blocks on the GPU.

83



84



Chapter 7

Optimising applications with CUDA

streams

In this chapter, we look at the asynchronous API in CUDA. It offers functionality for

overlapping execution of memory transfers and processing on the GPU. We use the

AES implementations from chapter 4 to investigate if streams can improve the runtime

of the implementations. Additionally, as the asynchronous API requires the use of

pinned system memory, we test the throughput of both pinned and pageable memory

allocated through the CUDA API.

7.1 Introduction to CUDA streams

To improve the performance of applications using CUDA, we want to investigate how

the CPU and GPU can concurrently execute operations. CUDA offers concurrent ex-

ecution between the CPU and GPU through their asynchronous API called streams.

CUDA streams should not be confused with the term stream processing, where a

stream is a data-set to be computed by a kernel. A stream in this context is a sequence

of operations that execute in the sequence they are added to the stream.

In order to facilitate concurrent execution between the CPU and GPU, some of the run-

time functions in CUDA are asynchronous. We have mentioned previously that kernel

launches are asynchronous, but the streams API offers asynchronous memory copy

operations. These work the same way as normal memory operations, but the func-

tions are suffixed with Async. So the asynchronous operations are; kernel launches,

memory operations that are suffixed with Async, memory set operations and GPU to

85



GPU memory copy operations executed from the CPU.

Different streams in an application may overlap in execution, letting memory transac-

tions overlap with a kernel launch of another stream. To enable concurrent execution,

it is necessary to have multiple memory copy operations and kernel launches within

an application. Listing 7.1 shows a simple code example on how streams can be setup.

While, figure 7.1 illustrates how the overlapping of execution is performed compared

to an application with one or multiple synchronous launches.

Figure 7.1: How the CPU and GPU overlap in execution with the use of streams.

A stream is created by using cudaStreamCreate, which creates a stream object that

the runtime environment can attach operations. The execution within a stream is se-

quential, meaning each operation is not performed until all previous operations is

completed. However, different streams may be overlapped in execution, meaning a

memory copy can be performed in one stream, while the other stream performs com-

putation on the GPU.

To ensure a stream has completed, the runtime can force the application to wait until

all the tasks in the stream have completed by using cudaStreamSynchronize. It

is a similar to cudaThreadSynchronize, which is a blocking function to make up

for the asynchronous kernel launches. Otherwise it would not be possible to time the

kernel execution.

The runtime also provides ways to monitor the progress of a stream, as well as record

accurate timing by using events. They can be recorded at any given time in the appli-

cation, and may use the built-in function cudaEventElapsedTime to calculate the

elapsed time between two events.

Streams require that memory used on the CPU is allocated with cudaMallocHost as

86



1 __global__ void stream_kernel ( in t * in , in t * out ) {
2 / * Pe r f o rms computa t i on on t h e GPU in p a r a l l e l * /
3 }
4

5 in t main ( in t argc , char * * argv ) {
6 / * I n i t i a l i z e e v en t and s t r e am o b j e c t s * /
7 cudaEventCreate (& s t a r t ) ;
8 cudaEventCreate (&stop ) ;
9 for ( i = 0 ; i < STREAMS; i ++)
10 cudaStreamCreate(&stream [ i ] ) ;
11

12 for ( i =0 ; i < STREAMS; i ++)
13 cudaMemcpyAsync ( gpu_input + o f f s e t * i , cpu_input + o f f s e t *

i , mem_size , cudaMemcpyHostToDevice , stream [ i ] ) ;
14

15 / * Setup e a ch s t r e am with t h e same o p e r a t i o n s * /
16 for ( i =0 ; i < STREAMS; i ++)
17 stream_kernel <<<100 , 512 , 0 , stream [ i ]>>>(gpu_input + o f f s e t

* i , gpu_output + o f f s e t * i ) ;
18

19 for ( i =0 ; i < STREAMS; i ++)
20 cudaMemcpyAsync ( cpu_output + o f f s e t * i , gpu_output + o f f s e t

* i , mem_size , cudaMemcpyDeviceToHost , stream [ i ] ) ;
21

22 for ( i =0 ; i < STREAMS; i ++) {
23 cudaStreamSynchronize ( stream [ i ] ) ;
24 }
25 / * Wri te r e s u l t t o f i l e i f n e eded * /
26 }

Listing 7.1: An example on how an application can use streams to try and increase the
performance by having the GPU and CPU overlap execution

87



concurrent execution cannot be performed without using page-locked memory. This

means the memory is pinned in virtual memory, and cannot be swapped out like

pageable memory allocated with cudaMalloc. The memory is also accessible from

the GPU as the driver records the virtual memory addresses allocated with this func-

tion and automatically accelerates calls to functions such as cudaMemcpy. As the

allocated memory can be accessed directly by the GPU, it can be accessed with a

much higher bandwidth than pageable memory. However, allocating memory using

cudaMallocHost is costly for system performance, as it reduces the amount of mem-

ory available to the system as the pages cannot be swapped out if other applications

request memory.

7.2 Tests

To see how the use of pinned memory in applications affects the performance, we

have benchmarked memory transfers between the CPU and GPU using both pinned

and pageable memory. The test is based on a bandwidth-test application in the CUDA

SDK where different sizes of memory are allocated and transferred between the GPU

and CPU.

For testing the performance of streams in a CUDA application, wemodified the lookup

table (GPU-L) and standard (GPU-S) AES implementations from chapter 4 to use streams.

We tested the implementations on a GTX 280 GPU (compute capability 1.3) as it was

the GPU that gave the best performance in our tests in chapter 4. To see if there was any

variation we test the different implementations with 512, 1024 and 2048 thread blocks.

As each thread block encrypts 256 threads * 16 bytes, the number of thread blocks de-

termine the amount of memory used. For concurrent execution between the GPU and

CPU to occur, the application must use multiple streams otherwise no streams can be

overlapped. Therefore we have tested with 2, 4, 6, 7 and 8 streams in our applica-

tions. We did not want to use an unnecessary large amount of pinned memory when

testing, so we limited our tests to 8 streams. Each stream contains memory copy oper-

ations and a kernel launch, similar to the pattern seen in listing 7.1. We compare the

stream implementation to a similar implementation that does not use streams (multi

launch), and an approach with a single launch using a larger memory size (single). The

implementations are illustrated in figure 7.1. All the implementations performAES en-

cryption on the same data, but the stream and multi launch implementations work on

a smaller data size on each launch, while the single launch performs the encryption in

one launch.

88



number of streams GPU-L % speedup increase GPU-S % speedup increase

2 6.6 2.1
4 13.1 5.3
6 13.8 6.0
7 14.6 6.1
8 15.1 7.1

Table 7.1: The average increase in the performance using streams compared to the single launch
implementation

7.3 Results

The results from our pinned and pageable memory test are plotted in figure 7.2. From

the figure, we can see that pinned memory has a higher throughput than pageable

memory when using the same allocation size. The difference between the GPUs in

the benchmark is the PCI express bus the GPUs use for communication with the CPU.

Therefore, we have plotted the results from one PCI express 1.x and 2.0 GPU. PCI

express 1.x can achieve a data rate of 250 MB/s per lane, compared to 500 MB/s in

PCI express 2.0. The GPUs use a 16x channel, meaning they can transfer data across 16

lanes giving a theoretical data rate of 4000 MB/s and 8000 MB/s. The theoretical data

rate is not achievable as the data rate is limited by the system memory.

Figure 7.2: Throughput of pageable and pinned memory on CPU to GPU (CTG) and GPU to
CPU memory transfers (GTC).

89



The performance of the implementations using 8 streams is shown in figure 7.3. The

results from the other number of streams are listed in in table 7.1. From the figure, we

see streams increase the speed of the GPU-L implementation, while table 7.1 indicate

that the GPU-S does not experience the same speed-up. We believe this is caused by the

slower runtime of the GPU-S kernel. To achieve an increase in the performance with

concurrent execution, the amount of memory being copied must correspond to the

kernel execution time. The time used for memory transfers in both implementations is

the same when executing with similar parameters. As the runtime of the kernels differ,

we believe this determines the amount of execution overlap that occurs.

The multi launch implementation is slower on GPU-S than GPU-L. An explanation

for this can be that the GPU-S kernel has a lower occupancy on the GPU with the

execution configuration we test with. The single launch implementation launches a

higher number of thread blocks in one launch than the multi launch giving higher

probability of increased occupancy. Higher occupancy means more thread blocks per

SM, giving a larger amount of warps to schedule for the SIMT unit making it easier to

hide memory latency.

Figure 7.3: Illustration of the runtime using streams compared to other approaches.

In figure 7.4, we illustrate how a kernel with different run-times affects the perfor-

mance when using streams. We measure the runtime of the kernel as a job size, to

easier adapt the workload of the kernel for testing how it affects the concurrent execu-

tion. The job size is adjustable to adjust the runtime of the kernel to test how it affects

concurrent execution. The number of thread blocks launched determines the size of

memory being copied as it means more data needs to be processed. Figure 7.4 illus-

trates how certain job sizes influence how much overlap is achieved when using the

same memory size in the memory transfers. As the kernel runtime increases, the size

of memory being copied will become negligible, as the total runtime is only affected by

90



the runtime of the kernel. This is challenging for the developer, as there is at present

time no way to determine the extent of overlapping that can be achieved between a

kernel and a given size of memory without trial and error.

Figure 7.4: Illustration on how the runtime of the kernel affects overlap in execution.

7.4 Lessons learned

Our results show that streams can increase the performance of a CUDA application.

The performance increase is determined by how much of the execution can overlap.

From our results, we see that the amount of overlap that occurs is determined by how

well the runtime of the kernel corresponds to the size of memory being transferred.

In applications transferring small data sizes, streams may not achieve an increased

speedup. Therefore, it is important for the developer to test a different number of

streams, and memory sizes, to achieve the best possible speedup. The increase in the

performance using streams is not just caused by the overlapping execution, but the

asynchronous functions require the use of pinned memory. We have seen that pinned

memory has a higher bandwidth due to the memory mapping done on the GPU, but

using pinned memory reduces the total system memory available for other applica-

tions. This is a restriction for applications using large amounts of memory, which could

potentially make a system unstable due to the lack of memory.

91



7.5 Summary

In this chapter, we have investigated how concurrent execution between the CPU and

GPU through streams benefit the application, and how the performance is affected

by the use of pinned system memory. The results show that the use of streams can

improve the runtime of an application, when part of a memory transfer from the CPU

can overlap with kernel execution on the GPU. The amount of overlap that occurs is

determined by how well the runtime of the kernel corresponds to the size of memory

being transferred. Through the use of streams, we have achieved concurrent execution

between the CPU and GPU to increase the performance of our AES implementations

from chapter 4.

92



Chapter 8

Discussion

In this chapter, we discuss our experience using the CUDA framework for developing

applications to run on the GPU. We focus on how the developer should do optimi-

sation, the tools available to assist in developing and how debugging is performed.

We discuss our experiences with concurrent execution on the GPU, and explain what

are thoughts are regarding future solutions for scheduling on the GPU. To summarise

the discussion, we look at what is in store in future CUDA releases and the GPGPU

research area.

8.1 Developing with CUDA

Creating algorithms that run in parallel can be challenging due to factors like bugs

caused by race conditions. Communication and synchronisation between different

subtasks are typical issues in algorithmic design that are challenging when the goal

is to obtain good performance. Programming APIs like OpenMP [50] have been de-

veloped to assist in developing applications that can utilise and scale to multiple pro-

cessor cores on modern CPUs. OpenMP is an API that supports multi-platform shared

memory parallel programming in C/C++ and fortran [50], and is intended to give de-

velopers an interface to create scalable parallel applications. Like CUDA, OpenMP

aims to scale to the number of cores available. CUDA and OpenMP share the same

challenges in designing efficient parallel algorithms. CUDA uses a different memory

model and thread model that might increase complexity of the development process

for the programmer. To make it easier for the developer to overcome these challenges,

CUDA offers the use of the C programming language, the possibility to explicit use the

different memory spaces and easier integration with existing x86 code.

93



8.1.1 Optimising code

Developers have their own preference with regard to how they prefer to develop ap-

plications, and is also dependent on what kind of application being developed. There

is no wrong or right, so it is difficult to give any clear patterns for what is best to

do. During our work with the CUDA framework developing applications like AES

and performing optimisations, we have learned how to use the framework and what

challenges the developers face when doing so. Designing a good parallel algorithm is

challenging, but in CUDA you have the added difficulty of using the right memory

space in the right manner. There are many ways to optimise the code when it comes

to the use of the different memory spaces available. According to Donald Knuth: “We

should forget about small efficiencies, say about 97% of the time: premature optimisa-

tion is the root all evil”, which we believe is a valid statement for CUDA developers.

Due to the different thread hierarchy and the memory model in CUDA, it is important

to get an implementation working before starting to optimise memory accesses. If op-

timisations affects the design of the algorithm, the code may end up being difficult to

understand, maintain and debug.

Optimisations in CUDA become easier when the developer has a lot of experience de-

veloping applications with the framework. For beginners, the programming model

may be challenging, and it is smarter to focus on getting the algorithm working be-

fore doing optimisations. A step by step approach is to get a working implementation

using a familiar memory space like global memory, before altering access patterns in

steps to test if it improves performance. In our opinion, a good way for unexperienced

programmers to start optimising is by only using global memory, as it resembles mem-

ory accesses seen in x86 applications and can be copied back to the CPU for debugging.

The memory space is also available across thread blocks, limiting the use of unfamiliar

memory spaces like shared memory.

When working with parallel algorithms, the design can be challenging to understand.

In a simple design, it is easier to optimise the code and check the correctness of the

algorithm. A benefit by optimising in steps from a simple base, is that it lets the de-

veloper concentrate on keeping a clean design, making adjustments to memory access

patterns and placement step by step.

It is important to note that even tough an algorithm is not optimised, it should be de-

signed so that optimisation of access patterns can be altered without having to rewrite

the whole algorithm. This means that a stepwise approach is recommended for all

developers, but for the novice programmers re-designing the algorithm might be nec-

94



essary during the process of learning how to use the framework. Through experience

with the framework and architecture, we believe the developer will be better equipped

to do faster optimisations in the future, like placement of data in the various memory

spaces, how much workload a kernel should compute and in experimenting with pa-

rameters to see how performance changes using different thread hierarchies etc. The

latter is relevant for experienced CUDA developers as well, as there is a lack of tools to

assist in this process. But through experience, the basic steps for optimisations become

shorter and easier.

8.1.2 The memory spaces

The explicit use of the different memory spaces increases the flexibility of the frame-

work, but also gives the developer added options when designing the algorithm. For

many developers the increased number of memory spaces can be off-putting. In some

cases data may be very suitable to be placed in for example texture memory, but as it is

unfamiliar for the developer, it is placed in global memory. This may limit the potential

performance of the application, depending on how much data and the access pattern

used in global memory. The texture memory space is perhaps the most challenging

to use for a developer who has no experience with graphics APIs. It is very efficient

for read-only data, and could also be used as a alternative to reading data from global

memory to shared memory due to the dynamic setup the texture API uses. As textures

are fetched in an optimised fashion by the hardware, it relaxes the restrictions to limit

latency unlike global memory that has strict requirements in access patterns. This is

a feature many developers can benefit from when struggling in obtaining an efficient

access pattern on global memory. However, as we have had no previous experience

working with textures in programming APIs like OpenGL [13], we found the usage

of memory space challenging to use. From reading posts on various CUDA forums

we see other users with the same opinion. Even if we found the texture memory space

challenging to use, we think it is important that the developer has access to thememory

space as it can provide very good performance if used correctly. The GPU is designed

to access memory like this, and with perhaps added support in the API to use the data

in a more general manner, it could be easier to use.

As for the other memory spaces we have found them easy to use, apart from the men-

tioned challenges in optimising memory accesses. The main problem for the developer

is mapping the application to use the right memory space for the right computation.

In general the developer should try to limit the use of global memory, and do the com-

95



putation in shared memory using a right access pattern. As an alternative, the cached

memory spaces can be used to read-data if it is limited in size.

8.1.3 Tools to analyse code

As CUDA is mostly used for offloading computation to gain performance and free the

CPU of operations, the performance of the application is usually a large issue. In com-

bination with optimising the code, the developer will need to profile and test how the

code is running. For easier testing, it is wise to parameterise the application to test

different execution configurations to see how the occupancy of the GPU changes, and

how much shared memory is used. The NVIDIA visual profiler [46] and occupancy

calculator [31] are tools that give useful information on how the code runs. When it

comes to tools available for development in CUDA, we agree with Ryoo et al. [51] in

their assessment that CUDA is in need for better tools and compilers to allow program-

mers to experiment with their code to see the performance affects. A scenario where

programmers could specify different organisation of their algorithms and tools to de-

tect inefficient access patterns would reduce optimisation efforts considerably. Boyer

et al. [47] have developed a tool to detect race conditions and shared memory bank

conflicts. This is an example of a very helpful tool that we have seen being developed.

In their paper, they mention a prototype to assist in detecting inefficient access pat-

terns on global memory. As good as the visual profiler is to tell about the number of

accesses that are coalesced or uncoalesced, it gives no indication of where in the code

the mentioned accesses occur.

8.1.4 Debugging

Debugging is something that is done in most application development processes. With

CUDA this is no exception. For new CUDA developers there might be the added chal-

lenge of working with so many parallel threads and an unfamiliar memorymodel. The

debugging tools available are the emulation mode and the CUDA debugger CUDA-

GDB. The emulation mode can find index out of bounds errors, and the same kind of

memory access errors seen in x86 applications. It is however, limited in emulating the

parallel hierarchy of threads run on the GPU and memory spaces like texture memory.

As the threads in the emulation mode are run in sequential order, it cannot gener-

ate faults like race conditions. During the development phase of our applications, we

hardly ever used the emulationmode as it would in most cases give us no idea on what

96



was wrong with our code.

The debugger lets the developer switch between execution of the different threads,

thread blocks and step through individual warps. We believe that the release of a

debugger like CUDA-GDB that is based on GDB is a great step in the right direction to

ease debugging of CUDA applications. Unfortunately for us, the debugger first came

out of beta recently, leaving us with little time to experiment with the debugger.

8.2 Concurrent CUDA applications on the GPU

We have seen in our investigation of CUDA that concurrent accesses to the GPU re-

duces performance of applications. This creates a challenge in systems where multiple

applications want to use the GPU concurrently. At the moment, CUDA scales well for

parallelisation on a single GPU, or if multiple applications use multiple GPUs to avoid

fighting for the same resource. As CUDA applications increase in popularity, systems

with a single GPU unit may want to use applications offloading processing to the GPU

simultaneously.

What is missing?

On CUDA enabled NVIDIA GPUs, applications switch between two different visual

computing architectures/modes; graphics and computing processing architecture [11]

as shown in figure 8.1. The graphics mode is used in graphical applications and code

using programming APIs like OpenGL, while the computation mode is used in CUDA

applications. A shader thread dispatch logic in addition to setup and raster units is

used in the graphics mode aimed at graphic applications [11], while CUDA uses the

computation mode. The GPU is able to run both CUDA applications and graphics

rendering by time slicing between the different modes. The modes are available to

the low level device driver and can be changed with little overhead through micro-

operations to the GPU.

We have talked about concurrency between CUDA applications, but not how CUDA

applications can co-operate with typical graphics applications. A possibility for con-

current execution between the two modes would be to allocate a set of SMs for each

mode. This would mean less processors available for parallel computation for each

application, but it might improve the user experience when the applications running

spend less time idling. Our experiences with running applications concurrently using

97



Figure 8.1: The different architectural personalities of the GPU in CUDA [11].

98



the different modes is that the time slicing decreases performance of the applications

significantly, and that it could be worth while looking into the possibility of allocating

SMs for each mode. This would require a dynamic device driver that was able to al-

locate SMs when applications needed the resources. The hardware design is also an

issue when it comes to concurrent execution of the different architectural modes. As

we are not sure about how the compute and graphics architectures are mapped to the

GPU hardware, we do not know if it is possible to combine when running in parallel.

In our experiments with static scheduling in chapter 6, we had no control over what

SM the thread blocks were assigned to. An alternative to having control of thread

block assignment, could be to have a dynamic device driver using a queue system for

threads blocks per application accessing the GPU. This would mean multiple applica-

tions could request computation concurrently, and the need for serialisation would be

removed. By having the device driver dynamically change the number of SMs avail-

able for each application according to the number of applications running. If an appli-

cation is run exclusively it would use all of the SMs, but if two applications are running

concurrently, the number of SMs available for each application could be halved. From

our experience, it would also be important to map the same application to the same set

of SMs, to get the benefit of the cached memory spaces and avoid the cost of switching

between applications on the SM.

We are not sure why NVIDIA have opted to not implement this feature, but it is most

likely a restriction in the hardware design as the GPU is optimised to perform the same

operation in parallel on all of the processing cores. Additionally, there is the added

issue regarding the caching mechanisms we have mentioned earlier and in chapter 6,

but we do not believe this would be the case if the same workload is assigned to the

same SM.

CUDA applications scale well on different GPUs depending on the number of cores

available. But for the application to scale over multiple GPUs, the developer has to

specify this through the use of contexts. A context is used to create one thread per GPU

that performs memory allocation and processing. At present time, there is no way for

the developer to specify that the application should run on a GPU that is not occupied.

The developer has to specify this through the driver API using cudaSetDevice. If

no context is specified using the driver API, a context is created and executed on the

default GPU of the system. There is, however, no functionality for the developer to

specify in an application to use any GPU as long as it is not in use. When not using

contexts, the runtime API creates a context for you and this is done on the default GPU

of the system. This means that CUDA does not offer dynamic scaling across multiple

99



GPUs for multiple applications. In our opinion this should be done by the driver when

contexts are created, as it is already possible to specify what GPU the context is created

on.

Intel’s future Larrabee GPU will use a complete different approach for a multi-core

GPU. They also propose amore flexible programmingmodel when it comes to schedul-

ing of data and cores. By offering affinity of threads to a particular core, the developer

can schedule the workloads like we have wanted to do with our static scheduler in

chapter 6. Details regarding the execution and programming model is limited at this

time, but we think it looks promising when it comes to low level freedom and core

assignment of threads. They have revealed that they will offer a task scheduling API

based on a light weight distributed task stealing scheduler by Blumofe et al. [52]. This

enables software scheduling so systems can adjust their resource scheduling based on

each workload’s resource demands.

From the design of the Larrabee architecture, we believe the architecture looks promis-

ing from a GPGPU point of view and for developers like us who want to control the

hardware resources to a larger extent. It will also assist in a scenario where several ap-

plications use the GPU for offloading of processing, as the developer has more control

over the scheduling of the applications.

A future CUDA scheduler API, issues that needs considering

For the sake of the discussion, we can assume that CUDA offers low level support

for scheduling thread blocks to a dedicated SM in their driver API. In this case, we

could have more control over the thread blocks, and override the way thread blocks

are assigned to SMs in todays framework. We do not suggest to change the SIMT archi-

tecture, as the way warps are created and scheduled are a good way to hide memory

latency, but we wish to add the possibility for the developer to group thread blocks to

an application. From our experience trying to schedule thread blocks, we have seen

certain properties that are important to consider in an eventual low level scheduler. It

should be noted that we do not have access to the CUDA source code, and therefore we

do not know how todays scheduler works, but our experiments using the framework

has made us interested in seeing how the framework can be improved.

First of all it is important that the two different modes/architectures are kept, as the

GPU is still used mainly for graphics processing. If this was left as it is today, we can

focus on scheduling the applications in the computation mode, as we know little about

100



how the architectural modes can be combined.

In our static scheduler, we saw that it was beneficial for the performance of the cached

memory spaces, that thread blocks from the same application are processed on the

same set of SMs. This is similar to how the CUDA driver schedules thread blocks in

todays framework when a single application is executed. To be able to map thread

blocks to an application, the driver will need to be able to process requests from differ-

ent applications without serialising the access. In todays framework the thread blocks

are queued before processing, we suggest to increase the functionality of the queue

mechanism to be able to queue thread blocks from different applications. The devel-

oper could access the thread blocks from the queue, by using a context identifier to

identify the different queues.

A combination of queues for an application and specific mapping of SMs to applica-

tions would make it possible for the scheduler to keep a track of applications request-

ing the GPU, and what SMs are available. The challenge for queues is to be able to

adapt when new resources are requested, and be possible to adapt the SM allocation.

We believe this is plausible to achieve, as the GPU changes between a graphics archi-

tecture and a computation architecture with the use of micro-operations.

The dynamic ability is also challenging when it comes to memory operations between

the CPU and GPU. As different applications will want to transfer at different times.

This is a challenge for the scheduler, as it will need to combine the memory transfers

efficiently. However, the asynchronous capability of the GPU should assist in achiev-

ing this.

Another issue would be the optimisations we have discussed for a single application.

If the applications are mapped to one SM, coalesced memory accesses should not be an

issue as the requirements are per SM and not the whole GPU. The same goes for bank

conflicts on shared memory.

In conclusion, the proposed changes to the API will make sure the developer can ac-

cess thread blocks from different applications by using a context to address the thread

blocks. If the driver makes sure the thread blocks of the context are executed on the

same set of SMs, the cost of context switching on the cached memory spaces would

be limited. This functionality would most likely not work with existing CUDA appli-

cations, as the developer will need to control this in the source code. Unless NVIDIA

manage to integrate it in the framework directly.

101



8.3 Future developments with CUDA

CUDA has proved to be a successful framework, increasing GPGPU popularity as

more applications have been implemented to use the GPU for offloading computation.

At the same time, NVIDIA are developing their framework to support new features.

NVIDIA has just released CUDA 2.2 [53] in beta with a set of new features offered

to developers. Among these features is the ability to access system memory directly

from the GPU. This can be done to copy data directly into shared memory and avoid-

ing the latency of global memory, referred to as zero-copy. This feature is currently

only available on NVIDIA MCP79x [53] chipsets. The MCP79x is a single-chip chipset

integrating a GPU directly on the chipset. In addition, there is added support for 64-

bit architectures in CUDA-GDB, and an updated visual profiler with added counters.

Among the counters added is a memory bandwidth counter, making it easier to deter-

mine if an algorithm is memory or computation bound, and to easier see if the size of

memory is optimal for use with streams.

We have mentioned in chapter 6, that NVIDIA have planned to offer support for pre-

emption in a future release of CUDA. As of now, there are no details on how this

functionality will be implemented, or how it can be used by the user. Context switch-

ing on the hundreds of running threads on the GPU is not an option due to the amount

of memory it would require to save a full state. As thread blocks are queued up by

the driver, it is more likely that the preemption will occur after execution of a set of

threads blocks, or through the use of streams. These are the only parts of CUDA as of

today that are independent and can overlap in execution. With thread blocks, they are

executed concurrently on the GPU within an application.

CUDA has also been considered for other architectures like x86 multi-core CPUs. The

MCUDA [54] framework is a working implementation based on CUDA used for map-

ping CUDA implementations to multi-core CPUs. According to Stratton et al., CUDA

is an effective way of specifying data-parallel computation in programmingmodel that

is portable across a number of different parallel architectures. MCUDA offers source-

to-source translation of CUDA to standard C that interfaces to a runtime library for

parallel execution [54]. This shows that CUDA is not only in development for GPU

computing, but also as a helpful architecture for efficient parallel execution.

We believe that CUDA has played, and will play, an important role in how the pro-

cessing power of parallel architectures is used for applications suitable for parallel ex-

ecution. There are still many issues related to parallel programming, and also a lot

of manual labour needed to develop efficient applications. But as the frameworks in-

102



crease in popularity, we hope it will get easier to write parallel applications. These

issues in combination of providing support for concurrent execution, must be resolved

before CUDA is a framework suitable for most applications, but for high-performance

applications we find it excellent.

103



104



Chapter 9

Conclusion

In this chapter, we summarise our work and present our main contributions. Addi-

tionally, we look at what improvements can be done in our work, and what we have

not been able to test due to time constraints.

9.1 Summary and contribution

In the past years, there has been an increasing interest in the GPGPU field of research,

and more applications have started using the GPU for parallel processing to increase

the performance. In this thesis, we have investigated the performance potential of

offloading processing to the GPU through NVIDIAs CUDA framework. We focus on

investigating on how multiple CUDA applications in a system can access the GPU

resource concurrently, and how to achieve good performance in a CUDA application

running exclusively on the GPU. This was done by both adapting existing projects to

the architecture and by writing our own applications from scratch.

During our investigations, we examined GPU architectures and programming frame-

works available with focus on NVIDIA and the CUDA framework. We decided to

focus on NVIDIAs CUDA framework as we believe that CUDA is the most promising

framework due to the quality of the documentation, the large development community

and the number of applications developed using the framework.

To experience the challenges connected with developing applications using CUDA,

we ported two AES implementations using different approaches. One approach was

to use code based on the AES standard [38], focusing on simplicity rather than effi-

ciency. The other approach was to use an optimised version of the algorithm for a

105



single x86 core using pre-defined lookup tables. The use of lookup tables creates a

difference in the characteristics of the implementations. Because of the lookup tables

the algorithm becomes memory access bound, while the standard implementation is

computation bound. Both implementations performed better on the GPU than the im-

plementations running on the CPU. The memory limited the efficiency of our lookup

table implementation on the GPU, due to inefficient access patterns. While the stan-

dard implementation experienced a larger increase in performance than the lookup

table implementation as it is not memory access bound.

In addition to gaining performance, we learned the importance of optimising memory

accesses and the placement of data on the GPU. Each memory space is designed for a

specific use, and has different requirements on how to achieve the most efficient access

pattern for memory. We have explained how to obtain efficient memory transactions

by following the requirements of the different compute capabilities, and seen how the

compute capability can affect performance. The results show the importance of adapt-

ing the algorithm to suit the right access pattern, and that the cached memory spaces

in combination with the on-chip shared memory should be used for computation. Ad-

ditional optimisations can be done with concurrent execution between the CPU and

GPU through CUDA’s asynchronous API called streams. By using streams we gained

up to an increase in performance in our AES lookup table implementation. In our work

with streams, we have shown that for the execution of the CPU and GPU to overlap

efficiently, the size of memory being transferred by the CPU needs to correspond to the

runtime of the kernel.

As CUDA applications increase in popularity there is a higher probability that appli-

cations will issue processing requests to the GPU concurrently. We have investigated

howmultiple requests for GPU are handled by the device driver in todays framework,

and what impact this has on performance. Our findings show that in concurrent exe-

cuting CUDA processes on the CPU, the processing offloaded to the GPU is exclusive

for one application, meaning the accesses are serialised on a first come first serve basis.

While the GPU accesses are serialised, the CPU can execute other CUDA applications,

but there is no support for preemption or time slicing between CUDA applications

when executed on the GPU. When serialised, we see a penalty in performance de-

pending on how many CUDA applications are competing for the resources, and how

the CPU parts of the CUDA applications are scheduled by the CPU. In most cases,

we see a added runtime of the applications equal to the number of kernels that are

executed while the application awaits GPU time.

We tried to limit the performance affects of serialisation by creating a static scheduler

106



that combines the workload from two kernels into one. The scheduler tries to allocate a

set of SMs to the different applications running concurrently on the GPU. Our attempt

was unsuccessful due to the limited control the developer has of scheduling workloads

to different processing units, but our work gave us knowledge of issues regarding how

context switching on the GPU might affect performance.

Our work has shown us the important of optimising code to improve performance of

applications, and what challenges developers face when creating or running applica-

tions on a GPU. We have gained insight in memory access patterns, how the memory

spaces fit applications patterns, what tools are available and how the CUDA frame-

work works when using multiple CUDA applications in a system.

9.2 Future work

During our research, we have looked at a number of issues and challenges. Unfortu-

nately, we did not find time to answer all questions. We would have liked to poten-

tially have increased the throughput of our AES implementations by trying different

approaches, and to find further optimisations to investigate. We have spent a lot of

time examining optimisations on memory and concurrent execution between the CPU

and GPU. However, there are issues regarding optimisations we would have liked to

investigated further. Issues that were not tested are the cost of branching and loops in

a kernel, which according to the CUDA programming guide are not optimal structures

for parallel algorithms [1].

As we believe there is a lack of tools available to help assist in reducing the manual

labour of optimising code, we would have liked to develop an application that can

assist developers in finding inefficient accesses in global memory, and pinpoint where

in the code this occurs.

When investigating how CUDA applications are executed on the CPU when accesses

for the GPU are serialised, we did not have time to see how the use of streams would

affect this. We mentioned in chapter 8 that we believe that concurrent computation

on the GPU might be offered through streams, so it would have been interesting to

test how it works in todays framework. Hopefully, CUDA will become more open in

the future, as we struggled to have any form for control in assigning workloads to the

processing units we wanted.

NVIDIA are continuously adding new features to their framework, with CUDA 2.2

107



they will offer zero-copy support to the GPU if using certain chipsets. We would have

liked to adapt our applications to use this new functionality to see how much of a

performance increase is given by avoiding the use global memory. CUDA 2.2 also

adds an improved debugger that will benefit for all CUDA developers, as it makes it

possible to debug code during runtime.

Finally, we would have liked to test OpenCL to see how our experiences map to the

framework when a public compiler and runtime environment is made available. We

discuss OpenCL in appendix A, where we focus on how it will affect the research area

and CUDA.

108



Appendix A

Future directions: OpenCL

With the recent release of OpenCL 1.0, many have speculated about the future GPGPU

programming frameworks. In this appendix we will present our view on the matter.

NVIDIA is a supporter of OpenCL and have made it clear they do not see CUDA

as a competitor to OpenCL. The OpenCL framework provides a low-level hardware

abstraction and a framework to support programming of heterogeneous architectures.

At the present time there is no public compiler, runtime environment or applications

implemented with OpenCL available, so we have not been able to test the framework

and therefore base this discussion on the API specification [12].

By looking at the programming model in the API, we can see similarities to CUDA

in hardware abstractions like the memory model and the thread hierarchy as pictured

in figure A.1. The programmer specifies a thread hierarchy that can be grouped like

with CUDA thread blocks, but in OpenCL, they are called work groups with threads

called work items. The memory model is also similar where the developer has access

to global, constant, local and private memory. Texture memory is not included, but it

is a typical GPU specific memory abstraction that does not serve a propose on other

architectures. However, it would be beneficial for CUDA developers if they could still

use it in OpenCL as in CUDA.

By studying the programming API, we believe that the memory model and thread

hierarchy in OpenCL resembles the organisation of CUDA. Therefore, we believe there

will be little problem in porting applications from CUDA to OpenCL, if the developer

wants a platform independent application that scales well on parallel architectures.

Although, we wonder if there will be a cost in performance due to the hardware ab-

straction OpenCL uses. As it is not as vendor specific as CUDA, developers may ask

109



Figure A.1: Conceptual OpenCL device architecture [12].

the question if it will be able to obtain the same performance as CUDA code. This is

something that will be interesting to look at when a public compiler is released. In the

case of NVIDIA and OpenCL, it seems at present time that NVIDIA will compile code

to PTX just like CUDA, which is a good start in achieving the same performance as

they use the same assembler.

OpenCL will support native kernels for the different architectures, meaning that if

a programmer has a very good implementation of an algorithm in CUDA, OpenCL

supports the use of native kernels for the NVIDIA architecture. Native kernels are

also supported for other architectures like the CBE [55]. This gives the developers a

large degree of freedom, as optimised kernels for a specific architecture can be used in

combination with a more generic OpenCL kernel that will make sure the code works

on the different architectures.

As the same memory abstraction is used on all devices in OpenCL, there is a question

on how the memory is physically mapped on the different architectures. Not all the

architectures supported use the same memory model as for instance CUDA or CBE.

This is the case in for instance the proposed Intel Larrabee architecture [25]. We believe

that OpenCL will solve this by mapping the abstracted memory space to an available

memory space on the architecture. This might not be as the developer intended, but

this is one of the cost of scalability across devices.

In our work with CUDA, we have focused a lot on optimisation. It is not clear how

this will work with OpenCL, when the same kernel will be used on the different de-

vices. There are different ways of optimising access patterns on the CBE compared to

the GPU. At present time, we do not know how OpenCL will manage this, but if the

developer needs to write targeted kernels to reduce performance loss, there will be an

110



added amount of labour for the developer.

In our opinion, an another important advantage with the development of OpenCL is

the added focus on GPGPU development. It will be easier to attract developers if they

know that their code can be used on any GPU available, not limiting the application to

say an NVIDIA GPU. By the increased number of devices supported, we think there

will be more developers interested in using the framework. This also increases the

possibility for more debugging tools available, tools for optimisation and of course the

added number applications that will be developed. It will also make GPGPU develop-

ment more future proof in that if a manufacturer suddenly releases a hardware device

that can outperform other architectures, it will limit the amount of work needed when

porting the application.

111



112



Appendix B

Source code and test results

Attached is a CD-ROM containing the source code used, and the benchmark results

from our code. The content can also be found at the following address:

http://www.ping.uio.no/~alexao/master/

113

http://www.ping.uio.no/~alexao/master/


114



Bibliography

[1] NVIDIA. Nvidia CUDA compute unified device architecture. http://www.

nvidia.com/object/cuda_develop.html, accessed August 2008.

[2] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krüger,

Aaron E. Lefohn, and Timothy J. Purcell. A survey of general-purpose compu-

tation on graphics hardware. Computer Graphics Forum, 26(1):80–113, 2007.

[3] University of Illinois at Urbana-Champaign. Ece 498 AL1 : Programming Mas-

sively Parallel Processors. http://courses.ece.uiuc.edu/ece498/al1/

Syllabus.html, accessed September 2008.

[4] Mike Murphy. NVIDIA’s Experience with Open64. http://www.capsl.

udel.edu/conferences/open64/2008/Papers/101.doc, Accessed Octo-

ber 2008.

[5] Wikipedia. SubBytes step for AES. http://en.wikipedia.org/wiki/

Image:AES-SubBytes.svg, accessed October 2008.

[6] Wikipedia. ShifRows step for AES. http://en.wikipedia.org/wiki/

Image:AES-ShiftRows.svg, accesed October 2008.

[7] Wikipedia. MixColumns step for AES. http://en.wikipedia.org/wiki/

Image:AES-MixColumns.svg, accessed October 2008.

[8] Wikipedia. AddRoundKey step for AES. http://en.wikipedia.org/wiki/

Image:AES-AddRoundKey.svg, accessed October 2008.

[9] Wikipedia. Cipher Block Chaining (CBC) mode encryption. http://

en.wikipedia.org/wiki/Block_cipher_modes_of_operation#

Cipher-block_chaining_.28CBC.29, accessed October 2008.

[10] Wikipedia. Counter (CTR) mode encryption. http://en.wikipedia.org/

wiki/Image:Ctr_encryption.png, accessed October 2008.

115

http://www.nvidia.com/object/cuda_develop.html
http://www.nvidia.com/object/cuda_develop.html
http://courses.ece.uiuc.edu/ece498/al1/Syllabus.html
http://courses.ece.uiuc.edu/ece498/al1/Syllabus.html
http://www.capsl.udel.edu/conferences/open64/2008/Papers/101.doc
http://www.capsl.udel.edu/conferences/open64/2008/Papers/101.doc
http://en.wikipedia.org/wiki/Image:AES-SubBytes.svg
http://en.wikipedia.org/wiki/Image:AES-SubBytes.svg
http://en.wikipedia.org/wiki/Image:AES-ShiftRows.svg
http://en.wikipedia.org/wiki/Image:AES-ShiftRows.svg
http://en.wikipedia.org/wiki/Image:AES-MixColumns.svg
http://en.wikipedia.org/wiki/Image:AES-MixColumns.svg
http://en.wikipedia.org/wiki/Image:AES-AddRoundKey.svg
http://en.wikipedia.org/wiki/Image:AES-AddRoundKey.svg
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation#Cipher-block_chaining_.28CBC.29
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation#Cipher-block_chaining_.28CBC.29
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation#Cipher-block_chaining_.28CBC.29
http://en.wikipedia.org/wiki/Image:Ctr_encryption.png
http://en.wikipedia.org/wiki/Image:Ctr_encryption.png


[11] NVIDIA. GeForce GTX 280. http://www.nvidia.com/docs/IO/55506/

GeForce_GTX_200_GPU_Technical_Brief.pdf, accessed November 2008.

[12] Khronos. OpenCL overview. http://www.khronos.org/opencl, accessed

Febuary 2009.

[13] Jackie Neider and Tom Davis. OpenGL Programming Guide: The Official Guide

to Learning OpenGL, Release 1. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 1993.

[14] Microsoft. DirectX 10. http://www.microsoft.com/directx, Accessed Oc-

tober 2008.

[15] AMD. AMD Firestream SDK. http://ati.amd.com/technology/

streamcomputing/stream-computing.pdf, accessed September 2008.

[16] M.L. Curry, A. Skjellum, H.L.Ward, and R. Brightwell. Accelerating reed-solomon

coding in RAID systems with GPUs. Parallel and Distributed Processing, 2008.

IPDPS 2008. IEEE International Symposium on, pages 1–6, April 2008.

[17] Leonel Sousa Gabriel Falcao and Vitor Silva. Massive parallel LDPC decoding on

GPU. In PPoPP ’08: Proceedings of the 13th ACM SIGPLAN Symposium on Principles

and practice of parallel programming, pages 83–90, New York, NY, USA, 2008. ACM.

[18] Folding@Home. Folding@Home distributed computing. http://folding.

stanford.edu/, accessed January 2009.

[19] Adobe. Premiere Pro CS3. http://www.adobe.com/products/premiere/,

accessed September 2008.

[20] NVIDIA. GeForce3 Technical Briefs. http://www.nvidia.com/page/pg_

20010529782175.html, accessed December 2008.

[21] OpenGL. OpenGL Shading Language. http://www.opengl.org/registry/

doc/GLSLangSpec.Full.1.20.8.pdf, accessed september 2008.

[22] NVIDIA. NVIDIA - Developer Zone. http://news.developer.nvidia.

com/2007/02/cuda_for_gpu_co.html, accessed January 2008.

[23] AMD & ATI. Close to metal open source project. http://sourceforge.net/

projects/amdctm/, accessed October 2008.

[24] Stanford University. BrookGPU. http://graphics.stanford.edu/

projects/brookgpu/, accessed September 2008.

116

http://www.nvidia.com/docs/IO/55506/GeForce_GTX_200_GPU_Technical_Brief.pdf
http://www.nvidia.com/docs/IO/55506/GeForce_GTX_200_GPU_Technical_Brief.pdf
http://www.khronos.org/opencl
http://www.microsoft.com/directx
http://ati.amd.com/technology/streamcomputing/stream-computing.pdf
http://ati.amd.com/technology/streamcomputing/stream-computing.pdf
http://folding.stanford.edu/
http://folding.stanford.edu/
http://www.adobe.com/products/premiere/
http://www.nvidia.com/page/pg_20010529782175.html
http://www.nvidia.com/page/pg_20010529782175.html
http://www.opengl.org/registry/doc/GLSLangSpec.Full.1.20.8.pdf
http://www.opengl.org/registry/doc/GLSLangSpec.Full.1.20.8.pdf
http://news.developer.nvidia.com/2007/02/cuda_for_gpu_co.html
http://news.developer.nvidia.com/2007/02/cuda_for_gpu_co.html
http://sourceforge.net/projects/amdctm/
http://sourceforge.net/projects/amdctm/
http://graphics.stanford.edu/projects/brookgpu/
http://graphics.stanford.edu/projects/brookgpu/


[25] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael Abrash,

Pradeep Dubey, Stephen Junkins, Adam Lake, Jeremy Sugerman, Robert Cavin,

Roger Espasa, Ed Grochowski, Toni Juan, and Pat Hanrahan. Larrabee: a many-

core x86 architecture for visual computing. ACM Transactions on Graphics, 27(3):1–

15, 2008.

[26] Blaise Barney. POSIX Thread Programming. https://computing.llnl.gov/

tutorials/pthreads/, accessed November 2008.

[27] NVIDIA. NVIDIA GeForce 8800 GT. http://www.nvidia.com/object/

geforce_8800gt.html, Accessed November 2008.

[28] Advanced Micro Devices (AMD). AMD FireStream 9170: Industry’s First GPU

with Double-Precision Floating Point. http://ati.amd.com/products/

streamprocessor/specs.html, accessed September 2008.

[29] Advanced Micro Devices (AMD). ATI Radeon™ HD 4800 Series - GPU Specifica-

tions. http://ati.amd.com/uk/products/radeonhd4800/specs.html,

accessed September 2008.

[30] Anand Lal Shimpi & Derek Wilson. Intel’s larrabee architecture disclosure: A cal-

culated first move. http://www.anandtech.com/cpuchipsets/intel/showdoc.aspx?i=3367,

Accessed November 2008.

[31] NVIDIA. CUDAGPUOccupancy Calculator. http://developer.download.

nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls, ac-

cessed September 2008.

[32] NVIDIA. The CUDA compiler driver NVCC. http://www.nvidia.com/

object/io_1213955090354.html, 2008.

[33] Computer Architecture and Parellel Systems Laboratory (CAPSL). Open64 - The

open research compiler. http://www.open64.net/, accessed September 2008.

[34] NVIDIA. PTX Parallel Thread Execution ISA version 1.2.

http://www.nvidia.com/object/io_1213955209837.html, accessed November 2008.

[35] GNU. The GNU Compiler Collection. http://gcc.gnu.org/, accessed

September 2008.

[36] GNU. GDB: The GNU Project Debugger. http://sourceware.org/gdb/, accessed Jan-

uary 2009.

117

https://computing.llnl.gov/tutorials/pthreads/
https://computing.llnl.gov/tutorials/pthreads/
http://www.nvidia.com/object/geforce_8800gt.html
http://www.nvidia.com/object/geforce_8800gt.html
http://ati.amd.com/products/streamprocessor/specs.html
http://ati.amd.com/products/streamprocessor/specs.html
http://ati.amd.com/uk/products/radeonhd4800/specs.html
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
http://www.nvidia.com/object/io_1213955090354.html
http://www.nvidia.com/object/io_1213955090354.html
http://gcc.gnu.org/


[37] NVIDIA. CUDA-GDB: The NVIDIA CUDA Debugger. http://developer.

download.nvidia.com/compute/cuda/2_1/cudagdb/CUDA_GDB_User_

Manual.pdf, accessed January 2009.

[38] Federal Information Processing Standard FIPS 197. Announcing the ADVANCED

ENCRYPTION STANDARD (AES). National Institute of Standards and Technology

(NIST), 2001.

[39] Claude E. Shannon. Communication Theory of Secrecy Systems. Bell System Tech-

nical Journal, vol.28-4, page 656–715, 1949, 1949.

[40] Takeshi Yamanouchi. AES Encryption and Decryption on the GPU. http://

http.developer.nvidia.com/GPUGems3/gpugems3_pref01.html,

accessed October 2008.

[41] Svetlin A. Manavski. CUDA COMPATIBLE GPU AS AN EFFICIENT HARD-

WARE ACCELOERATOR FOR AES CRYPTOGRAPHY. IEEE International Confer-

ence on Signal Processing and Communications (ICSPC 2007), 24-27 November 2007,

Dubai, United Arab Emirates, 2007.

[42] Niyaz PK. Advanced Encryption Standard (AES) Implementation in C/C++ with

comments. http://www.hoozi.com/Articles/AESEncryption.htm, ac-

cessed October 2008.

[43] Philip J. Erdelsky. Rijndael Encryption Algorithm. http://www.efgh.com/

software/rijndael.htm, accessed March 2008.

[44] Håvard Espeland. Investigation of parallel programming on heterogeneous mul-

tiprocessors. Master’s thesis, University of Oslo, Norway, August 2008.

[45] NVIDIA. Geforce 8800. http://www.nvidia.com/page/geforce_8800.

html, accessed October 2008.

[46] NVIDIA. NVIDIA Visual Profiler. http://developer.download.nvidia.

com/compute/cuda/2.0-Beta2/docs/CudaVisualProfiler_README_

1.0_13June08_Linux.pdf, accessed November 2008.

[47] Westley Weimer Michael Boyer, Kevin Skadron. Automated Dynamic Analysis of

CUDA Programs. Third Workshop on Software Tools for MultiCore Systems (STMCS),

2008.

[48] Elemental Technologies. RapiHD - badaboom. http://www.

elementaltechnologies.com/products.php?id=5, accessed Decem-

ber 2008.

118

http://developer.download.nvidia.com/compute/cuda/2_1/cudagdb/CUDA_GDB_User_Manual.pdf
http://developer.download.nvidia.com/compute/cuda/2_1/cudagdb/CUDA_GDB_User_Manual.pdf
http://developer.download.nvidia.com/compute/cuda/2_1/cudagdb/CUDA_GDB_User_Manual.pdf
http://http.developer.nvidia.com/GPUGems3/gpugems3_pref01.html
http://http.developer.nvidia.com/GPUGems3/gpugems3_pref01.html
http://www.hoozi.com/Articles/AESEncryption.htm
http://www.efgh.com/software/rijndael.htm
http://www.efgh.com/software/rijndael.htm
http://www.nvidia.com/page/geforce_8800.html
http://www.nvidia.com/page/geforce_8800.html
http://developer.download.nvidia.com/compute/cuda/2.0-Beta2/docs/CudaVisualProfiler_README_1.0_13June08_Linux.pdf
http://developer.download.nvidia.com/compute/cuda/2.0-Beta2/docs/CudaVisualProfiler_README_1.0_13June08_Linux.pdf
http://developer.download.nvidia.com/compute/cuda/2.0-Beta2/docs/CudaVisualProfiler_README_1.0_13June08_Linux.pdf
http://www.elementaltechnologies.com/products.php?id=5
http://www.elementaltechnologies.com/products.php?id=5


[49] Kenan Rahmani. A proposal for GPU scheduler to optimize large matrix mul-

tiplication performance. http://www.cs.purdue.edu/research/ugrad/

docs/f08_Rahmani.pdf, accessed March 2009.

[50] OpenMP. The OpenMP API specification for parallel programming.

http://openmp.org, accessed April 2009.

[51] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone, David B.

Kirk, and Wen-mei W. Hwu. Optimization principles and application perfor-

mance evaluation of a multithreaded gpu using cuda. In PPoPP ’08: Proceedings

of the 13th ACM SIGPLAN Symposium on Principles and practice of parallel program-

ming, pages 73–82, New York, NY, USA, 2008. ACM.

[52] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leis-

erson, Keith H. Randall, and Yuli Zhou. Cilk: an efficient multithreaded runtime

system. In PPOPP ’95: Proceedings of the fifth ACM SIGPLAN symposium on Princi-

ples and practice of parallel programming, pages 207–216, New York, NY, USA, 1995.

ACM.

[53] NVIDIA and Dr. Dobb’s portal. CUDA 2.2 beta released. http://www.ddj.

com/linux-open-source/216403490, accessed April 2009.

[54] John A. Stratton, Sam S. Stone, and Wen-mei W. Hwu. MCUDA: An Efficient

Implementation of CUDA Kernels on Multi-cores. Center for Reliable and High-

Performance Computing, 2008.

[55] IBM. The CELL project at IBM Research. http://www.research.ibm.com/

cell/, accessed September 2008.

119

http://www.cs.purdue.edu/research/ugrad/docs/f08_Rahmani.pdf
http://www.cs.purdue.edu/research/ugrad/docs/f08_Rahmani.pdf
http://www.ddj.com/linux-open-source/216403490
http://www.ddj.com/linux-open-source/216403490
http://www.research.ibm.com/cell/
http://www.research.ibm.com/cell/

	
	
	Introduction
	Background and motivation
	Problem statement
	Main Contributions
	Outline

	Graphic processing units
	Introduction
	Evolution of GPUs and their impact on GPGPU frameworks
	General GPU architecture overview
	Abbreviations / definitions / concepts
	NVIDIA GPU architecture
	AMD GPUs
	Intel Larrabee

	Capacities and processing
	Summary

	NVIDIA Compute unified device architecture
	Introduction
	Thread organisation
	Single-instruction multiple-thread
	Memory model
	GPU occupancy and capabilities in CUDA
	Software stack
	Language extensions
	The CUDA toolkit and compiler
	Summary

	Advanced encryption standard
	Background information
	Rijndael
	AES Cipher overview
	Block cipher modes of operation

	Implementations - software basis
	GPU implementation using CUDA
	Standard AES
	Lookup table-based AES

	Testing
	GPU Lookup table based AES (GPU-L)
	GPU Standard AES (GPU-S)
	Memory spaces

	Lessons learned
	Summary

	Optimisation of memory accesses in CUDA
	Introduction
	Half-warps and coalesced accesses

	Memory spaces
	Global memory
	Constant memory and texture memory
	Shared memory

	Tests
	Results
	Lessons learned
	Summary

	Concurrency with CUDA applications
	Introduction
	Performance of concurrent CUDA applications
	Static scheduling of concurrent applications on the GPU
	Lessons learned
	Summary

	Optimising applications with CUDA streams
	Introduction to CUDA streams
	Tests
	Results
	Lessons learned
	Summary

	Discussion
	Developing with CUDA
	Optimising code
	The memory spaces
	Tools to analyse code
	Debugging

	Concurrent CUDA applications on the GPU
	Future developments with CUDA

	Conclusion
	Summary and contribution
	Future work

	Future directions: OpenCL
	Source code and test results

