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Detailed knowledge about the neural connections among regions of the brain is key 13 

for advancing our understanding of normal brain function and changes that occur 14 

under ageing and disease. Researchers employ a range of experimental techniques to 15 

map connections at different levels of granularity in rodent animal models, but the 16 

results are often challenging to compare and integrate. Three-dimensional reference 17 

atlases of the brain provide new opportunities for cumulating, integrating, and 18 

reinterpreting research findings across studies. We review approaches for integrating 19 

data describing neural connections and other modalities in rodent brain atlases and 20 

discuss how atlas-based workflows can facilitate brain-wide analyses of neural 21 

network organization in relation to other facets of neuroarchitecture. 22 

 23 

  24 
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Introduction 25 

The brain is composed of vast numbers of neurons, glia, and vasculature, encased 26 

within a solid skull. It processes and stores information, generates memories, thoughts 27 

and ideas, performs planning, and effectuates a wide range of behaviours. Dendrites 28 

and axons allow neurons to transmit signals across shorter or longer distances, and 29 

axons profusely branch into terminal fields with multiple synaptic contacts to other 30 

neurons. The functions performed by neurons are to a high degree determined by their 31 

connections with other neurons within and across brain regions.  32 

Large ensembles of widely distributed neurons make up complex neural 33 

networks. The networks are highly organized, typically with different cell types 34 

distributed in layers or clusters. Within the network, populations of neurons exert 35 

specific excitatory, inhibitory or modulatory influences on other parts of the network, 36 

and variations in the strengths and spatial distributions of the connections, including 37 

specific patterns of divergence and converge, influence how the network subserves its 38 

functions. Overall, knowledge about the organization of the networks – the wiring 39 

patterns of the brain – is critical for understanding normal brain function, and is 40 

typically embedded in network models aimed at elucidating and studying a variety of 41 

brain functions (1). Insight into the detailed organization of wiring patterns is also key 42 

to understanding and treating brain disorders. One example is the use of knowledge 43 

about the wiring of deep brain structures (Fig. 1AB) for treatment of neurological 44 

disease, e.g., the use of electrical stimulation targeting the subthalamic nucleus or 45 

specific parts of the thalamus for ameliorating symptoms of Parkinson’s disease and 46 

medication-resistant tremor (2).  47 

While the patterns of neural wiring direct how neural signals are distributed  48 

through a network, the functional characteristics of a network also depend on the 49 

physiological and neurochemical properties of neurons, their detailed local cellular 50 

relationships to other neurons (micro-circuitry) and to supporting cells with sustaining 51 

or modulatory functions. Comprehensive knowledge about how the brain exerts its 52 

functions thus requires integration of knowledge about all these features. We argue 53 

that recently introduced three-dimensional (3D) digital brain atlases (3-6) offer new 54 

opportunities for extensive data integration aimed at improving our understanding of 55 

the organization of the brain. These integration efforts are accelerated by the use of 56 

tools for registration of heterogeneous data types to the atlases, in combination with 57 

computerized workflows for subsequent automated analyses of large data collections. 58 
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Focusing on the rodent brain as a model system for basic neuroscience, we review 59 

approaches for the mapping of neural connections and atlas-based solutions for 60 

integrating and analysing data, before discussing future directions for advancing the 61 

field.  62 

 63 

Mapping brain connections  64 

A variety of techniques are available for mapping of neural connections at different 65 

levels of granularity. The overall trajectories of fibre bundles in the brain can be 66 

visualized with myelin staining (e.g. 7, 8; Fig. 2B) or polarized light imaging in 67 

histological sections (e.g. 9; Fig. 2B), and whole brain diffusion MRI methods (e.g. 8. 68 

10, 11; Fig. 2B). The “neuron-by-neuron” connections are mapped with use of high-69 

resolution microscopic techniques allowing imaging of tracer-filled individual 70 

neurons (e.g. 12, 13), or by use of serial electron microscopy visualization of cellular 71 

and synapse ultrastructure (e.g. 14). The current foundation for whole- brain mapping 72 

of neuronal connections is, however, provided by invasive tract-tracing experiments 73 

in wild-type and transgenic animals (Figs. 1, 2; 15, 16). These methods are highly 74 

suitable for describing connections at the level of groups of neurons, demonstrating 75 

patterns that are persistent and reproducible among individuals and useful for 76 

inferring functional properties and disease related changes (for a discussion of 77 

different levels of connectivity analysis, see, 17).  78 

In classical tract-tracing experiments, a tracer substance is deposited in a 79 

specific location in the brain and taken up by groups of neurons (Fig. 1C-E). The 80 

tracer is transported along the axons of the neurons, either anterogradely from 81 

neuronal cell bodies to their axonal terminal fields, or retrogradely from axonal 82 

terminal fields to the neurons of origin, or in both directions (15, 16). Depending on 83 

the tracer employed, some of the morphologies of the labelled neurons are revealed, 84 

or the tracer is transported across synapses, allowing identification of pre- and 85 

postsynaptic connections in a network (16). New genetic animal constructs have also 86 

opened for advanced cell-type specific tracing paradigms, with genetically controlled 87 

expression of signals (18). 88 

A key methodological innovation for the tract-tracing methods has been serial 89 

two-photon tomography (19). By allowing block-face acquisition of high-resolution 90 

microscopic images, this technology has been successfully utilized by the Allen 91 

Institute to generate large volumes of microscopic 3D tract-tracing image data 92 
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showing brain wide connections in the mouse brain (5, 18). Using a similar approach, 93 

the MouseLight project of Janelia Research Campus has created high-resolution 94 

volumetric reconstructions of individual axonal trajectories across entire mouse brains 95 

(20, 21).  96 

 97 

Atlases for brain-wide mapping of connections and related features 98 

Traditionally, experimental tract tracing studies have focussed on one or a few brain 99 

regions at a time, yielding precise information about the connections among a few 100 

selected regions of interest. Extensive literature mining efforts have aggregated 101 

information from available publications into databases, to attain a more complete 102 

understanding of the connections between brain regions (22, 23). However, these 103 

valuable resources are limited by the diversity of the methods used, the variable levels 104 

of precision in the reporting of brain location, and the lack of access to the underlying 105 

data (17, 24). Regarding reporting of the anatomical location of observations, a recent 106 

analysis of practices and precision from 120 different rodent brain experimental 107 

studies revealed substantial differences in the research design, interpretation of 108 

results, and reproducibility among reports (25). The main challenges were related to 109 

the use of different parcellation schemes and the lack of precision in the reporting of 110 

how observations would map onto a given anatomical scheme. While atlases for 111 

mouse and rat brains (26-28) have assisted researchers for decades in assigning 112 

location to their observations, their utility is limited in that they are two-dimensional 113 

and lack efficient and standardized tools for the registration of observations to the 114 

atlases. These limitations have been overcome with a new generation of open access 115 

3D atlases, which integrate information from multiple anatomical parcellation 116 

schemes and have powerful tools for the registration of data to atlases and atlas based 117 

analysis.  118 

For the mouse brain, the atlases developed by the Allen Institute for Brain 119 

Science have become widely used resources. The most recent version is defined in a 120 

high-resolution image volume constructed by interpolation of serial two-photon 121 

tomography (STPT) images from 1675 adult mice (the Allen Mouse Brain Common 122 

Coordinate Framework, CCFv3). In this population-averaged image volume many 123 

anatomical delineations were defined using information from a large body of 124 

multimodal image data registered to the CCFv3 template (6). The underlying images 125 

included the collection of STPT data created for the Allen mouse brain connectivity 126 
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atlas (5). Additional images were readily integrated into the atlas volume using the 127 

same high-throughput imaging and informatics pipeline, as achieved with the 128 

inclusion of more than 1,000 STPT image volumes from tract-tracing experiments 129 

conducted in transgenic Cre-dependent mice (17).  130 

For the rat brain, the Waxholm Space (WHS) atlas is now available in a 131 

version 4 with brain-wide parcellation (RRID: SCR_017124; https://nitrc.org). This 132 

atlas is based on a single high-resolution ex vivo structural and diffusion magnetic 133 

resonance imaging volume, in which brain regions have been identified and 134 

delineated by manual interpretation of the underlying MRI data, enriched with 135 

multiple microscopic image data showing different facets of the neuroarchitecture (4, 136 

29, 30; see also, Fig. 2). The atlas has seen broad interest as reflected in close to 137 

25,000 downloads, more than 300 citations, and inclusion in several services or 138 

products (e.g., EBRAINS research infrastructure, https://ebrains.eu, and the Neuroinfo 139 

software of MBF Bioscience). To facilitate comparisons of different atlas parcellation 140 

schemes, seven versions of the Paxinos and Watson rat brain atlases, and four 141 

versions of the Swanson rat brain atlas, were registered to the WHS rat brain atlas (31, 142 

32).  143 

 144 

Atlas-based data integration and analysis 145 

The 3D reference atlas spaces provided by the Allen Mouse Brain Common 146 

Coordinate Framework (CCFv3 and earlier versions), and the WHS rat brain atlas are 147 

useful frameworks for integrating heterogeneous data originating from different 148 

researchers and research projects. Recently introduced tools and workflows designed 149 

for use with the mouse and rat atlases support a 3-step process for data integration and 150 

analysis (Fig. 3): 1) registration of images to atlas, 2) sharing of registered images 151 

with viewing and navigation of images in atlas space, 3) extraction of features from 152 

the images followed by quantification of the distribution of features within and across 153 

brain structures. Below, we review the principles and practical implementation of the 154 

three steps, taking a starting point in the EBRAINS Atlases services 155 

(https://ebrains.eu/services/atlases) for the mouse and rat brain and the EBRAINS 156 

Data and Knowledge services for data sharing and access 157 

(https://ebrains.eu/services/data-and-knowledge). 158 

 159 

 160 
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Registration of images to atlas 161 

Data integration requires that the data are made comparable, as if data of different 162 

origin were part of a single data set. Thus, the registration of data of different origin to 163 

the same atlas framework is a key step towards integration. In EBRAINS, series of 2D 164 

histological images of mouse or rat brains are spatially registered to the atlases by an 165 

initial landmark-based anchoring of sections, followed by a non-linear adjustment. 166 

The EBRAINS tools supporting this step are the QuickNII tool for affine registration 167 

(RRID: SCR_016854; 33), and the VisuAlign tool for non-linear registration 168 

adjustments (RRID: SCR_017978). The output of the registration process is referred 169 

to as spatial metadata: a set of anchoring vectors and deformation fields that together 170 

define the transformations between the image data and the atlas. A range of other 171 

registration tools are available, with some having been developed for particular use 172 

cases such as analysing electrode tracts (34, 35), and others suitable for many data 173 

modalities (36).  174 

 175 

Sharing, viewing, and navigating images in atlas space 176 

In addition to having spatial metadata, data are integrable only if they are properly 177 

annotated with metadata and other structured information that help us understand the 178 

data. Furthermore, the data will have to be discoverable and accessible. The approach 179 

taken by the EBRAINS Share data service (https://ebrains.eu/service/share-data) is to 180 

provide procedures for annotation of the data with metadata according to a metadata 181 

standard, and to provide descriptions and other information required to make the data 182 

interpretable and reusable. Following a curation of the metadata, the data are stored in 183 

the EBRAINS data repository, whereas the metadata are ingested in a knowledge 184 

graph which makes the data findable through a Search user interface 185 

(https://search.kg.ebrains.eu), or a programmatic access route 186 

(https://ebrains.eu/service/find-data/). A search points the user to Data cards with 187 

information about the data, access to the data sets, and also links to a virtual 188 

microscopy viewer for inspection of the image data integrated in the atlas. 189 

With use of the EBRAINS tools, a broad range of data generated with 190 

different methods and in different animals have been registered to the atlases. Figure 2 191 

shows examples of histological images registered to the WHS rat brain atlas v4. In the 192 

thalamus, as the selected region of interest, data on specific connections of the 193 

primary somatosensory cortex are available together with images showing bundles of 194 
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axons and their orientation with myelin staining and polarized light imaging. Figure 195 

2C demonstrates some of the basic functionalities of the virtual microscopy viewer 196 

that is available via the Data cards. The viewer supports web-based pan-and-zoom of 197 

high-resolution images with overlays of the atlas parcellation map generated by a 198 

volumetric atlas slicer. The user can inspect the images at cellular resolution and 199 

observe brain regions, names, and boundaries and annotate points of interest to extract 200 

atlas coordinates.  201 

 202 

Feature extraction, quantification, and distribution 203 

Finally, features from the images can be extracted, sorted by brain region, and 204 

displayed and further analysed in 3D. To this end, various approaches are employed 205 

as exemplified in the EBRAINS workflow for automation of several of the steps (37, 206 

38). This workflow consists of a registration tool, a machine learning based tool for 207 

extraction of selected features in the images (Ilastik, 39), and finally a tool for 208 

quantifying the features per atlas region (Nutil, 38). The workflow allows the users to 209 

customise their analysis in many aspects, including choosing the granularity level of 210 

the atlas, defining their own regions of interest, filtrating artefacts, and applying 211 

quality control steps. It also allows export of coordinates to other tools for 3D 212 

visualization of the distribution of the selected features, from the whole brain or 213 

selected regions. Figure 4 shows examples of regional analysis of brain connection 214 

features extracted from images registered to the WHS rat brain atlas and the Allen 215 

Mouse Brain Common Coordinate Framework.  216 

Figure 4 shows examples of regional analyses of brain connection features 217 

extracted from images registered to the WHS rat brain atlas or the Allen Mouse Brain 218 

Common Coordinate Framework. The data originate from different research projects 219 

and data repositories, but are integrated and made comparable by registration to the 220 

same atlas spaces. Specific combinations of tract-tracing data showing terminal fields 221 

of axons in the corticopontine projection system have been selected for analysis of 222 

topographical organization (Fig. 4A-D), and identification of changes in topography 223 

resulting from lack of specific gene expression (Fig. 4E,F). Furthermore, tract-tracing 224 

data showing corticopontine projections from large groups of cortical neurons have 225 

been combined with 3-D reconstructions showing individual neurons and their 226 

extensive branching patterns, including branching to multiple target clusters within 227 
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the pontine nuclei and elsewhere in the brain stem (Fig. 4G, H), illustrating 228 

opportunities for parallel processing and neural circuit complexity. 229 

 230 

Conclusion and outlook  231 

Online repositories containing large collections of experimental data integrated in an 232 

open access volumetric reference atlas have proven successful for mouse brain 233 

research, evident from the impressive data and results provided, e.g., by the Allen 234 

Institute and the Janelia Research Campus (5, 18, 20, 21). Open access sharing of 235 

standardized data mapped in an appropriate anatomical context make it possible to 236 

find and efficiently use new combinations of data, suitable for characterizing and 237 

investigating many aspects of brain connections. However, despite the impressive 238 

amounts of data presented, attempts to utilize these generous resources may also 239 

reveal that data coverage may be insufficient to answer challenging questions, as 240 

exemplified in the recent study by Tocco et al. (40), demonstrating that studies of 241 

topographic organization in the corticopontine projection require precisely 242 

corresponding tracer injections to detect subtle changes occurring in transgenic 243 

animals (Fig. 4E,F). Similarly, attempts to compare the individual axonal 244 

morphologies in the pontine nuclei (using data from the MouseLight project at Janelia 245 

Research Campus) to the terminal fields visualized in tract-tracing experiments (using 246 

data from the Allen Mouse Brain Connectivity Atlas) reveal that data mapped to the 247 

same atlas allow interesting observations (Fig 4G,H), but also indicate that more data 248 

are needed for complete mapping of neural networks. Attempts to find, visualize, and 249 

compare such data are also hampered by technical challenges related to lack of tools 250 

interoperability. In the rat, large data collections on neural connections are not 251 

available, and so far few attempts have been made to systematically map brain-wide 252 

connections (24). For these reasons, adding more data and tools will be critical for 253 

attaining an increasingly complete overview of the organization of brain connections 254 

and other features of rodent brain architecture.  255 

The atlases play a key role in this endeavour. They provide a standardized 256 

representation of anatomical location and are embedded in software tools for 257 

integration and analysis. Data sharing services, such as delivered by EBRAINS, 258 

organize the data, and help standardize the metadata, including metadata about the 259 

location of research data from the brain. Through the atlas frameworks, data from 260 

individual researchers published in research articles and integrated in the atlases are 261 
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made directly comparable to data from large scale mapping efforts such as the Allen 262 

Mouse Brain Connectivity Atlas, and the MouseLight project. The new paradigm for 263 

research on brain connections and brain architecture in general is to bring the research 264 

data into the same reference space, share the data, and prepare the data for systematic 265 

reanalysis and reinterpretations of our understanding of the brain. With these new 266 

approaches being introduced in neuroscience, literature mining can be supplemented 267 

with powerful mining of the data underlying the interpretations included in 268 

publications.  269 
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 369 

Fig. 1. Wiring patterns in the brain  370 

A,B, Schematic visualizations of basal ganglia and cerebellar neural networks, 371 

topologically drawn (A) in an oblique slice through the Waxholm Space rat brain atlas 372 

(RRID: SCR_017124) and as a box diagram (B). C. Illustration of tract tracing 373 

experiments in which an anterograde tracer is placed in the cerebral cortex, taken up 374 

by groups of neurons, and transported along the axons and their branches, to visualize 375 

projections to intracortical and subcortical regions. (D, E) Microscopic images from a 376 

tract tracing experiment (data from 41), in which an axonal tracer (visualized as black 377 

labelling) was injected into the primary somatosensory cortex (D), giving anterograde 378 

labelling of dense axonal plexuses in thalamus (E1), caudoputamen (E2), and pontine 379 

nuclei (E3). CPu, caudoputamen; DCB, deep cerebellar nuclei; EPn, entopeduncular 380 

nucleus; GP, globus pallidus; SNc, substantia nigra, pars compacta; SNr, substantia 381 

nigra, pars reticulata; PN, pontine nuclei; PPN pedunculopontine nucleus; TN, 382 

trigeminal nuclei. Scale bars, 1 mm (D); 200 µm (E).  383 

 384 

  385 
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 386 

Fig. 2. Waxholm Space rat brain atlas with integrated microscopic data 387 

The Waxholm Space rat brain atlas is enriched with spatially registered microscopic 388 

image data allowing comparison across different experiments and data types. (A) 389 

Illustration of tract tracing and myelin-stained microscopic images of coronal sections 390 

registered to the brain at the level of the thalamus, indicated with a frame. (B) 391 

Overview and details from four different coronal microscopic images taken from the 392 

same anteroposterior level of the thalamus, including anterogradely labelled 393 

corticothalamic projections from whisker (data from 41) and forelimb (data from 42) 394 

representations in the primary somatosensory cortex (S1), tissue fibre orientations 395 

visualized by myelin staining (data from 43), and polarized light imaging (data from 396 

44), respectively. (C) shows the Waxholm Space rat brain atlas superimposed on the 397 

tract tracing image shown in B, providing a starting point for interpreting the spatial 398 

location of axonal labelling across subregions of the thalamus. Abbreviations: IC, 399 

internal capsule; PO, posterior thalamic nucleus; VPL, ventral posterolateral thalamic 400 

nucleus; VPM, ventral posteromedial thalamic nucleus. Scale bars, 1 mm. 401 

 402 
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 403 

Fig. 3. Workflow for data integration and atlas-based analysis  404 

Diagram showing key steps of a generic workflow for integration of rodent brain 405 

experimental data in volumetric brain reference atlases, and atlas based analysis, 406 

yielding quantitative data and 3-D point coordinate data sorted to atlas defined brain 407 

regions. The input to the workflow is provided by experimental procedures resulting 408 

in serial microscopic images of tissue sections showing neural labelling. Pre-409 

processing steps include validation of image order and orientation, assignment of 410 

unique serial identifiers, to create machine readable image files. Important parallel 411 

analytic steps are the spatial registration of images to a volumetric reference atlas, and 412 

extraction of labelling signals from background, providing input combined in 413 

(automated) analyses extracting quantitative measures and 3-D point coordinates 414 

representing selected labelling features. The workflow output can be visualized and 415 

utilized in statistical analyses for characterizing and comparing labelled parameters. 416 

Point coordinates representing labelled neuronal elements are suitable for interactive 417 

3-D visualization and exploration of spatial distribution patterns, and hypothesis-418 

driven in silico experiments visualizing selected combinations of data. Usage example 419 

data are taken from (45-49). 420 

 421 

  422 
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 423 

Fig. 4. Three-dimensional analysis of spatially integrated connections data 424 

Examples illustrating studies of spatial organization in the first link of the rat and 425 

mouse cerebro-cerebellar circuit, based on tract-tracing data integrated and co-426 

visualized in the Waxholm Space rat brain atlas (A-C) and the Allen Mouse Brain 427 

Common Coordinate Framework, CCFv3 (E-G). A-C, data combined from several rat 428 

brain experiments in which an axonal tracer was placed at separate locations in the 429 

cerebral cortex (A), and anterogradely labelled fibres were semiquantitatively 430 

represented as point coordinates spatially registered within the pontine nuclei. B 431 

shows the Waxholm Space rat brain atlas in view from ventral. C shows the outer 432 

boundaries of the pontine nuclei and descending corticofugal fibre tract as grey 433 

transparent surfaces, and data representing axonal labelling from different 434 

experiments as colour coded point clouds. Shifts in location of tracer injection sites 435 

from anterolateral to dorsomedial locations (A) corresponds to topographic shifts 436 

from internal to external lamellar subspaces in the pontine nuclei (C, ). D-F, data 437 
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from a study of the impact of the cortical area-patterning gene Nr2f1 on topographical 438 

organization of corticopontine projections in mice, combining tract-tracing data from 439 

the Allen Mouse Brain Connectivity Atlas with experimental data from transgenic 440 

mice lacking cortical expression of Nr2f1 (40). D, co-visualization of color-coded 3D 441 

data points representing the distribution of corticopontine projections from different 442 

cortical locations in wild-type mice show a similar inside-out topographical 443 

organization as demonstrated in rats (50) (A-C). Comparison of the topographical 444 

distribution of pontine projections arising from corresponding locations in the 445 

secondary motor cortex (E), and primary somatosensory cortex (F) of Nex-cKO 446 

transgenic mice lacking Nr2f1 and control animals demonstrates that corticopontine 447 

projections from the primary somatosensory cortex are altered in Nex-cKO mice, to 448 

resemble the projections from the secondary motor cortex. G-H illustrate data from 449 

different sources can be integrated and compared in atlas space. G shows whole brain 450 

reconstructions of two projections neurons (from the Janelia Research Campus 451 

MouseLight project, 21) located in the mouth and whisker representations of the 452 

primary somatosensory cortex, with a variable amount of profusely branching axons 453 

in several subcortical regions, including the pontine nuclei. H exemplifies a 454 

comparison of corticopontine projections from single neurons and anterogradely 455 

labelled projections from two populations of neurons in the mouth and whisker 456 

representations in the primary somatosensory cortex (data derived from the Allen 457 

Mouse Brain Connectivity Atlas, 5), indicating the trajectory of single cell projections 458 

relative to the point cloud representing the spatial distribution of projections from a 459 

larger amount of neurons in the same part of the cerebral cortex. The data shown in 460 

A-C were taken from (46, cases R113-BDA, R118-BDA, R124-BDA; 47, cases D55-461 

FR; 48, cases M27-BDA, M27-FR; 49, cases R409-BDA, R412-BDA, R413-BDA). 462 

The data shown in E, F, and H were taken from (40; wild type cases: 100141780, 463 

112229814, 112952510, 126908007, 127084296, 127866392, 141602484, 464 

141603190, 585025284; Nex-cKO cases: 11643_17, 19423_7; littermate control case: 465 

18035_1). The neuron reconstructions shown in G were taken from the Janelia 466 

MouseLight project (20, 21; https://www.janelia.org/project-team/mouselight; neuron 467 

AA0945, https://doi.org/10.25378/janelia.7804034  (#1), neuron AA1049; 468 

https://doi.org/10.25378/janelia.7822322 (#2)). Atlas surfaces and data points were 469 

co-visualized using the MeshView web application, RRID: SCR_017222, 470 

http://www.nitrc.org. Neuron reconstructions in G were visualized using the Scalable 471 
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Brain Atlas Composer (https://sba-dev.incf.org/composer; 51). Abbreviations: bfd, 472 

barrel field; M2, secondary motor cortex; S1, primary somatosensory cortex, PN, 473 

pontine nuclei.  474 


