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Abstract

The phase field model is a powerful model used to describe crystals and their mechanical
properties based on symmetries and topological conservation. In this thesis, we provide
an introduction to phase field crystal modelling of crystals with defects and how to
compute their dynamics, as well as how stress is defined and computed. We exemplify
the general analytical expressions for stress and dislocation dynamics for a hexagonal
lattice based on the one mode expansion. We then attempt to extend the earlier work
done on the hexagonal lattice to two-mode expansion representative for a square lattice to
derive the stress-strain relation and the dislocation mobility of the Peach-Koehler law to
the square lattice using the same kind of approach. Surprisingly, we find that in the two-
mode expansion, the expression for the Peach-Koehler force cannot be directly related to
the stress acting on a dislocation, henceforth it is challenging to derive a closed expression
for the mobility within this present formulation. Hence the Peach-Koehler force and the
dislocation mobility in the square lattice warrant further analytical investigation, and
we suggest a few such avenues.
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Chapter 1

Introduction

Imagine you have a perfect sphere. No matter how you twist and turn it, it will always
look the same. Or consider a cube. Cubes are invariant under specific discrete rotations
about their center but not necessarily under any rotation. The sphere is more symmetric
than the cube because a bigger set of transformations leaves it invariant. By symmetry,
we mean a transformation on some mathematical object that leaves it invariant. Sym-
metry also appears in many physical systems. Consider a liquid, for instance, water, in
some box. If you consider microscopically what the water looks like at any particular
point in the box and then compare it to what it looks like at any other point in the
box, you will not notice any difference. This is because the liquid exhibits complete
translational symmetry. Similarly, if you study the water at any point and then rotate
your frame of reference by some angle, you will also not notice any difference because
the water has complete rotational symmetry, similar to the sphere we mentioned ear-
lier. Now the temperature of the water is reduced to below its freezing point such that
the liquid becomes a crystal. In this phase, the water will have some specific, discrete
symmetries both rotationally and translationally. Still, most of the symmetry we had
in the liquid phase will no longer be there. We say the crystal phase exhibits broken
symmetries because the water lost symmetry by undergoing a phase transition.

In this thesis, we will study the mechanical properties of such a system. In addition,
we will explore the mechanical deformation of crystal lattices. Mainly, we will focus on
square lattices. Square lattices occur in many kinds of systems, like in photonic crystals
[5] and magnets [3]. We present a theoretical analysis of dislocations in crystals with
square lattice symmetry. Chapter 1 introduces basic concepts from algebraic topology
and continuum mechanics used to describe such systems. In Chapter 2, we will introduce
the phase field crystal model, using the hexagonal lattice as an example to illustrate some
of the theory’s core concepts, like how the crystal is modeled through an appropriate
phase field and defects are represented in this theoretical approach. We proceed by de-
riving analytical expressions for the dislocation velocity and the stress for the hexagonal
lattice. In Chapter 3, we turn to the square lattice and derive the matching results for
this crystal symmetry. We check that by coarse-graining the microscopic stress deter-
mined by phase field distortions, we obtain stress fields consistent with elasticity theory.
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Furthermore, we solve numerically for the stress field profile induced by dislocations
dipoles in the square lattice. We also seek to derive an analytical expression for the
mobility of the Peach-Koehler force for a square geometry in the same way as others
have done for the hexagonal lattice. Concluding remarks and a summary is discussed in
the last chapter.
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Chapter 2

Crystals and dislocations

This chapter will review fundamental concepts used to describe crystals and their me-
chanical properties. We start by introducing some of the core concepts in elasticity
theory. Then, we introduce crystal lattices and their defects, known as dislocations,
from the point of view of symmetry-breaking states and associated topological defects.
We also discuss how dislocations and their motion are conventionally described in the
theory of elasticity.

2.1 Basics of Elasticity Theory

2.1.1 Stress and Strain

The theory of elasticity describes how a continuous body will deform when exposed to
forces. A deformation field describes the deformation u(r) = r′ − r which is a vector
field describing how each point r in the solid is displaced relative to some reference point
r′. It is clear that if the relative position between all points in the body is changed
in the same way, the body has not been deformed but has just been moved from one
place to another. Therefore we are interested in a measure of how differently the body
is deformed at each point in space. This can be achieved by considering the gradient of
the deformation field W = ∇u or in index notation

Wij = ∂iuj. (2.1)

The symmetric part of Wij is called the strain of the body and is given by

eij =
1
2
(∂iuj + ∂jui). (2.2)

We are typically only interested in the symmetric part of Wij because this is the part of
Wij related to volume changes and shearing of the body. In contrast, the anti-symmetric
part is only associated with rotations of the body. Rotations do not cause forces to
arise in the body, and we do not consider this part of the gradient. If the body is only
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deformed infinitesimally, the deformation field is well approximated by its first-order
Taylor expansion, which gives us

ui ≈ ui(r′) + (rj − r′j)∂iuj. (2.3)

Choosing the coordinate system such that ui(r′) = 0 we get

ui = rjWij. (2.4)

Under the assumption that the body is not rotated so that the anti-symmetric part of
W is zero, we get the equation

ui = rjeij (2.5)

relating the deformation field to the strain tensor. When a body is deformed, it is
no longer in its equilibrium state. This means that there will arise forces in the body
that will cause the body to return to its equilibrium state if left alone. Consider two
infinitesimal areas inside the body dΣ1 and dΣ2 which are contiguous. Then the first
area will exert a force dF1 on the second area, and the second will exert a force dF2 on
the first. By Newtons third law dF1 = −dF2. Consider now some infinitesimal volume
V inside the body. The total force F of this area will be given by the integral

F =
∫

Ω
f dV (2.6)

where f is the force per unit volume and Ω is some volume element in the body. Since
the forces of every slice of an area that makes up the volume must cancel each other,
the net force in the volume Ω must be equal to the force acting on it from the surface,
which is continuous on the boundary of the volume. Hence we can write the total force
as an integral over a surface. Using Gauss theorem, we get

Fi =
∫

Ω
fi dV =

∫
Ω

∂σik

∂xk
dV =

∮
∂Ω

σik dSk (2.7)

where Sk is some infinitesimal boundary area. The tensor σ is called the stress tensor. As
defined above, the first index of the stress tensor gives the force per area component in
that particular direction, and the second index is the orientation of the surface element
on which the force is exerted.

2.1.2 The Stress-Strain Relationship

The force acting on a body attached to a massless spring can often be modeled as
experiencing a force proportional to the displacement away from the spring’s equilibrium.
Mathematically this is expressed by Hooke’s law

F = kx (2.8)

where F is the force acting on the body, k is the spring constant and x is the displacement
away from equilibrium. The same kind of phenomenon takes place in elastically deformed
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bodies. To describe what happens in continuous bodies, we must write Hooke’s law in a
more general form

σij = Cijklukl , (2.9)

where σij and ekl is the stress and strain tensors defined in the previous subsection, and
Cijkl is called the elastic modulus tensor. The elastic modulus tensor describes how the
stress in the body depends on deformations and depends on the kind of material we are
studying. In fact, the material is often characterized by the form of the elastic modulus
tensor. We talk of materials being isotropic and anisotropic. The material is said to be
isotropic if the elastic modulus tensor can be written

Cijkl = λδijδkl + µ(δikδjl + δjkδil). (2.10)

where λ and µ are constants determined by the material. Inserting this form of the
elastic modulus tensor into Eq. 2.9 we get

σij = 2µuij + λδijukk (2.11)

as the stress-strain relationship. Materials with such a stress-strain relationship have
no sense of direction and so respond in the same manner no matter which direction
they are deformed in. Otherwise, the material has anisotropic properties. This is, for
instance, the case with an elastic medium with an underlying square lattice, which will
be discussed in detail in the latter chapters.

2.2 Crystals as ordered systems

At the atomic level, solids are collections of atoms with some ordered structure, repeating
themselves in a pattern. This repeating pattern gives rise to a lattice structure. Lattices
can be described by unit cells, which consist of the smallest repeating pattern of atoms.
We can describe the unit cell using a set of vectors that describe the position of the
atoms relative to each other, called lattice vectors. We can then describe any point in
the lattice as a sum of integer multiples of these lattice vectors. Important examples of
lattices in this thesis will be the square lattice and the hexagonal lattice. The crystal
phase exhibits broken rotational and translational symmetries. For instance, if we have
a square lattice, the geometry is invariant under rotations of π/2 and by translations
of a0 in the x and y directions. An example of a square lattice can be seen in figure
2.1. Such symmetries are called broken because, in the liquid phase, the system has
continuous rotational and translational symmetry, which disappear when the system
goes through the liquid-to-solid phase transition. The presence of crystal lattices with
discrete rotational and translation symmetries allows the system also to form lattice
defects, such as dislocations. Dislocations appear when an extra half-plane of atoms
ends at the dislocation position. They come in two flavors, edge dislocations, and screw
dislocations, depending on the shear or toque forces that generate this extra half-plane of
atoms. If you count the three atoms horizontally towards the right around the dislocation
line, then three atoms vertically upwards, three towards the left, and three downwards,
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Figure 2.1: Drawing of a square lattice with no defects. The vectors a⃗1 and a⃗2 defines a
unit cell.

you will not end up where you started. The lattice jump from the beginning to the
end of this circuit surrounding a dislocation position defines a vector called the Burgers
vector b, which has the magnitude determined by the lattice spacing and orientation
determined by the line tangent and direction of motion of the dislocation.

2.3 Dislocations and the Peach-Koehler Force

Dislocations in elasticity theory are characterized by the Burgers vector, b. We define
the Burgers vector of a dislocation in a continuous body as the line integral of the
deformation field along a closed path L enclosing the dislocation point P once∮

L
dui =

∮
L

∂ui

∂xk
dxk = −bi. (2.12)

Consider a defect in a crystal, characterized by some Burgers vector b, exposed to some
external stress field σ. The deformation field across the defect will vary by b. If the
defect moves, it will cause the deformation field of the crystal to change. The change in
deformation will be larger close to the defect, and smaller further away, so the crystal
will be strained by the dislocation movement. The change in strain will cause the elastic
energy of the system to change, so the stress field is doing work on the defect. The work
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Figure 2.2: A drawing showing the square lattice with a point defect.

is given by the integral ∫
σikδeikdV. (2.13)

From this, it can be shown [4] that the effective force doing work on the dislocation is
given by

Fi = ϵilmtlσmkbk (2.14)

where tl is the tangent vector to the dislocation line, σmk is the stress tensor and bk is the
Burgers vector of the dislocation. In the case of a two-dimensional system, the tangent
vector in the z-direction contracts the l index of the Levi-Civita tensor, such that the
Peach-Koehler force reduces to

Fi = ϵimσmkbk (2.15)

This force determines the overdamped motion of the dislocation where the dislocation
velocity is proportional with F

vi = MFi (2.16)

where M is the dislocation mobility.

2.4 Order parameters

In condensed matter physics, the systems we study have too many components that it’s
inconvenient or unfeasible to track the state of every particle in the system. Even if we
could track every particle, the microstate of the system does not necessarily tell us what
we are interested in knowing, which are often emergent, macroscopic features of the
system. A significant problem to solve when studying emergent physical systems is to
determine the system’s interesting features. We call this property of the system an order
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parameter. For instance, when studying magnets, we care about the local magnetization
of the material. In contrast, we usually care about how deformed the crystal is when we
study crystals, i.e., the deformation field.

In this thesis, the most critical order parameter will be a dimensionless density field
ψ that is used to describe to describe crystal lattices, which will be introduced in the
next chapter. What the real space is and what the order parameter space is depends on
the system at hand. For an n-dimensional material, the real space will typically be Rn.
For example, suppose the system is a magnet. In that case, the system at hand might
have an order parameter space S2 because the spins generating the magnetic field are
typically considered to have unit length.

2.5 Symmetry and topology

In this section, we will introduce the idea of the fundamental group of a space as a way
to characterize defects. This is done through the xy-model. The xy model consists of a
lattice with spins at each lattice site.The spin vector s given by

s = s(sin(θ(x)), cos(θ(x))) (2.17)

where s is the magnitude of the spin, θ is the spatial orientation of the spin, and x
is the position inside the lattice, which describes the direction of the spin at the site.
Furthermore there is an interaction Hamiltonian

H = −J ∑
⟨ij⟩

si · sj (2.18)

where J is a constant characterizing the strength of the interaction. We will only consider
the two-dimensional case. Then the lattice is two-dimensional and the spins can point
in any direction in the plane. The angle of the spins θ is the order parameter of the
system. Clearly, s(x) is a continuous function since both sine and cosine are continuous
functions. However, if we require θ(x) to be single-valued then it is not a continuous
function, as it makes a discontinuous jump of −2πn, ∀n ∈ N whenever it crosses the
positive x-axis going counterclockwise. Furthermore, ∇θ = 1

r is not well defined at
r = 0. The singularity at the origin can be removed by removing the point from the
space, such that we operate with R2 − {0} as the domain instead of R2, or we can
require the spin to go to zero within some radius of the origin such that the gradient
of the angle is not well defined because the spin value is zero. The point in the space
where the angle is not well defined is what we call a topological defect, so-called because
it is a defect in the spin direction that cannot be made to disappear by any continuous
transformation of the function θ. In two dimensions, this visually means that if you have
two spin configurations and cannot deform one configuration into the other by gradually
changing the direction of the spins, then the systems are topologically distinct. Some
spins might have to be changed discontinuously in order to deform one system into the
other. Because such discrete flips require large discontinuous jumps in the systems’ free
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energy they are unlikely to happen. Hence states of matter with topological defects are
often semi-stable as they minimize the free energy locally. We can define an integral in
the parameter space

I =
∮

L
θ(x)dx. (2.19)

where L is some close curved. Each time the line encloses the origin, the integral will pick
up an additional ±2πn. We call n the winding number of the defect, or the topological
charge of the defect.

We can generalize the above discussion by introducing the notion of an order param-
eter space M, a coordinate space domain D, and a map

f : D → M. (2.20)

In the xy-model, the coordinate space is R2, and the order parameter space is S1. The
spin configuration determines the map f . Paths in D can then be mapped into M, which
will give rise to paths in M. Say we have two paths in M, f1 and f2. If there exists a
continuous function

H(x, t) : M × I → M (2.21)

such that H(x, 0) = f1(x) and H(x, 1) = f2(x) ∀x ∈ M we say that H(x, t) is a
homotopy and that f1 and f2 are homotopic paths. The function H corresponds to
the intuitive idea of continuously deforming one state into another. We can define an
equivalence relation of paths by saying that f1 ∼ f2 if they are homotopic. We denote
the equivalence class of f by [ f ]. Furthermore, it is possible to define a product of paths
h = f ∗ g by the equation

h =


f (2s) for s ∈ [0,

1
2
]

g(2s − 1) for s ∈ [
1
2

, 1]
. (2.22)

This product of paths also induces a product of equivalence classes of paths

[ f ] ∗ [g] = [ f ∗ g]. (2.23)

Note that the product between two paths f and g is only well defined if f (1) = g(0).
The point f (0) = x0 is called the base point of the path f . The set of equilva loops with
base point x0 equipped with the binary operation ∗ is called the fundamental group
of the space M and is denoted π1(M, x0). For M = S1, the fundamental group is
π1(S

1, x0) = Z, which makes sense in light of the earlier discussion of the xy-model
where we found that taking the integral along a loop that encompassed a defect will
give us some integer multiple of 2π. These concepts will be relevant in the next chapter
when studying crystals with defects. The dislocations introduced earlier are topological
defects and the Burgers vector will give us the topological charge of the defects.
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Chapter 3

Phase Field Modelling of Crystals

This section will introduce a phase field crystal density representing the underlying
crystal lattice. The equation of motion that governs the time evolution of the field will
be presented together with its free energy. We will relate dislocations with topological
defects in the phase field and derive expressions for the stress in terms of distortions
in the phase field. The discussion will be as general as possible. Still, where it is
necessary to introduce a specific phase field crystal model to illustrate some part of the
theory, we will use that corresponding to the hexagonal lattice. In particular, we will
consider hexagonal lattices to present the general formalism that allows us to identify
the dislocations as topological singularities in the lattice and track their motion [10].

3.1 The Phase Field

In phase field modeling, the crystal is represented by a dimensionless density field ψ [2].
The field ψ is an order parameter of the crystal lattice’s underlying rotational and
broken translational symmetries. At equilibrium, this phase field is a minimizer of an
appropriate free energy

F =
∫

Ω
d2r f (3.1)

where f is the free energy density of the system and Ω is some volume. The form of F is
constructed to favor the geometry of the field’s underlying lattice at equilibrium. When
the lattice is out of equilibrium, it follows a diffusive relation to equilibrium by obeying
the equation of motion

∂tψ = ∇2µ (3.2)

where

µ =
δF
δψ

(3.3)

is the chemical potential of the phase field. The periodicity of the ψ field is determined
by the geometry of the crystal the field is modeling. In its equilibrium state, we can
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expand the phase field as a Fourier series

ψ(r) = ψ0 +
N

∑
n=1

ηneir·q(n)
(3.4)

where q(n) is the reciprocal lattice vectors and ηn are the mode amplitudes that are
constant for a perfect lattice.

We will now discuss what happens to the phase field and its mode amplitudes when
the lattice is distorted. Consider two neighboring atoms on the crystal lattice. If the
distortion field is such that the distance between them has changed, you have to move
a distance u(r) extra to make up for the distortion. Hence the exponents in the Fourier
expansion become

ψ(r) = ψ0 +
N

∑
n=1

ηnei(r−u)·q(n)
. (3.5)

Writing the amplitudes as complex fields ηn = ρneiθ(n)0 we can absorb the additional
−iu · q(n) into the argument of the amplitude so that

θn = −u · q(n). (3.6)

The expression for the phase field becomes

ψ(r) = ψ0 +
N

∑
n=1

ηn(r)eir·q(n)
(3.7)

where the amplitude now has become a complex field, and the amplitude phase contains
information about the deformation field of the lattice.

3.1.1 Deformation Field of the Hexagonal Lattice

A concrete set of reciprocal lattice vectors is needed to obtain an explicit expression for
the deformation field of a crystal from a phase field description. The simplest geometry
to work with is the hexagonal lattice. The phase field of the hexagonal lattice is well
approximated by the one-mode Fourier expansion [10] and can therefore be written

ψ(r) = ψ0 +
N

∑
n=1

ηnei(r−u)·q(n)
(3.8)

where q(n)’s are now the reciprocal lattice vectors of the hexagonal lattice. Multiplying
both sides of Eq. 3.6 with the reciprocal lattice vector qn

j and summing over n gives us
the equation

N

∑
n=1

θnq(n)j = −
N

∑
n=1

q(n)j q(n)i ui(r). (3.9)
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Using the dyadic product identity [9]

N

∑
n=1

q(n)i q(n)j =
Nq2

0
2

δij (3.10)

which holds for the hexagonal lattice, we can solve for the displacement field

u(r) = − 2
Nq2

0

N

∑
n=1

q(n)θn(r) (3.11)

where q0 =
√

q2. This expression allows us to relate the mechanical deformation of the
crystal lattice with phase deformations of the discrete Fourier modes of the ψ-field.

3.2 Dislocations in a Crystal Density Field

In this section, we will consider how dislocations are represented in the phase field
description of crystals and how we can study their dynamics. As in continuum mechanics,
defects are characterized by a Burgers vector b which is determined by an integral around
the dislocation point

b =
∫

L
du = u+ − u−,

where L is some curve in the plane enclosing the dislocation and u+ and u− are the
values of the deformation field at each side of the branch cut. The dislocation density
vector α for a single dislocation is defined as

α = b δ(r − r′) (3.12)

where r′ is the position of a dislocation. Using Eq. 3.6 we can relate the Burgers vector
to the phase of the amplitude ∮

L
θn = −

∮
L

q(n) · du. (3.13)

The reciprocal vectors q(n) are constant and can be pulled out of the integral, leaving
only an integral over du, which we know is just the Burgers vector. The integral over the
phase will be an integer multiple of 2π signaling the presence of a vortex in the complex
amplitude ηn. Hence the equation

2πsn = q(n) · b. (3.14)

Inspired by this equation we define a vortex charge density associated to a given periodic
mode with amplitude ηn,

ρn = snδ(r − r′). (3.15)

Next, we show that the superposition of these vortices in the Fourier amplitudes provides
a complete description of dislocations and their motion in the periodic crystal lattice.
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3.2.1 Dynamics of dislocations

To find the time evolution of the defect, we differentiate Eq. 3.12 with respect to time,
thus

∂tαi = bi∂tδ(r − r′(t)). (3.16)

Using the chain rule, we express the right-hand side as

= bi
dr′k
dt

∂

∂r′k
δ(r − r′). (3.17)

We define the dislocation velocity as

Vk′ =
dr′k
dt

. (3.18)

Furthermore
∂

∂rk′
δ(r − r′) = − ∂

∂rk
δ(r − r′). (3.19)

Hence we can write

−biVk′
∂

∂rk
δ(r − r′) = −∂k(αiVk)

= −∂k(αiδklVl)

= −ϵkp∂k(αiϵlpVl)

= −ϵkp∂kJ
(α)

ip , (3.20)

where we have used the identity δkl = ϵkpϵlp and defined the topological current

J α
ip = ϵlpαiVl . (3.21)

From this calculation, we then deduce that the dislocation density follows a conservation
law, namely

∂tαi + ϵkp∂kJ
(α)

ip = 0. (3.22)

The next step is to find an explicit expression for the dislocation density vector,
compute the corresponding current for this representation of the vector and equate the
two expressions. To do this we need to consider a specific system, so we turn to the
hexagonal lattice.

Dynamics of Defects in the Hexagonal Lattice

The complex amplitude field ηn(r) is isomorphic to the real two-dimensional vector field

Ψ(r) = (Ψ1(r), Ψ2(r)) = (ℜ(ηn(r)),ℑ(ηn(r))). (3.23)
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The field Ψ is zero whenever η is zero and we know ηn is zero at the point of the defect.
Hence we can express the dislocation density in terms of the field Ψ by a change of
variables

snδ(2) (⃗r − r⃗′) = sn|D(r)|δ(2)(Ψ(r)) (3.24)

where D(r) = ϵij(∂iΨ1(r))(∂jΨ2(r)) is the determinant field. Because sn will be −1 in
the case of a negatively charged defect and +1 in the case of a positively charged defect,
and the determinant differs by a sign difference for these two cases, the determinant can
absorb sn if we remove the absolute value and obtain

snδ(2)(r − r′) = D(r)δ(2)(Ψ(r)). (3.25)

Contracting both sides of Eq. 3.12 by q(n)i gives

1
2π

αiq
(n)
i = snδ(2)(r − r′). (3.26)

Using Eq. 3.25, we get the equation

1
2π

αiq
(n)
i = D(n)δ(2)(Ψ). (3.27)

Because ηn and Ψ is zero at the same points in space we can express this in terms of the
complex field ηn instead

1
2π

αiq
(n)
i = D(n)δ(ηn) (3.28)

where D(n) = ϵij(∂iℜ(ηn))(∂jℑ(ηn)) and δ(ηn) = δ(ℜ(η))δ(ℑ(η)). Multiplying both

sides of the equation above by q(n)j and summing over n, and using the diadic product we
used earlier, we find a general expression that relates the dislocation density with a su-
perposition of vortices in the complex amplitudes represented as zeros of the amplitudes

1
2π

N
2

q2
0αj =

N

∑
n=1

q(n)j D(n)δ(2)(ηn). (3.29)

Solving for αj we find a new expression for the dislocation density vector

αj =
4π

Nq2
0

N

∑
n=1

q(n)j D(n)δ(2)(ηn). (3.30)

Taking the time derivative of Eq. ( 3.30), we obtain

∂tαi =
4π

Nq2
0

N

∑
n=1

q(n)i (∂tD(n))δ(2)(ηn) +
4π

Nq2
0

N

∑
n=1

q(n)i D(n)∂t(δ
(2)(ηn)). (3.31)

We need to evaluate ∂tD(n) and ∂tδ(ηn). Starting with the D-field, we do this by finding
a current for D(n), i.e. by finding a J(n) such that ∂tD + ϵij∂j Jl = 0. We can start by
considering the time derivative of the D-field
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∂D(n)

∂t
=

∂

∂t

(
1
2i

ϵij(∂iηn)(∂jη̄n)

)
=

1
2i

ϵij

((
∂t∂iηn

)(
∂jη̄n

)
+
(
∂iηn

)(
∂t∂jη̄n

))
=

1
2i

ϵij

((
∂t∂iηn

)(
∂jη̄n

)
−
(
∂jηn

)(
∂t∂iη̄n

))
=

1
2i

ϵij

((
∂t∂iηn

)(
∂jη̄n

)
− c.c.

)
= ϵijℑ

(
(∂t∂iηn)(∂jη̄n)

)
= ϵij∂iℑ

((
∂tηn

)(
∂jη̄n

))
(3.32)

where ℑ(...) denotes taking the imaginary part of the expression. Hence

∂tD(n) + ϵij∂i J
(n)
j = 0 (3.33)

where Jj = ℑ
(
(∂tηn)(∂jηn)

)
. Next we have to evaluate D(n)∂tδ(ηn)). The details of this

calculation can be found in appendix A and gives us

D(n)∂tδ(ηn) = −ϵkl∂k J(n)l δ(ηn). (3.34)

Putting this together we get an equation of motion of the dislocation density in terms
of vortex current densities in the amplitudes

∂tαi =
4π

Nq2
0

N

∑
n=1

q(n)i (−ϵkl∂k J(n)l )δ(2)(ηn) +
4π

Nq2
0

N

∑
n=1

q(n)i (−ϵkl J
(n)
l )∂kδ(2)(ηn) (3.35)

so

∂tαi = −ϵkl∂k

(
4π

Nq2
0

N

∑
n=1

q(n)i J(n)l δ(2)(ηn)

)
= −ϵkl∂kJil (3.36)

where we have defined the singular dislocation density current as a superposition of the
singular vortex density currents

Jil =
4π

Nq2
0

N

∑
n=1

q(n)i J(n)l δ(2)(ηn). (3.37)

We now equate the expressions for J (α)
il and Jil. Note that we have not shown that

these two expressions are necessarily equal, we have only shown that their derivatives
are. Therefore there could be some surface term that must be added to achieve equality.
In this thesis, we will assume that any such surface term is zero. This gives

4π

Nq2
0

N

∑
n=1

q(n)i J(n)l δ(2)(ηn) = ϵplαiVp. (3.38)
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In order to proceed we an explicit expression for δ(ηn). Using Eq. (3.26), we obtain

2
Nq2

0

N

∑
n=1

q(n)i J(n)l

αjq
(n)
j

D(n)
= ϵplαiVp. (3.39)

At the point of the defect αi = biδ
(2)(r − r′) so we get

2
Nq2

0

N

∑
n=1

q(n)i J(n)l

bjδ
(2)(r − r′)q(n)j

D(n)
= ϵplbiδ

(2)(r − r′)Vp. (3.40)

The delta functions can be removed by integrating both sides of the equation over some
area containing the defect. Furthermore, we can contract both sides of the equation by
the vector bi. Using Eq. 3.14 twice we then obtain

2
Nq2

0

N

∑
n=1

(2πsn)
2 J(n)l

1
D(n)

= b2ϵplVp. (3.41)

Simplifying we obtain an expression for the dislocation velocity in a hexagonal lattice

Vi =
8π2

Nb2q2
0

ϵli

N

∑
n=1

s2
n

J(n)l

D(n)
. (3.42)

In the next section, we will derive analytical expressions of the stress field induced by
distortions of the ψ field and how that, in the long wavelength limit, we recover the
elasticity theory of continuum media.

3.3 Stress in a Phase Field Crystal

We can derive a microscopic stress in a crystal by taking the variational of the free
energy as [7, 9]

δF = −
∫

Ω
dDr∂iσ̃ijδxj +

∫
∂Ω

σ̃ijδxj (3.43)

where Ω is some volume element in the field, ∂Ω is its surface, δxj is the variation of
some displacement and σ̃ij is the stress tensor of the crystal [9]. If we wish to find the
stress of a system we must vary the free energy and write it in the form of Eq. 3.43. The
stress tensor σ̃ij can be decomposed in the following way

σ̃ij = ( f − µψ)δij + h̃ij. (3.44)

Only the latter term in this equation is related to stress caused by deformation. In
this thesis we are only interested in studying this kind of stress, and therefore we will
henceforth refer to h̃ij as the microstress of the system. Furthermore it can be shown [9]
that the microstress is given by the equation

h̃ij =
∞

∑
α=1

M(α)
ij (3.45)
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where

Mij =
α

∑
β=1

(−1)β(∂m1...mβ−1 f ′m1...mα−1i)∂jmβ...mα−1 ψ (3.46)

and

f ′m1...mα
= N({mi}α

i=1)
∂ f

∂(∂m1...mα ψ)
. (3.47)

N({mi}α
i=1) here is given by the equation

N({mi}α
i=1) =

Nx!Ny!Nz!
α!

(3.48)

where Nx, Ny and Nz are the number of elements in {mi}α
i=1 that correspond to x, y

and z respectively.

3.3.1 Continuum stress: From a crystal lattice to a continuum

The phase field contains information about the microscopic, atomic structure of the
lattice. The same holds for any field that is computed directly from the phase field,
such as the microstress field we defined above. Often we are not only interested in the
microscopic quantities but also in macroscopic quantities can be hard to detect when
you have all information about the system at hand. For instance it is often interesting
to check the results of the phase field model against classical results from elasticity
theory. Elasticity theory is a macroscopic longer wavelength theory than the phase
field model. In order to compare the two we must eliminate higher spatial frequencies
from the fields computed from the phase field. This is done by coarse graining the fields.
Mathematically, this is done by computing the convolution of the field we are considering
with a Gaussian distribution. The convolution integral which we use to coarse grain is

⟨ f (r)⟩ =
∫

d2r′
f (r′)
2πa2

0
exp

{
− (r − r′)2

2a2
0

}
(3.49)

where a0 is the distance between neighboring molecules if the lattice is in its relaxed
state and f is whichever field we are coarse graining.

3.3.2 Stress-strain relation of a hexagonal lattice

We can illustrate how to obtain the continuum stress of a crystal by considering the
hexagonal lattice. First we need the free energy density, which for the hexagonal lattice
is given by, e.g. [2]

f =
1
2
L1ψ2 +

r
2

ψ2 +
1
4

ψ4 (3.50)

where L1 = (1 +∇2). We can now proceed to compute the stress for the hexagonal

lattice. Starting with M(1)
ij we immediately see that

M(1)
ij = (−1) f ′i ∂jψ = 0 (3.51)
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because the free energy for the hexagonal lattice does not contain any single derivatives,
which gives f ′i = 0. Continuing we have

M(2)
ij = (−1) f ′m1i∂m1 jψ + (−1)2(∂m1 f ′m1i)∂jψ). (3.52)

which requires us to evaluate

f ′m1i =
1
2

∂

∂(∂m1iψ)
(L1ψ)2. (3.53)

Using the chain rule and the identity

∂(∂kkψ)

∂(∂m1iψ)
= δm1i (3.54)

we get
f ′m1i = L1ψδm1i. (3.55)

Hence
h̃ij = −L1ψ∂ijψ + ∂i(L1ψ)∂jψ (3.56)

Using the chain rule we find that

h̃ij = −2L1ψ∂ijψ + ∂i(L1ψ∂jψ). (3.57)

The coarse-grained stress is straightforward to compute from this expression. It can be
shown [9] that surface terms disappear under coarse graining. Hence we are left with
the coarse-grained stress of the hexagonal lattice, given by

hij = −2⟨(L1ψ)∂i∂jψ⟩. (3.58)

For small lattice distortions, we can show that this expression reduces to the stress-strain
relation from linear elasticity. Inserting the one-mode Fourier expansion for ψ into this
expression we obtain

hij = 4A2∂kul ∑ qniqnjqnkqnl . (3.59)

The sum can be rewritten [9]

∑ q(n)i q(n)j q(n)k q(n)l =
3
4
(δijδkl + 2δkiδjl + 2δkjδil). (3.60)

Inserting this into the equation for the stress we obtain

hij = 3A2(δijδkl + 2δkiδjl + 2δkjδil)∂kul (3.61)

which is the stress-strain relationship for an isotropic medium. Hence, the underlying
hexagonal lattice has an isotropic elastic response in the continuum limit determined
by two elastic constants, i.e. the bulk and shear moduli. Furthermore, from the above
expression, we see that the elastic constants are determined by the equilibrium lattice
properties, in this case the equilibrium amplitude A.
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Chapter 4

Results on dislocations in square
lattices

In Refs. [7, 8], it was shown that for the 2D hexagonal lattice and the 3D bcc lattice,
respectively, the dislocations are driven by the Peach-Koehler force, with an explicit
expression for the mobility. In this chapter, we will see what happens when these calcu-
lations are generalized for the 2D square lattice. We first need to derive an expression
for the dislocation velocity in a square lattice, which requires explicit expressions for the
deformation field and the dislocation density vector. In order to evaluate the dislocation
velocity in the long wavelength approximation analytically, an expression for the time
evolution of amplitudes is needed. This can be obtained by demodulating the equation
of motion of the phase field. In order to connect the dislocation velocity to the stress
tensor we will also need to compute the stress of the square lattice. Where the derivation
of the results for the square lattice is similar to the hexagonal lattice we will make use of
the derivations in the previous chapter and only highlight the differences. For the square
lattice, the phase field is well approximated by the one-mode Fourier expansion[9]

Ψ(r) = Ψ0 + ∑
p(n)

Aneir·p(n)
+ ∑

k(n)

Bneir·k(n)
(4.1)

where p(n) denotes the first harmonics of lowest unit length |p0| = p0 = 1 and k(n)

denotes the second harmonics of lowest length |k0| = k0 =
√

2. We will adopt the nota-
tion of using An and p(n) to refer to amplitudes and reciprocal lattice vectors associated
with the first harmonic, Bn and k(n) to refer to amplitudes and reciprocal lattice vectors
associated with the second harmonic and ηn and q(n) when referring to an arbitrary
amplitude and arbitrary reciprocal lattice vector.

4.1 Deformation Field for the Square Lattice

We start by deriving the deformation field of the square lattice. This derivation is
identical to that of the hexagonal lattice up until equation 3.9. From this point, the

24



Figure 4.1: Snapshot of a phase field representing a square lattice with two dislocations
in different slip planes.

derivation is similar, but not completely identical. We still multiply by qj, except now
qj can now be equal to either pj or k j. Hence greater care must be taken when making

use of the dyadic product identity. Because we have two different modes p(n) and k(n)

we must separate the two kinds of vector because we can make use of the identity.
Hence the analogy of equation 3.9 for the relation between amplitude phases and lattice
deformation for the square lattice is

N/2

∑
n=1

θn p(n)j +
N/2

∑
n=1

θn+N/2k(n)j = −
N/2

∑
n=1

p(n)i p(n)j ui −
N/2

∑
n=1

k(n)i k(n)j ui. (4.2)

The dyadic product identity can be applied to both the terms on the right-hand side of
the equation separately. This gives the equation

N/2

∑
n=1

θn p(n)j +
N/2

∑
n=1

θn+N/2k(n)j = −N
4
(

p2
0 + k2

0
)
δijui (4.3)

which can be solved the deformation field

uj(r) = − 4
N(p2

0 + k2
0)

N

∑
n=1

θnq(n)j . (4.4)

4.2 Dislocations in the Square Lattice

In this section, we will derive the dislocation density vector for the square lattice. We
will then derive the dislocation velocity for a defect in a square lattice, in a similar way
to what was done for the hexagonal lattice in Chapter 3. A plot of the phase field of a
square lattice with two dislocations located in different slip planes is shown in figure 4.1.
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4.2.1 The Dislocation Density Vector and its Dynamics

The derivation of the dislocation velocity is the same as for any lattice up until equa-
tion 3.28. From this point the strategy for the square lattice is similar to what was done
for the hexagonal lattice, except for the square lattice we have to distinguish between
the two sets of reciprocal lattice vectors of different length. Thus, when we multiply by

q(n)j and sum over n such as

1
2π

αi

N

∑
n=1

q(n)i q(n)j =
N

∑
n=1

D(n)q(n)j , (4.5)

we split the sum on the left hand side into two sums and get

1
2π

αi

(
N/2

∑
n=1

p(n)i p(n)j +
N/2

∑
n=1

k(n)i k(n)j

)
=

N

∑
n=1

D(n)q(n)j . (4.6)

Again we apply the dyadic product identity to each of the terms on the left-hand side
and solve for αj to obtain

αj =
4

N(p2
0 + k2

0)

N

∑
n=1

D(n)q(n)j . (4.7)

From this point the derivation of the defect velocity in a square lattice is algebraically
identical to that of the hexagonal lattice, the only difference being the prefactor in front
of the sum in the expression for αj. Hence we can immediately conclude that

∂tαi = −ϵkl∂k

(
8π

N(p2
0 + k2

0)

N

∑
n=1

q(n)i J(n)l δ(2)(ηn)

)
= −ϵklJil (4.8)

where

Jil =
8π

N(p2
0 + k2

0)

N

∑
n=1

q(n)i J(n)l δ(2)(ηn). (4.9)

The topological current J α
il is the same for any lattice. Proceeding in the same way as

for the hexagonal lattice, we find that the dislocation velocity in the square lattice is
given by

Vi =
16π2

Nb2(p2
0 + k2

0)
ϵli

N

∑
n=1

J(n)l

D(n)
. (4.10)

To obtain a closed expression for the dislocation velocity we need to evaluate the vortex
density currents from the evolution of the amplitudes.
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Figure 4.2: A snapshot of the argument of A1 corresponding to a configuration with two
dislocations with opposite Burgers vectors.

4.3 Evolution of Amplitudes Near Defects

In the previous section, we found an expression for the defect velocity in a square lattice.

The expression is made up of two quantities we must determine, J(n)l and D(n). The
determinant is straightforward to evaluate if we have an expression for the amplitudes.

However, in J(n)l there is a time derivative of the amplitudes that we have not yet seen how
to determine. Hence we now turn to the question of the time evolution of amplitudes
close to defects. We will then consider an explicit expression for the amplitude and
compute the time evolution for such amplitudes. A snapshot of an amplitude field is
shown in figure 4.2.

4.3.1 Generic amplitude evolution: near defect core approximation

We start by considering the time evolution of the phase field. The equation of motion is
given by Eq. 3.2. First, we determine the chemical potential of the square lattice. We
start from the free energy of the square lattice given by [9]

F =
∫

Ω
d2r
(1

2
(L1L2ψ)2 +

1
2

rψ2 +
1
4

ψ4). (4.11)

where LX = (X +∇2). By a variational of this free energy with respect to the ψ field,
we obtain

δF =
∫

Ω
d2r
(
L1L2ψδ(L1L2ψ) + rψδψ + ψ3δψ

)
. (4.12)

Differential operators commute with the variation so this can be rewritten

=
∫

Ω
d2r
(
L1L2ψL1L2δψ + (rψ + ψ3)δψ

)
. (4.13)
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The variation in ψ can be isolated through integration by parts

=
∫

Ω
d2r
(
L2

1L2
2ψ + rψ + ψ3)δψ (4.14)

such that the chemical potential as the conjugate of the ψ field is given by

δF
δψ

= L2
1L2

2ψ + rψ + ψ3 (4.15)

and determines the diffusive evolution of the ψ field

∂tψ = ∇2 [L2
1L2

2ψ + rψ + ψ3] (4.16)

which encodes the evolution of the distortions in the square lattice including the dy-
namics of dislocations. However, we are interested in finding the time evolution of the
amplitudes rather than of the entire phase field. It is straight forward to isolate the am-
plitudes by demodulation using the method reviewed in Ref. [6]. We start by considering
the left-hand side of Eq. 4.16 ∫

u.c.

dr
V

(
∂

∂t
ψ

)
e−iq(n)·r (4.17)

where u.c. denotes a unit cell and V is its volume. Because there is no time dependence
in the exponential we can move the time derivative out in front of the integral and obtain

∂

∂t

∫
u.c.

dr
V
[(

ψ0 + ∑
m

ηmeiq(m)·r)e−iq(n)·r] = ∂ηn

∂t
. (4.18)

Next, we turn to the right-hand side of the diffusion equation. By successive integration
by parts, we can move the Laplace operator onto the Fourier mode, such as

∂tηn =
∫

u.c.

dr
V

e−iq(n)·r∇2 [L2
1L2

2ψ + rψ + ψ3]
= −q2

0

∫
u.c.

dr
V

e−iq(n)·r [L2
1L2

2ψ + rψ + ψ3] . (4.19)

We are interested in the evolution of the ηn amplitude near the defect core. We start by
demodulating the linear rψ term ∫

u.c.

dr
V

rψe−iq(n)·r (4.20)

= r
∫

u.c.

dr
V
[ψ0 + ∑

m
ηmeiq(m)·r]e−iq(n)·r = rηn. (4.21)

Because ηn goes to zero at the point of the defect we then know that the contribution to
the time evolution is zero. Next we turn to the ψ3 term. In order to simplify the algebra
we start by rewriting the Fourier expansion slightly

∑
n

ηneiq(n)·r (4.22)
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where we have defined η0 = ψ0 and q(0) = 0. Demodulating the ψ3 term gives us∫
u.c.

dr
V ∑

mlo
ηmηlηoeiq(m)·reiq(l)·reiq(o)·re−iq(n)·r. (4.23)

The only terms in the sum that contribute to the integral are those for which

q(m) + q(l) + q(o) = q(n). (4.24)

Dotting both sides with the Burgers vector of the defect b we obtain

sm + sl + so = sn. (4.25)

Because there is a defect present we know that sn ̸= 0. Hence at least one of sm, sl or so
must also be non-zero. But then the amplitude corresponding to this winding number
must go to zero, and so every term in the sum that contributes to the integral is zero.
Thus, the local (algebraic) part of the free energy density does not contribute to the
evolution of the amplitude zeros, aka vortices.

Lastly, we turn to the non-local terms containing differential operators. Because we
are looking for an equation of motion for the amplitudes, we would like to rewrite how
∇2 acts on the ψ field in terms of how a corresponding differential operator ∇2

q(n) acts

on the ηn amplitude. In other words, we would like to find ∇2
q(n) so that

∇2ψ = ∇2ψ0 +∇2 ∑
n

ηneiq(n)·r ≡ ∇2ψ0 + ∑
n

eiq(n)·r∇2
q(n)ηn. (4.26)

We find this operator by considering how the Laplace operator acts on the amplitude
demodulation

∇2ψ = ∇2ψ0 + ∑
n
∇2(ηneiq(n)·r)

= ∇2ψ0 + ∑
n

∂j∂j(ηneiq(n)·r)

= ∇2ψ0 + ∑
n

∂j
[
(∂jηn)eiq(n)·r + ηn(p(n))i(∂jri)eiqn·r]

= ∇2ψ0 + ∑
n

eiq(n)·r[(∂j∂jηn) + 2(∂jηn)i(q(n))i(∂jri)− ηnq2
0
]

= ∇2ψ0 + ∑
n

eiqn·r[∇2 + 2iq(n) · ∇ − q2
0
]
ηn

= ∇2ψ0 + ∑
n

eiq(n)·r∇2
q(n)ηn (4.27)

where ∇2
q(n) = ∇2 + 2iq(n) · ∇ − q2

0. We introduce a new differential operator that acts
on ηn

Lq(n) = (1 +∇2
q(n))(2 +∇2

q(n)). (4.28)
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Rewriting L2ψ in terms this new operator Lq(n) acting on amplitudes and demodulating
both sides of the equation of motion of the ψ-field, we can deduce the equation of motion
for the ηn amplitude as

∂tηn = −q2
0L2

q(n)ηn. (4.29)

This equation is restricted only to the vicinity of a zero of ηn where the additional
algebraic terms do not matter. This we call this the evolution of zeros of the amplitudes.

4.3.2 Evolution of Amplitude Zeros due to an External Perturbation

Having found an equation of motion for the amplitudes of the square lattice we now need
an expression for the amplitudes themselves. We start by assuming that the amplitudes
are linear close to the defect. Then they can be written

η
(0)
n = x + sniy = |r|eisn arctan(y/x). (4.30)

When evaluating the time evolution we must consider the case of q(n) = p(n) and
q(n) = k(n) separately, as they correspond to different equations of motion. We first
consider the case q(n) = p(n). Then the differential operator is given by

L2
pn

= (∇2 + 2ipn · ∇)2(∇2 + 2ipn · ∇+ 1)2. (4.31)

Because
∇ · ∇(x + isy) = ∇ · (ex + isey) = 0 (4.32)

any term containing more than two derivatives must be zero. But every term contains
more than two derivatives so

L2
p(n)η

(0)
n = 0 (4.33)

so η
(0)
n is a stationary solution for the equation of motion corresponding to the first

harmonic. For the case q(n) = k(n) the differential operator is given by

L2
k(n) = (∇2 + 2ik(n) · ∇ − 1)2(∇2 + 2ik(n) · ∇)2. (4.34)

By the same argument as before any term containing more than two derivatives will

vanish when L2
k(n) acts on η

(0)
n . But every term contains more than two derivatives so

L2
k(n)η

(0)
n = 0 (4.35)

as well and η
(0)
n is a steady state solution for all values of n. Next we perturb the

stationary amplitude by some small external deformation field. Mathematically we do

this by multiplying the stationary solution with a factor e−iq(n)·u where |∇u| ≪ 1. The
amplitude will then be of the form

ηn = η
(0)
n e−iq(n)·u (4.36)
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In order to find the time evolution, we must consider how L2
qn

acts on amplitudes of this
form, i.e.

L2
q(n)ηn = (∇2 + 2iq(n) · ∇+ (1 − q2

0))
2(∇2 + 2iq(n) · ∇+ (2 − q2

0))
2ηn. (4.37)

We define
Γ = −iq(n) · u (4.38)

to simplify the algebra. We start by considering three derivatives acting on such an

amplitude and use the small-distortion limit and that η
(0)
n is linear and , thus

∂i∂j∂kηn = ∂i∂j∂k(η
(0)
n eΓ)

= ∂i∂j
[
(∂kη

(0)
n )eΓ + η

(0)
n (∂kΓ)eΓ]

= ∂i
[
(∂jη

(0)
n )(∂kΓ)eΓ + (∂kη

(0)
n )(∂jΓ)eΓ] = 0. (4.39)

We see from the calculation above that any terms in L2
qn

containing more than two
derivatives will yield zero when acting on ηn and as such they can be neglected. Consider
q(n) = p(n). Then

L2
p(n) = (∇2 + 2ip(n) · ∇)2(∇2 + 2ip(n) · ∇+ 1)2 (4.40)

Neglecting terms with three or more derivatives we are left with

L2
p(n) An = −4(p(n) · ∇)2An. (4.41)

Writing this out we get

−4(p(n) · ∇)p(n)i ∂i(η
(0)
n eΓ) = −4(p(n) · ∇)p(n)i

[
(∂iη

(0)
n )eΓ + η

(0)
n (∂iΓ)eΓ]

= −4p(n)j p(n)i

[
(∂iη

(0)
n )(∂jΓ)eΓ + (∂jη

(0)
n )(∂iΓ)eΓ]. (4.42)

Next we consider the case q(n) = k(n). Then

L2
k(n) = (∇2 + 2ik(n) · ∇ − 1)2(∇2 + 2ik(n) · ∇)2 (4.43)

Like before we can neglect terms containing more than two derivatives when the operator
acts on ηn. Then the only term from the expression above that we cannot neglect will
be

(−1)2(2ik(n) · ∇)2 = −4(k(n) · ∇)2 (4.44)

Hence
L2

k(n)Bn = −4k(n)i k(n)j ∂i∂j(η
(0)
n eΓ) (4.45)

= −4k(n)j k(n)i

[
(∂iη

(0)
n )(∂jΓ)eΓ + (∂jη

(0)
n )(∂iΓ)eΓ] (4.46)
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which is the same expression as for the case q(n) = p(n). Note that contrary to for
the steady state solution, this time the time evolution will be different between the two
kinds of amplitude. Using the generic evolution of the amplitude zeros from Eq. 4.29 for
q(n) = p(n) we get

∂t An = 4p2
0 p(n)i p(n)j

[
(∂iη

(0)
n )(∂jΓ) + (∂jη

(0)
n )(∂iΓ)

]
eΓ

= 8p2
0 p(n)i p(n)j (∂iη

(0)
n )(∂jΓ)eΓ (4.47)

where we used the expression is symmetric with respect to i and j indices. Similarly, for
the case q(n) = k(n) we get

∂tBn = 4k2
0k(n)j k(n)i

[
(∂iη

(0)
n )(∂jΓ) + (∂jη

(0)
n )(∂iΓ)

]
eΓ

= 8k2
0k(n)j k(n)i (∂iη

(0)
n )(∂jΓ)eΓ (4.48)

as the equations of motion of amplitudes zeros in the square lattice. We will use these
expressions to determine an expression for the dislocation velocity due to an external
lattice distortion or stress. First, we will determine the corresponding expression for the
stress in the square lattice.

4.4 Stress-Stress Relation for Square Lattices

In this section we will consider the stress of the square lattice. The stress is interesting
in its own right and allows us to compare the stress in the phase field model with the
stress known from continuum mechanics. It is a necessary ingredient when deriving
the mobility of the Peach-Koehler law that we must have before we can proceed. Like
discussed before we distinguish between the microscopic stress h̃ij and stress hij. For our
purposes we only need the stress hij, which is given by [9].

For the square lattice the stress is given by [9]

hij = −2⟨(L1L2ψ)(L1 + L2)∂i∂jψ⟩. (4.49)

In order to investigate whether the stress in the phase field model reduces to the stress
we know from elasticity theory we insert the two mode expansion into the expression
above and assume that the deformation field is slowly-varying in space. This assumption
captures that we want the field to vary on a macroscopic scale and not be sensitive to
lattice periodicity. Mathematically, this means that we only retain terms that are first
order in spatial derivatives. The deformed phase field of the square lattice is expanded
in the two-mode approximation as

ψ = ψ0 + A
N/2

∑
n=1

eip(n)·(r−u) + B
N/2

∑
n=1

eik(n)·(r−u) (4.50)
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where A and B is the amplitudes of the square lattice at equilibrium. Inserting this into
Eq. 4.49, and using the orthogonality conditions we get

hij = −2⟨(L1L2ψ0)(L1 + L2)∂i∂jψ0⟩

−2⟨(L1L2A ∑
n

eip(n)·(r−u))(L1 + L2)∂i∂j(A ∑
n

eip(n)·(r−u))⟩

−2⟨(L1L2B ∑
n

eip(n)·(r−u))(L1 + L2)∂i∂j(B ∑
n

eik(n)·(r−u))⟩. (4.51)

The first term is simply zero because the coarse graining of a constant is zero. The
second term is evaluated in detail in Appendix A and gives

−2⟨(L1L2A ∑
n

eip(n)·(r−u))(L1 + L2)∂i∂j(A ∑
n

eip(n)·(r−u))⟩

= 4A2∂auc ∑
n

p(n)a p(n)c p(n)i p(n)j . (4.52)

The third term can be evaluated in a manner similar to the second and gives us [9]

−2⟨(L1L2B ∑
n

eik(n)·(r−u))(L1 + L2)∂i∂j(B ∑
n

eik(n)·(r−u))⟩

= 4B2∂auc ∑
n

k(n)a k(n)c k(n)i k(n)j . (4.53)

Hence, the stress-strain relation in the continuum limit is given by

hij = 4∂kul

(
A2 ∑

n
p(n)i p(n)j p(n)k p(n)l + B2 ∑

n
k(n)i k(n)j k(n)k k(n)l

)
(4.54)

Using the dyadic sum relations for the reciprocal vectors [9]

∑
n

p(n)i p(n)j p(n)l p(n)k = 2δijkl (4.55)

and

∑
n

k(n)i k(n)j k(n)l k(n)k = 4(δijδkl + 2δkiδjl + 2δkjδil − 2δijkl) (4.56)

we get the equation

hij = 8∂kul
[
(A2 − 4B2)δijkl + 2B2(δijδkl + 2δkiδjl + 2δkjδil)

]
(4.57)

for the stress in the hexagonal lattice, which shows that the stress in the square lattice
is anisotropic, i.e. the elastic constants Cijkl corresponding to the equation above are
not isotropic due to the extra δijkl factor. We see that isotropic limit is a special case

when A = 4B2 as discussed in details in Ref. [9]. We can see the difference in the stress
profile between hxx and hxy in figure 4.3.
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Figure 4.3: On the left is a snapshot of hxx and on the right is a snapshot of hxy for a
for a dipole of dislocations located in different slip planes.

4.5 Peach-Kohler Force in a Square Lattice

Having collected all the necessary ingredients we now attempt to derive the mobility
in the Peach-Koehler law for the square lattice. This will serve as a test for whether
the phase field model in the long wavelength approximation can reproduce the results
of elasticity theory. In order to evaluate the dislocation velocity we need to compute

D(n) and J(n)l . We will use the amplitude given stated in Eq. 4.36. Starting with the
determinant we have

D(n) =
ϵij

2i

[[
(∂iη

(0)
n )eΓ + η

(0)
n (∂iΓ)eΓ][(∂jη̄

(0)
n )eΓ̄ + η̄

(0)
n (∂jΓ̄)eΓ̄]]

=
ϵij

2i

[
(∂iη

(0)
n )(∂jη

(0)
n ) + (∂iη

(0)
n )η̄

(0)
n (∂jΓ̄) + η

(0)
n (∂iΓ)(∂jη̄

(0)
n ) + |η(0)

n |2(∂iΓ)(∂jΓ̄)
]

=
ϵij

2i

[
(∂iη

(0)
n )(∂jη

(0)
n ) + (∂iη

(0)
n )η̄

(0)
n (∂jΓ̄)− η

(0)
n (∂iΓ)(∂jη̄

(0)
n ) + |η(0)

n |2(∂iΓ)(∂jΓ̄)
]

=
ϵij

2i

[
(∂iη

(0)
n )(∂jη̄

(0)
n ) + |η(0)

n |2(∂iΓ)(∂jΓ̄) + 2iℑ
[
(∂iη

(0)
n )η̄

(0)
n ∂jΓ̄

]]
. (4.58)

Because Γ = −Γ̄ the second term is a symmetric tensor, which will vanish when we
contract with the Levi-Civita symbol. The first term can be evaluated explicitly. This
gives us

(∂x(x + isy))(∂y(x − isy))− (∂y(x + isy)(∂x(x − isy)) = −2si. (4.59)

Hence we get

Dn = ϵijℑ
[
(∂iη

(0)
n )η̄

(0)
n ∂jΓ̄

]
− sn. (4.60)
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We now turn to the vortex density current

J(n)l = ℑ
[
(∂tηn)(∂l η̄n)

]
. (4.61)

We have previously found that the evolution of amplitude zeros reduces to

∂tηn = −8iq2
0q(n)j q(n)i q(n)k ∂iη

(0)
n ∂jukeΓ (4.62)

Evaluating the derivative of the amplitude we get that the current J(n)l is

∂l η̄n = (∂l η̄
(0)
n + η̄

(0)
n ∂l Γ̄)eΓ̄ = (∂l η̄

(0)
n + iq(n)k η̄

(0)
n ∂luk)eΓ̄. (4.63)

Putting this together we get

ℑ
[
(∂tηn)(∂l η̄n)

]
(4.64)

= −8q2
0q(n)i q(n)j q(n)k ∂jukℑ

[
i∂iη

(0)
n

(
∂l η̄

(0)
n + η̄

(0)
n ∂l Γ̄

)]
. (4.65)

In the small-distortion limit this simplifies to

ℑ
[
(∂tηn)(∂l η̄n)

]
= −8q2

0q(n)i q(n)j q(n)k ∂jukℑ
[
i∂iη

(0)
n ∂l η̄

(0)
n

]
. (4.66)

The expression inside ℑ[...] can be evaluated to yield

ℑ
[
i(∂iη

(0)
n )∂l η̄

(0)
n
]

= ℑ
[
i(δix + isδiy)(δlx − isδly)

]
= ℑ

[
i(δixδlx − isδixδly + isδiyδlx + s2δiyδly)

]
= δixδlx + s2

nδiyδly. (4.67)

sn will either be −1, 1 or 0 depending on the amplitude under consideration. Amplitudes
for which sn is zero are constant and do not contribute to the defect velocity. Hence we
can assume that sn = ±1 and the above expression can be taken to be

δixδlx + δiyδly. (4.68)

We can determining which tensor this is by considering its action on an arbitrary rank
2 tensor

(δixδlx + δiyδly)Ail = Axx + Ayy = δil Ail . (4.69)

Hence
ℑ
[
i(∂iη

(0)
n )∂l η̄

(0)
n
]
= δil (4.70)

and we get that the current is

J(n)l = −8q2
0q(n)l q(n)j q(n)k ∂juk. (4.71)
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Inserting these into the general expression for the velocity in a square lattice given in
4.10 we get the expression

Vi =
8π2

N(p2
0 + k2

0)b2
ϵli ∑

n
s2

n

−8q2
0q(n)l q(n)j q(n)k ∂juk

ϵijℑ
[
(∂iη

(0)
n )η̄

(0)
n ∂jΓ̄

]
− sn

. (4.72)

Because Γ is very small compared to −s we get that this is approximately equal to

≈ 8π2

N(p2
0 + k2

0)b2
ϵli ∑

n
s2

n

[−8q2
0q(n)l q(n)j q(n)k ∂juk

−sn

]
. (4.73)

We can rearrange Eq. 3.14 to give the identity

bmq(n)m

2πsn
= 1 (4.74)

which we can insert into Eq. 4.73 to obtain Using this identity we can manipulate the
expression for the dislocation velocity to yield

=
32π

N(p2
0 + k2

0)b2
ϵlibm∂juk

N

∑
n=1

q2
0q(n)m q(n)l q(n)j q(n)k . (4.75)

We are then left with the expression

=
32π

N(p2
0 + k2

0)b2
ϵlibm∂juk

N

∑
n=1

q2
0q(n)m q(n)l q(n)j q(n)k , (4.76)

which we can split into two parts to obtain

=
32π

N(p2
0 + k2

0)b2
ϵlibm∂juk

(
p2

0

N/2

∑
n=1

p(n)m p(n)l p(n)j p(n)k + k2
0

N/2

∑
n=1

k(n)m k(n)l k(n)j k(n)k

)
. (4.77)

This is a valid expression for the velocity of the dislocations, expressed in terms of the
local added distortion and dyadic products of reciprocal lattice vectors. The challenge,
however, is to try to connect this to the expression of the stress tensor in equation (4.54),
which we reprint here for convenience

hij = 4∂kul

(
A2 ∑

n
p(n)i p(n)j p(n)k p(n)l + B2 ∑

n
k(n)i k(n)j k(n)k k(n)l

)
. (4.54)

As we see, while the form of the two expressions is similar, the difference is that the
weight of the fourth order dyadic products are different, in the former weighted by p2

0
and k2

0 and in the latter by the equilibrium amplitudes. Thus, equation (4.77) cannot be
immediately used to obtain the mobility of the Peach-Koehler force in a square lattice,
because there is no way to introduce the equilibrium amplitudes A and B we need in
order to insert the expression for the stress.
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Chapter 5

Discussion and Conclusion

In this thesis, we have studied the properties of a square lattice with dislocations using
the phase field crystal model. By using the methods proposed in Refs. [7, 8], we have
derived expressions of the dislocation velocity for the case of the 2D square lattice. By
coarse-graining the results from the phase field, we have compared these results to those
of classical elasticity theory. The stress of the square lattice is anisotropic, which we can
see from the analytical expression of Eq. (4.54). We have also attempted to derive the
dislocation mobility from the Peach-Koehler law for the square lattice by expressing the
velocity in terms of the stress acting on a dislocation. While the resulting expression has
a similar form as for the hexagonal lattice, and is a valid expression for the dislocation
velocity under the imposition of an external displacement field, it is not immediately
clear how to relate it to the stress tensor and derive an explicit mobility. This is a very
interesting results since it shows that this method of deriving the dislocation mobility
might be applicable only in the one-mode approximation.

This approach has provided insight into the theoretical calculations that connect the
phase-field crystal description of dislocation dynamics to that of continuum mechan-
ics. However, whether it is possible to connect these descriptions explicitly remains an
open question. An alternative approach to the calculation done in this thesis, which by
definition would have allowed us to find an expression for the Peach-Koehler law in a
square lattice, would be to only use the first harmonic in the Fourier expansion. In this
approximation, only the first term in the expression for the stress, Eq. (4.49) would be
present, and only the first of the two sums would be present in Eq. (4.77). Then the
derivation of the mobility would be algebraically identical to the work done previously
to derive the mobility in the hexagonal lattice. The obvious downside to this approach
is that the one-mode harmonic Fourier expansion is a poor approximation of the phase
field for the square lattice. As such, the approximation of the mobility obtained by such
a method would not be very good. A different idea would be to find two independent
expressions for the dislocation velocity of the defect, one expression using only the first
harmonics and a second expression using only the second harmonics. For each of these
harmonics, the defect velocity’s derivation will be identical to that of the hexagonal lat-
tice. The two expressions for the velocity could then be added together, each weighted by
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the amplitude of the respective harmonic, allowing us to substitute in the stress tensor.
However, this approach assumes that the defect velocity we obtain from using either of
the harmonics is the same, which seems doubtful given that the tetradic product sum
for the two kinds of reciprocal vectors is different [9].

In summary, this thesis represents the first attempt to generalize the framework of
exact analytical calculation of the Peach-Koehler law to a PFC model including higher
order Fourier modes. The result shows that the generalization is not straightforward and
that more research is needed to find this connection explicitly, and we have proposed a
few potential strategies.

38



Appendix A

Lattice geometry

A.1 Reciprocal lattice vectors

Say we have some lattice with basis vectors a1 = a0(0, 1), a2 = a0(1, 0). The phase field
of the lattice should be periodic ψ(r) = ψ(r + a). Taking the Fourier transform of both
sides we find

ψ(q) =
∫

dr3ψ(r)re−iq·r =
∫

d3rψ(r + a)e−iq·r (A.1)

We can define r′ = r + a, which gives us dr = dr′. The equation above become∫
d3rψ(r)e−iq·r =

∫
d3r′ψ(r′)e−iq·(r′−a) (A.2)

= eiq·a
∫

d3r′ψ(r′)e−iq·r′ . (A.3)

Since r′ is just a dummy variable in the above integral, the integral in the expression
above must be equal to to integral we started out with. Hence eiq·a = 1 which implies
q · a = 2πN where N is some integer. For the square lattice this gives us that any vector
of the form

q =
2π

a0
(k, l) (A.4)

will be a reciprocal lattice vector, if k and l are integers The reciprocal lattice vectors
2π
a0
(1, 0), 2π

a0
(−1, 0), 2π

a0
(0,−1) and 2π

a0
(0, 1) are often referred to as the first harmonics,

while 2π
a0
(1, 1), 2π

a0
(1,−1), 2π

a0
(−1, 1) and 2π

a0
(−1,−1) are referred to as the second har-

monics.

A.2 Lattice vectors and moments

Say we have some set of lattice vectors

Q = {q(n)}N
n=1. (A.5)
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From this set we can construct something called the p’th moment tensor

Q =
N

∑
n=1

q(n) ⊗...⊗︸ ︷︷ ︸
p times

q(n) (A.6)

or in index notation

Qi1...ip =
N

∑
n=1

q(n)i1
...q(n)ip

. (A.7)

Looking at the reciprocal vectors of the square lattice, including only the first two
harmonics, we get

Q =
{(1

0

)(
0
1

)(
−1
0

)(
0
−1

)(
1
1

)(
−1
1

)(
−1
−1

)(
1
−1

)}
. (A.8)

We get the following components of the second moment tensor of this set

Q11 = 6
Q12 = 0
Q21 = 0
Q22 = 6

(A.9)

which we can write as
Qij = 6δij. (A.10)

This turns out to be an example of a general phenomena; if you have some set of lattice
vectors which has B-fold rotational symmetry, the p’th order moment is zero if p is
odd and isotropic if p is even [1]. Isotropic tensors are defined by not having their
components changed when you rotate the coordinate system. For rank two tensors the
unique isotropic tensor is the Kronecker delta. By B-fold rotational symmetry we mean
that there are B different angles you can rotate the set of lattice vectors by and obtain
the same set of vectors. For instance, the square lattice has B = 4 because rotation
about the origin of every vector in the set by π/2, π, 3π/4 and 2π all leave the set
unchanged. Because the only isotropic rank two tensor is the Kronecker delta, we know
that the second order moment has to be proportional to the Kronecker delta

Qij =
N

∑
n=1

q(n)i q(n)j ∝ δij. (A.11)

If we assume that all vectors in the set have the same length we can take the trace to
obtain

Nq2
0 = 2 (A.12)

so the proportionality constant is
Nq2

0
2 and we get

N

∑
n=1

q(n)i q(n)j =
Nq2

0
2

δij. (A.13)
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In the above example of the square lattice the vectors did not all have the same length.
We can then split the set Q into sets of vectors which has uniform length respectively,
apply the result to each set separately and sum the result. In the example above this
would give

N

∑
n=1

q(n)i q(n)j =
N
4
(p2

0 + k2
0)δij. (A.14)
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Appendix B

Phase Field Crystal

B.1 Computing a time derivative

The aim of this section is to prove the identity

D(n)∂tδ
(2)(ηn) = −ϵkl∂k Jl . (B.1)

We use the notation ηn,1 = ℜ[ηn] and ηn,2 = ℑ[ηn]. Evaluating the left hand side of the
equation above gives

ϵkl∂kηn,1∂lηn,2∂tδ
(2)(ηn) = ϵkl∂kηn,1∂lηn,2

∂δ(2)(ηn)

∂ηn,1
∂tηn,1 + ϵkl∂kηn,1∂lηn,2

∂δ(2)(ηn)

∂ηn,2
∂tηn,2.(B.2)

Turning to the right hand side we have

ϵkl Jl∂kδ(2)(ηn) = ϵklℑ[∂tηn∂l η̄n]

(
∂δ(2)(ηn)

∂ηn,1
∂kηn,1 +

∂δ(2)(ηn)

∂ηn,2
∂kηn,2

)
= ϵklℑ[(∂tηn,1 + i∂tηn,2)(∂lηn,1 − i∂lηn,2)

(
∂δ(2)(ηn)

∂ηn,1
∂kηn,1 +

∂δ(2)(ηn)

∂ηn,2
∂kηn,2

)
= ϵkl(∂tηn,2∂lηn,1 − ∂tηn,1∂lηn,2)

(
∂δ(2)(ηn)

∂ηn,1
∂kηn,1 +

∂δ(2)(ηn)

∂ηn,2
∂kηn,2

)
. (B.3)

When the expressions inside the brackets are multiplied out, any symmetric tensors will
vanish since they are contracted with the Levi-Civita symbol. Hence we are left with

= ϵkl∂tηn,2∂lηn,1
∂δ(2)(ηn)

∂ηn,2
∂kηn,2 − ϵkl∂tηn,1∂lηn,2

∂δ(2)(ηn)

∂ηn,1
∂kηn,1. (B.4)

The k and l indices can be permuted in the first term provided we change the sign.
Hence we obtain

= −ϵkl∂tηn,2∂kηn,1
∂δ(2)(ηn)

∂ηn,2
∂lηn,2 − ϵkl∂tηn,1∂lηn,2

∂δ(2)(ηn)

∂ηn,1
∂kηn,1. (B.5)
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B.2 Stress algebra

We want to evaluate the expression

−2⟨L1L2A ∑ eip(n)·(r−u)(L1 + L2)∂ij A ∑ eip(n)(r−u)⟩. (B.6)

We start by considering

L1L2A ∑ eip(n)·(r−u). (B.7)

Since derivatives commute we can also express this as

L2L1A ∑ eip(n)·(r−u). (B.8)

We then get

L2(∂ii + 1)A ∑ eip(n)·(r−u) (B.9)

= L2
[
∂i
(

A ∑ ip(n)j ∂i(rj − uj)eip(n)·(r−u))+ A ∑ eip(n)·(r−u)] (B.10)

= L2
[
A ∑(ip(n)j ip(n)k ∂i(rj − uj)∂i(rk − uk) + ip(n)j ∂ii(rj − uj) + 1)eip(n)·(r−u)] (B.11)

= L2
[
A ∑((−1)p(n)j p(n)k δijδik + p(n)j p(n)k δij∂iuk + p(n)j p(n)k δik∂iuj + 1)eip(n)·(r−u)]. (B.12)

Using that p(n) · p(n) = 1 we get

2L2
[
A ∑ p(n)i p(n)k ∂iukeip(n)·(r−u)] (B.13)

= 2(2 + ∂ll)A ∑ p(n)i p(n)k ∂iukeip(n)·(r−u) (B.14)

= 2A ∑
[
2(p(n)i p(n)k ∂iuk) + p(n)i p(n)k ip(n)a ∂iuk∂l(ra − ua)∂l

]
eip(n)·(r−u) (B.15)

= 2A ∑
[
2(p(n)i p(n)k ∂iuk) + p(n)i p(n)k ip(n)l ip(n)b ∂iuk∂l(rb − ub)

]
eip(n)·(r−u) (B.16)

= 2A ∑ p(n)i p(n)k ∂iukeip(n)·(r−u). (B.17)

Using parts of the calculations above we also have

∂ijL1A ∑ eip(n)·(r−u) (B.18)

= ∂ij(1 + ∂kk)A ∑ eip(n)·(r−u) (B.19)
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= ∂ij
[
A ∑ eip(n)·(r−u) + ∂k

(
A ∑ ip(n)a ∂k(ra − ua)eip(n)·(r−u))] (B.20)

= ∂ij
[
A ∑ eip(n)·(r−u) + A ∑ ip(n)a ip(n)c ∂k(ra − ua)∂k(rc − uc)eip(n)·(r−u)] (B.21)

= ∂ij A ∑
[
1 − p(n)a p(n)c δkaδkc + p(n)a p(n)c ∂kuaδkc + p(n)a p(n)c ∂kucδka

]
eip(n)·(r−u) (B.22)

= ∂ij A ∑
[
1 + 2p(n)a p(n)c ∂kuaeip(n)·(r−u)] (B.23)

and
∂ijL2A ∑ eip(n)·(r−u) (B.24)

= ∂ij A ∑
[
1 + 2p(n)a p(n)c ∂auc

]
eip(n)·(r−u). (B.25)

Having gathered these ingredients we can now evaluate the expressions we started
with

⟨(L2L2A ∑
n

eip(n)·(r−u))(L1 + L2)∂ij A ∑
m

eip(m)·(r−u)⟩ (B.26)

2A2 ∑
n,m

(p(n)i p(n)k ∂iukeip(n)·(r−u))∂ij
[
(1 + 2p(m)

a p(m)
c ∂auc)eip(m)·(r−u)] (B.27)

= 2A2 ∑
n,m

⟨(p(n)i p(n)k ∂iukeip(n)·(r−u))(−2p(m)
a p(m)

c p(m)
i p(m)

j − p(m)
i p(m)

j − 2p(m)
a p(m)

c p(m)
i p(m)

j )eip(m)·(r−u)⟩

(B.28)

= −2A2 ∑
n,m

⟨p(n)a p(n)c p(m)
i p(m)

j ∂auc⟨ei(p(n)+p(m))·(r−u))⟩. (B.29)

Using that ⟨ei(p(n)+p(m))·(r−u))⟩ = δn−m and that we can reorganize the sum such that a
sum over m is the same as a sum over −m we get that the above is equal to

= −2A2 ∑
n

p(n)a p(n)c p(n)i p(n)j ∂auc. (B.30)
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