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Abstract 

Background  Symptomatic spinal stenosis is a prevalent complication in adults with achondroplasia. Increased 
muscle fat infiltration (MFI) and reduced thigh muscle volumes have also been reported, but the pathophysiology is 
poorly understood. We explored whether the increased MFI and reduced thigh muscle volumes were associated with 
the presence of symptomatic spinal stenosis and physical functioning.

Methods  MFI and thigh muscle volumes were assessed by MRI in 40 adults with achondroplasia, and compared to 
80 average-statured controls, matched for BMI, gender, and age. In achondroplasia participants, the six-minute walk-
test (6MWT), the 30-s sit-to-stand test (30sSTS), and a questionnaire (the IPAQ) assessed physical functioning.

Results  Symptomatic spinal stenosis was present in 25 of the participants (the stenosis group), while 15 did not 
have stenosis (the non-stenosis group). In the stenosis group, 84% (21/25) had undergone at least one spinal 
decompression surgery. The stenosis group had significantly higher MFI than the non-stenosis group, with an age-, 
gender and BMI-adjusted difference in total MFI of 3.3 percentage points (pp) (95% confidence interval [CI] 0.04 to 
6.3 pp; p = 0.03). Compared to matched controls, the mean age-adjusted difference was 3.3 pp (95% CI 1.7 to 4.9 pp; 
p < 0.01). The non-stenosis group had MFI similar to controls (age-adjusted difference − 0.9 pp, 95% CI − 3.4 to 1.8 pp; 
p = 0.51). MFI was strongly correlated with the 6MWT (r = − 0.81, − 0.83, and − 0.86; all p-values < 0.01), and moder‑
ately correlated with the 30sSTS (r = − 0.56, − 0.57, and − 0.59; all p-values < 0.01). There were no significant differ‑
ences in muscle volumes or physical activity level between the stenosis group and the non-stenosis group.

Conclusion  Increased MFI in the thigh muscles was associated with the presence of symptomatic spinal stenosis, 
reduced functional walking capacity, and reduced lower limb muscle strength. The causality between spinal stenosis, 
accumulation of thigh MFI, and surgical outcomes need further study. We have demonstrated that MRI might serve 
as an objective muscle biomarker in future achondroplasia studies, in addition to functional outcome measures. The 
method could potentially aid in optimizing the timing of spinal decompression surgery and in planning of post-
surgery rehabilitation.
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Introduction
Achondroplasia is the most common skeletal dysplasia 
with disproportionate short stature, affecting more than 
360,000 people worldwide [1, 2]. The condition is caused 
by a gain-of-function mutation in the fibroblast growth 
factor receptor 3 (FGFR3) gene, negatively affecting bone 
growth and differentiation [3, 4]. Characteristic clinical 
manifestations, in addition to the short stature, include 
rhizomelic short arms and legs, macrocephaly with 
frontal bossing, and midface hypoplasia [3, 5]. Several 
medical complications can occur throughout lifetime, 
including foramen magnum stenosis in infancy, central or 
obstructive sleep apnea, spine deformities, symptomatic 
spinal stenosis, tibial bowing, recurrent otitis media, con-
ductive hearing loss, and chronic pain [2, 5–9]. In chil-
dren, motor developmental milestones are delayed, while 
the cognitive development usually is within average range 
[2, 7, 10].

The spinal canal is congenitally narrow in all peo-
ple with achondroplasia, due to the short pedicles and 
reduced interpedicular distance [4, 11, 12]. The narrow 
canal, combined with thoracolumbar kyphosis, lumbar 
hyperlordosis, and acquired age-related degenerative 
changes, give a high lifetime risk in achondroplasia for 
developing symptomatic spinal stenosis [4, 11, 13–15]. 
Symptoms can present already in childhood, and the 
prevalence increases with age [9, 16]. More than half of 
persons with achondroplasia will develop symptoms 
of spinal stenosis before the age of 40  years, increasing 
to over 70% during the following 10–15  years [13, 14, 
17–19].

Magnetic resonance imaging (MRI) is currently 
regarded as the reference standard for body composi-
tion analyses, and enables an accurate and quantitative 
assessment of muscle fat content and fat-free muscle 
volumes [20–25]. In a recent MRI-based study on body 
composition in achondroplasia, we found increased mus-
cle fat infiltration (MFI) and reduced fat-free thigh mus-
cle volumes in adult participants with achondroplasia 
compared to matched average stature controls [26]. Sims 
et  al. have reported similar findings in 10 young adult 
men with achondroplasia [27]. Studies on average stat-
ure populations have found that accumulation of MFI in 
the thighs occurs after only a few weeks of immobiliza-
tion or physical inactivity [22, 28, 29] Following a spinal 
cord injury, a 30–60% reduction in muscle mass has been 
reported [30]. However, the association between muscle 
fat content, or muscle mass, and the presence of spinal 

stenosis has not previously been studied in patients with 
achondroplasia.

In the present study, we explored whether the increased 
MFI and reduced thigh muscle volumes were associated 
with the presence of symptomatic spinal stenosis and 
physical functioning in a Norwegian cohort of adults 
with achondroplasia.

Materials and methods
Study design, population and data collection
This cross-sectional study was part of The Norwegian 
Adult Achondroplasia Study, a population-based study 
conducted between 2017 and 2019 on community-dwell-
ing adults living in Norway, aged 16 years or older. The 
recruitment process, and inclusion and exclusion criteria, 
have been described in detail elsewhere [17].

Anthropometry and definition of symptomatic spinal 
stenosis
Anthropometric measurements and data regarding the 
presence of symptomatic spinal stenosis were collected 
from The Norwegian Adult Achondroplasia Study [17]. 
Symptomatic spinal stenosis was defined as the presence 
of, or history of, characteristic clinical symptoms of spi-
nal stenosis, combined with spinal stenosis described at 
the correlating spine level(s) in the MRI reports, and in 
the surgical records for those who had undergone spine 
decompression surgery [17]. To confirm the presence 
of spinal stenosis in symptomatic non-operated partici-
pants, the MRIs were collected and re-interpreted by an 
experienced radiologist. In those patients, a cross-sec-
tional anteroposterior spinal canal diameter ≤ 10 mm at 
minimum one spine level was considered diagnostic of 
symptomatic spinal stenosis [17, 31–34].

Assessment of muscle fat infiltration and fat‑free muscle 
volume
The assessment of MFI and fat-free muscle volumes in 
the thighs was performed using the MRI-based meth-
odology developed by AMRA Medical AB (Linköping, 
Sweden) [20, 23, 35]. This method has been used and 
validated in several studies [20, 23, 35, 36], including the 
large UK Biobank Imaging Study with more than 10,000 
participants [37, 38]. The method is further detailed in 
Borga et al. and Linge et al. [23, 37]. We used a 3 T MRI 
scanner (Discovery 750, GE Healthcare) with a 32 Chan-
nel Body Array Coil. Two sequences were used; LAVA 
flex (3D imaging) and IDEAL IQ sequence. The scan area 
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was from the neck down to the ankle, with a total scan-
ning time of six minutes [26].

The body composition analyses were performed using 
the AMRA Researcher software (AMRA Medical AB, 
Linköping, Sweden) [20, 23, 35]. The MRI scans were 
analyzed for MFI (in percent) and fat-free muscle vol-
umes (in liters) in the anterior, posterior, and both (total) 
thigh muscle compartments. Following the automated 
segmentation and analysis process, an experienced oper-
ator reviewed each segmentation for anatomical correct-
ness and technical quality. In two participants, MFI and 
muscle volumes could only be analyzed in one leg due 
to technical issues. In these two cases, we reported the 
value from the non-missing thigh as representative for 
both legs.

Body composition profile and control group
A body composition profile was made for each par-
ticipant completing the MRI scan, and for the total 
achondroplasia study population, based on the same 
methodology used in the UK Biobank Imaging Study 
[23]. In addition, participants with achondroplasia were 
compared to average stature controls (1:2) from the UK 
Biobank database (n = 9604), matched for body mass 
index (BMI), gender, and age [26]. Sitting height was used 
instead of height as a standardization variable in the body 
composition profile plots for visceral adipose tissue and 
total abdominal adipose tissue [26].

Physical functioning
Data on physical functioning and activity level were col-
lected from The Physical Fitness Study, conducted on the 
same study population as The Norwegian Adult Achon-
droplasia Study. The selection and feasibility of the physi-
cal functioning tests are further detailed in de Vries et al. 
[17, 39]. The six-minute walk test (6MWT) was used to 
assess functional walking capacity, and the 30-s sit-to-
stand test (30sSTS) was used to assess muscle strength 
in the lower limbs [40, 41]. These tests reflect physical 
performances typically required in daily life situations 
[41–44]. The 6MWT was conducted according to the 
American Thoracic Society Statement guidelines [42], 
and the 30sSTS was conducted according to Jones et al. 
[40]. We recorded the total walking distance up to the 
nearest meter and the number of full stands.

The International Physical Activity Questionnaire short 
form (IPAQ) was used to assess physical activity level in 
adult participants with achondroplasia [39]. The partici-
pants were asked to report all their activities during the 
last week, specified by intensity (type of activity), dura-
tion (in minutes) and frequency. The physical activity 
level for each participant was then calculated in MET 
scores (metabolic equivalent task in minutes per week) 

according to the IPAQ scoring manual [45], as further 
detailed in de Vries et al. [39].

Statistical analysis
For continuous variables, descriptive statistics are pre-
sented as means with standard deviation (SD). Group 
differences are presented with 95% independent samples 
t-tests confidence intervals (CI) and p-values. In par-
ticipants with achondroplasia, the stenosis group was 
older and had higher BMI than the non-stenosis group. 
For comparison of MFI and muscle volumes between 
the stenosis group and non-stenosis group, we applied 
linear regression analyses, adjusting for age, gender and 
BMI. The adjusted difference in total MFI was evaluated 
by estimated marginal means. In comparison between 
achondroplasia participants and UK Biobank controls, 
perfect matching by age was not possible. Linear mixed 
effects regression analyses were applied to adjust for 
the age differences, taking into account the variation in 
observed levels across different matched pairs [26]. Con-
tinuity corrected chi-squared tests were used for com-
paring proportions (using the “prop. test” R function). 
Correlations was given with CI intervals based on 10,000 
percentile bootstrap replications, and Pearson chi-square 
test p-values. Statistical analysis was performed using R 
version 3.6.0 (The R Foundation, Vienna, Austria) and 
the SPSS version 26 (IBM Corp., Armonk, New York). 
For all tests, statistical significance was set to p < 0.05 
(two-sided).

Results
The achondroplasia study population
Forty participants with achondroplasia, 20 men and 20 
women, completed MRI for body composition analysis 
(Fig. 1). Median age was 32 years (range 16–69 years). All 
participants had genetically confirmed achondroplasia 
[17]. Symptomatic spinal stenosis was present in 25 of the 
participants (the stenosis group), while 15 did not have 
stenosis (the non-stenosis group). The stenosis group was 
older and had higher BMI than the non-stenosis group 
(Table  1). Mean age difference was 20.1  years (95% CI 
12.4 to 27.9  years; p < 0.01), and mean BMI difference 
was 5.9 kg/m2 (95% CI 2.1 to 9.8 kg/m2; p < 0.01). There 
were no considerable differences between the two groups 
regarding height, sitting height, gender, or the proportion 
having had lower limb extension surgery (Table 1).

In the stenosis group, 96% (24/25) of the participants 
had lumbar spinal stenosis. In addition, 49% (10/25) 
had thoracic spinal stenosis, and 36% (9/25) had cervi-
cal stenosis. Age at first symptom onset varied from 11 
to 57  years. Spinal decompression surgery had been 
performed in 84% (21/25) of the stenosis group; 13 had 
undergone one decompression surgery, five had two 
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operations, and three participants had three operations. 
Time from symptom onset to first surgery varied from 
three months to 35 years, with a median of 7 years.

Thirty-eight participants (all except one permanent 
wheelchair user and one participant temporarily unable 
to perform the tests due to recent lower limb surgery) 

completed the physical functioning tests (the 6MWT 
and 30sSTS), and 37 completed the IPAQ. Participants 
in the stenosis group had significantly shorter walking 
distance than those in the non-stenosis group (392  m 
vs. 523 m), and performed 5.7 less stands in the 30sSTS 
(Table  1). The self-reported physical activity level (the 
IPAQ) was lower in the stenosis group than in the 

Fig. 1  Examples of coronal and transverse magnetic resonance images in four adult participants with achondroplasia: two participants without 
spinal stenosis (to the left), and two participants with symptomatic spinal stenosis (to the right). The performance in the six-minute walk test 
(6MWT) and muscle fat infiltration (MFI) in the anterior compartment are provided for each of the participants. Muscle compartments are displayed 
in color



Page 5 of 12Fredwall et al. Orphanet Journal of Rare Diseases           (2023) 18:35 	

non-stenosis group, but the difference was not statisti-
cally significant (Table 1).

Muscle fat infiltration and fat‑free muscle volumes 
in the stenosis group versus the non‑stenosis group
MFI in the anterior and posterior thigh muscles com-
partments, and total thigh MFI, were significantly 
higher in the stenosis group than in the non-stenosis 
group (Table  2 and Fig.  2). Mean (SD) total MFI was 

13.4% (4.4) in the stenosis group versus 8.2% (1.7) in 
the non-stenosis group. Age-, gender and BMI-adjusted 
difference in total thigh MFI was 3.3 percentage points 
(pp) (95% CI 0.4 to 6.3 pp; p = 0.03), consistent with an 
estimated marginal means percentwise difference of 
34.6%. The observed differences in MFI between the 
stenosis group and the non-stenosis group in the total 
study population remained also in the youngest partici-
pants aged 30 years or younger, with a mean difference 

Table 1  Characteristics of study participants with achondroplasia (n = 40)

a Six-minute walk test (in metres); n = 38 (stenosis group: n = 24; non-stenosis group: n = 14)
b 30-second sit-to-stand test (number of full stands); n = 38 (stenosis group: n = 24; non-stenosis group: n = 14)
c MET: metabolic equivalent; n = 37 (stenosis group: n = 23; non-stenosis group: n = 14)

Variables Spinal stenosis
(n = 25)

No stenosis
(n = 15)

Mean difference (95% CI) P value

Mean (SD) Mean (SD)

Age, years 44.5 (16.2) 24.4 (7.8) 20.1 (12.4 to 27.9)  < 0.01

Body mass index, kg/m2 35.5 (6.2) 29.6 (5.2) 5.9 (2.1 to 9.8)  < 0.01

Height, cm 135.2 (9.6) 132.5 (7.4) 2.8 ( − 3.1 to 8.6) 0.35

Sitting height, cm 86.9 (4.5) 86.4 (2.7) 0.5 ( − 1.9 to 2.8) 0.68

6MWT, m a 392 (123) 523 (61)  − 131 ( − 192 to  − 70)  < 0.01

30sSTS, stands b 20.8 (5.6) 26.6 (4.2)  − 5.7 ( − 9.2 to  − 2.2)  < 0.01

Activity level, MET c 2284 (2275) 3678 (2825)  − 1395 ( − 3111 to 321) 0.11

% (n) % (n)
Male gender 48 (12) 53 (8)  − 5 ( − 43 to 32) 1.0

Lower limb extension, yes 28 (7) 20 (3) 8 ( − 24 to 40) 0.85

Wheelchair users 56 (14) 27 (4) 29 ( − 5 to 64) 0.14

Table 2  Muscle fat infiltration (MFI) and fat-free thigh muscle volumes (FFMV) in the stenosis group versus the non-stenosis group in 
the total achondroplasia study population, and in the youngest participants (age < 31 years)

a Adjusted differences estimated by linear regression

Muscle variables Stenosis Non-stenosis Unadjusted Adjusted for age, gender and 
BMI  a(n = 25) (n = 15)

Mean (SD) Mean (SD) Diff. (95% CI) P value Diff. (95% CI) P 
value

MFI anterior, % 12.2 (5.2) 7.2 (1.4) 5.0 (2.7 to 7.2)  < 0.01 3.2 ( − 0.3 to 6.7) 0.07

MFI posterior, % 14.0 (4.4) 8.6 (1.9) 5.5 (3.4 to 7.5)  < 0.01 3.4 (0.5 to 6.3) 0.02

MFI total, % 13.4 (4.4) 8.2 (1.7) 5.3 (3.3 to 7.3)  < 0.01 3.3 (0.4 to 6.3) 0.03

FFMV anterior, L 1.8 (0.7) 1.9 (0.4)  − 0.2 ( − 0.5 to 0.2) 0.35  − 0.3 ( − 0.8 to 0.2) 0.23

FFMV posterior, L 4.2 (1.3) 4.4 (0.8)  − 0.2 ( − 0.9 to 0.4) 0.49  − 0.6 ( − 1.4 to 0.3) 0.17

FFMV Total, L 6.0 (1.9) 6.4 (1.2)  − 0.4 ( − 1.4 to 0.6) 0.43  − 0.9 ( − 2.1 to 0.4) 0.14

Stenosis Non-stenosis Unadjusted

Age < 31 years (n = 7) (n = 12) Diff. (95% CI) P value

Age, years 23.6 (5.1) 21.4 (4.4) 2.3 ( − 2.8 to 7.3) 0.34

BMI, kg/m2 33.6 (7.1) 29.5 (5.8) 4.1 ( − 2.9 to 11.1) 0.22

MFI anterior, % 10.4 (2.8) 7.0 (1.5) 3.4 (0.7 to 6.1) 0.02

MFI posterior, % 12.2 (3.2) 8.4 (2.0) 3.8 (0.7 to 6.9) 0.02

MFI total, % 11.6 (2.8) 8.0 (1.8) 3.6 (1.0 to 6.3) 0.01
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in total MFI of 3.6  pp (95% CI 1.0 to 6.3  pp; p = 0.01) 
(Table 2).

There were no considerable differences in unadjusted 
fat-free thigh muscle volumes between the stenosis group 
and the non-stenosis group (Table  2 and Fig.  2). After 
adjusting for age, gender and BMI, the difference in total 
muscle volume was -0.9 L (95% CI -2.1 to 0.4 L; p = 0.14), 
although not statistically significant (Table 2).

Muscle fat infiltration and fat‑free muscle volumes 
in participants with achondroplasia versus matched 
controls
In the stenosis group, mean MFI in the thigh muscles 
compartments were significantly higher in participants 
with achondroplasia versus matched UK Biobank con-
trols for both the anterior and posterior compartments, 
and for total MFI (Table  3). Mean age-adjusted differ-
ence in total thigh MFI was 3.3 pp (95% CI 1.7 to 4.9 pp; 
p < 0.01). In contrast, mean MFI values for the non-ste-
nosis group were similar to UK Biobank controls, with 
an age-adjusted mean difference in total MFI of − 0.9 pp 
(95% CI − 3.4 to 1.8 pp; p = 0.51) (Table 3 and Fig. 3).

ACH: Spinal stenosis (n=25)
ACH: No spinal stenosis (n=15)

Metabolic Disease Free 
Reference

Fig. 2  Body composition profiles in participants with achondroplasia 
in the spinal stenosis group (in green) versus the non-stenosis group 
(in blue). Dashed blue lines are reference-values based on median 
of the metabolic disease-free UK Biobank reference population 
(n = 2927)

Table 3  Muscle fat infiltration (MFI) and fat-free muscle volumes (FFMV) in the thighs in participants with achondroplasia (ACH) 
compared to UK Biobank controls, matched for BMI, gender, and (partly) for age

a Adjusted differences estimated by linear mixed effects models (taking into account the variations across different matched pairs)

Stenosis group ACH
(n = 25)

Controls
(n = 50)

Unadjusted Adjusted for agea

Mean (SD) Mean (SD) Difference (95% CI) Difference (95% CI) P value

Age, years 44.5 (16.2) 54.4 (6.7)  − 9.8 ( − 13.1 to  − 6.5)

BMI, kg/m2 35.5 (6.2) 34.5 (5.0) 1.0 (0.2 to 1.9) 1.7 (0.7 to 2.8)  < 0.01

MFI anterior, % 12.2 (5.2) 8.3 (2.5) 3.9 (2.3 to 5.5) 4.7 (2.9 to 6.4)  < 0.01

MFI posterior, % 14.0 (4.4) 12.4 (3.0) 1.7 (0.1 to 3.2) 2.6 (0.9 to 4.2)  < 0.01

MFI total, % 13.4 (4.4) 10.9 (2.8) 2.5 (1.0 to 4.0) 3.3 (1.7 to 4.9)  < 0.01

FFMV anterior, L 1.8 (0.7) 4.1 (1.1)  − 2.3 ( − 2.7 to  − 2.0)  − 2.3 ( − 2.7 to  − 1.9)  < 0.01

FFMV posterior, L 4.2 (1.3) 7.7 (1.7)  − 3.5 ( − 4.1 to  − 3.0)  − 3.4 ( − 4.0 to  − 2.7)  < 0.01

FFMV Total, L 6.0 (1.9) 11.9 (2.7)  − 5.9 ( − 6.7 to  − 5.0)  − 5.6 ( − 6.6 to  − 4.6)  < 0.01

Non-stenosis group ACH
(n = 15)

Controls
(n = 30)

Unadjusted Adjusted for age a

Age, years 24.4 (7.8) 50.2 (2.4)  − 25.8 ( − 28.9 to  − 22.8)

BMI, kg/m2 29.6 (5.2) 29.4 (4.8) 0.1 ( − 0.3 to 0.6) 0.1 ( − 1.2 to 1.4) 0.89

MFI anterior, % 7.2 (1.4) 7.0 (1.5) 0.2 ( − 0.4 to 0.8) 0.9 ( − 0.9 to 2.8) 0.35

MFI posterior, % 8.6 (1.9) 10.5 (2.3)  − 1.9 ( − 3.0 to  − 0.9)  − 1.9 ( − 4.9 to 1.2) 0.22

MFI total, % 8.2 (1.7) 9.3 (2.0)  − 1.1 ( − 2.0 to  − 0.2)  − 0.9 ( − 3.4 to 1.8) 0.51

FFMV anterior, L 1.9 (0.4) 4.0 (0.8)  − 2.1 ( − 2.4 to  − 1.8)  − 1.4 ( − 2.3 to  − 0.6)  < 0.01

FFMV posterior, L 4.4 (0.8) 7.5 (1.6)  − 3.0 ( − 3.5 to  − 2.5)  − 1.4 ( − 2.7 to  − 0.1) 0.04

FFMV total, L 6.4 (1.2) 11.5 (2.4)  − 5.1 ( − 5.9 to  − 4.3)  − 2.7 ( − 4.8 to  − 0.8)  < 0.01
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Correlations between MFI and muscle volumes, 
and physical functioning and activity level
In participants with achondroplasia, there was a 
strong negative correlation between MFI and the 
6MWT for both the anterior, posterior, and total MFI 
(r = − 0.81, − 0.83, and − 0.86; all p-values < 0.01), 
meaning that higher muscle fat content was corre-
lated with shorter walking distance (Table 4 and Fig. 4). 

Consistently, there was a moderate negative correla-
tion between MFI and the 30sSTS (r = − 0.56, − 0.57, 
and − 0.59; all p-values < 0.01), meaning that higher MFI 
was correlated with lower muscle strength in the lower 
limbs (Table  4 and Fig.  4). The 6MWT and the 30STS 
were positively correlated with each other (r = 0.59; 
p < 0.01).

Discussion
In this study, we explored potential associations between 
MFI and fat-free muscle volumes in the thigh muscles, 
and the presence of symptomatic spinal stenosis and 
physical functioning in a cohort of Norwegian adults 
with achondroplasia. Participants in the stenosis group 
had significantly higher MFI than the non-stenosis group 
and healthy average stature controls, while the non-ste-
nosis group had low MFI, and similar to healthy controls. 
In contrast, there were no significant differences in thigh 
muscle volumes between the stenosis group and the non-
stenosis group. There was a moderate to strong correla-
tion between MFI and the physical functioning tests.

To our knowledge, this is the first study investigating 
muscle fat content and muscle volumes in achondropla-
sia by using MRI. Sims et  al. have previously reported 
increased fat mass in the thighs in 10 adult men with 
achondroplasia, as assessed by Dual Energy X-Ray 
Absorptiometry (DXA) [46]. However, DXA is unable 
to quantify muscle fat distribution or assess muscle 
quality [25]. Nor did the study by Sims and colleagues 

A B

Metabolic Disease Free 
Reference

Metabolic Disease Free 
Reference

ACH: No spinal stenosis (n=15)
Matched controls (n=30)

ACH: Spinal stenosis (n=25)
Matched controls (n=50)

Fig. 3  Body composition profiles in participants with achondroplasia in the stenosis group (A) and the non-stenosis group (B) compared to 
matched UK Biobank controls. Dashed blue lines are reference-values based on median of the metabolic disease-free UK Biobank reference 
population (n = 2927)

Table 4  Correlations (with 95% confidence interval) between 
muscle variables and physical functioning in adults with 
achondroplasia (n = 38)

FFMV: fat-free muscle volume in the thigh compartments, MFI: muscle fat 
infiltration in the thigh compartments, 6MWT: six-minute walk test, 30sSTS: 30-s 
sit-to-stand test

Variables 6MWT 30sSTS

MFI anterior  − 0.81 ( − 0.89 to − 0.68)  − 0.56 ( − 0.71 to − 0.20)

(p < 0.01) (p < 0.01)

MFI posterior  − 0.83 ( − 0.92 to − 0.70)  − 0.57 ( − 0.77 to − 0.25)

(p < 0.01) (p < 0.01)

MFI total  − 0.86 ( − 0.93 to − 0.73)  − 0.59 ( − 0.78 to − 0.25)

(p < 0.01) (p < 0.01)

FFMV anterior 0.36 (0.03 to 0.62) 0.01 ( − 0.32 to 0.31)

(p = 0.03) (p = 0.97)

FFMV posterior 0.30 (0.03 to 0.53)  − 0.06 ( − 0.33 to 0.21)

(p = 0.06) (p = 0.72)

FFMV total 0.33 (0.03 to 0.56)  − 0.04 ( − 0.33 to 0.24)

(p = 0.04) (p = 0.83)



Page 8 of 12Fredwall et al. Orphanet Journal of Rare Diseases           (2023) 18:35 

provide information about the presence of spinal steno-
sis in their participants.

Studies on average stature populations have dem-
onstrated a substantial change in the skeletal muscles 
below the level of injury after a spinal cord injury [22, 
28, 30, 47]. This also includes patients with an incom-
plete spinal cord injury [22, 28, 30, 47]. In a study of 
patients with an acute incomplete spinal cord injury, 
the intramuscular fat accumulation in the thighs 
was 26% higher, and the skeletal muscle volume 33% 
lower, six weeks post-injury compared to baseline 
[47]. Moreover, the muscle fat content increased with 
an additional 26% during the next three months [47]. 
Consistently, in our study, adjusted total thigh MFI was 

about 35% higher in the spinal stenosis group as com-
pared to the non-stenosis group.

Notably, also the youngest achondroplasia partici-
pants in the stenosis group had increased thigh MFI, 
while participants in the non-stenosis group of approxi-
mately same age had low MFI, and similar to healthy con-
trols. Overall, our data suggest that the increased MFI 
observed in participants with achondroplasia is related 
to the presence of spinal stenosis, consistent with the 
accumulation of MFI in the thigh muscles observed in 
patients following a spinal cord injury.

While we observed the same pattern of increased MFI 
in the stenosis group as reported in patients with a spi-
nal cord injury, there were no significant differences in 

A. Thigh muscle fat infiltra�on (MFI total) versus the six-minute walk test (6MWT)

B. Thigh muscle fat infiltra�on (MFI total) versus the 30-second sit-to-stand test (30sSTS) 
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muscle volumes between the stenosis group and the 
non-stenosis group. All achondroplasia participants had 
decreased thigh muscle volumes compared to average 
stature controls. This might be explained by the shorter 
femur length in achondroplasia, as also suggested by 
Sims et al. [46]. This is also consistent with studies con-
ducted on average stature populations, having displayed 
that a small body size was associated with low muscle 
quantity [38].

The difference in age and BMI between the stenosis 
group and the non-stenosis group are potential con-
founding factors in our study, as MFI tends to increase 
with age and higher BMI [21, 38]. This was demonstrated 
in the UK Biobank Imaging Study, where 9615 partici-
pants underwent muscle MRI. MFI was negatively cor-
related with age and with an increase in fat content of 
0.4  pp per 5-year [38]. We therefore adjusted for age 
and BMI. However, while the observed unadjusted dif-
ferences in total MFI of 5.3 pp in our study was reduced 
by age and BMI adjustment, the difference was still of 
3.3 pp, supporting that there is an actual difference. We 
also adjusted for gender in the regression analyses, but 
this did not affect the outcome.

In studies on average stature populations, increased 
MFI is associated with decreased six-minute walking 
distance, decreased gait speed, decreased physical per-
formance, and difficulty with repeated chair stands [21, 
22, 30, 48, 49]. Increased MFI is also a predictor of future 
mobility limitations [22, 50, 51]. In a study conducted 
on average-statured older adults followed for 2.5  years, 
persons with increased MFI were 50–80% more likely to 
develop mobility limitations compared to those with the 
lowest MFI levels at baseline [22, 50]. Consistently, in our 
study, increased MFI was correlated with shorter walking 
distance and reduced muscle strength in the lower limbs. 
Moreover, there was a positive correlation (r = 0.59) 
between the 6MWT and the 30sSTS in achondroplasia, 
consistent with studies conducted in other medical con-
ditions [52, 53].

In the UK Biobank Imaging Study, an adverse mus-
cle composition (defined as increased MFI and reduced 
thigh muscle volumes) was a strong predictor of all-
cause mortality [54]. Isolated increased MFI was associ-
ated with an all-cause mortality hazard-ratio similar to 
a previous cancer diagnosis or smoking. The combina-
tion of adverse muscle composition and poor physical 
functioning (as assessed by hand grip strength and self-
reported walking capacity) identified the most vulner-
able patients in the UK Biobank study [54]. Interestingly, 
in a prior study conducted in the US, an increased mor-
tality and a 10-year shorter life expectancy have been 
reported in adults with achondroplasia [55]. The causes 
for the increased mortality are not fully understood, but 

neurological complications were among the most fre-
quently reported causes of death, in addition to heart dis-
ease and accidents [55].

In studies conducted on average stature populations, 
reduced physical activity is associated with increased 
MFI [22, 28, 29]. The cross-sectional design of our study 
preclude the possibility of drawing conclusions on causal-
ity. However, in a previously published study on the same 
study population, we found that the presence of sympto-
matic spinal stenosis was associated with increased pain 
intensity and frequency and reduced mobility, factors 
that might explain the increased MFI observed in the spi-
nal stenosis group [17]. Consistent with this, in the pre-
sent study, the non-stenosis group reported higher mean 
physical activity level (in MET) in the last week than the 
stenosis group, but the difference did not reach statisti-
cally significance in our limited sized study population. 
In addition, there was a considerable variability in the 
reported physical activity level within the achondroplasia 
study population, both in the stenosis group and the non-
stenosis group [39].

Strengths and limitations
Strengths of this study are the objective muscle MRI 
measurements combined with the assessment of physical 
functioning. Genetically confirmed achondroplasia in all 
participants, comparison with a matched control group, 
and symptomatic spinal stenosis defined by clinical 
symptoms and verified by medical records and images 
are other strengths.

There are also several limitations to this study, includ-
ing a relatively small sample size and the cross-sectional 
study design. The difference in age and BMI between the 
stenosis group and the non-stenosis group, and the age 
difference between participants with achondroplasia and 
the matched controls, might have affected the outcome, 
although we adjusted for linear effects in the statistical 
analyses. Further study is required to validate our find-
ings, and preferably with a longitudinal study design.

Clinical implications and further research
Muscle fat infiltration (MFI) is a muscle specific meas-
urement indicating quality of the muscle, and has been 
shown to have a strong correlation to functional perfor-
mance, such as the 6MWT [56]. However, the functional 
performance can be confounded by the individual’s moti-
vation, cooperation and fitness level, as well as by day-
to-day variation and pain [38, 56] Quantitative MRI is 
independent of patient performance, is more sensitive to 
early disease progression, and with less individual vari-
ability [56]. Moreover, individuals that progress in their 
disease may eventually become unable to complete a 
functional performance test, while muscle MRI can be 
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carried out even when function is lost [56]. In studies 
on several neuromuscular conditions, MRI has demon-
strated a strong correlation with functional performance 
tests, such as the 6MWT [20, 56]. We have demonstrated 
that this also applies to people with achondroplasia.

Currently, surgery is the only curative treatment option 
for progressive symptomatic spinal stenosis in achondro-
plasia [4, 57]. However, there is no general agreement on 
the optimal timing for surgical intervention, although 
some studies have suggested a more favorable outcome if 
an early surgical intervention is performed after onset of 
symptoms [11, 12]. Data from our study demonstrate a 
great variability both in age at first symptom onset (vary-
ing from 11 to 57 years) and time from symptom onset 
to first surgery (varying from three months to 35 years). 
However, whether an earlier surgical intervention would 
translate into higher physical performance and less accu-
mulation of MFI in patients with achondroplasia, pre-
senting with symptoms of spinal stenosis, require further 
study, preferably with a prospective longitudinal design.

Moreover, studies on average stature populations have 
demonstrated that MFI can be reversible, at least par-
tially, by early and structured resistance exercise [28, 58]. 
What effects a structured rehabilitation program might 
have on functional outcomes and MFI in patients with 
achondroplasia, remains to be studied.

Conclusion
In this cohort of Norwegian adults with achondroplasia, 
increased MFI in the thigh muscles was associated with 
the presence of symptomatic spinal stenosis, reduced 
functional walking capacity, and reduced lower limb 
muscle strength. The increased thigh MFI observed in 
participants with achondroplasia with spinal stenosis 
is consistent with the accumulation of MFI in the thigh 
muscles observed in patients in the general population 
following a spinal cord injury. Further studies are needed 
to determine the causality between spinal stenosis and 
the accumulation of thigh MFI, including the optimal 
timing of surgical intervention. We have demonstrated 
that MRI might serve as an objective muscle biomarker 
in future achondroplasia studies, in addition to func-
tional outcome measures. The method could potentially 
aid in optimizing the timing of spinal decompression sur-
gery and in planning of post-surgery rehabilitation.
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