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Predicting solid state material platforms for quantum
technologies
Oliver Lerstøl Hebnes1,2, Marianne Etzelmüller Bathen 3✉, Øyvind Sigmundson Schøyen 2, Sebastian G. Winther-Larsen 2,4,
Lasse Vines5 and Morten Hjorth-Jensen 2,6

Semiconductor materials provide a compelling platform for quantum technologies (QT). However, identifying promising material
hosts among the plethora of candidates is a major challenge. Therefore, we have developed a framework for the automated
discovery of semiconductor platforms for QT using material informatics and machine learning methods. Different approaches were
implemented to label data for training the supervised machine learning (ML) algorithms logistic regression, decision trees, random
forests and gradient boosting. We find that an empirical approach relying exclusively on findings from the literature yields a clear
separation between predicted suitable and unsuitable candidates. In contrast to expectations from the literature focusing on band
gap and ionic character as important properties for QT compatibility, the ML methods highlight features related to symmetry and
crystal structure, including bond length, orientation and radial distribution, as influential when predicting a material as suitable
for QT.
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INTRODUCTION
Quantum technologies (QT) based on solid state platforms have
attracted a lot of attention during recent years. Among the
promising applications that are already available we find important
breakthroughs such as in vivo sensing of magnetic fields in cells1,
secure communication over large distances by separation of
entangled photons2 and, notably, various quantum information
processing prototypes and architectures3. Quantum computers are
in high demand to meet the increasing need for computing power
to solve complex and high-dimensional scientific problems. Recent
advances have highlighted the potential of quantum information
processors to outperform state-of-the-art high-performance com-
puting facilities. Indeed, Google’s 53 qubit quantum computer
based on superconducting electronics solved a computational
problem that was beyond the capabilities of a 200000 core
supercomputer3. Most recently, IBM announced its 127 qubit
quantum processor4. Simultaneously, the concepts of entangle-
ment and teleportation may eventually facilitate advanced
quantum communication protocols such as quantum cryptography
and the quantum internet5, spurring further investigations into
technologies based on quantum mechanics.
Several platforms are available for the development of quantum

technologies, but the materials and fabrication technologies are
less mature than those for, e.g., classical computers and sensors.
An important concern in this context is that of scalability. For
example, the best performing quantum computer prototypes
available today rely on superconducting electronics that require
millikelvin temperatures to operate, with the stability of interac-
tions between qubits being an important issue. Instead, semi-
conductors are emerging as a promising alternative platform,
offering competitive characteristics combined with the possibility
of room temperature operation and mature and scalable material
processing and fabrication.

Quantum technologies based on semiconductors rely on either
defects or quantum dots where the latter can be of the self-
assembled or nanostructured type6. Semiconductor defects can act
as single-photon emitters or spin centers and are compatible with
the three main QT categories of computing, communication and
sensing7. These characteristics are most often found for the case of
defects that introduce deep energy levels into the semiconductor
band gap8. So-called deep level defects can trap charge carriers in
localized states that are essentially isolated from the surroundings,
making them highly suitable for QT due to, e.g., indistinguishable
single-photon emission and long spin coherence times. The most
well-known quantum compatible defect is the negatively charged
nitrogen-vacancy (NV) center in diamond9, but silicon carbide (SiC)
and the various quantum emitters therein are strong contenders
for quantum communication purposes especially due to the
favorable emission wavelength region in the near infrared coupled
with more mature material processing and fabrication (see, e.g.,
refs. 10–12). However, semiconductor based QT is still in the early
stages, and the issues left to address include identification of
suitable host materials and candidate defects, and scalable and
reproducible quantum device fabrication. Furthermore, a complete
understanding of the requirements for a semiconductor material to
manifest quantum compatible properties is lacking, and the
selection of known quantum compatible host materials is slim13,14.
The majority of discoveries of QT compatible characteristics in

semiconductors has so far happened by serendipity, and there is
an urgent need for a better and more systematic understanding of
which material requirements must be met for QT compatible
characteristics like single-photon emission and single spin control
to manifest. In this context, a framework for dedicated materials
search and analysis is needed.
The fourth science paradigm of big data driven science reveals

the potential of targeted search for promising material systems in
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which to expect QT compatible properties. Rather than searching
through a host of signals for those that match our criteria, we aim
to predict which materials and signatures should be targeted for
more detailed studies, following the framework illustrated in Fig.
1. This is made feasible by the availability of databases containing
material properties for a wide range of different systems. In this
work, the data in question are provided by bulk density functional
theory (DFT) calculations to obtain the ground state properties of
different elements and compounds. Combined with machine
learning (ML) methods we provide a path towards precise
classification of candidate materials. The inclusion of ML methods
follows recent trends in applications of statistical learning, data
science and machine learning for scientific discoveries, see for
example refs. 15,16.
Herein, a framework is provided for the data mining and

automated discovery of promising semiconductor hosts for QT
using targeted database search and ML methods combined with
knowledge from the field. Analyzing the output of the ML
methods reveals that, given a suitable initial set of labeled
materials for training and testing, it is possible to discern the
physical mechanisms that govern a material’s suitability for
quantum applications. This framework does not distinguish
between the specific mechanism giving rise to properties such
as single-photon emission and long spin coherence times (e.g.,
semiconductor defects or quantum dots); instead, we attempt to
target all materials that may accommodate the desired character-
istics. The methodology developed herein can be modified for
other material types and application areas provided that high
quality databases containing relevant theoretical and/or experi-
mental data is available.
The developed procedure relies on data extraction from

different databases and the subsequent featurization of the data.
An important aspect of the work is the database building and
pertinent development of the datasets for the ML methods. Three
different approaches to data mining were devised: (i) the criteria-
based approach which is similar to that proposed by ref. 17, (ii) the
extended criteria-based approach and (iii) the empirical approach.
The two first data extraction protocols are based on broad
material descriptors, leading to large sets of potentially suitable
candidates18,19. The empirical approach, on the other hand, relies
on including materials with experimentally proven advantageous
characteristics in the training set and therefore yields a narrower

set of possible candidates. The three resulting sets of labeled data
were then analyzed with the four supervised ML methods logistic
regression, decision trees, random forests and gradient boost-
ing19,20, yielding 47 predicted candidates that were common
between all approaches and ML methods. Example materials
among the predictions include ZnGeP2, CdS, BP, BC2N, GeC and
InP. Focused theoretical and experimental studies are needed to
verify the predictions that quantum properties may manifest as a
result of defects or nanostructures in the above listed materials.
Importantly, our findings also reveal which material properties are
weighted by the ML methods upon predicting a material as
suitable for QT applications, thereby opening up for new
discoveries in the field of quantum technologies.

RESULTS
Information flow
The information stream in this work can be regarded as many inter-
connected modular parts. The initial step for gathering material data
and building features is visualized by the outer flowchart in Fig. 2
(Jupyter notebooks containing the full workflow can be found at
ref. 21). We start by extracting all entries in the Materials Project (MP)
database22,23 that match a specific query. The MP database contains
ground state properties of different materials that are computed
using density functional theory. The DFT calculations in the database
were performed using the Vienna ab initio simulation package
(VASP)24 and the Perdew–Burke–Ernzerhof (PBE)25 exchange-
correlation functional to calculate the electronic structure of the
materials. We note that despite being immensely successful in
describing a number of material properties, PBE is widely known for
underestimating the band gap of semiconductors26. Therefore, not
all properties predicted using the PBE functional are reliable, and the
band gaps in particular cannot be trusted in absolute terms.
Nonetheless, the functional is in wide use due to the combination of
reasonable accuracy and high computational throughput, and is
usually considered to be reliable for large-scale trends in
semiconductor material properties.
The conditions for the initial MP query are that the materials must

derive from the Inorganic Crystal Structure Database (ICSD) and
have a band gap wider than 0.1 eV to exclude metallic compounds.
The ICSD is the world’s largest database for completely identified
inorganic crystal structures27. In a parallel step, entries that are

Fig. 1 Schematic of an example workflow in material informatics. Results from theory, experiment and computation are fed into material
databases (arrow pointing to the center). A cycle involving material screening, machine learning and predictions leads to knowledge gain and
ultimately applications in fields such as clean energy and quantum technology.
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deemed similar to the entries from the initial query are extracted
from the following databases: the Open Quantum Materials
Database (OQMD)28,29, JARVIS-DFT30, AFLOW31–33, AFLOW-ML34

and the Citrination platform35. The results of these steps are
combined into a dataset for further analysis.
After material extraction tools from the open-source library

Matminer36 were applied to generate thousands of features from
the data. We will refer to this process as featurization. A schematic
visualization of the featurization process in Matminer is shown in
Fig. 2 and focuses on a material’s composition, structure, atomic
sites, density of states and band structure. The 39 featurizers (each
generates several features) selected as material descriptors in this
work are described in the Supplementary Information at ref. 37.
The selection of features was kept rather wide to avoid making
ex ante assumptions on which features best describe a solid state
material platform for QT.
The constructed dataset encompasses compounds formed by a

plethora of combinations of surfaces, interfaces, nanostructures,
compositions and structures, but this complexity is not necessarily
reflected in the material descriptors. Furthermore, the extracted
data was obtained from high-throughput density functional
theory calculations. Indeed, there are possible errors associated
with every step, starting from an initial calculation, adding of data
in the database, featurization and preprocessing the data, data
mining and labeling, and finally training a model and making a
prediction. Unfortunately, if an error occurs in the first part of the
process, it will be carried along and get increasingly harder to
detect. Thus, the output strongly depends on the quality of data in
the employed databases.

Data mining
The complete dataset consists of 25,000 materials. A subset of
these materials is labeled into either suitable or unsuitable
candidates for QT while the remainder will stay unlabeled. The
labeled data is then grouped into training and test sets for the ML
methods. The ML methods are trained using the training set and
then evaluated on the test set. Finally, the ML methods are applied
to the unlabeled data for which predictions of QT suitability
are made.
Several challenges accompany the labeling process. Although

QT compatible properties are becoming increasingly well studied

for the case of, e.g., nitrogen-vacancy centers in diamond, single-
photon emitters in silicon carbide and quantum dot (QD)
structures6,9,12, relatively few candidate materials are known to
be suitable13,14. An additional consideration is that the physical
mechanisms promoting favorable properties are not fully under-
stood. Conversely, defining materials as unsuitable candidates for
QT is in many ways equally difficult, as the mechanisms
preventing quantum compatible characteristics to manifest are
not known either. The strategy for selection of unsuitable
candidates is, thus, that the negation of the criteria used to select
suitable candidates should give unsuitable candidates. A side-
effect of this selection is that the criteria for unsuitable candidates
can become equally, or more, restrictive compared to the criteria
for suitable candidates, resulting in skewed datasets with fewer
unsuitable than suitable candidates. This method for selecting
unsuitable candidates has shortcomings but will serve as a
starting point and demonstration for how the labeling procedure
could be improved. Below three separate procedures for labeling
materials as suitable or unsuitable candidates for QT are
described.
The first approach to labeling a selection of materials in the

dataset is based on the criteria proposed by ref. 17. They suggest a
data mining process consisting of four stages by systematically
evaluating the suitability of host materials taken from the
Materials Project. Note that the data mining process in ref. 17

alone was intended for further experimental studies and not
necessarily for a targeted machine learning search. Nonetheless,
we adapt the selection criteria from ref. 17 for the present
purposes. In the framework of the criteria-based approach, suitable
candidates are labeled according to the following steps:

1. Include materials that;

● contain elements with more than 50% natural abun-
dance of spin zero isotopes,

● crystallize in non-polar space groups, are calculated to
be nonmagnetic, and are present in the ICSD.

2. Pragmatically remove toxic, radioactive and otherwise
“difficult” materials;

● exclude Th, U, Cd and Hg because they are radioactive
and/or toxic in the most stable forms,

● exclude any rare-earth metals (because of the difficulty

Fig. 2 Featurization workflow. The project workflow starting from an initial Materials Project (MP) query, and ending with a featurized
dataset with entries from several other databases. To limit the memory and computational usage, the data is partitioned into smaller subsets
where the respective Pymatgen objects (Pymatgen is a robust, open-source Python library for materials analysis69) are obtained through a
query to be used in the following featurization steps. This process is repeated iteratively until all the data has been featurized. DOS refers to
density of states and band to the electronic band structure.
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of obtaining pure materials free of isotopes with nuclear
spin) and noble gases (due to the lack of stable solid
phases),

● exclude transition metal elements with unpaired elec-
trons like Fe and Ni because of their paramagnetism; Ru
and Os are also excluded because they only exist in the
dataset as complex cluster structures.

3. Include only materials with a band gap larger than 0.5 eV
calculated using DFT and the PBE functional. The value of
0.5 eV was chosen to match that typically predicted for
silicon by PBE-level DFT calculations.

4. Ensure that the energy above hull is less than 0.2 eV
per atom.

The inclusion criteria are based on ref. 8 and targeted primarily
at semiconductors that can host deep level defects with spin qubit
capabilities. In this context, long spin coherence times are needed,
necessitating an environment that can be depleted of nuclear
spins and permanent magnetism. Moreover, non-polar materials
are assumed to be preferable to obtain sharp and indistinguish-
able single-photon emission from defects. Transition metal
elements are eliminated if they have unpaired electrons because
the presence of permanent electric dipole moments may have a
detrimental impact on the optical coherence of defect emission.
Finally, the energy above hull requirement ensures that the
selected compounds are thermodynamically stable. Note that
larger cells are sometimes needed to verify antiferromagnetic
ordering so the criteria mainly target ferromagnetic ordering
under the labels magnetic/non-magnetic.
Next, unsuitable candidates are labeled according to the reverse

requirements of the above; as materials in the ICSD that crystallize
in polar space groups, are calculated to be magnetic and have a
band gap larger than 0.1 eV in the MP database (to exclude metals
but include lower-band gap semiconductors). Crucially, only
materials that satisfy all of the reverse requirements are labeled
as unsuitable. In other words, unlabeled materials may satisfy
some of the selection criteria, but not all. The resulting set of
labeled materials contains 1581 materials where 35% are labeled
as unsuitable and 65% as suitable for QT applications, evidencing
that the criteria for labeling unsuitable candidates are more
restrictive than those for the suitable ones. The remaining ~ 23500
unlabeled materials may still contain suitable candidates for QT,

motivating for the use of ML methods to classify the materials and
deduce trends in material properties.
Considering the materials present in the labeled dataset of the

criteria-based approach more closely, diamond is classified as a
suitable candidate in good agreement with experimental observa-
tions. Carbon in two-dimensional graphite-like structures are
marked as suitable as well, along with all structures of silicon and
one entry of silicon carbide. Note that this is the 3C polytype of
SiC, meaning that the most well-established quantum compatible
SiC polytype, 4H-SiC, was not classified in the labeling process and
is found in the unlabeled dataset. Among other relevant
candidates we find that ZnS, ZnSe, ZnO and ZnTe were all labeled
as suitable in the criteria-based approach.
Next, the criteria-based approach was adjusted to expand the

data labeling process beyond practical considerations. The second
approach is therefore named the extended criteria-based approach
and involves removing stage two from the approach above.
Moreover, certain additional elements that have shown promising
properties but were initially excluded due to the lack of spin zero
isotopes are also included.
The following steps constitute the process of labeling suitable

candidates in the extended criteria-based approach:

1. Include materials that;

● contain elements where more than half have a natural
abundance of spin zero isotopes, including Al, P, Ga, As,
B and N,

● crystallize in non-polar space groups, are calculated to
be nonmagnetic and are present in the ICSD.

2. Only keep materials that have a band gap larger than 1.5 eV
in the MP database. The higher band gap requirement (as
compared to the criteria-based approach) is included here
to avoid labeling an unfeasibly large number of materials.

3. Ensure that the energy above hull is less than 0.2 eV
per atom.

For unsuitable candidates, the same strategy as for the criteria-
based approach was implemented. The result is an unbalanced set
of labeled materials that is 78% larger than for the criteria-based
approach and having ~75% of the materials found in the
suitable group.
The findings from both the data mining and machine learning

procedures for the extended criteria-based approach did not differ
substantially from those obtained using the criteria-based
approach. This is attributed to the similarities in the selection
processes. Therefore, detailed discussion on the findings from the
extended criteria-based approach can be found in the Supple-
mentary Information at ref. 37. Qualitative conclusions drawn for
the criteria-based approach herein also hold for the extended
criteria-based approach, indicating that the removal of so-called
practical considerations did not have a significant impact on the
results. Nonetheless, predictions from the extended criteria-based
approach will be employed below to contrast with and filter the
findings from the empirical approach.
In the empirical approach, we apply knowledge from the field

(see for instance refs. 11,13,14,38 for an overview) to guide the search
for promising material hosts. In other words, the labeled data
contains candidates where quantum compatible properties have
been either experimentally demonstrated or theoretically pre-
dicted, including the materials suggested in ref. 8 as promising
deep level defect hosts. Materials where single-photon emission
and spin manipulation have been observed but attributed to
excitonic effects or quantum dots (formed by self-assembly or
lithographic structuring) rather than being defect related were
also included.
Table 1 contains an overview of known semiconductor

materials with demonstrated quantum compatible characteristics.
The table forms the basis for picking suitable candidates for the

Table 1. Known quantum compatible materials and defect
candidates.

Material Band
gap (eV)

Defect candidates References

Diamond 5.5 NCVC, SiCVC, GeCVC 71–76

SiC 2.2–3.3 VSi, VSiVC, CSiVC, NCVSi 8,11,77–81

Si 1.1 P, G, unidentified 60,82,83

(2D) h-BN 6.0 Unidentified defects 84–86

(2D) MoS2,
WSe2, WS2

<2.5 Bound excitons 38

ZnO 3.4 Unidentified defects 87

ZnS (zincblende) 3.6 Unidentified defects 88

GaAs 1.4 Quantum dots 89

GaN 3.4 Quantum dots,
unidentified defects

90,91

AlN 6.0 Unidentified defects 92

The materials have demonstrated quantum compatible characteristics
such as single-photon emission and coherent spin manipulation. The
subscript denotes lattice site and V refers to a vacancy.
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empirical approach. The properties being studied arise from
mechanisms related to, e.g., point defects, bound excitons, and
both self-assembled and lithographically structured quantum dots
and nanostructures such as 2D materials. Quantum emission
signatures have been assigned to specific defects in both
diamond and SiC, but for most other materials, secure identifica-
tion of the responsible defects or structure related mechanism is
still lacking.
The strategy for picking suitable candidates in the empirical

approach is;

1. Select candidate materials that match the formulas in Table
1, or the formulas ZnSe, AlP, GaP, AlAs, ZnTe, CdS8 and
SiGe39, as these materials have been predicted to behave as
suitable quantum hosts based on favorable properties such
as a wide band gap and low spin-orbit coupling.

2. Ensure that the candidates are present in the ICSD.
3. Perform a manual screening for appropriate crystallographic

structures.

After the first stage of picking candidates we are left with a list
of 202 matching formulas which includes 12 entries that have a
band gap of less than 0.4 eV. These 12 entries are calculated to be
thermodynamically unstable in terms of the energy above hull,
and will decompose into other materials in the list—incidentally,
the resulting structures all have calculated band gaps that are
substantially larger than 0.5 eV. All of the 202 structures were
included in the labeled dataset apart from C (mp-568410) which is
a metal according to AFLOW-ML.
Entries matching the formulas C, SiC, BN, MoS2, WSe2 and WS2

were manually screened to see whether they have a matching
structure to the respective candidates discussed earlier and
summarized in Table 1. For carbon, three-dimensional diamond-
like structures as explicitly stated in the column tags from the MP
were admitted. Additionally, we find several two-dimensional
structures of carbon with a large band gap ( >1.5 eV) among the
data. These were added as suitable candidates. Complex

structures (e.g., C28, C48 and C60) were moved to the test set in
our machine learning studies. For SiC we admitted all entries
which included the 2H, 3C, 4H, 6H and 15R polytypes. Concerning
BN, MoS2, WSe2 and WS2, only two-dimensional structures were
admitted. Other non-matching structures were moved to the test
set to see whether or not they are predicted as suitable by the ML
methods applied in a later stage.
The materials AlP, GaP, AlAs, ZnTe and CdS were manually

screened for tetrahedrally coordinated structures, and have been
included since ref. 8 identified them as potentially promising
candidates due to suitable material properties. Note that only
tetrahedrally coordinated structures of the given formulas were
labeled as suitable after imposing a band gap restriction of 0.5 eV.
Following the three screening steps in the empirical approach, a

total of 187 entries were labeled as suitable candidates for the
training set. Notably, only elementary (unary) and binary materials
are labeled as suitable in the empirical approach. To complete the
dataset, 400 materials were added and labeled as unsuitable. These
were picked at random from the pool of unsuitable candidates
from the two previous approaches, in addition to those that were
marked as unsuitable during the manual screening process.
Note that there is some potential for inherent bias in the

dataset, in part due to experimental work being limited by the
availability and cost of materials and processing. Moreover, the
discovery of the quantum compatible properties of the NV center
in diamond naturally led early searchers to comparable materials
such as silicon carbide.
The labeled data for the criteria-based and empirical

approaches is visualized in Fig. 3 as parallel coordinate plots for
selected features informed by the criteria proposed by ref. 8.
Parallel coordinate schemes40,41 represent a multi-dimensional
data tuple as one polyline crossing a parallel axis. The selected
features are found on the x-axis, while the y-axis shows the value
of the data. Thus, parallel coordinate plots can turn complex
many-dimensional data into a compact two-dimensional repre-
sentation. Due to possible data cluttering, the figure visualizes a

Fig. 3 Parallel coordinate plots. Parallel coordinate plots for the (a) criteria-based and (b) empirical approaches. To limit data cluttering up to
250 entries for each class were randomly collected. The axes show total magnetization (mag), space group (SG), ionic character (ionic char),
covalent range (cov range) as calculated from elemental properties, number of elements (num elements) and energy gap (Eg) as extracted
from the MP database.
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random sample of each class (suitable or unsuitable) with an
upper limit of 250 per class with transparent lines. The green and
red polylines represent suitable and unsuitable candidates,
respectively.
Several differences are observed between the criteria-based

approach and the empirical approach to data mining. While
neither case passes materials that exhibit magnetization through
as suitable, suitable candidates can crystallize in both polar and
non-polar space groups in the empirical approach. Moreover, the
ranges of covalent radius and maximum ionic character span a
substantially smaller parameter space for the empirical approach
than for the criteria-based approach (see Fig. 3). Overall, there
seems to be greater overlap in the distributions in material
properties for suitable and unsuitable candidates in the case of
the criteria-based approach as compared to the empirical one.
To reduce the dimensionality of the labeled data a principal

component analysis (PCA) was performed42. In its standard form,
PCA relates the variance of the features with the eigenvalues of
the covariance matrix19,20,42. We identify the two largest
eigenvalues of the covariance matrix19 of the complete initial
dataset from the MP database, and transform the three labeled
datasets according to the corresponding two eigenvectors. The
result of this procedure is displayed in the scatter plots of Fig. 4.
Note that some minor differences between the approaches may
occur due to the process of removing the mean and scaling to
unit variance. Red triangles represent unsuitable candidates while
otherwise colored symbols (green, blue, black and yellow)
represent suitable candidates. Due to the complexity of reducing
the large amount of features down to only two, suitable and
unsuitable candidates for the criteria-based approach are largely
overlapping. The logic behind categorizing materials in two
classes (suitable and unsuitable) appears to not translate into a
distinct separation, at least not in the representation of Fig. 4 for
the criteria-based approach. Hence, using this approach for
predicting QT material hosts could prove challenging for any
model that would try to glean a clear-cut boundary between
materials that are and are not suitable for QT. We therefore expect
that the criteria-based approach could need supplementary
dimensions for further distinguishing between the materials in
the two categories.

In the case of the empirical approach, on the other hand, a clear
trend can be discerned where the upper left part of Fig. 4 is
dominated by suitable candidates while the unsuitable ones are
similarly restricted to the lower right corner, albeit with some
exceptions. Interestingly, we observe that different configurations
of the famously quantum compatible materials of diamond (blue),
silicon carbide (black) and silicon (yellow) are grouped together
but each material class is separated in its own region. This strongly
indicates that the empirical approach may be capable of
separating materials based on their underlying properties,
emphasizing the importance of having a logical framework for
the data mining process.

Machine learning and principal component analysis
Four well-tested ML algorithms were applied to the labeled data
to classify specific materials as candidate systems for QT, yielding
multiple sets of predicted candidates. The ML methods employed
herein are logistic regression, decision trees, and the ensemble
methods random forests and gradient boosting18–20. Principal
component analysis was again performed, but now on the three
training sets separately (as opposed to the case of Fig. 4 where all
panels are based on the same model). Next, in the evaluation of
the ML methods we apply a 5 × 5 stratified cross-validation19

when searching for the optimal hyperparameter combinations.
Note that all four ML methods have high evaluation metrics for
the optimal hyperparameters. Further details on the evaluation of
the ML methods and the results from the principal component
analyses for all four ML methods are shown in the Supplementary
Information at ref. 37. The data labeling approaches define sets of
labeled data of varying sizes, where the smallest is from the
empirical approach. For small datasets, it is proven to be beneficial
to repeat the cross-validation analysis19, as this is a method that
allows us to measure the stability of the predictions against
perturbations (i.e., few different entries) in the training data43.
Figure 5 visualizes different parameters for the most important

principal components ranked in descending order by (a) the
explained variance for the Ferrenti (upper panel) and empirical
(lower panel) approach, and (b) the gradient boosting coefficients
for the corresponding approaches. This differs from Fig. 4, where
the two most important eigenvectors for all approaches that

Fig. 4 Two-dimensional scatter plots. Scatter plots for the (a) criteria-based and (b) empirical approaches. The eigenvectors corresponding to
the two largest eigenvalues of the covariance-matrix were identified, that is, the two most important principal components of the initial data
from the Materials Project query. Then, the labeled datasets were transformed and visualized as 2D scatter plots. Green squares display
suitable candidates, along with the black (SiC), blue (diamond) and yellow (Si) symbols for the empirical approach, and red triangles represent
unsuitable candidates.
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originate from the same covariance matrix are shown. For the
criteria-based approach (Fig. 5a) to reach the 95% accumulated
explained variance, a total of 144 principal components must be
included. In the case of the empirical approach and in contrast to
the criteria-based approach, decision trees and random forests
exhibit the best performance for just a few principal components,
and experience a considerable degree of overfitting when
involving more principal components. Gradient boosting also
experiences the best performance for just a few principal
components.
Figure 5(b) reveals that the most important feature for the

gradient boosting method in the criteria-based approach is the
fifth principal component (fifth largest eigenvalue). The trend is
maintained for all four ML methods (see the Supplementary
Information at ref. 37). By selecting the highest values in this
eigenvector we find that the corresponding features originate
from the DFT computed band gap of the elemental solids among
the elements in the compound as calculated by the Materials
Agnostic Platform for Informatics and Exploration (MagPie)44. The
second most important principal component for the criteria-based
approach exhibits significant contributions from the covalent
radius, the ionic character and the packing efficiency among the
elements in the composition. The data originate from elemental

calculations from MagPie and are aggregated as either minimum,
mean, standard deviation, or maximum. While the first principal
component encompasses the largest explained variance, it does
not provide a clear and specific information on which features it
represents.
The empirical approach differs in many aspects from the

criteria-based approach. Firstly, the number of principal compo-
nents necessary to obtain 95% variance is reduced to 103 from
144. Thus, the variance of the training set is described with fewer
principal components, indicating a simpler model. Secondly, the
first principal component is by far the most important feature for
all ML methods in the empirical approach, as visualized in the
lower panel of Fig. 5b for gradient boosting. Similar conclusions
are reached when using logistic regression, decisions trees and
random forests as classification methods (see the Supplementary
Information at ref. 37). The distinct importance of the first principal
component partly explains why we experience a high accuracy for
only a single feature. The first principal component’s correspond-
ing features is a complex combination of several material
properties, but we find that it includes bond orientational
parameters, coordination numbers, and the radial distribution
function of a compound’s crystal system. The standard deviation
of the radial distribution function appears multiple times in the list

Fig. 5 Explained variance and feature importance. Visualization of different parameters for the 25 most principal components ranked in
descending order by the explained variance for the (a) criteria-based and (c) empirical approaches, and (b) and (d) the mean gradient
boosting coefficients during 5 × 5 cross-validation with the standard deviation (s.d.) for the corresponding approaches as error bars. Note that
in (a) and (b) only the results of the PCA analysis are visualized, while (c) and (d) contains results of the PCA reduced training sets using
gradient boosting19,70. The latter shows that for the empirical approach most of the physics is represented by a few features. The results in (b)
and (d) are similar to those obtained with logistic regression, decision trees and random forests.
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of features and is of particular importance. Thirdly, the empirical
approach differs in how much explained variance is retained by
the first component, which is 21%, compared to 14% for the
criteria-based approach. We find the difference striking consider-
ing that the approaches share the same ultimate goal, but where
the training sets apparently exhibit large and significant variations.
Intriguingly, the principal components that are deemed

important by the approaches differ substantially. The criteria-
based approach places particular value on the material’s band gap
and the ionic or covalent character of the bonding. Indeed,
precisely these features were used as guidance in the data
labeling process. Thus, the ML methods seem to perpetuate the
criteria imposed in the criteria-based approach at least to some
extent. They may, however, still be recognizing other patterns
than those originally intended in the data selection process. For
the empirical approach, on the other hand, the selection was not
guided in terms of specific properties. Here, the ML methods
appear to be informed by other characteristics than band gap and
ionic character that are more related to symmetry and crystal
structure, based on the repeated appearance of bond length,
orientation and radial distribution in the first principal component.
In the empirical approach, the ML methods are recognizing more
complex mechanisms in the crystal structure and bonding as
common trends among materials that are suitable for QT
applications.

Predicting suitable material hosts for quantum technology
After training and validating the ML algorithms on the labeled
datasets, the ML methods were applied to unlabeled data to
obtain predictions for suitable QT host materials. The number of
candidates predicted by each of the four ML methods logistic
regression, decision trees, random forests and gradient boosting is
visualized in the Supplementary Information at ref. 37. An overview
of the number of predicted suitable candidates as a function of a
given ML algorithm’s confidence is summarized in Table 2 for the
criteria-based, extended criteria-based and empirical approaches.
Note that the criteria-based approaches are employed as a filter
on the predictions of the empirical one.
From the predicted dataset of 23,623 materials all four ML

methods agree on a total of 6804 suitable candidates in the
criteria-based approach, however, many of these materials are
predicted with an incidence similar to that of a coin flip. Raising
the minimum confidence cut-off for a prediction to, e.g., 0.75
instead of 0.5, yields only 1784 suitable candidates that the ML
algorithms agree on. The ML methods admit almost all materials
with a chemical formula matching the known suitable candidates
(see Table 1) that were present in the labeled data. This can allow
materials with complex structures (e.g., nanostructures or 2D
materials) to be labeled as suitable candidates. Notably, the ML
methods do not maintain the band gap restriction from the
training set definition, where all materials with band gaps lower

than 0.5 eV were eliminated. This trend is not carried over to the
predicted data. Indeed, many entries with band gaps lower than
0.5 eV are predicted as suitable candidates by all four ML methods
employed herein—despite the principal component analysis
revealing that the band gap is an important feature for the
machine learning classification in the criteria-based approach. This
indicates that the ML methods are not exactly recognizing the
initial selection criteria, instead finding other patterns in the
dataset. On the other hand, due to the known underestimation of
band gaps by the PBE functional, the band gaps could in reality be
larger for many of the materials.
The ML methods predict materials as suitable that are not

expected according to, e.g., ref. 8. Indeed, NaCl is predicted as a
suitable candidate to minimum confidences of 0.83 and 0.61 for
two different configurations, despite the strong electrostatic
interactions between Na and Cl and the ionic character of their
bonding. Note that NaCl was excluded from being labeled as both
unsuitable and suitable in the criteria-based approach and was
therefore found in the unlabeled dataset. Conversely, 4H-SiC,
which was unlabeled in the selection process, is predicted as a
suitable candidate by all four ML methods in the criteria-based
approach. For the empirical approach, NaCl was included in the
labeled data in the training set as an unsuitable candidate, while
4H-SiC was labeled as suitable in the initial selection process.
The ML methods that were trained on the data extracted in the

empirical approach predict substantially fewer candidates as
compared to the criteria-based approach. A total of 842, 1197, 543
and 596 materials are classified as suitable candidates by logistic
regression, decision trees, random forests and gradient boosting,
respectively. All the four ML methods agree on a total of
214 suitable candidates to 0.5 confidence. Note that 51 of these
have a band gap of 0.5 eV or smaller. Increasing the threshold to
0.75 or 0.85 yields 66 or 9 predicted suitable candidate materials in
the empirical approach, respectively (see Table 2).
Consider the 9 materials that were classified as suitable to a

confidence of 0.85 or higher by all four ML methods in the
empirical approach; BN, CdSe (2 structures), BC2N (2 structures),
InAs, CuI (2 structures), and ZnCd3Se4. The nine materials
(considering different crystal structures) each belong to one of
the four crystal systems cubic, hexagonal, tetragonal and
orthorombic. Figure 6 visualizes the four different crystal systems
while Table 3 lists important material properties of the relevant
materials as reported in the MP database. Interestingly, all nine
materials appear to be four-fold coordinated, and the first two
lattice vectors (a and b) are identical in all cases whereas c may
differ. There appears to be a high degree of symmetry present for
all materials, but no elemental and perfectly symmetric semi-
conductors were found in the list.
Turning to each of the individual material predictions, two

compositions of CdSe (the cubic mp-2691 and the hexagonal mp-
1070) are predicted as suitable, possibly as a consequence of the
similar compound CdS being labeled as a suitable candidate in the
training set. The two compounds of CdSe share similar properties
with calculated band gaps in the MP database of 0.5 eV and 0.6 eV,
respectively. The compound BN (mp-1639) was also predicted as
suitable possibly due to a different BN crystal structure being
present in the training set and labeled as a suitable candidate.
In the case of BC2N we find two compositions with the same

chemical formula; the orthorhombically coordinated (mp-629458)
and the tetragonally structured (mp-1008523) BC2N. The former
takes on a polar space group while the latter does not. The band
gaps are listed as 1.9 eV and 1.7 eV, respectively, in the MP
database. Both structures exhibit a strong covalent character and
have been studied for applications as nanostructures for electronic
devices45, hydrogen storage46 and superhard materials47,48.
Interestingly, the diamond-like structure of BC3N was recently
predicted as a promising spin qubit material host49. By creating a
boron vacancy one can in theory obtain a defect center with

Table 2. Number of predicted suitable materials vs. ML model
confidence.

Approach 0.50 0.75 0.85

Criteria-based approach 6804 1784 258

Extended criteria-based approach 9227 4735 2001

Empirical approach 214 66 9

All approaches together 47 6 0

Number of predicted suitable candidates as a function of a given ML
method’s confidence when the four methods in an approach agree. A
threshold value of 0.5 represents the confidence of a coin flip while 1.0 is a
fully confident prediction.
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similar properties to those found for the NV center in diamond.
Whether this is also possible for BC2N remains to be seen. Note
that BC3N was not represented in the MP database at the time of
data extraction and is therefore not included in our dataset.
The compounds InAs (cubic, mp-20305), CuI (cubic, mp-22895

and hexagonal, mp-569346) and ZnCd3Se4 (cubic, mp-1078597)
are listed in the MP database with band gaps of 0.3 eV, 1.2 eV,
1.2 eV and 1.7 eV, respectively. To the best of our knowledge,
ZnCd3Se4 has yet to be synthesized, while self-assembled InAs
quantum dots are exciting possible materials to use in quantum
technology50. CuI has recently been synthesized as single-crystal
epitaxial films and was shown to exhibit remarkable optoelec-
tronic properties51. Interestingly, the material exhibits a large ionic
character and shares few similarities with known QT compatible
hosts such as, e.g., Si, SiC and diamond. The prediction of CuI in
two configurations thus indicates that ionic character alone is not
an obstacle for a material to be quantum compatible. It is
unknown at this time whether any potentially favorable properties
of CuI would originate from deep level defects or nanostructuring
(e.g., quantum dots).
Out of the nine predicted materials (threshold of 0.85) we note

that both instances of CuI are stated in the MP database to
decompose into trigonal CuI, which was not present in our
predictions. Hexagonal CdSe decomposes into cubic CdSe (in the
list of 9), the cubic BN decomposes to hexagonal BN (mp-984, not
in the predictions), and ZnCd3Se4 decomposes to ZnSe+ CdSe (in
the list). Finally, both compounds of the BC2N structure are listed

to decompose into hexagonal BN+ C. However, synthesis may still
be possible depending on the growth conditions.
Lowering the cut-off requirement from 0.85 to 0.75 for all ML

methods results in 66 candidate materials for the empirical
approach. The full list of these 66 candidates is displayed in the
Supplementary Information at ref. 37. In addition to the nine
materials discussed above and some elemental and binary
semiconductors, the list of 66 predicted suitable candidates now
also includes ternary compounds of the formula ABC2. For the
ABC2 structures, the elements Ga, Cd, In and Zn can occupy the A-
site, Cu, Sn, Ag and Ge take the B-site, while S, Se, Te, P or As may
reside at the C site. Most of the predicted compounds include at
least one toxic element with one exception: ZnGeP2 (mp-4524) in
a chalcopyrite-like tetragonal crystal structure with an indirect
band gap of 1.2 eV52 as reported in the MP database. In
comparison, the experimentally reported band gap is somewhat
larger at 2.0 eV53. ZnGeP2 crystallizes in a non-polar space group,
possesses no magnetic moment, exhibits covalent bonding and
has been reported as an excellent mid-IR transparent crystal
material that is suitable for nonlinear optical applications52.
Importantly, it is possible to integrate sources of photon quantum
states based on nonlinear optics with ZnGeP254. ZnGeP2 is
therefore identified as an eligible candidate material for QT, but
it remains to be seen whether the candidate can facilitate, e.g., the
isolated deep energy levels often associated with defects
exhibiting quantum compatible properties, or instead be a
candidate for nanostructure based QT.

Table 3. Material properties from the MP database.

Approach Material Crystal structure MP code Density (g cm−3) Band gap (eV) a, b, c (Å) α, β, γ (∘)

Empirical approach to 0.85
confidence

CdSe Hexagonal mp-1070 5.3 0.6 4.4, 4.4, 7.2 90, 90, 120

CuI Hexagonal mp-569346 5.8 1.2 4.3, 4.3, 7.0 90, 90, 120

CuI Cubic mp-22895 5.8 1.2 4.3, 4.3, 4.3 60, 60, 60

CdSe Cubic mp-2691 5.3 0.5 4.4, 4.4, 4.4 60, 60, 60

BN Cubic mp-1639 3.5 4.6 2.6, 2.6, 2.6 60, 60, 60

InAs Cubic mp-20305 5.3 0.3 4.4, 4.4, 4.4 60, 60, 60

ZnCd3Se4 Cubic mp-1078597 5.3 1.7 6.1, 6.1, 6.1 90, 90, 90

BC2N Tetragonal mp-1008523 3.3 1.6 2.6, 2.6, 3.7 90, 90, 90

BC2N Orthorombic mp-629458 3.4 1.8 2.5, 2.6, 3.6 90, 90, 90

All approaches to 0.75 confidence CdSnP2 Tetragonal mp-5213 4.6 0.7 7.2, 7.2, 7.2 131.1, 131.1, 71.7

GeSe Cubic mp-10759 5.5 0.4 4.0, 4.0, 4.0 60, 60, 60

InP Cubic mp-20351 4.6 0.5 4.2, 4.2, 4.2 60, 60, 60

InP Hexagonal mp-966800 4.6 0.5 4.2, 4.2, 6.9 90, 90, 120

SiSn Cubic mp-1009813 4.4 0.4 4.3, 4.3, 4.3 60, 60, 60

ZnGeAs2 Tetragonal mp-4008 5.2 0.6 7.0, 7.0, 7.0 131.4, 131.4, 71.2

Material properties for the 9 materials predicted by the empirical approach (>0.85 confidence) and the 6 materials predicted by all approaches (>0.75
confidence).

Fig. 6 Crystal structures. Example illustrations of the crystal systems that the 9 materials predicted by the empirical approach to 0.85
confidence, and the 6 materials predicted by all approaches to 0.75 confidence, belong to. Four different symmetry categories are observed;
cubic, hexagonal, tetragonal and orthorombic. The viewpoints for all materials are down along the c-axis.
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Among the list of 66 we also highlight the predictions of
interesting materials like Ge, sharing many characteristics with Si
and C in addition to the periodic column number, GeC, BP and InP.
Much like SiC, device design based on Ge can take advantage of
the mature large-scale fabrication of silicon due to the material’s
comparable properties. Similar considerations could be made for
the case of GeC. Data from the MP database suggests that the
cubic compound GeC (mp-1002164) is a covalently bonded
semiconductor having a band gap of 1.8 eV. Consequently, with
SiC being widely known as a highly suitable host material for QT
compatible defects, we encourage further research on GeC due to
its similarities with SiC. Next, BP (mp-1479 and mp-1008559) is
present in the predictions in both the cubic and hexagonal
structures, with indirect band gaps calculated at 1.5 eV and 1.1 eV,
respectively. Both configurations of BP are nonmagnetic, non-toxic
and BP has been synthesized with a potential for large-scale
production55. Lastly, InP (mp-966800) in the hexagonal structure is
reported in the Materials Project to have a direct band gap of
0.5 eV and is considered as one of the most promising candidates
to compete with Cd- or Pb- based QDs for, e.g., display and
lighting applications56,57. The possibility of using InP-based
quantum dots for QT applications should therefore be considered.
Comparing to the work of ref. 17, they suggest a list of 541 viable

hosts after the data mining procedure. Among these, only a single
material is present in the list of 66 candidates predicted by the
four ML methods in the empirical approach: the nontoxic
compound MgSe (mp-10760) which crystallizes in the rock-salt
structure, is expected to have a 2.0 eV band gap and decomposes

to a similar MgSe configuration. MgSe is notable for its available
spin-zero isotopes in accordance with the criteria set by ref. 8. We
note that these properties may favor defects acting as spin centers
with qubit potential and MgSe is thus identified as an interesting
host material in this regard.
The number of materials predicted by the empirical approach is

restricted enough to enable close scrutiny of the various
suggested candidates. The same cannot be said for the criteria-
based approach, however, as seen from Table 2. Manual
verification through a literature survey will often not be possible,
and perfecting automatic data mining and analysis is therefore an
important goal of material informatics58.
Despite notable differences, as mentioned above, there is

overlap of predicted materials between the approaches. All
approaches (including the extended criteria-based approach)
and their corresponding ML methods agree on a total of 47
potential candidates to 0.5 confidence (see the Supplementary
Information at ref. 37 for the full list). Several interesting materials
that were also discussed above for the predictions by the
empirical approach are present among these 47, including BP,
CdSe, GeC, InP and Ge. However, certain materials that cannot be
classified as semiconductors are also included, such as P, I, N2 and
H2. We note that none of these were included by the empirical
approach when the threshold was set to 0.75 or above.
Importantly, there are 6 materials that all approaches (criteria-

based, extended criteria-based and empirical) and ML methods
agree on above a 0.75 threshold. These are ZnGeAs2 (tetragonal
mp-4008), CdSnP2 (tetragonal mp-5213), GeSe (cubic mp-10759),

Fig. 7 Material distributions for different properties. Histograms of predicted suitable materials as a function of the (a) band gap, (b)
maximum ionic character, (c) standard deviation of the radial distribution function (RDF) and (d) standard deviation of the average bond
length. The total number of predicted materials is 6804 for the criteria-based approach, and 214 for the empirical approach. The criteria-based
approach refers to the left y-axis and the empirical approach to the right.
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InP (cubic mp-20351), InP (hexagonal mp-966800) and SiSn (cubic
mp-1009813). Here, we can distinguish three groupings in crystal
structure: cubic, hexagonal and tetragonal (illustrated in Fig. 6).
The relevant material properties are summarized in the lower part
of Table 3, with comparable trends to those for the 9 materials
predicted by the empirical approach in terms of, e.g., crystal
structure. The six-fold coordination of GeSe is an outlier as
compared to the four-fold coordination of the other materials. We
highlight these six compounds, along with the nine predicted by
the empirical approach to 0.85 confidence, as particularly
interesting for future in-depth theoretical and experimental
studies.
Taking a closer look at the reasoning behind the choices made

by the different ML methods during the classification process, we
can start to identify important driving forces for manifestation of
quantum compatible properties in semiconductors. The analysis of
the principal components extracted from the ML methods
revealed that the most important principal component for the
criteria-based approach encompasses features related to the band
gap and chemical environment. This means that the band gap
criterion imposed in the training set selection is at least somewhat
satisfied. The criteria-based approach does not entirely reproduce
the logic of the initial selection process, however, as several low
band gap (<0.5 eV) materials were highlighted as suitable by the
ML methods. For the empirical approach, on the other hand, band
gap related features were not recognized as important in the
dominant principal component.
Figure 7a displays the number of predicted suitable materials as

a function of band gap (from the MP database), and reveals that
both approaches predicted a substantial amount of materials with
a low band gap (below 0.5 eV). Moreover, the distribution of
materials that were identified as suitable is rather broad with the
criteria-based approach exhibiting a peak around a 2.5 eV band
gap. Coincidentally, the band gap of, e.g., 4H-SiC is usually
computed at around 2.5 eV using the PBE functional. The empirical
approach exhibits a more scattered data distribution.
The second most important principal component in the criteria-

based approach encompasses properties such as the ionic
character, covalent radius and maximum packing efficiency (see
the Supplementary Information at ref. 37 for the predicted material
distributions of the latter two features). Intriguingly, as shown in
Fig. 7b, the predicted candidates distribute over a broad range of
ionic characters for both the criteria-based and empirical
approaches—even peaking at a relatively high ionic character of
0.8. We note that this may be a result of the distribution of the
initial dataset of 25,000 materials with a maximum around a
similar value (not shown). The minor peak in the empirical
approach’s predicted materials around 0.4 ionic character is not
present for the criteria-based approach nor the overall data
distribution. For reference, all SiC entries in the dataset have
maximum ionic characters of ~0.1. Furthermore, the covalent radii
of the materials (see the Supplementary Information) exhibit two
distinct peaks in the data distribution. The trend of two data peaks
is repeated for the maximum packing efficiency but is much more
prominent for the empirical approach. This indicates that the
material density, or in other words the bond length, is an
important parameter for QT suitability.
The ML methods in the empirical approach consistently

identified the first principal component as the predominant one.
Identifying the single most important feature in this principal
component proved challenging as it is the combined impact of
several features that matters. Here, the standard deviation of the
radial distribution function (RDF) has a particularly strong impact
since it appears four times in different forms in the top ten list
over dominating features. One configuration of the standard
deviation of the RDF is demonstrated in Fig. 7c, with two others
being included in the Supplementary Information at ref. 37.
Intriguingly, the standard deviation of the RDF exhibits substantial

discrepancies between the criteria-based and the empirical
approach. For the empirical approach, there is a sharp peak in
the preferred value for the standard deviation of the RDF, while
the criteria-based approach displays an even distribution across a
broader range. These observations emphasize the importance of
symmetry related material properties for QT suitability.
We interpret the standard deviation of the RDF such that zero

standard deviation in the RDF means that there is no variation in
the radial symmetry throughout the material. Similarly, zero
standard deviation in the average bond length would mean that
all bonds are identical throughout the crystal. Intriguingly, the
peaks in the distributions of the predicted materials are not found
for perfectly symmetric materials with identical bond lengths;
instead, some variation in the bond and wavefunction distribu-
tions is found to be optimal for a material to be suitable for QT.
Note that the maxima in Fig. 7c seem to appear for moderate
standard deviations in the RDF, indicating that a certain degree of
symmetry is necessary for a material to act as a suitable QT host.
The exact degree and type of symmetry is still open to debate and
merits further study. Similar symmetry related features such as the
standard deviation of the average bond length (see Fig. 7d), the
site fingerprint of the chemical environment and the bond
orientation (see the Supplementary Information at ref. 37) are also
influential in guiding the ML algorithms upon classifying suitable
and unsuitable materials for QT in the empirical approach.
Interestingly, none of the nine materials predicted by the

empirical approach above a 0.85 threshold, nor of the six materials
predicted by all approaches to 0.75 confidence, are elemental. At
most three different elements are present, but the emphasis is
clearly on binary compounds. This resonates with the observations
from the principal component analysis; an optimal degree of
crystalline order likely exists for a material to manifest QT
compatible properties, but some variations throughout the crystal
in, e.g., bond length and symmetry are needed. This is in contrast
to the expectations that guided the formulation of the test and
training sets in the criteria-based approach. Where most previous
works have highlighted features such as band gap, polarity and
ionic character as vital for a semiconductor to manifest quantum
compatible features, our results reveal that local variations in the
crystal structure related to symmetry and bond angles, length and
orientation should be considered equally and may even be more
important.

DISCUSSION
Considering the trends in machine learning selectivity in light of
the specific defect centers we know to be quantum compatible
reveals fascinating characteristics. None of the known quantum
emitters or spin centers seem to appear in completely uniform
systems. For example, in high symmetry materials like diamond
and silicon, QT compatible defects are not intrinsic; neither the
silicon vacancy in silicon nor the carbon vacancy in diamond, for
example, have exhibited single-photon emission or controllable
spin coherence. Instead, quantum effects often appear after
impurities are introduced, as evidenced by the phosphorous and
carbon impurities in silicon59,60 and the nitrogen-vacancy,
germanium-vacancy, tin-vacancy and lead-vacancy centers in
diamond61. For a binary system like silicon carbide, on the other
hand, intrinsic defects like the silicon vacancy and the divacancy
are appropriate for our goals. While these trends have yet to be
verified on a grander scale, our findings provide strong indications
that local variations in the crystal structure are paramount for QT
compatible properties to manifest in a semiconductor host.
It should be noted that performing machine learning on a

dataset derived using preconceived notions for which material
properties are important may reproduce several of the initial
selection criteria. Nonetheless, the criteria-based approach was
included in the present work to highlight expectations from the
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literature and contrast them with the findings from the empirical
one. Additionally, ML methods are often capable of recognizing
other patterns than those intended for the data, opening up the
possibility that also the criteria-based approach could yield new
insights. Finally, the criteria-based approaches are employed as a
filter on the empirical approach, to provide a better tuned list of
candidates for future experimental studies.
To summarize, we have developed data extraction tools and

strategies for data mining and labeling to enable the automated
search and analysis of host materials for QT. The clear separation
between suitable and unsuitable candidates after data labeling,
along with the smaller number of principal components needed
for obtaining optimal performance of the ML algorithms, indicate
that the empirical approach based on findings from the literature
is highly suitable for performing this type of guided search
through materials databases. The principal component analyses of
the ML methods’ performance imply that the criteria-based
approach with its strong focus on band gap and bonding
character when assessing a material’s quantum compatibility to
some extent reproduces the specifications of the data labeling
process, as expected. Valuable insight is gained from comparing
the important features of the Ferrenti with those for the empirical
approach which highlights the importance of symmetry related
properties in the bond orientations and wavefunctions over
expected features related to band gap and bonding. As such, the
expected properties are not able to capture the full physics of the
problem. The contrast between the criteria-based and empirical
approaches reveals that the problem of QT compatibility is more
complex than being related to band gap and bonding character
alone. Based on our findings we propose that the manifestation of
quantum effects in semiconductors is related to the crystal
structure symmetry and bonding.
The findings presented here firmly establish that material

informatics is a viable and important route to new discoveries in
important fields. Our focus has been on predicting new candidate
materials to host single-photon emitters and spin centers for
quantum technology applications, but the developed framework
is suitable for other fields as well. Two possible paths are
suggested to further exploit the findings presented herein. One
aspect is the pursuit of experimental verification of QT compatible
effects in the materials predicted as suitable by machine learning.
Another, perhaps even more important, route is to use the
features and trends identified during the data mining and
prediction processes to understand the distinct material char-
acteristics that enable quantum effects to manifest, opening
thereby up for new discoveries in the field of quantum
technologies.

METHODS
Databases
The Materials Project22,23 is an open-source project containing
ground state properties of materials calculated using density
functional theory (DFT) as implemented in the Vienna Ab initio
Simulation Package (VASP)24. The Perdew-Burke-Ernzerhof25 (PBE)
functional is used to calculate band structures, while for transition
metals, a+ U correction is applied to correct for correlation
effects62. The project is known as the initiator of materials
genomics and offers a variety of calculated properties for over one
hundred thousand inorganic crystalline materials, with frequent
updates and extensions. Data extraction from Materials Project
was performed in December of 2020 for the criteria-based and
extended criteria-based approaches, and in March 2021 for the
empirical approach. Therefore, the initial dataset for the two
former approaches includes 77 more materials than that for the
empirical approach due to erroneous entries that have been
removed from the Materials Project database.

The Open Quantum Materials Database (OQMD)28,29 contains
thermodynamic and structural properties of more than 600,000
materials. The calculations are performed with the VASP software
and the electron exchange and correlation are described with the
PBE functional. The+ U extension is included for several calcula-
tions considering specific elements63. Data extraction from OQMD
was done in February of 2021.
JARVIS-DFT30 is an open-source database based on the VASP

software and consists of roughly 40,000 three-dimensional
materials using the vdW-DF-OptB88 (OPT) functional64,65. Struc-
tures included in the database are originally taken from the
Materials Project22,23, and then re-optimized using the OPT
functional. Finally, the combination of the OPT and modified
Becke-Johnson (mBJ) functionals66 is used to obtain a representa-
tive band gap for each structure67. Data extraction from JARVIS-
DFT was done in January of 2021, were we utilized the version
made available on 2021-04-30 (see ref. 30).
The AFLOW31–33 repository is an automatic software framework

for the calculations of a wide range of inorganic material
properties. They utilize the PBE functional (with the+ U correction
for certain cases) within VASP to relax and optimize all structures
from the ICSD. Data extraction was performed in the period of
January to February of 2021.
AFLOW-ML34 is an application programming interface (API) that

uses machine learning to predict thermo-mechanical and electro-
nic properties based on the chemical composition and atomic
structure alone, which are denoted as fragment descriptors.
Initially, the API decides whether a given material is a metal or
an insulator, where the latter is confirmed with an additional
regression method to predict the band gap. The accuracy is
validated by a five-fold cross-validation process for each ML
method, where they report a 93% prediction success of their initial
binary classification method. In this work we utilized the Property
Labeled Material Fragments (PLMF) openly available at their
website (see ref. 34). We extract the crystallographic information
files (CIF) for the crystals from Materials Project, use the CIF files as
input to AFLOW-ML, which then returns an anticipated band gap.
This process was executed during January of 2021.
Note that from the initial criterion, we define that a material is

required to have an ICSD identifier (ID) in Materials Project. This ID
is included in the AFLOW, AFLOW-ML, JARVIS-DFT and OQMD
databases as well. If two different databases contain different
values for the same property, such as the band gap, we added
both of them as columns (features) to our data to avoid any data
cluttering. An additional analysis was performed to uncover any
differences between the space groups reported in the Materials
Project and the other databases, yielding an average match of
97%. We note that the small deviation might arise due to errors in
either database, and is not necessarily reflected in the remaining
features of the data. For the experimental values from Citrine, we
could only verify the chemical formula since the experimental
data is lacking information regarding the structure (e.g., space
group, symmetry) of the material.
The data regarding a material’s magnetic character is extracted

from the Materials Projects database. Indeed, the majority of these
calculations are based on the primitive cell, however, Materials
Project performs an initial relaxation of cell and lattice parameters
using a 1000 ⋅ (number of atoms in the cell)−1k-point mesh to
ensure that all properties calculated are representative of the
idealized unit cell for each respective structure. As a result, we can
find, e.g., Fe labeled as ferromagnetic and NiO as antiferromag-
netic in our dataset. Furthermore, MP contains structures of
varying sizes for the same material. We have included all
structures and materials from the Materials Project, but we have
not checked which materials are represented as a larger cell in our
data. We have thereby not verified whether antiferromagnetic
ordering has been investigated for all cases. This is an improve-
ment that could be made to our method in a future study.
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Material informatics
Matminer36 is an open source toolkit for material analysis written
in Python. Matminer provides modules to extract information from
a wide variety of databases. Additionally, they provide the tools to
construct possibly thousands of features from calculations based
on a material’s composition, structure and electronic properties
from DFT calculations, and have frameworks for visualization and
automatic machine learning. To apply Matminer’s featurization
tools, we extend an existing implementation by ref. 68, which was
used to generate a supervised machine learning framework called
the MODnet. The implementation by ref. 68 provides featurization
for a material’s composition, structure and atomic sites. However,
Matminer also provides featurization tools for a material’s density
of states (DOS) and band structure. Therefore, we extend their
implementation to facilitate such featurizations. The features
selected for featurization herein are summarized in the Supple-
mentary Information at ref. 37.
Pymatgen, a robust and open-source Python library for material

analysis69, was also employed to extract and generate features for
several of the databases mentioned above.

Machine learning
Machine learning represents the science of giving computers the
ability to learn without being explicitly programmed. The idea is
that generic algorithms exist which can be used to find patterns in
a broad class of datasets without having to write code specifically
for each problem. The algorithm builds its own logic based on
the data.
The approaches to machine learning are many, but are often

split into two main categories: supervised and unsupervised. In
supervised learning we know the answer to a problem, and let the
computer deduce the logic behind it. On the other hand,
unsupervised learning is a method for identifying patterns and
relationships in datasets without any prior knowledge of the
system. Many researchers also operate with a third category,
namely reinforcement learning. This is a paradigm of learning
inspired by behavioral psychology, where learning is achieved by
trial-and-error, solely from rewards and punishment. In this work
our focus is on supervised learning only with labeled data for
classification problems.
In this work we have applied four well-known and tested ML

methods for classification problems, these are (see for exam-
ple18,19 for discussions and applications):

1. Logistic regression,
2. Decision trees,
3. Random forests,
4. Gradient boosting.

Logistic regression19 is a simple and frequently used method for
binary and multi-category classification problems. In addition to
logistic regression, we have also applied and tested the
predictions made by decision trees and ensemble methods like
random forests and gradient boosting, the latter through the
application of the computationally efficient XGBoost library70.
Gradient boosting and random forests use decision trees as weak
learners and improve their predictability. For random forests this is
implemented through a collection of randomized decision trees
where a subset of the features in the datasets are selected
randomly when building a decision tree. Boosting methods like
gradient boosting use decision trees as weak learners and
improve upon these by an iterative process that involves the
estimation of the gradients of the cost/loss function19. Pure
decision trees can easily lead to overfitting of the data under
study, leading to an ML method that exhibits a high variance.
Ensemble methods like random forests and gradient boosting on
the other hand tend to soften the overfitting problem, resulting in
both a small bias and a reduced variance of the employed

method, see for example refs. 18,19 for an in-depth discussion of
the bias-variance trade-off in machine learning. Gradient boosting
implemented through the XGBoost library70 is widely used by data
scientists to achieve state-of-the-art results on many machine
learning challenges.
Our findings are corroborated by the fact that all four ML

methods predict a small set of the unlabeled materials as suitable,
while agreeing on a large part of these materials. The methods we
have chosen are all well tested, with random forests and gradient
boosting methods tending to outperform the others, resulting
normally in a small bias and variance18–20.
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