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Abstract

This paper investigates and formally compares the expressive power of dimensional (i.e., spatial,
temporal, and spatio-temporal) query languages, where the dimensional extensions are supported
in terms of ADTs (abstract data types). There are basically two approaches to the design of
dimensional ADT extended query languages. One approach, by definition, adds semantics by
interpreting an ADT attribute value associated with a database fact agrasic (i.e., built-

in) relationship with an underlying space. The other approach treats ADT attribute values as
conventional attributes, where the dimension semantics (and space) associated with a database
fact is anextrinsicproperty and controlled fully by the user.

The comparison framework is based on the relational algebra (RA) and a single ADT extension to
RA. Two comparison criteria of semantic equivalence also are defined. The one critestantof
equivalentexpressions imposes equal results, whereas the other (relaxed) critesioapshot
equivalentexpressions imposes equal snapshot results. For the strict criterion a certain class of
intrinsic ADT extended languages is semantically richer than the set of corresponding expressions
of a pure (i.e., extrinsic) ADT extended language. This is due to the properties of the built-in
dimension support. For the relaxed criterion the same intrinsic language class is shown snapshot
equivalent with corresponding expressions of the pure ADT extended language class. However,
there is a class of expressions which relates database facts of non-intersecting subspaces, that is
expressible only by the pure ADT language. In general, and despite differences, one language
approach is not found strictly superior to the other. Rather, practically, the findings indicate multi-
approach designs for user-level oriented query languages. Moreover, the findings also informally
indicate that by extending the framework, e.g., allowing multiple orthogonal dimension ADTSs,
more involved problems arise, such as a kind of indeterminism of pure ADT extended languages,
i.e., user-choices influence results of otherwise orthogonal dimensions.

1 Introduction both practical importance and interest in devel-
oping such systems.

This paper is concerned with extensions of query

languages which address data referenced by atmspecially, spatial and temporal database re-
underlying dimensional space, such as supporteehrch have adopted different principles in query
by spatial, temporal, and spatio-temporal quelgnguage design, e.g., see [9, 17] and [4, 14,
languages, and where these references are H#; respectively. The principle differences are

fined in terms of abstract data types (ADTs$hown by the fact that a temporal query language
General purpose commercial database systetypjcally redefines their underlying algebra to

such as Informix, Oracle, and DB2, have tbecome temporal, and, thereby, make dimension
some degree support for spatial and tempos#mantics an intrinsic property of the algebra,
data management based on ADT extensiomsd the fact that a spatial query language only
Thus, experiences and approaches achieveddolppts the ADT extension, but, leaves the di-
the database research community should benoénsion semantics as an extrinsic property. Er-



wig et al. explore in their paper [7] the expresenly a special case of a temporal query restricted
sive power of a selected set of spatio-temportal only consider the current database state. The
data models, but, there exists, to our knowledgemporal semantics is an intrinsic property and
no formal study of the relative expressiveness given by valid time and/or transaction time di-
query languages based on extrinsic versus intrimensions, i.e., managing when a fact is true in
sic ADT dimension semantics. the modeled reality, and/or when it is current in

Spatial database research has focused mogtly database, respectively [11]. A join of an in-
on spatial datatypes, i.e., their structures, opinsic ADT extended language is a built-in natu-
erations and semantics, including system inteal dimensional join, which, by definition, com-
nal indexing structures, etc. (e.g., [18]). Intebines only those operands tuples which have in-
gration of spatial dimension semantics with thiersecting references to the underlying dimen-
logical data model and query language has r&ibn space. In that sense, and contradictory to
yet been fully addressed. Thus, a spatial dhe above claim of Giiting, there are dimensional
tribute is treated analogously to other properselections and dimensional joins, also for spatial
data comprising a database fact. Let a salbT extensions, e.g., cf. STSQL ([2]).
ple spatial database which captures informationA comparison framework is given by extend-
about buildings and estates illustrate this pointing Codd’s relational model [5] with a single 1-

_ o ) _ _ dimensional ADT (i.e., an interval or a line seg-

Determine each building spatially associated with an es- .
tate. ment ADT), over which four algebras are de-
fined, and where each algebra extends the rela-
tional algebra (RA) in a particular way. There
are two pure (i.e., extrinsic) ADT extended al-
gebras, where one only incorporates new data
The spatial semantics implied by the abouwgpes, and the other extends with unfolding and
query is specified by the user. For example, tifi@lding operators to obtain a point-based, but,
“spatial join” is formulated as an old-style joirstill user-controlled interpretation of database
(e.g., cf. [15]) followed by a selection criterigacts. They are termedDT? andADTY/¥ re-
based on a user-specified spatial predicate. Apectively; The two intrinsic ADT extended al-
cording to Guting [9]:“Strictly speaking, there gebras, where one is based on the property of
is no such thing as a spatial selection,.dnd, snapshot reducibility[20]), and where the other
furthermore,”...Similar to a spatial selection, a goes beyond this notion and combines it with the
spatial join is a join that compares any two obability to add user-specified dimension seman-
jects with a predicate according to their spatiatics. They are termed the SR and SEQ algebras,
attributes"—meaning that the spatial predicateespectively.
is user-specified. The comparison defines two criteria of ex-

Temporal database research, on the othmessive power in terms of semantic equivalent
hand, has focused on making existing quegxpressions. Expressions are said toshrct
languages temporal by redefining the algebeguivalentif they yield equal results, and ex-
with built-in dimension semantics (e.g., [8, 22])pressions are said to kaapshot equivale{SE)
Hence, a conventional (i.e., a snapshot) query[id] if they yield equal snapshot results, i.e.,

SELECT e.number, b.number
FROM Estates e, Buildings b
WHERE CONTAINS(e.region, b.location);

2



when sliced at an arbitrary snapshot. Differentally defines the algebras and summaries their
properties of the algebras are defined to shqsoperties, and Section 4 gives the comparison.
how the algebras satisfy the above compariséinally, Section 5 concludes the paper.

criteria. First, an ADT extended model relates

a database fact with either a point-based dimen- _

sion semantics, or a region-based dimension ge Framework of the Comparlson

mantics, e.g., a interval-based model [3]. An al- 1 Datas d Alaebra Basi
gebra must reflect this distinction, even thoug%‘ ata Structure and Algebra Basics

that the representation of the dimension valuedg,dd's relational model [5] is extended in the
the same for both algebras. For example, an igilowing way: A relation scheme,R =

terval is only a syntactic shorthand for individy 4, ... A,), is given by a relation name and
ual reference points of point-basedPB) alge- 4 Jist of attribute names, but where one of the at-
bra, whereas it is a reference value in its oWRpytes namest;, 1 < i < n, is the dimension
right of adimension value preservir@P) alge- attribute, writtend; = D, and 4 is a shorthand
bra. Moreover, we also define the properties gy the listR \ D. Anr(R), or simplyr, denotes
dimension parameter expressiqii¥PE) as user- 3 relation of the schemg. For a tuplet € r(R),
specified expressions, and, finaligter- and/or 4] and¢[D] denotes the the list oft attribute
intra-subspace relationshipsf database facts,yalues and the single dimension attribute value
i.e., dimension references of expressions whigh ¢ respectively. SinceD is an interval (line
address the ability of an algebra in combiningegment) ADT, the[D]* andt[D]¢ denote the
(through the Cartesian Product) database fagispective begin and end points@D]. Thus,
according to their dimension associations.  typlest, € r{(R) andt, € ro(R) arevalue
Thus, based on the above properties the rati@quivalent if ¢;[A] = t,[A] [11]. The syntax
nal behind the strict criterion is to expose semagf the corresponding RA language is given by

tic differences and similarities of “correspondie following coarse set of BNF productions:
ing” algebraic expressions. The other criterion

is defined to show whether the differences in
strict equivalences are eliminated by comparing EXP
on snapshot equivalence, i.e., to expose corre-
spondences of some other well-defined seman-

tic notion. For both criteria we also investi-

n= LEXPT

x= r|op(EXP)|nx(EXP)|
EXPiUEXP |§x 1 (EXP)|
EXP, x EXP,|EXP,\ EXP; |

gate whether one algebra subsume another al-
gebra, i.e., whether the former algebra semantfhe non-terminalRA symbolizes a full alge-
cally support all the expressions of the latter abraic expression, and the corresponding right
gebra, but not necessarily vice versa. Finally, weand sideE X P has a start) and an endT)
discuss informally and briefly issues concernirgymbol. The aggregate operatgr, equals the
extending the comparison framework. definition ofaggregate formatiorby Klug [12].
The paper is structured as follows: First, th&n aggregate is formed based on a iSdenot-
algebraic framework and the properties of thag a (possible empty) list of grouping attributes,
comparison is given in Section 2. Section 3 foend an aggregate functighdenoting a particu-
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lar aggregation, such as sum, count, min, maespectively. Notice that both results automati-
etc., over a specified column associated with aally accounts for periodic changes. Now, let the
input relation, e.g.maxs(r) denotes the max-above queries be expressed in STSQL [2] by 1)
imum value of the third column of a relatiorand 2) below, respectively:

r. Thus, the function type of is defined as a 1) REDUCIBLE (D) AS D

mapping from the set of relations to a scalar do- SELECT dept, SUM(sal)

main. The rest is standard relational algebraic FROM EMP GROUP BY dept;

constructs.
2) REDUCIBLE (EMP.D, DEPT.D) AS D

SELECT name, dept FROM EMP

2.2 Dimension Semantics Support EXCEPT SELECT * FROM DEPT:

The following introduces the different d'menTheREDUCIBLEfIag, which is a STSQL con-

sional properties of an algebra. Initially, Iegtruct, imposes a dimensional query over the ref-

the below example illustrate the semantics %frenced ADT dimensio. Thus, the flag im-

dimension intrinsic expressions. The fOIIOWin%Iies the deployment of an underlying dimen-

two queries are issued over the sample datab%lsoenal algebra. Note, however, that by skiping

recording employee and department historiet?],e flag in the above expression STSQL sim-

respectively: ply would evaluate the query as a pure SQL-92
1) Determine the (periodic) salary pay-outs for each dé€Juery, i.e., only involving the current database

partment over all times state. The “bodies” of the above queries are pure
2) Determine the employees who have not beenSQL-92 queries, which show, when the flag is
department manager during some petiod omitted, the relationship with the RA semantics.
This leads to the aforementioned notion of

EMP: [ name | dept | sal D snapshot reducibility[20] of an algebra or a
Pete | di | 10k | [1985-90] query language. But first we define the no-

Ann | di | 15k | [1988-97] tion of snapshot equivalenfel] of relations.

Concentually, a dimensional databaBe may

DEPT: | mng | id D be viewed as a sequence of snapshids,=
Ann | di | [1991-95] (...,Dy,Dy,Dy...), where each snapshot is
related with, or indexed by, a distinct point [4].

RESULT of 1) | dept | sums D This view is utilized by a slice operator;,
d 10k | [1985-87] which denotes the snapshot B at a pointp,
dr 25k | [1988-90] _ . .
i 15k | [1991-97] i.e., (D) = D,. In particular, for a tuple in

r, andp in t[D], 7,(t) = t[A4], i.e., theA-values
at pointp. Thus,

RESULT of 2) | name | dept D

Pete di | [1985-89] Definition 2.1 [11] Two relationsr; andry are
Ann di | [1988-90] se

Ann d | [1996-97] snapshot equivalentSE), r; = r, if for all

. ) i pointsp, such that
Queries 1) and 2) above are dimensional ag-

gregate formation and dimensional difference, Tp(r1) = 7p(12) [
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Then, the notion of SE is generalized to account TSQL2: SELECT dept FROM EMP;
for comparing expressions of a dimensional al-

gebra with its conventional counterpart. STSQL: REDUCIBLE (D) AS D
SELECT dept FROM EMP;

Definition 2.2 ([20]) An algebra (or query lan-
guage) issnapshot reducibléSR) if and only if Yieldingr, andr;, respectively:
for all pointsp, dimensional operatokgp x, cor- r1 = {(d1,[1985 — 97])}
responding to conventional RA operatarss,
whereX denotes any RA parameter expression,
dimensional relations, ... ,r,, such that In general the point-based TSQL2 by definition
m constructs a single result tuple from each set of
qualified (value-equivalent) tuples which forms

The SR_property is based on a point_based Coﬁhmaximal chain of COﬂtigOUOS (i.e., a connected
parison of expressions, but there are no requiet of) points over theiD values, cf. [3]. II-

ment what so ever that a SR algebra by definitidastrated byr; above. The STSQL query, on
is a point-based (PB) algebra. the other hand, is semantically richer by being

explicit about department; having two em-
Definition 2.3 Let A be an algebra, and letpjoyments during two distinct, but overlapping
{r1,...,ra} be a set of ADT dimension €X-periods see. (Note, thatr; and ry are SE

tended relations. Theol is apoint-basedPB) \ hofiniion 2.1). The STSQL query exhibits
algebra, iff, for evenyn-ary operatiorop of A,

Vi, t' € op(riy...,mn) (

ro = {(d1, [1985 — 90]), (d1, [1988 — 97])}

Tp(opx(r1,... s70)) = 0pS% (Tp(r1), ..., Tp(Th))

the DP property, which associates each resulting

(t £t At[A] = 1][A]) = database fact with & value that reflects the se-
(disjoint (¢[D],¥'[D]) A mantics of the distincD values of the input tu-
—meets(t[D],t'[D]) A ples contributing to the construction of the result
—~meets(t{D],¢[D])))  m tuple. Thus, in a DP language the dimensional

semantics is given by the value as a single ref-
Definition 2.3 enforces that the input relationgrence, and not as multiple references by the cor-
are interpreted as populated by tuples each responding set of individual points. On the other
which has a single point dimension referende&and, a PB language only relates a database fact
(i.e., aD value is a syntactic shorthand), andyntactically with itsD value. Hence, within this
that the result relations are populated with tdramework the DP property is equivalent to the
ples where no pairs ofi-value equivalent tu- notion of time-fragment preserving, cf. both the
ples intersects or meets on thérvalues. The definition of an “Interval-based Operator” in [3],
two SR query examples below, which illustrateand the definition of the SR and SEQ algebras in
the orthogonality of the SR and PB propertie§ection 3 which both by definition are DP.
determine employment histories of departments.From the above SR examples wee see that a
The TSQL2 ([21]) query is PB and the STSQlpoint-based evaluation of expressions is not the
([2]) query is not PB, respectively. (TSQL2 doesase, i.e., a query is not evaluated for each snap-
not use a flag, and evaluates by default over atiot in turn comprising a set of (indexed) snap-
states.) shot results. Even though, this, in fact, could be



the conceptual evaluation model of a combingR algebra combines the SR and DP proper-
SR and PB language. However, for a DP laties. The SEQ algebra combines the DPE and
guage conceptually all snapshots of a databd3e properties. Note, that the underlying alge-
facts is present at each evaluation step where tivas of TSQL2 and STSQL are DPE & PB and
database fact is involved, i.e., the snapshots &BE & DP, respectively. The TSQL2 combina-
regarded as a collection, i.e., sequence, of valiien is not considered by the comparison. More-
equivalent snapshots. over, the extrinsiADT? andADTY/F algebras
Further utilizing this knowledge of evaluatingare in Section 3 classified as a DPE language and
over sequences of snapshots, we now go bey@BDPE & PB language, respectively. Note that, in
SR (cf. Definition 2.2 where th& refers to con- general, a PB property excludes a DP property,
ventional parameter expressions) by allowirgnd that a SR property excludes a DPE property.
user-specified dimension expressions in comlbit Section 4 the comparison uses the above set
nation with the built-in dimension semantics of af properties to expose the differences and simi-
language. This property of a langauge is terméatities in expressive power.
dimensional parameter expressiofidPE).

Definition 2.4 An algebra (or query language)3 T he Algebras
which allows parameter expressioAsto con-

tain references td) attributes for projections,

€.0.. 4, 45,0 (r), and/or dimensional predicatescf'dered by the comparison of the subsequent sec-
ion.

and functions for selections (i.e., restrictionss,
e-g-vJcontams(rl.D,rg.D)(rl X TQ)’ supports the
dimensional parameter expressi¢BPE) prop- Pure ADT: The ADT¥ algebra differs from
erty. m the RA operator set by the property of DPE, i.e.,

by predicateP and the attribute lisfX expres-
For example, envison the above TSQL2 quesjons, which may involve dimension parameters.
(similar in STSQL), further restricted to deterHowever, this is not directly affecting the opera-
mine employment histories with a duration dfor definitions as such:
more than seven years,

This section defines the algebras which are con-

[>

mx(r) {t|3t er(t="t[X])}

TSQL2: SELECT dept FROM EMP
WHERE DURATION(D) > 7; op(r)

(1>

{tlter A Pt)}

[>

Which yields one tuple, i.e{d;,[1988 — 97]). "™ X" fota|ts € Ats Era}

So far we have studied several properties of lan+: U2
guages, namely SR, PB, DP and DPE. In genera]r1 \ 72
the following combinations are possible:

(1>

{t|t€7‘1 \/tGT‘z}

(1>

{tlter At¢rs}

[>

Ex,p(r) {toy |3t crt=t[X] A

SR&PB | SR&DP | DPE &PB | DPE &DP y=f{t"[t" e r At [X] = [X]}))}

The property combinations are incorporated by
the algebras to be defined next. That is, the attribute listX in the above definition may
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denote a dimension attribut®. A predicate accounts for a distinct point of thB-value as-
P is on the formB6C or Bfc, or several of sociated with the input tuple. More formally,
these expressions combined by logical connec-
tives of A (and), Vv (or) and— (not) in the con-
ventional way. MoreoverB andC' are attribute
names or spatio-temporal function expressions,
i.e., duration(D) andlength(D), andc is a con-
stant. Finally,0 € {=,<,>,<,>,#}, which Folding enables a more compact representation
is extended with Egenhofer’s spatial operator seftthe pointwise interpretation of database facts,
[6], i.e., disjoint, equals, overlaps, touches, in, recall the syntactic correspondence a PB lan-
and contains, and Allen’s temporal operator seguage has to @-value. The folding operator
[1],i.e., before, equals, overlaps, during, start, constructs a single result tuple from two tuples
andend, whenB, C andc are of spatial or tem- of each set ofd-value equivalent input tuples
poral types, respectively. of a relation, where the tuples comprise a maxi-

mal chain of adjacent and overlappifgvalues.
Pure ADT with unfold/fold: The ADTUY/¥ TheD-value of the result tuple is, then, denoting
algebra extends thé\DT” algebra with the this maximal chain. In the definition gbld
unfold and fold algebraic operators, which alin Figure 2 a), there are three main constraints.
lows user-specified simulation of point-baselirst, line one ensures that there exist twe
expressions. Pictorially, unfolding is to flattewalue equivalent tuples;; and ¢y in r, which
a relation on itsD attribute, i.e., transform thecontributes to the construction efwith a valid
relation into a point-based representation. O value. Second, lines two and three ensure
the other hand, folding is to “recompute” a morthat there is a chain ol-value equivalent tuples
compact representation of a relation where eaetich comprise a contiguous chain bfvalues,
tuple’s D value is the maximal contiguous ext.e., for every tuples in the chain there exists a
tent over which a set ofl-value equivalent input tuple ¢, which comes “before” in the chain, al-
tuples are defined. See the following example:ternativelyts = t4. Note, the “chain” includes

at least one tuple, e.g., wheén = t,. Finally,

[>

unfold () {t|3t er(t[A] = t'[A] A

t'[D]” < ¢[D]* =¢[D]* < '[D]")}

11 D 11 D 21 p | lines four and five ensure that this set is maxi-
[2-3] | “Ur g |22 | 78 | o | [2-4] | Mal, i.e., there does not exist a tuglethat is
[3-4] a | [3-3] both A-value equivalent with the tuples in the

[4-4] chain and has @-value that extends the chain

The rational behind unfolding is to give a pointin either of its ends.

based interpretation of the database facts. How-There are some important points which

ever, this requires an explicit point-based repeed to be clarified, and which differentiate

resentation of database facts, to ensure that the ADTY/¥ approach with respect to other

operations actually operates on point referencegtensions to the relational model and algebra.
database objects. Thus, the definition of unfolétirst, the definition of folding inADTY/¥

ing replaces each tuple inwith a set ofA-value is equivalent to a coalesce operator ([11]) of
equivalent result tuples, where each result tuglemporal databases, and may be applied to
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any relation with aD attribute. Thus, thgold t, D]
operator of ADTY/¥ is different to thefold t, D] t5 D]
operator of the IXSQL algebra [13], which is

only applicable to input relations where the " " begi " ena

D-values are points, e.g., due to a previous a) Difference D values

flattening of a relation by an IXSQL unfold-

: U/F

ing. In that sense thdDT"/* fold operator | LDl 0] —
subsumes the IXSQL fold operator, because L -
ADTY/F may be applied to arbitrary relations ta[P] _ t[P]

where D-values are not necessarily on the form

[p,p]. Second, the folding and unfolding of ) Aggregate D values

ADTY/F is both intentionally and semanticallyFigure 1: D values of Dimensional Difference
different compared with nesting and unnestirgnd Aggregate Formation
as defined for nested or non first normal form

(N1INF) relations, e.g., see [10, 16]. Thus, the
intension ofADTY/F is to simulate a pointwise S€tS: whereas folding operates according to a

evaluation of expressions, and, in particulafontiguous relation given by the total order of
for folding user-coalesce relations over theff€ €lements of an underlying dimension space.
dimension values. The intension of the N1NF

relational model is to be able to manage compl&R: The SR operator set, as defined in Figure 2
database facts more explicit through an implidy), is explained in the following, where the func-
hierarchical structure of nested relations, whetien signatures, i.e., of the superscripts, indicate
the nest and unnest operators ([10]) convéfte dimension attributes involved by the built-in
back and forth between flattened and nestptbcessing and prevent attribute name conflicts
relations, respectively. The below informah subsequent operations of an expression. The
example illustrates the semantic differenc®R slice operator, i.erg“Di denotes a snap-
between the two approaches (following thehot database at dimension pgintThe projec-
fold/unfold example above). We have to assuntien, selection and union are similar to their RA
that the NINF model support intervals througbounterparts, but with the distinction that tuples

a system provided ADT: may containD values. Note also that due to the
SR property nd attribute is allowed referenced
r = {{a,[2-3]),(a,[3—4])} in an attribute listX by a projection or an ag-
gregate formation operation, and no dimension
nest p—(p)(unnestp=(p)(r)) predicate or function expressions are allowed by
= nestp=(p)({{a,[2—3]),{(a,[3—4))}) aselection, i.e., the SR algebra does not support
={{a,{[2-3],3-4]})} the Egenhofer and Allen operator sets.

The Cartesian product combines pairs of can-
First, the unnest operation does not affect tlidate tuples of; andr, with non-empty inter-
content ofr, because intervals are system praectingD-values. TheD-value of the result tu-
vided data types. Second, nesting operates fa is computed as the intersection. Formalizing
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foldp(r) 2 {t|3t1 € rIts € r(t{A] = t1[A] = t2[A] A t[D]* = t1[D]° At[D]° = t2[D]° A t[D]* < t[D]°) A

T‘1U

r1 X

’r'1\

Vs € r(t[A] = t3[A] A t[D]° < t3[D]° < ¢[D]* =
Ity € r(t[A] = ta[A] A (t4[D]° < t3[D]° < t4[D]° V t3[D]° = succ(ta[D]?)))) A
—3Jts € r (t[A] = t5[A] A (¢[D])® = succ(ts[D]°) V t5[D]° = suce(t[D]?) V
t5[D)* < D] < t5[D] v t5[D)* < 4[D]* < t5[D])}

a) Definition of Folding

P2 ) 2 (43 er(t=t'[A] A E[D]* <p <t'[D]?)}
mEPPP(r) 2 {43t e r (¢[X] = t'[X] A t[D] = t'[D])}, whereD does not occur itk

O_SPT:D*}D (T')

1>

{t|t € r A P(t)}, whereD does not occur itP.

:DyXDgo—D
8T 1 2 r2

1>

{t|ter Vtemr}

:DyxXDgo—D
8T 1 2 r2

1>

{{t' ot"od)|Tt1 €r1Ita €Era (' = t1[A] A" =t2[A] A
d = intersection(t1[D1],t2[D2]) A —disjoint(¢1[D1], t2[D2]))}

sr:D1 X Do—D r

1>

{t|3t1 € r1 (t[A] = t1[A] A
(Fts € ra(t1[A] = t2[A] Ata[D1]° < t2[D2]® At[D]® = succ(ta[D2]%)) V
t[D])® = t1[D1]°) A
(Fts € ra(t1[A] = t3[A] A t1[D1]° > t3[D2])° A ts[D2]® = succ(t[D]%)) V
t[D]® = t1[D1]°) A
t[D]* < t[D]° A
=3ty € ra(t1[A] = ta[A] A —disjoint(t[D], t4[D2])))}

[I>

x50 ()

{{toyod)|tr €r Nta €r Nt =t1[X] = t2[X] A d € compose(t1[D], t2[D]) A
y=f{t'|[t' er Ant'[X]=t A'[D)® <d® A d° <V[D]}) A
—Jts €7 (t3[X] =t A ((d° < 3[D]° <d° Ad® < t3[D]°) A
(d° < ts[D]® <d° Ats[D]® < d)) A

d® <d°}, whereD notin X, andf belongs taR \ D.

b) Definition of the SR Algebra

wetPP () & (]3¢ € r (¢[X] = ¢'[X] A ¢[D] = ¢'[D])}
O_;Deq:DHD(T) L {t|t er AN P(t)}
seq:D1xDy—D .~ A {{ti otz 0d)|t1 € r1 A ta € r2 Ad = intersection(ti[D1], t2[D2]) A
~disjoint(t1[D1], t2[D2]))}

r1 X

c) Definition of the SEQ Algebra

Figure 2: The Folding Operator, and SR and SEQ Algebras



this subspace relationship: attributes, and from which thd-value of the

result tuple is composed (see definition of
compose below). Line two denotes the aggre-
gate set for whichf computes the aggregate
value given byy. The characterization of an

Definition 3.1 Let »; andry be two relations.
Then, tuplest; € ry andt, € ry forms an
intra-subspaceelationship, iff

(t1[A] 0 ta[A] 0 d) € (r, x*T:P1xD2>D ) @ aggregate set is first that all tuples in the set
agree exactly on the same grouping attributes
The difference operator is more involved, andls does the tuples of line one, and second that
denotes tuples constructed from tuplesrin the D-value associated with each tuple in the
which are referenced by some subspace that aggregate set contains (or equals) the composed
not referenced by anyl-value equivalent tuple d-value. Lines three and four ensure that all
in 7o. Thus, line one ensures there is a candiandidate tuples are accounted for, i.e., there
date A-valued tuple inr;. A new D value is exists no tuplets € r which agrees on the
computed by lines two through five, where Figgrouping attributes and wheré and t¢3[D]
ure 1 a) illustrates the interesting and interseditersect. The last line ensures that the aggregate
ing 72 tuple cases, and indicates the begin add/alue is valid. Notice, that according to Figure
end points which contributes to the computatiah b) the two tuples of line one may compose an
of a newD value. In the case of Figure 1 ajnterval denoting a gap between them. Then,
the difference operator would yield three new tihese tuples are not in the aggregate set, but,
ples. Hence, in general at most thrdevalue there is at least one tuple in with qualified
equivalent tuples suffice to compute any resulrouping attributes and B-value that contains
ing D value, i.e., at least one tuple from, and this gap, e.g., seg[D] of the leftmost example
possible one or two tuples fromy. Lines two in Figure 1 b). The examples of Figure 1 b) are
and three of the definition in Figure 2 determineaptured by the compose function given by the
the possiblet[D]* points, i.e., given by tuplesfollowing definition:
to € ro andty € rq, respectively. Similar, lines
four and five determine the possib[®]© points.  compose(di,d2) £ {d|
The succ function is applied to ensure that a re- (d=di=do) V(d"=di+1Ad"=d; -1V
) ) (d°=di Nd®*=d5—-1)V (d° =di Nd°=d5)V
sult D-value does not intersect with te-value
_ _ (d*=d§+1Ad°=d§)V(d°=ds A d°=dS)}
of the r5 tuple which contributes to the compu-

tation of it. Finally, the last two lines ensure a _ _
: : . . .. Finally, each SR algebraic operator is snap-
valid result: Line six ensures th&tD] is valid,;

_ .. shot reducible to its RA counterpart according
Line seven ensures that &l tuples are consid-

. . to the definition of Section 2.2, and in terms
ered, i.e., there are nd-value equivalent tuples _ _
) _ _ , of the above defined slice operator, e.g., for
in ro intersecting witht[ D).

_ the selection we haves™ P~ (o5 PP (r)) =
The aggregate formation operator also com-

o Tsr:D% ).
putes a newD value for each result tuple. From P(7 ()

the definition in Figure 2 b), line one ensuregEQ_ The SEQ algebra goes beyond the SR

that there are two (not necessary distinG§yoperty by allowing DPE. The redefinitions of
operand tuples that both agree on their groupitiyee SR operators comprise the transition from
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a SR to a SEQ algebra. The definitions @ftes naturally and accordingly to the relational
Figure 2 c) show the principle differences bgchemes assumed by the user. Discarding ex-
the lack of preconditions for projection and seosures is required before union compatible op-
lection operators, and that the Cartesian proérations and upon termination of evaluation. In
uct explicitly exposes the dimension attributethe first case the presence of exposed attributes
of its operands. That is, for a result tuple omay break with user-assumed union-compatible
the form (¢; o ¢t o d), both the operands tu-relations. In the second case exposed attributes
plest; € r; andty € ry contribute to the are generally of no interest beside that they have
result as they are. For example, (leaving obten input to dimension computation. The dis-
the SUPerscriptsSy . ation(r.p)<duration(s.0)(r % carding is managed by a so-calledmplement

s), mrasp(r x s) and mp(r) are all well- project operatot: Tx(r) £ ﬂff;?jﬁ}\X(r),
formed SEQ expressions. The schemes asghereX represents the set of prévious exposed,
sociated with the results of these expressioafad not yet discarded, attributes of an expression
are (r.A,r.D,s.A,s.D,D), (r.A,s.D,D) and EXP that has yielded. In the below denota-
(*D”, D), respectively, where.D, the twos.D, tions (whereFE is a shorthand fol2 X P) it is

and “D” are only regarded as ordinary ADT atassumed that discarding of exposed dimension
tributes. This means that these attributes are extributes will occur before updating the expose
posed. The Cartesian product does built-in expset, e.g., see the denotation of union.

sure, and the two projections do user-specified

exposures. The Cartesian product needs to ex- [F(R)] £ r(R)Cdom(Ar)x -
pose attributes to utilize the DPE property. How- oo x dom(Ap)
ever, a SEQ evaluation discards built-in expo- [27P(B)] 2 oeP=P([E])
sures at certain critical steps. The exposures are [D-D(E)] & mseD—D ([
managed during an evaluation in terms ofexn ”’;HD : ”:;_{DHD
pose setdenoted by (EX P), and the following [Exn (B = &x5p ([ED
assignments to the expose set for each step of df: x”**P27P E,] 2 [E4]
evaluation: o 5¢4:D1x Dy =D
e(r) = 0 [E-]
e(rx(EXP)) = 0 [B: VP PP Ba] 2 Ty ([BA)
seq:D1XDgog—D
e(op(EXP)) = e(EXP) o
e(EXP, x EXPy) = e(EXPy)Ue(EXPy)U Te(2) ([22])

(1>

[E:x \P* P20 By e ([E1])

\seq:D1 XDo—D

{EXP..D1, EXP5.D2)
e(EXPLop EXP,) := 0, whereop € {U,\}

e(€x.p(EXP)) = 0 Te(iz) ([E2])
[LET] Te(m) ([E])

1>

The semantics of an SEQ evaluation, involv-

ing the exposures by subexpressions, are given

in terms of denotational semantics symbolized

by expressions enclosed ljyj, see below. An

expressionEX P may involve subexpressionsSummary of Properties: In this section we

where an evaluation of a subexpression may ifrso defined the notion of intra-subspace rela-

volve (|mpI|.C|tIy) the above corresponding eXfionships to characterize the class of relations
posure assignment. However, some subexpres-

sions have to discard SEQ exposed dimensigfnoted by the Cartesian product of SR, and
attributes, i.e., not user-exposed dimension stthich generalizes directly to SEQ, and gener-
tributes, before the subexpression them sel are;

The term complement is used because the projection

evaluated. This is to ensure that SEQ eValhjs-t is “complementary” to the list of a regular projection.
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alizes toADT? and ADTY/F with an addition The following table summarizes the dimensional
of a—disjoint parameter expression. Howevegharacteristics of each of the algebras defined in
ADT® and ADTY/F also support a comple-this section.

mentary class of non-empty relations:

ADT? | ADTY/F | SR | SEQ
o ) inter-rel. | inter-rel.
Definition 3.2 Letr; andr; be relations. Then,  inya-rel. | intrarel. | intra-rel. | intra-rel.
t1 € r; andty € ry forms aninter-subspace DPE | DPE&PB| SR&DP | DPE&DP

relationship, iff,

(1 02) € Caisjomi(ts Dr]ta(Da]y (11 X 72) B 4 Comparison of Expressive

Power
We now state the following lemmas to further
formalize the characteristics of the algebras: The comparison of equivalent expressions by the
notion ofstrict equivalencdi.e., Section 4.1 be-
Lemma 3.3 The SR and SEQ algebras do nd®w), is based on the following structure: L@}
denote the class of relations with inter-subspaggdQ- be two (algebraic) languages, théh, <
relations as defined by Definition 3.2. (2 means tha); is at most up to equal ex-
pressive with respect tQ, if Vg € Q1 3¢ €

Proof:  Since the Cartesian product is fundd?2 (41 = ¢2). Moreover, we must assume that
mental, only this operator could be used to coripese queries are expressed over arbitrary data
bine tuples of distinct relations. However, in SRIUCtures, i.e., any relation extended with a di-
and SEQ this operator combines, by definitiof€nsional ADT in our case. Then, the = ¢,
only by intra-subspace relationship, cf. Defin@POVe is equivalent to:

tion 3.1. o
de([[(h (db)]]Q1 = [[Q2(db)]]Q2)a

o where db is a data structure, anfl;(db)]o,,
Lemma 3.4 An algebra that by definition is SR ) . ]
1 < i < 2, is the result of evaluating; over

is not DPE. ] )
a databasdb according to the semantics of lan-

guagel);. (Subscript)); is in the following given
by the context, and omitted). Moreover, from
the above we deduc€; < Q- PN Q1 <
Q2 N =(Q2 < @1), i.e., language?; is sub-

sumed by languag@-.
Lemma 3.5 An algebra that by definition is PB y language:

is not DP.

Proof:  Follows directly from the definitions
of SR and DPE, cf. Section 2.2. [ ]

4.1 Comparison by Strict Equivalence

Proof:  This follows directly from the defini- ADT® vs. ADTY/¥  The RA framework, as
tions of PB (Definition 2.3 and DP (cf. [3]). Sealefined in Section 2, does not allow any user-
also the TSQL2 and STSQL examples of Secti@pecified constructions of attributes values, so
2.2. m the following theorem summarizes the corre-

12



spondence betweehDT” and ADTY/F. No- on the form(t' o y), wheret’ = t[{dept, D}]

tice that we regard an interval as a singlendy = sums. This is a point-based aggrega-
(“atomic”) value, and not as two explicit begirtion over the relatiorEMR and the subsequent
and end RA attributes. Isolated to intervals thfslding coalesces each set of result tuples, where
approach could be argued. However, when mdrgles both denote the same aggregate and com-
complex and irregular spatial attribute values apgise a maximal contiguous chain by their re-
involved, such as polylines and polygons, thispective D-values. TheADT? algebra is not
approach reflects the ADT extensions to RA ipapable of simulating this fragmentation into

general. point referenced database facts, i.e., otherwise
unfold andfold would not have been fundamen-

Theorem 4.1 ADT?Y < ADTV/F tal point-based operators within this framework.
This finalize the proof of showing thatDTV/¥

Proof: According to the comparison structurgubsumesADT? . ]

the proof is on the following form:

(Vg1 € ADTF (32 € ADTY/F (g1 = ¢2)))A Note that the subset of expressionsAibTV/*

(3gs € ADTY/F (Vg4 € ADTF (—(g3 = qu)))) which involvesunfold or fold operators, or both,
The Ihs (left hand side) of the conjunction iss, in general, not corresponding to any subset of
given directly by the definitions oADTY and expressions iMDTY. This means that where
ADTY/F in Section 3. That is, everADTY RA is only extended with abstract data types, as
expression is also aADTY/F expression. Putin the case of th DT algebra, a dimensional
differently, ADTY/¥ is defined in terms of theinterpretation of database facts is not an under-
operator set oADT? plus theunfold andfold lying property of such an algebra. In particular,
operators. the ADTY algebra does not express the class of

For the rhs (right hand side), envision the dtoalesced queries, and not the class of dimen-
mensional aggregate formation query of Secti@onal queries, e.g., the dimensional aggregation
2.2 formation as presented above.

1) Determine the (periodic) salary pay-outs for eacBR vs. SEQ Based on the SR and SEQ defi-
department over all times nitions of Section 3, respectively, the following

theorem states that SR is subsumed by SEQ.
given by the equivalenADTV/¥ expression:
Theorem 4.2 SR < SEQ

fOZdD (f({dept,D},sums) (’LLTLfOldD (EMP)))v
Proof: Analogously to Theorem 4.1 the proof
which, in fact, yields the same result as depictgglby showing:

by RESULT of 1) of Section 2.2. Each ag- (Vqg1 € SR(3q2 € SEQ(q1 = q2)))A

gregate set of this expression is denoted by the (g3 € SEQ (Vqs € SR(—(q3 = qu))))

set of tuples that mutually agree on both theithe lhs (left hand side) of the conjunction is for
dept andD values, whereD-values are on thethe slice, union, difference and aggregation for-
form [p, p|, due tounfold ,(EMP). Moreover, by mation operators directly given by identical defi-
definition an aggregate set yields a result tuplanitions in both SR and SEQ, cf. the definitions of

13



the algebras in Section 3. Moreover, the SR prsion attribute. Thus, SR is subsumed by SHQ.
jection and SR selection are only more restric-
tive than the respective SEQ operators due to the

property of DPE of SEQ . ADTU/F vs. SEQ The following theorem

Due to dimension attribute exposures bytates the correspondenceﬁdDTU/F and SEQ
SEQ, we have to prove that the SR Cartesialyebras.

product is equivalent with the SEQ Cartesian
product proved according to our comparisofiheorem 4.3 Neither SEQ< ADTY/¥ nor
structure of strict equivalence: ADTY/F < SEQ.

VT17T2 ((Tl XST:DIXD2~>D 7,2) —

(ry x 5@ D1 XD 1) Proof: The proof is on the following from:

1)3q1 € SEQ(Vg2 € ADTY/F (—(q1 = )))

Let ¢ be in the lhs of the equality, then, by 2)3g; € ADTY/F(Vgy € SEQ(—(gs = qu)))

the definition of the SR Cartesian product thefglaim 1) above is given by the definition of
exists tuplest; in r; andt, in ry, such that DP (cf. [3]) and Lemma 3.5. Thus, SEQ
t[r1.A] = t1[A], t{rs.A] = t3]A] and¢[D] = evaluates expressions where the dimension
intersection(t1[D], t-[D]). Since, t; € D—val(bj/%s are preserved by the result. The
and ta € ry, there is according to the defADT /™, on the other hgnd, uses th@f"ld_
I . and fold operators to simulate a pointwise
inition of the SEQ Cartesian product a tu- .
ple € (r x*@DixD2D 10y such that interpretation of database facts. By Theorem
, , L 4.1 we know that only dimensional queries
t'lr.Al = tlA], ¢'[rs. Al = t[Al ¥[D] = gare of interest here. Both the dimensional
intersection(t1[D], t2[D]), t'[r1.D1] = t1[D1],  Cartesian product, dimensional difference and
andt'[ry.Da] = t2[Do]. Then, by applying the dimensional aggregate formation operations
complement projection, according to the evalare in the ADTY/F algebra forced to include
ation by denotation as defined for the SEQ aknh unfold (and, eventuallyfold) to obtain the
gebra in Section 3, we get (recall that the corgimensional semantics wanted. However, by the

plement projection COUId be “rewritten” into djeﬁnition Of unfold the il’lfOl’matiOI’l abOU'[ the

7Te(1"1 xD1xD2—=Dpy)

projection): original D values is lost, and a subsequgold
operation is not able to restore it completely.
Tt D2y (1) = if?ﬁjﬁ(t’):t The following example illustrate this point:

Let relationsr; = {(a,[2 — 3]), (a,[4 — 6])}

Thus, every tuple in the SR Cartesian produgpd r2 = {(a,[5 — 6])}. Then, the respective
' Ifference operations yield the following results:

is also in the SEQ Cartesian product. The oppo-
site inclusion is given by the same strategy and™ \™*""* 7" r2 = {(a,[2 = 3)), (e, [4 - 4]},
omitted. foldp (unfold ,(r1) \ unfoldp (r1)) = {{a,[2 — 4])}.
The rhs (right hand side) of the conjunction ig, _. : .
I 2 howed by L 33. S
given by Lemma 3.4, and exemplified by a SE% aim 2) is showed by Lemma ince

DTY/F subsumeADT? by Theorem 4.1, let
version of the query of Section 2.2, which dete[- y

. L _ ne following ADT? expression be issued on the
mines employment histories of departments wit . L
) sample database of Section 2.2, which illustrates
durations of more than seven years:

DD (pseiDoD (e the non-correspondence with any SEQ expres-
dept duration(D)>T - sions:
{(d1,[1988 —97]) }

Notice the user-specified reference to the dimen- O disjoint (enp.D,pepT. D) (EMP X DEPT)
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yields: The following theorem

shows that every SEQ

operator is snapshot equivalent with a corre-

{(Pete, d1, 10k, [1985 — 90], Ann, d;, [1991 —

Theorem 4.6 The SE
Then, according to the inter-subspace relatlon Q

ship class of expression supported APT?, corresponding express
and not SEQ, cf. Lemma 3.3 of Section 3, thgy:
above query makes no sense in SEQ. Thus, the
theorem holds. [

1%

T;eq:D% (T)

The result of Theorem 4.3 shows thebTY/¥

is not applicable to query classes inducing DP
semantics, whereas SEQ (and SR) by definition
is DP. Moreover, inter-subspace relationships are
not expressible by SEQ (or SR). Thus, the fol2 et DX D2l gy

11

7_[_;;q:D—>D (’I")

O_seq:D%D (T’)

1%

11

lowing is a corollary of Theorem 4.3: py xSTD1xD2=D 5
Corollary 4.4 Neither SR < ADT? nor

ADT” < SR.

Proof:

The proof follows from Theorem 4.1,701
Theorem 4.2, and Theorem 4.3. [ ]

\seq:Dl X Do—D ro

11

seq:{D}—D
(X.1)

1%

£ (r)

4.2 Comparison by Snapshot Equiva-
lence

Now, recall the SE property (cf. Definition
2.1), which ensures that snapshot relations are
equal. The following definition generalizes thE"°°f
SE property to account for expressions of tV\f?Jbove—’

language%): andQ@s:

The proof
in turn.

first four equivalences

Definition 4.5 Let ¢ € Q1 andga € Q2 be the SEQ algebraic defi

two expressions, thery; and ¢, are snapshot
equivalent expressionslenotedg; = qo, if for
all pointsp, data structuregb, such that

7p([g1(db)]) = 7p([g2(db)])

proofs are by inclusion

that an arbitrary Ihs (i.e.,
right hand side) result, and

m also in the rhs (i.e.,

15

9D} sponding expression iADTV/ ¥

operator set is snapshot

equivalent £ of Definition 4.5) with respect to

ions WDTY/F, given

TR\D(
O contains(D,[p,p])V

equals(D,[p,p]) (7))
wx,p(r)
op(r)
r1 Ury

.ol

ﬂ"l‘l‘A,’l‘z‘A,’l‘l.D(

fold,

Uequals(rl.D,rg.D)(

unfold p(r1) X

unfoldp(r2))))

fold p(
unfoldp(r1) \
unfold ) (r2))

fold
£ x,py.p) (unfold p(r)))

is by showing each of the
That is, showing that re-
sults are according t& of Definition 2.1. The

are given directly from
nitions in Section 3 and

the above correspondingDTY/* expressions.
The remaining cases are more involved, and their

both ways, i.e., showing
left hand side) tuple is



vice versa, with respect to the SE property. a maximal contiguous chain (i.e., a connected
Note that for the SEQ Cartesian product waet of points), say; andcs, respectively, com-
use the SR Cartesian product, since they gmsed by theD-values associated with the tu-
shown equivalent by Theorem 4.2, and we mayes. Hencet'[ D] corresponds to the non-empty
leave out the discarding of exposure here. Leintersection ofc; andc,. Moreover,S; and S
be a Ihs tuple. Then, by the definition of the SRwst correspond t&]; = {t1,....,tn} C 71,
Cartesian product there exists tupless 1 and 1 < n, andS, = {¢},...,t},} C 2, 1 < m,
to € 71, such thatt[r1.A] = t1[4], t[re.A] = respectively. BothS] and S} denote a maxi-
to[A], andt[D] = intersection(t1[D],t2[D]). mal chain of overlapping or adjaceft-values
By the definition of unfolding there are set# r; andrs, respectively. By definition the SEQ
of A-value equivalent tuples, comprising maxcartesian product, i.e., by combinitsj and.S,

imal chains ofD-values, i.e.{t],... ,t,} C vyields a lhs result seft],...tJ}, 1 < k < nm.
unfold(ry) and{t{,... ,t!. } C unfold(rz), so This implies that, the rhs tupl¢ is A-value
that t1[A] = t}[A], 1 < i < n, t{[D]* = equivalent with every Ihg!, 1 < i < k. It also
ti[D]e < #©1[D)* < t[D]* < t, [D]* = implies that eithet'[D] = ¢/[D], for k=1 (and
tn[DI°, t2[A] = t][A], 1 < j < m, and the inclusion follows directly), ot'[D] contains
t{[D]* = t)[D]¢ < to[D]* < to[D]¢ < everyt![D], fork > 1. Thatis, the set of!/[D]-
t’ [D]* = t/,[D]°. This implies that therevalues, is the non-unfolded version of the inter-

are tuples from these two sets which are corsection of thec; andcs chains, an intersection
bined by the rhs\DTY/¥ Cartesian product, re-which equalst’[D]. Thus, byg the inclusion
stricted by the rh& DTU/¥ selection, where theholds.

predicate simulates the actual dimension inter-For the dimensional difference, lét be a
section computation of the SR Cartesian protisple of the rhs. By the definition of fold-
uct, and, finally, projected by the risDTY/F ing there exists a set of tuplds, ... ,t,} C
projection. The result before folding is a setunfoldp(r1) \ unfoldp(re)), so thatt[4] =

of tuples {¢{",... ,¢;'}, so thatt!'[ri.A] = t;[A], t[{D]* < t;[D]* = t;[D]® < ¢[D]*, 1 <
t1[A], t!'[r2.A] = t2]A], thus, ¢/"[A] = ¢ < n. There are two options: The first op-
t[A], 1 < i < h,andt{’[r;.D])* = t{"[r1.D]¢ < tion is that there exists an identical subset in
t(D) < t[D]¢ < ¢)/[r1.D]* = t}/[r1.D]°. By wunfoldp(r1), which comprise a maximal chain
the definition of folding, the coalesced result twsver the associatefP-values. This implies that
ple, i.e., fold,. p({t{,... ,t)'}) = t3, has a for all t"" € unfoldp(rs), t" & {t1,... ,tn}.
ts[r1.D]-value which either equals or contain®oreover, there is a set of one or mofevalue
the Ihst[D]. By Z the inclusion holds. The op-equivalent tuples im, from which the unfolded
posite direction is similar and details are omiset is constructed. In that case the setofu-
ted. However, briefly note that for each rhs tiples, due to the DP property of the SEQ differ-
plet’, which results from the rhs Cartesian prodence, contributes as it is to the lhs result. By the
uct, selection, projection, and, finally, coalescedkfinition of Z the inclusion holds.

by fold,, there are two sets ofl-value equiv- The other option is more involved, where
alent tuplesS; C wunfoldp(r1) and a subset{t;,... ,t,} above is a subset of an other set
Sy C unfold H(r2), where each such set denoteS of A-value equivalent tuples imnfold(ry),
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where S comprises a maximabD-valued chain ples, say denoted by;, wheret’ € X;. The
in unfold(r1). Then, there exist correspondindguples of X; agree on theitX -values, and have
A-value equivalent setS; C unfold(re), 1 <14, D-values that contain (or equal) tlhievalue as-
where eachS; both comprises a maximaD- sociated witht. From X; the aggregate function
valued chain inunfold(r2), and has a non-emptyf, computes thg of t. Now, sinceX,; C r, then,
intersection withS.  Thus, {t1,... ,t,} C X contributes to the rhanfold H(r) as many
(S\ (Us,Cunfold(rs) (Si))), Where eacl$; has the times as there are distinct points over the set of
above given properties. By the definition of ur¢[D] values, from alt’ € X,;. Say{t}, ...,t},} C
fold we get that there exist’ = {¢},...,t],} € wunfoldp(r), 1 < n. The rhs aggregate forma-
r1, 1 < m, which corresponds t8, andS” = tion partitions the relatiorunfold ,(r) into ag-
{t1, ...t} € ra, 1 < k, which corresponds togregate sets, where any two of the abé¢vand
USigunfold(rg)(Si)' Now according to the defini-t;., fori #j,1<i<mn,andl < j <n, are
tion of the SEQ difference th®-value of a Ihns member of distinct aggregate sets of the parti-
tuple ¢’ is constructed, in this case, from eithetion. Note that eact[D] = [p;, p;], for1 <i <
tuplet” in S” and one tuple ir6”, or from two n, and allp;’s form a connected set of points.
tuples inS”. The tuples inS” satisfy the inter- Thus, there are: (and onlyn) aggregate sets,
section condition with a tuple o8’. For exam- X, .1, .-, XJp,, p.]» all subsets ofunfold p(r),
ple, see the illustration of Figure 1 a). Sincayhich relate back to the above Ihg. However,
tuples inS’" is given so that they comprise ay the definition of the Ihs aggregate formation
chain of adjacent and overlappirdg-values, the and the DP property, only a subset of the rhs ag-
SEQ difference ensures that every part of thgtegate sets corresponds directly to &g i.e.,
chain which is not referenced by any tuple ievery &, .1, wherep; is contained byl. Each
S" contributes to the result (recall that rhss such A7, ., must be constructed from exactly
constructed from exactly the same sets of tthe same set of tuple$ € r as denoted by the
ples). Moreover, the DP property of SEQ ersetX;. Let |d| denote the number of poings
sures that each such part are given by fragmeirighe Ihsd. Then, the subset of rhs aggregate
which preserve the dimension values of the origets, corresponding t&;, yields before fold-
inal tuples inS’. That is, SEQ yields a resulting a result seft/, ... ,t"fﬂ}, where tuples are
set{t!,...t]"}, 1 < I, for every qualified part on the form((¢'[X], [pi+j,pi+;]) o ¥'), 1 < 4,
of the chain inS’. This implies that exactly onel < (i + j) < n, and0 < j < |d|. This set
such result set must correspond to the rhs taplgreserves exactly the same correspondence with
i.e., fold p({t}",...t]"}) = t. The rhs PB prop- X; as did the rhs aggregate sets. Since, the rhs
erty folds such a part of a chain into the singlaggregate formation is computed over the cor-
tuplet. By = the inclusion holds. The oppositeesponding set of tuples as in the lhs aggrega-
direction is analogous to the same direction féion formation, it implies that/ = y. Finally,
the SEQ Cartesian product above and omittedby folding all the rhs aggregate tuples, includ-
Finally, for the dimensional aggregate formang {¢/,... , ¢/}, we obtain a rhs tupl¢’ on the
tion a lhs tuplet is on the form(¢'[X] o y o d). form ((¢'[X],d’) o y), whered' either equals or
By the definition of aggregate formatiancor- containsd, due to the coalescing of the rhs re-
responds to a non-empty aggregate set tf- sults. Thus, despite different orderings of hs and
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rhs attributes, we conclude that Bythe inclu- intersecting point

sion holds. The opposite direction is omitted, but
it is similar to the previous equivalences in the
sense that one rhs tuple may yield one or more

corresponding lhs tuples, and Bythe inclusion ex1) ex2)
holds. region patterns:
Thus, all the above set of equivalences rmld. [reg; =dreg, [ Jregs HiHreg,

A final result with respect to snapshot equivd=igure 3: Two examples of intersecting spatial
lence states that SEQ is subsumedyT?/F, "€910NS

denoted bySEQ <,. ADTY/F. Hence, a simi-

lar comparison structure as for strict equivalence

is applied: languages, i.e., other features that have both the-
oretical and practical interest. In particular, other
U/F . .
Theorem 4.7 SEQ <, ADTY/ features for dimensional query languages may

include support of multiple ADT dimensions, di-
Proof:  The proof is on the following form:  ansion function expressions in the projection

Va1 € SEQ (3¢gs € ADTU/F(q1 se @) A list to compensate for missing intrinsig-value

computations, set-valued attributes, ADT for “ir-
Jq3 € ADTY/F (Vg € SEQ(— (g3 Z q4))) P

regular” values (e.g., polygons), etc. We briefly
The |hs of the conjunction is given directly byook into both the issue of irregular ADT values,
the result of Theorem 4.6. possibly combined with other features, and the
The rhs of the conjunction follows directlyissue of multiple ADT dimensions support.

from the inter-subspace example of claim 2) of st spatial query languages are basically

Theorem 4.3. ® hon-intrinsic ADT extensions (e.g., cf. [9]). So,

let a spatial relation be given by((A, D)) =
{{a1,reg1), {az,rega)}, where the dimension
ADT attribute D is of type polygon and denotes
simple regions, here exemplified byg; and
The motivation behind the above comparisareg,. Assume now that we want to determine all

4.3 Extensions to the Comparison
Framework

was to investigate and compare dimensional-valued tuples in- and their region intersec-
query languages with respect to a certain settadns with nona; valued tuples also in. Thus,
properties and equivalence cirteria. The RAhe regions of interest is given pictorially by two
based framework was defined as simple as pesamples in Figure 3, where regionsgs and
sible to emphasize some establised propertiesref, denote the intersections of both examples.
query langauges, herein described by SR, PBne interesting problem is to study similarities
DPE and DP. One biproduct of this compariand differences in properties illustrated by a re-
son is hopefully that the framework, propertiesult on the form{{ai,regs), (a1,regs)} versus
and comparison criteria may be generalized #oresult on the form{{aq, {regs,regs})}, i.e.,
account for more extensible dimensional quewithin a framwork where DP and PB are gen-
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eralized to characterize spatial semantics of thisth correspondingADTY/¥ expressions. In

kind. Moreover, should-egs andregs be re- fact, theADTY/ algebra subsumes the SEQ al-

garded as one region or separate regions dueyébra with respect to SE.

the touch relationships (i.e., intersecting bound- The ADTY/* and SEQ algebras have distinct

aries) of ex 1) in Figure 3, etc.. individual strength, and a user-oriented query
Orthogonal multiple ADT dimensions are afanguage should benefit both from both extrin-

interesting feature, and is established in tempQz and intrinsic semantics, e.g., cf. STSQL [2].

ral databases by valid and transaction time dllhe framework seems to be a sound basis with
mensions, where orthogonality is given by well-

defined sematics, e.g., [11, 22]. However, fé?SpeCt to both the properties and the compari-

extrinsic languages the problem of “indetermirsOn criteria defined.
ism” arise, due to user-specified simulated di- Another observation concerns future exten-

mension evaluation. The following example ilsions of the RA framework. An interesting is-

lustrates this point, where two folding operasye is to investigate to what degree these prop-
tions are applied to a relatiof( R), whereR =

: . . _ erties scale and generalize for new extensions.
(A, Dy, Do), i.e., with two ADT dimensions:

More specific tasks may involve studying exten-
r(R) = {(a,[2—2],[4—4]),(a,[1—1],[4—4]) sions in isolation, e.g., “indeterminism” of ex-
(a,[2—2],[5—5])}, tr!nS|c Ianguages, as |IIu§tr§ted |r1 Se.ctlon 4.3.
Finally, with the above findings in mind, the
complementary comparison of extrinsic vs. in-
foldp, (foldp, (r)) = {{a,[2=2l, 4 =51, yinsic languages with respect to convenience of
{a, [1 = 1], 4 - 4])} expressions (e.g., the length of “similar” expres-
sions in number of operators, etc.) will further
foldp,(foldp, (r)) = {{a,[1-2],[4—4]),  explore differences and similarities of these two
(a,[2—-2],[5-5])}  approaches.

For intrinsic languages the problem is resolved

by the well-defined algebra which accounts f&cknowledgments: This research has in part
multiple orthogonal ADT dimensions been founded by The Research Council of Nor-

way, through grants MOI.31297 (BEST) and
_ 117644/223 (DynaMap).
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