
UNIVERSITY OF OSLO
Department of Informatics

A Formal
Comparison of
ADT-based
Dimensional Query
Languages

Bjørn Skjellaug

Research Report No
276

ISBN 82-7368-222-6
ISSN 0806-3036

September 1999

A Formal Comparison of ADT-based Dimensional Query Languages

Bjørn Skjellaug
SINTEF Telecom and InformaticsandDep. of Informatics, University of Oslo,

P.O.Box 124, Blindern, Forskningsveien 1, N–0314 Oslo, Norway,
Phone: +47 22067300, Fax: +47 22067350,bjornsk@ifi.uio.no

Abstract

This paper investigates and formally compares the expressive power of dimensional (i.e., spatial,
temporal, and spatio-temporal) query languages, where the dimensional extensions are supported
in terms of ADTs (abstract data types). There are basically two approaches to the design of
dimensional ADT extended query languages. One approach, by definition, adds semantics by
interpreting an ADT attribute value associated with a database fact as anintrinsic (i.e., built-
in) relationship with an underlying space. The other approach treats ADT attribute values as
conventional attributes, where the dimension semantics (and space) associated with a database
fact is anextrinsicproperty and controlled fully by the user.

The comparison framework is based on the relational algebra (RA) and a single ADT extension to
RA. Two comparison criteria of semantic equivalence also are defined. The one criterion ofstrict
equivalentexpressions imposes equal results, whereas the other (relaxed) criterion ofsnapshot
equivalentexpressions imposes equal snapshot results. For the strict criterion a certain class of
intrinsic ADT extended languages is semantically richer than the set of corresponding expressions
of a pure (i.e., extrinsic) ADT extended language. This is due to the properties of the built-in
dimension support. For the relaxed criterion the same intrinsic language class is shown snapshot
equivalent with corresponding expressions of the pure ADT extended language class. However,
there is a class of expressions which relates database facts of non-intersecting subspaces, that is
expressible only by the pure ADT language. In general, and despite differences, one language
approach is not found strictly superior to the other. Rather, practically, the findings indicate multi-
approach designs for user-level oriented query languages. Moreover, the findings also informally
indicate that by extending the framework, e.g., allowing multiple orthogonal dimension ADTs,
more involved problems arise, such as a kind of indeterminism of pure ADT extended languages,
i.e., user-choices influence results of otherwise orthogonal dimensions.

1 Introduction

This paper is concerned with extensions of query

languages which address data referenced by an

underlying dimensional space, such as supported

by spatial, temporal, and spatio-temporal query

languages, and where these references are de-

fined in terms of abstract data types (ADTs).

General purpose commercial database systems,

such as Informix, Oracle, and DB2, have to

some degree support for spatial and temporal

data management based on ADT extensions.

Thus, experiences and approaches achieved by

the database research community should be of

both practical importance and interest in devel-

oping such systems.

Especially, spatial and temporal database re-

search have adopted different principles in query

language design, e.g., see [9, 17] and [4, 14,

19], respectively. The principle differences are

shown by the fact that a temporal query language

typically redefines their underlying algebra to

become temporal, and, thereby, make dimension

semantics an intrinsic property of the algebra,

and the fact that a spatial query language only

adopts the ADT extension, but, leaves the di-

mension semantics as an extrinsic property. Er-

1

wig et al. explore in their paper [7] the expres-

sive power of a selected set of spatio-temporal

data models, but, there exists, to our knowledge,

no formal study of the relative expressiveness of

query languages based on extrinsic versus intrin-

sic ADT dimension semantics.

Spatial database research has focused mostly

on spatial datatypes, i.e., their structures, op-

erations and semantics, including system inter-

nal indexing structures, etc. (e.g., [18]). Inte-

gration of spatial dimension semantics with the

logical data model and query language has not

yet been fully addressed. Thus, a spatial at-

tribute is treated analogously to other property

data comprising a database fact. Let a sam-

ple spatial database which captures information

about buildings and estates illustrate this point:

Determine each building spatially associated with an es-

tate.

SELECT e.number, b.number

FROM Estates e, Buildings b

WHERE CONTAINS(e.region, b.location);

The spatial semantics implied by the above

query is specified by the user. For example, the

“spatial join” is formulated as an old-style join

(e.g., cf. [15]) followed by a selection criteria

based on a user-specified spatial predicate. Ac-

cording to Güting [9]:“Strictly speaking, there

is no such thing as a spatial selection...”, and,

furthermore,“...Similar to a spatial selection, a

spatial join is a join that compares any two ob-

jects with a predicate according to their spatial

attributes”—meaning that the spatial predicate

is user-specified.

Temporal database research, on the other

hand, has focused on making existing query

languages temporal by redefining the algebra

with built-in dimension semantics (e.g., [8, 22]).

Hence, a conventional (i.e., a snapshot) query is

only a special case of a temporal query restricted

to only consider the current database state. The

temporal semantics is an intrinsic property and

given by valid time and/or transaction time di-

mensions, i.e., managing when a fact is true in

the modeled reality, and/or when it is current in

the database, respectively [11]. A join of an in-

trinsic ADT extended language is a built-in natu-

ral dimensional join, which, by definition, com-

bines only those operands tuples which have in-

tersecting references to the underlying dimen-

sion space. In that sense, and contradictory to

the above claim of Güting, there are dimensional

selections and dimensional joins, also for spatial

ADT extensions, e.g., cf. STSQL ([2]).

A comparison framework is given by extend-

ing Codd’s relational model [5] with a single 1-

dimensional ADT (i.e., an interval or a line seg-

ment ADT), over which four algebras are de-

fined, and where each algebra extends the rela-

tional algebra (RA) in a particular way. There

are two pure (i.e., extrinsic) ADT extended al-

gebras, where one only incorporates new data

types, and the other extends with unfolding and

folding operators to obtain a point-based, but,

still user-controlled interpretation of database

facts. They are termedADTP andADTU/F , re-

spectively; The two intrinsic ADT extended al-

gebras, where one is based on the property of

snapshot reducibility([20]), and where the other

goes beyond this notion and combines it with the

ability to add user-specified dimension seman-

tics. They are termed the SR and SEQ algebras,

respectively.

The comparison defines two criteria of ex-

pressive power in terms of semantic equivalent

expressions. Expressions are said to bestrict

equivalent if they yield equal results, and ex-

pressions are said to besnapshot equivalent(SE)

[11] if they yield equal snapshot results, i.e.,

2

when sliced at an arbitrary snapshot. Different

properties of the algebras are defined to show

how the algebras satisfy the above comparison

criteria. First, an ADT extended model relates

a database fact with either a point-based dimen-

sion semantics, or a region-based dimension se-

mantics, e.g., a interval-based model [3]. An al-

gebra must reflect this distinction, even though

that the representation of the dimension value is

the same for both algebras. For example, an in-

terval is only a syntactic shorthand for individ-

ual reference points of apoint-based(PB) alge-

bra, whereas it is a reference value in its own

right of adimension value preserving(DP) alge-

bra. Moreover, we also define the properties of

dimension parameter expressions(DPE) as user-

specified expressions, and, finally,inter- and/or

intra-subspace relationshipsof database facts,

i.e., dimension references of expressions which

address the ability of an algebra in combining

(through the Cartesian Product) database facts

according to their dimension associations.

Thus, based on the above properties the ratio-

nal behind the strict criterion is to expose seman-

tic differences and similarities of “correspond-

ing” algebraic expressions. The other criterion

is defined to show whether the differences in

strict equivalences are eliminated by comparing

on snapshot equivalence, i.e., to expose corre-

spondences of some other well-defined seman-

tic notion. For both criteria we also investi-

gate whether one algebra subsume another al-

gebra, i.e., whether the former algebra semanti-

cally support all the expressions of the latter al-

gebra, but not necessarily vice versa. Finally, we

discuss informally and briefly issues concerning

extending the comparison framework.

The paper is structured as follows: First, the

algebraic framework and the properties of the

comparison is given in Section 2. Section 3 for-

mally defines the algebras and summaries their

properties, and Section 4 gives the comparison.

Finally, Section 5 concludes the paper.

2 Framework of the Comparison

2.1 Data Structure and Algebra Basics

Codd’s relational model [5] is extended in the

following way: A relation scheme,R =

(A1, . . . , An), is given by a relation name and

a list of attribute names, but where one of the at-

tributes namesAi, 1 ≤ i ≤ n, is the dimension

attribute, writtenAi = D, andA is a shorthand

for the listR \D. An r(R), or simplyr, denotes

a relation of the schemeR. For a tuplet ∈ r(R),

t[A] andt[D] denotes the the list ofA attribute

values and the single dimension attribute value

of t, respectively. SinceD is an interval (line

segment) ADT, thet[D]s and t[D]e denote the

respective begin and end points oft[D]. Thus,

tuples t1 ∈ r1(R) and t2 ∈ r2(R) are value

equivalent, if t1[A] = t2[A] [11]. The syntax

of the corresponding RA language is given by

the following coarse set of BNF productions:

RA ::= ⊥EXP >

EXP ::= r |σP (EXP) |πX(EXP) |

EXP1 ∪ EXP2 | ξ〈X,f〉(EXP) |

EXP1 × EXP2 |EXP1 \EXP2 |

The non-terminalRA symbolizes a full alge-

braic expression, and the corresponding right

hand sideEXP has a start (⊥) and an end (>)

symbol. The aggregate operator,ξ, equals the

definition ofaggregate formationby Klug [12].

An aggregate is formed based on a listX denot-

ing a (possible empty) list of grouping attributes,

and an aggregate functionf denoting a particu-

3

lar aggregation, such as sum, count, min, max,

etc., over a specified column associated with an

input relation, e.g.,max3(r) denotes the max-

imum value of the third column of a relation

r. Thus, the function type off is defined as a

mapping from the set of relations to a scalar do-

main. The rest is standard relational algebraic

constructs.

2.2 Dimension Semantics Support

The following introduces the different dimen-

sional properties of an algebra. Initially, let

the below example illustrate the semantics of

dimension intrinsic expressions. The following

two queries are issued over the sample database

recording employee and department histories,

respectively:

1) Determine the (periodic) salary pay-outs for each de-

partment over all times.

2) Determine the employees who have not been a

department manager during some period.

EMP: name dept sal D

Pete d1 10k [1985-90]

Ann d1 15k [1988-97]

DEPT: mng id D

Ann d1 [1991-95]

RESULT of 1) dept sum3 D

d1 10k [1985-87]

d1 25k [1988-90]

d1 15k [1991-97]

RESULT of 2) name dept D

Pete d1 [1985-89]

Ann d1 [1988-90]

Ann d1 [1996-97]

Queries 1) and 2) above are dimensional ag-

gregate formation and dimensional difference,

respectively. Notice that both results automati-

cally accounts for periodic changes. Now, let the

above queries be expressed in STSQL [2] by 1)

and 2) below, respectively:

1) REDUCIBLE (D) AS D

SELECT dept, SUM(sal)

FROM EMP GROUP BY dept;

2) REDUCIBLE (EMP.D, DEPT.D) AS D

SELECT name, dept FROM EMP

EXCEPT SELECT * FROM DEPT;

The REDUCIBLEflag, which is a STSQL con-

struct, imposes a dimensional query over the ref-

erenced ADT dimensionD. Thus, the flag im-

plies the deployment of an underlying dimen-

sional algebra. Note, however, that by skiping

the flag in the above expression STSQL sim-

ply would evaluate the query as a pure SQL–92

query, i.e., only involving the current database

state. The “bodies” of the above queries are pure

SQL–92 queries, which show, when the flag is

omitted, the relationship with the RA semantics.

This leads to the aforementioned notion of

snapshot reducibility[20] of an algebra or a

query language. But first we define the no-

tion of snapshot equivalence[11] of relations.

Concentually, a dimensional databaseD may

be viewed as a sequence of snapshots,D =

〈. . . ,D0,D1,D2 . . . 〉, where each snapshot is

related with, or indexed by, a distinct point [4].

This view is utilized by a slice operator,τp,

which denotes the snapshot ofD at a pointp,

i.e., τp(D) = Dp. In particular, for a tuplet in

r, andp in t[D], τp(t) = t[A], i.e., theA-values

at pointp. Thus,

Definition 2.1 [11] Two relationsr1 andr2 are

snapshot equivalent(SE), r1
se
≡ r2, if for all

pointsp, such that

τp(r1) = τp(r2) �

4

Then, the notion of SE is generalized to account

for comparing expressions of a dimensional al-

gebra with its conventional counterpart.

Definition 2.2 ([20]) An algebra (or query lan-

guage) issnapshot reducible(SR) if and only if

for all pointsp, dimensional operatorsopX , cor-

responding to conventional RA operatorsopcX ,

whereX denotes any RA parameter expression,

dimensional relationsr1, . . . , rn, such that

τp(opX(r1, . . . , rn)) = opcX(τp(r1), . . . , τp(rn)) �

The SR-property is based on a point-based com-

parison of expressions, but there are no require-

ment what so ever that a SR algebra by definition

is a point-based (PB) algebra.

Definition 2.3 Let A be an algebra, and let
{r1, . . . , rn} be a set of ADT dimension ex-
tended relations. Then,A is apoint-based(PB)
algebra, iff, for everyn-ary operationop of A,
∀ t, t′ ∈ op(r1, ..., rn) (

(t 6= t′ ∧ t[A] = t′[A])⇒

(disjoint (t[D], t′[D])∧

¬meets(t[D], t′[D])∧

¬meets(t[D], t′[D]))) �

Definition 2.3 enforces that the input relations

are interpreted as populated by tuples each of

which has a single point dimension reference

(i.e., aD value is a syntactic shorthand), and

that the result relations are populated with tu-

ples where no pairs ofA-value equivalent tu-

ples intersects or meets on theirD values. The

two SR query examples below, which illustrates

the orthogonality of the SR and PB properties,

determine employment histories of departments.

The TSQL2 ([21]) query is PB and the STSQL

([2]) query is not PB, respectively. (TSQL2 does

not use a flag, and evaluates by default over all

states.)

TSQL2: SELECT dept FROM EMP;

STSQL: REDUCIBLE (D) AS D

SELECT dept FROM EMP;

yielding r1 andr2, respectively:

r1 = {〈d1, [1985 − 97]〉}

r2 = {〈d1, [1985 − 90]〉, 〈d1, [1988 − 97]〉}

In general the point-based TSQL2 by definition

constructs a single result tuple from each set of

qualified (value-equivalent) tuples which forms

a maximal chain of contigouos (i.e., a connected

set of) points over theirD values, cf. [3]. Il-

lustrated byr1 above. The STSQL query, on

the other hand, is semantically richer by being

explicit about departmentd1 having two em-

ployments during two distinct, but overlapping

periods, seer2. (Note, thatr1 and r2 are SE

by Definition 2.1). The STSQL query exhibits

the DP property, which associates each resulting

database fact with aD value that reflects the se-

mantics of the distinctD values of the input tu-

ples contributing to the construction of the result

tuple. Thus, in a DP language the dimensional

semantics is given by theD value as a single ref-

erence, and not as multiple references by the cor-

responding set of individual points. On the other

hand, a PB language only relates a database fact

syntactically with itsD value. Hence, within this

framework the DP property is equivalent to the

notion of time-fragment preserving, cf. both the

definition of an “Interval-based Operator” in [3],

and the definition of the SR and SEQ algebras in

Section 3 which both by definition are DP.

From the above SR examples wee see that a

point-based evaluation of expressions is not the

case, i.e., a query is not evaluated for each snap-

shot in turn comprising a set of (indexed) snap-

shot results. Even though, this, in fact, could be

5

the conceptual evaluation model of a combined

SR and PB language. However, for a DP lan-

guage conceptually all snapshots of a database

facts is present at each evaluation step where the

database fact is involved, i.e., the snapshots are

regarded as a collection, i.e., sequence, of value

equivalent snapshots.

Further utilizing this knowledge of evaluating

over sequences of snapshots, we now go beyond

SR (cf. Definition 2.2 where theX refers to con-

ventional parameter expressions) by allowing

user-specified dimension expressions in combi-

nation with the built-in dimension semantics of a

language. This property of a langauge is termed

dimensional parameter expressions(DPE).

Definition 2.4 An algebra (or query language)

which allows parameter expressionsX to con-

tain references toD attributes for projections,

e.g.,πA2,A3,D(r), and/or dimensional predicates

and functions for selections (i.e., restrictions),

e.g.,σcontains(r1.D,r2.D)(r1 × r2), supports the

dimensional parameter expression(DPE) prop-

erty. �

For example, envison the above TSQL2 query

(similar in STSQL), further restricted to deter-

mine employment histories with a duration of

more than seven years,

TSQL2: SELECT dept FROM EMP

WHERE DURATION(D) > 7;

Which yields one tuple, i.e.,〈d1, [1988 − 97]〉.

So far we have studied several properties of lan-

guages, namely SR, PB, DP and DPE. In general

the following combinations are possible:

SR & PB SR & DP DPE & PB DPE & DP

The property combinations are incorporated by

the algebras to be defined next. That is, the

SR algebra combines the SR and DP proper-

ties. The SEQ algebra combines the DPE and

DP properties. Note, that the underlying alge-

bras of TSQL2 and STSQL are DPE & PB and

DPE & DP, respectively. The TSQL2 combina-

tion is not considered by the comparison. More-

over, the extrinsicADTP andADTU/F algebras

are in Section 3 classified as a DPE language and

a DPE & PB language, respectively. Note that, in

general, a PB property excludes a DP property,

and that a SR property excludes a DPE property.

In Section 4 the comparison uses the above set

of properties to expose the differences and simi-

larities in expressive power.

3 The Algebras

This section defines the algebras which are con-

sidered by the comparison of the subsequent sec-

tion.

Pure ADT: The ADTP algebra differs from

the RA operator set by the property of DPE, i.e.,

by predicateP and the attribute listX expres-

sions, which may involve dimension parameters.

However, this is not directly affecting the opera-

tor definitions as such:

πX(r) , {t | ∃ t′ ∈ r (t = t′[X])}

σP (r) , {t | t ∈ r ∧ P (t)}

r1 × r2 , {t1 ◦ t2 | t1 ∈ r1 ∧ t2 ∈ r2}

r1 ∪ r2 , {t | t ∈ r1 ∨ t ∈ r2}

r1 \ r2 , {t | t ∈ r1 ∧ t /∈ r2}

ξ〈X,f〉(r) , {t ◦ y | ∃ t′ ∈ r(t = t′[X] ∧

y = f({t′′|t′′ ∈ r ∧ t′′[X] = t′[X]}))}

An attribute listX in the above definition may

6

denote a dimension attributeD. A predicate

P is on the formBθC or Bθc, or several of

these expressions combined by logical connec-

tives of∧ (and),∨ (or) and¬ (not) in the con-

ventional way. Moreover,B andC are attribute

names or spatio-temporal function expressions,

i.e.,duration(D) andlength(D), andc is a con-

stant. Finally,θ ∈ {=, <,>,≤,≥, 6=}, which

is extended with Egenhofer’s spatial operator set

[6], i.e.,disjoint , equals , overlaps , touches , in,

andcontains , and Allen’s temporal operator set

[1], i.e.,before, equals , overlaps , during , start ,

andend , whenB, C andc are of spatial or tem-

poral types, respectively.

Pure ADT with unfold/fold: The ADTU/F

algebra extends theADTP algebra with the

unfold and fold algebraic operators, which al-

lows user-specified simulation of point-based

expressions. Pictorially, unfolding is to flatten

a relation on itsD attribute, i.e., transform the

relation into a point-based representation. On

the other hand, folding is to “recompute” a more

compact representation of a relation where each

tuple’sD value is the maximal contiguous ex-

tent over which a set ofA-value equivalent input

tuples are defined. See the following example:

A D A D A D

a [2-3]
unfoldD−→ a [2-2]

foldD−→ a [2-4]

a [3-4] a [3-3]

a [4-4]

The rational behind unfolding is to give a point-

based interpretation of the database facts. How-

ever, this requires an explicit point-based rep-

resentation of database facts, to ensure that the

operations actually operates on point referenced

database objects. Thus, the definition of unfold-

ing replaces each tuple inr with a set ofA-value

equivalent result tuples, where each result tuple

accounts for a distinct point of theD-value as-

sociated with the input tuple. More formally,

unfoldD(r) , {t | ∃ t′ ∈ r (t[A] = t′[A] ∧

t′[D]s ≤ t[D]s = t[D]e ≤ t′[D]e)}

Folding enables a more compact representation

of the pointwise interpretation of database facts,

recall the syntactic correspondence a PB lan-

guage has to aD-value. The folding operator

constructs a single result tuple from two tuples

of each set ofA-value equivalent input tuples

of a relation, where the tuples comprise a maxi-

mal chain of adjacent and overlappingD-values.

TheD-value of the result tuple is, then, denoting

this maximal chain. In the definition offoldD

in Figure 2 a), there are three main constraints.

First, line one ensures that there exist twoA-

value equivalent tuples,t1 and t2 in r, which

contributes to the construction oft with a valid

D value. Second, lines two and three ensure

that there is a chain ofA-value equivalent tuples

which comprise a contiguous chain ofD values,

i.e., for every tuplet3 in the chain there exists a

tuple t4 which comes “before” in the chain, al-

ternativelyt3 = t4. Note, the “chain” includes

at least one tuple, e.g., whent1 = t2. Finally,

lines four and five ensure that this set is maxi-

mal, i.e., there does not exist a tuplet5 that is

both A-value equivalent with the tuples in the

chain and has aD-value that extends the chain

in either of its ends.

There are some important points which

need to be clarified, and which differentiate

the ADTU/F approach with respect to other

extensions to the relational model and algebra.

First, the definition of folding inADTU/F

is equivalent to a coalesce operator ([11]) of

temporal databases, and may be applied to

7

any relation with aD attribute. Thus, thefold

operator ofADTU/F is different to thefold

operator of the IXSQL algebra [13], which is

only applicable to input relations where the

D-values are points, e.g., due to a previous

flattening of a relation by an IXSQL unfold-

ing. In that sense theADTU/F fold operator

subsumes the IXSQL fold operator, because

ADTU/F may be applied to arbitrary relations

whereD-values are not necessarily on the form

[p, p]. Second, the folding and unfolding of

ADTU/F is both intentionally and semantically

different compared with nesting and unnesting

as defined for nested or non first normal form

(N1NF) relations, e.g., see [10, 16]. Thus, the

intension ofADTU/F is to simulate a pointwise

evaluation of expressions, and, in particular,

for folding user-coalesce relations over their

dimension values. The intension of the N1NF

relational model is to be able to manage complex

database facts more explicit through an implied

hierarchical structure of nested relations, where

the nest and unnest operators ([10]) convert

back and forth between flattened and nested

relations, respectively. The below informal

example illustrates the semantic difference

between the two approaches (following the

fold/unfold example above). We have to assume

that the N1NF model support intervals through

a system provided ADT:

r = {〈a, [2− 3]〉, 〈a, [3− 4]〉}

nestD=(D)(unnestD=(D)(r))

= nestD=(D)({〈a, [2− 3]〉, 〈a, [3− 4]〉})

= {〈a, {[2− 3], [3− 4]}〉}

First, the unnest operation does not affect the

content ofr, because intervals are system pro-

vided data types. Second, nesting operates on

1t [D]

t [D]2 t [D]3

begin
 begin

end
 begin

end
 end

1t [D]

t 2
[D]

1t [D]
t 2

[D]
t 2

[D]
1t [D]

t [D]
3

a) Difference D values

b) Aggregate D values

Figure 1: D values of Dimensional Difference
and Aggregate Formation

sets, whereas folding operates according to a

contiguous relation given by the total order of

the elements of an underlying dimension space.

SR: The SR operator set, as defined in Figure 2

b), is explained in the following, where the func-

tion signatures, i.e., of the superscripts, indicate

the dimension attributes involved by the built-in

processing and prevent attribute name conflicts

in subsequent operations of an expression. The

SR slice operator, i.e.,τ sr:D→p , denotes a snap-

shot database at dimension pointp. The projec-

tion, selection and union are similar to their RA

counterparts, but with the distinction that tuples

may containD values. Note also that due to the

SR property noD attribute is allowed referenced

in an attribute listX by a projection or an ag-

gregate formation operation, and no dimension

predicate or function expressions are allowed by

a selection, i.e., the SR algebra does not support

the Egenhofer and Allen operator sets.

The Cartesian product combines pairs of can-

didate tuples ofr1 andr2 with non-empty inter-

sectingD-values. TheD-value of the result tu-

ple is computed as the intersection. Formalizing

8

foldD(r) , {t | ∃t1 ∈ r ∃t2 ∈ r (t[A] = t1[A] = t2[A] ∧ t[D]s = t1[D]s ∧ t[D]e = t2[D]e ∧ t[D]s ≤ t[D]e) ∧

∀ t3 ∈ r(t[A] = t3[A] ∧ t[D]s ≤ t3[D]s ≤ t[D]e ⇒

∃ t4 ∈ r(t[A] = t4[A] ∧ (t4[D]s ≤ t3[D]s ≤ t4[D]e ∨ t3[D]s = succ(t4[D]e)))) ∧

¬∃ t5 ∈ r (t[A] = t5[A] ∧ (t[D]s = succ(t5[D]e) ∨ t5[D]s = succ(t[D]e) ∨

t5[D]s < t[D]s ≤ t5[D]e ∨ t5[D]s ≤ t[D]e < t5[D]e))}

a) Definition of Folding

τ sr:D→p (r) , {t | ∃ t′ ∈ r (t = t′[A] ∧ t′[D]s ≤ p ≤ t′[D]e)}

πsr:D→DX (r) , {t | ∃ t′ ∈ r (t[X] = t′[X] ∧ t[D] = t′[D])}, whereD does not occur inX.

σsr:D→DP (r) , {t | t ∈ r ∧ P (t)}, whereD does not occur inP .

r1 ∪
sr:D1×D2→D r2 , {t | t ∈ r1 ∨ t ∈ r2}

r1 ×
sr:D1×D2→D r2 , {〈t′ ◦ t′′ ◦ d〉 | ∃ t1 ∈ r1 ∃ t2 ∈ r2 (t′ = t1[A] ∧ t′′ = t2[A] ∧

d = intersection(t1[D1], t2[D2]) ∧ ¬disjoint(t1[D1], t2[D2]))}

r1 \
sr:D1×D2→D r2 , {t | ∃ t1 ∈ r1 (t[A] = t1[A] ∧

(∃t2 ∈ r2(t1[A] = t2[A] ∧ t1[D1]s ≤ t2[D2]e ∧ t[D]s = succ(t2[D2]e)) ∨

t[D]s = t1[D1]s) ∧

(∃t3 ∈ r2(t1[A] = t3[A] ∧ t1[D1]e ≥ t3[D2]s ∧ t3[D2]s = succ(t[D]e)) ∨

t[D]e = t1[D1]e) ∧

t[D]s ≤ t[D]e ∧

¬∃ t4 ∈ r2(t1[A] = t4[A] ∧ ¬disjoint(t[D], t4[D2])))}

ξsr:D→D〈X,f〉 (r) , {〈t ◦ y ◦ d〉 | t1 ∈ r ∧ t2 ∈ r ∧ t = t1[X] = t2[X] ∧ d ∈ compose(t1[D], t2[D]) ∧

y = f({t′ | t′ ∈ r ∧ t′[X] = t ∧ t′[D]s ≤ ds ∧ de ≤ t′[D]e}) ∧

¬∃ t3 ∈ r (t3[X] = t ∧ ((ds ≤ t3[D]s ≤ de ∧ de < t3[D]e) ∧

(ds ≤ t3[D]e ≤ de ∧ t3[D]e < ds)) ∧

ds ≤ de}, whereD not inX, andf belongs toR \D.

b) Definition of the SR Algebra

πseq:D→DX (r) , {t | ∃ t′ ∈ r (t[X] = t′[X] ∧ t[D] = t′[D])}

σseq:D→DP (r) , {t | t ∈ r ∧ P (t)}

r1 ×
seq:D1×D2→D r2 , {〈t1 ◦ t2 ◦ d〉 | t1 ∈ r1 ∧ t2 ∈ r2 ∧ d = intersection(t1[D1], t2[D2]) ∧

¬disjoint(t1[D1], t2[D2]))}

c) Definition of the SEQ Algebra

Figure 2: The Folding Operator, and SR and SEQ Algebras

9

this subspace relationship:

Definition 3.1 Let r1 and r2 be two relations.
Then, tuplest1 ∈ r1 and t2 ∈ r2 forms an
intra-subspacerelationship, iff

〈t1[A] ◦ t2[A] ◦ d〉 ∈ (r1 ×sr:D1×D2→D r2) �

The difference operator is more involved, and

denotes tuples constructed from tuples inr1,

which are referenced by some subspace that are

not referenced by anyA-value equivalent tuple

in r2. Thus, line one ensures there is a candi-

dateA-valued tuple inr1. A new D value is

computed by lines two through five, where Fig-

ure 1 a) illustrates the interesting and intersect-

ing r2 tuple cases, and indicates the begin and

end points which contributes to the computation

of a newD value. In the case of Figure 1 a)

the difference operator would yield three new tu-

ples. Hence, in general at most threeA-value

equivalent tuples suffice to compute any result-

ingD value, i.e., at least one tuple fromr1, and

possible one or two tuples fromr2. Lines two

and three of the definition in Figure 2 determine

the possiblet[D]s points, i.e., given by tuples

t2 ∈ r2 andt1 ∈ r1, respectively. Similar, lines

four and five determine the possiblet[D]e points.

Thesucc function is applied to ensure that a re-

sultD-value does not intersect with theD-value

of the r2 tuple which contributes to the compu-

tation of it. Finally, the last two lines ensure a

valid result: Line six ensures thatt[D] is valid;

Line seven ensures that allr2 tuples are consid-

ered, i.e., there are noA-value equivalent tuples

in r2 intersecting witht[D].

The aggregate formation operator also com-

putes a newD value for each result tuple. From

the definition in Figure 2 b), line one ensures

that there are two (not necessary distinct)

operand tuples that both agree on their grouping

attributes, and from which thed-value of the

result tuple is composed (see definition of

compose below). Line two denotes the aggre-

gate set for whichf computes the aggregate

value given byy. The characterization of an

aggregate set is first that all tuples in the set

agree exactly on the same grouping attributes

as does the tuples of line one, and second that

the D-value associated with each tuple in the

aggregate set contains (or equals) the composed

d-value. Lines three and four ensure that all

candidate tuples are accounted for, i.e., there

exists no tuplet3 ∈ r which agrees on the

grouping attributes and whered and t3[D]

intersect. The last line ensures that the aggregate

d value is valid. Notice, that according to Figure

1 b) the two tuples of line one may compose an

interval denoting a gap between them. Then,

these tuples are not in the aggregate set, but,

there is at least one tuple inr with qualified

grouping attributes and aD-value that contains

this gap, e.g., seet3[D] of the leftmost example

in Figure 1 b). The examples of Figure 1 b) are

captured by the compose function given by the

following definition:

compose(d1, d2) , {d |
(d = d1 = d2) ∨ (ds = de1 + 1 ∧ de = ds2 − 1)∨

(ds = ds1 ∧ d
e = ds2− 1)∨ (ds = ds1 ∧ d

e = de2)∨

(ds = de1 + 1 ∧ de = de2)∨ (ds = ds2 ∧ d
e = de1)}

Finally, each SR algebraic operator is snap-

shot reducible to its RA counterpart according

to the definition of Section 2.2, and in terms

of the above defined slice operator, e.g., for

the selection we haveτ sr:D→p (σsr:D→DP (r)) =

σP (τ sr:D→p (r)).

SEQ: The SEQ algebra goes beyond the SR
property by allowing DPE. The redefinitions of
three SR operators comprise the transition from

10

a SR to a SEQ algebra. The definitions of
Figure 2 c) show the principle differences by
the lack of preconditions for projection and se-
lection operators, and that the Cartesian prod-
uct explicitly exposes the dimension attributes
of its operands. That is, for a result tuple on
the form 〈t1 ◦ t2 ◦ d〉, both the operands tu-
ples t1 ∈ r1 and t2 ∈ r2 contribute to the
result as they are. For example, (leaving out
the superscripts)σduration(r.D)<duration(s.D)(r ×

s), πr.A,s.D(r × s) and πD(r) are all well-
formed SEQ expressions. The schemes as-
sociated with the results of these expressions
are (r.A, r.D, s.A, s.D,D), (r.A, s.D,D) and
(“D” ,D), respectively, wherer.D, the twos.D,
and “D” are only regarded as ordinary ADT at-
tributes. This means that these attributes are ex-
posed. The Cartesian product does built-in expo-
sure, and the two projections do user-specified
exposures. The Cartesian product needs to ex-
pose attributes to utilize the DPE property. How-
ever, a SEQ evaluation discards built-in expo-
sures at certain critical steps. The exposures are
managed during an evaluation in terms of anex-
pose set, denoted bye(EXP), and the following
assignments to the expose set for each step of an
evaluation:

e(r) := ∅

e(πX(EXP)) := ∅

e(σP (EXP)) := e(EXP)

e(EXP1 × EXP2) := e(EXP1) ∪ e(EXP2) ∪

{EXP1.D1, EXP2.D2}

e(EXP1 op EXP2) := ∅, where op ∈ {∪, \}

e(ξ〈X,f〉(EXP)) := ∅

The semantics of an SEQ evaluation, involv-
ing the exposures by subexpressions, are given
in terms of denotational semantics symbolized
by expressions enclosed by[[.]], see below. An
expressionEXP may involve subexpressions,
where an evaluation of a subexpression may in-
volve (implicitly) the above corresponding ex-
posure assignment. However, some subexpres-
sions have to discard SEQ exposed dimension
attributes, i.e., not user-exposed dimension at-
tributes, before the subexpression them self are
evaluated. This is to ensure that SEQ evalu-

ates naturally and accordingly to the relational
schemes assumed by the user. Discarding ex-
posures is required before union compatible op-
erations and upon termination of evaluation. In
the first case the presence of exposed attributes
may break with user-assumed union-compatible
relations. In the second case exposed attributes
are generally of no interest beside that they have
been input to dimension computation. The dis-
carding is managed by a so-calledcomplement
project operator1: πX(r) , πseq:D→D{A1,...,An}\X

(r),
whereX represents the set of previous exposed,
and not yet discarded, attributes of an expression
EXP that has yieldedr. In the below denota-
tions (whereE is a shorthand forEXP) it is
assumed that discarding of exposed dimension
attributes will occur before updating the expose
set, e.g., see the denotation of union.

[[r(R)]] , r(R) ⊆ dom(A1)× · · ·

· · · × dom(An)

[[σD→DP (E)]] , σseq:D→DP ([[E]])

[[πD→DX (E)]] , πseq:D→DX ([[E]])

[[ξD→D〈X,f〉 (E)]] , ξ
seq:{D}→D
〈X,f〉 ([[(E)]])

[[E1 ×
D1×D2→D E2]] , [[E1]]

×seq:D1×D2→D

[[E2]]

[[E1 ∪
D1×D2→D E2]] , πe(E1)([[E1]])

∪seq:D1×D2→D

πe(E2)([[E2]])

[[E1 \
D1×D2→D E2]] , πe(E1)([[E1]])

\seq:D1×D2→D

πe(E2)([[E2]])

[[⊥E>]] , πe(E)([[E]])

Summary of Properties: In this section we

also defined the notion of intra-subspace rela-

tionships to characterize the class of relations

denoted by the Cartesian product of SR, and

which generalizes directly to SEQ, and gener-

1The term complement is used because the projection
list is “complementary” to the list of a regular projection.

11

alizes toADTP andADTU/F with an addition

of a¬disjoint parameter expression. However,

ADTP and ADTU/F also support a comple-

mentary class of non-empty relations:

Definition 3.2 Let r1 andr2 be relations. Then,

t1 ∈ r1 and t2 ∈ r2 forms aninter-subspace

relationship, iff,

〈t1 ◦ t2〉 ∈ σdisjoint(t1[D1],t2[D2])(r1× r2) �

We now state the following lemmas to further

formalize the characteristics of the algebras:

Lemma 3.3 The SR and SEQ algebras do not

denote the class of relations with inter-subspace

relations as defined by Definition 3.2.

Proof: Since the Cartesian product is funda-

mental, only this operator could be used to com-

bine tuples of distinct relations. However, in SR

and SEQ this operator combines, by definition,

only by intra-subspace relationship, cf. Defini-

tion 3.1. �

Lemma 3.4 An algebra that by definition is SR

is not DPE.

Proof: Follows directly from the definitions

of SR and DPE, cf. Section 2.2. �

Lemma 3.5 An algebra that by definition is PB

is not DP.

Proof: This follows directly from the defini-

tions of PB (Definition 2.3 and DP (cf. [3]). See

also the TSQL2 and STSQL examples of Section

2.2. �

The following table summarizes the dimensional

characteristics of each of the algebras defined in

this section.

ADTP ADTU/F SR SEQ

inter-rel. inter-rel.

intra-rel. intra-rel. intra-rel. intra-rel.

DPE DPE & PB SR & DP DPE & DP

4 Comparison of Expressive

Power

The comparison of equivalent expressions by the

notion ofstrict equivalence(i.e., Section 4.1 be-

low), is based on the following structure: LetQ1

andQ2 be two (algebraic) languages, then,Q1 ≤

Q2 means thatQ1 is at most up to equal ex-

pressive with respect toQ2 if ∀ q1 ∈ Q1 ∃ q2 ∈

Q2 (q1 ≡ q2). Moreover, we must assume that

these queries are expressed over arbitrary data

structures, i.e., any relation extended with a di-

mensional ADT in our case. Then, theq1 ≡ q2

above is equivalent to:

∀ db([[q1(db)]]Q1 = [[q2(db)]]Q2),

where db is a data structure, and[[qi(db)]]Qi ,

1 ≤ i ≤ 2, is the result of evaluatingqi over

a databasedb according to the semantics of lan-

guageQi. (SubscriptQi is in the following given

by the context, and omitted). Moreover, from

the above we deduceQ1 < Q2
M
⇐⇒ Q1 ≤

Q2 ∧ ¬(Q2 ≤ Q1), i.e., languageQ1 is sub-

sumed by languageQ2.

4.1 Comparison by Strict Equivalence

ADTP vs. ADTU/F The RA framework, as

defined in Section 2, does not allow any user-

specified constructions of attributes values, so

the following theorem summarizes the corre-

12

spondence betweenADTP andADTU/F . No-

tice that we regard an interval as a single

(“atomic”) value, and not as two explicit begin

and end RA attributes. Isolated to intervals this

approach could be argued. However, when more

complex and irregular spatial attribute values are

involved, such as polylines and polygons, this

approach reflects the ADT extensions to RA in

general.

Theorem 4.1 ADTP < ADTU/F

Proof: According to the comparison structure

the proof is on the following form:
(∀ q1 ∈ ADTP (∃ q2 ∈ ADTU/F (q1 ≡ q2)))∧

(∃ q3 ∈ ADTU/F (∀ q4 ∈ ADTP (¬(q3 ≡ q4))))

The lhs (left hand side) of the conjunction is

given directly by the definitions ofADTP and

ADTU/F in Section 3. That is, everyADTP

expression is also anADTU/F expression. Put

differently, ADTU/F is defined in terms of the

operator set ofADTP plus theunfold andfold

operators.

For the rhs (right hand side), envision the di-

mensional aggregate formation query of Section

2.2:

1) Determine the (periodic) salary pay-outs for each

department over all times,

given by the equivalentADTU/F expression:

foldD(ξ〈{dept,D},sum3〉(unfoldD(EMP))),

which, in fact, yields the same result as depicted

by RESULT of 1) of Section 2.2. Each ag-

gregate set of this expression is denoted by the

set of tuples that mutually agree on both their

dept andD values, whereD-values are on the

form [p, p], due tounfoldD(EMP). Moreover, by

definition an aggregate set yields a result tuplet

on the form〈t′ ◦ y〉, wheret′ = t[{dept,D}]

andy = sum3. This is a point-based aggrega-

tion over the relationEMP, and the subsequent

folding coalesces each set of result tuples, where

tuples both denote the same aggregate and com-

prise a maximal contiguous chain by their re-

spectiveD-values. TheADTP algebra is not

capable of simulating this fragmentation into

point referenced database facts, i.e., otherwise

unfold andfold would not have been fundamen-

tal point-based operators within this framework.

This finalize the proof of showing thatADTU/F

subsumesADTP . �

Note that the subset of expressions inADTU/F

which involvesunfold or fold operators, or both,

is, in general, not corresponding to any subset of

expressions inADTP . This means that where

RA is only extended with abstract data types, as

in the case of theADTP algebra, a dimensional

interpretation of database facts is not an under-

lying property of such an algebra. In particular,

theADTP algebra does not express the class of

coalesced queries, and not the class of dimen-

sional queries, e.g., the dimensional aggregation

formation as presented above.

SR vs. SEQ Based on the SR and SEQ defi-

nitions of Section 3, respectively, the following

theorem states that SR is subsumed by SEQ.

Theorem 4.2 SR < SEQ

Proof: Analogously to Theorem 4.1 the proof

is by showing:
(∀ q1 ∈ SR (∃ q2 ∈ SEQ(q1 ≡ q2)))∧

(∃ q3 ∈ SEQ (∀ q4 ∈ SR(¬(q3 ≡ q4))))

The lhs (left hand side) of the conjunction is for

the slice, union, difference and aggregation for-

mation operators directly given by identical defi-

nitions in both SR and SEQ, cf. the definitions of

13

the algebras in Section 3. Moreover, the SR pro-

jection and SR selection are only more restric-

tive than the respective SEQ operators due to the

property of DPE of SEQ .

Due to dimension attribute exposures by

SEQ, we have to prove that the SR Cartesian

product is equivalent with the SEQ Cartesian

product proved according to our comparison

structure of strict equivalence:

∀ r1, r2 ((r1 ×sr:D1×D2→D r2) =

πe(r1×D1×D2→Dr2)(r1 ×
seq:D1×D2→D r2))

Let t be in the lhs of the equality, then, by
the definition of the SR Cartesian product there
exists tuplest1 in r1 and t2 in r2, such that
t[r1.A] = t1[A], t[r2.A] = t2[A] and t[D] =

intersection(t1[D], t2[D]). Since, t1 ∈ r1

and t2 ∈ r2, there is according to the def-
inition of the SEQ Cartesian product a tu-
ple t′ ∈ (r1 ×seq:D1×D2→D r2), such that
t′[r1.A] = t1[A], t′[r2.A] = t[A], t′[D] =

intersection(t1[D], t2[D]), t′[r1.D1] = t1[D1],
andt′[r2.D2] = t2[D2]. Then, by applying the
complement projection, according to the evalu-
ation by denotation as defined for the SEQ al-
gebra in Section 3, we get (recall that the com-
plement projection could be “rewritten” into a
projection):

πe(r1×D1×D2→Dr2)(t
′) = πseq:D→Dr1.A,r2.A

(t′) = t

Thus, every tuple in the SR Cartesian product

is also in the SEQ Cartesian product. The oppo-

site inclusion is given by the same strategy and

omitted.
The rhs (right hand side) of the conjunction is

given by Lemma 3.4, and exemplified by a SEQ
version of the query of Section 2.2, which deter-
mines employment histories of departments with
durations of more than seven years:

πseq:D→Ddept (σseq:D→Dduration(D)>7(EMP)) =

{〈d1, [1988−97]〉}

Notice the user-specified reference to the dimen-

sion attribute. Thus, SR is subsumed by SEQ.�

ADTU/F vs. SEQ The following theorem

states the correspondence ofADTU/F and SEQ

algebras.

Theorem 4.3 Neither SEQ≤ ADTU/F nor

ADTU/F ≤ SEQ.

Proof: The proof is on the following from:
1)∃q1 ∈ SEQ(∀q2 ∈ ADTU/F (¬(q1 ≡ q2)))

2)∃q3 ∈ ADTU/F (∀q4 ∈ SEQ(¬(q3 ≡ q4)))

Claim 1) above is given by the definition of
DP (cf. [3]) and Lemma 3.5. Thus, SEQ
evaluates expressions where the dimension
D-values are preserved by the result. The
ADTU/F , on the other hand, uses theunfold
and fold operators to simulate a pointwise
interpretation of database facts. By Theorem
4.1 we know that only dimensional queries
are of interest here. Both the dimensional
Cartesian product, dimensional difference and
dimensional aggregate formation operations
are in theADTU/F algebra forced to include
an unfold (and, eventually,fold) to obtain the
dimensional semantics wanted. However, by the
definition of unfold the information about the
originalD values is lost, and a subsequentfold
operation is not able to restore it completely.
The following example illustrate this point:
Let relationsr1 = {〈a, [2 − 3]〉, 〈a, [4 − 6]〉}
and r2 = {〈a, [5 − 6]〉}. Then, the respective
difference operations yield the following results:

r1 \
seq:D1×D2→D r2 = {〈a, [2− 3]〉, 〈a, [4− 4]〉},

foldD(unfoldD(r1) \ unfoldD(r1)) = {〈a, [2− 4]〉}.

Claim 2) is showed by Lemma 3.3. Since
ADTU/F subsumesADTP by Theorem 4.1, let
the followingADTP expression be issued on the
sample database of Section 2.2, which illustrates
the non-correspondence with any SEQ expres-
sions:

σdisjoint(EMP.D,DEPT.D)(EMP× DEPT)

14

yields:

{〈Pete, d1, 10k, [1985− 90],Ann, d1, [1991− 95]〉}

Then, according to the inter-subspace relation-

ship class of expression supported byADTP ,

and not SEQ, cf. Lemma 3.3 of Section 3, the

above query makes no sense in SEQ. Thus, the

theorem holds. �

The result of Theorem 4.3 shows thatADTU/F

is not applicable to query classes inducing DP

semantics, whereas SEQ (and SR) by definition

is DP. Moreover, inter-subspace relationships are

not expressible by SEQ (or SR). Thus, the fol-

lowing is a corollary of Theorem 4.3:

Corollary 4.4 Neither SR ≤ ADTP nor

ADTP ≤ SR.

Proof: The proof follows from Theorem 4.1,

Theorem 4.2, and Theorem 4.3. �

4.2 Comparison by Snapshot Equiva-
lence

Now, recall the SE property (cf. Definition

2.1), which ensures that snapshot relations are

equal. The following definition generalizes the

SE property to account for expressions of two

languagesQ1 andQ2:

Definition 4.5 Let q1 ∈ Q1 and q2 ∈ Q2 be

two expressions, then,q1 and q2 are snapshot

equivalent expressions, denotedq1
se
≡ q2, if for

all pointsp, data structuresdb, such that

τp([[q1(db)]]) = τp([[q2(db)]]) �

The following theorem shows that every SEQ

operator is snapshot equivalent with a corre-

sponding expression inADTU/F .

Theorem 4.6 The SEQ operator set is snapshot
equivalent (

se
≡ of Definition 4.5) with respect to

corresponding expressions inADTU/F , given
by:

τseq:D→p (r)
se
≡ πR\D(

σcontains(D,[p,p])∨

equals(D,[p,p])(r))

πseq:D→DX (r)
se
≡ πX,D(r)

σseq:D→DP (r)
se
≡ σP (r)

r1 ∪
seq:D1×D2→D r2

se
≡ r1 ∪ r2

r1 ×
sr:D1×D2→D r2

se
≡ fold r1.D(

πr1.A,r2.A,r1.D(

σequals(r1.D,r2.D)(

unfoldD(r1)×

unfoldD(r2))))

r1 \
seq:D1×D2→D r2

se
≡ foldD(

unfoldD(r1) \

unfoldD(r2))

ξ
seq:{D}→D
〈X,f〉 (r)

se
≡ foldD(

ξ〈{X,D},f〉(unfoldD(r)))

Proof: The proof is by showing each of the

above
se
≡, in turn. That is, showing that re-

sults are according to
se
≡ of Definition 2.1. The

first four equivalences are given directly from

the SEQ algebraic definitions in Section 3 and

the above correspondingADTU/F expressions.

The remaining cases are more involved, and their

proofs are by inclusion both ways, i.e., showing

that an arbitrary lhs (i.e., left hand side) tuple is

also in the rhs (i.e., right hand side) result, and

15

vice versa, with respect to the SE property.

Note that for the SEQ Cartesian product we

use the SR Cartesian product, since they are

shown equivalent by Theorem 4.2, and we may

leave out the discarding of exposure here. Lett

be a lhs tuple. Then, by the definition of the SR

Cartesian product there exists tuplest1 ∈ r1 and

t2 ∈ r1, such thatt[r1.A] = t1[A], t[r2.A] =

t2[A], and t[D] = intersection(t1[D], t2[D]).

By the definition of unfolding there are sets

of A-value equivalent tuples, comprising max-

imal chains ofD-values, i.e.,{t′1, . . . , t
′
n} ⊆

unfold(r1) and{t′′1, . . . , t
′′
m} ⊆ unfold(r2), so

that t1[A] = t′i[A], 1 ≤ i ≤ n, t′1[D]s =

t′1[D]e ≤ t1[D]s ≤ t1[D]e ≤ t′n[D]s =

t′n[D]e, t2[A] = t′′j [A], 1 ≤ j ≤ m, and

t′′1[D]s = t′1[D]e ≤ t2[D]s ≤ t2[D]e ≤

t′′m[D]s = t′m[D]e. This implies that there

are tuples from these two sets which are com-

bined by the rhsADTU/F Cartesian product, re-

stricted by the rhsADTU/F selection, where the

predicate simulates the actual dimension inter-

section computation of the SR Cartesian prod-

uct, and, finally, projected by the rhsADTU/F

projection. The result before folding is a set

of tuples {t′′′1 , . . . , t
′′′
h }, so that t′′′i [r1.A] =

t1[A], t′′′i [r2.A] = t2[A], thus, t′′′i [A] =

t[A], 1 ≤ i ≤ h, andt′′′1 [r1.D]s = t′′′1 [r1.D]e ≤

t[D]s ≤ t[D]e ≤ t′′′h [r1.D]s = t′′′h [r1.D]e. By

the definition of folding, the coalesced result tu-

ple, i.e., fold r1.D({t′′′1 , . . . , t
′′′
h }) = t3, has a

t3[r1.D]-value which either equals or contains

the lhst[D]. By
se
≡ the inclusion holds. The op-

posite direction is similar and details are omit-

ted. However, briefly note that for each rhs tu-

ple t′, which results from the rhs Cartesian prod-

uct, selection, projection, and, finally, coalesced

by foldD, there are two sets ofA-value equiv-

alent tuplesS1 ⊆ unfoldD(r1) and a subset

S2 ⊆ unfoldD(r2), where each such set denotes

a maximal contiguous chain (i.e., a connected

set of points), sayc1 andc2, respectively, com-

prised by theD-values associated with the tu-

ples. Hence,t′[D] corresponds to the non-empty

intersection ofc1 andc2. Moreover,S1 andS2

must correspond toS′1 = {t1, ..., tn} ⊆ r1,

1 ≤ n, andS′2 = {t′1, ..., t
′
m} ⊆ r2, 1 ≤ m,

respectively. BothS′1 and S′2 denote a maxi-

mal chain of overlapping or adjacentD-values

in r1 andr2, respectively. By definition the SEQ

Cartesian product, i.e., by combiningS′1 andS′2,

yields a lhs result set{t′′1, ...t
′′
k}, 1 ≤ k ≤ nm.

This implies that, the rhs tuplet′ is A-value

equivalent with every lhst′′i , 1 ≤ i ≤ k. It also

implies that eithert′[D] = t′′i [D], for k=1 (and

the inclusion follows directly), ort′[D] contains

everyt′′i [D], for k > 1. That is, the set oft′′i [D]-

values, is the non-unfolded version of the inter-

section of thec1 and c2 chains, an intersection

which equalst′[D]. Thus, by
se
≡ the inclusion

holds.

For the dimensional difference, lett be a

tuple of the rhs. By the definition of fold-

ing there exists a set of tuples{t1, . . . , tn} ⊆

(unfoldD(r1) \ unfoldD(r2)), so thatt[A] =

ti[A], t[D]s ≤ ti[D]s = ti[D]e ≤ t[D]s, 1 ≤

i ≤ n. There are two options: The first op-

tion is that there exists an identical subset in

unfoldD(r1), which comprise a maximal chain

over the associatedD-values. This implies that

for all t′′′ ∈ unfoldD(r2), t′′′ /∈ {t1, . . . , tn}.

Moreover, there is a set of one or moreA-value

equivalent tuples inr1, from which the unfolded

set is constructed. In that case the set ofr1 tu-

ples, due to the DP property of the SEQ differ-

ence, contributes as it is to the lhs result. By the

definition of
se
≡ the inclusion holds.

The other option is more involved, where

{t1, . . . , tn} above is a subset of an other set

S of A-value equivalent tuples inunfold(r1),

16

whereS comprises a maximalD-valued chain

in unfold(r1). Then, there exist corresponding

A-value equivalent setsSi ⊆ unfold(r2), 1 ≤ i,

where eachSi both comprises a maximalD-

valued chain inunfold(r2), and has a non-empty

intersection withS. Thus, {t1, . . . , tn} ⊆

(S \(∪Si⊆unfold(r2)(Si))), where eachSi has the

above given properties. By the definition of un-

fold we get that there existS′ = {t′1, ..., t
′
m} ⊆

r1, 1 ≤ m, which corresponds toS, andS′′ =

{t′′1, ..., t
′′
k} ⊆ r2, 1 ≤ k, which corresponds to

∪Si⊆unfold(r2)(Si). Now according to the defini-

tion of the SEQ difference theD-value of a lhs

tuple t′ is constructed, in this case, from either

tuple t′′′ in S′ and one tuple inS′′, or from two

tuples inS′′. The tuples inS′′ satisfy the inter-

section condition with a tuple ofS′. For exam-

ple, see the illustration of Figure 1 a). Since,

tuples inS′ is given so that they comprise a

chain of adjacent and overlappingD-values, the

SEQ difference ensures that every part of that

chain which is not referenced by any tuple in

S′′ contributes to the result (recall that rhst is

constructed from exactly the same sets of tu-

ples). Moreover, the DP property of SEQ en-

sures that each such part are given by fragments

which preserve the dimension values of the orig-

inal tuples inS′. That is, SEQ yields a result

set{t′′′1 , . . . t
′′′
l }, 1 ≤ l, for every qualified part

of the chain inS′. This implies that exactly one

such result set must correspond to the rhs tuplet,

i.e., foldD({t′′′1 , . . . t
′′′
l }) = t. The rhs PB prop-

erty folds such a part of a chain into the single

tuple t. By
se
≡ the inclusion holds. The opposite

direction is analogous to the same direction for

the SEQ Cartesian product above and omitted.

Finally, for the dimensional aggregate forma-

tion a lhs tuplet is on the form〈t′[X] ◦ y ◦ d〉.

By the definition of aggregate formationt cor-

responds to a non-empty aggregate set ofr tu-

ples, say denoted byXd, wheret′ ∈ Xd. The

tuples ofXd agree on theirX-values, and have

D-values that contain (or equal) thed value as-

sociated witht. FromXd the aggregate function

f , computes they of t. Now, sinceXd ⊆ r, then,

Xd contributes to the rhsunfoldD(r) as many

times as there are distinct points over the set of

t′[D] values, from allt′ ∈ Xd. Say{t′1, ..., t
′
n} ⊆

unfoldD(r), 1 ≤ n. The rhs aggregate forma-

tion partitions the relationunfoldD(r) into ag-

gregate sets, where any two of the abovet′i and

t′j, for i 6= j, 1 ≤ i ≤ n, and1 ≤ j ≤ n, are

member of distinct aggregate sets of the parti-

tion. Note that eacht′i[D] = [pi, pi], for 1 ≤ i ≤

n, and allpi’s form a connected set of points.

Thus, there aren (and onlyn) aggregate sets,

X[p1,p1], ...,X[pn,pn], all subsets ofunfoldD(r),

which relate back to the above lhsXd. However,

by the definition of the lhs aggregate formation

and the DP property, only a subset of the rhs ag-

gregate sets corresponds directly to theXd, i.e.,

everyX[pi,pi], wherepi is contained byd. Each

suchX[pi,pi] must be constructed from exactly

the same set of tuplest′ ∈ r as denoted by the

setXd. Let |d| denote the number of pointsp

in the lhsd. Then, the subset of rhs aggregate

sets, corresponding toXd, yields before fold-

ing a result set{t′′1, . . . , t
′′
|d|}, where tuples are

on the form〈〈t′[X], [pi+j , pi+j]〉 ◦ y′〉, 1 ≤ i,

1 ≤ (i + j) ≤ n, and0 ≤ j < |d|. This set

preserves exactly the same correspondence with

Xd as did the rhs aggregate sets. Since, the rhs

aggregate formation is computed over the cor-

responding set of tuples as in the lhs aggrega-

tion formation, it implies thaty′ = y. Finally,

by folding all the rhs aggregate tuples, includ-

ing {t′′1, . . . , t
′′
n}, we obtain a rhs tuplet′′ on the

form 〈〈t′[X], d′〉 ◦ y〉, whered′ either equals or

containsd, due to the coalescing of the rhs re-

sults. Thus, despite different orderings of lhs and

17

rhs attributes, we conclude that by
se
≡ the inclu-

sion holds. The opposite direction is omitted, but

it is similar to the previous equivalences in the

sense that one rhs tuple may yield one or more

corresponding lhs tuples, and by
se
≡ the inclusion

holds.

Thus, all the above set of equivalences hold.�

A final result with respect to snapshot equiva-

lence states that SEQ is subsumed byADTU/F ,

denoted bySEQ <se ADTU/F . Hence, a simi-

lar comparison structure as for strict equivalence

is applied:

Theorem 4.7 SEQ <se ADTU/F

Proof: The proof is on the following form:

∀q1 ∈ SEQ (∃q2 ∈ ADTU/F (q1
se
≡ q2))∧

∃q3 ∈ ADTU/F (∀q4 ∈ SEQ(¬(q3
se
≡ q4)))

The lhs of the conjunction is given directly by

the result of Theorem 4.6.

The rhs of the conjunction follows directly

from the inter-subspace example of claim 2) of

Theorem 4.3. �

4.3 Extensions to the Comparison
Framework

The motivation behind the above comparison

was to investigate and compare dimensional

query languages with respect to a certain set of

properties and equivalence cirteria. The RA-

based framework was defined as simple as pos-

sible to emphasize some establised properties of

query langauges, herein described by SR, PB,

DPE and DP. One biproduct of this compari-

son is hopefully that the framework, properties

and comparison criteria may be generalized to

account for more extensible dimensional query

reg1 reg3reg2 reg4

ex 1) ex 2)

region patterns:

intersecting point

Figure 3: Two examples of intersecting spatial
regions

languages, i.e., other features that have both the-

oretical and practical interest. In particular, other

features for dimensional query languages may

include support of multiple ADT dimensions, di-

mension function expressions in the projection

list to compensate for missing intrinsicD-value

computations, set-valued attributes, ADT for “ir-

regular” values (e.g., polygons), etc. We briefly

look into both the issue of irregular ADT values,

possibly combined with other features, and the

issue of multiple ADT dimensions support.

Most spatial query languages are basically

non-intrinsic ADT extensions (e.g., cf. [9]). So,

let a spatial relation be given byr((A,D)) =

{〈a1, reg1〉, 〈a2, reg2〉}, where the dimension

ADT attributeD is of type polygon and denotes

simple regions, here exemplified byreg1 and

reg2. Assume now that we want to determine all

a1-valued tuples inr and their region intersec-

tions with non-a1 valued tuples also inr. Thus,

the regions of interest is given pictorially by two

examples in Figure 3, where regionsreg3 and

reg4 denote the intersections of both examples.

One interesting problem is to study similarities

and differences in properties illustrated by a re-

sult on the form{〈a1, reg3〉, 〈a1, reg4〉} versus

a result on the form{〈a1, {reg3, reg4}〉}, i.e.,

within a framwork where DP and PB are gen-

18

eralized to characterize spatial semantics of this

kind. Moreover, shouldreg3 and reg4 be re-

garded as one region or separate regions due to

the touch relationships (i.e., intersecting bound-

aries) of ex 1) in Figure 3, etc..
Orthogonal multiple ADT dimensions are an

interesting feature, and is established in tempo-
ral databases by valid and transaction time di-
mensions, where orthogonality is given by well-
defined sematics, e.g., [11, 22]. However, for
extrinsic languages the problem of “indetermin-
ism” arise, due to user-specified simulated di-
mension evaluation. The following example il-
lustrates this point, where two folding opera-
tions are applied to a relationr(R), whereR =

(A,D1,D2), i.e., with two ADT dimensions:

r(R) = {〈a, [2− 2], [4− 4]〉, 〈a, [1− 1], [4− 4]〉

〈a, [2− 2], [5− 5]〉},

foldD1
(foldD2

(r)) = {〈a, [2− 2], [4− 5]〉,

〈a, [1− 1], [4− 4]〉}

foldD2
(foldD1

(r)) = {〈a, [1− 2], [4− 4]〉,

〈a, [2− 2], [5− 5]〉}

For intrinsic languages the problem is resolved

by the well-defined algebra which accounts for

multiple orthogonal ADT dimensions.

5 Conclusion

By strict equivalence theADTU/F and SEQ al-

gebras differ in two major respects. First, in gen-

eral, SEQ expressions provide more precise in-

formation about the underlying database facts,

i.e., by the DP property. Second, theADTU/F

denotes an inter-subspace class of expressions

not supported by the SEQ algebra. By SE, which

implies that we relax on the DP property, we

showed that the SEQ operators are equivalent

with correspondingADTU/F expressions. In

fact, theADTU/F algebra subsumes the SEQ al-

gebra with respect to SE.

TheADTU/F and SEQ algebras have distinct

individual strength, and a user-oriented query

language should benefit both from both extrin-

sic and intrinsic semantics, e.g., cf. STSQL [2].

The framework seems to be a sound basis with

respect to both the properties and the compari-

son criteria defined.

Another observation concerns future exten-

sions of the RA framework. An interesting is-

sue is to investigate to what degree these prop-

erties scale and generalize for new extensions.

More specific tasks may involve studying exten-

sions in isolation, e.g., “indeterminism” of ex-

trinsic languages, as illustrated in Section 4.3.

Finally, with the above findings in mind, the

complementary comparison of extrinsic vs. in-

trinsic languages with respect to convenience of

expressions (e.g., the length of “similar” expres-

sions in number of operators, etc.) will further

explore differences and similarities of these two

approaches.

Acknowledgments: This research has in part

been founded by The Research Council of Nor-

way, through grants MOI.31297 (BEST) and

117644/223 (DynaMap).

We thank Christian S. Jensen and Mike

Böhlen, both at Ålborg University, for fruitful

discussions on both content and structure on ear-

lier drafts of this paper.

References

[1] J .F. Allen. Maintaining Knowledge about

Temporal Intervals.Communications of the

ACM, 26(11):832–843, November 1983.

19

[2] M. Böhlen, C. S. Jensen, and B. Skjel-

laug. Spatio-Temporal DataBase Support

for Legacy Applications. InProceedings of

the ACM Symposium on Applied Comput-

ing, pages 226–234, February/March 1998.

[3] M. H. Böhlen, R. Busato, and C. S.

Jensen. Point- Versus Interval-based Tem-

poral Data Models. InProceedings of IEEE

International Confenrence on Data Engi-

neering, pages 192–200, February 1998.

[4] J. Chomicki. Temporal Query Languages:

A Survey. In Ohlbach H. J. Gabbay,

D. M., editor,Proceedings of the First In-

ternational Conference on Temporal Logic,

pages 506–534. Lecture Notes in Artifi-

cial Intelligence 827, Springer-Verlag, July

1994.

[5] E. F. Codd. A relational model of data for

large shared data banks.Communications

of the ACM, 13(6):377–387, June 1970.

[6] M. J. Egenhofer and R. D. Franzosa. Point-

set topological spatial relations.Interna-

tional Journal on Geographical Informa-

tion systems, 5(2):161–174, 1991.

[7] M. Erwig, M. Schneider, and R.H. Güt-

ing. Temporal objects for spatio-temporal

models and a comparison of their rep-

resentations. InProceedings of ER’98

Workshop on Spatio-temporal Data Man-

agement, number 1552 in Lecture Notes

in Computer Science, pages 454–465.

Springer-Verlag, 1998.

[8] O. Etzion, S. Jajodia, and S. Sripada (eds.).

Temporal Databases: Research and Prac-

tice. Springer Verlag, 1998.

[9] R. H. Güting. An Introduction to Spa-

tial Database Systems.The VLDB Journal,

3:357–399, 1994.

[10] G. Jaeschke and H. J. Schek. Remarks on

the algebra of non first normal form rela-

tions. InProceedings of ACM Symposium

on Principles of Database Systems, 1982.

[11] C. S. Jensen, J. Clifford, R. Elmasri, S. K.

Gadia, P. Hayes, and S. Jajodia [eds].

A Glossary of Temporal Database Con-

cepts. ACM SIGMOD Records, 23(1):52–

64, March 1994.

[12] Anthony Klug. Equivalence of relational

algebra and relational calculus query lan-

guages having aggregate functions.Jour-

nal of the ACM, 29(3):699–717, July 1982.

[13] N. A. Lorentzos and Y. G. Mitsopoulos.

SQL Extension for Interval Data.IEEE

Transactions on Knowledge and Data En-

gineering, 9(3):480–499, 1997.

[14] E. McKenzie and R. Snodgrass. An Evalu-

ation of Relational Algebras Incorporating

the Time Dimension in Databases.ACM

Computing Surveys, 23(4):501–543, De-

cember 1991.

[15] J. Melton and A.R. Simon.Understand-

ing the New SQL: A Complete Guide. San

Mateo, CA: Morgan Kaufmann Publishers,

Inc., 1993.

[16] G. Özsoyǒglu, Z. M. Özsoyǒglu, and

V. Matos. Extending relational al-

gebra and relational calculus with set-

valued attributes and aggregate functions.

ACM Transactions on Database Systems,

12(4):566–592, December 1987.

20

[17] J. Paredaens and B. Kuijpers. Data models

and query languages for spatial databases.

Data & Knowledge Engineering, Elsevier

Science B.V., 25:29–53, 1998.

[18] M. Schneider. Spatial data types for

database systems : finite resolution geom-

etry for geographic information systems,

volume 1288 ofLecture Notes in Computer

Science. Springer-Verlag, 1997.

[19] B. Skjellaug. Temporal Data: Time and

Relational Databases. Research Report

246, Department of Informatics, Univer-

sity of Oslo, April 1997. ISBN 82-7368-

161-0.

[20] R. T. Snodgrass. The Temporal Query

Language TQuel. ACM Transactions on

Database Systems, 12(2):247–298, June

1987.

[21] R. T. Snodgrass (editor).The TSQL2 Tem-

poral Query Language. Kluwer Academic

Publishers, 1995.

[22] A. U. Tansel, J. Clifford, S. Gadia, S. Ja-

jodia, A. Segev, and R. Snodgrass, editors.

Temporal Databases: Theory, Design, and

Implementation. Benjamin/Cummings,

1993.

21

