
Åvald Åslaugson Sommervoll

Machine learning for offensive
cyber operations

Thesis submitted for the degree of Philosophiae Doctor

Department of Informatics
Faculty of Mathematics and Natural Sciences

2022

© Åvald Åslaugson Sommervoll, 2023

Series of dissertations submitted to the
Faculty of Mathematics and Natural Sciences, University of Oslo
No. 2595

ISSN 1501-7710

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without permission.

Cover: UiO.
Print production: Graphics Center, University of Oslo.

Preface
This thesis is submitted in partial fulfillment of the requirements for the degree of
Philosophiae Doctor at the University of Oslo. The research presented here was
conducted at the University of Oslo under the supervision of professor Audun
Jøsang, Leif Nilsen, and associate professor Thomas Gregersen. This work was
financed as a university scholarship at UiO. The general focus of this thesis
is on offensive cyber security. However, the topic of offensive cyber security
is broad; hence the focus of this thesis has been narrowed down to applying
machine learning for penetration testing and cryptanalysis. In that effort, this
thesis comprises six papers: one review paper, three papers on machine learning
cryptanalysis, and two papers on machine learning for penetration testing. The
papers are preceded by four introductory chapters that motivate the work,
provide background information, relate the papers to each other, and summarize
the contributions with the research questions in mind.

Acknowledgements

I wish to extend a special thanks to Audun Jøsang for his guidance and for
giving me the freedom to explore and find my footing as a true researcher in the
academic community. I would also like to thank my co-supervisors, Leif Nilsen,
and Thomas Gregersen, who introduced me to the field of cryptography. Also,
special thanks to two recent co-authors, Fabio Massimo Zennaro and László
Erdődi, who joined me in my research on the exciting topic of penetration
testing. Moreover, the many follow-up meetings with Fabio regarding machine
learning were particularly fruitful. Regarding acknowledgments, I should extend
my gratitude to my fellow Ph.D. students, especially for interesting discussions
both during and outside working hours. I also thank my parents, Dag Einar
Sommervoll and Åslaug Helland, for their words of encouragement and constant
support.

Åvald Åslaugson Sommervoll
Oslo, October 2022

i

List of Papers

Paper I

Å. Å. Sommervoll and A. Jøsang “Machine Learning for Offensive Cyber
Operations”. In: The NISK 2021 Proceedings. Vol. 8, Issue. 3, (Jan 2022),

Paper II

Å. Å. Sommervoll and L. Nilsen “Genetic algorithm attack on Enigma’s
plugboard”. In: Cryptologia. Vol. 45, Issue. 3, (Mar 2020), pp. 194–226.
DOI: 10.1080/01611194.2020.1721617.

Paper III

Å. Å. Sommervoll “Dreaming of keys: Introducing the phantom gradient attack”.
In: Proceedings of the 7th International Conference on Information Systems
Security and Privacy (ICISSP 2021). Vol. 7, Paper nr. 90, (Feb 2021), pp. 619–
627. DOI: 10.5220/0010317806190627.

Paper IV

Å. Å. Sommervoll “The Phantom Gradient Attack: A Study of Replacement
Functions for the XOR Function”. In: QShine 2021: Quality, Reliability, Security
and Robustness in Heterogeneous Systems proceedings. Vol. 402, (Nov 2021),
pp. 228–238. DOI: 10.1007/978-3-030-91424-0.

Paper V

L. Erdődi, Å. Å. Sommervoll and F. M. Zennaro “Simulating SQL injection
vulnerability exploitation using Q-learning reinforcement learning agents”. In:
Journal of Information Security and Applications. Vol. 61, (September 2021),
DOI: 10.1016/j.jisa.2021.102903.

Paper VI

L. Erdődi, Å. Å. Sommervoll and F. M. Zennaro “Simulating all Archetypes of
SQL Injection Vulnerability Exploitation Using Reinforcement Learning Agents”.
Submitted to International Journal of Information Security.

iii

https://doi.org/10.1080/01611194.2020.1721617
https://doi.org/10.5220/0010317806190627
https://doi.org/10.1007/978-3-030-91424-0
https://doi.org/10.1016/j.jisa.2021.102903

Contents

Preface i

List of Papers iii

Contents v

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Motivation . 1
1.2 Research questions . 3
1.3 Approach and research methods 4
1.4 Structure of the thesis . 6

2 Background 7
2.1 Machine learning . 7
2.2 Cryptography . 10
2.3 SQL injection . 13

3 Contributions 17
3.1 Summary of research papers 17
3.2 Other contributions . 21

4 Conclusion 23
4.1 Summary of contributions 24
4.2 Future work . 27
References . 28

Papers 32

I Machine Learning for Offensive Cyber Operations 33
I.1 Introduction . 33
I.2 Cryptanalysis . 34
I.3 Penetration testing . 35
I.4 Conclusion . 36
References . 36
Coauthor declaration . 39

v

Contents

II Genetic algorithm attack on Enigma’s plugboard 41
II.1 Introduction . 41
II.2 Background . 43
II.3 GA-based Enigma attack 55
II.4 Conclusion . 68
References . 69
Coauthor declaration . 71

III Dreaming of keys: Introducing the phantom gradient attack 73
III.1 Introduction . 73
III.2 Related work . 75
III.3 Implementation and results 76
III.4 Attack on Ascon’s underlying functions 81
III.5 Conclusion . 85
III.6 Future work . 86
References . 86

IV The Phantom Gradient Attack: A Study of Replacement
Functions for the XOR Function 89
IV.1 Introduction . 89
IV.2 Related work . 90
IV.3 Replacement functions XOR 91
IV.4 Conclusion . 97
IV.5 Acknowledgement . 99
References . 99

V Simulating SQL injection vulnerability exploitation using
Q-learning reinforcement learning agents 101
V.1 Introduction . 102
V.2 Background . 103
V.3 Model . 107
V.4 Experimental simulations 110
V.5 Ethical considerations . 120
V.6 Conclusion . 121
References . 121
Coauthor declaration . 125

VI Simulating all Archetypes of SQL Injection Vulnerability
Exploitation Using Reinforcement Learning Agents 127
VI.1 Introduction . 128
VI.2 Background . 129
VI.3 Modeling . 135
VI.4 Results and discussion . 142
VI.5 General discussion and Conclusion 152
References . 153
Coauthor declaration . 155

vi

Contents

Appendices 157

A Appendix for papers 159
A.1 Appendix for paper II . 159
A.2 Appendix paper V . 160
A.3 Appendix paper VI . 162

vii

List of Figures
2.1 Ascon’s mode of operation: Encryption 12

II.1 The four main components of the Enigma 43
II.2 Enigma key book . 45
II.3 Enigma example wiring . 46
II.4 Enigma rotor diagram . 47
II.5 Mechanical setup of the Enigma Machine 48
II.6 The key features of a notch plot 53
II.7 IC of a 100 GA runs with default settings finding the plugboard

key from Table II.1 . 62
II.8 Notch plot comparison of a 100 GA attacks with mutation rate

0.5 (red) and 0.01(blue) across 10 different Enigma settings . . . 64
II.9 Median runtime vs Number of generations on subsets of Alice in

Wonderland . 66
II.10 The number of characters in the plaintext plotted against the GA

success-rate and the IC of the plaintext. 67

III.1 XOR with a constant as a FFNN 78
III.2 Example FFNN for XOR between two inputs 79
III.3 XOR between inputs learning success 80
III.4 Binary network for the S-box in pS permutation divided into pS1 ,

pS2 , and pS3 . 83

IV.1 View of the behaviour of the different XOR implementations in
the range -1 to 2 . 93

IV.2 Example FFNN for XOR between two inputs 93
IV.3 Example FFNN for XOR between three inputs 95
IV.4 XOR between three round rotated instances of a four-bit input . 96
IV.5 Comparison of the different xorti’s under the learning rates 0.5

and 1.0 . 98

V.1 Simulation 1 - training. 115
V.2 Simulation 1 - Q-tables. 116
V.3 Simulation 1 - testing. 117
V.4 Simulation 2 - testing. 119
V.5 Comparison between the DQN and the tabular Q-learning models. 120

VI.1 Training of agent1 in Simulation1 143
VI.2 Training of agent2 in Simulation2 144
VI.3 Training of agent3 in Simulation3 145

ix

List of Figures

VI.4 Training of agent3t in Simulation3 145
VI.5 Final epochs in the training of agent 3t in Simulation3 146
VI.6 Number of queries used to find the vulnerability for each of the

vulnerability types for agent1. 147
VI.7 Number of queries used to find the vulnerability for each of the

vulnerability types for agent2. 149
VI.8 Number of queries used to find the vulnerability for each of the

vulnerability types for agent3. 150

A.1 Notch plot of the number of generations used by 100 genetic
algorithm runs with mutation rate 0.5 for the 10 different Enigmas 161

A.2 A cropped notch plot, ignoring extreme outliers, of the number
of generations used by 100 genetic algorithm runs with mutation
rate 0.01 for the 10 different Enigmas 161

A.3 Notch plot of the number of generations used by 100 genetic
algorithm runs with mutation rate 0.01 for the 10 different Enigmas 162

A.4 Simulation 2 - testing on DQN agents trained using a batch size
of 32. 163

A.5 Number of queries used to find the vulnerability for each of the
vulnerability types for agent3t. 169

x

List of Tables
II.1 Enigma settings . 56
II.2 Enigma decryption changing the rotors 57
II.3 Enigma decryption changing ring settings and message setting

with the same index . 57
II.4 Enigma decryption changing plugboard settings 58
II.5 Population . 60
II.6 Cross-over combinations . 60
II.7 Default GA settings . 62
II.8 Finish times of the different GA runs on Table II.1 63
II.9 A 100 GA run finish time comparison across 10 different Enigma

settings . 63
II.10 100 GA’s run on smaller subsets of Alice in Wonderland 65

III.1 Ascon-128 specifications . 81
III.2 Settings for backpropagation . 82
III.3 pS2 permutation groups . 84

IV.1 Percentage success rate of the the different XOR replacement
functions across 1000 trials for each of the possible 2 bit outputs. 94

IV.2 Percentage success rate of the the different XOR replacement
functions on Figure IV.4 . 96

VI.1 Examples of SQLi attempts against the sample hidden query and
server responses. Notice that the agent input is meant to be
inserted in {0}, with the rest of the hidden query being disabled
by the comment symbol, #. 138

VI.2 Expected trajectory for agent1 to perform stack-based exploitation. 147
VI.3 Action trajectory for agent1 to perform stack-based exploitation

in 2 steps. 147
VI.4 Action trajectory of agent1 for solving stack-based vulnerabilities

in 7 steps. 148
VI.5 Action trajectory of agent1 for solving union based vulnerabilities

in 4 steps. 148
VI.6 Action trajectory of agent2 failing to solve Boolean-based blind

vulnerability. 149
VI.7 Success rates for different vulnerability types for agent3t. 151
VI.8 Action trajectory of agent3t failing to solve time-based blind

vulnerability. 151

A.1 Enigma decryption changing ring settings 159

xi

List of Tables

A.2 Enigma decryption changing message setting 159
A.3 Drawn Enigmas . 160
A.4 Action trajectory of agent1 for solving stack-based vulnerabilities

in 8 steps. 167
A.5 Action trajectory of agent3 failing to solve Boolean-based blind

vulnerability. 168
A.6 Action trajectory of agent3 failing to solve Boolean-based blind. 169

xii

Chapter 1

Introduction

1.1 Motivation

The eternal struggle between attacker and defender is an inherent part of the
human condition. Now in the modern era, this struggle continues in cyberspace
between offensive cyber operations and cyber defense. Note that offense or
defense does not necessarily correspond to "good" or "evil" because that is a
matter of perspective. This move to the cyber domain is relatively recent and is
the byproduct of computers and how they have radically changed our society.
A crucial contributor to this development was Alan Turing, who formalized
the definition of the Turing machine in 1936, before WWII (1939-1945). This
theoretical machine is so general that it can implement any computer algorithm.
To this day, modern programming languages prove that they can simulate a
Turing machine and, as a result, can also implement any computer algorithm1.
The Turing machine is a crucial contribution to the establishment of computer
science, laying the foundation for the digital transformation we see today. Alan
Turing and his peers at Bletchley park would further the idea of the computer
during WWII by creating computers and using them for arguably the first-ever
computerized cryptanalysis and, thereby, one of the first offensive operations to
use a computer. Contemporary cryptanalysis is typically computerized.

In 2018, 82% of Western Europe was on the Internet, and 51% globally [Cis20].
Between 2018 and now (2022), the world has faced a pandemic where many people,
through isolation, saw the rapid introduction and use of multiple digitization
tools that may have existed for a long time but had yet to see widespread use.
Online meetings, governmental location tracking, online doctor appointments,
and working from home became widespread phenomena. From this, it is clear
that the infrastructure in which we live and work has evolved dramatically.
Physical safeguards alone are no longer sufficient; we also need cyber security
and cyber experts to protect our online banking, online doctor prescription, and
privacy. Fortunately, cyber security is already receiving significant attention in
terms of education, research, and innovation [ASL20; BG16; GN16; Kam+20;
RM18; Xin+18].

Moreover, the above-cited review papers cover publications that use machine
learning for cyber defense. The growing number of research papers illustrates the
ample motivation and fruitfulness of using machine learning for cyber defense.
However, a largely neglected topic, at least in the open academic literature, is that
of offensive operations using machine learning. Intuitively, sharing knowledge
and innovation in defensive security controls is desirable to improve defensive
security controls, but sharing how defensive security controls can be attacked

1If a system has this quality, we say it is Turing complete.

1

1. Introduction

can be controversial. However, such research is equally important to improve
the development of defensive cyber security controls. The most dangerous
vulnerabilities are the unknown ones. However, if they are discovered, corrective
measures can be deployed before real attackers exploit them. Motivated by this
fundamental principle, we aim to add new insight to the field of offensive cyber
operations with machine learning.

Studying offensive cyber operations is essential to predict possible future
attacks2. A clear understanding of the potential threats will help defenders to be
better prepared and stimulates the development of new defensive security controls
and tools. In machine learning, success in image generation with generative
adversarial networks is based on the same fundamental principle. One machine
plays the generator which is pitted against an adversary trying to distinguish
between generated and natural images. Without the model for the adversary, the
learning would not be as effective. Also, in cryptography, the only reason modern
cryptography is as strong as it is today is that researchers from all over the world
attempt to cryptanalyse the systems as a verification of the systems’ strength
against attacks. The general advice to improve the security of a business is to
do a penetration test so that possible vulnerabilities can be exposed. NATO and
other security-focused organizations also know the value of simulated attacks;
this is why they host competitions to simulate attack and defense in a cyber range.
In these competitions, there are two teams: the red team and the blue team. The
blue team plays defense and does the usual defensive operations. In contrast, the
red team is on the offense mimicking an attacker’s mindset and actions to test
the blue team’s defensive capabilities [BÇR15]. The examples above illustrate
precisely the principle that research on offensive cyber operations is essential for
strong cyber security. Moreover, practicing offensive cyber operations is vital
beyond its potential for detecting vulnerabilities and improving cyber security, as
offensive cyber operations have become an essential part of warfare. In the paper
The role of offensive cyber operations in NATO’s collective defense, Lewis states
that offensive cyber operations are a part of warfare that advanced militaries
cannot ignore [Lew15].

The focus on machine learning is motivated by its enormous potential and
widespread use. Gaining machine learning supremacy has become a new arms
race with heavy investments by nations such as the People’s Republic of China
and the United States of America [OMe+19], but also by giant corporations such
as Meta (Facebook) [JP15], Alphabet (Google) [LM18], and Amazon [Ram+18].
Despite this, our survey paper, Paper I, shows the surprising lack of published
research on offensive cyber operations with machine learning. This may be
natural due to the sensitive nature of offensive tools. However, it can also be
due to the inaccessibility of reliable datasets for machine learning.

Nevertheless, some researchers are working on creating datasets for training
machine learning models for offensive cyber operations. For example, R. Chetwyn,
with his repository on dynamic CTF games [Che22], is developing a tool to
automate the generation of SQL injection challenges. Tools that can generate

2Research could also uncover an existing attack currently unknown to security experts.

2

Research questions

simulated environments for offensive cyber operations would be valuable when
training and testing machine learning techniques for ethical hacking. However,
this environment alone is not enough, as we are typically interested in finding
and exploiting unforeseen vulnerabilities. So while Chetwyn’s environment is
a great starting point, the machine learning models should also be tested on
real-world capture-the-flag challenges that are not automatically generated.

1.2 Research questions

This research aims to contribute to the new research field of machine learning
for offensive cyber operations. As machine learning is computerized, a natural
starting point is to look at one of the earliest instances of computerized offensive
operations. In our motivation, described in Section 1.1, we saw that the first
computerized cryptanalysis occurred during World War II (WWII). This was
also one of the very first uses of an electric computer. The system that they
attacked was the German cryptographic machine; Enigma. Since WWII, Enigma
encryption has been broken many times in several different ways, giving critical
insight into a piece of history. In addition, techniques that have been shown to
work on Enigma may become useful building blocks for future cryptanalytical
attacks. Inspired by this, we wish to answer the following:

RQ1 To what extent can genetic algorithms be used to improve the cryptanalysis
of the historical cryptosystem Enigma’s plugboard?

We focus on Genetic Algorithms, a machine learning technique adept at escaping
local optima, and because of the DNA-like appearance of Enigma settings,
particularly the plugboard settings. Whether our findings can aid modern
cryptanalysis has yet to be determined, especially as modern cryptosystems are
rapidly evolving. One of the more recent additions to the field of cryptography
is the sponge construction (2011) [Ber+11]. A modern cryptosystem that uses
this construction is Ascon v1.2 which won the CAESAR (Competition for
Authenticated Encryption: Security, Applicability, and Robustness) in 2019
[Ber19] and was a NIST lightweight crypto competition finalist in 2021 [NIS22].
Analyzing the vulnerability of this system to machine learning attacks could have
significant importance. Inspired by this, we wish to investigate the following:

RQ2 What is the potential of using machine learning to recover the secret key
when it is hidden by complex permutations in a modern cryptographic
sponge construction like that used in Ascon?

Exploring and understanding the almost uncharted security threats of machine
learning is essential not just for security experts but also for society in general.

Investigating potential threats posed by machine learning is important now
that it is transforming society with almost endless applications. One such
application is hacking, which is probably being researched and developed in
secret by many organizations, which will give malicious actors the capability of
conducting automated attacks. We can already see the effect of machine learning

3

1. Introduction

on security with the increasing complexity of CAPTCHAs to prove that the user
is human3. As we saw in the motivation Section 1.1, there is a strong focus on
cyber defense, but the apparent lack of research in offensive cyber operations
can represent a serious weakness.

For this reason, it was desirable to shift the research lens to ethical hacking,
specifically SQL injection, within the larger field of penetration testing. Our
focus on SQL injection was motivated by OWASP, which identified SQL injection
as the most significant web application security risk in their 2017 report and as
the third biggest web applications security risk in their 2021 report: OWASP
top 10 [OWA]. Our third research question, therefore, focuses on finding SQL
injection vulnerabilities:

RQ3 How can we use the machine learning technique, reinforcement learning,
to find SQL injection vulnerabilities?

Moreover, it is of great interest if we can not only find, but also simulate the
exploitations that an attacker might take. This motivates our last research
question:

RQ4 How can we use reinforcement learning to not only find, but also exploit
SQL injection vulnerabilities?

Finding and revealing potential exploits is so crucial that many organizations
have bounty programs offering a reward for finding a vulnerability on their
website and ethically disclosing it to them. Moreover, firms pay handsomely
to penetration testers or ethical hackers to test the integrity of their systems.
Of course, our motivation is to improve security, not for financial gain, but the
prospect of financial gain is correlated with the relevance and need for research.

1.3 Approach and research methods

As outlined by the research questions, our research method was cumulative.
First, we investigated and elevated our understanding of cryptography, focusing
on machine learning-based cryptanalysis and the Enigma machine, creating
a foundation for RQ1 and RQ2. The initial reading was disheartening as
cryptography, and machine learning do not mix very well. Machine learning is
typically trained to find a good solution gradually. In contrast, in cryptography,
there is typically no gradual solution, in the sense that either has the secret key
been found or it has not. Modern cryptosystems are also designed so that it is
practically impossible to tell if a guessed/retrieved key is close to the secret key,
thereby frustrating an attacker’s attempts at gradually retrieving the key. For
this reason, it is perhaps not surprising that successful research using machine
learning attacks on cryptographic algorithms is limited.

However, historic cryptosystems do not always have this rigorous requirement.
For example, the cryptographic machine, Enigma, has been broken many times

3This increase in complexity is because machine learning models can increasingly solve
more complex CAPTCHA challenges.

4

Approach and research methods

in several different ways [Gil95; OW17; Wil00] since its initial cryptanalysis
by Alan Turing and his team. This existing research was highly relevant for
research question RQ1, where we explored and read about the many Enigma
cryptanalyses. Moreover, Alan Turing’s attack was a guessed plaintext attack,
where they recovered or guessed the plaintext and then used this knowledge to
aid in their cryptanalysis. In our approach, we wanted to construct a ciphertext-
only attack, where we assume not to know anything about the plaintext except
that it is in English. In order to run our experiments for proof-of-concept, we
used and investigated an existing Enigma simulation, confirming that it was
an accurate model of Enigma, including its mechanical flaw of double stepping.
Then we encrypted English plaintext with random Enigma settings and tested
how effective our GA attack was at recovering the plaintext. As the machine
learning model did not know what the plaintext was supposed to be, it prioritized
maximizing the index of coincidence, described in Section 2.2.2. After a certain
number of generations, the GA terminated, and we, the external operator, could
confirm that it had found the solution. The GA approach managed to break the
cipher very efficiently. Paper II gives a thorough discussion of the results and a
comparison with earlier approaches.

Building on this, looking at the more modern cryptosystem Ascon for research
question RQ2, we faced a more daunting challenge. Very few works have
used machine learning for algorithmic cryptanalysis of modern cryptosystems.
We, therefore, proposed a novel method of cryptanalysis. Inspired by the
general success and innovation in training neural networks and Gohr’s [Goh19]
cryptanalytic success with neural networks, we opted to create a novel known-
plaintext attack based on how neural networks are trained. In this approach, we
started small and looked at a single round of the Ascon permutation; however,
modern cryptosystems are hard to crack, and the initial results were modest.
Nevertheless, the novel approach and the preliminary results showed some
promise, leading to the publication of Papers III and IV in the proceedings of
ICISSP 2021 and QShine 2021.

To investigate research question RQ3 and research question RQ4, we read
the literature on SQL injection and consulted a professional penetration tester to
further our understanding of the problem and the existing literature. During the
research phase, two problems arose: 1. Identifying vulnerabilities was ambiguous,
and often the only surefire way to confirm a vulnerability was to demonstrate
an exploit. Additionally, 2. there are many different ways to do SQL injection
exploitation and many different countermeasures. As a result, we focused first
on exploitation, research question RQ4, publishing Paper V, and experimenting
with exploiting a single vulnerability with reinforcement learning for proof-of-
concept. Empowered by the positive results, we extended to exploit all five SQL
injection archetypes in Paper VI and, in the process, also identified the different
vulnerabilities in order to exploit them. Paper VI has been submitted to the
International Journal of Information Security and is awaiting a review.

After observing the low number of publications on offensive cyber operations
with machine learning, we published Paper I, a brief review paper aimed at quickly
giving interested researchers an overview while at the same time highlighting

5

1. Introduction

potential future research.

1.4 Structure of the thesis

This thesis has a cumulative structure consisting of six research papers. There
are two main parts where the first part, consisting of chapters one through
four, describes the research project in general, and the second part contains the
publications.

6

Chapter 2

Background

2.1 Machine learning

In recent years machine learning has gone from curiosity to an essential tool with
many applications. It has made its way into almost every field of research and
has a rapidly growing number of practical applications with enormous business
and societal impact. Much of this is due to the rapid development of new models
and architectures incentivized by heavy corporate investments, governmental
interest, and research curiosity. However, some of it is also since machine learning
has grown to include traditional statistical techniques, such as ordinary least
squares regression, predating machine learning, and computers. In this thesis, we
use three different machine learning techniques: 1. The Genetic Algorithm (GA),
2. Artificial Neural Networks (ANN), and 3. Reinforcement Learning (RL).
For clarity, we will cover them in some detail here in the background section.
However, some background information is often also found in the papers.

2.1.1 Genetic Algorithm (GA)

The Genetic Algorithm technique is a form of semi-supervised learning that draws
its inspiration from evolution. The algorithm searches for an optimal solution to
a problem by simulating a population of individuals, where each individual holds
a candidate solution. The candidate solution can typically be divided into genes,
and the collection of these genes is called the genome. The individuals are then
ranked according to the fitness of their genes, computed with a fitness function,
which evaluates how good the candidate solution is. The best individuals create
offspring with a genome that is typically a recombination of the genes of two
parent individuals in a process called cross-over. During training, the population
is constantly updated as the algorithm iteratively replaces the worst part of the
population through cross-over. Typically the entire population is updated at
once, and the updated population is called the next generation. This partitioning
of time is useful because it allows us to talk about the fitness at a specific time
step and because it is a good analogy to the concept of generation in biology.
However, the GA would converge too quickly and probably find a suboptimal
solution with just the elements described above. Therefore another biologically
inspired technique called mutation is added, represented by a mutation rate,
which gives the rate of a specific gene being replaced through mutation. Highly
related, the mutation probability gives the probability of a genome having any
mutation.

7

2. Background

2.1.2 Artificial Neural Networks (ANN)

Artificial neural networks (ANNs) and machine learning are terms often used
interchangeably in the media. This is because ANNs are used in almost every
machine learning application as it has excellent generalizability. At the most
basic level, ANNs are a network of artificial neurons, often just called neurons.
How these neurons are organized depends on the application, as the networks are
often adjusted to their respective tasks. Some examples are convolutional neural
networks for image processing, recurrent neural networks for text prediction, and
feed-forward networks for regression problems. The commonality of these models
is that the neurons are represented by a mathematical function. In feed-forward
networks (FFN), the neurons are ordered in layers, where the mathematical
function for a specific neuron is only based on the neurons in the preceding layer.
Typically this mathematical function is a weighted sum:

xi+1,j = f(xi,1, xi,2, ..., xi,ni
) = ωj,0+ωj,1 ·xi,1+ωj,2 ·xi,2+...+ωj,ni

·xi,ni
, (2.1)

where x gives the current value1 of a neuron, i gives the layer number, j gives
the number of the neuron within layer i, ni gives the number of neurons in layer
i, and ω is the weights. From there, the input propagates layer by layer until
the propagation reaches the neurons in the output layer, which then holds the
output2 of the neural network.

If a network is sufficiently deep, generally with at least two hidden layers,
such a network is called a deep neural network and is part of the family of deep
learning techniques.

From Equation (2.1), it may seem that a neural network is no different
from ordinary least squares regression and can only be trained to make linear
predictions. However, this is not the case, as almost all neurons of a neural
network are followed by an activation function. These activation functions
typically introduce some non-linearity to the network allowing it to make more
specialized distinctions. One of the most common such activation functions is
the Rectified Linear Unit (ReLU) which can be expressed as:

f(x) = max(0, x), (2.2)

which, despite its simplicity, gives the neural network sufficient non-linearity and
enables swift learning. Paper IV discusses how an activation function can be
used with our phantom gradient attack in order to improve its performance.

2.1.3 Reinforcement Learning (RL)

Reinforcement learning (RL) is a machine learning technique that also draws its
inspiration from nature, not directly from the brain or evolution, but from how

1Note that the current value of a neuron is often referred to as its state. This term is
useful for explaining certain aspects of ANNs, but is not essential to this thesis and is therefore
omitted.

2For classification problems, this output is typically a vector that gives the predicted class.

8

Machine learning

humans train animals through reinforcement. By encouraging desirable actions
through positive reinforcement and discouraging undesirable actions through
negative reinforcement. The hypothetical animal being trained is referred to
as an agent acting in an environment. In this environment, the agent has a
perceived state, a set of available actions, and a policy to select actions. This
policy is at the root of reinforcement learning. The agent aims to learn a good
or, ideally, an optimal policy that maximizes its reward (positive reinforcement).
After an agent has selected an action, the environment feeds the agent some
observations, and the agent updates its perceived state3. This new state comes
with a reward, which the reinforcement learning agent can use to update its
policy. This reward can be positive or negative. Some works like Paper VI,
therefore, divide the reinforcement learning problem into a tuple (S,A, T, R),
where:

• S is a set of states for the environment;

• A is a set of actions that the agent can take;

• T : S × A → S is a transition function describing how the environment
moves from one state to another after the agent takes an action;

• R : S ×A → R is a reward function that quantifies the goodness of taking
an action in a given state resulting in a potentially new given state.

This subdivision outlines the key elements for reinforcement learning and
updating its learning policy, π.

Q-learning

The reinforcement learning technique Q-learning tries to estimate the value of
the available actions for each given state. It does this by giving each state-action
pair an initial value as a guess, where typical values are 0, 1, or a random value
in the range 0 and 1. Then it iteratively updates these pairs as follows:

Q(st, a′
t)← Q(st, a′

t) + α · (r′
t + γ · max

a∈At+1
[Q(st+1, a)−Q(st, a′

t)]), (2.3)

where Q is a function that takes a state and an action and returns its estimated
reward for that action given the state, st gives the state at time step t, a′

t gives
the action taken at timestep t, α is the learning rate, r′

t gives the observed
reward after action a′

t, γ is the discount, At+1 is the set of actions at time step
t + 1, and st+1 is the state at time step t + 1. The learning rate α indicates how
fast the agent learns and how much weight it places on a single experience. If we
have a learning rate of 1, the agent places a high weight on a single experience.
A learning rate of 0 means no learning at all. Typical learning rates are 0.1 and
0.01. However, many modern RL algorithms have a dynamic learning rate where
initially, it has a significant learning rate4. Then as it learns, it decreases the

3This new state can be the same as a prior to the action.

9

2. Background

learning rate to give the policy a final polish. The discount factor γ indicates
the weight the agent places on possible future rewards: If we set γ = 1, it does
not distinguish between future rewards and immediate rewards, γ = 0 means
that it only looks for immediate rewards, typically the discount is therefore
somewhere in between 0 and 1, like 0.9. In the state-of-the-art reinforcement
learning library: Stable-Baselines3 [Raf+21], the default discount factor for Deep
Q-learning is 0.99.

Tabular Q-learning Perhaps the most straightforward implementation of Q-
learning is tabular Q-learning, where the values for each state-action pair are
given by a cell in a table, where each row gives a different state, and each column
gives a different action. This way of storing the values is very accurate but
requires much memory, especially as some reinforcement learning problems can
have a considerable number of possible states.

Deep Q-learning (DQN) Deep Q-learning alleviates the space concerns by
replacing the table with a deep neural network, which can be implemented to
take the state as input and return the value for each state-action pair. We call
these pairs q(s, aj), where j indicates a possible action. After an action has been
taken, let us say action number k was taken, resulting in reward r and state st+1.
Then we should update our Q-network. This is done by comparing the observed
reward r and potential future reward maxa∈At+1(Q(st+1, a)) to the value that
we previously observed:

loss = Qt(s, ak)− (r + γ max
a∈At+1

[Q(st+1, a)]). (2.4)

With this loss, our network can backpropagate and update the weights.

2.2 Cryptography

Like machine learning, the field of cryptography has recently seen rapid
development. These recent developments in cryptography are primarily simulated
by the potential threat of quantum computers paired with algorithms such as
Shor’s and Grover’s algorithms, but also because of the general need for secure
communication. While quantum cryptanalysis and post-quantum cryptography
are exciting aspects of the field, this thesis focuses on machine learning attacks
on symmetric encryption algorithms. The number of published machine learning
attacks on cryptographic algorithms is perhaps surprisingly low, but this is not
without reason. Cryptographic algorithms hide how close an attacker is to a
solution, while machine learning typically tries to find a local optimum gradually.
These local optima may not be the best solution, but it is generally a good
solution. However, a relatively good solution does not make sense in most cases

4Sometimes this learning rate is as high as α = 1.

10

Cryptography

of cryptanalysis5. However, in some cases, some clever attack designs can get
around this.

2.2.1 Symmetric cryptography

In symmetric cryptography, there is a single secret key, k, an encryption algorithm,
E, and a decryption algorithm, D, where both algorithms take two input
arguments. The encryption algorithm E takes the plaintext message m and the
secret key k as input to produce a ciphertext c. The decryption algorithm takes
a ciphertext c and the key k to produce a plaintext message m.

E(m, k) = c (2.5)
D(c, k) = m. (2.6)

In some cases, the encryption and decryption algorithms are the same, leading
to the following:

E(E(m, k), k) = E(c, k) = m. (2.7)
One such algorithm is Enigma encryption which the Germans used during
WWII. Encryption and decryption being equal is also the case for many modern
cryptographic algorithms that focus on getting a random sequence of bits from
the key and to XOR, the pseudo-random bit-sequence with the ciphertext or
plaintext. This duality is also favorable from an implementation perspective as
it only requires the secure implementation of one algorithm.

2.2.2 Index of coincidence

Natural languages have an uneven distribution of their characters; for example,
English, German and Norwegian have a high frequency of the letter ’e’, especially
compared to low-frequency characters like ’z’ or ’x’. This knowledge was used
in early cryptanalytical attacks. However, the connection becomes obscured
with more complex ciphers, such as Enigma encryption, where the character
frequencies are scrambled. However, this can also be a tool for a cryptanalyst
to get some indication of how close one is to deciphering a particular message.
Though frequency analysis depends on the language being attacked, as the letter
frequency varies between languages, a more general approach is to use the index
of coincidence (IC) [Fri87]. The index of coincidence gives the probability that
two randomly selected characters are equal:

IC =
∑26

i=1 fi · (fi − 1)
N · (N − 1) ,

where f is the frequency of character number i and N is the total number of
characters6. Plaintext English typically has an IC of around 0.066, while German

5We saw in Paper II that in ciphertext-only cryptanalysis, it is possible that global optima
is not the correct decryption but instead some other key. Thought this depends heavily on the
ciphertext length and the measure used.

6Note that this calculation is for an alphabet with 26 characters. For Norwegian, which
has 29 characters, it would be the sum over 29.

11

2. Background

is around 0.07 [Gil95], and a completely even distribution of the 26 characters is
around 0.039.

2.2.3 Sponge Construction

Many modern cryptosystems have or utilize a sponge construction. Generally, a
sponge construction has a state of b bits and uses a permutation f that operates
on all b bits of the state [Ber+11]. The initialization of this b-bit state can
vary; in Bertoni et al.’s duplex construction, it is initialized to only contain
0 bits. However, Ascon, which we study in Papers III and IV, uses a more
complex initialization of its 320-bit state. The first 64 bits are a constant, IV
(Initialization Vector), the next 128 bits are reserved for the secret key, and the
last 128 bits are filled by a nonce [Dob+16]. In a cryptographic setting, a nonce
is an arbitrary number, often random or pseudorandom-number, used once in a
cryptographic communication. For Ascon, this is a public message number that
is not assumed to be secret, while the secret key is, of course, assumed to be
secret.

In a key recovery attack, we focus on this initial state since if an attacker
can recover the initial state, they also recover the key. Moreover, an attacker
already knows 60% (the 64-bit constant and the 128-bit nonce) of the initial
state information that could be utilized in an attack. This initial state goes
through a series of permutations and alterations, as seen in Figure 2.1. Most
notable are the permutations pa and pb, where in standard Ascon, a = 12 and
b = 6, and p is an SPN-based round transformation that is iteratively applied. In
other words, the state undergoes 12 round transformations during initialization
and finalization and 6 round transformations for intermediate steps. The round
transformation p can be divided into three parts: pC , which adds a constant; pS ,

7Associated data can be omitted but is used to add context to the data, so that duplicate
messages cannot be reused.

Figure 2.1: Ascon’s mode of operation: Encryption
IV is a constant, K is the secret key, N is a nonce, Sr and Sc is the rate and capacity part of
the state S, Ai, Pi and Ci are 64-bit blocks of associated data7, plain text and cipher text in

position i, pb and pa are Ascon permutations run 12 and 6 times respectively, || is used to
symbolize concatenation, ⊕ means XOR and T is the tag used to authenticate the message.

(Edit of a figure in Ascon v1.2, Submission to the CAESAR Competition [Dob+16])

12

SQL injection

the substitution layer; and pL, providing diffusion. An in-depth breakdown of
these sub-transformations can be found in Section III.4 as part of Paper III but
will not be listed here.

The state can be divided into Sr and Sc, where Sr consists of 64 bits
and is occasionally extracted as ciphertext after XOR operations with the
plaintext. The remaining 256 bits, Sc, remain hidden and do not receive any
external input directly but are influenced indirectly as the entire 320-bit state
is affected by the permutations. The layered shape of the sponge function is
reminiscent of the layers in a neural network. We, therefore, believe that it can
be especially vulnerable to neural network attacks, and the phantom gradient
attack, introduced in Paper III, may be a stepping stone in illuminating this
vulnerability.

2.3 SQL injection

An attacker breaking cryptographical systems is a serious threat in cyberspace.
However, in our study of offensive operations, we also focus on SQL injection
vulnerabilities, which also represents a serious threat [OWA]. SQL injection
vulnerabilities are serious web vulnerabilities that allow attackers to enter
arbitrary commands and data into the underlying back-end database of a
web server. Proper input sanitation is essential to defend against this kind
of vulnerability. However, it is surprisingly challenging to counteract all attack
vectors. Hence, this attack is listed as the 3rd most prominent web application
risk in 2021 and was the number one web application risk in 2017. Conducting
penetration testing to expose SQL injection vulnerabilities, if present, is essential
for improving an organization’s cyber security. A general principle for SQL
injection vulnerability exploitation is to escape the input string, typically with ",
’ or ϵ allowing the input following them to be read as code instead of a string8.
We call symbols that escape the string input for escape characters. Moreover,
the potentially vulnerable input field interacts with the server-side database
in some way. However, this query is hidden from the user, and we call this
server-side query the hidden query. With this vulnerability being common, there
are many variations; in Paper VI, we divided SQL injection vulnerabilities into
five archetypes:

1. Union-based vulnerabilities,

2. Stack-based vulnerabilities,

3. Boolean-based blind vulnerabilities,

4. Error-based vulnerabilities,

5. Time-based blind vulnerabilities.
8Some inputs, like numbers, are not always read as a string and can be read as code

directly. In this case, no escape character is needed, and we call this ϵ.

13

2. Background

However, there are other subdivisions. For example, Halfond et al. [HVO+06]
divide it into 7. Most of these fall into one or more of our proposed archetypes.

Union-based vulnerabilities: In our subdivision, union-based SQL injection
vulnerabilities are cases where an attacker can execute custom queries by utilizing
the UNION SQL keyword. This happens when the attacker recovers the correct
escape character, knows the correct number of columns accessed by the hidden
query, and the website does not sanitize the input data properly.

Stack-based vulnerabilities: Compared to union-based vulnerabilities, stack-
based vulnerabilities are easier to exploit, as the website allows for query stacking.
This means that an attacker can execute their custom query by using the correct
escape character and stacking a new query after the hidden query without the
need to discover the number of columns.

Boolean-based blind: Exploiting boolean-based blind vulnerabilities can be
more tedious than exploiting union-based or stack-based vulnerabilities. An
attacker cannot see the result of their queries directly but can only distinguish
between receiving a response and not receiving a response. This means that
considerably more queries must be utilized, so much so that it typically must
be automated. To discover what SQL version the target website is running, an
attacker would, for example, first send:

’ or ASCII(Substr((SELECT @@VERSION),1,1))< 64;#

This will indicate whether the first character of the version has ASCII encoding
less than 64. If true, the attacker might check if it is also less than 32 and
iteratively narrow down the search until the ASCII encoding of the first character
has been found. Then the attacker will move on to recovering the second character.
Of course, some educated guesses can be made along the way, but as is evident
from this example, this exploit is more computationally intensive.

Error-based vulnerabilities: Error-based vulnerabilities are among the most
straightforward SQL injection vulnerabilities to exploit as they give the user an
error on incorrect queries. This vulnerability rarely comes alone and usually
gives an attacker ample information to conduct an attack efficiently.

Time-based blind vulnerabilities: In many ways, time-based blind vul-
nerabilities are similar to boolean-based blind vulnerabilities, except where
boolean-blind vulnerabilities leak boolean information through the webpage
response, time-based blind vulnerabilities leak boolean information through
their response time. In this binary setting, typically, long and short response
times correspond to the true and false boolean values. However, the relationship
between a long or short response time does not correspond directly to true or
false boolean values. This mapping depends on the query used and the website
implementation. Using the response time, in a similar fashion to boolean-based

14

SQL injection

blind exploitation, an attacker can deduce their way to recover a lot of potentially
classified information from the website. However, in time-based blind, we have
the added complexity of network traffic. Randomly without warning, a response
that would usually be fast can be slower. Therefore, when conducting this kind
of exploit, it is customary to conduct the same query multiple times to estimate
its true or false value accurately.

15

Chapter 3

Contributions

3.1 Summary of research papers

Paper I: Machine Learning for Offensive Cyber Operations

Paper I is a review paper summarizing the developments in machine learning
for algorithmic cryptanalysis and the developments in machine learning for SQL
injection. It summarizes and places Paper II, Paper III, and Paper V in the
literature and compares them to relevant related works. By reviewing the related
works, we also highlight some of the challenges that machine learning research
has in the respective fields. Machine learning for algorithmic cryptanalysis is
inherently tricky because cryptographic algorithms are designed to be difficult
to cryptanalyze, but also because of how machine learning algorithms typically
learn. A machine learning system typically approaches an increasingly better
solution gradually, and since cryptographic algorithms are designed to obscure
precisely this, the two fields are especially challenging to combine. Even though
the fields are difficult to combine, there have been some successful machine
learning attacks on cryptosystems, albeit little substantial on state-of-the-art
modern cryptographic algorithms. Machine learning for penetration testing is
considerably easier to combine and has been researched relatively little. At the
time of publishing Paper I, there was only one study on ML-based SQL injection
vulnerability exploitation, which is an integral part of penetration testing.

This summary serves as a quick introduction to the field to stimulate and
encourage more research in this field which we also believe is very important
and which we believe will receive significant attention in the near future.

Paper II: Genetic algorithm attack on Enigma’s plugboard

This paper introduces a new attack on the historic cipher Enigma, attacking its
plugboard using machine learning. The approach used the genetic algorithm
method to attack Enigma’s plugboard. Through cross-over and random mutation,
we not only solve Enigma’s plugboard but do so faster than earlier approaches.
A significant challenge for a successful machine learning attack is to achieve some
form of gradual learning that most cryptosystems are inherently designed to
obscure. However, not all cryptosystems do so efficiently. Gillogly showed that
the index of coincidence effectively exposes a weakness in Enigma’s plugboard,
allowing an attacker to compare attempted decryptions to each other [Gil95].
Therefore in this study, we use the index of coincidence as our fitness measure.
The genetic algorithm, paired with such a fitness measure, found the solution
faster than any earlier approaches and robustly. We tested the decryption
multiple times on ten different secret Enigma settings1. We also analyzed the

17

3. Contributions

impact of varying ciphertext lengths. Perhaps unsurprisingly, longer ciphertexts
were typically easier to decrypt with this technique. Statistical biases typically
become more apparent the more text available. For just 150 characters, there
were attempted decryptions with IC higher than the plaintext. This led to our
optimization algorithm GA frequently over-optimizing the IC finding a plaintext
with a higher IC than English. A surprising result of our study was that, in some
cases, more text hurt the attack’s efficiency. To study this effect, we checked if it
was correlated with rotor rotation, middle or left, but there was no evidence of
any correlation. This performance dip also seemed unrelated to the underlying
plaintexts IC. This performance dip seems to be another peculiar interaction
between the added characters and our GA approach.

Paper III: Dreaming of keys: Introducing the phantom gradient
attack

In contrast to Enigma, modern cryptosystems such as Ascon do not have
such a weakness, and no known measure can be used to compare how close
attempted decryptions are to a solution. In fact, encryptions are designed to
be indistinguishable from random noise, no matter how close an attacker is to
guessing the key. In this study, we introduce a novel attack based on machine
learning that tries to circumvent this limitation. Ascon encryption, like many
modern cryptographic systems, uses a sponge construction to produce seemingly
random bit sequences based on a series of permutations of its initial state and
some external output. The initial state contains a secret key, our phantom
gradient attack targets this key. To do this, we envision the permutation process
as a neural network. Then much like a neural network in a GAN that generates an
image of something given a prompt, we want our network to generate a candidate
secret key given an example ciphertext plaintext pair or pairs. In order to do
this, we let our generated network replace its discrete binary operations with
continuous ones that allow for backpropagation with the use of gradient descent-
based neural network optimization. We call these functions replacement functions.
We illustrate our algorithm by solving recovering the key in a known-plaintext
attack on perfect encryption. This attack is straightforward but illustrates how
we envision the algorithm to work in ideal conditions. We then extend the attack
to the different parts of the Ascon permutation, which can be divided into pC ,
pS , and pL. The attack is trivial on pC alone. The pS permutation is more
complicated than pC , but we achieve a full key recovery. The final permutation
pL proved far more troublesome with a three-way XOR between different indices.
This proved troublesome as in the backpropagation; it meant that three separate
gradients updated each index. This seems to be a weakness for the phantom
gradient attack, but this may be solved with an alternate replacement function
for XOR or a more specialized form of backpropagation.

1Nine randomly drawn enigma settings and one authentic setting.

18

Summary of research papers

Paper IV: The Phantom Gradient Attack: A Study of Replacement
Functions for the XOR Function

This study builds on the weakness outlined in the previous paper Paper III,
diving into different replacement functions for the XOR between two and three
indices. Improving this replacement function is essential for the phantom gradient
attack as XOR is used in nearly all, if not all, modern cryptosystems. We put
forward four new replacement functions for XOR between two indices in addition
to the one put forward in Paper III. We also put forward seven new functions
for XOR between three indices, comparing them to the replacement function
put forward in Paper III. We test the learning rate with multiple learning rates
as the replacement functions’ performance may depend on the learning rate. All
replacement functions perform well for XOR between two indices, achieving 100%
recovery with a learning rate of 0.2. Especially interesting is that the piecewise
linear replacement function xori3 achieved 100% recovery on all learning rates
except form 0.001. In that case, it would likely eventually find the solution, but
we did not allow it to train for more than 1000 iterations as we tested all of them
1000 times for each of the different learning rates, and some time consideration
was made. All the replacement functions struggled more for the more complex
XOR between three indices with bit rotation, but xorti3, a natural extension of
xori3, achieved 100% recovery for two learning rates.

Furthermore, another replacement function based on modular addition (also
piecewise linear) recovered the key in 995 of 1000 tests, also having an astonishing
recovery rate. Then testing these algorithms again on Ascons pL, this time on
the Σ1 permutation, they all struggled considerably. However, in 2.5% of the
cases, xorti3 recovered the full 64 bits of the original input. This may seem like a
small victory, as this was only part of a permutation that is conducted 12 times
before any encryption takes place. However, it shows that it is possible to sift
through some of the noise, and with more research into the phantom gradient
attack, it might be possible to recover more.

Paper V: Simulating SQL injection vulnerability exploitation using
Q-learning reinforcement learning agents

Inspired by the apparent lack of machine learning used in the field of ethical
hacking, we use reinforcement learning to attempt to exploit union-based
SQL vulnerabilities in a website. We let the agent interact with a simplified
environment. It is given a fixed number of actions and decides which action to
utilize by giving an index corresponding to an action. The website responses are
divided into three categories:

1. It has captured the flag. In our model, this is akin to successfully exploiting
the union-based vulnerability.

2. The query did not result in any significant output. A significant output
here is defined to be anything of importance, like getting any response.

19

3. Contributions

3. The query resulted in something of significance.

What separates response 2. from response 3. is that with the correct escape or
the correct escape and the correct number of columns, the response will give the
attacker some significant output. In contrast, the attack will not get anything
significant if the attacker does not have the correct escape or tries to get some
column information but does not have the correct number of columns. In this
environment, the reinforcement learning agent performed incredibly well. It
outperformed our hypothesized performance. It did this by exploiting the fact
that the simulated website had to be vulnerable. If two out of three escape
characters are ineffective, the last escape character must be the correct one, so
there is no need to test it. Beyond outperforming initial expectations, these
results show that a reinforcement learning agent effectively exploits SQL injection
vulnerabilities.

Paper VI: Simulating all Archetypes of SQL Injection Vulnerability
Exploitation Using Reinforcement Learning Agents

In this study, we extend the work done in Paper V by answering the questions:

1. How general is the reinforcement learning agent’s ability to exploit the
SQL injection vulnerabilities? Does it work on all five archetypes?

2. Can we not only exploit the SQL injection vulnerabilities but can we
also find them? Alternatively, can we tell if there is no SQL injection
vulnerability in the given website?

In order to answer these questions, we set up an environment that created a
simulated website with a random SQL injection vulnerability drawn from the
five SQL injection archetypes and no vulnerability. Furthermore, to generalize
our approach further, we moved away from the simplified approach of classifying
the response into a positive or negative response and letting the reinforcement
learner work with a hash of the website. For this study, we let this hash be
the website’s length2. The key to this approach is that a different response will
result in a different hash, and a similar response will result in the same hash.
This idea of reducing an entire HTML page down to a hash for a reinforcement
learner is novel to the best of our knowledge. We found that a simple Q-learning
reinforcement learner performed very well in this more complex situation. If we
look away from time-based blind vulnerabilities, which even experts have been
known to struggle with, our agent got close to 100% accuracy in identifying
and exploiting SQL injection vulnerabilities. In the case of time-based blind
vulnerabilities, the attack relies heavily on the time it takes for an SQL response
to be received. This makes it highly prone to interference from network traffic.
Moreover, this exploit requires the agent to consider the response time in addition
to the HTML response, which creates a huge state space. For this reason, in

2This length was limited to 1000 in our simulated environment.

20

Other contributions

future work, we suggest using two agents so that one agent can focus solely on
the HTML response while the other focuses solely on the response time when
needed.

3.2 Other contributions

• Sommervoll, Å. Å. and Sommervoll, D. E. “Learning from man or machine:
Spatial fixed effects in urban econometrics”. In: Regional Science and
Urban Economics vol. 77 (2019), pp. 239–252

• Del Verme, M., Sommervoll, Å. Å., Erdődi, L., Totaro, S., and Zennaro,
F. M. “SQL Injections and Reinforcement Learning: An Empirical
Evaluation of the Role of Action Structure”. eng. In: Secure IT Systems.
Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2021, pp. 95–113

• Crego, J. A., Kvaerner, J., Sommervoll, Å. Å., Sommervoll, D. E., and
Stevens, N. “Evolutionary Arbitrage”. In: Journal of Financial and
Quantitative Analysis (JFQA) (submitted). Available at SSRN 4051930
(2022)

21

Chapter 4

Conclusion

This thesis focuses on offensive cyber operations using machine learning. In
particular, it first investigates how machine learning can be used to perform
cryptanalysis and, secondly, how machine learning can be used to find and
exploit SQL injection vulnerabilities for penetration testing. Early contributions
to these fields are summarized in Paper I.

Our efforts to apply machine learning for algorithmic cryptanalysis were very
successful on the WWII cipher Enigma and were partially successful on the
modern block cipher Ascon. On modern ciphers, it is generally challenging to
discover successful cryptanalytic attacks, which is also the case with attacks
based on machine learning. Success in cryptanalysis is naturally more common
against historical rather than modern ciphers. Historical ciphers often have
many weaknesses, some of which may be exploitable with machine learning. In
Paper II, we show that part of the historical cipher, Enigma, its plugboard,
is particularly vulnerable to machine learning attacks relying on the index of
coincidence. This result aligns with other work exploiting Enigma’s vulnerability
using the measure index of coincidence. Our cryptanalytic attack used the
machine learning technique genetic algorithms to discover the plugboard settings
in fewer decryptions than earlier approaches. In doing so, we showed that attacks
based on machine learning with the index of coincidence are faster than previous
attacks reported in the literature.

However, not all cryptographic algorithms can be broken in such a way. The
modern cryptosystem Ascon, the winner of the CAESAR challenge and finalist of
the NIST lightweight standardization challenge, has no similar weakness (known
in the literature). As a result of being subjected to cryptanalysis by experts
worldwide without any considerable success, the Ascon cipher can be considered
strong. Nevertheless, we found it worthwhile to investigate if machine learning
can be used to attack the Ascon cipher. For this, we introduced a novel technique
called the phantom gradient attack, described in Paper III and extended in
Paper IV. Fortunately (for the cipher), the phantom gradient attacks on Ascon
had limited success. However, we concluded that the phantom gradient attack
has some merit and that future tweaks and refinements can potentially make it
a powerful tool for cryptanalysis. It remains to be seen if it will be enough to
break Ascon or other modern cryptosystems.

The field of applying machine learning to perform ethical hacking has also
seen very little research in the open literature, perhaps even less than algorithmic
cryptanalysis with machine learning. Despite the lack of published research,
this seems to be an ideal field for machine learning. This thesis focuses on
SQL injection, where a machine learning agent has many experts to learn from
and can focus on finding and using existing SQL injection exploits. Some of

23

4. Conclusion

these exploits are relatively simple, allowing efficient training. We saw this in
practice in Paper VI that in the presence of more accessible exploits (error-based
vulnerabilities), the agent explored fewer states than when it is not trained on
such vulnerabilities. One difficulty in training reinforcement learning agents
for SQL injection exploitation was to aid them in interpreting the returned
HTML webpage. In our first publication in this field, Paper V, we gave the
agent a binary distinguisher, separating between having something returned
on the website and nothing returned on the website as an indication of the
success of the query. With this, the agent went beyond simple examples and
attacked union-based vulnerabilities. Extending this work in Paper VI, we fed
the agent a hash of the website instead of a distinguisher. We showed that
experimentation allowed the reinforcement learning agent to exploit and find all
archetypes of SQL injection vulnerabilities effectively. There is room to grow
further by learning and observing the penetration testers and experts. Extending
the work by applying it to unseen capture-the-flag problems also remains, but
preliminary results are promising. We are convinced that this field will see more
research and improvement over the coming years.

The remainder of this thesis revisits the research questions emphasizing their
connection to the contributions. Finally, we list some possible future work.

4.1 Summary of contributions

4.1.1 Research question RQ1: To what extent can genetic
algorithms be used to improve the cryptanalysis of the
historical cryptosystem Enigma’s plugboard?

The main difficulty of algorithmic cryptanalysis with machine learning is finding
some way for the learner to inch closer to a correct solution gradually. For
good ciphers, this should be impossible. However, as mentioned in Paper I and
exemplified by our attack on Enigma’s plugboard in Paper II, this is not the
case for all cryptographic algorithms. Using the Index of Coincidence paired
with the Genetic algorithm, we solved Enigma’s plugboard faster than earlier
ciphertext-only attacks. The fastest previous technique used 3050 decryptions
in the best-case scenario, while our genetic algorithm attack only needed 1750
decryptions. Our Genetic algorithm approach was not always this fast: the
median number of decryptions needed was 2344, which is still considerably
fewer than 3050. However, like most ciphertext-only attacks, the GA attack
on Enigma’s plugboard proved ineffective without sufficient ciphertext to work.
Some of this may be due to the IC metric. For small ciphertexts of 100 to 150
characters, the genetic algorithm found attempted decryptions with higher IC
than the original plaintext, overoptimizing and thereby failing to decrypt the
ciphertext. However, with 200 characters, it achieved some decryptions and
reliably found the plugboard settings for 250-300 characters. Though this was
only for the plaintext we used in the study put forward in Paper II, we also
observed that some plaintext snippets were more difficult than others by varying

24

Summary of contributions

the ciphertext length. This difficulty seems to originate from the nature of the
plaintext, irrespective of the IC and the rotor stepping.

Our findings on this research question show that genetic algorithms can be
used to improve the cryptanalysis of Enigma’s plugboard, cracking the encryption
in 43% fewer decryptions1 than earlier approaches.

4.1.2 Research question RQ2: What is the potential of using
machine learning to recover the secret key when it is hidden
by complex permutations in a modern cryptographic sponge
construction like that used in Ascon?

Full key recovery on modern cryptosystems is complicated by design. Typical
attacks are deemed successful if they distinguish ciphertext from a random
bitstring, let alone go from a ciphertext-plaintext pair to recover the secret
key. Furthermore, these modern cryptosystems perform many permutation
rounds. Therefore, typical attacks are based on tentatively reducing the number
of rounds, so their attack is on a reduced set of rounds. In Paper I, we briefly
discuss and cover some of these attacks, where Gohr’s attack [Goh19] used neural
networks to attack the modern cryptosystem Speck32/64, which later was shown
to be a speed-up by optimizing earlier approaches in Benamira et al.’s work
[Ben+21]. This is similar to how our GA attack in Paper II broke Enigma’s
plugboard in fewer decryptions than earlier approaches by using machine learning.
Inspired by the success of the neural network, we introduce the novel approach
called the phantom gradient attack in Paper III: a neuro-cryptanalytical attack
using artificial gradients to recover a potential secret key through training a
machine learning model. However, the incredible width of Ascon encryption
paired with some suboptimal properties in our choice of replacement functions
led to suboptimal phantom gradients. This resulted in modest results for this
initial attack. However, in our subsequent work, we investigated how to choose
replacement functions for better phantom gradients and achieved some success in
attacking Ascons pL permutation. Future research may unravel the full exploit of
this weakness. However, it seems unlikely that current state-of-the-art machine
learning techniques can recover the key of modern cryptosystems such as Ascon.
The strength of Ascon is due to many factors. However, its strength against
attacks from the phantom gradient attack can be partially attributed to the size
of the entire Ascon state, which makes machine learning attacks less effective.

4.1.3 Research question RQ3: How can we use the machine
learning technique, reinforcement learning, to find SQL
injection vulnerabilities?

As mentioned in Chapter 2, there is no total agreement on the number of SQL
injection archetypes and what they are. However, it is clear whether or not a

1By computing 1 − 1750
3050 = 0.426, we found the percentage fewer decryptions that our

approach needed.

25

4. Conclusion

specific website is exploitable or not. The general idea behind a penetration test
is that if there is an exploit, then it is vulnerable. This is a binary classification:
either the website is exploitable in a specific way, or it is not. If it can be
exploited, then for sure, the website is vulnerable. In Paper VI, we extend this
principle and train a reinforcement agent to attempt to exploit a target website.
In doing so, it has to determine whether or not the website is vulnerable and
if it is vulnerable, it has to find the relevant variables for its exploit. In our
simulated environment, the agent was pitted against websites with a random
vulnerability among the five SQL injection archetypes and some that had no
vulnerability. To do so, we trained an agent on a virtual website giving rewards
for successful exploitations and giving a slight punishment for each incorrect
query. Our agent did this with close to 100% accuracy when trained on all
vulnerabilities except time-based blind vulnerabilities. In the presence of time-
based blind vulnerabilities, the agent was occasionally unable to distinguish
between whether a website has no vulnerability or if it has a time-based blind
vulnerability. However, even penetration testing experts can occasionally make
this mistake because of the unpredictability of traffic. In short, Paper VI shows
how one can use reinforcement learning to find SQL injection vulnerabilities in a
website.

4.1.4 Research question RQ4: How can we use reinforcement
learning to not only find, but also exploit SQL injection
vulnerabilities?

The proof-of-concept put forward in Paper V showed that given that there
is a union-based SQL injection vulnerability type, the agent could find the
correct escape and the correct number of columns, then potentially exploit the
union-based vulnerability. This was done by letting the reinforcement learning
agent experiment in a virtual environment receiving one of three responses: 1.
A positive response, information received, 2. No information received, and 3.
The exploit is successful, and the agent has the correct escape and the correct
number of columns. To follow up on these results, Paper VI extends this to
work with all five SQL injection archetypes with a more generalized website
interpreter. This generalization lets the agent receive the website length, a signal
that it has found the flag, a signal that it has found the SQL version number
or a signal that the website has thrown an error. This extension allowed the
reinforcement learning agent to find and probe the necessary values to start an
SQL injection exploit on the target website with close to 100% reliability. The
agent struggled mainly with time-based blind vulnerabilities, as the exploitation
is often hindered by traffic delays and interruptions. Moreover, it did so not
knowing whether or not the website was vulnerable at all. The agent also had
no prior knowledge of which vulnerability the website had. This exemplifies the
potential of reinforcement learning-powered SQL injection penetration testing.

26

Future work

4.2 Future work

In future work, it would be interesting to extend the phantom gradient attacks by
improving the replacement function and see if we can attack a full round of Ascon
encryption. Testing the phantom gradient attack on different cryptographic
algorithms would also be very interesting. It could be that only specific
algorithms are vulnerable to this form of attack, much like public key ciphers
based on factorization is vulnerable to attacks based on Shor’s algorithm in
the presence of a powerful quantum computer [Sho94]. This area needs to
be more thoroughly researched to learn about the cryptographic strength of
different algorithms against machine learning-based cryptanalysis. Another
exciting topic is investigating the potential for using machine learning on PQC
(post-quantum cryptography), which is likely to become the next generation of
asymmetric cryptography to be used in mainstream applications. Asymmetric
cryptography is perhaps especially interesting from a machine learning point of
view. In many implementations, the public key is public, allowing an attacker to
generate an indefinite amount of plaintext-ciphertext pairs which can be used
for training. There is no guarantee that machine learning can be used to exploit
such cryptographic algorithms, but a general rule of thumb is that machine
learning excels when there is an abundance of data. In short, this seems to be a
fertile field for research. However, promising results are not guaranteed.

Research in the field of SQL injection with machine learning is clearly very
promising, as the field is compatible with machine learning, and the research
literature is limited. Our current approach proved to be very effective, although it
struggles with time-based blind vulnerabilities. The agent’s struggle is likely due
to simultaneously dealing with the response time and the HTML response. This
memory growth is quadratic2 and quickly increases the state space, especially
with the unstable nature of the response time. Therefore, we recommend that
future work split this problem between two separate reinforcement learning
agents. One agent that solely focuses on time-based blind and gives up if there is
no time-based blind vulnerability, and one that handles all the vulnerabilities that
only pertain to the website HTML response, ignoring the response time. Note
that this may mean that we miss out on a possible hybrid instance where both
time-based blind SQL injection and another type of SQL injection vulnerability
must be utilized. However, to our knowledge, such an exploit has yet to be
discovered.

In this work, we used the length as a simplified representation of the HTML
page; however, other hash algorithms may also be used instead. We could, for
example, use the number of tokens, the number of table rows, or a cryptographic
hash such as SHA-2. However, when choosing a hash, there are several things
to consider, namely that if the website is the same, the hash will always be the
same; however, if the hashes are the same, it does not mean that the websites

2The quadratic growth here is rt · rh, where rt is the response time, and rh is the HTML
response.

27

4. Conclusion

are different3. However, this is not always bad; if the website returns a text
containing our injection input or something similar, the website will be different
for every query. The output may even differ for the same query if the website
has a changing text field, such as a digital clock. Therefore we want the hash
technique to strip some information but not too much. Again a possible solution
is to use multiple agents and to ensure that at least one agent loses no information.
However, the length or a token count are good choices for hashes that allow
us to strip away some irrelevant changes in the HTML page while potentially
capturing the relevant changes. Another benefit of using a hash that can be used
as a metric such as length is that an agent can be implemented to favor specific
responses, such as longer responses, as this typically reveals more information.

Another exciting extension of this work is to include the possibility of a
website being vulnerable to multiple SQL injection attacks. For example, most
sites vulnerable to boolean-based blind attacks are also vulnerable to time-based
blind attacks. However, of the two, time-based blind exploitation is the most
costly and has a higher risk of detection. An expert penetration tester will
typically check for boolean-based blind vulnerabilities first and test for time-
based blind vulnerabilities last. However, this nuance is lost to our current agent,
which does not see the total cost of a time-based blind attack but is also not
given a choice. The artificial website is designed to have just one vulnerability
and, therefore, will only have one feasible attack, which the agent can easily find.
We would need to use a more realistic web page with multiple vulnerabilities
and train our agent to choose the best exploitation in the presence of many
vulnerabilities.

References

[ASL20] Aiyanyo, I. D., Samuel, H., and Lim, H. “A Systematic Review of
Defensive and Offensive Cybersecurity with Machine Learning”. In:
Applied Sciences vol. 10, no. 17 (2020).

[BÇR15] Brangetto, P., Çalişkan, E., and Rõigas, H. “Cyber red teaming”. In:
NATO Cooperative Cyber Defence Centre of Excellence CCDCOE
vol. 99 (2015), p. 100.

[Ben+21] Benamira, A. et al. “A deeper look at machine learning-based
cryptanalysis”. In: Annual International Conference on the Theory
and Applications of Cryptographic Techniques. Springer. 2021,
pp. 805–835.

[Ber+11] Bertoni, G. et al. “Duplexing the sponge: single-pass authenticated
encryption and other applications”. In: International Workshop on
Selected Areas in Cryptography. Springer. 2011, pp. 320–337.

3Good cryptographic hashes have a non-collision property, so this is not all hashes have a
collision.

28

References

[Ber19] Bernstein, D. J. Crypto competitions: CAESAR: Competition for
Authenticated Encryption: Security, Applicability, and Robustness.
https://competitions.cr.yp.to/caesar.html. (Accessed on 09/12/2022).
Sept. 2019.

[BG16] Buczak, A. L. and Guven, E. “A Survey of Data Mining and Machine
Learning Methods for Cyber Security Intrusion Detection”. In: IEEE
Communications Surveys Tutorials vol. 18, no. 2 (2016), pp. 1153–
1176.

[Che22] Chetwyn, R. chetwynr/dynamic_ctf_games. https://github.com/
chetwynr/dynamic_ctf_games. (Accessed on 09/12/2022). Mar.
2022.

[Cis20] Cisco, U. “Cisco annual internet report (2018–2023) white paper”.
In: Cisco: San Jose, CA, USA (2020).

[Cre+22] Crego, J. A. et al. “Evolutionary Arbitrage”. In: Journal of Financial
and Quantitative Analysis (JFQA) (submitted). Available at SSRN
4051930 (2022).

[Del+21] Del Verme, M. et al. “SQL Injections and Reinforcement Learning:
An Empirical Evaluation of the Role of Action Structure”. eng.
In: Secure IT Systems. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2021, pp. 95–113.

[Dob+16] Dobraunig, C. et al. “Ascon v1. 2”. In: Submission to the CAESAR
Competition (2016).

[Fri87] Friedman, W. F. The index of coincidence and its applications in
cryptanalysis. Vol. 49. Aegean Park Press California, 1987.

[Gil95] Gillogly, J. J. “Ciphertext-only cryptanalysis of enigma”. In:
Cryptologia vol. 19, no. 4 (1995), pp. 405–413.

[GN16] Gardiner, J. and Nagaraja, S. “On the Security of Machine Learning
in Malware C&C Detection: A Survey”. In: ACM Comput. Surv.
vol. 49, no. 3 (Dec. 2016).

[Goh19] Gohr, A. “Improving attacks on round-reduced speck32/64 using
deep learning”. In: Annual International Cryptology Conference.
Springer. 2019, pp. 150–179.

[HVO+06] Halfond, W. G., Viegas, J., Orso, A., et al. “A classification of
SQL-injection attacks and countermeasures”. In: Proceedings of
the IEEE international symposium on secure software engineering.
Vol. 1. IEEE. 2006, pp. 13–15.

[JP15] Joulin, A. and Paris, F. “Facebook AI Research”. In: Learning
Visual Features from Large Weakly Supervised Data (2015).

[Kam+20] Kamoun, F. et al. “AI and machine learning: A mixed blessing
for cybersecurity”. In: 2020 International Symposium on Networks,
Computers and Communications (ISNCC). IEEE. 2020, pp. 1–7.

29

https://competitions.cr.yp.to/caesar.html
https://github.com/chetwynr/dynamic_ctf_games
https://github.com/chetwynr/dynamic_ctf_games

4. Conclusion

[Lew15] Lewis, J. A. “The role of offensive cyber operations in NATO’s
collective defence”. In: Tallinn Paper vol. 9 (2015).

[LM18] Leviathan, Y. and Matias, Y. “Google Duplex: an AI system for
accomplishing real-world tasks over the phone”. In: (2018).

[NIS22] NIST. Lightweight Cryptography | CSRC. https : / / csrc . nist .
gov / Projects / lightweight - cryptography / finalists. (Accessed on
09/12/2022). Aug. 2022.

[OMe+19] O’Meara, S. et al. “Will China lead the world in AI by 2030?” In:
Nature vol. 572, no. 7770 (2019), pp. 427–428.

[OW17] Ostwald, O. and Weierud, F. “Modern breaking of Enigma
ciphertexts”. In: Cryptologia vol. 41, no. 5 (2017), pp. 395–421.

[OWA] OWASP. www-project-top-ten/index.md at master · OWASP/www-
project-top-ten. https : / /github.com/OWASP/www- project - top-
ten/blob/master/index.md. (Accessed on 03/08/2022).

[Raf+21] Raffin, A. et al. “Stable-Baselines3: Reliable Reinforcement Learning
Implementations”. In: Journal of Machine Learning Research vol. 22,
no. 268 (2021), pp. 1–8.

[Ram+18] Ram, A. et al. “Conversational ai: The science behind the alexa
prize”. In: arXiv preprint arXiv:1801.03604 (2018).

[RM18] Rege, M. and Mbah, R. B. K. “Machine learning for cyber defense
and attack”. In: Data Analytics 2018 (2018), p. 83.

[Sho94] Shor, P. W. “Algorithms for quantum computation: Discrete
logarithms and factoring”. In: Foundations of Computer Science,
1994 Proceedings., 35th Annual Symposium on. Ieee. 1994, pp. 124–
134.

[SS19] Sommervoll, Å. Å. and Sommervoll, D. E. “Learning from man or
machine: Spatial fixed effects in urban econometrics”. In: Regional
Science and Urban Economics vol. 77 (2019), pp. 239–252.

[Wil00] Williams, H. “Applying statistical language recognition techniques
in the ciphertext-only cryptanalysis of enigma”. In: Cryptologia
vol. 24, no. 1 (2000), pp. 4–17.

[Xin+18] Xin, Y. et al. “Machine Learning and Deep Learning Methods for
Cybersecurity”. In: IEEE Access vol. 6 (2018), pp. 35365–35381.

30

https://csrc.nist.gov/Projects/lightweight-cryptography/finalists
https://csrc.nist.gov/Projects/lightweight-cryptography/finalists
https://github.com/OWASP/www-project-top-ten/blob/master/index.md
https://github.com/OWASP/www-project-top-ten/blob/master/index.md

Papers

Paper I

Machine Learning for Offensive
Cyber Operations

Åvald Åslaugson Sommervoll, Audun Jøsang
Published in Norsk IKT-konferanse for forskning og utdanning, January 2022,
volume 8, issue 3,

I

Abstract

This paper gives a brief survey of existing and proposed applications of
machine learning for offensive cyber operations, with particular emphasis
on algorithmic cryptanalysis and penetration testing. For cryptanalysis
at the algorithmic level, we cover attacks on historic ciphers as well as
attacks on modern ciphers. For penetration testing, we cover works that
have focused on defining structured attack approaches as well as some
novel attacks where the potential merits need additional investigation.

Contents

I.1 Introduction . 33
I.2 Cryptanalysis . 34
I.3 Penetration testing . 35
I.4 Conclusion . 36
References . 36
Coauthor declaration . 39

I.1 Introduction

The arms race between cryptographers and cryptanalysts is an ancient one, with
the earliest record of cryptanalysis dating back to the 9th century [Sin00]. The
attack described was frequency analysis effectively breaking the monoalphabetic
substitution cipher; this implicated that for secure communication, the
cryptographers would have to do something more advanced. A thousand years
later the Germans used Enigma encryption, an encryption they thought to be
unbreakable for communication during WWII. However, the huge joint effort of
pre-WWII analysis of Polish mathematicians, paired with efforts from English
and American scientists to develop cryptanalytical tools and methods, would

33

I. Machine Learning for Offensive Cyber Operations

show that it was indeed breakable [Sin00]. Since WWII, Enigma encryption has
been broken many times over because of its historical significance and as an effort
to further offensive cyber operations1 [Gil95; LKW19; OW17; Wil00]. Some of
these utilize machine learning techniques to speed up the attack [BMR97; SN20].
Currently, in the arms race between cryptanalysts and cryptographers, it appears
that cryptography has won, with standardized algorithms that are internationally
recognized as secure. The arms race is far from over as new creative decryption
attacks see light of day. However, since the algorithms themselves are deemed
secure, modern attacks typically target the implementation, moving the hotspot
of the current war from cryptology to cybersecurity2. There is a need for offensive
cyber operations research to investigate the potential weaknesses and strengths
of existing systems.

The rest of the paper is organized as follows: Section 2 involves a brief
overview of machine learning and its impacts on cryptography. Section 3 covers
some of the recent work on penetration testing using machine learning, in
particular in terms of SQL injections. Finally, section 4 gives a brief concluding
summary of this survey.

I.2 Cryptanalysis

Machine learning techniques are not easy to apply to the field of cryptoanalysis.
This is because machine learning in general works by gradually inching closer to
a good solution through learning, while modern crypto has many techniques that
hide how close a cryptanalyst is to the solution; in other words obscuring learning.
This obvious hurdle of machine learning in cryptoanalysis, may explain the rather
short list of promising attempts using ML techniques. However, there has been
documented some successes on classical systems such as Enigma [BMR97; SN20].
Bagnall et al. cracked a two-rotor system of Enigma3 which was based on using
a genetic algorithm [BMR97], but failing on 3 and 4 rotors. Sommervoll and
Nilsen used the genetic algorithm to break the final step of Enigma decryption,
finding all ten plugs of Enigma’s plugboard faster than previous techniques
[SN20]. More modern attacks are based on neuro-cryptanalysis first described by
Dourlens in 1996 [Dou96]. Since then, it has seen some limited success. Alani, in
his neuro-cryptanalysis, attacks another classic but more modern cryptosystem
DES and Triple-DES, with some success [Ala12]. He does this by simulating the
decryption under an unknown key using a neural network. In that, the input
to his neural network are ciphertexts, and the output targets are the plaintexts.
After training, he does not obtain the secret key, but ideally, a decryption machine
that acts as the decryption algorithm with the key. He achieves an average
bit accuracy of 91.7% for DES and 88.6% for Triple-DES. Also, in the field of

1Note that we study offensive cyber operations: Testing and checking the integrity of
existing cybersecurity defenses, not offensive cybersecurity: proactively predicting and removing
threats in the system [ASL20].

2Side-channel attacks and espionage also have a rich history in humanity, though this
history is so diverse that we do not cover it in this short review paper.

3Enigma encryption used had 3 to 4 rotors and a plugboard of 10 plugs during WWII.

34

Penetration testing

neuro-cryptanalysis, a recent publication by Sommervoll in 2021 investigates the
prospects of simulating an encryption algorithm as a neural network in what he
refers to as the phantom gradient attack [Som21]. This attack does not draw
from machine learning directly but attempts to use the same functions that
train neural networks to train their way to the key. The trained network itself
will, in this case, be uninteresting for prediction, but the trained weights will
give the keys. Another example of neural-cryptanalysis is Aron Gohr’s attack
on Speck32/64 with deep learning [Goh19]. Gohr did not use machine learning
to recover the key directly, but used neural networks to distinguish between
round reduced instances of Speck32/64 and random noise. He did this with
great success, which is surprising from a cryptographic viewpoint4. A recent
follow-up paper by Benamira et al. investigates Gohr’s findings [Ben+21]. They
confirm his results, claim that his attack, while impressive, is not really a novel
cryptanalytical attack but is an optimization of the extraction of the low-data
constrains.

I.3 Penetration testing

The field of penetration testing is considerably easier to unite with machine
learning than algorithmic cryptanalysis. This is in large because machine learning
agents can have the benefit of learning from humans, and the problems are not
specifically designed to be difficult. Nonetheless, there is limited work done on
automating the process of penetration testing with machine learning. Erdődi
and Zennaro formalize part of this problem in the context of web hacking and
reinforcement learning in [EZ21]. The approach is called Agent Web Model that
considers web hacking as a capture-the-flag (CTF) challenge. This model has
seven layers of complexity, where layer 1 is the least complex, the agent is able to
find links in objects, and layer 7 is the most complex; the agent is able to add files
through a vulnerable object or create new database objects. In 2020 the authors
demonstrated the potential of this approach by showing that reinforcement
learning(RL) agents could solve CTF problems [ZE20]. The authors showed that
RL paired with techniques such as lazy loading, state aggregation, or imitation
learning allowed the RL agent to perform more complicated tasks. Further,
they argue that fully model-based agents may not be ideal as they are not as
versatile; instead, they suggest model-free RL agents with rich a priori knowledge.
Also, from 2020 is the work of Chaudhary et al. on automated post-breach
penetration testing with RL [COX20]. The authors propose the idea of using
RL agents to find sensitive files in a compromised network; however, from their
paper, it seems that they are still working on obtaining specific results. Earlier
work by Ghanem et al. compared a reinforcement learning agent called IAPTS
(Automated Penetration Testing System) against blind automation and found
that this RL agent performed better [GC18]. Their IAPTS agent has the
possibility of human input on the decision policy; this will allow the agent to

4This is considered breaking the cryptosystem, as modern crypto is designed to be
indistinguishable from random noise.

35

I. Machine Learning for Offensive Cyber Operations

learn and better approximate the expert’s decisions. Unfortunately, it does not
yet perform all the tasks that a human expert is doing manually, but the authors
indicate research directions to improve their approach. Some specific penetration
testing tasks have seen very little research that utilizes offensive machine learning.
To our knowledge, there is only one study for conducting SQL injections5 [ESZ21].
Erdődi et al. simulate penetration testing in a capture-the-flag setting, where the
agent can choose between a number of candidate SQL injection queries. From
the queries, the agent learns to first find the correct escape before searching for
the flag.

I.4 Conclusion

The literature on ML for offensive cyber operations is considerably smaller than
the literature on ML for defensive cyber operations. In this review paper, we
reviewed studies that apply ML in offensive cyber operations. Algorithmic-level
cryptanalysis seems to be challenging for ML because modern cryptographic
algorithms are designed to make learning hard as there is no indication of
close to correct decryptions. However, there are papers that document modest
success on weak cryptosystems. Significant advances in this approach would
be needed to facilitate more success against modern algorithms. Perhaps even
less researched is to perform ML-based penetration testing. One reason for
this could be because there are already many automated tools that cyber-ops
professionals use and because it is very important that penetration tests are
conducted properly. Because penetration testing is a vast field, and we are at a
very early stage in research on applying ML for penetration testing, there seems
to be a great potential for advances in this area. For example, in the area of
SQL injection, which represents a significant part of penetration testing, we only
identified one study on ML-based SQL penetration testing.

References

[Ala12] Alani, M. M. “Neuro-cryptanalysis of des and triple-des”. In: In-
ternational Conference on Neural Information Processing. Springer.
2012, pp. 637–646.

[ASL20] Aiyanyo, I. D., Samuel, H., and Lim, H. “A Systematic Review of
Defensive and Offensive Cybersecurity with Machine Learning”. In:
Applied Sciences vol. 10, no. 17 (2020).

[Ben+21] Benamira, A. et al. “A deeper look at machine learning-based
cryptanalysis”. In: Annual International Conference on the Theory
and Applications of Cryptographic Techniques. Springer. 2021,
pp. 805–835.

5There are many machine learning papers for discovering SQL injection attacks.

36

References

[BMR97] Bagnall, A. J., McKeown, G. P., and Rayward-Smith, V. J. “The
Cryptanalysis of a Three Rotor Machine Using a Genetic Algorithm.”
In: ICGA. 1997, pp. 712–718.

[COX20] Chaudhary, S., O’Brien, A., and Xu, S. “Automated post-breach
penetration testing through reinforcement learning”. In: 2020 IEEE
Conference on Communications and Network Security (CNS). IEEE.
2020, pp. 1–2.

[Dou96] Dourlens, S. Applied Neuro-Cryptography and Neuro-Cryptanalysis
of DES. French. Master Thesis. Advisor: Riesner, Christian. 1996.

[ESZ21] Erdődi, L., Sommervoll, Å. Å., and Zennaro, F. M. “Simulating
SQL injection vulnerability exploitation using Q-learning reinforce-
ment learning agents”. In: Journal of Information Security and
Applications vol. 61 (2021), p. 102903.

[EZ21] Erdődi, L. and Zennaro, F. M. “The Agent Web Model: modeling
web hacking for reinforcement learning”. In: International Journal
of Information Security (2021), pp. 1–17.

[GC18] Ghanem, M. C. and Chen, T. M. “Reinforcement learning for
intelligent penetration testing”. In: 2018 Second World Conference
on Smart Trends in Systems, Security and Sustainability (WorldS4).
IEEE. 2018, pp. 185–192.

[Gil95] Gillogly, J. J. “Ciphertext-only cryptanalysis of enigma”. In:
Cryptologia vol. 19, no. 4 (1995), pp. 405–413.

[Goh19] Gohr, A. “Improving attacks on round-reduced speck32/64 using
deep learning”. In: Annual International Cryptology Conference.
Springer. 2019, pp. 150–179.

[LKW19] Lasry, G., Kopal, N., and Wacker, A. “Cryptanalysis of Enigma
double indicators with hill climbing”. In: Cryptologia (2019), pp. 1–
26.

[OW17] Ostwald, O. and Weierud, F. “Modern breaking of Enigma
ciphertexts”. In: Cryptologia vol. 41, no. 5 (2017), pp. 395–421.

[Sin00] Singh, S. The code book: the science of secrecy from ancient Egypt
to quantum cryptography. London: Fourth estate, 2000.

[SN20] Sommervoll, Å. Å. and Nilsen, L. “Genetic algorithm attack on
Enigma’s plugboard”. In: Cryptologia (2020), pp. 1–33.

[Som21] Sommervoll, Å. Å. “Dreaming of Keys: Introducing the Phantom
Gradient Attack”. In: 7th International Conference on Information
Systems Security and Privacy, ICISSP 2021, 11 February 2021
through 13 February 2021. SciTePress. 2021.

[Wil00] Williams, H. “Applying statistical language recognition techniques
in the ciphertext-only cryptanalysis of enigma”. In: Cryptologia
vol. 24, no. 1 (2000), pp. 4–17.

37

I. Machine Learning for Offensive Cyber Operations

[ZE20] Zennaro, F. M. and Erdodi, L. “Modeling Penetration Testing with
Reinforcement Learning Using Capture-the-Flag Challenges and
Tabular Q-Learning”. In: arXiv preprint arXiv:2005.12632 (2020).

Authors’ addresses

Åvald Åslaugson Sommervoll University of Oslo, Postboks 1337 Blindern,
0316 Oslo, Norway, aavalds@ifi.uio.no

Audun Jøsang University of Oslo, Postboks 1337 Blindern, 0316 Oslo, Norway,
josang@ifi.uio.no

38

mailto:aavalds@ifi.uio.no
mailto:josang@ifi.uio.no

University of Oslo
Faculty of mathematics and natural sciences

Co-author declaration for the following joint paper:

This declaration should describe the research contribution of the candidate, the main supervisor (where

he/she is an associate author) and the other two most central authors (the corresponding author must be

among them). If applicable, the contributions from other PhD candidates who has or intend to include

the paper in a thesis should be described. Contributions from master students should be described.

Authors: Åvald Åsaugson Sommervoll and Audun Jøsang

Title: Machine Learning for Offensive Cyber Operations

Journal: Norsk IKT-konferanse for forskning og utdanning, proceedings

Åvald Åslaugson Sommervoll’s independent contribution:

 First author Corresponding author Other

Ideabuilding, complete initial draft, edits, proofreading, quality check, final polish and

responding to reviewer comments

Audun Jøsang

 First author Main supervisor Corresponding author PhD candidate Other

Ideabuilding, edits, proofreading and quality check

<Co-author's name>

 First author Main supervisor Corresponding author PhD candidate Other

<Co-author’s contribution>

x

 First author Main supervisor Corresponding author PhD candidate Other

<Co-author’s contribution>

Has this paper been, or will this paper be part of another doctoral degree thesis?

Yes: No:

If yes, elaborate:

Contributions from master students: None

39

 2

Do you verify that Åvald Åslaugson Sommervoll has contributed to this joint paper as

described above?

Yes: No:

If no, specify:

Co-author’s signatures:

……………………. ……………………. ……………………. …………………….

Åvald Åslaugson Sommervoll Audun Jøsang <name> <name>

40

Paper II

Genetic algorithm attack on
Enigma’s plugboard

Åvald Åslaugson Sommervoll, Leif Nilsen
Published in Cryptologia 2020 DOI: 10.1080/01611194.2020.1721617
March 2020, volume 45, issue 3,

II

Abstract

The history, operating principles, strengths, and weaknesses, of the German
cipher machine Enigma, have been widely studied for almost 50 years.
Even though Bletchley Park regularly broke Enigma encrypted traffic
during World War II, new pieces of information and fresh analysis are
still aggregated to the remarkable “puzzle” called Enigma. This paper
shows that Enigma’s plugboard is vulnerable to Genetic Algorithm (GA)
attacks, which solves Enigma’s plugboard faster than earlier published
ciphertext-only techniques. The Genetic Algorithm does this using the
counting measure Index of Coincidence (IC). Independently of the GA,
but related to the analysis, we introduce a new measure Progress Index of
Coincidence (PIC). PIC is a measure of the relative progress in decryption
between the ciphertext and plaintext measured by IC.

Contents

II.1 Introduction . 41
II.2 Background . 43
II.3 GA-based Enigma attack 55
II.4 Conclusion . 68
References . 69
Coauthor declaration . 71

II.1 Introduction

The Enigma Machine represents a milestone in the history of cryptography.
The machine combines the rotor system, invented by two Dutch navy officers
in 1915[Lee03], with a plugboard; resulting in a cipher so advanced that it
was thought to be unbreakable[Cop04]. Enigma’s strength, mobility, and user-
friendliness allowed its widespread use by the German military during the Second

41

https://doi.org/10.1080/01611194.2020.1721617

II. Genetic algorithm attack on Enigma’s plugboard

World War. Its importance in the war and cryptanalysis made the Enigma
perhaps the most famous cryptographic machine in history. Its fame is also
reflected in modern textbooks, for example, in Paar- and Pelzl’s "Understanding
Cryptography", where the Enigma is used to illustrate a classical encryption
machine [PP09]. The machine has even had books and movies centered around
it and its cryptanalysis, with perhaps the most recent release of "The Imitation
Game" on the 25th of December 2014 [IMD].

The Enigma represents a special form of a polyalphabetic substitution cipher1

and cannot, by any means, be considered to provide secure encryption by modern
standards. Building on the pre-WWII analysis of Polish mathematicians, a huge
effort by English and American scientists developed cryptanalytical tools and
methods that could break German Enigma traffic daily [Sin00].

Significant members of this activity included the classical scholar Dennis
Knox, mathematicians from Oxford and Cambridge like Peter Twinn, Alan
Turing, and Gordon Welchman, as well as the international chess masters Hugh
Alexander and Stuart Milner-Barry.

However, even if the Enigma represents an outdated crypto technology, it
still inspires researchers to fill gaps in the Enigma history and to improve on
Enigma cryptanalysis. The purpose of such research is twofold, to develop
modern cryptanalysis or to attack unread authentic traffic from WWII. One
recent example is the paper by Ostwald and Weierud [OW17], who, in 2017,
released "Modern breaking of Enigma ciphertexts" in Cryptologia. It is to be an-
ticipated that new analysis for breaking the Enigma could apply to other ciphers
that build their security on the same principles. For this reason, decryption
techniques that prove effective on Enigma encryption may also prove effective
on other encryption techniques as well. If not by themselves, they may provide
useful building blocks for future crypto-attacks. This paper aims to provide one
such building block in the form of a ciphertext-only attack based on genetic
algorithms (GA). The proposed GA attack is faster than earlier ciphertext-only
attacks. We also build upon the existing measure Index of Coincidence creating,
a more human-readable representation of the measure which we call Progress
Index of Coincidence.

The remaining paper is organized as follows. Section 2 provides background
information on the construction and operation principles of Enigma. Then,
the Genetic Algorithm is described. The measure, Index of Coincidence, is
defined and explained. The box plot variant, notch plot, is also described and
defined. The section finishes with a brief review of related research. In Section
3, the different settings of the Enigma are analyzed, and the vulnerability in the
plugboard is outlined. The first attempts to use genetic algorithms for this task
required unrealistic long pieces of ciphertext, but it is shown that the technique
can also succeed for much shorter messages.

1polyalphabethic substitution ciphers are substitution ciphers that utilize multiple
letter mappings, in that the substitution depends on a changing state.

42

Background

Figure II.1: The four main components of the Enigma
Four rotors, a lampboard, a keyboard and a plugboard.
(Photo taken by Leif Nilsen edit by Åvald Sommervoll)

II.2 Background

II.2.1 Properties of the Enigma

The Enigma is a portable encryption machine that was mainly used for battlefield
communications and to protect tactical links. Physically the Enigma Machine
was embedded in a wooden or metallic box, consisting of four main components
(highlighted in Figure II.1):

1. Three rotors (four after 1941 in the German navy). (The display values
are visible in the windows next to the outer disks2.)

2. A lampboard with 26 lamps, one for each letter in the Latin alphabet.

3. A keyboard with 26 buttons, one for each letter in the Latin alphabet.

4. A plugboard also called a steckerboard with 26 connector points.

The rotors and the plugboard shown in Figure II.1 define the state of the Enigma.
This state consists of four parts: 1. rotor selection and order, 2. ring settings, 3.
display values and 4. plugboard settings. We say that rotor settings are defined
by the first three, and the plugboard’s settings are defined by the last. The

2Traditionally this was given by three letters. However, some Enigmas used numbers
instead of letters, and as is shown in Figure II.1, four-rotor Enigmas used four letters (YSMB).

43

II. Genetic algorithm attack on Enigma’s plugboard

union of these settings is referred to as the key. It defines the starting point for
the encryption of a message. Due to the reciprocal characteristic of the Enigma,
the same starting point is used for decryption and encryption. After the state
of the Enigma is set, the keyboard is used for input, and the corresponding
output is read off from the lampboard. Of the four parts that make up the state
all, but one remains constant during encryption and decryption, the display
value. Since the display value changes for every letter pressed, we introduce two
additional terms when it comes to talking about the display values: basic setting
and message setting3. The basic setting gives the daily initial display value, and
the message setting gives the display value used at the start of the message.

In practice, there was typically one operator and one assistant that handled
encryption and decryption. If they wanted to encrypt a message, the operator
would type the message into the keyboard letter by letter [Cop04]. For each letter
pressed, one of the 26 lamps would light up on the lampboard. The resulting
sequence of lit letters was noted by the assistant. The noted sequence would
then be the ciphertext. For every letter pressed, the display value would change,
changing Enigma’s state. Therefore if the operator presses the same letter twice,
it will most likely be encrypted as two different letters. This is to make the
Enigma robust against some of the most common cryptanalytic attacks, such
as frequency analysis which was described as early as the 9th century [Sin00].
The above applies to decryption also as Enigma is a reciprocal symmetric-key4

encryption technique.
Before decryption or encryption, however, the operator must set the Enigma

machine’s state. This state must be agreed upon between the two or more
communicating parties before the communication can take place. During the
Second World War, this was generally done by the distribution of pre-shared
codebooks which provided a different setting for each day. Figure II.2 shows
a scanning of a page in such a codebook. Here "Datum" gives the actual date
for the use of this key. "Walzenlage" gives the selection and order of the three
rotors out of a total of five rotors (8 rotors for the naval Enigma). Before the
selected rotors were placed in the machine, the ring setting of each rotor was set,
given by "Ringstellung" in Figure II.2. The next entry in the codebook is the
plugboard setting, "Steckerbindungen" which is set by adding plug-connections
between two different characters in the Latin alphabet in a one-to-one connection.
Typically 10 plugs were used, leaving 6 characters without any connection in
the plugboard (A plugboard with 0 plugs connected means that each letter is
connected by default to itself, which is shown in Figure II.1). The final setting
listed is the "Grundstellung" which roughly translates to basic setting, and gives
the daily initial display value. It is initial since the Germans always broadcasted
some specified changes to the daily Enigma settings at the beginning of the
message. Perhaps most famously is the double indicator operational procedure

3Also called message key by Gillogly[Gil95] and text setting by Welchman[Wel82].
4Symmetric- key encryption means that encryption and decryption use the same key.

Reciprocal means that encryption and decryption is the same mathematical operation.

44

Background

Figure II.2: Enigma key book
Photo from authentic german codebook. (From before September 1938 as it has a

"Grundstellung")
"Datum": Date, "Walzenlage": Rotor selection and order, "Ringstellung": Ring settings,

"Steckerbindungen": Plugboard settings, "Grundstellung": Basic setting (Daily initial display
value).

Image from The Late Tony Sale’s Codes and Ciphers Website [Sal19].

used by the Germans up to September 1938 [LKW19]5. The first 6 letters of the
message would contain the message setting, by encrypting the new display value
twice. For example, if the message setting was to be "RCM", then "RCMRCM"
would be encrypted from the basic setting given by the codebook. Then the
operator would change the display value to "RCM" and encrypt the rest of
the message. This procedure was done to ensure that different messages were
encrypted from different starting points and thus protecting against well-known
attacks on polyalphabetic substitution cipher. Note that the codebook lists the
keys in “opposite” order, with the latest date at the top and earlier dates at the
bottom. As a result, it was easy to remove and securely destroy keys from past
dates.

II.2.2 The inner workings of the Enigma

Electrical coupling: The Enigma uses an electrical current, traveling through
a circuit to light up the correct lamp on the lampboard. Figure II.3 shows a
simplified version of the inner workings of the Enigma, with a plugboard, rotors,
keyboard, and lampboard. Note that before the "A" (item 2) is pressed on the
keyboard, the electrical circuit is disconnected, and no lamp would light up.
Then when "A" is pressed the circuit is complete and the current can travel from
the battery to the plugboard (3), the entry ring (4), the rightmost rotor (5), the
middle rotor (5), the leftmost (5), the reflector (6), the leftmost rotor again (5),
the middle rotor again (5), the rightmost rotor again (5), the plugboard again (7
and 8), until finally reaching the lampboard (9). From this, it is clear that the
encryption goes through the plugboard and each rotor twice, once on the way in
and once again on the way out. Because of this, a small change in the plugboard

5There are, of course, other double indicator operational procedures used by the Germans.
During the war, the procedures would often not only vary over time but also across different
groups.

45

II. Genetic algorithm attack on Enigma’s plugboard

Figure II.3: Enigma example wiring

1. We have a battery; it provides electricity for the lamps.
2. Shows the letter pressed. In this example, "A" is pressed, which lets the current from

the battery in 1 enter the circuit as shown by the red lines.
3. Since A is not steckered to any other letter the signal/current continues to the rotors.
4. The current enters through the A position in the entry ring.
5. The current is scrambled in the rotors.
6. Then the signal is reflected in a reflector sending the current back through the rotors.
7. The current arrives at S, but because the circuit going out to S is broken by a stecker

the current continues to the steckered letter D.
8. From D the current continues up to the lampboard
9. Arriving at the lampboard the letter D lights up, encrypting A to D.

Image credits to Dirk Rijmenants.

46

Background

Figure II.4: Enigma rotor diagram
Created by Wapcaplet in Blender. [CC BY-SA 3.0
(http://creativecommons.org/licenses/by-sa/3.0/)]

or the rotors may result in a large change since almost no matter where the
change is, it will be applied twice and go through further changes in the other
encryption components. Also note that if "D" was pressed instead of "A", the
circuit would be the same, however "A" would light up instead of "D". This is
an important characteristic of the Enigma encryption machine and explains why
the encryption and the decryption settings are the same.

Rotors in detail: The rotor setting in the army Enigma is a selection of three
rotors among five I, II, III, IV, and V, and is typically written in order. For
example: IV II I, means rotor I, II and IV were selected and IV, II and I are
the leftmost, middle and rightmost rotors respectively. Each of the individual
rotors contains a 26 to 26 rewiring of 26 potential inputs, one for each letter in
the English language, as shown in Figure II.4 as item 5, internal wiring.

The wiring is constant; however, its position in relation to the alphabet ring
and notch (item 1 and 3) is not constant but is defined by the ring setting,
which is set with the locker ring, item 7 in Figure II.4, locking the wiring in
the specified position. The ring setting is set prior to the insertion of the rotor
into the Enigma. The display value on the other hand can be changed after
inserting the rotor into the Enigma, and is set with the outer disk (item 9). The
current display value is shown in a small window next its respective rotor and is
given by the a single letter on the alphabet ring (item 3). For every keypress
the rightmost rotor takes a single step changing the display value as mentioned
in Section II.2.1. This because the ratchet teeth, item 10 in Figure II.4, are

47

II. Genetic algorithm attack on Enigma’s plugboard

Figure II.5: Mechanical setup of the Enigma Machine
From the figure we observe that when a key is pressed on the keyboard (marked with 1), it

acts as a jack pushing up on the ratchet teeth of the rightmost rotor, moving it one step.
Not shown in the final two pictures is how the middle and leftmost rotor is moved. They are

only moved at a specific index determined by the ring with "notch" market with 1 in
Figure II.4.

Image credit to Dirk Rijmenants.

engaged for every keypress. Figure II.5 shows this more in-depth, how the
pressed key is used to nudge the rotor one step further. Only the rightmost
rotor is engaged for every keypress. The middle rotor and the leftmost rotor are
only engaged when the corresponding pawl aligns with the notch of the rotor
to the right, item 1, the ring with "notch" in Figure II.4. The display value for
the rotor determines the position of this “notch”. Different rotors have different
locations for the notch. For example, rotors I and IV would step their neighbor
rotor at display value "Q" and "J" respectively. If the rightmost rotor is IV,
the middle rotor will take a step whenever the display value passed "J", like an
odometer. Furthermore, since there is no rotor to the left of the leftmost rotor,
the completion of one full cycle by this rotor has no effect. This means that for
encryption of just one message the ring setting has only 26 · 26 = 676 effective
settings, or the attacker needs to recover only the actual physical position of
the leftmost rotor rather and which the letter was on display and seen by the
operator does not matter for the attacker6. Since the ring setting is set on the
rotor itself and only determines the relation between the internal wiring and
the alphabet ring with notch. This way, the ring settings and the display values
together define the initial pattern of the rotors’ scrambling. Short texts give
minimal rotor stepping reducing the impact of the middle rotor’s ring setting
greatly.

In addition to the three rotors, there are two extra elements mentioned with
regards to the Enigma machine which has some impact on the encryption:

6However, this leftmost ring setting is still relevant if we study how this message was setup.
The recovery of a full 3-letter ring setting is needed in order to decrypt additional messages
sent within the same network on the same day.

48

Background

• An entry ring, in which the current enters and exits the rightmost rotor.

• A reflector, where the incoming current is reflected back through the rotors
a second time, before exiting through the entry ring.

The reflector is itself a self-reciprocal transformation, and its inclusion makes
Enigma encryption and decryption the same operation as the current in rotors
flows in the same circuit, albeit in the opposite direction.

Plugboard: Enigma’s plugboard is located at the front of the Enigma
(typically). It defines a pairwise substitution between the 20 (typically in
WW2 traffic) of the letters with the use of 10 plugs. A plugged connection
between two letters is often referred to as a stecker. Each stecker defines a self-
reciprocal substitution between two letters. The plugboards stecker substitutions
are applied twice, both before and after entering the rotors. We have three cases:
zero plugboard substitutions, one plugboard substitution, and two plugboard
substitutions. The plugboard substitution is often listed as letter pairs separated
with space, as shown in Figure II.2. Letters that are not part of a stecker pair are
often referred to as self-steckered letters. These self-steckered letters are essential
to many attacks on Enigma encryption[Gil95; OW17; Wil00]. The introduction
of the plugboard (around 1928-1930) was a big improvement over the early
commercial Enigmas and protected against well-known cryptoanalytical attacks.

II.2.3 The complexity of the Enigma

The version of the Enigma described above is quite complex. Some simple
calculation shows that there are 5 · 4 · 3 = 60 different rotor selections,
263 = 17576 different ring settings, 263 = 17576 different message settings
and 26!

6!·10!·210 = 1.5073827 · 1014 plugboard settings. In total this gives:

5 · 4 · 3 · 266 · 26!
6! · 10! · 210 = 60 · 266 · 26!

6! · 10! · 210 ≈ 2.7939259 · 1024 ≈ 282,

different settings. However, the complexity of these settings doesn’t perfectly
represent the complexity of Enigma’s encryption. It is possible to simplify
and remove some redundancy; for example, as mentioned in Section II.2.2, the
leftmost ring setting can be perfectly represented by the leftmost display value;
therefore, in practice, it is common to refer to only the 262 = 676 impactful ring
settings7. In addition to this, some papers [Mat93; Wil00] reduce this number
further from 262 to 26. This reduction is because, in practice, the messages are
very short, 250 letters or shorter [OW17], this means that the leftmost rotor
almost never steps. After the first step, the middle rotor only steps every 26
characters, and after the first step, the leftmost rotor only steps every 262 = 676
characters. This means that as long as the messages are under 250 letters long,

7This is because the notch of the leftmost rotor as described in Section II.2.2 is ignored.

49

II. Genetic algorithm attack on Enigma’s plugboard

the leftmost will most likely not step, and at most step once8. For this reason,
the stepping of the leftmost rotor is often abstracted away, since while ignoring
this one may still decrypt at least 50% of the message. If we abstract away from
this, the fraction will instead be:

5 · 4 · 3 · 264 · 26!
6! · 10! · 210 = 60 · 264 · 26!

6! · 10! · 210 ≈ 4.1330264 · 1021 ≈ 272

However, even with such a reduction the complexity is considerable. Even by
modern computing power, an exhaustive search over the complete space of states
will be a demanding task.

II.2.4 Genetic algorithms

Genetic algorithms (GA) draw their inspiration from evolution. They start by
creating multiple candidate solutions to the problem. Each candidate solution
is packaged within an object, referred to as an individual. The collection of
individuals make up the genetic algorithm’s population. The parameters that
vary across individuals are called genes[Mit98]. The collection of these genes are
referred to as the genome or genotype of the individual. Random draws are usually
used when creating the first individuals, to assure some initial genetic diversity9.
The individuals’ fitness can be determined by a fitness function. Individuals with
high fitness relative to the other individuals survive and reproduce, similarly to
evolution in the real world. The evolution is naturally divided into generations,
where each generation requires:

1. Evaluating the individuals.

2. Finding the fittest individuals (for reproduction).

3. Replacing the least fit individuals with the offspring of the fittest.

This process is repeated until the models stop improving significantly. The best
individual in a population is called the alpha individual.

Cross-over and mutation Reproduction between two or more individuals,
is called cross-over. The cross-over allows a new individual to inherit some of
the elements from each parent. This cross-over can be done in many ways, but
in nature, a new individual (typically) inherits roughly 50% of its genes from
two parent individuals. During cross-over, some mutations may occur in the
offspring’s genome, and this is also used in genetic algorithms. This mutation
introduces some (needed) variation in the population. It is common to have a
smaller number of individuals than what is present in more extreme real-life
examples, such as wildebeest populations. The population used in the genetic
algorithm is more like a population of individuals which inhabit a small island,

8Similarly for the middle rotor it will step at most 250
26 + 2 < 12 times. (We add 2 instead

of 1 to account for the rare case of double stepping).
9In nature, genetic diversity refers to the diversity of the genes in a specific species.

50

Background

that is roughly 10 to 500 individuals. A concern with small populations is that
it is prone to loss of genetic diversity, while this may be an issue, there is a
tradeoff. Smaller populations require fewer computations per generation since
each individual in the simulation has to be assigned a fitness. Also, a smaller
population allows for good gene variations to spread through the population
quicker than it would have with a large population. Even in the real world,
a smaller island population may have a more rapid evolution than the larger
populations on the mainland [Gro06]. This indicates that a smaller population
can converge faster than a larger population, though at the expense of genetic
diversity10. The main danger of a small population is that one may get stuck in
a local optimum. In nature, genetic diversity also helps the population adapt
to a changing environment. However, in this study, the Enigma plugboard is a
stationary target for each simulation, so genetic diversity was not prioritized.
Bletchley Park, on the other hand, was not attacking a stationary target, and
benefitted greatly from its "genetic diversity". They had to handle varying
amounts of information, changing protocols, and working in a limited timeframe.

Index of coincidence

The Genetic algorithm needs a fitness measure, a way of comparing a partially
decrypted ciphertext to other partially decrypted ciphertexts. To a human,
it typically obvious whether a given text is plaintext or ciphertext. However,
quantifying how close the text is to plaintext, or if a given text is closer to
plaintext than another, is more difficult. Luckily several different techniques
can be used to measure the "closeness" to plaintext. A lot of them exploit the
biased nature of natural languages; for example, letter frequencies can indicate
how close one is to true German or true English. However, this measure is not
ideal when working with an unsolved plugboard, as only roughly 5% of the text
is left unaffected by the 10 plugs11. Furthermore, these frequencies are very
vulnerable to noise, as the relative frequencies of letters can be very varying,
especially when working with very short texts. We need a measure that works
even when the number of incorrect characters is large. The index of coincidence
(IC) suggested by William Friedman [Fri22] is a candidate for such a measure.
It is defined mathematically as:

IC =
∑26

i=1 fi · (fi − 1)
N · (N − 1) ,

where IC is the index of coincidence, fi is how frequent the letter i is in the text,
and N is the number of letters in the text.
Informally the index of coincidence gives the probability of two letters randomly
drawn from the text are equal. This measure is better as the self-steckered plugs
result in a monoalphabetic substitution regardless of their exit plug. This is

10This accelerated evolution may also be because it takes more time for a favorable genetic
variation to spread through the population when the population is large.

11The unaffected plugs are 6·5
26·25 ≈ 0.046.

51

II. Genetic algorithm attack on Enigma’s plugboard

essential as it allows IC to pick up some statistical biases when using an empty
plugboard as roughly, 100 · 6

26 % ≈ 23% of the keypresses result in monoalphabetic
substitutions (ignoring rotors). It is this weakness that a series of previous work
exploit when attacking the Enigma[Gil95; OW17; Wil00], keeping the plugboard
empty while applying a partial brute-force of the rotors.
Under the assumption that all the characters are just as likely in an incorrect
decryption, we have:

fi(N) ≈ N

26 ,

which means that a random text should have an approximate IC of:

ICrand ≈
∑26

i=1 fi(N) · (fi−1(N − 1))
N · (N − 1)

=
∑26

i=1
N
26 ·

N−1
26

N · (N − 1)

=
∑26

i=1 1
262

= 1
26

≈ 0.0385,

while English is closer to 0.066, and according to Gillogly standard German is
0.07 [Gil95].

Notch plot

The genetic algorithm is not deterministic. This means that the time to find
the correct plugboard settings will vary even for the same ciphertext. However,
by conducting many runs and comparing the runtime between them, we can
state something about the efficiency of the algorithm, and how fast we expect
to find a solution. When visualizing such results, it is common to use a notch
plot. A notch plot visualizes such a result by creating a box plot where the
middle line represents the median of the data and letting the ends of the box
define the 75th and 25th percentile of the supplied data. In other words, 50%
of the data is inside the interval defined by the box. Around the median, there
is funnel-like shape, a notch which constitutes the 95% confidence interval of
the median. Outside of the box, there are two whiskers on each side which
span the remainder of the observations. Then finally, there may be some dots
outside the whiskers; these illustrate the outliers, which are extreme and atypical
observations. An outlier can come from a human error like a typo or a strange
event. In our runs, an outlier is typically due to a very lucky or unlucky attack.
Figure II.6 gives an overview of the features of a notch plot.

52

Background

Figure II.6: The key features of a notch plot
Key features of a notch plot explained

(from David’s Statistics [Doy18])

II.2.5 Previous work

Long after the war, in 1995, Gillogly used the index of coincidence in a ciphertext-
only attack on Enigma encryption [Gil95]. He does this with an initial brute-
force12 of the rotor order, rotor selection, and message setting. In this initial
brute-force, he uses an empty plugboard and ring settings "AAA". Note here
that this initial brute-force involves 60 · 263 = 1054560 ≈ 1 million different
decryptions of the message. Then with the rotors and message setting that gave
the highest index of coincidence, the ring settings are calculated. This is also
done with the index of coincidence, however, here we start with the rightmost
rotor, and testing the 26 different ring settings. The tests are conducted by
moving the message setting in unison with the tested ring setting. For example,
if the brute-force found the message setting D for the rightmost rotor, then he
tests ring setting B with message setting E, ring setting C with message setting
F et cetera. After the rightmost rotor ring setting is found, the middle rotors
ring setting is found, and the leftmost is left as it is as it is perfectly represented
by the displaysetting. For the plugboard, he no longer uses IC, but instead
trigram frequencies, where the "true" distribution is found from the communist
manifesto. He begins by searching the 26 · 25 possible swaps of just one stecker,
then the 24 · 23 possible swaps of two steckers, and so on until he has found all
six steckers. Gillogly tested his technique on 0 to 11 steckers and found very

12Brute-force means to try all the possible solutions. In this case, it refers to trying all the
rotor orders and ring settings.

53

II. Genetic algorithm attack on Enigma’s plugboard

limited success on 10 plugs with a 5% success rate on 1463 letter messages, but
more than 40% success on 4 plugs with 316 letter messages.

Williams [Wil00] builds on the work done by Gillogly [Gil95]. In her work,
she begins by locking the plugboard settings to be: "DR JX FW HS CL MU GY
KV QZ BP". This may look random, but note that the most frequent letters in
English plaintext remain unaffected by the plugboard (A, E, I, N, O, and T).
This is particularly important because, like Gillogy, she finds the message setting
and the rotor selection with a form of brute-force which relies on the letters not
affected by the plugboard. With these settings, she achieves a 100% decryption
accuracy on a 450 letter message encrypted with an Enigma with all 10 steckers.
She improves on Gillogly’s method by storing the best 3000 message settings
and rotor selections from the initial brute-force, so her algorithm does not fail if
the best one does not match. For this brute-force, she tests multiple measures,
including IC, and found that the Sinkov statistic13 applied to unigrams gave
the best results. (for details see her paper [Wil00]).

Bagnall et al. attempted a genetic algorithm cryptanalysis of the three rotor
system [BMR97]. However, their success was limited, only cracking the two rotor
systems, and failing on systems using three or four rotors.

Ostwald and Weierud in 2017 published another paper on the Enigma machine
in Cryptologia titled Modern breaking of Enigma ciphertexts [OW17]. Their paper
is a comprehensive work which attacks and manages to break many previously
unbroken Enigma messages. They do this using a hill-climbing algorithm paired
with the brute-force approach described by Gillogly [Gil95]. Their success is in
large due to their in-depth analysis of Enigma’s plugboard and their extensive
knowledge of the protocols and techniques used to improve the security of
Enigma encryption during WWII. Of particular interest to this study is their
hill-climbing attack on the plugboard, which similarly to Gillogly and previous
attempts start with an empty plugboard. Oswald et al. argue for this approach
since it is guaranteed to have six correctly self-steckered letters. In contrast to a
completely random steckering which may have no correct steckers. From this
empty steckering, the authors describe the various techniques they use to find
the first steckers of the plugboard since the hillclimber alone was not always
successful. Described are approaches for a brute-force of the first stecker, a
brute-force of the first and second stecker, a brute-force of the first, the second
and third stecker, and finally a brute-force of the first, the second, the third
and the fourth stecker. In other words, they may brute-force 1.6 ∗ 108 different
steckerings after their initial brute-force of the rotors. Because this was often
too slow, they implemented a targeted stecker search which prioritized more
frequent letters, with great success.

A more recent study by Lasry et al. Cryptanalysis of Enigma double indicators
with hill climbing [LKW19] in 2019 introduced new attacks on two of the double
indicator operational procedures: the one used until September 1938 and the

13The Sinkov statistic outcompeting trigrams makes perfect sense as the plugboard’s
influence on the trigram frequencies is very large. The probability of a trigram being unaffected
by the plugboard is (6·5

26·25)3 ≈ 9.83 · 10−5.

54

GA-based Enigma attack

one used from September 1938 to May 1940. In doing so, they first covered
Rejewski’s attack, which he devised at the beginning of the 1930s. Rejewski’s
attack was on the double indicator which was in use by the Germans until
1938. This double indicator was the six first letters of each message, denoting
the message setting by encrypting it twice14. Both Rejewski and Lasry et al.
begin by trying to compute the cyclic structures of A4 ·A1, A5 ·A2 and A6 ·A3,
where Ai is the state of Enigma’s encryption when the ith letter is typed. If
they manage to compute their cyclic structure, then they can brute-force parts
of the Enigma. Rejewski ignored the ring setting and brute-forced the rotor
order15 and message setting. However, Lasry et al. do not ignore the ring
setting and accounts for the middle rotor movement using internal hill climbing.
Their hillclimbing techniques also allow them to continue even though the initial
computation of the cyclic structures fail. They continue by trying to reproduce
the cycles given by the indicator states, by looking for all possible rotor orders,
ring settings, and basic state options. They uncover the plugboard settings with
hillclimbing, but in contrast to Ostwald and Weierud [OW17] they start with
a random plugboard instead of an empty one. This brute-force paired with
hillclimbing enables them to solve the Enigma using only 6-8 double indicators,
while Rejewski’s attack required 70-90 double indicators. Additionally, they
handle turnover by the middle rotor. They also handle the 1938-1940 protocol
similarly with hill climbing except here they base their attack on the Zygalski
method and improve upon its reliability.

II.3 GA-based Enigma attack

We consider encryption and decryption of the first chapter of "Alice in
Wonderland"(http://www.gutenberg.org/files/11/11-h/11-h.htm16). The reason
for choosing this text in contrast to an authentic WWII message17 is twofold.
First, we can freely vary the actual message length, and we may also vary the
Enigma settings. The latter is especially important as we are not interested
in revealing a particular historic Enigma setting, but the ability to decrypt a
random Enigma setting. Moreover, as we vary the message length, we can study
the decryption attack sensitivity to message length.

II.3.1 Enigma decryption settings impact on IC

All successful decryptions18 of the full Enigma relies on some kind of partial
brute-force. To highlight this, we first find the IC of the plaintext, denoted ICpt,
of the first chapter of "Alice in Wonderland":

ICpt = 0.06649
14(Covered at the end of Section II.2.1)
15In the beginning, there were only three rotors to choose from so he only had to deduce

the rotor order.
16All non-letter characters are removed from this first chapter for easy Enigma encryption.
17Several earlier contributions rely on authentic Enigma messages [Gil95; OW17].
18See section II.2.5 for details.

55

http://www.gutenberg.org/files/11/11-h/11-h.htm

II. Genetic algorithm attack on Enigma’s plugboard

This index of coincidence is similar to the one we would expect from English.
The Enigma is then used to encrypt the entire chapter with the Enigma settings
shown in Table II.1. The index of coincidence of the resulting ciphertext, ICct

Table II.1: Enigma settings
Rotors Ring settings Plugboard settings Message setting
IV II I FTR (5, 19, 17) AT BO DF GV HR IW JL KS MX UY VYJ (21, 24, 9)

(This is the Enigma settings described as date 31 in the authentic codebook excerpt
shown in Figure II.2.)

is:
ICct = 0.03854,

which is roughly equal to the IC of a random text, and considerably lower than
the IC of the plaintext. This ciphertext will be the basis for the analysis below.
To amplify the contrast, the differences between the cipher- and plain-texts IC,
we introduce a progress measure which we will call Progress Index of Coincidence
(PIC). By design, we want 0%(= 0) progress if nothing is done, and we want
100%(= 1) progress if we have found the plaintext. We define the PIC of an
attempted decoding PICad by:

PICad = 1− ICpt − ICad

ICpt − ICct
,

where ICad is the index of coincidence of the attempted decoding of the ciphertext.
From this we observe that PICad is linearly dependent on ICad since both ICpt

and ICct are constant for a given ciphertext. Moreover, this relation is:

PICad = 1
ICpt − ICct

· ICad −
ICct

ICpt − ICct
.

In other words the two measures are equivalent as a fitness measures for the GA,
however, PIC gives a clearer and more human-readable image of the progress.
Also noteworthy is that PICad uses ICpt, which is typically assumed to be
unknown for a ciphertext-only analysis. However, as PICad and ICad are
linearly dependent. This should not be an issue, especially since they are only
used for fitness measures. To be sure we will only allow the GA to work with
ICad, and not PICad until the run terminates.

Table II.2 shows that the measure works as intended. The correct Enigma
settings leading to the correct decryption gives 100% PIC. Table II.2 also shows
that if just one of the rotors is wrong or the ordering is wrong the PIC drops
from 100% to roughly 0% PIC. Even though the message setting, 3 ring settings,
and 10 plugs in the plugboard are correct, the IC shows no indication of just
how "close" we are to the correct key. This discreteness of the correct rotor
selection poses a challenge for machine learning approaches, as most of them
rely on some form of hill climbing. Furthermore, this property is not unique to
rotor selection it also applies to the ring- and display- settings19. Despite this

19For some examples please check the appendix Appendix A.1 Table A.1 and Table A.2.

56

GA-based Enigma attack

Table II.2: Enigma decryption changing the rotors

Rotors IC PIC
IV II I(No change) 0.06649 100.0 %

V II I 0.03852 -0.1 %
III II I 0.03844 -0.4 %
IV III I 0.03846 -0.3 %
IV II III 0.03846 -0.3 %
IV I II 0.03852 -0.1 %
I II IV 0.03846 -0.3 %

Red is used to highlight which rotors are changed from the correct decryption settings to the
attempted decryption, while blue is used to highlight which rotors are swapped before the

attempted decryption.

discouraging insight, Gillogly [Gil95] showed that only parts of the Enigma needs
to be bruteforced, since the ring settings and the message setting preserve some
of the the IC properties of the decryption when changed in unison. This may
not be too surprising; in Section II.2.1, we observed that the two settings are
highly related. Table II.3 shows this in practice; a synchronized change in the
message setting and the ring setting allows the IC to measure the the quality of
the partially decrypted ciphertext. We see that when only the leftmost ring- and

Table II.3: Enigma decryption changing ring settings and message setting with
the same index

Ring settings Message setting IC PIC
F T R(No change) VYJ(No change) 0.06649 100 %
A T R QYJ 0.06649 100 %
F T S VYK 0.06436 92.4 %
F U R VZJ 0.06404 91.2 %
F U S VZK 0.06214 84.4 %
K V I AAA 0.04805 34.0 %
A A A QFS 0.03860 0.2 %

Red is used to highlight which settings are changed from the correct decryption settings to the
attempted decryption.

message-setting is changed in unison, there is no decrease in PIC as they perfectly
represent each other. We also observe that the minor change of incrementing the
rightmost ring- and message-setting by one barely reduces the PIC. So, in this
case, the encryption is the same except when the middle rotor (and possibly the
leftmost rotor) steps prematurely. Since the rotors work almost like an odometer,
this only happens once every 26 characters. However, the encryption before any
stepping is the same given "synchronized" ring- and message-settings. Therefore
it is natural for hill climber to pay more attention to the first characters of
the ciphertext that may not be influenced by an asynchronous stepping. This
connection between ring- and message-setting is of great importance as it allows
for a partial brute-force attack by keeping either the message setting or the ring

57

II. Genetic algorithm attack on Enigma’s plugboard

settings fixed. The message setting "AAA", for example, achieves a PIC of 34%
with otherwise correct settings. Moreover, it achieves a PIC of 1.2% with zero
plugs, and the correct rotor selection, this is something we could pick up on
with a partial brute-force. However, it is possible to be "unlucky"; if we fix the
ring setting to "A A A", as Gillogly did, and brute-force the rotor selection and
message setting. The resulting PIC is 0.2% with the correct plugboard and −0.3
using zero plugs. This is astonishingly low and is unlikely to be picked up during
a partial brute-force20. For this reason, maybe a variant of Williams[Wil00]
approach where we try 1-3 fixed values for the ring setting or the message setting
during the partial brute-force.

The plugboard on the other hand with its 1.50738 · 1014 possible states,
is typically not bruteforced. Table II.4 shows that its change in IC is not as
discrete as the earlier settings. This makes it vulnerable to machine learning

Table II.4: Enigma decryption changing plugboard settings

New plugboard settings IC PIC
AT BO DF GV HR IW JL KS MX UY (No change) 0.06649 100.0%
AH BO DF GV IW JL KS MX RT UY 0.05902 73.2 %
AH BZ DF GV IW JL KS MX RT 0.05353 53.6 %
AH BZ FO GV IW JL KS MX RT UY 0.05053 42.9 %
AB CD EF GH IJ KL MN OP QR ST 0.03852 -0.1 %
<No plugs> 0.03993 4.9 %

Red is used to highlight which settings are changed from the correct decryption settings to the
attempted decryption. The final row <No plugs> is used to symbolize the decryption with

correct rotor settings, ring settings, and message setting, but the plugboard is left un-steckered.

approaches, given that the rest of the Enigma is solved. Also, note from the
above table that the empty plugboard results in a positive PIC of about 5%.
The empty plugboards small but positive PIC is an essential premise in the
ciphertext-only analysis of the Enigma. As discussed earlier, this allows for a
brute-force attack the rotors and message setting with an empty plugboard. It
is also the starting point for Ostwald et al.’s hill-climbing algorithm [OW17],
guaranteeing six correctly self-steckered plugs. However, a genetic algorithm
starting from 0 plugs will have the unnecessary complexity of dynamically
decreasing and increasing the genome size, which will probably slow it down.
Therefore, the genetic algorithm that this paper introduces has a genome of
exactly ten plugs.

The above analysis shows the discreteness of Enigma’s rotor selection, rotor
order, ring setting, and message setting. From this, it is clear that some brute-
force is needed. However, Gillogly’s techniques allow us to narrow the search
for the rotor settings to some candidates, given an initial brute-force attack.
The remaining plugboard was shown to be vulnerable to hillclimbing and other

20This likely part of the reason why Gillogly only saw a 5% success rate on 10 plugs.

58

GA-based Enigma attack

machine learning approaches. In the next three sections, we will design and use a
Genetic Algorithm attack which can solve the plugboard in a matter of minutes.

II.3.2 Genetic algorithm for determining the plugboard settings

In this section, we will consider a genetic algorithm attack on the plugboard21.
The specification of a genetic algorithm involves:

1. A representation of the individuals’ genome.

2. A fitness function.

3. A selection function for cross-over.

4. A cross-over function.

5. A mutation rate.

6. A population size.

7. A number of generations the function is run

We let each stecker pair constitute a gene. Furthermore, we let the individuals
genome consist of 10 genes represented by a list of 20 indices with numbers
from 0 to 25, where each pair defines a stecker. For example the genome:

1 [(0,1), (2,3), (4,5), (6,7), (8,9), (10,11), (12,13), (14,15), (16,17), (18,19)]

Defines the plugboard settings:

1 'AB CD EF GH IJ KL MN OP QR ST'

The initial individuals are chosen to be a random selection of 20 such indices.
The fitness function is chosen to be the IC of the attempted decryption with
the plugboard settings defined by the individuals’ genome. This measure is then
used to rank the individuals from most fit to least fit for cross-over. Before
cross-over, the population is divided into three parts, the top-third, the middle-
third and the bottom-third. The top-third cross-overs with the middle-third, in
the respect, that the fittest in the top-third cross-overs with the fittest in the
middle-third, the second fittest with the second fittest and so on. The offspring
of this cross-over then replaces the bottom-third of the population. Table II.5
and Table II.6 exemplify this with a mock population of 10 individuals. If the
population size is not divisible by three, there may be one or two individuals
that does not partake in the cross-over. In the example shown in Table II.5
individual number 2, between the bottom and middle-third, does not partake in
the cross-over for this reason.
The cross-over between two individuals starts by randomly selecting one of the

21In Bletchley Park Gordon Welchman’s invention, the "Diagonal Board" improved the
British Bombes attack on the plugboard significantly.

59

II. Genetic algorithm attack on Enigma’s plugboard

Table II.5: Population
top-third middle-third bottom-third

fitness in 100 · IC 6.06 6.05 6.03 6.02 6.00 5.99 5.98 5.94 5.94 5.93
individual id 4 0 7 3 5 8 2 9 6 1

Table II.6: Cross-over combinations
cross-over individuals (ids) 4,3 0,5 7,8
replaced individuals (ids) 9 6 1

individuals to be parent1 and making the other parent2. We then draw five
indices in the range of 0 to 10. These random indices then access and copy five
steckers (genes) from parent1 to the offsprings genome. The indices that were
not drawn in the previous step are then used to access and copy five steckers from
parent2’s genome to the offspring. However, to avoid duplicate plugs, we do not
copy plugs that are already present in the offsprings genome. This may results
in incomplete or missing steckers in the offsprings genome. At such incomplete
or missing steckers, random vacant plugs are assigned until the offspring has
a valid genome of 10 steckers. Below is an example cross-over where the pairs
1,3,4,5 and 7 are selected to be inherited from parent1:

individual :
[
GENOME

]
parent1 :

[
AB CD EF GH IJ KL MN OP QR ST

]
parent2 :

[
AT BO DF HR IW JL KS MX PQ UY

]
offspring :

[
AT CD WF GH IJ KL ZS OP EQ UY

]
Here we see that all the red pairs with indices 1,3,4,5 and 7 are completely
inherited from parent1, however some of the steckers from parent2 are changed
(marked in green). For example the stecker DF could not be entirely inherited
because the D plug is used in the pair CD, which has already been inherited from
parent1, so another vacant plug is picked at random instead, in this case stecker
W was picked. The GA draws its foundation from evolution; each new offspring
has a probability of getting a mutation in their genome. In this paper, we will
refer to probability of at least one mutation occuring in an offsprings genome
as the mutation rate, while we let the probability of a mutation occurring in
a specific gene of the genome be the mutation probability. In other words,
mutation rate refers to the probability of a mutation in the plugboard, while the
mutation probability is the probability of a mutation in a specific stecker. The
two terms have the following relation:

mutation_rate = 1− (1−mutation_prob)10

mutation_prob = 1− (1−mutation_rate) 1
10

A gene selected for mutation removes the stecker pair associated with it.
Then a new stecker pair is randomly selected from the now eight available plugs.

60

GA-based Enigma attack

An example of an offspring with two mutations is shown below to illustrate this.
The stecker pairs selected for mutation be colored red and the available plugs
are also red, and the chosen replacement steckers are blue.

offspring :
[
AT CD WF GH IJ KL ZS OP EQ UY

]
available=V,N,X,R,M,B

offspring :
[
AT CD __ GH IJ KL ZS OP EQ UY

]
available=V,N,X,R,M,B,W ,F (Chosen index 5 and 7)

offspring :
[
AT BF CD GH IJ KL ZS OP EQ UY

]
available=V,N,X,R,M,W

offspring :
[
AT BF CD GH IJ KL ZS __ EQ UY

]
available=V,N,X,R,M,W ,O,P (Index 2 and 5 chosen)

offspring :
[
AT BF CD GH IJ KL ZS WX EQ UY

]
available=V,N,R,M,O,P

From this it is clear that mutations can dramatically change Enigma’s encryption
and decryption capabilities. Like in nature most mutations (but not all) will be
useless or add unnecessary noise. Therefore evolution in GA is typically faster
with a low mutation rate; however, with a low mutation rate, the probability of
being stuck in a local optimum and not finding the correct decryption is increased.
For this reason, two mutation rates will be tested, one with a mutation rate set
to be roughly 50%; this corresponds to a mutation probability of 0.067 (6.7%).

mutation prob = 1− (1− 0.5) 1
10

≈ 0.067

This fairly high mutation rate has a low probability of getting stuck, but will most
likely be slower than a lower mutation probability of 0.001 (0.1%) corresponding
to a mutation rate of about 1%.

mutation rate = 1− (1− 0.001)10

= 0.009955
≈ .01

Furthermore, just because a mutation occurs does not mean that the stecker is
changed as there is a 1

8∗7 = 1
56 , chance that the stecker will be unchanged by

the mutation.

II.3.3 Genetic Algorithm runs and results

A summary of the design choices of this GA is shown in Table II.7. These
settings efficiently solve Enigma’s plugboard. A 100 separate genetic algorithm
runs were conducted with default settings (Table II.7 with mutation probability

61

II. Genetic algorithm attack on Enigma’s plugboard

Table II.7: Default GA settings

Genome list of 20 indices
Fitness function Index of Coincidence
Cross-over as described in Section II.3.2
Mutation probability 0.067 or 0.001
Population size 100
Number of generations 100 (may vary)

Figure II.7: IC of a 100 GA runs with default settings finding the plugboard key
from Table II.1

Each blue line maps the IC of the best individual in each of the 100 GA runs for each
generation.

The red dotted line gives the IC of the plaintext; in this case, the solution appears to be
unique, as each decryption with this IC results in the correct plaintext.

0.067) to find the plugboard settings described in Table II.1. All of which were
successful in finding the correct plugboard settings. However, running the genetic
algorithm for a 100 generations is a little bit overkill, since all of them find the
correct deciphering before then, as seen in Figure II.7. Also, 100 individuals for
100 generations correspond to decrypting the ciphertext with an Enigma 3400
times, which is more than the best case of Gillogly’s approach, which decrypted
the ciphertext 3050 times [Gil95]. In number of generations, 3050 encryptions
correspond to between 90 and 91 generations22 consisting of 3037 and 3070

62

GA-based Enigma attack

decryptions.
From Table II.8 we see that the median run finishes in 2344 decryptions which

is much faster than the best case of 3050. In other words this approach gives

Table II.8: Finish times of the different GA runs on Table II.1

Measure Min Median Mean Max
Generations 51 69.0 70.2 97
Decryptions 1750 2344 2384 3268

a significant increase in the plugboard recovery speed over Gillogly given the
Enigma settings described in Table II.1. To ensure that this improvement is
independent of the Enigma settings we draw 9 additional Enigma settings, for
details check the appendix Appendix A.1 Table A.3. We then run 100 genetic
algorithm runs on each of the different Enigma settings to show that its efficiency
is independent of the encryption settings. Table II.9 shows the minimum, median,
and max runtime of the GA before finding the correct solution across the 10
different Enigma settings. This clearly shows that the GA attack on Enigma’s

Table II.9: A 100 GA run finish time comparison across 10 different Enigma
settings

Name 1 2 3 4 5 6 7 8 9 10
Min 51 35 41 44 39 40 43 45 47 42
Median 69.0 71.0 70.5 67.5 67.0 65.0 69.0 70.0 66.5 69.0
Max 97 103 97 99 106 101 110 102 95 166

plugboard works on many underlying Enigma settings. We observe that our worst
median is at 71 generations (2410 decryptions), which is pretty good. Of course,
we see even better results as the fastest attack only took 35 generations (1222
decryptions), more than twice as fast as Gilloglys best case of 3050 decryptions.
We also observe that there seems to be an extremely "unlucky" run on Enigma
nr 10, which does not find the solution until it has completed 166 generations.
Fortunately, it is an extreme outlier as the second-longest run on Enigma 10
took 102 generations, which is also an outlier, but a more reasonable one.

However, this was with a high mutation rate of about 0.5. We also check
for mutation_probability 0.001. To test this we run a 100 GA’s on the 10
Enigmas with a maximum number of generations set to 1000. With such a
low mutation rate, some of these runs never finish or take almost the full 1000
generations. Of the 1000 runs, 29 of them were worse than Gillogly’s best case of
3050 decryptions (90 to 91 generations), and these 29 are much worse, and some
do not find the solution. This is because they have lost some essential genetic
diversity, which their low mutation rate is unable to replace. However, as we

22Number of decryptions = 100 + 33· (Number of generations - 1).

63

II. Genetic algorithm attack on Enigma’s plugboard

Figure II.8: Notch plot comparison of a 100 GA attacks with mutation rate 0.5
(red) and 0.01(blue) across 10 different Enigma settings
In this notch plot the outliers of the low mutation rate (0.01) runs are shown as a darkblue ×

and the outliers of the high mutation rate(0.5) are shown as a darkred ◦.

can see, this only occurs in less than 3% of all the runs, most of the GAs also
succeed with a low mutation rate. The runs that do succeed generally find the
solution faster than their counterparts with a higher mutation rate, as the low
mutation rate has a median runtime between 53 and 56 generations. Figure II.8
shows a more indepth comparison between the two mutation rates across the 10
different Enigmas. We see here that for most of the Enigmas, the 75% fastest
runs of the low mutation rate runs are faster than the 75% slowest runs of the
GA with a high mutation rate. The only exceptions being Enigma numbers 4
and 6. In terms of speed, the low mutation rate is the obvious choice. However,
as the runs lose most of their genetic diversity in the early generations, this
approach is prone to getting stuck in a local optimum. A way to escape the
local optimum and increase the genetic diversity is through mutations, which
by construction is set to be low in this case. For consistent, results the high
mutation rate (0.5) performed better, and even managed to get faster decryption
that then low mutation rate GA on Enigma 2 and Enigma 5. A possible best of
both worlds is to run multiple GA attacks in parallel, compensating for its lower
success rate with "strength in numbers".

64

GA-based Enigma attack

II.3.4 Genetic Algorithm on smaller texts

From Section II.3.3 is clear that the GA paired with IC solves Enigma’s
plugboard efficiently on the first chapter of "Alice in Wonderland", a text
containing 8596 characters. However, it remains to show that it also works
on shorter texts. To investigate this, we create subsets of the first chapter
of Alice in Wonderland, selecting the first n characters of the text, letting
n = 100, 150, 200, 250, 300, 350, 400, 450, 500. These subsets are encrypted with
the default Enigma settings, stated in Table II.1. For these new ciphertexts,
a hundred GA runs were conducted with the settings defined in Table II.7, a
mutation probability of 0.067 and the stopping criteria of a 1000 generations
or reaching an IC greater than the IC of the plaintext. Table II.10 gives an
overview of the results of these runs. Note here that short messages that use

Table II.10: 100 GA’s run on smaller subsets of Alice in Wonderland
Runtime

No. of characters Correct Median Mean Min Max Max PIC
100 0% 69 74.65 32 137 122.76%
150 0% 1000 822.13 69 1000 103.39%
200 47% 1000 611.22 83 1000 100%
250 97% 123 161.9 67 1000 100%
300 97% 118 168.17 74 1000 100%
350 100% 117 121.08 73 228 100%
400 100% 101.5 107.27 67 192 100%
450 100% 92.5 100.07 60 376 100%
500 100% 91.5 91.92 56 173 100%

The GA was run for a 1000 generations or until a text with an IC greater or equal to the IC of
the solution was found.

100 and 150 characters gain a maximum IC greater than the IC of the plaintext
as indicated by achieving a PIC greater than 100%. This is not unique to Alice
in Wonderland, but a common occurrence, Ostwald et al. [OW17] and Gillogly
[Gil95] both used some extra tricks and extra measures to get around this. For
the GA to work on so short texts, we would also have to implement alternative
measures to IC. We have not done this, and as a result, it has 0% success for texts
where it is possible to achieve a PIC greater than 100%. However, the algorithm
does not just fail in the instances where a PIC = 100% does not offer an upper
bound, as texts with 200, 250 and 300 characters are not successful on every run.
Even though the global optimum may be 100% PIC, the results show that we
only have a 47% success rate on ciphertexts with 200 characters. This means
that even with a high mutation_probability the GA can get stuck in a local
optimum. This occurs because there are too many different plugboard settings
that increase the IC on short texts, that a local optimum may be "too" far away
from the global optimum in some cases. In extreme cases a local optimum may
not have any steckers in common with the correct steckering.

Evident from Table II.10 is that the median number of generations decrease

65

II. Genetic algorithm attack on Enigma’s plugboard

Figure II.9: Median runtime vs Number of generations on subsets of Alice in
Wonderland

GA runs that did not finish within 1000 generations had their runtime in number of
generations set to 1000.

as the number of character increase from 250 characters and up. This is also
likely evidence that the global optimum becomes easier to distinguish with more
characters. To further investigate this development we added subsets of the first
550, 600, 650, 700, 750, 800, 850, 900, 950, 1000 and 4298 characters, and ran
a 100 GA’s on each of these subsets, Figure II.9. As expected these runs show
that the GA works better with larger texts, however, it seems to reach some
saturation between a 1000 and 4298 characters. The logarithmic shape stops at
4298 characters as the GA preforms slightly worse with all 9596 characters.

We can also observe that the success rate of the GA also increases with the
number of characters in the ciphertext. To sketch this development we conduct
a 100 GA runs with character subsets of (150, 152, 154, 156, ..., 348, 350) and
plot the percentage of runs that found the correct solution against the number
of characters in the "Alice in Wonderland" subset, shown in the top plot of
Figure II.10. Like with the runtime a key indicator to the GA’s success rate is
the number of characters, however, this trend/development is more jagged. Also,
notice than 152 characters has two successes. These successes are rare, which
makes sense since the greatest PIC found is 102.87%, which means that in these
cases the local optimum is the solution and the global optimum is something
else. Despite the two of the GA runs are lucky and find the solution. If we add
two more characters, we only find the solution in one of the 100 runs. Then if

66

GA-based Enigma attack

Figure II.10: The number of characters in the plaintext plotted against the GA
success-rate and the IC of the plaintext.

Marked in black are the first encryptions that includes the rotoration of the middle rotor.
Similarly marked in red is the first encryption that includes a leftmost rotor rotation.

67

II. Genetic algorithm attack on Enigma’s plugboard

we step up to 156- and 158-characters all 200 GA runs are unsuccessful. Initial
speculation by the authors thought that this had something to do with the dive
in IC from 0.0671 to 0.0665 between 154- and 156- characters. And that there
may be a tiny correlation between the GA’s "lucky" successes with small texts
and the IC of the underlying plaintext. But in the absence of deeper analysis
it is more likely that the minor reduction in successes are due to chance rather
than plaintext IC. After all the plaintext IC of 158 characters is very similar to
the IC of 160 characters where the solution is found 10 times. However, this
trend diminishes as we get more plaintext to work with. The majority of the
jaggedness observed in the success rate of the GA is not due to the changing
of the plaintexts IC as can be seen from the bottom plot of Figure II.10 which
shows the IC of the plaintext. The success rate of the GA is jagged, this may
be because we only did a 100 trials on each subset, but it has more structure
than one would expect from random chance. For example, there is a drop in
the success rate of almost all the runs on texts with 310 to 318 characters. We,
therefore, think that this jaggedness, in particular, this drop is due to a peculiar
interaction between; our current GA approach, the added letters, and how they
influence Enigma decryption. A natural theory would be that this is because of
rotor stepping. However, the decryption capabilities seem to be agnostic of this
as is shown by the red and black dots representing stepping of the leftmost and
middle rotor respectively.

II.4 Conclusion

The Enigma Machine as a whole is built to distort the letter frequencies of a
plaintext message. This distortion, paired with the discreteness of the correct
decryption settings, especially the rotor settings, makes a ciphertext-only attack
difficult. To illustrate this, we introduced a new measure, Progress Index of
Coincidence (PIC), which is a more human-readable version of the measure: Index
of Coincidence (IC). Our analysis with PIC showed that Enigma’s plugboard
was vulnerable to a machine learning attack. To capitalize on this vulnerability,
we introduced a genetic algorithm attack for solving Enigma’s plugboard using a
ciphertext only attack. This genetic algorithm attack proved to be very efficient.
It found the plugboard settings faster than earlier attacks. Intriguingly the
algorithm is the fastest with a low mutation rate but at the cost of its reliability.
In other words, the algorithm has a higher success rate with a high mutation
rate, but at the cost of its speed. This trade-off may be of consequence for a
broader range of genetic algorithm attacks beyond the Enigma. In particular,
one can get the best of both worlds by considering attacks with a low mutation
rate in parallel. This way, we can increase the solution probability through the
"strength in numbers". We also observe that the decryption success rate is not a
completely monotone function of the number for characters in the ciphertext. In
particular, we observe a significant dip in success rate for texts with 310 to 318
characters. Intriguingly, this dip does not seem to be driven by plaintext IC nor
the Enigma’s rotor stepping. It may be due to some non-trivial property of the

68

References

Enigma encryption, and it is interplay with the IC. Future research may shed
light on this surprising property of Enigma encryption.

Acknowledgments The authors wish to give a special thanks to Audun Jøsang
for valuable discussion and words of encouragement. The Authors would also
like the anonymous reviewers as their generous comments helped clarify and
improve the paper.

References

[BMR97] Bagnall, A. J., McKeown, G. P., and Rayward-Smith, V. J. “The
Cryptanalysis of a Three Rotor Machine Using a Genetic Algorithm.”
In: ICGA. 1997, pp. 712–718.

[Cop04] Copeland, B. J. The Essential Turing. Clarendon Press, 2004,
pp. 217–263.

[Doy18] Doyle, D. Notched Box Plots - David’s Statistics. https://sites.google.
com/site/davidsstatistics/home/notched-box-plots. (Accessed on
03/29/2018). Mar. 2018.

[Fri22] Friedman, W. F. The index of coincidence and its applications in
cryptography. Aegean Park Press, 1922.

[Gil95] Gillogly, J. J. “Ciphertext-only cryptanalysis of enigma”. In:
Cryptologia vol. 19, no. 4 (1995), pp. 405–413.

[Gro06] Gross, L. “Islands Spark Accelerated Evolution”. In: PLoS biology
vol. 4, no. 10 (2006), e334.

[IMD] IMDb. The Imitation Game (2014) - IMDb. https://www.imdb.com/
title/tt2084970/. (Accessed on 11/12/2018).

[Lee03] Leeuw, K. de. “The Dutch invention of the rotor machine, 1915–
1923”. In: Cryptologia vol. 27, no. 1 (2003), pp. 73–94.

[LKW19] Lasry, G., Kopal, N., and Wacker, A. “Cryptanalysis of Enigma
double indicators with hill climbing”. In: Cryptologia (2019), pp. 1–
26.

[Mat93] Matthews, R. A. “The use of genetic algorithms in cryptanalysis”.
In: Cryptologia vol. 17, no. 2 (1993), pp. 187–201.

[Mit98] Mitchell, M. An introduction to genetic algorithms. MIT Cambridge,
Mar. 1998.

[OW17] Ostwald, O. and Weierud, F. “Modern breaking of Enigma
ciphertexts”. In: Cryptologia vol. 41, no. 5 (2017), pp. 395–421.

[PP09] Paar, C. and Pelzl, J. Understanding cryptography: a textbook for
students and practitioners. Springer Science & Business Media, 2009.

69

https://sites.google.com/site/davidsstatistics/home/notched-box-plots
https://sites.google.com/site/davidsstatistics/home/notched-box-plots
https://www.imdb.com/title/tt2084970/
https://www.imdb.com/title/tt2084970/

II. Genetic algorithm attack on Enigma’s plugboard

[Sal19] Sale, T. Lecture on Naval Enigma - Tony Sale. https : / / www.
codesandciphers . org . uk / lectures / naval1 . htm. (Accessed on
04/15/2019). Apr. 2019.

[Sin00] Singh, S. The code book: the science of secrecy from ancient Egypt
to quantum cryptography. London: Fourth estate, 2000.

[Wel82] Welchman, G. The hut six story: breaking the enigma codes. McGraw-
Hill New York, 1982.

[Wil00] Williams, H. “Applying statistical language recognition techniques
in the ciphertext-only cryptanalysis of enigma”. In: Cryptologia
vol. 24, no. 1 (2000), pp. 4–17.

70

https://www.codesandciphers.org.uk/lectures/naval1.htm
https://www.codesandciphers.org.uk/lectures/naval1.htm

71

72

[signature removed]

Paper III

Dreaming of keys: Introducing the
phantom gradient attack

Åvald Åslaugson Sommervoll1

Published in Proceedings of the 7th International Conference on Information
Systems Security and Privacy (ICISSP 2021), January 2020, volume 7, paper
nr 90

III
Abstract

We introduce a new cryptanalytical attack, the phantom gradient attack.
The phantom gradient attack is a key recovery attack that draws its
foundations from machine learning and backpropagation. This paper
provides the first building block to a full phantom gradient attack by
showing that it is effective on simple cryptographic functions. We also
exemplify how the attack could be extended to attack some of Ascons’
permutations, the cryptosystem that won CAESAR the competition for
authenticated encryption: security, applicability, and robustness.

Contents

III.1 Introduction . 73
III.2 Related work . 75
III.3 Implementation and results 76
III.4 Attack on Ascon’s underlying functions 81
III.5 Conclusion . 85
III.6 Future work . 86
References . 86

III.1 Introduction

Neural networks have the past decade seen a wide array of academic and
commercial applications. One notable exception is cryptography2. A reason is
that neural networks rely on gradients of differentiable functions, while encryption
and decryption typically rely on discrete functions. Our contribution is to replace

2Neural networks have shown promise in side channel attacks, but not on an algorithmic
level.

73

III. Dreaming of keys: Introducing the phantom gradient attack

these discrete functions with piecewise differentiable functions, thereby allowing
for a neural network-based key-recovery. We dub this the phantom gradient
attack, which aims to link the step-wise training of neural networks to key-
recovery. The attack can be used to attack almost any cryptosystem. We attack
some basic cryptographic functions and show how the attack could be extended
to attack more complex cryptosystems like Ascon.

In 2015 Google released DeepDream, popularized the idea of "training"3

the input using a pre-trained network. The phantom gradient attack builds on
this idea by representing a cryptosystem as a neural network. This way, the
cryptosystem acts as a pre-trained network, and we use it to train on our input.
This training aims to recover the secret key. However, a lot of cryptographic
functions are discrete and thereby do not have gradients. An essential part of
our attack is to replace the discrete functions with piecewise differentiable ones.
These functions have gradients, and we call these the phantom gradients of the
original discrete function. The choice of the piecewise differentiable function is
crucial, and we will refer to these functions as replacement functions4. Moreover,
we will highlight some choices that correlate with successful attacks and state
some general principles for good replacement functions.

In symmetric key encryption, there is a secret key, k, which is used for
encryption and decryption. In this case, we can view the encryption as a
function fk and decryption as its inverse f−1

k . Finding this f−1
k is trivial if k

is known, but it is intentionally hard if k is unknown. The phantom gradient
attack presented in this paper attempts to recover this k. More specifically, the
phantom gradient attack attempts to recover an input that would result in a
specified output. In other words, given f(x) = y, it searches for an x∗ such that
f(x∗) = y, given that the function f and output y are known. If we look at our
encryption we have:

Enck(p) = fk(p) = f(k, p) = c, (III.1)

where p is the plaintext and c is the ciphertext. However, as the plaintext is
unknown in this case, we would recover both k∗ and p∗. Furthermore, since
|k|+ |p| is likely to be much larger than |c|, the recovered k∗ would most likely5

be different from k. Therefore we assume that the plaintext is known so the
plaintext can act as a constant. This way, we may only focus on finding a k∗. In
order to find such a k∗, we have to take a closer look at the function6 fp. As
already mentioned, we wish to represent this fp as a neural network. To do this,
we look at the individual functions that take part in the encryption and find
piecewise differentiable functions to replace them. These replacement functions
are of great importance, as their derivatives are what we use to recover the key.

3We write "training" in quotation since we are updating on the input and not the weights.
4These replacement functions can often be viewed as extensions to their discrete counterpart,

as they typically act the same for valid discrete inputs. However, this is not a requirement.
5The phantom gradient attack could be fed multiple ciphertexts to increase this probability

- more on this in Section III.6.
6The p is subscript because it is assumed to be constant and is not an argument for the

function.

74

Related work

The remaining paper is organized as follows: Section 2 discusses related
work. Next, section 3 provides some details regarding implementations and an
application of our attack on the XOR function. In section 4, we briefly introduce
Ascon and its basic permutations, pC , pS , and pL. We show that the input is
easily recovered for the first two, whereas pL is less susceptible to our phantom
gradient attack. Finally, we conclude our findings in section 5 and cover possible
future work in section 6.

III.2 Related work

Our phantom gradient attack has a clear connection to the field of neuro-
cryptology. A field that was first formally described by Dourlens in his
1996 masters dissertation [Dou96], where he described the possibility of neuro-
cryptography and neuro-cryptanalysis. Since then, we have seen the addition of
a neural cryptosystem in 2002 by Kinzel and Kanter [KK02]. They synchronized
two neural networks by sending the networks’ outputs through a public channel
and training on them. Unfortunately, this cryptosystem was not completely
secure, as Klimov et al. [KMS02] published a paper the same year that broke it
three different ways. In neuro-cryptanalysis, Alini successfully applied an attack
on DES and Triple-DES using neuro-Cryptanalysis in 2012s [Ala12]. He, like
us, was working in the known-plaintext case. However, he is not interested in
key-recovery. Instead, he simulates the decryption of DES and Triple-DES under
a specific key. In this effort, his inputs are ciphertexts, and his reference outputs
are plaintexts and train the weights accordingly. This procedure is in great
contrast to our implementation, which trains no weights, uses the ciphertext
as reference output, and a guessed key as input. His implementation required
an average of 211 plaintext ciphertext pairs for DES and 212 for Triple-DES. In
the phantom gradient attack implementation put forward in this paper, we only
train on plaintext ciphertext pair, as we only want to recover a possible key.
However, more training samples could help us avoid stagnation and ensure that
the key recovered is the correct key; this may be fruit for future work. With his
network trained to predict the ciphertext given the plaintext, he attempts to
use his network to predict the ciphertext for new messages with some success7.

Greydanus also attempts to use neural networks to simulate cryptosystems
in his work, Learning the Enigma with Recurrent Neural Networks. This work
exemplified some of the difficulty of simulating and learning a cipher with
recurrent neural networks, even an outdated cryptosystem like Enigma [Gre17].
This work contributed to the phantom gradient attack introduced in this paper
to only focus on a stateless FFNN representation instead of recurrent neural
networks, which can be more memory efficient. Long before the popularization
of Googles DeepDream in 1988 Lewis in his work Creation By Refinement: A
Creativity Paradigm for Gradient Descent Learning Networks [Lew88] exemplified
the idea of training on inputs. He trained a classification network to judge is

7The average number of wrong bits in the unseen pair is 8.3% for DES and 11.4% for
Triple-DES.

75

III. Dreaming of keys: Introducing the phantom gradient attack

a sequence of 5 music notes where valid or not. Then he used the trained
network to generate music notes using backpropagation. Like Alani, [Ala12], he
first trains the network’s weights, while the phantom gradients are predefined.
This approach differs from the phantom gradient because his gradients are
found through training of the neural network, while the phantom gradients
are predefined. This definition gives the phantom gradients a larger degree
of freedom, but at the cost of having perhaps unsuitable gradients. In terms
of image generation and visualizations, there are many more works [Erh+09;
PS00; SVZ13]. In these works, they always train on the entire input. However,
our phantom gradient attack will often be used to attack only a specific part
of the input. For example, in Ascon, we know a lot about the initial state
of the sponge duplex construction [Dob+16]. Some techniques for generating
adversarial examples also attack specific parts of the input, like One Pixel Attack
for Fooling Deep Neural Networks by Su et al. There they change just one
pixel in an image to fool a pre-trained network into misclassifying the image.
BriarPatches: Pixel-Space Interventions for Inducing Demographic Parity by
Gritsenko et al. does something similar; however, their intervention is on a larger
area of the image but constrained to be a small patch [Gri+18]. An alternative
to representing the discrete cryptographic functions to continuous ones is to use
the discrete functions, and train using binarized networks [ZDS19]. Networks
that train on bit operations without proper gradients see considerable speedup
compared to traditional networks, but at the cost of their accuracy.

III.3 Implementation and results

Punishment The loss function tells us if our training brings us closer to the
actual output. However, it is not built into the loss function to take into account
whether or not the predicted values are in the correct range. As we aim to recover
bits, values larger than 1 and less than 0 are meaningless8. To prevent values
from becoming increasingly negative or much greater than one, we introduce
an additional punishment for such values. We choose a ridge regression like
punishment measure: Our experiments found that a punishment closely related
to that of a ridge regression worked well:

punishridge(x) =

1
2 (x− 1)2 for x > 1
0 for 0 ≤ x ≤ 1
1
2 x2 for x < 0

. (III.2)

This allows the learning to take values outside the range [0,1] but should help
keep the values close to proper bit values. We also introduce a scalar λpunish,
which we use to adjust the punishment in relation to the loss.

Rounding At the end of our run, the guessed key k∗ typically consists
exclusively of floating-point numbers. Therefore if we have reached our final

8Numbers between 0 and 1 can be interpreted as probabilities. Numbers above 0.5 may be
viewed as it is more likely to be a one than a zero.

76

Implementation and results

iteration, we round the guessed key, k∗, to force it to assume integer values. This
rounding at the end is primarily to polish the recovered key, but may in some
cases, allow us to take the final leap to a candidate key k∗.

Momentum, Gradient clipping and Decay We may add momentum to our
gradient descent by updating our input xi like so: xnew

i = xi − η · (∂loss
∂xi

+
momentum · ∂lossold

∂xold
i

). Furthermore, to take incrementally smaller steps, we
introduce a decay to the learning rate: Each iteration, the learning rate, eta, is
updated: η = η

1+decay . This way, decay = 0 gives no decay. To avoid overly large
gradients, we introduce a negative minimum gradient and a positive maximum
gradient. We clip gradients smaller or larger than this threshold, a common
technique to combat exploding gradients [Zha+19].

Remap input Some initial experiments showed that even with ridge punish-
ment, the inputs could be led astray by the phantom gradients. Furthermore,
we found that typically with phantom gradients from Equation (III.10), if a bit
became overly positive, its true value was typically 0. Similarly, if the bit value
became overly negative, its true bit value was typically 1. To combat these stray
gradients, we remap the inputs, so that overly positive bits are set to 0, and
overly negative bits are set to 1. We define overly positive to be at 1.5 and overly
negative to be at -0.5. This way, when we round at the end of the run, we force
the network to make a valid guess restricted to valid bit values, and at the same
time, we allow the bits to explore some values outside the valid range of 0 and
1. To indicate when this stricter boundary is used, we write that remap is true.
We also tried input clipping, but this technique was much better at combating
stagnation in the learning, as it also forces the algorithm to change its guess.

III.3.1 Phantom gradient attack on XOR

Practically all modern cryptosystems work exclusively on bits. Therefore, the
use of binary functions in encryption is widespread. Perhaps most common is the
XOR function, which takes two bits and returns their sum modulo 2. By itself,
XOR can be used to provide perfect security [Sha49] by using the encryption
function:

Enck(p) = k ⊕ p = c, (III.3)

where p is the plaintext, k is the key, and ⊕ is used to symbolize bitwise addition
modulo 2. Each bit in the key k is random and independent of the other bits,
with a 50 % probability of 0 and a 50% probability of 1. This provides perfect
security since the probability of observing the ciphertext c is independent of the
plaintext p, in other words: P (c|p) = P (c). However, that does not mean that
the plaintext p holds no significance. If we assume that the plaintext is known to
the attacker, he can recover the key by computing c⊕ p. This trivial case where
we know the plaintext p and the ciphertext c can also effectively be attacked by
the phantom gradient attack. This case can be represented as the network seen

77

III. Dreaming of keys: Introducing the phantom gradient attack

in Figure III.1. Here gpi is used to represent our piecewise differentiable function
that we use to represent XOR with the i-th bit value in the plaintext. A natural
thought when choosing gpi

is to let it be bitwise addition paired with a sine
activation function to constrain it to modulo 2. However, the unpublished work
by Parascandolo et al. [PHV16] showed some of the complications of learning
with a sine activation function. Therefore we choose to instead separate XOR
with constant 1 and XOR with the constant 0 into:

gpi(x) =
{

1− x for pi = 1
x for pi = 0.

(III.4)

It must be stressed that this choice is just one among many. For any gradient
descent, we need a loss function; for this paper, we will use a square error:

loss = 1
2

n∑
i

(c∗
i − ci)2, (III.5)

where c∗
i is the predicted output bit in the i-th position, and ci is the true bit

value of the ciphertext in the i-th position. With this replacement function, this
loss function, and input a, and learning rate η = 1, this replacement function
can always recover the full key in one step. Formally, by recovering the full key,
we mean that all the bits in the key are correct; similarly, if one or more bits are
incorrect, the full key has not been recovered. Since all inputs are independent
we can illustrate all possible outcomes by letting p⃗ = [1, 0, 1, 0] and the targets be
c⃗ = [1, 1, 0, 0]. Then we can construct the neural network based on Figure III.1
and Equation (III.4). On such a network, a single iteration would be:

k∗
0 = k∗

0 − η · ∂loss

∂k∗
0

= a− 1 · ∂loss

∂c∗
0

∂c∗
0

∂k∗
0

= 0 (III.6)

k∗
1 = k∗

1 − η · ∂loss

∂k∗
1

= a− 1 · ∂loss

∂c∗
1

∂c∗
1

∂k∗
1

= 1 (III.7)

Figure III.1: XOR with a constant as a FFNN

k1
gp1(x) c1

k2
gp2(x) c2

kn
gpn

(x) cn

where n is the number of bits in the plaintext p, and gpi is the reduction of fp that only
works on a single bit instead of a bit sequence.

78

Implementation and results

k∗
2 = k∗

2 − η · ∂loss

∂k∗
2

= a− 1 · ∂loss

∂c∗
2

∂c∗
2

∂k∗
2

= 1 (III.8)

k∗
4 = k∗

4 − η · ∂loss

∂k∗
4

= a− 1 · ∂loss

∂c∗
4

∂c∗
4

∂k∗
4

= 0. (III.9)

We observe that the recovered k⃗∗ is correct and was found independently from
the initial input a. The key can also found with an η smaller than 1; this would
just take more iterations.

III.3.2 XOR between two inputs

XOR between two inputs is also common in modern cryptosystems, especially
in the construction of S-boxes9. Like previously, we have to represent XOR
as a piecewise continuous function. One approach is to build on the previous
replacement function and create the nonlinear function:

f(x, y) = x + y − 2xy, (III.10)

which has all the desired XOR properties, and it collapses to the cases in
Equation (III.4) if one of the bits in question are constant. The derivatives of
this function is ∂f

∂x = 1 − 2y and ∂f
∂y = 1 − 2x, which means that the gradient

is 0 for x = 1
2 or y = 1

2 . The vanishing gradients at 0.5 is a potential weakness
as this value may act as a barrier preventing movement from values below 0.5
to move above 0.5 and vice versa. A way to address this concern is to have
gradient descent with momentum. Additionally, the full gradient may not be 0
at 0.5 since the loss typically depends on many outputs, such as out1 and out2
in Equation (III.12).

Example: The simplest example, in this case, is just two bits as input, which
are XOR-ed, as shown in Figure III.2. As in Section III.3.1, we want to train on
the initial guessed inputs; we call these inputs x1, x2. We see that x1 is xor-ed
with x2, while x2 is left unaltered, meaning that we get the following gradients:

∂loss

∂x1
= ∂loss

∂out1 ·
∂out1
∂x1

(III.11)

∂loss

∂x2
= ∂loss

∂out1 ·
∂out1
∂x2

+ ∂loss

∂out2 ·
∂out2
∂x2

. (III.12)

9S-boxes stands for substitution boxes, and are often computed by a network so that the
substitution can go fast in hardware.

Figure III.2: Example FFNN for XOR between two inputs

x1
f(x1, x2) out1

x2 out2

79

III. Dreaming of keys: Introducing the phantom gradient attack

(a) Input history (1, 1) (b) Contour plot (1, 1)

(c) Input history (1
2 , 1

2) (d) Contour plot (1
2 , 1

2)

Figure III.3: XOR between inputs learning success
(a)+(c): The y-axis gives the guessed input bit, and the x-axis counts the number of iterations.

The blue line is for the guessed bit for x1, and the green line gives the guessed bit for x2.
(b)+(d): In the contour plot, we have plotted x1, x2, and the loss against each other. Each
dot corresponds to a guess, and the iteration number of the guess is written next to the dot.
As the number of iterations increases, the dots color change from blue to red, and the target is

shown as a black dot.

It must be noted that even in this simple example, of phantom gradient attack
can fail. If try to recover x1 = x2 = 0, and start with initially random x1 and x2
we get a recovery rate of 96% (9599 out of 10000). In other words, the starting
point can hold great significance for the success of our attack. To analyze this, we
look at two cases, initial input [1,1] and [0.5, 0.5], as can be seen in Figure III.3.
We see that in Figure III.3b, the phantom gradients lead the input astray, and
it gets stuck in a repeating pattern. However, with a better starting point like
[0.5,0.5], learning is easy, and the solution is found almost instantly. A possible
pitfall may be that the phantom gradients lead our guesses astray by moving

80

Attack on Ascon’s underlying functions

them outside the range of 0 and 1; in Section III.6, we discuss ways to prevent
this.

III.4 Attack on Ascon’s underlying functions

Ascon is a cryptography system for lightweight authenticated encryption and
hashing. It has entered two competitions:

1. The Competition for Authenticated Encryption: Security, Applicability,
and Robustness (CAESAR) [Dob+16].

2. NIST’s Lightweight Cryptography standardization competition [Dob+19].

So far in the competitions, it has won CAESAR [Ber19] and is currently a
third-round qualifier of the NIST standardization competition [NIS20]. Ascon
has many different versions; for this paper, we will investigate its most current
iteration, Ascon v1.2. Furthermore, within Ascon v1.2, there are some variants.
We will only be looking at encryption and decryption using Ascon-128 within
Ascon v1.2. From this point on, when we refer to Ascon encryption and Ascon
permutation, we refer to them as they are in Ascon-128 v1.2, details in Table III.1.
Full Ascon encryption uses a secret state of 320 bits that undergo a series of
permutations. Only 64 bits are observed before the state is permuted again.
This segmentation of the observed output means that if one were to attack
the Ascon encryption using the phantom gradient attack, we would only get
gradients from 64 bits to attack a 128-bit key. We can use additional 64-bit
blocks, recover possible intermediate states, and work backward from these
possible intermediate states. However, in this paper, we will only be looking
at Ascon’s three permutations; pC , pS , and pL. To clarify the individual steps,
we divide pS into pS1 , pS2 , and pS3 . Furthermore, when running our neural
networks, we use the settings seen in Table III.2.

III.4.1 pC permutation

The first permutation in Ascon is the pC permutation, which only consists of
an XOR with a constant10. In Section III.3.1, we saw that this could be easily
solved using the phantom gradient attack.

10This constant varies with pb and pa and how many permutations that have taken place.

Table III.1: Ascon-128 specifications

Number of bits # rounds
key nonce tag Sr Sc pa pb

128 128 128 64 256 12 6
(This table is heavily influenced by table 1 in the Ascon v1.2 submission to CAESAR

[Dob+16].)

81

III. Dreaming of keys: Introducing the phantom gradient attack

III.4.2 pS permutation

The pS permutation defines a 5-bit substitution. As it only works on 5
independent bits, we can reduce the problem from 320 bits down to 5 without
losing any complexity. This reduction allows us to check phantom gradient
attacks recovery capabilities on any of the possible 32 (25) different inputs. This
substitution can be expressed as a series of XOR-, AND- and NOT- gates. To
further simplify this network, we divide it into three parts pS1 , pS2 , and pS3 , as
shown in Figure III.4.

III.4.2.1 pS1 permutation

For pS1 we have the following mapping:

pS1

x0
x1
x2
x3
x4

 =

x0 ⊕ x4
x1
x2 ⊕ x1
x3
x4 ⊕ x3

 .

The pS1 permutation only uses three XOR’s, all11 of which we can represent
with Equation (III.10). With phantom gradients from Equation (III.10) and
settings as in Table III.2, we recover the input in all 32 cases.

11We just have to make sure that x4 ⊕ x3 happens after x0 ⊕ x4.

Table III.2: Settings for backpropagation

parameter pC pS1 pS2

and
pS3

pS Σ1
and
Σ2

η 1 0.01 0.2 0.02 0.2
momentum 0 0.01 2e-3 0.2 0.9
decay 0 1e-3 1e-4 1e-9 1
max gradient ∞ ∞ 7 7 7
min gradient −∞ −∞ −7 -7 -7
λpunish 0 0 4e-3 0.04 0.04
remap False False False True True
Initial input { 1

2}
5 { 1

2}
5 { 1

2}
5 .4, .6 na

Iterations 1000 1000 1000 1000 1000

82

Attack on Ascon’s underlying functions

III.4.2.2 pS2 permutation

The pS2 permutation can be expressed as:

pS2

x0
x1
x2
x3
x4

 =

x0 ⊕ (NOT (x1) · x2)
x1 ⊕ (NOT (x2) · x3)
x2 ⊕ (NOT (x3) · x4)
x3 ⊕ (NOT (x4) · x0)
x4 ⊕ (NOT (x0) · x1)

 .

We replace the NOT gate12 with 1−x1, and the ⊕ function with Equation (III.10):

f(xi, xj , xk) = xi + (1− xj) ∗ xk − 2 ∗ xi ∗ (1− xj) ∗ xk, (III.13)

where j = i + 1(mod5) and k = i + 2(mod5). This means that bitwise
rotations should act equivalently, that is a bit sequence [b0, b1, b2, b3, b4]
should behave similarly to [b1, b2, b3, b4, b0], [b2, b3, b4, b0, b1], [b3, b4, b0, b1, b2] and
[b4, b0, b1, b2, b3]. The equivalent permutation groups are shown in Table III.3.
To achieve full key recovery for any key, we use the settings as seen in Table III.2.
All the inputs that belong to the same group recovered their bit sequence after
the same number of iterations. However, perhaps surprisingly, group 4 and group
6 need 199 and 159 iterations, while the slowest of the remaining groups finish
in 48 iterations. This wide gap is a little surprising. It can be related to the fact
that groups 4 and 6 are the two groups containing the only two-bit alternating
sequences: 01010 and 10101. This fact may be a coincidence, but it seems like
our phantom gradients struggle a little with such alternating bit sequences at
pS2 .

12Note that this is the same as our replacement function of XOR with 1 in Equation (III.4).

Figure III.4: Binary network for the S-box in pS permutation divided into pS1 ,
pS2 , and pS3 .

83

III. Dreaming of keys: Introducing the phantom gradient attack

III.4.2.3 pS3 permutation

The pS3 is defined as:

pS3

x0
x1
x2
x3
x4

 =

x0 ⊕ x4
x1 ⊕ x0
1 − x2
x3 ⊕ x2
x4

We see that this permutation only consists of previously defined functions: XOR
between two indices, Equation (III.10), and NOT (XOR with 1, Equation (III.4)).
We achieve full key recovery13by reusing the settings pS2 , Table III.2. The
maximum number of iterations required for our attack on pS3 is higher than
the worst-case we observed for group 4 in pS2 . This is as expected as pS3 is a
simpler permutation. However, perhaps surprising is that the smallest number of
iterations required for pS3 , 58, is higher than the smallest number of iterations
required for pS2 , 12.

The full pS permutation is, of course, more complicated than its components.
However, we achieve full key recovery using the settings seen in Table III.2. The
most notable difference is that we no longer guess [1

2 , 1
2 , 1

2 , 1
2 , 1

2] as the gradient
is zero for this input. We, therefore, assume that like in Ascon that x0, x3, and
x4 are known,14 and we only recover x1 and x2.

III.4.3 pL permutation

The pL permutation is a combination of bitwise rotation and a three-way XOR
on each 64-bit block. In this paper, we will only be looking at Σ1 and Σ2 as
they affect the same blocks as the key started in. However, all the blocks are

13full key recovery means that all the bits in guessed key are correct.
14x0 is a constant and [x3, x4] are nonces, like a timestamp.

Table III.3: pS2 permutation groups

group1 group2 group3 group4
00000 00001 00011 00101

10000 10001 10010
01000 11000 01001
00100 01100 10100
00010 00110 01010

group5 group6 group7 group8
00111 01011 01111 11111
10011 10101 10111
11001 11010 11011
11100 01101 11101
01110 10110 11110

84

Conclusion

treated similarly. Based on Equation (III.10) we create the following formula for
this three-way XOR:

f(x, y, z) = x + y + z − 2xy − 2xz − 2yz + 4xyz (III.14)

which means that for Σ1 and Σ2 we get:

Σ1 : f(x1,i, x1,(i+61(mod64)), x1,(i+39(mod64)))
Σ2 : f(x2,i, x2,(i+01(mod64)), x2,(i+06(mod64)))

In contrast to earlier XOR examples, all the bits are affected by XOR at the
same time. This means that the weakness of the vanishing derivative at 0.5 is
even more of an obstacle. Therefore we do two things to aid the learning: 1.
We let the initial η be large to build momentum initially, but we have a large
decay so that it only moves fast in the beginning. To ensure that we have some
learning rate for later iterations, we bound the minimal η value to a small value.
In this case, we set the boundary to ηmin = 0.02. 2: To help cross during later
iterations, we choose a random index that is closer than some ϵxor to 0.5. Then
we add:

λxor · sign(∂f(xi, xi⊞61, xi⊞39)
∂xi

), (III.15)

to the diagonal position corresponding to this index, where λxor is a predefined
constant and ⊞ symbolizes addition under modulo 64. The other matrix cells
that impact this input are scaled-down by with λxor to ensure that 0.5 avoided.
We call this a gradient jump, and we set ϵxor to 0.01 and λxor to 5. In contrast
to the pC permutation, where we proved that we could always recover the input,
and the pS permutation where we could test for all 32 possible inputs, we cannot
test for all 264 ≈ 1019 possible inputs. Furthermore, we do not achieve full key
recovery on Σ1 and Σ2. To analyze our performance on these permutations, we
reduce the complexity by dropping leading bits. This way, we can adjust the
number of bits to be between 1 bit and 64 bits. To analyze our performance,
we start doing a 100 runs on 1 bit and iteratively increase the number of bits
until we reach the full 64 bits. We use the settings as seen in Table III.2, where
our initial guess has the same number of bits we wish to recover. Each element
in our initial guess is randomly chosen to be either 0.4 or 0.6, as our initial
experiments showed that this improved performance. For both Σ1 and Σ2, we do
this with and without gradient jump.For almost all runs, the algorithm performs
better with gradient jump. However, both of them perform poorly and have
0 successes on the full 64 bits. So even the gradient jump could not properly
compensate for this suboptimal gradient. There is room for future work to
investigate replacement functions that provide better phantom gradients.

III.5 Conclusion

We have shown that the phantom gradient attack works on simple cryptographic
functions. It also shows some promise on attacking Ascon’s permutations, but as

85

III. Dreaming of keys: Introducing the phantom gradient attack

used in this paper, the attack is unsuccessful on Ascon’s third permutation pL.
The two other permutations, pC and pS , were effectively attacked. The phantom
gradient attacks failure on pL is likely our replacement functions whose gradients
are 0 at 1

2 for XOR. It must be stressed that there is nothing inherently different
from pL, which renders it immune to the phantom gradient attack. It is most
probably a question of finding the correct work around this "one-half"-challenge.
These first results hold promise, as it shows that gradual learning of neural
networks can also be applied to key recovery in cryptology.

III.6 Future work

There is much room for future work on the phantom gradient attack. In particular,
research regarding good replacement functions. Ideally, the replacement function
should keep as many as the properties of traditional XOR. For example: (x⊕y)⊕x
should ideally be y in the replacement function as well. More generally, there is
much room for attempting to attack other cryptosystems. For example, if we use
the phantom gradient attack to attack a public cryptography scheme, we can use
the public key to generate as many training samples as needed. Then we can use
the phantom gradient attack to attack the decryption function: fc(kprivate) = p,
The subscript c is the generated ciphertext, kprivate is the secret private key, and
p is the chosen plaintext. We subscript c since, for each iteration, we assume
that it is constant like we did with the plaintext in this work. The attack may
also be extended even to work when the plaintext is unknown; however, this will
likely require many training samples. As the phantom gradient attack is a new
cryptanalytical attack, there is room for studying how to protect against it. Since
it draws its foundation from neural networks, one could draw from cases where
neural networks struggle. For example, learning works better on deep networks
rather than wide networks. A cryptosystem that has to be represented as a wide
network may be less vulnerable to a phantom gradient attack. For training the
network, we tried gradient descent and gradient descent with momentum in this
paper. However, other optimizers remain untested. Two natural candidates are
the neural network optimizers ADAM and RMSProp. Moreover, it is not obvious
that square error is the most suited loss function. Testing different optimizers
and loss functions are low hanging fruits for future research.

Acknowledgements. The author wishes to give a special thanks to Audun
Jøsang and Thomas Gregersen for valuable discussion and words of encourage-
ment.

References

[Ala12] Alani, M. M. “Neuro-cryptanalysis of des and triple-des”. In: In-
ternational Conference on Neural Information Processing. Springer.
2012, pp. 637–646.

86

References

[Ber19] Bernstein, D. J. Crypto competitions: CAESAR submissions. https:
//competitions.cr.yp.to/caesar-submissions.html. (Accessed on
03/19/2020). Feb. 2019.

[Dob+16] Dobraunig, C. et al. Ascon v1.2. Submission to Round 3 of the
CAESAR competition. 2016.

[Dob+19] Dobraunig, C. et al. Ascon v1.2. Submission to Round 1 of the
NIST Lightweight Cryptography project. 2019.

[Dou96] Dourlens, S. Applied Neuro-Cryptography and Neuro-Cryptanalysis
of DES. French. Master Thesis. Advisor: Riesner, Christian. 1996.

[Erh+09] Erhan, D. et al. “Visualizing higher-layer features of a deep network”.
In: University of Montreal vol. 1341, no. 3 (2009), p. 1.

[Gre17] Greydanus, S. “Learning the enigma with recurrent neural networks”.
In: arXiv preprint arXiv:1708.07576 (2017).

[Gri+18] Gritsenko, A. A. et al. “BriarPatches: Pixel-Space Interventions for
Inducing Demographic Parity”. In: arXiv preprint arXiv:1812.06869
(2018).

[KK02] Kinzel, W. and Kanter, I. “Neural cryptography”. In: Proceedings of
the 9th International Conference on Neural Information Processing,
2002. ICONIP’02. Vol. 3. IEEE. 2002, pp. 1351–1354.

[KMS02] Klimov, A., Mityagin, A., and Shamir, A. “Analysis of neural
cryptography”. In: International Conference on the Theory and
Application of Cryptology and Information Security. Springer. 2002,
pp. 288–298.

[Lew88] Lewis, J. P. “Creation by refinement: a creativity paradigm for
gradient descent learning networks.” In: ICNN. 1988, pp. 229–233.

[NIS20] NIST. Lightweight Cryptography | CSRC. https://csrc.nist.gov/
projects/lightweight-cryptography. (Accessed on 03/19/2020). Feb.
2020.

[PHV16] Parascandolo, G., Huttunen, H., and Virtanen, T. Taming the waves:
sine as activation function in deep neural networks. 2016.

[PS00] Portilla, J. and Simoncelli, E. P. “A parametric texture model based
on joint statistics of complex wavelet coefficients”. In: International
journal of computer vision vol. 40, no. 1 (2000), pp. 49–70.

[Sha49] Shannon, C. E. “Communication theory of secrecy systems”. In: The
Bell System Technical Journal vol. 28, no. 4 (1949), pp. 656–715.

[SVZ13] Simonyan, K., Vedaldi, A., and Zisserman, A. “Deep inside
convolutional networks: Visualising image classification models and
saliency maps”. In: arXiv preprint arXiv:1312.6034 (2013).

[ZDS19] Zhu, S., Dong, X., and Su, H. “Binary Ensemble Neural Network:
More Bits per Network or More Networks per Bit?” In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). June 2019.

87

https://competitions.cr.yp.to/caesar-submissions.html
https://competitions.cr.yp.to/caesar-submissions.html
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography

III. Dreaming of keys: Introducing the phantom gradient attack

[Zha+19] Zhang, J. et al. “Analysis of Gradient Clipping and Adaptive
Scaling with a Relaxed Smoothness Condition.” In: arXiv preprint
arXiv:1905.11881 (2019).

88

Paper IV

The Phantom Gradient Attack: A
Study of Replacement Functions
for the XOR Function

Åvald Åslaugson Sommervoll1

Published in QShine 2021: Quality, Reliability, Security and Robustness in
Heterogeneous Systems proceedings, Nov 2021, volume 402, pp 619–627

IV

Abstract

We build on the phantom gradient attack by introducing some new
replacement function candidates for XOR. In this work, we put forward
four new candidates’ replacement functions and investigate the impact
of different learning rates. We also extend and investigate the new
replacement functions power on bitwise rotation XOR, of which previous
phantom gradient attack works have struggled.

Contents

IV.1 Introduction . 89
IV.2 Related work . 90
IV.3 Replacement functions XOR 91
IV.4 Conclusion . 97
IV.5 Acknowledgement . 99
References . 99

IV.1 Introduction

The recent publication in ICISSP 2021, Dreaming of keys: introducing the
phantom gradient attack by Sommervoll [Som21], showed a new cryptanalytical
approach. This work tries to unite the usually disjoint fields of algorithmic level
of cryptanalysis with the heavily researched neural network training. The initial
results for simple cryptographic functions were promising, but the attacks on the
more complex XOR functions were not encouraging. In this paper, we present
attacks on the XOR function using the phantom gradient attack.

89

IV. The Phantom Gradient Attack: A Study of Replacement Functions for the
XOR Function

As almost modern communication is done using bits, modern cryptographic
functions typically work on a bitwise level. Moreover, cryptographic algorithms
can be represented as a sequence of bitwise operations. That is, a symmetric
key cryptographic encryption can be viewed as a function f can be broken down
into multiple subfunctions f0, f1, ..., fn making an encryption:

fenc(k, p) = f0°f1°...°fn(k, p) = c, (IV.1)

where k is the symmetric key, p is the plaintext and c is the resulting ciphertext.
This disjoint processing of information can be viewed as different layers of a
neural network. However, a challenge is that these fi’s are typically discrete
operations that do not have any gradient. The phantom gradient attack therefore
works by replacing them with piecewise continuous ones. By replacing the
subfunctions with, replacement functions allow our neural network representation
of the cryptographic algorithm to have gradients. Part of the challenge that
Sommervoll [Som21] put forward in his paper was to find good such replacement
functions, of which will be the focus of this paper. In Sommervoll’s network,
he assumed that the plaintext was fixed and tried to recover the unknown
key k, we abstract away from such problems and focus exclusively on finding
good replacement functions for the XOR function. Moreover, we aim to find a
better replacement function than the one presented in Sommervoll’s paper. An
improved replacement function is a key ingredient to more successful phantom
gradient attacks.

The remaining paper is organized as follows: Section 2 discusses related
work. Next, section 3 discusses replacement functions, their most important
qualities, and which replacement functions we will be looking at in this paper. In
section 3.1, we analyze the replacement functions’ performance on XOR between
3 inputs. Section 3.2 increases the complexity by analyzing their performance
on XOR between three bitwise rotated inputs. A more complicated example,
Ascon’S Σ1 permutation, is tested in section 3.3. Finally, Section 4 concludes
and provides a short security discussion.

IV.2 Related work

The phantom gradient attack introduced by Sommervoll in Dreaming of keys:
introducing the phantom gradient attack [Som21], is a recent addition to the
field of neuro-cryptology. A field that has seen limited growth since Dourlens
introduced it in 1996 [Dou96]. Especially the field of neuro-cryptography has
had limited contributions since Kinzel and Kanter in 2002 introduced a neural
cryptosystem [KK02], which was quickly broken by Klimov et al. [KMS02]
the same year. On the other hand, neuro-cryptanalysis has been catching some
wind in recent years, with Alini successfully applying an attack on DES and
Triple-DES using neuro-Cryptanalysis in 2012s [Ala12], and So applying a deep
learning-based attack on simplified DES, and round reduced Simon and Speck
[So20]. While the works by Alani, So, and Sommervoll are all instances of
neuro-cryptanalysis, they all differ in their approach. All three works assume

90

Replacement functions XOR

to be in the known plaintext case; in contrast to the others, Alani does not
try to recover the key. Instead, he tries to simulate the decryption under an
unknown key by feeding a neural network the ciphertext as input and assigning
loss based on how close the output is to the expected plaintext. On the other
hand, So’s attack tries to train a deep network to guess the key by giving both
the ciphertext and the plaintext as inputs and having the key as the desired
output. By training the network like this, he uses this trained network to predict
a possible key given the input-ed cipher- and plaintext pair. Sommervoll, with
his phantom gradient attack, defines the network to be trained in that the known
plaintext is integrated as part of the network’s fixed weights, and the desired
target is the ciphertext. While the input is initially a guessed key, which is
"trained" and permuted in a similar manner to how adversarial examples are
created for image recognition. A weakness to this approach is that since the
gradients are only given by the replacement functions, there is the possibility of
choosing bad phantom gradients, which may lead the attack astray. However,
we may draw from the field of adversarial examples; Goodfellow et al. found
that "linear models lack the capacity to resist adversarial perturbation" in their
work Explaining and Harnessing Adversarial Examples [GSS14]. Thereby, if we
have the freedom to choose linear functions as replacement functions, this may
be favorable in our endeavor to find candidate keys. On the note of adversarial
examples, some works only alter parts of an image like Su et al., which introduce
adversarial examples that only alter one pixel [SVS19] and Gritsenko et al. with
briar patches that only affect a portion of the image [Gri+18]. This is especially
interesting as some portions of cryptographic functions’ initial state is known,
like in the Ascon cryptosystem [Dob+16]. Therefore, a phantom gradient attack
on such a cryptosystem should make sure not to alter the initial state’s known
parts.

IV.3 Replacement functions XOR

The most important quality for a replacement function is that the function and
its discrete counterpart should have the same output given the same input. For
the XOR function this means that inputs [1,1] and [0,0], should result in 0 and
the inputs [1,0] and [0,1] should result in 1. This operation can be viewed as
addition under modulo 2, which naturally gives us our first replacement function:

f(x, y) = x + y (mod 2). (xori0)

We will call this replacement function xori0, as it is the most natural replacement
function for xor between indexes. Furthermore, its derivatives are quite simple:

∂f

∂x
= 1 (IV.2)

∂f

∂y
= 1, (IV.3)

This representation is also linear, which is be favorable for generating adversarial
examples [GSS14]. Sommervoll also mentioned that XOR can be viewed as an

91

IV. The Phantom Gradient Attack: A Study of Replacement Functions for the
XOR Function

addition under mod2 but did not consider it as a possible replacement function
[Som21]. He did however consider what we will refer to as xori1:

f(x, y) = x + y − 2xy, (xori1)

which had the unfavorable quality of having derivatives that are 0 for 0.5, midway
between the bitshift from 0 and 1, namely:

∂f

∂x
= 1− 2y (IV.4)

∂f

∂y
= 1− 2x, (IV.5)

Our third candidate is a natural extension of xori1, without the weakness of
having a fixed zero gradient between 0 and 1:

f(x, y) = (x− y)2 = x2 + y2 − 2xy, (xori2)

which has gradients that are 0 for x = y, which will be rare especially given
a random initial guess. Our 4th replacement function xori3 views the second
index as a constant and splits the output into two separate cases, where the
input x is either bitflipped or not depending on y:

f(x, y) =
{

x for y ≤ 0.5
1− x for y > 0.5

(xori3)

This gives us our second linear replacement function, also making it especially
vulnerable to adversarial examples [GSS14]. Our 5th and final replacement
function is xori4 which again is simple addition, but switches out the activation
function mod2 which xori0 uses, and instead utilizes a sine-based activation
function: g(x) = 1+sin(πx− π

2)
2 , so we have:

f(x, y) =
1 + sin(π(x + y)− π

2)
2 (xori4)

This variation of xori0 is differentiable everywhere, which is favorable from a
mathematical perspective. However, in the context of neural networks, this
property seems to hold little significance as many state-of-the-art activation
functions are not differentiable everywhere, for example, ReLU [RZL17]. To
visualize these activation functions Figure IV.1 shows how the different XOR
functions behave in the interval from -1 to 2. All these replacement functions
look quite different apart from all of them sharing the same final output for the
binary inputs 1 and 0. Equation (xori0) and Equation (xori4) look similar since
they both just use addition and some form of activation function to restrict the
output. Similarly, Equation (xori1) and Equation (xori2) are similar as they are
include the interaction term xy, and have no activation function. The odd one
out in the group is definetly Equation (xori3) as it takes a more discrete approach
treating y as either a 1 in xor or a 0 in xor. These five xori functions differ in

92

Replacement functions XOR

(a) Equation (xori0) (b) Equation (xori1) (c) Equation (xori2)

(d) Equation (xori3) (e) Equation (xori4)

Figure IV.1: View of the behaviour of the different XOR implementations in the
range -1 to 2

Figure IV.2: Example FFNN for XOR between two inputs

x
f(x, y) out1

y out2

93

IV. The Phantom Gradient Attack: A Study of Replacement Functions for the
XOR Function

Table IV.1: Percentage success rate of the the different XOR replacement
functions across 1000 trials for each of the possible 2 bit outputs.

lr → 0.001 0.01 0.1 0.2 0.5 1.0
xori0 0.00 99.88 100.00 100.00 100.00 100.00
xori1 0.05 75.47 96.08 100.00 97.12 0.08
xori2 0.48 31.08 100.00 100.00 49.65 30.90
xori3 0.00 100.00 100.00 100.00 100.00 100.00
xori4 0.08 7.68 100.00 100.00 100.00 100.00

mathematical complexity, and there are no apriori reasons for the supremacy of
one over the others. We use the same simplified model as used in Sommervoll’s
paper [Som21], Figure IV.2: where FFNN stands for feed-forward neural network.
For the network, we have four2possible outputs and potentially infinitely many
different starting values. We choose 1000 different starting values and try to
recover all four of the different states from each of these 1000 different starting
values. Table IV.1 shows the pct success rate of the different xor replacement
functions for different learning rates, when run for 1000 generations. We see that
all the replacement functions perform reasonably well for this simple example,
especially with a learning rate of 0.2, where all of them get 100% recovery across
all 4000 trials. Moreover, we see that a learning rate of 0.001 is a bit low for
only 1000 iterations3. Aside from this, we see that both the linear replacement
functions xori0 and xori3 perform extraordinarily well with the higher learning
rates with almost 100% recovery rate for every instance. Also, in contrast to
what Parascandolo et al. [PHV16] found, we see that the sine activation function
used in xori4 performs very well in this example, outperforming both xori1 and
xori2, in all learning rates except for 0.01. Perhaps surprisingly, we also observe
that Sommervoll’s xori1 performs reasonably well with a learning rate between
0.1 and 0.5; however, we will see how this strength holds up as we increase the
complexity of the problem.

IV.3.1 XOR between three inputs

Some cryptographic functions include a three-way XOR between indices; these
indices can be complicated and, as is evident from Sommervoll’s limited success
with such functions [Som21]. We can illustrate this three-way XOR problem as
a FFNN in the way shown in Figure IV.3. This construction is straightforward
and does not pose a much more significant challenge than XOR between two
inputs. So we will not be looking at the phantom gradient attack on this network
but instead, use it as an example to extend our pre-existing xori-functions,
Equations (xori0) to (xori4). Extending xori0 is very simple we let:

f(x, y, z) = xori0(xori0(x, y), z) = x + y + z (mod 2), (xorti0)
2The four possible 2 bit inputs are (0,0), (0,1), (1,0), and (1,1).
3For more intricate problems, we may need more iterations and perhaps an even lower

learning rate.

94

Replacement functions XOR

Figure IV.3: Example FFNN for XOR between three inputs

x

y

z

f(x, y, z) out1

out2

out3

we call this xorti0, because it is the natural extension of xori0 and it is an XOR
between three inputs. For Equation (xori1) we will use Sommervoll’s [Som21]
extension:

f(x, y, z) = x + y + z − 2xy − 2xz − 2yz + 4xyz, (xorti1)

of which is the same as
xori1(xori1(x, y), z) = xori1(xori1(x, z), y) = xori1(xori1(y, z), x). For xori2,
on the other hand, it is a little bit more complicated. We have four natural
candidates:

f(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz + 4xyz (xorti2)
f(x, y, z) = f(f(x, y), z) = ((x− y)2 − z)2

= x4 + y4 + z2 + 2x2y2 − 4x3y − 4xy3 + 4x2y2 − 2x2z + y2z − 2xyz

(xorti2z)
f(x, y, z) = f(f(x, z), y) = ((x− z)2 − y)2

= x4 + z4 + y2 + 2x2z2 − 4x3z − 4xz3 + 4x2z2 − 2x2y + z2y − 2xzy

(xorti2y)
f(x, y, z) = f(f(y, z), x) = ((z − y)2 − x)2

= z4 + y4 + x2 + 2z2y2 − 4z3y − 4zy3 + 4z2y2 − 2z2x + y2x− 2zyx,

(xorti2x)

where Equation (xorti2) is based on Equation (xorti1) and symmetric across the
three inputs we are XOR-ing, while Equations (xorti2z) to (xorti2x) the natural
extention of Equation (xori2), but vary with respect two which index is XOR-ed
last. For Equation (xori3) we treated the second index as an external index from
the start; we extend this by doing the same with the third index.

f(x, y, z) =
{

x for (y ≤ 0.5 ∧ z ≤ 0.5) ∨ (y > 0.5 ∧ z > 0.5)
1− x for (y > 0.5 ∧ z ≤ 0.5) ∨ (y ≤ 0.5 ∧ z > 0.5)

(xorti3)

Equation (xori4) we extend the same way we extended Equation (xori0) as they
are both based on addition and an activation function.

f(x, y, z) =
1 + sin(π ∗ (x + y + z)− π

2)
2 (xorti4)

95

IV. The Phantom Gradient Attack: A Study of Replacement Functions for the
XOR Function

Figure IV.4: XOR between three round rotated instances of a four-bit input

x0

x1

x2

x3

f(x0, x1, x2)

f(x1, x2, x3)

f(x2, x3, x0)

f(x3, x0, x1)

out0

out1

out2

out3

Table IV.2: Percentage success rate of the the different XOR replacement
functions on Figure IV.4

lr → 0.01 0.1 0.2 0.5 1.0
xorti0 0.00 0.02 0.00 0.00 99.95
xorti1 16.98 17.10 16.58 9.93 0.00
xorti2z 4.70 29.88 17.00 7.80 2.92
xorti2 25.48 31.82 11.40 4.68 4.58
xorti3 21.38 19.85 18.60 100.00 100.00
xorti4 0.00 0.02 0.75 22.35 7.85

With these xorti functions in mind, let us move on to XOR between three bitwise
rotated instances of the input.

IV.3.2 XOR with bitwise rotation

To ensure no loss of information in this three way bitwise rotated XOR we
construct a network with 4 inputs as shown in Figure IV.4. where we have 4
inputs and xor between rotations 0, 1 and 2, in other words it defines an XOR
on the form:

xi ⊕ xi+1(mod4) ⊕ xi+2(mod4).

This setup means that we have 16 different inputs, moreover, the recovered
bit sequence will be unique if recovered. So if we want to check each
xorti’s performance 250 times per target, we get 4000 trials per xorti.
Furthermore, as we are working with bitwise rotation the three replacement
functions Equations (xorti2z) to (xorti2x) are equivalent so we only check
Equation (xorti2z). The resulting performance is shown in Table IV.2. We see
clearly that with XOR between three indices, the learning quickly becomes more
complex. Note that the main xorti1 previously used by Sommervoll performs
poorly and never has a success rate above 0.2. Of the proposed replacement
functions, the clear winner among the candidates is xorti3, which gets a 100%
success rate for both learning rate 0.5 and learning rate 1. Also, note that xorti0
gets almost a 100% recovery rate for learning rate 1. It is quite surprising that

96

Conclusion

such high learning rates are the ones that perform the best, which in contrast to
the general case in neural network training. For example, for stochastic gradient
descent in KERAS, the default value is 0.01 [Cho15], it is even lower for some
of the more fine-tuned optimizers. Also, perhaps surprisingly, we see that the
xorti’s based on addition and an activation function (XORITR0 and XORITR4)
both seem to favor higher learning rates. In contrast, the continuous ones such
as XORITR1, XORITR2, and XORITR2z seem to favor more midrange learning
rates such as 0.1. Maybe with more iterations and better optimizers, they can
perform even better.

IV.3.3 Ascon’s Σ1 permutation

The cryptosystem Ascon has some instances of XOR between three bitwise
rotated instances of inputs [Dob+16]. One of which is the Σ1 permutation:

xi ⊕ xi+61(modn) ⊕ xi+39(modn), (IV.6)

where n is the input size, which in Ascon’s case is 64. However, in our analysis,
we will vary this input size to study our replacement functions’ effectiveness. We
wish to test input sizes from 1 up to 64, where input size four will be similar to
the case we studied in Figure IV.4 this time, it will be (i+1) and (i+3) instead.
Similar to earlier trials, we run a 1000 iterations and a 1000 trials per input size.
However, we do not test all input sizes from 1 to 64; if all 1000 trials fail for
four incrementally larger input sizes, we terminate the run and assume that it
will also fail for larger block sizes. We do this for learning rates 1 and 0.5, and
the results are shown in Figure IV.5. We see that, like in Sommervoll’s paper,
they all perform rather poorly as we increase the number of bits. Sommervoll’s
earlier suggestions xoritr1 performs exceptionally bad, having no successes when
dealing with more than 2 bits. Among the others, we see that xorti3 generally
performs the best. This may be because of its semidiscrete nature. Also, it is
influenced by fewer gradients simultaneously as y and z are treated as constants;
however, this is not the entire story as xori0 performs similarly with a learning
rate of 1.0. Some final tests with learning rates 0.2, 0.1 and 0.01, showed that
xorti3 was successful in recovering the full 64 bits 25

1000 trials with a learning
rate of 0.2. This is still only a recovery rate of 2.5%. However, it shows that the
phantom gradient attack can be successful on the full 64 bits.

IV.4 Conclusion

In this work, we have put forward a series of candidate replacement functions
for the XOR function. All of which performed well for a simple XOR between
two indices. However, in the more complex case of XOR between three bitwise
rotated instances of the input, the replacement functions perform considerably
worse. Perhaps most interesting was that a considerably high learning rate was
the best performing and that the more simplistic replacement functions also
performed best. The piecewise differentiable xori3 and xorti3 performed the

97

IV. The Phantom Gradient Attack: A Study of Replacement Functions for the
XOR Function

(a)

(b)

Figure IV.5: Comparison of the different xorti’s under the learning rates 0.5 and
1.0
We iteratively run 1000 trials per xorti on the different input sizes 1 through 64 for the
permutation shown in Equation (IV.6). If the success rate is 0% for four input sizes in a row,
then the run terminates, and we assume the larger input sizes also to achieve roughly 0%
success.

98

Acknowledgement

best, clearly outperforming Sommervoll’s previous xori1 and xorti1. We also
found some merit in attempting to use linear representations as it is easier to
find adversarial examples in these cases.

The phantom gradient attack introduced by Sommervoll in 2021 does not
yet pose any threat to state-of-the-art cryptosystems. The phantom gradient
attack is heavily based on the training of neural networks, of which current
state-of-the-art works best with deep networks, so any cryptosystem that employs
a particularly wide network should be more robust. In this paper, we did show
that we could recover 64 bits of a permutation 2.5% of the time. This is not
enough to threaten most modern cryptosystems yet but can provide a building
block for future attacks.

IV.5 Acknowledgement

The author wishes to give special thanks to Audun Jøsang and Thomas Gregersen
for valuable discussion and words of encouragement.

References

[Ala12] Alani, M. M. “Neuro-cryptanalysis of des and triple-des”. In: In-
ternational Conference on Neural Information Processing. Springer.
2012, pp. 637–646.

[Cho15] Chollet, F. Keras. https://github.com/fchollet/keras. 2015.
[Dob+16] Dobraunig, C. et al. Ascon v1.2. Submission to Round 3 of the

CAESAR competition. 2016.
[Dou96] Dourlens, S. Applied Neuro-Cryptography and Neuro-Cryptanalysis

of DES. French. Master Thesis. Advisor: Riesner, Christian. 1996.
[Gri+18] Gritsenko, A. A. et al. “BriarPatches: Pixel-Space Interventions for

Inducing Demographic Parity”. In: arXiv preprint arXiv:1812.06869
(2018).

[GSS14] Goodfellow, I. J., Shlens, J., and Szegedy, C. “Explaining and har-
nessing adversarial examples”. In: arXiv preprint arXiv:1412.6572
(2014).

[KK02] Kinzel, W. and Kanter, I. “Neural cryptography”. In: Proceedings of
the 9th International Conference on Neural Information Processing,
2002. ICONIP’02. Vol. 3. IEEE. 2002, pp. 1351–1354.

[KMS02] Klimov, A., Mityagin, A., and Shamir, A. “Analysis of neural
cryptography”. In: International Conference on the Theory and
Application of Cryptology and Information Security. Springer. 2002,
pp. 288–298.

[PHV16] Parascandolo, G., Huttunen, H., and Virtanen, T. Taming the waves:
sine as activation function in deep neural networks. 2016.

99

https://github.com/fchollet/keras

IV. The Phantom Gradient Attack: A Study of Replacement Functions for the
XOR Function

[RZL17] Ramachandran, P., Zoph, B., and Le, Q. V. “Searching for activation
functions”. In: arXiv preprint arXiv:1710.05941 (2017).

[So20] So, J. “Deep learning-based cryptanalysis of lightweight block
ciphers”. In: Security and Communication Networks vol. 2020
(2020).

[Som21] Sommervoll, Å. Å. “Dreaming of Keys: Introducing the Phantom
Gradient Attack”. In: 7th International Conference on Information
Systems Security and Privacy, ICISSP 2021, 11 February 2021
through 13 February 2021. SciTePress. 2021.

[SVS19] Su, J., Vargas, D. V., and Sakurai, K. “One pixel attack for fooling
deep neural networks”. In: IEEE Transactions on Evolutionary
Computation vol. 23, no. 5 (2019), pp. 828–841.

100

Paper V

Simulating SQL injection
vulnerability exploitation using
Q-learning reinforcement learning
agents

Laszlo Erdodi, Åvald Åslaugson Sommervoll, Fabio Massimo
Zennaro
Published in Journal of Information Security and Applications, Sep 2021,
volume 61,

V

Abstract

In this paper, we propose a formalization of the process of exploitation of
SQL injection vulnerabilities. We consider a simplification of the dynamics
of SQL injection attacks by casting this problem as a security capture-the-
flag challenge. We model it as a Markov decision process, and we implement
it as a reinforcement learning problem. We then deploy reinforcement
learning agents tasked with learning an effective policy to perform SQL
injection; we design our training in such a way that the agent learns not just
a specific strategy to solve an individual challenge but a more generic policy
that may be applied to perform SQL injection attacks against any system
instantiated randomly by our problem generator. We analyze the results
in terms of the quality of the learned policy and in terms of convergence
time as a function of the complexity of the challenge and the learning
agent’s complexity. Our work fits in the wider research on the development
of intelligent agents for autonomous penetration testing and white-hat
hacking, and our results aim to contribute to understanding the potential
and the limits of reinforcement learning in a security environment.

Contents

V.1 Introduction . 102
V.2 Background . 103
V.3 Model . 107
V.4 Experimental simulations 110
V.5 Ethical considerations . 120

101

V. Simulating SQL injection vulnerability exploitation using Q-learning
reinforcement learning agents

V.6 Conclusion . 121
References . 121
Coauthor declaration . 125

V.1 Introduction

SQL injection is one of the most severe vulnerabilities on the web. It allows
attackers to modify the communication between a web server and a SQL database
by sending crafted input data to the website. By controlling the SQL query
instantiated by a server-side script, attackers can extract from a database data
that they should not normally be authorized to retrieve. In extreme cases,
attackers can persistently change the databases or even exploit the SQL injection
vulnerability to send remote commands for execution on the website server. To
secure a system, detecting SQL injection vulnerabilities is a crucial task for
ethical hackers and legitimate penetration testers.

In this paper, we consider automatizing the process of exploiting SQL
injection vulnerability through machine learning. In particular, we assume
that a vulnerability has been identified, and then we rely on reinforcement
learning algorithms to learn how to exploit it. Reinforcement learning algorithms
have been proved to be an effective method to train autonomous agents to solve
problems in a complex environment, such as games [Mni+15; Sil+17; Vin+19].
Following this methodology, we cast the problem of exploiting SQL injection
vulnerabilities as an interactive game. In this game, an autonomous agent probes
a system by sending queries, analyzing the answer, and finally working out the
actual SQL injection exploitation, much like a human attacker. In this process,
we adapt the problem of exploiting SQL injection vulnerabilities to the more
generic security-related paradigm of a capture-the-flag (CTF) challenge. A CTF
challenge constitutes a security game simulation in which ethical hackers are
required to discover a vulnerability on a dedicated system; upon discovering a
vulnerability, an ethical hacker is rewarded with a flag, that is, a token string
proving her success. It has been proposed that the generic CTF setup may be
profitably used to model several security challenges at various levels of abstraction
[EZ20]. We implicitly rely on this framework to model SQL injection exploitation
as a CTF problem and map it to a reinforcement learning problem. Concretely,
we implement a simplified synthetic scenario for SQL injection exploitation, we
deploy two standard reinforcement agents, and we evaluate their performance
in solving this problem. Our results will provide a proof of concept for the
feasibility of modeling and solving the exploitation of SQL injection vulnerability
using reinforcement learning.

This work fits in the more general line of research focused on developing
and applying machine learning algorithms to security problems. Reinforcement
learning algorithms have been previously considered to tackle and solve similar
penetration testing problems, although they have never been applied specifically
to the problem of SQL injection vulnerability exploitation. In particular, generic
penetration testing has been modelled as a reinforcement problem in [Bla+20;

102

Background

GC20; Poz+20; SBH13], while explicit capture-the-flag challenges have been
considered in [ZE20]. Moreover, autonomous agents were invited to compete in
a simplified CTF-like challenge in the DARPA Cyber Grand Challenge Event
hosted in Las Vegas in 2016 [Fra16].

V.2 Background

In this section, we review the main ideas from the field of security and machine
learning relevant to the present work.

V.2.1 SQL Injection

Dynamic websites are widespread nowadays. To provide a rich user experience,
they have to handle a large amount of data stored for various purposes, such
as user authentication. Access to the stored data, as well as their modification,
has to be very fast, and an effective solution is to rely on relational databases
such as mysql, mssql, or posgresql. All these database systems are based on the
standard query language SQL (Structured Query Language).

SQL communication between the website and the SQL server consists of
SQL queries sent out by the web server and SQL responses returned by the SQL
server. The most frequently used operation is data retrieval using the SELECT
command along with a WHERE clause to select columns and rows from a table
satisfying a chosen condition; in advanced statements, multiple SQL queries
can be concatenated with a UNION statement returning one table made up by
the composition of the query answers. A simple example of a query where two
columns are selected from a table with filtering using the value of the third
column is:

SELECT Column1, Column2 FROM Table1 WHERE Column3 = 4.

A more complex example where two query results are concatenated with the
UNION keyword is:

SELECT Column1 FROM Table1 WHERE Column2 = 4 UNION

SELECT Column4 FROM Table2 WHERE Column5 >= 12.

An SQL injection happens when the server side script has an improperly
validated input that is inserted into the SQL query directly or indirectly by the
server side script. Because of the improper validation, the attacker can gain full
or partial control over the query. In the easiest case, the attacker can modify
the expression evaluation in the WHERE clause of the query by escaping from the
input variable and adding extra commands to the query. For example, if the
SQL query exposed by the script is:

SELECT Column1 FROM Table1 WHERE Column2 = input1 ,

103

V. Simulating SQL injection vulnerability exploitation using Q-learning
reinforcement learning agents

then, using the misleading input 1 OR 1 = 1, the WHERE clause evaluation will
always be true independently of the first condition:

SELECT Column1 FROM Table1 WHERE Column2 = 1 OR 1 = 1.

Note that in the previous example, the SQL engine behaves as if the input
data was 1, and OR 1 = 1 was part of the pre-existing query. In more refined
injections, the attacker can add a UNION statement and craft two queries from
the original single query. In these cases, the attacker must find or guess the
number and type of the selected columns in the second query to align with the
first query.

Overall, the process of exploitation of an SQL injection vulnerability can
be decomposed into the following non-ordered steps based on conventional
exploitation logic:

1. Finding a vulnerable input parameter : a website can accept multiple
parameters with different methods and different session variables. The
attacker has to find an input parameter that is inserted in a SQL query by
the script with missing or improper input validation.

2. Detecting the type of the vulnerable input parameter : the attacker has
to escape from the original query input field. For instance, if the input
parameter is placed between quotes by the script, then the attacker has
to also use a quote to escape from it; if the original query were, for
example, SELECT Column1 FROM Table1WHERE Column2 = ′input1 ′, then
the escape input has to also start with a quote: 1′ OR ′1′ =′ 1. Note that
here, in the added Boolean comparison, two strings ′1′ are compared, but
the closing quote of the second string is missing because it is placed there
by the original script itself.

3. Continuing the SQL query without syntax errors: escaping from the input
provides options for the attacker to continue the query. The SQL syntax
has to be respected, considering possible constraints; for instance, escaping
from the string requires inserting a new string opening quote at the end
of the input. A common trick is to use a comment sign at the end of the
input to invalidate the rest of the SQL query in the script.

4. Obtaining the SQL answer presentation in the HTTP response: after
submitting her SQL query, the attacker obtains an answer through the
website. Despite the SQL engine answering with a table, this raw output
is highly unlikely to be visible. The generated HTTP answer with the
HTML body delivered to the attacker is a function of the unknown SQL
query processing by the server-side code. In some cases, the attacker can
see one or more fields from the SQL answer, but in other cases, the query
result is presented only in a derived form by different HTML responses.
In this latter case, the attacker can carry out a Boolean-based blind SQL
injection exploitation by playing a true or false game with the website.

104

Background

5. Obtaining database characteristics for advanced queries: To insert
meaningful queries in the original input, the attacker needs to uncover
the names of tables or columns. This can require to select values from
the information schema table in advance. If the attacker aims to use the
UNION SELECT approach, she has to obtain the column count and types of
the first query in order to be aligned with the first query.

6. Obtaining the sensitive information: once she knows the necessary parts
of the original query (input type, structure of the query) and having all
information about the databases (database names, table names, column
names), then the attacker can obtain the required confidential data.

7. Carrying out extra operations: in addition to retrieving data from the
database, the attacker can carry out extra tasks such as writing a script
file to the server using the SELECT INTO outfile command. This type of
advanced exploitation is above the normal aim of SQL injection exploitation,
and the objective is often to create a remote command channel for the
attacker for further attacks.

Notice that these steps are not necessarily taken out in this order: an attacker
may skip or repeat steps, according to the attack she is mounting.

V.2.2 Reinforcement Learning

Reinforcement learning [SB18] constitutes a family of machine learning algorithms
designed to solve problems modeled as Markov decision processes (MDP).

A MDP allows to describe the interaction of an agent with an environment
(or system). The aim of the agent is to learn an effective policy π by probing and
interacting with the system. Formally, the environment is defined as a tuple:

⟨S,A, T ,R⟩

where S is a set of states in which the system can be, A is a set of actions the
agent can take on the system, T : S ×A → S is a (deterministic or probabilistic)
transition function defining how the system evolves from one state to the next
upon an action taken by the agent, and R : S × A → R is a (deterministic
or probabilistic) reward function returning a real-valued scalar to the agent
after taking a certain action in a given state. The model is Markovian as its
dynamics in state hi ∈ S depends only on the current state and not on the
history; alternatively, hi ∈ S constitutes a sufficient statistic of the history of
the system to determine its dynamics.

Reinforcement learning in this MDP setting is formally defined as the learning
of an optimal action policy π∗(a|h) = P (a|h) that determines a distribution
of probability over actions a in a given state h, and such that the long-time
expected sum of rewards over a time horizon T is maximized:

π∗ = arg max
π

Gt = arg max
π

T∑
t=0

γtEπ [rt] ,

105

V. Simulating SQL injection vulnerability exploitation using Q-learning
reinforcement learning agents

where γ is a discount factor (introduced for mathematical and modelling reasons),
Ep[·] is the expected value with respect to distribution p, and rt is the reward
obtained at time-step t.

A reinforcement learning agent learns (to approximate) an optimal policy
π∗ relying on minimal prior knowledge encoded in its algorithm. The simplest
model-free agents are provided simply with the knowledge of the feasible action
set, and they learn their policy by interacting with the environment, observing
their rewards, and estimating the value of different actions in different states.
Undertaking an action and observing its result is called a step; a collection of
steps from the initial state of the MDP to a final state of the MDP (if it exists)
or to an arbitrary termination condition (e.g., the maximum number of steps) is
called an episode. Several algorithms are presented in the reinforcement learning
literature [SB18]; we will briefly review the algorithms relevant to this paper in
the next section.

V.2.3 Literature overview

Machine learning has recently found application in many fields in order to solve
problems via induction and inference, including security [SNX19]. Success in
complex tasks like image recognition [KSH12] or natural language processing
[Vas+17] has spurred the application of supervised deep neural networks to
security-related problems where data is abundant; examples include processing
code to detect vulnerabilities [Rus+18], or malware [Tob+16]. However, the
supervised paradigm fits less well a dynamic problem such as web vulnerability
exploitation, where multiple decisions and actions may be required to achieve the
desired goal. In this context, a more suitable solution is offered by reinforcement
learning algorithms designed to train an agent in a complex environment via
trial-and-error. Remarkable successes on games like Go [Sil+17] or Starcraft II
[Vin+19] suggest that this approach may be fruitfully applied to web vulnerability
exploitation or penetration testing in general.

In the context of cybersecurity, reinforcement learning has been used for
defensive security, for instance, to tackle the problem of intrusion detection. In
[LCS20], several deep reinforcement learning (DRL) algorithms took advantage of
labeled datasets to perform intrusion detection. In [Set+20a] a context-adaptive
intrusion detection was presented that uses multiple independent deep RL agents
distributed across the network for accurate detection and classification of new
and complex attacks. An example of multi-agent RL-based intrusion detection is
discussed in [SK08], together with a case study and evaluation. Network-based
[HM20] and host-based [XX05] intrusion detection were also discussed with
reference to RL. Other specific solutions such as intrusion detection for cloud
infrastructures [Set+20b] or for wireless sensor networks [Ben+20] are discussed
in the literature too. All these methods detects attacks (including, possibly, SQL
injections) taking a defensive perspective, while this work assumes the offensive
perspective of a penetration tester performing legitimate attacks in order to
uncover possible SQL injection vulnerabilities.

106

Model

Applications of machine learning and reinforcement learning algorithms for
offensive security has seen application in the 2016 Cyber Grand Challenge 2016
[Fra16], a competition in which participants were requested to deploy automatic
agents to target generic system vulnerabilities.

To the best of our knowledge, machine learning has been used so far only to
detect SQL injection vulnerabilities, but never for exploitation. Several papers
have indeed considered the problem of detecting SQL injection using machine
learning methods. In [SS07] recurrent neural networks were trained to detect and
discriminate offensive SQL queries from the legitimate ones. [JG14] proposed a
classifier that uses a combination of Naïve Bayes modules and Role Based Access
Control mechanisms for the detection of SQL injection. [Sin+15] implemented
an unsupervised clustering algorithm to detect SQL injection attacks. [UBF17]
showed a proof-of-concept implementation of a supervised learning algorithm
and its deployment as a web service able to predict and prevent SQL injection
accurately. [Ros18] exploited network device and database server logs to train
neural networks for SQL injection detection. [HBT19] tested and compared 23
different machine learning classifiers and proposed a model based on a heuristic
algorithm in order to prevent SQL injection attacks with high accuracy. [Tan+20]
also presented a SQL injection detection method based on a neural network
processing simple eight-features representations and achieving high accuracy.
All these works demonstrate the interest of the community in the problem of
dealing with SQL injection vulnerabilities. However, most of these studies have
focused on the problem of identifying the vulnerability, and they have relied
on supervised or unsupervised machine learning algorithms. The most complex
part of a SQL injection attack, the exploitation, has not been considered for
automation. Our work aims at filling this gap, providing a formalization and an
implementation of a reinforcement learning model targeted at the problem of
exploiting a SQL injection vulnerability.

V.3 Model

This section describes how we modeled the problem of performing SQL injection
as a game that can be tackled with standard RL methods.

V.3.1 Simplification of the SQL problem

Based on the number of possibilities, solving a general SQL injection problem
with RL would require considering numerous types of actions and a high number
of states. Although the final aim is to solve such an arbitrary SQL injection
exploitation problem, here our approach is to consider a scenario with the
following simplifications.

Capture the Flag Jeopardy-style problems - In case of real attacks involving
SQL injection exploitation, the attacker might be driven by vague objectives
(e.g., eliciting information, writing a script to the server). Moreover, the attacker
should consider the presence of a possible defense team; her attacks might be

107

V. Simulating SQL injection vulnerability exploitation using Q-learning
reinforcement learning agents

observed, and counteractions might be taken; in such a case, covering her tracks
might increase the chances of success. In our solutions, we model the problem
as a Jeopardy-style Capture the Flag (CTF) game, in which the environment is
static (no defensive blue team), and the victory condition is clearly defined in
the form of a flag (no fake flags are provided, and the agent can easily identify
the flag).

Only one vulnerable input for the website - Finding the vulnerable input for
the SQL injection exploitation can also be challenging. In an average website,
numerous input data can be sent using different HTTP methods. Access right
for the pages complicates the case as well. Our focus is on the exploitation of
the vulnerability, not on the vulnerable parameter finding. As such, we consider
a mock website that has only one input parameter that is vulnerable to SQL
injection. Note that this does not mean that any other characteristic of the
vulnerability is known to the agent. The idea is to avoid repeatedly sending the
same input for all input parameters of the website.

No input validation by the server side script - When the client sends the input
parameter, the server side script can modify or customize it. This processing
may completely prevent the possibility of a SQL injection or limit the options
of the attacker. In our simplified approach, we assume that the input data is
placed directly into the SQL query without any transformation. We also assume
that there is only one query in the server side script, and the input does not go
through a chain of queries.

The SQL result can be presented in different ways - Similar to the input
transformation, the server side script is responsible for processing the output SQL
answer and generating the web HTML answer. Different degrees of processing are
possible, ranging from minimal processing (showing the actual response embedded
in the HTML page) to a complete transformation (returning a different web page
according to the result of the query without embedding the actual data in the
page). We consider a representation that strikes a balance between simplicity
and realism, in which the answer web page contains fields from the queried table,
thus providing the agent with an indication of success or failure.

Unified table and column names - During the exploitation, the attacker has to
identify different databases with different table names, and it might be necessary
to map the table characteristics such as column names and types. We consider
only one background database with unified names for tables and columns.

Only three data types in the tables - We consider three different data types:
integer, varchar (string), and datetime to simplify the complexity of the problem.

Union is allowed with column matching - Our exploitation strategy can use
the UNION statement to concatenate query results. We assume that this is allowed
by the SQL server with the only condition to have the same number of results
in the columns in both queries.

No error messages - In some cases, the SQL errors are presented in the web
answer. Using the table names or column names leaked by the SQL error can
help the attacker. In our assumption, we consider that the SQL error messages
are not visible to the attacker.

108

Model

Because of the above simplifying assumptions, our agent will not consider
all the possible types of actions that could take place during an SQL injection
exploitation. Indeed, with respect to the different SQL injection steps that
we have identified in Section V.2.1, our agent will focus on the problems of
detecting the type of the input parameter (step 2), formulating a syntactically
correct query (step 3), and obtaining database characteristics for advanced
UNION SELECT queries (step 5) in order to obtain the sensitive information (step
6). We assume that the identity of the vulnerable parameter is known (step 1)
and that the presentation of the SQL answer is transparent (step 4). We do not
consider the problem of carrying out extra operations (step 7).

V.3.2 Reinforcement learning modelling

In order to deploy reinforcement learning agents to perform SQL injection
exploitation, we model our problem as an MDP. We take the potential attacker
or pentester as the reinforcement learning agent, and we represent the vulnerable
webpage with its associated database as the MDP environment.

MDP We map the set of state S to the states of the webserver. Since we
modeled the problem as a static CTF challenge, we assume a system whose
underlying behaviour does not change upon the sending of requests by the agent
(e.g., there are no mechanisms in place to detect a possible attack and modify
the dynamics of the server); formally our webserver is stateless, meaning that
it has just a singleton state. However, in order to track the knowledge of the
agent (which actions have been attempted and which results were produced),
we account in the state variable also for the knowledge accumulated by the
agent. Therefore, our states are defined by the history hi of actions taken (and
responses seen) by the agent. Clearly, such a state guarantee that our system
is Markovian as it trivially summarizes the entire history of the interactions
between the agent and the system. We map the set of actions A to a (finite) set
of SQL strings that the agent can send to the webpage. We map the transition
function T to the internal logic that drives the webpage. Since the system is
stateless in our simulation, this function is simply an identity mapping over the
singleton. Finally, we map the reward function R to a signal that returns a
positive feedback when the agent performs the SQL injection and retrieves the
flag and a negative feedback for each unsuccessful query it sends.

RL agents In order to actually solve the MDP defined above, we consider two
different concrete algorithms for our agent.

The first algorithm is the standard tabular Q-learning [SB18]. Q-learning is a
value-based algorithm that aims at deriving an optimal policy π∗ by estimating
the value of each action in any possible state:

Q (aj , hi) = Eπ [Gt|at=j , ht=i] ,

that is, the Q-value of action aj ∈ A in state hi ∈ S is the long-term expected
reward Gt under the current policy π assuming that at the current step t we

109

V. Simulating SQL injection vulnerability exploitation using Q-learning
reinforcement learning agents

were in state hi and had undertaken action aj . The estimated Q-values are
updated at runtime, step after step, using a temporal-difference algorithm, that
is, progressively correcting the difference between the current estimates of the
agent and the actual reward it obtains:

Q (at, ht)← Q (at, ht) + η
[
rt + γ max

a
Q (a, ht+1)−Q (at, ht)

]
,

where η ∈ R>0 is a learning rate. An action policy may be simply defined by
choosing, in state ht, the action a∗ that guarantees the highest Q-value Q(a∗, ht).
However, at learning time, such a greedy policy may lead the agent not to
explore all its possibilities exhaustively; therefore, it is common to introduce an
exploration parameter ϵ ∈ [0, 1], and define the agent policy as:

at =
{

a∗ = arg maxa Q (a, ht) with probability (1− ϵ)
∼ Unif(A) otherwise ,

that is, we choose the optimal action a∗ with probability 1 − ϵ, otherwise we
sample uniformly at random an action from the action set A. In the tabular
Q-learning algorithm, the estimated Q-values are explicitly encoded in a table.
This algorithm is guaranteed to converge to the optimal solution; however, such
a representation may not scale well with the dimensionality of the action and
state space.

The second algorithm we consider is the deep Q-learning [Mni+15]. A deep Q-
learning (DQN) agent aims at estimating Q-values like the first agent, but instead
of instantiating a matrix, it relies on a (deep) neural network to approximate the
Q-values. The use of a neural network avoids the allocation of large matrices,
thus allowing to deal with large action and state spaces; however, the ensuing
approximation makes it more challenging to interpret the learned model and to
guarantee convergence [SB18].

V.4 Experimental simulations

In this section, we describe the environment we developed, and then we present
our simulations and their results. All our simulations are publicly available
online at https://github.com/FMZennaro/CTF-SQL.

V.4.1 Environment

Our environment consists of a simplified scenario in which an agent interacts
with a web page by sending a parameter in the form of a string s; the web page
embeds the parameter in a pre-generated SQL query and returns the result of
the execution of such a query to the agent.

Database In our problem, we assume that the web page interacts with a
randomly generated database composed of Nt > 1 tables; for simplicity, all

110

https://github.com/FMZennaro/CTF-SQL

Experimental simulations

tables are named Tablei, where i an index between 1 and Nt (e.g.: Table2).
Each table is defined by a random number Nc > 1 of columns with a random
data type chosen among integer, string or datetime; all columns are given
default names with the form Columnj, where j an index between 1 and Nc

(e.g.: Column3). Each table is populated by a random number of rows Nr > 1
containing data fitting the data type of each column. Additionally, we instantiate
one final table named Flagtable with a single string column named flag, and
containing only one record with the string "flag".

In our simulation, in every episode we sample uniformly at random Nt, Nc, Nr

in the interval [1, 5]. Notice, however, that the complexity of the problem as it
is defined below depends only on Nc.

Pre-generated SQL query The pre-generated SQL query on the web server
that accesses the database is instantiated randomly at the beginning of each
episode, and it can take the following general form:

SELECT [Columns] FROM [Table] WHERE [Column][Condition][Input],

where:

• [Columns] is a list of n > 1 columns;

• [Table] is the name of a table;

• [Column] is the name of a column;

• [Condition] is a logical operator chosen in the set
{=, >, BETWEEN ′01/01/2000 12 : 00 : 00 AM′ AND};

• [Input] is the user defined string s which may take one of the following
forms {s, ”s”,′ s′}.

A pre-generated SQL query would be, for instance:

SELECT Column3, Column4 FROM Table2 WHERE Column1 =′ s′

SQL injection The learning agent is not aware of the specific pre-generated
SQL query running on the web page, and it can only discover the possible
vulnerability by sending strings s and observing the result.

However, we assume that the agent is aware of the generic form of the SQL
query, which means that it knows that the SQL injection solution would have
the generic form:

[Escape] UNION SELECT [FColumns] FROM Flagtable#,

where:

• [Escape] is an escape character introducing the SQL injection, and which
must be chosen in the set {ϵ, ”,′ }, where ϵ is the empty string;

111

V. Simulating SQL injection vulnerability exploitation using Q-learning
reinforcement learning agents

• [FColumns] is the repetition of a dummy column name (e.g.: flag) ranging
over the number of columns in the pre-generated SQL query.

Notice that the hash symbol # at the end is introduced for generality to comment
out any other following instruction. As an illustration, the SQL injection query
for the example pre-generated SQL query above would be:

′ UNION SELECT flag, flag FROM Flagtable

Action space The knowledge of the generic form of the solution allows us to
identify two sub-objectives for the agent: (i) identify the correct escape character,
and (ii) guess the correct number of columns to insert in the SQL injection string.
With reference to the SQL injection steps in Section V.2.1, notice that task (i)
is related to step 2 and 3 of SQL exploitation, while task (ii) is related to step 5
of SQL exploitation.

Based on the identification of these sub-objectives, we can define a finite and
restricted set of actions that would allow the agent to achieve its sub-goals and
send to the web server the right query s to perform the exploit. More specifically,
the action set A can be partitioned into three sub-sets of conceptually different
actions. The first subset contains escape actions Aesc, that is, queries aimed
at simply discovering the right escape characters needed for the SQL injection.
This set contains the following actions:

Aesc ={” and 1 = 1#,

” and 1 = 2#,
′ and 1 = 1#,
′ and 1 = 2#,

and 1 = 1#,

and 1 = 2#}.

The cardinality of this subset is |Aesc| = 3 · 2 = 6, that is two actions for each
one of the three possible escape solutions.

The second subset contains column actions Acol, that is, queries that can be
used to probe the number of columns necessary to align the UNION SELECT to
the original query. This set of actions contains queries with the generic form:

Acol = {[Escape] UNION SELECT [Columns] [Options]#},

where [Columns] corresponds to a list of a variable number, between 1 and Nc, of
columns, and [Options] are output formatting options using the SQL commands
LIMIT and OFFSET. The options commands do not affect the results of the query
in this current simulation. The cardinality of this subset is |Acol| = 3 · 10 = 30,
that is ten actions for each one of the three possible escape solutions.

Finally, the third subset contains injection actions Ainj specifically designed
to attempt the capture of the flag via SQL injection. These actions take the
form of the general solution:

Ainj = {[Escape] UNION SELECT [FColumns] FROM Flagtable},

112

Experimental simulations

where [FColumns] corresponds to the repetition of the string flag a number of
times between 1 and Nc. The cardinality of this subset is |Ainj | = 3 · 5 = 15,
that is five actions for each one of the three possible escape solutions.

The total amount of action |A| is given by the union of these three partitions
|Aesc ∪ Acol ∪ Ainj | = 51. Since the solution of the problem belongs to this set,
an agent could just try to solve the SQL injection problem by blind guessing,
iterating over all the actions in A. In this case, the expected number of attempts
before successfully capturing the flag would be |A|

2 = 25.5. However, like a
human pen-tester, a smart agent would take advantage of the structure in the
action set A: several actions overlap, and by first discovering which escape
character works in the pre-generated SQL query, it is possible to reduce the
space of reasonable actions by two thirds. Thus, a proper balance of exploration
and exploitation may lead to a much more effective strategy. An optimal policy
would consist of a number of steps proportional to the expected number of
actions necessary to find the right escape character, 3

2 = 1.5, plus the expected
number of actions necessary to perform an exploitation action with the right
number of columns, 5

2 = 2.5; because of the possible overlap between determining
the escape character and evaluating the number of columns, we estimate the
lower bound on the expected number of steps of an optimal policy to be between
5 and 4.

SQL responses Whenever the agent selects an action a ∈ A, the corresponding
SQL statement is sent to the web server, embedded in the pre-generated SQL
query, and forwarded to the database. Since we assumed that the processing
of the database is transparent, the database response is then provided to the
agent. For the sake of its attack, the agent discriminates between three types of
answers: (i) a negative answer, that is, an empty answer (due to an invalid SQL
statement not matching the escape characters of the pre-generated query); (ii) a
positive answer, that is, an answer containing data (due to having submitted a
valid SQL statement); (iii) the flag answer, that is, an answer containing the
flag (meaning that the agent managed to exploit the SQL vulnerability).

Rewards We adopt a simple reward policy to train the agent: the attacker
collects a +10 reward for capturing the flag while receiving a −1 reward for any
other action not resulting in the flag’s capture. We chose this reward policy
heuristically in order to guarantee a positive return to an agent completing an
episode in a reasonable number of steps (an optimal policy would take between
4 and 5 steps), and a negative return to any agent with a sub-optimal strategy
taking more than 10 steps to reach the solution. The specific values are, however,
arbitrary as the goal of the agent is to maximize the reward; as long as it will
receive a strong positive signal for reaching the flag and a negative penalty,
the agent will learn, in the long run, a policy that will retrieve the flag in the
minimum number of actions.

113

V. Simulating SQL injection vulnerability exploitation using Q-learning
reinforcement learning agents

Generalization We would like to remark that, in each episode, our environment
is initialized with a new pre-generated query and a new database structure.
Therefore, our agent is not meant to learn one specific solution to a single SQL
injection vulnerability. Instead, it is supposed to learn a generic strategy that
may flexibly adapt to any vulnerability generated by our environment.

State space Our state will be defined by the set of actions performed as well
as the response. This naive state space definition means that we can have up
to 3|A| different states. More on the actual implementation is discussed in the
simulation sections.

Data for Learning Since we train our model according to a reinforcement
learning, we do not have a static dataset of actions and rewards. Instead, in
each episode, pairs of actions and rewards are generated dynamically at runtime.
As soon the agent takes an action, it observes the outcome (in terms of state
transition and reward), and it performs inference to improve its policy. Since
the internal state of the agent already summarizes its history, there is no need to
retain any observation; the agent discard the current pair of action and reward
and moves on to the next action.

V.4.2 Simulation 1

In our first simulation, we implemented a simple tabular Q-learning agent, and
we trained and tested it in our environment.

Agent Our tabular Q-learning agent tracks all the actions performed and
whether their outcome was a negative or positive answer. Notice that we do not
need to track in memory the flag answer since it marks the end of an episode. The
game’s state is then described by the collection of actions and relative responses,
forming the history h. An example of history may be h = {8,−16, 21}, denoting
that the agent has taken action a8 and a21, that returned a positive answer, and
action a16 that returned a negative answer. For each possible history, h, the
agent then maintains a probability distribution over the actions, Q(h, a).

Notice, that even with a modest amount of actions, the cardinality of the state
space has an unmanageable size of 2|A| = 251. To workaround this computational
issue, we exploit the fact that a large number of these possible histories are
not consistent (i.e., we can not have positive and negative answers for actions
with the same escape characters) and will never be explored; we then rely on
using a sparse Q-table instantiated just-in-time, where entries of the Q-table are
initialized and stored in memory only when effectively encountered.

Setup We run our environment using Nc = 5 as already described. For
statistical reasons, we train 10 agents using a discount factor γ = 0.9, an
exploration rate ϵ = 0.1, and a learning rate η = 0.1. We run each agent on 106

episodes.

114

Experimental simulations

(a) Number of states instantiated by
the agent. The dark blue line repre-
sents the average computed over the
10 agents, the blue shaded area repre-
sents the standard deviation. The red
dashed line is a linear regression on the
domain (2 · 105, 106).

(b) Number of steps per episode. The
number of steps for each agent is first
smoothed using a 1000-step window;
the dark blue line represents the aver-
age computed over the 10 agents, the
blue shaded area represents the stan-
dard deviation.

Figure V.1: Simulation 1 - training.

Results and analysis First of all we analyze the dynamics of learning. Figure
V.1a shows the number of states instantiated by the agents in their Q-tables
during training. We can clearly notice two different learning phases: an
exponential growth at the very beginning, while the agents discover new states;
and then a longer phase characterized by a linear growth, in which the agents
keep discovering new states spurred by their exploration rate parameter. Figure
V.1a shows that, starting at around episode 2 · 105, this growth is well captured
by linear regression, suggesting a slowing down in learning. Figure V.1b reports
the number of steps per episode; the plot is smoothed by averaging together
1000 episodes in order to make the trend more apparent. At the very beginning,
starting with a uniform policy, the agents act randomly, and this implies that a
large number of actions is required to find the solution; at the very beginning,
both the average number of actions and the standard deviation is very high,
highlighting the purely random behaviour of the agents. Notice that the number
of steps is far higher than the cardinality of the action space, because the initial
agents may re-sample the same action multiple times; this may seem extremely
ineffective and irrational, but notice that the agents have no way to know that
the order of actions does not matter. By the end of the training, the number of
actions has decreased considerably, although the agents are still taking random
actions from time to time due to their exploratory policy; notice that, as soon
as a random exploratory action is taken, an agent may find itself in an unknown
state in which it has not yet learned how to behave optimally; as such, every
time an agent act in an exploratory way multiple new states may be added to
its Q-table (as shown by Figure V.1a) and multiple steps may be necessary to
get to the solution.

Using a Q-table also allows us to introspect the behaviorual policy of an
agent by reading out the entries of the table. For instance, Figure V.2a and
Figure V.2b illustrates two entries in the Q-table of an agent, respectively for

115

V. Simulating SQL injection vulnerability exploitation using Q-learning
reinforcement learning agents

(a) Plot of Q({1}, ·). (b) Plot of Q({−1}, ·).

Figure V.2: Simulation 1 - Q-tables.

state h = {1} (the agent has taken only action a1 and it has received a positive
answer) and h = {−1} (the agent has taken only action a1 and it has received
a negative answer). In the case of Figure V.2a, the policy of the agent has
evolved from the original uniform distribution to a more complex multimodal
distribution. In particular, a large amount of the probability mass is distributed
between action a12 and action a17, with the most likely option being action
a17 (” UNION SELECT flag, flag, flag, flag, flag FROM Flagtable); the set
of action between action a12 and action a17 correspond indeed to the set of
potentially correct queries, consistent with the escape character discovered
by action a1. However, probability mass still remains on necessarily wrong
alternatives; further training would likely lead to removal of this probability
mass. In the case of Figure V.2b, we observe an almost-deterministic distribution,
hinting at the fact that the agent has worked out an optimal option; reasonably,
after the failure of action a1, the agent almost certainly will opt for action a18
which allows it to test a different escape character. We hypothesize that such a
deterministic behaviour is likely due to a quick build-up of the probability of
action a18 in early training; as action a18 turned out to be a reasonable and
rewarding choice, the agent entered in a self-reinforcing loop in which, whenever
in state h = {−1}, it chose action a18, and action a18 got reinforced after
achieving the objective.

Finally, we analyzed the behaviour of the agents at test time, by setting their
exploration parameter to zero, ϵ = 0, and running 100 further episodes. This
emulates the actual deployment of an agent in a real scenario in which we do
not want the agent to explore anymore, but just to aim directly for the flag
in the most efficient way possible. Notice that, while setting the exploration
parameter ϵ to zero, we still keep the learning parameter η different from zero;
this, again, is meant to reflect a real scenario, in which an agent keeps learning
even at deployment time, ideally to capture possible shifts in the environment
in which it operates. Figure V.3a shows the number of steps per episode. The
blue lines show mean and standard deviation in the number of steps for our
10 agents, while the red dashed line provides a global mean of number of steps
per episode across all the agents and all the episodes. This average number of

116

Experimental simulations

(a) Number of steps per episode. The
dark blue line represents the average
computed over the 10 agents, the light
blue lines represent the standard devia-
tion. The red dashed line is the mean
across all the episodes.

(b) Notch plot of the 10 tabular Q-
learning agents performance in number
of steps. The orange lines and the green
dashed lines represent respectively the
median and mean of steps. The notches
around the median give a 95% confi-
dence interval for the median. The box
around the median identifies the (25th-
75th)-percentile of the distribution, with
the top and bottom box giving each
the 25% of the probability mass above
and below the median. The whiskers at
the top and bottom show the remaining
probability mass above and below the
median.

Figure V.3: Simulation 1 - testing.

actions is very close to the theoretical expectation that we identified between 4
and 5. Notice that, of course, the expectation holds in a statistical sense: longer
episodes taking 6 or 7 steps are balanced by fortuitous episodes as short as 2
steps where the agent guessed by chance the right SQL injection query. A more
detailed overview of the statistical performance of each agent is provided by
the notch plot in Figure V.3b. Each notch provides information on the main
statistics about the distribution of the number of steps taken by each of the 10
trained tabular Q-learning agents. All the agents perform indeed similarly. The
median number of steps is slightly better for agents 8 and 9, which get closer to
the lower bound, but this small value may be an effect of the small number of
tests (100), as we see that its mean is very similar to the others. The notches
around agents 8 and 9 are outside the bottom box; this is because the middle
bottom 25% of the data all require exactly 4 steps, so part of our confidence
interval is outside the bottom box. On the other hand, agent 7 is the only one
that may take more than 7 steps to completion. This is a sub-optimal result as
a the trivial policy of using 2 exploratory actions and 5 injection guesses would
be sufficient to capture the flag; however, this sub-optimal behaviour requiring
8 steps happens only in 2% of the episodes, leading to hypothesize that they
constitute outlier behaviours.

117

V. Simulating SQL injection vulnerability exploitation using Q-learning
reinforcement learning agents

Discussion The results of this simulation show that even a simple reinforce-
ment learning agent based on a tabular Q-learning algorithm can successfully
develop an effective strategy to solve our SQL injection problem. Such an
agent relies on minimal prior knowledge provided by the designer. We showed,
through an analysis of the learning dynamics at training time that a tabular
Q-learning agent can discover a meaningful strategy by pure trial and error, and
we demonstrated that, at test time, such an agent can reach a performance close
to the theoretical optimum. However, although using a table to store the Q-value
function has allowed us to carry a close analysis of the learning dynamics of
the agent, it is clear that this approach has poor scalability. We observed how
the Q-table keeps growing during all the episodes we ran, and it is immediate
to infer that, if the action or state space were to increase, this approach would
be infeasible. In the next simulation we sacrifice interpretability in order to
work-around the issue of scalability.

V.4.3 Simulation 2

In this simulation, we deploy a more sophisticated agent, a deep Q-learning
agent, to tackle the same learning problem as in Simulation 1.

Environment We implement the same environment as Simulation 1 as a
standard OpenAI environment1.

Agent We instantiate a deep Q-learning agent using a standard implementation
from the stablebaselines library2.

Setup We use the same environment settings as Simulation 1. As before we
train 10 agents. Because of the definition of the DQN algorithm, we specify
the length of training in terms of steps, and not episodes. We then train the
agents for 106 steps, corresponding approximately to 105 episodes, in order to
guarantee that the DQN agents would not unfairly be trained for longer than
the tabular Q-learning agent. We use the default values for the hyperparameters
of the DQN agents, although we also consider increasing the batch size from
the default 32 to 51 in order to increase the likelihood for the agent to observe
positive rewards in its batch.

Results and analysis We start evaluating the performance of the DQN agents
at test time, computed on 1000 test episodes with no exploration, in terms
of number of steps necessary to achieve the solution. Figure V.4a shows the
performance of the DQN agents trained with a batch size of 51. These agents
successfully learned competitive policies. As in the case of the tabular Q-learning
agent, we can observe that the overall number of steps averaged over all the
episodes and all the agents (red dashed line) settles between 4 and 5 steps, again

1https://github.com/openai/gym
2https://github.com/DLR-RM/stable-baselines3

118

https://github.com/openai/gym
https://github.com/DLR-RM/stable-baselines3

Experimental simulations

(a) Number of steps per episode. The
blue line represents the average com-
puted over the 10 agents. The red
dashed line is the mean across all the
episodes, the yellow line the median.

(b) Notch plot of the number of steps
for each of the 10 different agents. For
the meaning of the plot, refer to Figure
V.3b.

Figure V.4: Simulation 2 - testing.

close to the lower bound identified earlier. A closer look at the performance of
each agent is provided by the notch plot in Figure V.4b. The median and mean
are always equal or less than 5 steps. A single DQN agent sometimes achieves a
solution in a sub-optimal number of steps (8 steps), as in the case of the tabular
Q-learning agent.

When training the DQN agents with a default batch size of 32, some of our
vanilla DQN agents were still able to learn a satisfactory strategy, while others
failed in their learning task. A detailed analysis of our results is provided in A.2.
It is clear that using what turned out to be a sub-optimal batch size of 32 made
learning more challenging; agents could still learn but this may require longer
training time in order to successfully learn optimal policies.

To assess the difference between the tabular Q-learning agents and the the
DQN agents, we run a last direct comparison by re-training the agents (tabular Q-
learning agent and DQN agent with batch size 51) and testing them on 1000 SQL
environments. Figure V.5a captures this direct comparison between the DQN
agent and the tabular Q-learning agents. The notch plot shows the distributions
of the number of steps aggregated over the 10 agents we trained. The two agents
perform similarly in terms of mean and median; however, the notch box of
the DQN agent has a larger support, suggesting that certain attacks may be
completed in fewer steps; while 50% of the attacks of the tabular Q-learning
agent are completed in 4 to 6 steps, 50% of the attacks of the DQN agent are
completed in 3 to 6 steps. Also, note that the retrained tabular Q-learning agents
were all quite good, and none of them ever used 8 steps, while some of the DQN
agents used 8 steps. This strenghtens the hypothesis that these behaviours may
be treated as outliers. A more detailed view of the actual distribution of the
number of steps taken to reach a solution is provided in Figure V.5b; the DQN
agents present a higher proportions of solutions consisting of only two or three
steps, while the tabular Q-learning agents have higher proportions of solution
with 4, 5, 6, or 7 steps; as pointed out by the notch plot, only the DQN agents

119

V. Simulating SQL injection vulnerability exploitation using Q-learning
reinforcement learning agents

(a) Notch plot of the number of steps
taken by the DQN agents compared
with the tabular Q-learning agents. For
the meaning of the plot, refer to Figure
V.3b.

(b) Bar plot comparing the number
of steps (in percentage) taken by the
DQN agents and the tabular Q-learning
agents.

Figure V.5: Comparison between the DQN and the tabular Q-learning models.

use 8 steps in few instances.
Beyond contrasting the performance of the tabular Q-learning and the DQN

agents, an instructive comparison is in terms of the size of the learned models.
As expected, the final deep Q-learning model is substantially smaller than the
one learned by the tabular Q-learning agent. At the end of the training, the
Q-table instantiated by the tabular Q-learning model had a size in the order of
a gigabyte (consistent with a table having around 1.75 · 106 entries of 51 floats),
while the network instantiated by the deep Q-learning model had a constant size
in the order of hundreds of kilobytes (consistent with the set of weights of its
neural network).

Discussion The deep Q-learning agents were able to learn a good strategy for
the SQL injection problem, while, at the same time, provide a solution to the
space constraints imposed by the instantiation of an explicit Q-table. Using a
deep neural network allows to scale up the problems we may consider, although,
on the negative side, relying on black-box neural networks has prevented us
from easily examining the inner dynamics of the model as we did for the tabular
Q-learning agent. Nonetheless, such an agent may constitute a good starting
point for tackling more realistic SQL injection challenges.

V.5 Ethical considerations

The development of an autonomous agent able to perform the probing of a
system and the exploitation of a potential SQL injection vulnerability carries
inevitable risks of misuse. In this research, the authors were concerned with
the development of proof-of-concept agents that may be of use for legitimate
penetration testing and system assessment; as such, all the agents were trained
to exploit the vulnerability simply by obtaining some special data (flag) inside
the database. Although the models learned may not yet cope with real-world

120

Conclusion

scenarios, it is not far-fetched to conceive of future malicious uses for such agents.
The authors do not support the use of their research for such aims, and condemn
the use of autonomous agents for unethical and illegitimate purposes, especially
in a military domain3.

V.6 Conclusion

In this paper, we showed how the problem of exploiting SQL injection
vulnerability may be expressed as a reinforcement learning problem. We
considered a simplified SQL injection problem, we formalized it, and we
instantiated it as an environment for reinforcement learning. We then deployed
Q-learning agents to solve the problem, showing that both interpretable and
straightforward tabular Q-learning agents and more sophisticated deep Q-learning
agents can learn meaningful strategies. These results provide proof-of-concept
support to the hypothesis that reinforcement learning agents may be used in
the future to perform penetration testing and security assessment. However, our
results are still preliminary; although our agents were successful in solving the
challenges we defined, real-world cases of SQL injection present higher levels
of complexity, which constitute a significant challenge for both modeling and
learning.

Future work may be directed at considering more realistic setups (including
real-world case of SQL injection), as well as deploying more sophisticated
agents. The current solution can be improved by considering a larger (possibly
combinatorial) action space, or by extending the types of vulnerabilities (e.g.,
error-based or time-based SQL injection). Alternatively, a more realistic model
may be produced by providing the agent with non-preprocessed answers from the
web server in the form of HTML pages. All these directions represent important
development that would allow us to model more realistic settings and train more
effective autonomous agents.

References

[Ben+20] Benaddi, H. et al. “A Deep Reinforcement Learning Based Intrusion
Detection System (DRL-IDS) for Securing Wireless Sensor Networks
and Internet of Things”. In: Wireless Internet. WiCON 2019.
Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering. Springer. 2020,
pp. 73–87.

[Bla+20] Bland, J. A. et al. “Machine learning cyberattack and defense
strategies”. In: Computers & security vol. 92 (2020), p. 101738.

[EZ20] Erdodi, L. and Zennaro, F. M. “The Agent Web Model–Modelling
web hacking for reinforcement learning”. In: arXiv preprint
arXiv:2009.11274 (2020).

3https://futureoflife.org/open-letter-autonomous-weapons/

121

https://futureoflife.org/open-letter-autonomous-weapons/

V. Simulating SQL injection vulnerability exploitation using Q-learning
reinforcement learning agents

[Fra16] Fraze, D. Cyber Grand Challenge (CGC). https://www.darpa.mil/
program/cyber-grand-challenge. Accessed: 2020-05-09. 2016.

[GC20] Ghanem, M. C. and Chen, T. M. “Reinforcement Learning for
Efficient Network Penetration Testing”. In: Information vol. 11,
no. 1 (2020), p. 6.

[HBT19] Hasan, M., Balbahaith, Z., and Tarique, M. “Detection of SQL
Injection Attacks: A Machine Learning Approach”. In: 2019 Inter-
national Conference on Electrical and Computing Technologies and
Applications (ICECTA), Ras Al Khaimah, United Arab Emirates.
IEEE. 2019, pp. 1–6.

[HM20] Hsu, Y.-F. and Matsuoka, M. “A Deep Reinforcement Learning
Approach for Anomaly Network Intrusion Detection System”. In:
2020 IEEE 9th International Conference on Cloud Networking
(CloudNet). IEE. 2020.

[JG14] Joshi, A. and Geetha, V. “SQL Injection detection using machine
learning”. In: 2014 International Conference on Control, Instru-
mentation, Communication and Computational Technologies (IC-
CICCT). IEEE. 2014, pp. 1111–1115.

[KSH12] Krizhevsky, A., Sutskever, I., and Hinton, G. E. “Imagenet
classification with deep convolutional neural networks”. In: Advances
in neural information processing systems. 2012, pp. 1097–1105.

[LCS20] Lopez-Martin, M., Carro, B., and Sanchez-Esguevillas, A. “Appli-
cation of deep reinforcement learning to intrusion detection for
supervised problems”. In: Expert Systems with Applications vol. 141,
no. 112963 (2020).

[Mni+15] Mnih, V. et al. “Human-level control through deep reinforcement
learning”. In: Nature vol. 518, no. 7540 (2015), pp. 529–533.

[Poz+20] Pozdniakov, K. et al. “Smart Security Audit: Reinforcement
Learning with a Deep Neural Network Approximator”. In: 2020
International Conference on Cyber Situational Awareness, Data
Analytics and Assessment (CyberSA). 2020, pp. 1–8.

[Ros18] Ross, K. SQL Injection Detection Using Machine Learning Tech-
niques and Multiple Data Sources. https://scholarworks.sjsu.edu/
cgi/viewcontent.cgi?article=1649&context=etd_projects. Accessed:
2021-02-15. 2018.

[Rus+18] Russell, R. et al. “Automated vulnerability detection in source
code using deep representation learning”. In: 2018 17th IEEE
International Conference on Machine Learning and Applications
(ICMLA). IEEE. 2018, pp. 757–762.

[SB18] Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

122

https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://scholarworks.sjsu.edu/cgi/viewcontent.cgi?article=1649&context=etd_projects
https://scholarworks.sjsu.edu/cgi/viewcontent.cgi?article=1649&context=etd_projects

References

[SBH13] Sarraute, C., Buffet, O., and Hoffmann, J. “Penetration Testing==
POMDP Solving?” In: arXiv preprint arXiv:1306.4714 (2013).

[Set+20a] Sethi, K. et al. “A context-aware robust intrusion detection system:
a reinforcement learning-based approach”. In: International Journal
of Information Security vol. 19 (2020), pp. 657–678.

[Set+20b] Sethi, K. et al. “Deep Reinforcement Learning based Intrusion
Detection System for Cloud Infrastructure”. In: International Com-
munication Systems and Networks and Workshops, COMSNETS.
IEEE. 2020, pp. 1–6.

[Sil+17] Silver, D. et al. “Mastering the game of Go without human
knowledge”. In: Nature vol. 550, no. 7676 (2017), p. 354.

[Sin+15] Singh, G. et al. “SQL Injection Detection and Correction Using
Machine Learning Techniques”. In: Emerging ICT for Bridging the
Future - Proceedings of the 49th Annual Convention of the Computer
Society of India (CSI). Vol. 1. Springer. 2015, pp. 435–442.

[SK08] Servin, A. and Kudenko, D. “Multi-agent Reinforcement Learning
for Intrusion Detection: A Case Study and Evaluation”. In:
Multiagent System Technologies. MATES 2008. Lecture Notes in
Computer Science. Springer. 2008, pp. 159–170.

[SNX19] Stasinopoulos, A., Ntantogian, C., and Xenakis, C. “Commix:
automating evaluation and exploitation of command injection
vulnerabilities in Web applications”. In: International Journal of
Information Security (2019).

[SS07] Skaruz, J. and Seredynski, F. “Recurrent neural networks towards
detection of SQL attacks”. In: 2007 IEEE International Parallel
and Distributed Processing Symposium. IEEE. 2007, pp. 1–8.

[Tan+20] Tang, P. et al. “Detection of SQL injection based on artificial neural
network”. In: Knowledge-Based Systems vol. 190 (2020).

[Tob+16] Tobiyama, S. et al. “Malware detection with deep neural network
using process behavior”. In: 2016 IEEE 40th annual computer
software and applications conference (COMPSAC). Vol. 2. IEEE.
2016, pp. 577–582.

[UBF17] Uwagbole, S. O., Buchanan, W. J., and Fan, L. “Applied machine
learning predictive analytics to SQL injection attack detection and
prevention”. In: IFIP/IEEE International Symposium on Integrated
Network Management. IEEE. 2017, pp. 1087–1090.

[Vas+17] Vaswani, A. et al. “Attention is all you need”. In: Advances in
neural information processing systems. 2017, pp. 5998–6008.

[Vin+19] Vinyals, O. et al. “Grandmaster level in StarCraft II using multi-
agent reinforcement learning”. In: Nature vol. 575, no. 7782 (2019),
pp. 350–354.

123

V. Simulating SQL injection vulnerability exploitation using Q-learning
reinforcement learning agents

[XX05] Xu, X. and Xie, T. “A Reinforcement Learning Approach for Host-
Based Intrusion Detection Using Sequences of System Calls”. In:
Advances in Intelligent Computing. ICIC 2005. Lecture Notes in
Computer Science. Vol. 3644. Springer. 2005, pp. 995–1003.

[ZE20] Zennaro, F. M. and Erdodi, L. “Modeling Penetration Testing with
Reinforcement Learning Using Capture-the-Flag Challenges and
Tabular Q-Learning”. In: arXiv preprint arXiv:2005.12632 (2020).

124

University of Oslo
Faculty of mathematics and natural sciences

Co-author declaration for the following joint paper:

This declaration should describe the research contribution of the candidate, the main supervisor (where

he/she is an associate author) and the other two most central authors (the corresponding author must be

among them). If applicable, the contributions from other PhD candidates who has or intend to include

the paper in a thesis should be described. Contributions from master students should be described.

Authors: László Erdődi, Åvald Åslaugson Sommervoll and Fabio Massimo Zennaro

Title: Simulating SQL injection vulnerability exploitation using Q-learning

reinforcement learning agents

Journal: Journal of information security and applications

Åvald Åslaugson Sommervoll’s independent contribution:

 First author Corresponding author Other

Idea building, code and results, final results and visualization, machine learning expertise,

environment curation, formal analysis, writing the paper, proofreading, finalizing the paper,

and quality check

László Erdődi

 First author Main supervisor Corresponding author PhD candidate Other

Idea building, ethical hacking expertise, writing the paper, finalizing the paper, corresponding

author, proofreading, and quality check

Fabio Massimo Zennaro

 First author Main supervisor Corresponding author PhD candidate Other

Idea building, code and results, machine learning expertise, writing the paper, finalizing the

paper, proofreading, and quality check

x

 First author Main supervisor Corresponding author PhD candidate Other

<Co-author’s contribution>

Has this paper been, or will this paper be part of another doctoral degree thesis?

Yes: No:

If yes, elaborate:

Contributions from master students:

125

 2

Do you verify that Åvald Åslaugson Sommervoll has contributed to this joint paper as

described above?

Yes: No:

If no, specify:

………………….

Åvald Åslaugson Sommervoll László Erdődi Fabio Massimo Zennaro <name>

126

[signature removed]

Appendices

Appendix A

Appendix for papers

Contents

A.1 Appendix for paper II . 159
A.2 Appendix paper V . 160
A.3 Appendix paper VI . 162

A.1 Appendix for paper II

The ring- and message-settings impact on Enigma decryption

In the Section II.3.1 of the paper we cover the difficulties of measuring closeness
in the Enigma decryption key. Abscent from the main paper was a table showing
this in practice for ring settings (Table A.1) and message setting (Table A.2).
The full Enigma setting used to encrypt the plaintext (the first chapter of "Alice
in Wonderland") corresponds to Enigma nr 1. in Table A.3.

Table A.1: Enigma decryption changing ring settings

New ring settings IC PIC
F T R(No change) 0.06649 100.0 %
E T R 0.03846 -0.3 %
G T R 0.03846 -0.3 %
F S R 0.03842 -0.4 %
F T E 0.03846 -0.3 %

Red is used to highlight which settings are changed from the correct decryption settings to the
attempted decryption.

Table A.2: Enigma decryption changing message setting

New message settings IC PIC
VYJ(No change) 0.06649 100.0 %
AYJ 0.03851 -0.1 %
VZJ 0.03842 -0.4 %
VYK 0.03849 -0.2 %

Red is used to highlight which settings are changed from the correct decryption settings to the
attempted decryption.

159

A. Appendix for papers

Enigma settings used in this paper

Table A.3 shows a table detailing the encryption settings of the 10 Enigma
decryptions studied in this paper.

Table A.3: Drawn Enigmas
Name Rotors Ring settings Plugboard settings Message setting

1 IV II I F T R AT BO DF GV HR IW JL KS MX UY VYJ
2 I IV III W C I BE CG DW FN HU JS MX OV PT QR RHB
3 I III V N E R AB CS DM FP GT JL KU NR QY XZ OAY
4 II I V R R Y AZ BS DL EI FG HU JV MW NX RT FBU
5 III I IV S E M AP BQ CW DZ EL FM IT NU OR SX OHT
6 II V I J R T AC BO ES FQ GX HZ IV JL MY PW SDO
7 III V II P X E BY CR DN EH IS JT LV MW OP QZ EYL
8 V II III J A C AP BH CY ES FG IQ JM KW LV NR USJ
9 IV III II W K V AO BH DF EK GJ IS NR QV TY UZ JOH

10 I II V Y D S AP BW CI DR FM GN HY JX KS LU BKJ

The GA development accross the different Enigma settings

In this paper, we conducted a 100 GA runs, (with mutation rate 0.5 and 0.01),
for each of the 10 different Enigma settings. For a closer inspection of their
performance, we have split Figure II.8 into two separate plots: Figure A.1(0.5)
and Figure A.2(0.01). Also included is an uncropped notch plot with mutation
rate of 0.01 (Figure A.3), which clearly shows how extreme some of the outliers
are.

A.2 Appendix paper V

Simulation 2

In this section we report full results for the DQN agents trained with batch
size 32. Following the standard protocol, we trained 10 agents and tested their
performance on a 1000 SQL environments. Figure A.4a shows the mean and
median number of steps computed over the 10 agents and 1000 episodes. While
the low median of 6 proves that the majority of episodes is solved in a limited
number of steps, the very high mean of 214.4 highlights that, even at the end of
training, there are still scenarios in which the agents take a large number of steps,
likely reaching the step limit of the task; this is probably due to the agent finding
itself in unforeseen states and ending up in a loop. It is clear that, in this case,
while the agent has learned something about the environment (witnessed by the
low median), the training has been insufficient to learn a complete and reliable
policy. Figure A.4b provide a better insight in this failure, showing a notch plot
of the number of steps for each of the 10 different agents. We immediately see
that the unsatisfactory results observed in Figure A.4a are due to the failure
in learning of four agents: the notch boxes of agents 1, 3 and 9 stretches far
beyond the limit of the y-axis, indicating that a large number of episodes take
more than 10 steps; even worse, for agent 4, we only observe an outlier, while

160

Appendix paper V

Figure A.1: Notch plot of the number of generations used by 100 genetic algorithm
runs with mutation rate 0.5 for the 10 different Enigmas

Figure A.2: A cropped notch plot, ignoring extreme outliers, of the number of
generations used by 100 genetic algorithm runs with mutation rate 0.01 for the
10 different Enigmas

(The cut-off was at 90 generations.)

161

A. Appendix for papers

Figure A.3: Notch plot of the number of generations used by 100 genetic algorithm
runs with mutation rate 0.01 for the 10 different Enigmas

GA runs that did not finish within 1001 generations had their runtime in number of
generations set to 1001.

the entire notch lies above the limit of the y-axis. These four agents have not
been able to learn good policies at training time, and their bad performance
affects the overall mean we computed in Figure A.4a. If we simply plot the notch
graph for the agents that learned successfully (see Figure A.4c) we notice that
the performances of the six agents that trained successfully closely resemble the
performance of the DQN agents trained with batch size 51 (see Figure V.3b).
Indeed the mean number of steps of this smaller group is now 4.895, which is
quite good, although lower than our tabular Q-learning agent, which used an
average of 4.795 steps. Overall, this analysis showed that training a DQN agent
with a batch size of 32 is still doable, although more challenging; with the same
computational budget for training as for the agent trained with batch size 51,
there is a higher likelihood that the learned policy will not be optimal, and in
certain scenarios will fail.

A.3 Appendix paper VI

A.3.1 Action space

Here we report the definition of all the actions in the action space divided in
groups.

162

Appendix paper VI

(a) Number of steps per episode. The
blue line represents the average com-
puted over the 10 agents. The red
dashed line is the mean across all the
episodes, the yellow line the median.

(b) Notch plot of the number of steps for
each of the 10 different agents. The y-
axis has been clipped at 10. For the
meaning of the plot, refer to Figure
V.3b.

(c) Notch plot of the number of steps for
each of the 6 well-behaving agents. For
the meaning of the plot, refer to Figure
V.3b.

Figure A.4: Simulation 2 - testing on DQN agents trained using a batch size of
32.

A.3.1.1 Actions for detecting the presence of the vulnerability and the
escape character

0. " and 1=1#

1. " and 1=2#

2. " or 1=1#

3. " or 1=2#

4. and 1=1#

5. and 1=2#

6. or 1=1#

7. or 1=2#

8. ’ and 1=1#

163

A. Appendix for papers

9. ’ and 1=2#

10. ’ or 1=1#

11. ’ or 1=2#

A.3.1.2 Actions for verification and exploitation of stacked based queries

12. "; select @@version;#

13. Exploit:" stack FINAL
(multiple requests starting with "; to obtain the flag with stack-based way)

14. ’; select @@version;#

15. Exploit:’ stack FINAL
(multiple requests starting with ’; to obtain the flag with stack-based way)

16. ; select @@version;#

17. Exploit: stack FINAL
(multiple requests starting with ; to obtain the flag with stack-based way)

A.3.1.3 Actions for verification and exploitation of the union-based
queries

18. " union select (select @@version)#

19. " union select (select @@version),2#

20. " union select (select @@version),2,3#

21. Exploit:" union rows:1 FINAL
(multiple requests starting with " union select (request_goes here) to obtain the
flag with union way)

22. Exploit:" union rows:2 FINAL
(multiple requests starting with " union select (request_goes here),2 to obtain
the flag with union way)

23. Exploit:" union rows:3 FINAL
(multiple requests starting with " union select (request_goes here),2,3 to obtain
the flag with union way)

24. ’ union select (select @@version)#

25. ’ union select (select @@version),2#

26. ’ union select (select @@version),2,3#

27. Exploit:’ union rows:1 FINAL
(multiple requests starting with ’ union select (request_goes here) to obtain the
flag with union way)

164

Appendix paper VI

28. Exploit:’ union rows:2 FINAL
(multiple requests starting with ’ union select (request_goes here),2 to obtain
the flag with union way)

29. Exploit:’ union rows:3 FINAL
(multiple requests starting with ’ union select (request_goes here),2,3 to obtain
the flag with union way)

30. union select (select @@version)#

31. union select (select @@version),2#

32. union select (select @@version),2,3#

33. Exploit: union rows:1 FINAL
(multiple requests starting with union select (request_goes here) to obtain the
flag with union way)

34. Exploit: union rows:2 FINAL
(multiple requests starting with union select (request_goes here),2 to obtain the
flag with union way)

35. Exploit: union rows:3 FINAL
(multiple requests starting with union select (request_goes here),2,3 to obtain
the flag with union way)

A.3.1.4 Actions for verification and exploitation of Boolean-based blind

36. " and ASCII(Substr((select @@version),1,1))>= 64#

37. " and ASCII(Substr((select @@version),1,1))<64#

38. " or ASCII(Substr((select @@version),1,1))>=64#

39. " or ASCII(Substr((select @@version),1,1))<64#

40. Exploit:" Booleanblind hq:F FINAL
(multiple requests starting with: " or to obtain the flag with Boolean-based blind
way. We use or since the hidden query is false.)

41. Exploit:" Booleanblind hq:T FINAL
(multiple requests starting with: " and to obtain the flag with Boolean-based
blind way. We use and here since the hidden query is true.)

42. ’ and ASCII(Substr((select @@version),1,1))>=64#

43. ’ and ASCII(Substr((select @@version),1,1))<64#

44. ’ or ASCII(Substr((select @@version),1,1))>=64#

45. ’ or ASCII(Substr((select @@version),1,1))<64#

46. Exploit:’ Booleanblind hq:F FINAL
(multiple requests starting with: ’ or to obtain the flag with Boolean-based blind
way. We use or since the hidden query is false.)

165

A. Appendix for papers

47. Exploit:’ Booleanblind hq:T FINAL
(multiple requests starting with: ’ and to obtain the flag with Boolean-based
blind way. We use and here since the hidden query is true.)

48. and ASCII(Substr((select @@version),1,1))>=64#

49. and ASCII(Substr((select @@version),1,1))<64#

50. or ASCII(Substr((select @@version),1,1))>=64#

51. or ASCII(Substr((select @@version),1,1))<64#

52. Exploit: Booleanblind hq:F FINAL
(multiple requests starting with: or to obtain the flag with Boolean-based blind
way. We use or since the hidden query is false.)

53. Exploit: Booleanblind hq:T FINAL
(multiple requests starting with: and to obtain the flag with Boolean-based blind
way. We use and here since the hidden query is true.)

A.3.1.5 Actions for giving up

54. FINAL no vulnerability FINAL

A.3.1.6 Actions for verification and exploitation of error based

55. "

56. Exploit:" error FINAL
(Multiple requests exploiting the error information.)

57. ’

58. Exploit:’ error FINAL
(Multiple requests exploiting the error information.)

A.3.1.7 Actions for verification and exploitation of time-based blind

59. Exploit:" time hiddenq f FINAL
(multiple requests starting with: " or to obtain the flag with Time-based blind
way. We use or since the hidden query is false.)

60. Exploit:" time hiddenq t FINAL
(multiple requests starting with: " and to obtain the flag with Time-based blind
way. We use and here since the hidden query is true.)

61. Exploit:’ time hiddenq f FINAL
(multiple requests starting with: ’ or to obtain the flag with Time-based blind
way. We use or since the hidden query is false.)

166

Appendix paper VI

62. Exploit:’ time hiddenq t FINAL
(multiple requests starting with: ’ and to obtain the flag with Time-based blind
way. We use and here since the hidden query is true.)

63. Exploit: time hiddenq f FINAL
(multiple requests starting with: or to obtain the flag with Time-based blind
way. We use or since the hidden query is false.)

64. Exploit: time hiddenq t FINAL
(multiple requests starting with: and to obtain the flag with Time-based blind
way. We use and here since the hidden query is true.)

Notice that all the query actions end with a # to comment out the last part
of the hidden query; two notable exceptions to this are the error-based queries;
these are meant to give an error so we do not comment out the last part of the
hidden query.

A.3.2 Additional results

Here we provide some additional results from our experiments.

A.3.2.1 Simulation1: trajectory for a stack-based exploitation in 8
queries

Table A.4: Action trajectory of agent1 for solving stack-based vulnerabilities in
8 steps.

Qn State Action An m
1 (-2,) ’; select @@version;# 14 502
2 ((-2,), (14,)) and 1=2# 9 502
3 ((-2,), (9,14)) ’ and 1=1# 4 502
4 ((-2,), (4,9,14)) " or 1=1# 2 464
5 ((-2,), (2,), (4,9,14)) " and 1=1# 0 464
6 ((-2,), (0,2), (4,9,14)) " or ASCII(Substr((select @@version),1,1))>=64# 38 502
7 ((-2,), (0,2), (4,9,14,38)) "; select @@version;# 12 -2
8 ((-2,12), (0,2), (4,9,14,38)) " FINAL multi_stack FINAL 19 -1

Qn: Query number, An: Action number, m: The environment response

Table A.4 shows the trajectory of agent1 solving a stack-based exploitation
in 8 steps. Surprisingly, when agent1 observes a new length after query number
4, it executes another exploratory query, " and 1=1#, with the same escape as
to confirm its suspicions. This may be due to the relatively low cost of a query
and the high cost of a mistaken exploit (and incomplete optimization). Next, in
query number 6, it does a single Boolean-blind specific test, similarly to what it
does when using 7 queries, as in Table VI.4. After this, it checks for the version
number and successfully executes the exploit.

167

A. Appendix for papers

A.3.2.2 Simulation3: failed trajectories with no traffic

Table A.5 shows one of the two trajectories where agent3 failed to identify a
Boolean-based blind vulnerability. From this we see that it mistakes a Boolean-

Table A.5: Action trajectory of agent3 failing to solve Boolean-based blind
vulnerability.

Qn Action Action nr m
0 or 1=1# 10 (380, slow)
1 ’ or 1=1# 6 (230, fast)
2 ’; select @@version;# 14 (230, fast)
3 ’ and 1=2# 5 (230, fast)
4 ; select @@version;# 16 (230, fast)
5 and 1=1# 8 (654, slow)
6 and ASCII(Substr((select @@version),1,1))>=64# 48 (230, fast)
7 union select (select @@version),2,3# 32 (230, fast)
8 union select (select @@version)# 30 (230, fast)
9 Exploit union rows:2 FINAL 34 (15, slow)

Qn: Query number, An: Action number, m: The environment response

based blind vulnerability with a union-based vulnerability. If we analyse this
mistake we see that, after query 6, agent3 clearly is biased towards a union-based
vulnerability, and after determining that it is not 1 or 3 rows, its option is 2
rows. However, in this case the agent has been tricked, like in the trajectory
shown in Table VI.6, because the length of the HTML response is the same as
for no SQL, and the response time is also fast as the operating system version is
smaller than 64, resulting in a very fast lookup.

The second failure case for agent3 was again a Boolean-based blind
vulnerability, mistaken this time for a time-based blind vulnerability. This
is a more natural misunderstanding as Boolean-based blind vulnerabilities can
typically also be solved in a time-based blind way. The mistake came from
an analogous server behavior: the HTML response has the same length as
the Boolean-based blind probing query, and the probing response is fast. Full
trajectory is shown in Table A.6.

A.3.2.3 Simulation3t: number of queries by vulnerability

Figure A.5 shows the number of actions required for each of the different exploits
when the traffic is 5%. The presence of traffic seems to make the solution of
the challenges more uncertain, leading to further overlap in the solution of the
problems. Union-, stack-, Boolean-, and time-based all show overlapping

168

Appendix paper VI

Table A.6: Action trajectory of agent3 failing to solve Boolean-based blind.
Qn Action Action nr Response(m)
0 or 1=1# 10 (380, slow)
1 ’ or 1=1# 6 (230, fast)
2 ’; select @@version;# 14 (230, fast)
3 ’ and 1=2# 5 (230, fast)
4 ; select @@version;# 16 (230, fast)
5 and 1=1# 8 (654, slow)
6 and ASCII(Substr((select @@version),1,1))>=64# 48 (230, fast)
7 union select (select @@version),2,3# 32 (230, fast)
8 union select (select @@version)# 30 (230, fast)
9 Exploit union rows:2 FINAL 34 (15, slow)

Qn: Query number, An: Action number, m: The environment response

Figure A.5: Number of queries used to find the vulnerability for each of the
vulnerability types for agent3t.

169

	Preface
	List of Papers
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Research questions
	Approach and research methods
	Structure of the thesis

	Background
	Machine learning
	Cryptography
	SQL injection

	Contributions
	Summary of research papers
	Other contributions

	Conclusion
	Summary of contributions
	Future work
	References

	Papers
	Machine Learning for Offensive Cyber Operations
	Introduction
	Cryptanalysis
	Penetration testing
	Conclusion
	References
	Coauthor declaration

	Genetic algorithm attack on Enigma's plugboard
	Introduction
	Background
	GA-based Enigma attack
	Conclusion
	References
	Coauthor declaration

	Dreaming of keys: Introducing the phantom gradient attack
	Introduction
	Related work
	Implementation and results
	Attack on Ascon's underlying functions
	Conclusion
	Future work
	References

	The Phantom Gradient Attack: A Study of Replacement Functions for the XOR Function
	Introduction
	Related work
	Replacement functions XOR
	Conclusion
	Acknowledgement
	References

	Simulating SQL injection vulnerability exploitation using Q-learning reinforcement learning agents
	Introduction
	Background
	Model
	Experimental simulations
	Ethical considerations
	Conclusion
	References
	Coauthor declaration

	Simulating all Archetypes of SQL Injection Vulnerability Exploitation Using Reinforcement Learning Agents
	Introduction
	Background
	Modeling
	Results and discussion
	General discussion and Conclusion
	References
	Coauthor declaration

	Appendices
	Appendix for papers
	Appendix for paper II
	Appendix paper V
	Appendix paper VI

