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Abstract

We study the evolution of a three dimensional wave train subject to nonlinear
modulation and damping. In particular, we are interested in gaining insight
about the impact of nonlinear modulation and damping on the frequency
downshift that is sometimes observed in three dimensional wave trains. As
a motivation for the upcoming simulations, we begin the discussion with
the analysis of an experiment that contains both modulation, damping and
downshift. Then, starting from the modified nonlinear Schrödinger (MNLS)
equation, we add the effects of viscous damping and wave breaking. The
equations are solved numerically using a second order multi-component
splitting method. The main result is that the non-conservative effects can
influence the downshift of the peak; viscous damping may postpone the
downshift, while wave breaking may accelerate it.
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CHAPTER 1

Introduction

The modulational instability of deep-water uniform wave trains was first
discovered by [BF67] back in 1967. They found that these waves are unstable
to slow perturbations in space and time, a result that was supported by
their own experimental observations. Ten years later, [Lak+77] found
experimentally that this modulational instability can lead to a frequency
downshift, which can be defined as the downshift of the carrier. Since
then, many scientists have tried to explain the various aspects of this
phenomenon through experimental observations and simulations. With this
latter approach we are able to investigate the evolution of a Stokes wave in
the absence of breaking. The two dimensional evolution consists of periodic
modulation and demodulation between the carrier and its sidebands [TD97].

Downshift has been documented in two dimensional Stokes waves, only
when damping has been introduced into the model. We shall frequently look
to [TD90] who implemented the breaking term, that we later employ in this
thesis, and found a downshift.

Frequency downshift in three dimensional, short crested wave trains do
not require damping. This was shown for the first time by [TD97], using
the broader bandwidth modified nonlinear Schrödinger (BMNLS) equation.
They anticipated on the basis of the corresponding instability region, that
the downshift is dependent on the relative with of the tank. That is, the
wavelength of the waves must be sufficiently small compared to the width
of the tank before the downshift happens. This observation is important
because, more often than not, the tanks that we encounter in the laboratory
are not long enough for the phenomena that we want to measure. The
only way to increase the effective length of the tank is then to shorten the
wavelength of the waves. Sometimes, this is at the expense of the effective
width of the tank, which poses a challenge to the ones that wish to study
two dimensional, long crested waves.
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Laboratory evidence of frequency downshift in a three dimensional wave
train was presented for the first time by [TSV99]. In this experiment and in
the real world in general, damping is an inevitable part of the evolution of
a wave train. This is emphasized in chapter 3 of this thesis. The impact
of damping on frequency downshift in three dimensional wave trains is yet
to be investigated numerically. In the present thesis, we therefore focus on
two main types of damping, namely viscous damping and damping by wave
breaking. The models are simple and consist only of a slight adjustment of
the conservative MNLS equation.
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CHAPTER 2

Theory

2.1 Harmonic analysis
Waves that propagate on the free surface of water are often analyzed in
terms of their frequency content. The fundamental assumption that enables
this analysis is the idea that the water surface can be constructed from a
linear superposition of harmonic wave components of different frequencies,
amplitudes, wavelengths and phases. We consider the wave components to
be independent of each other, but as waves are nonlinear it should be kept
in mind that this is not entirely true. However, for the weakly nonlinear
waves that we shall be interested in, this is a rather good approximation.
Mathematically, the superposition that we are looking for is achieved by
means of a Fourier series or cosine series, which are orthogonal projections
of the free surface elevation η onto the function space L2. To keep it simple,
the theory is presented in the following for a general function f .

Orthogonal projection
Let V be a complex Hilbert space with orthogonal basis {ψ0, . . . , ψN−1} for
some N ∈ N and consider a complex function f lying in an ambient Hilbert
space W . It is often in our interest to express f as a linear combination of
the basis functions of V

f ∼
N−1∑
n=0

f̂nψn, (2.1)

with weights f̂n ∈ C. If f ∈ V , this representation is exact and we may
replace the symbol "∼" with an equality sign. Moreover it is then well known
that the set of weights f̂0, . . . , f̂N−1 satisfying (2.1) is unique and determined
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2.1. Harmonic analysis

by the equation
f̂n = ⟨f, ψn⟩

∥ψn∥2 , n = 0, . . . , N − 1. (2.2)

Here and in what follows, ⟨· , ·⟩ and ∥ · ∥ denotes the inner product and norm
respectively on V , inherited by W . On the contrary, if f /∈ V we obviously
want to choose the weights so that the error

∥f −
N−1∑
n=0

f̂nψn∥ (2.3)

is minimized. It can be shown that this happens whenever the difference in
(2.3) is orthogonal to V , that is, whenever

⟨f −
N−1∑
n=0

f̂nψn, ψm⟩ = 0, m = 0, . . . , N − 1, (2.4)

which according to the standard rules of the inner product is equivalent to

⟨f, ψm⟩ =
N−1∑
n=0

f̂n⟨ψn, ψm⟩, m = 0, . . . , N − 1. (2.5)

Due to the orthogonality of the basis {ψ0, . . . , ψN−1}, the only nonzero term
on the right-hand side of (2.5) is the one for which n = m. Thus the resulting
equations

⟨f, ψm⟩ = f̂m⟨ψm, ψm⟩ = f̂m∥ψm∥2, m = 0, . . . , N − 1 (2.6)

can be solved to yield expressions for the weights f̂m

f̂m = ⟨f, ψm⟩
∥ψm∥2 , m = 0, . . . , N − 1. (2.7)

Comparing this expression to that of (2.2) we see that the precise location
of f is irrelevant, at least for the purpose of calculating the weights. With
this choise of f̂n, the linear combination (2.1) is what we refer to as the
orthogonal projection of f onto V . This will be important in the following.

Fourier series
Let W be the space L2([0, T ]) = {f : [0, T ] → C |

∫ T
0 |f(t)|2 dt < ∞} with

inner product defined by

⟨f, g⟩L2([0,T ]) =
∫ T

0
f(t)g∗(t) dt, f, g ∈ L2([0, T ]), (2.8)
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2.1. Harmonic analysis

and consider the subspace1 V spanned by the orthogonal basis functions
{e−iωnt}∞

n=−∞ with ωn = n∆ω = 2πn
T

and t ∈ [0, T ]. The projection of a
function f ∈ L2([0, T ]) onto V is then of the form

f(t) =
∞∑

n=−∞
f̂ne

−iωnt =
∞∑

n=−∞
f̂ne

− i2πnt
T . (2.9)

In order to find the weights, given by (2.7), we must calculate the inner
product of a basis function of V with itself

∥e−iωnt∥2
L2([0,T ]) = ⟨e−iωnt, e−iωnt⟩L2([0,T ]) =

∫ T

0
e−iωnteiωnt dt =

∫ T

0
dt = T.

(2.10)
The resulting expression for the weights in (2.9) is then

f̂n =
⟨f, e−iωnt⟩L2([0,T ])

∥e−iωnt∥2
L2([0,T ])

= 1
T

∫ T

0
f(t)eiωnt dt = 1

T

∫ T

0
f(t)e i2πnt

T dt. (2.11)

Particularly one property of the Fourier series (2.9) will be important later
in the thesis. We can differentiate it two times to obtain

f ′(t) =
∞∑

n=−∞
(−iωn)f̂ne

−iωnt and f ′′(t) =
∞∑

n=−∞
(−iωn)2f̂ne

−iωnt (2.12)

from which it follows that

f̂ ′
n = −iωnf̂n and f̂ ′′

n = −ω2
nf̂n. (2.13)

These identities come in handy when solving PDEs.

Discrete Fourier transform
In order to implement the representation (2.9) and its corresponding weights
(2.11) on a computer, it is necessary that we discretize the time variable t.
Let us therefore partition the interval [0, T ] into N sub-intervals such that

tj = j∆t = Tj

N
; j = 0, . . . , N − 1. (2.14)

The right endpoint tN = T is left out under the assumption that f(0) = f(T ).
With this discretization, we write fj = f(tj) and consider both f and the
basis functions to be sequences

(fj)N−1
j=0 and (e−iωntj )N−1

j=0 . (2.15)
1With this particular basis, actually V = W .
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2.1. Harmonic analysis

Let I be a set containing the range of j. The relevant ambient space W is
then the sequence space l2(I) = {(fj)j∈I ∈ C | ∑j∈I |fj|2 < ∞} on which

⟨f, g⟩l2(I) =
N−1∑
j=0

fjg
∗
j , f, g ∈ l2(I) (2.16)

is an inner product. As a result we have

∥e−iωnt∥2
l2(I) = ⟨e−iωnt, e−iωnt⟩l2(I) =

N−1∑
j=0

e−iωntjeiωntj =
N−1∑
j=0

1 = N, (2.17)

and

f̃n =
⟨f, e−iωnt⟩l2(I)

∥e−iωnt∥2
l2(I)

= 1
N

N−1∑
j=0

fje
iωntj = 1

N

N−1∑
j=0

fje
i2πnj

N , (2.18)

with f̂n replaced by f̃n in order to emphasize that we are working with a
discrete version of (2.7). Equation (2.18) for the computation of the weights
is known as the discrete Fourier transform (DFT), which accompanies its
inverse (IDFT)

fj =
N−1∑
n=0

f̃ne
−iωntj =

N−1∑
n=0

f̃ne
− i2πnj

N . (2.19)

Cosine series
Let W now be the space L2([0, Ly]) = {f : [0, Ly] → C |

∫ Ly

0 |f(y)|2 dy < ∞}
and consider the subspace V spanned by the orthogonal basis functions
{cos(kmy)}∞

m=0 with km = m∆k = mπ
Ly

and y ∈ [0, Ly]. The inner product
on V and W is given by (2.8) with t and T replaced by y and Ly respectively.
As such, we find that the inner product of a basis function of V with itself
is given by

∥ cos(kmy)∥2
L2([0,Ly ]) = ⟨cos(kmy), cos(kmy)⟩L2([0,Ly ]) =

∫ Ly

0
cos2(kmy) dy

= 1
2

∫ Ly

0
(1 + cos(2kmy)) dy =

Ly, m = 0
Ly

2 , m = 1, 2, 3, . . . .
(2.20)

It follows that the weights, that determine the projection of f onto V

f(y) =
∞∑

m=0
f̂m cos(kmy) =

∞∑
m=0

f̂m cos
(mπy
Ly

)
, (2.21)
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2.1. Harmonic analysis

are given by

f̂m =
⟨f, cos(kmy)⟩L2([0,Ly ])

∥ cos(kmy)∥2
L2([0,Ly ])

=


1

Ly

∫ Ly

0 f(y) dy, m = 0

2
Ly

∫ Ly

0 f(y) cos
(

mπy
Ly

)
dy, m = 1, 2, 3, . . . .

(2.22)
Differentiation of the cosine series (2.21) two times yields

f ′′(y) =
∞∑

m=0
−k2

mf̂m cos(kmy). (2.23)

It follows that
f̂ ′′

m = −k2
mf̂m (2.24)

which similarly to (2.13) proves useful when solving PDEs.

Discrete Cosine transform
The ideal discretization of the spatial variable y depends strongly on the
problem at hand. We shall take into account that we don’t necessarily have
access to the values of f at the boundaries y = 0 and y = Ly and shall
accordingly prefer the discretization

yi = (i+ 1/2)∆y = (i+ 1/2)Ly

M
; i = 0, . . . ,M − 1, (2.25)

over a discretization of the form (2.14). With the notation fi = f(yi) we
again obtain sequences

(fi)M−1
i=0 and (cos(kmyi))M−1

i=0 (2.26)

that lie in the space l2(I) = {(fi)i∈I ∈ C | ∑
i∈I |fi|2 < ∞} where

I = {0, . . . ,M − 1}. The proper inner product is given by (2.16) with
j and N replaced by i and M respectively. Hence

∥ cos(kmy)∥2
l2(I) = ⟨cos(kmy), cos(kmy)⟩l2(I) =

M−1∑
i=0

cos2(kmyi)

= 1
2

M−1∑
i=0

(1 + cos(2kmyi)) = M

2 + 1
4

M−1∑
i=0

(ei2kmyi + e−i2kmyi)

= M

2 + 1
4

M−1∑
i=0

e
i2πm(i+1/2)

M + 1
4

M−1∑
i=0

e− i2πm(i+1/2)
M .

(2.27)

7



2.2. Operator splitting

The sums in (2.27) are geometric series with common coefficients and ratios
e± iπm

M and e± i2πm
M respectively. Consequently,

∥ cos(kmy)∥2
l2(I) = M

2 + 1
4
e

iπm
M (1 − ei2πm)
1 − e

i2πm
M

+ 1
4
e− iπm

M (1 − e−i2πm)
1 − e− i2πm

M

= M

2
(2.28)

provided m ̸= 0. If m = 0 we see from (2.27) that

∥ cos(kmy)∥2
l2(I) = M. (2.29)

Whenever we represent the sequence (fi)M−1
i=0 by the sum

fi =
M−1∑
m=0

f̃m cos
(mπ(i+ 1/2)

M

)
, (2.30)

we shall therefore find the coefficients with the formula

f̃m =
⟨f, cos(kmy)⟩l2(I)

∥ cos(kmy)∥2
l2(I)

=


1

M

∑M−1
i=0 fi, m = 0

2
M

∑M−1
i=0 fi cos(mπ(i+1/2)

M
), m = 1, . . . ,M − 1.

(2.31)
This equation is known as the discrete cosine transform, which is implemented
in Matlab by the built-in DCT-II function.

2.2 Operator splitting
The evolution equations that we encounter in the simulation of real world
events are often complicated and contain terms that describe different
physical processes. As often as not, these processes develop at different
time and space scales and as such, the processes might require different
computational grids and solution methods. Most of the time, we are also
faced with nonlinearities that increase the complexity of the evolution
equations and the numerical schemes that follow. Once again, different
solution methods may be preferable for the linear and nonlinear processes.
This motivates the use of an operator splitting method, which is illustrated
in the following.

Let x, y and t denote the evolution, space and time variable respectively.
The evolution equations that we encounter in this thesis are in general of
the form 

∂f
∂x

+ (S1 + · · · + SN)f = 0, for x ∈ (0, Lx]

f(x, y, t) = f0(y, t), at x = 0,
(2.32)

8



2.2. Operator splitting

where S1, . . . , SN are operators, possibly in space or time, and f(x, y, t) is
the solution which is given by the operator exponential

f(x, y, t) = e−x(S1+···+SN )f0(y, t). (2.33)

Operator splitting is the idea that an approximation to this solution can
be obtained, for any value of x, from a composition of the solutions to the
sub-equations

∂f1

∂x
+ S1f1 = 0

...

∂fN

∂x
+ SNfN = 0.

(2.34)

There are many ways to do this. Given a discretization of the of the evolution
variable, such as

xk = k∆x; ∆x = Lx

K
; k = 0, . . . , K, (2.35)

the most basic approximation scheme is obtained fromf
k+1 = e−∆xSN · · · e−∆xS1fk; k = 0, . . . , K − 1

f 0 = f0.
(2.36)

That is, an approximation fk+1 of the exact solution f(xk+1) is obtained
from solving

∂fn

∂x
+ Snfn = 0, for x ∈ (xk, xk+1]

fn(xk) = δ1,nf
k + (1 − δ1,n)fn−1(xk+1),

(2.37)

in order from n = 1 to n = N and then setting fk+1 = fN(xk+1). If
the operators S1, . . . , SN commute, the splitting (2.36) will yield the exact
solution. If S1, . . . , SN do not commute, we can determine the accuracy
from the operator exponential, defined for a bounded, linear operator2 S by

eS =
∞∑

i=0

Si

i! = I + S + 1
2S

2 + 1
6S

3 + . . . , (2.38)

2If S is nonlinear, the operator exponential and subsequent treatment of accuracy
seems to be more complicated. An interesting take on this can be found in [Sch97]. The
results are the same.
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2.2. Operator splitting

where I is the identity operator. Let N = 2 for simplicity. The exact
solution operator can then be expanded as

e−∆x(S1+S2) =
∞∑

i=0

(−∆x(S1 + S2))i

i!

= I − ∆x(S1 + S2) + (∆x)2

2 (S2
1 + S1S2 + S2S1 + S2

2)

− (∆x)3

6 (S3
1 + S2

1S2 + S1S2S1 + S1S
2
2 + S2S

2
1 + S2S1S2 + S2

2S1 + S3
2)

+ O((∆x)4)
(2.39)

when S1 and S2 are bounded, linear operators. The expansion of the
approximate solution operator is, on the other hand,

e−∆xS2e−∆xS1 =
∞∑

i=0

(−∆xS2)i

i!

∞∑
j=0

(−∆xS1)j

j! =
∞∑

p=0
(−∆x)p

p∑
q=0

Sq
2S

p−q
1

q!(p− q)!

= I − ∆x(S1 + S2) + (∆x)2

2 (S2
1 + 2S2S1 + S2

2) + O((∆x)3),
(2.40)

where the rightmost sum in the first line is the Cauchy product of the
preceding two infinite sums. It is clear that (2.39) and (2.40) do not agree
at the second order when S1 and S2 don’t commute. Therefore, the local
error, i.e., the error committed in using the approximation scheme (2.36) at
each step ∆x, is of second order

e−∆xS2e−∆xS1fk − e−∆x(S1+S2)fk = O((∆x)2). (2.41)

The global error, i.e., the error that is accumulated over the entire
computational interval (0, L], is thus of order one, which means that (2.36)
is a first order scheme.

Better accuracy can be achieved by the symmetric schemef
k+1 = e− ∆x

2 S1e− ∆x
2 S2 · · · e−∆xSN · · · e− ∆x

2 S2e− ∆x
2 S1fk; k = 0, . . . , K − 1

f 0 = f0,

(2.42)

10



2.2. Operator splitting

which is equivalent to solving
∂fn

∂x
+ Snfn = 0, for x ∈ (xk, xk+1/2]

fn(xk) = δ1,nf
k + (1 − δ1,n)fn−1(xk+1/2),

(2.43)

for n = 1, . . . , N − 1, then
∂fN

∂x
+ SNfN = 0, for x ∈ (xk, xk+1]

fN(xk) = fN−1(xk+1/2),
(2.44)

and eventually
∂fN−n

∂x
+ SN−nfN−n = 0, for x ∈ (xk+1/2, xk+1]

fN−n(xk+1/2) = δ1,nfN(xk+1) + (1 − δ1,n)fN−n+1(xk+1),

(2.45)

for n = 1, . . . , N − 1, and then setting fk+1 = f1(xk+1). The expansion of
the symmetric solution operator in (2.42) is given by

e− ∆x
2 S1e−∆xS2e− ∆x

2 S1 =
∞∑

i=0

(−∆x
2 S1)i

i!

∞∑
j=0

(−∆xS2)j

j!

∞∑
l=0

(−∆x
2 S1)l

l!

=
∞∑

i=0

(−∆x
2 S1)i

i!

∞∑
p=0

(−∆x)p
p∑

q=0

Sq
2S

p−q
1

2p−qq!(p− q)!

=
∞∑

r=0
(−∆x)r

r∑
s=0

Ss
1
s!

r−s∑
q=0

Sq
2S

r−s−q
1

2r−qq!(r − s− q)!

= I − ∆x(S1 + S2) + (∆x)2

2 (S2
1 + S2S1 + S1S2 + S2

2)

− (∆x)3

6 (S3
1 + 3

4S2S
2
1 + 3

2S
2
2S1 + 3

2S1S2S1 + 3
2S1S

2
2 + 3

4S
2
1S2 + S3

2)

+ O((∆x)4),
(2.46)

when N = 2 and S1 and S2 are bounded, linear operators. A third order
local error is then attained whenever S1 and S2 don’t commute

e− ∆x
2 S1e−∆xS2e− ∆x

2 S1fk − e−∆x(S1+S2)fk = O((∆x)3), (2.47)

11



2.3. The model problem

meaning that the symmetric scheme (2.42) is of second order. As this scheme
is somewhat more complicated than that of first order, it is natural to use
the latter when S1, . . . , SN commute. In the following we refer to (2.36) and
(2.42) as the Lie scheme and Strang scheme respectively.

Higher order splitting schemes can be constructed. However, this entails
backwards integration with respect to the evolution variable, which often
causes the splitting scheme to become unstable [GK96]. For this reason, we
will not spend time looking into such methods.

In practice, exact solutions to the sub-equations (2.34) do not always
exist. In this case, we must resort to integration schemes that are appropriate
for each given equation. Eligible integration schemes can have any order of
accuracy, but should at least have the same order as the chosen splitting
method when S1, . . . , SN do not commute. This is illustrated in chapter 4
where we make use of the second order explicit Runge-Kutta method

fk+1 = fk − 1
2∆x(Sfk + S(fk − ∆xSfk)) (2.48)

in order to solve one of the sub-equations (2.34) that arise in the Strang
splitting of the MNLS equation.

2.3 The model problem
Throughout the thesis we will be concerned with the evolution of gravity
waves that propagate on the surface of an incompressible, irrotational and
inviscid fluid. On deep water, such waves are described by the BVP

∂η

∂t
+ ∇ϕ · ∇η = ∂ϕ

∂z
at z = η (2.49)

∂ϕ

∂t
+ 1

2(∇ϕ)2 + gη = 0 at z = η (2.50)

∇2ϕ = 0 for − ∞ < z < η (2.51)

∂ϕ

∂z
= 0 at z = −∞ (2.52)

where η = η(x, y, t) is the surface elevation, ϕ = ϕ(x, y, z, t) is the velocity
potential and g is the gravitational acceleration. The quiescent surface lies
in the xy−plane, the z−axis points vertically upwards and t represents time.
This nonlinear BVP can be solved using a perturbation technique under

12



2.3. The model problem

the presumption that the waves are not too steep. This is equivalent to the
requirement that the amplitudes of the waves are not too large compared to
the wavelengths. It is therefore natural to quantify steepness in terms of
the nondimensional variable ε = ackc, where ac and kc is the characteristic
amplitude and wavenumber respectively. In order to incorporate this variable
into the BVP we normalize all variables by the characteristic amplitude ac,
wavenumber kc and frequency ωc according to

x′ =kcx y′ = kcy z′ = kcz t′ = ωct

η′ = η

ac

ϕ′ = kc

ωcac

ϕ g′ = kc

ω2
c

g
(2.53)

where the primed variables are normalized and dimensionless. The BVP is
then reformulated as

∂η′

∂t′
+ ε∇′ϕ′ · ∇′η′ = ∂ϕ′

∂z′ at z′ = εη′ (2.54)

∂ϕ′

∂t′
+ 1

2ε(∇
′ϕ′)2 + g′η′ = 0 at z′ = εη′ (2.55)

∇′2ϕ′ = 0 for − ∞ < z′ < εη′ (2.56)

∂ϕ′

∂z′ = 0 at z′ = −∞, (2.57)

from which it is evident that ε ≪ 1 serves not only as a measure of steepness
but also as a measure of nonlinearity of the waves. In what follows we drop
the primes, but keep in mind that the variables are indeed normalized and
nondimensional. There is one particular challenge related to the above BVP,
namely that the domain itself is dependent on the solution η. It is therefore
necessary that we make a Taylor expansion of ϕ about the quiescent surface

ϕ

∣∣∣∣
z=εη

= ϕ

∣∣∣∣
z=0

+ εη
∂ϕ

∂z

∣∣∣∣
z=0

+ 1
2ε

2η2∂
2ϕ

∂z2

∣∣∣∣
z=0

+ . . . , (2.58)

which leads to the slightly more complicated BVP

∂η

∂t
+ ε∇ϕ · ∇η + ε2η∇∂ϕ

∂z
· ∇η − ∂ϕ

∂z

− εη
∂2ϕ

∂z2 − 1
2ε

2η2∂
3ϕ

∂z3 = O(ε3) at z = 0
(2.59)

13



2.3. The model problem

∂ϕ

∂t
+ εη

∂2ϕ

∂t∂z
+ 1

2ε
2η2 ∂3ϕ

∂t∂z2 + 1
2ε(∇ϕ)2

+ ε2η∇ϕ · ∇∂ϕ

∂z
+ gη = O(ε3) at z = 0

(2.60)

∇2ϕ = 0 for − ∞ < z < 0 (2.61)

∂ϕ

∂z
= 0 at z = −∞. (2.62)

We will only be interested in waves whose amplitudes are slowly modulated
in space and time compared to the waves themselves. A proper mathematical
description of said waves requires the introduction of multiple scales

x0 = x y0 = y z0 = z t0 = t

x1 = εx y1 = εy z1 = εz t1 = εt
(2.63)

of which x0, y0, z0, t0 and x1, y1, z1, t1 are fast- and slow-scales respectively.
Let us write

r0 = (x0, y0, z0) r1 = (x1, y1, z1) x0 = (x0, y0) x1 = (x1, y1) (2.64)

to simplify the resulting set of equations

∂η

∂t0
+ ε

∂η

∂t1
− ∂ϕ

∂z0
− ε

∂ϕ

∂z1
+ ε∇x0ϕ · ∇x0η − εη

∂2ϕ

∂z2
0

− 2ε2η
∂2ϕ

∂z0∂z1

+ ε2∇x0ϕ · ∇x1η + ε2∇x1ϕ · ∇x0η + ε2η∇x0

∂ϕ

∂z0
· ∇x0η

− 1
2ε

2η2∂
3ϕ

∂z3
0

= O(ε3) at z0 = z1 = 0

(2.65)

∂ϕ

∂t0
+ ε

∂ϕ

∂t1
+ εη

∂2ϕ

∂z0∂t0
+ ε2η

∂2ϕ

∂t0∂z1
+ ε2η

∂2ϕ

∂t1∂z0
+ 1

2ε(∇r0ϕ)2

+ ε2∇r0ϕ · ∇r1ϕ+ 1
2ε

2η2 ∂3ϕ

∂t0∂z2
0

+ ε2η∇r0ϕ · ∇r0

∂ϕ

∂z0

+ gη = O(ε3) at z0 = z1 = 0

(2.66)

∇2
r0ϕ+2ε∇r0 ·∇r1ϕ+ε2∇2

r1ϕ = 0 for −∞ < z0 < 0, −h < z1 < 0 (2.67)
∂ϕ

∂z0
+ ε

∂ϕ

∂z1
= 0 at z0 = −∞, z1 = −h (2.68)
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whose solution is sought as a perturbation expansion of the form

η(x0,x1, t0, t1) = η0(x0,x1, t0, t1) + εη1(x0,x1, t0, t1) + ε2η2(x0,x1, t0, t1) + . . .

ϕ(r0, r1, t0, t1) = ϕ0(r0, r1, t0, t1) + εϕ1(r0, r1, t0, t1) + ε2ϕ2(r0, r1, t0, t1) + . . . .

(2.69)

Notice that we let z1 to be finite despite working with deep water waves.
This takes into account that the modulation of the amplitude may be so
slow that it effectively happens on shallow water. Upon inserting this
expansion into the BVP (2.65-2.68) we obtain one BVP corresponding to
every order of the nondimensional variable ε, which allows us to determine
η0, ϕ0, η1, ϕ1, η2, ϕ2, . . . recursively. The BVP appearing at the zeroth order
O(ε0) is

∂η0

∂t0
− ∂ϕ0

∂z0
= 0 at z0 = z1 = 0 (2.70)

∂ϕ0

∂t0
+ gη0 = 0 at z0 = z1 = 0 (2.71)

∇2
r0ϕ0 = 0 for − ∞ < z0 < 0, −h < z1 < 0 (2.72)

∂ϕ0

∂z0
= 0 at z0 = −∞, z1 = −h (2.73)

which is linear in η0 and ϕ0. We therefore assume a monochromatic wave of
the form η0

ϕ0

 = 1
2

η̂0,1

ϕ̂0,1

 ei(x0−t0) + c.c.3, (2.74)

which is a wave travelling in the positive x−direction. We determine the
slowly modulated amplitudes η̂0,1 = η̂0,1(x1, t1) and ϕ̂0,1 = ϕ̂0,1(z0, r1, t1)
from the BVP that results from inserting this solution into equations (2.70-
2.73)

iη̂0,1 + ∂ϕ̂0,1

∂z0
= 0 at z0 = z1 = 0 (2.75)

− iϕ̂0,1 + gη̂0,1 = 0 at z0 = z1 = 0 (2.76)

∂2ϕ̂0,1

∂z2
0

− ϕ̂0,1 = 0 for − ∞ < z0 < 0, −h < z1 < 0 (2.77)

∂ϕ̂0,1

∂z0
= 0 at z0 = −∞, z1 = −h. (2.78)

3c.c. stands for complex conjugate of the previous terms.
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From equation (2.77-2.78) it follows that

ϕ̂0,1 = Aez0 for − ∞ < z0 < 0, −h ≤ z1 < 0 (2.79)

where A = A(r1, t1) is slowly varying in space and time. As a consequence,
equations (2.75-2.76) reduce to a linear system for η̂0,1 and A[

i 1
g −i

] [
η̂0,1
A

]
=
[
0
0

]
, at z1 = 0 (2.80)

which has a nontrivial solution only if the determinant of the coefficient
matrix on the left is zero. That is, we require that

g = 1, (2.81)

which we recognize through (2.53) as the linear dispersion relation for deep
water gravity waves

ω2
c = gkc, g dimensional. (2.82)

As a result, the solution to (2.80) is given by

A
∣∣∣
z1=0

= −iη̂0,1, η̂0,1 free, (2.83)

from which it follows that

A = −iη̂0,1f(z1), (2.84)

for some function f that satisfies f(0) = 1. Let’s write η̂0,1 = B for simplicity.
The fundamental solution to the zeroth order problem is then[

η0
ϕ0

]
= 1

2

[
B

−iBf(z1)ez0

]
ei(x0−t0) + c.c., (2.85)

which implies that the surface elevation η is actually linear to the leading
order. We substitute this solution directly into the first order problem O(ε1),
which results in

∂η1

∂t0
− ∂ϕ1

∂z0
= −∂η0

∂t1
+ ∂ϕ0

∂z1
− ∇x0ϕ0 · ∇x0η0 + η0

∂2ϕ0

∂z2
0

= −1
2

(
∂B

∂t1
+ iBf ′(0)

)
ei(x0−t0) − i

2B
2e2i(x0−t0) + c.c. at z0 = z1 = 0

(2.86)
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∂ϕ1

∂t0
+ gη1 = −∂ϕ0

∂t1
− η0

∂2ϕ0

∂z0∂t0
− 1

2(∇r0ϕ0)2

= i
2
∂B

∂t1
ei(x0−t0) + 1

4B
2e2i(x0−t0) + c.c. at z0 = z1 = 0

(2.87)

∇2
r0ϕ1 = −2∇r0 · ∇r1ϕ0

= −
(
∂B

∂x1
f(z1) − iBf ′(z1)

)
ez0ei(x0−t0) + c.c. for − ∞ < z0 < 0, −h < z1 < 0

(2.88)
∂ϕ1

∂z0
= −∂ϕ0

∂z1
= 0 at z0 = −∞, z1 = −h. (2.89)

Since these equations are forced on the right hand side by terms that are
proportional to e±i(x0−t0) and e±2i(x0−t0), it is natural to assume that the
solution is of the form[

η1
ϕ1

]
= 1

2

[
η̂1,1

ϕ̂1,1

]
ei(x0−t0) + 1

2

[
η̂1,2

ϕ̂1,2

]
e2i(x0−t0) + c.c. (2.90)

where the amplitudes depend on the slow scales and ϕ̂1,1 and ϕ̂1,2 in addition
depend on the vertical fast scale. This assumption leads to two additional
BVP, one of which is the first harmonic problem

iη̂1,1 + ∂ϕ̂1,1

∂z0
= ∂B

∂t1
+ iBf ′(0) at z0 = z1 = 0 (2.91)

− iϕ̂1,1 + gη̂1,1 = i∂B
∂t1

at z0 = z1 = 0 (2.92)

∂2ϕ̂1,1

∂z2
0

−ϕ̂1,1 = −2
(
∂B

∂x1
f(z1)−iBf ′(z1)

)
ez0 for −∞ < z0 < 0, −h < z1 < 0

(2.93)
∂ϕ̂1,1

∂z0
= 0 at z0 = −∞, z1 = −h. (2.94)

The governing equation and bottom condition for ϕ̂1,1 are satisfied by

ϕ̂1,1 = c1(r1, t1)ez0−
(
∂B

∂x1
f(z1)−iBf ′(z1)

)
z0e

z0 , for −∞ < z0 < 0, −h ≤ z1 < 0,
(2.95)

from which it follows that the surface conditions constitute an inhomogenous
linear system  i 1

g −i

 η̂1,1

c1

 =
 ∂B

∂x1
+ ∂B

∂t1

i ∂B
∂t1

 , at z1 = 0. (2.96)
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Due to the dispersion relation (2.81), the coefficient matrix on the left is
singular. In order for this system to have a solution we must therefore require
that the right-hand side meets a certain criteria. According to the Fredholm
alternative, the right-hand side must be orthogonal to the nullspace of the
transpose of the coefficient matrix. That is, the system (2.96) has a solution
provided v1

v2

 ·

 ∂B
∂x1

+ ∂B
∂t1

i ∂B
∂t1

 = 0, (2.97)

whenever
MT v =

[
i 1
1 −i

] [
v1
v2

]
=
[
0
0

]
. (2.98)

Since the nullspace of MT consists of vectors of the form

v = c

[
1

−i

]
, c ∈ C (2.99)

it follows that the solvability condition arising at the first order is the linear
advection equation

∂B

∂t1
+ 1

2
∂B

∂x1
= 0. (2.100)

In dimensional variables this equation reads

∂B

∂t1
+ ωc

2kc

∂B

∂x1
= 0, (2.101)

which is the statement that within O(ε), the leading order amplitude, or
envelope, travels with the group velocity Cg = ωc

2kc
. With this requirement

on B we may solve (2.96) for c1 and continue with the second harmonic
problem as well as the higher order problems for η2, ϕ2, η3, ϕ3, . . .. It can be
shown that the resulting expression for the surface elevation is

η(x, y, t) = 1
2

(
B(1−ε2 3

8B
2)ei(x0−t0) +ε1

2B
2e2i(x0−t0) +ε2 3

8B
3e3i(x0−t0) +c.c.

)
(2.102)

to third order O(ε3). In the process, several solvability conditions are
encountered, including the nonlinear Schrödinger(NLS) equation

∂B

∂t1
+ 1

2
∂B

∂x1
+ ε

( i
8
∂2B

∂x2
1

− i
4
∂2B

∂y2
1

+ i
2 |B|2B

)
= 0, (2.103)
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and the modified nonlinear Schrödinger(MNLS) equation

∂B

∂t1
+ 1

2
∂B

∂x1
+ ε

( i
8
∂2B

∂x2
1

− i
4
∂2B

∂y2
1

+ i
2 |B|2B

)

− ε2
( 1

16
∂3B

∂x3
1

− 3
8

∂3B

∂x1∂y2
1

− 5
4 |B|2 ∂B

∂x1
− 1

4B
∂|B|2

∂x1
− iB ∂ϕ̄

∂x1

)
= 0,

(2.104)

arising at the second and third order respectively. Both equations are derived
under the assumption that the envelope is narrow-banded. To be precise,
we require that the bandwidths ∆k = (∆kx,∆ky) and ∆ω, which measure
the range of wavenumbers and frequencies present in the envelope and thus
the modulation scales, is O(ε). The MNLS-equation is dependent on the
induced slow drift ϕ̄ = ϕ̄(r1, t1) appearing in ϕ3, which satisfies the BVP

∂ϕ̄

∂z1
= 1

2
∂|B|2

∂x1
at z1 = 0 (2.105)

∂2ϕ̄

∂x2
1

+ ∂2ϕ̄

∂y2
1

+ ∂2ϕ̄

∂z2
1

= 0 for − h < z1 < 0 (2.106)

∂ϕ̄

∂z1
= 0 at z1 = −h. (2.107)

Solving the MNLS-equation for B therefore includes solving this BVP for
ϕ̄. It is readily observed that, at each order, the solvability condition is a
refinement of that at the previous order. The NLS-equation adds linear
dispersion and a nonlinear correction of the wavelength to the advection
equation (2.100) whilst the MNLS-equation in addition adds nonlinear
advection. Both equations are known not only for describing the narrow-
banded modulation of weakly nonlinear waves, but also for the insight that
they give into the modulational instability of Stokes waves. The Stokes wave
train is the permanent, periodic and uniform wave train that is achieved
by setting B = 1 in (2.102). Before delving into the details of this latter
subject however, we will spend some time on adjusting our perspective to
that of an experimentalist.

2.4 The experimental approach
When we measure the height of water surface waves in the laboratory, we
make use of a measuring device, such as a probe, which remains fixed at
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some distance from the wave paddle and tank walls. At its location, the
device measures the surface elevation relative to the quiescent surface at
discrete instants in time. The result is a time series that we can analyze.
If we place multiple measuring devices at increasing distances from the
wave paddle, we can investigate how this time series changes as the waves
propagate along the tank. The solvability conditions that we encountered in
the previous section also provides such insight, but from another perspective.
They encourage rather the study of how the waves that we see with the
naked eye change in time. For us to be able to compare simulation results
to experimental data we must therefore somehow make adjustments to the
solvability conditions, so that they agree with the empirical point of view.
That is, we need to change the evolution variable of equations (2.103-2.104)
from t1 to x1. To begin, rewrite the MNLS-equation so that only the desired
evolution operator remains on the left hand side

∂B

∂x1
= − 2∂B

∂t1
− i

4ε
∂2B

∂x2
1

+ i
2ε
∂2B

∂y2
1

− iε|B|2B

+ 1
8ε

2∂
3B

∂x3
1

− 3
4ε

2 ∂3B

∂x1∂y2
1

− 5
2ε

2|B|2 ∂B
∂x1

− 1
2ε

2B
∂|B|2

∂x1
− 2iε2B

∂ϕ̄

∂x1
.

(2.108)

Our goal is to get rid of all derivatives on the right-hand side, that involve
the new evolution operator. Let us therefore replace them by those that are
obtained from differentiating equation (2.108). The result is

∂B

∂x1
= − 2∂B

∂t1
− i

4ε
(

− 2 ∂2B

∂t1∂x1
− i

4ε
∂3B

∂x3
1

+ i
2ε

∂3B

∂x1∂y2
1

− 2iε|B|2 ∂B
∂x1

− iεB2∂B
∗

∂x1

)

+ i
2ε
∂2B

∂y2
1

− εi|B|2B + 1
8ε

2
(

− 2 ∂3B

∂t1∂x2
1

)
− 3

4ε
2
(

− 2 ∂3B

∂t1∂y2
1

)

− 5
2ε

2|B|2
(

− 2∂B
∂t1

)
− 1

2ε
2|B|2 ∂B

∂x1
− 1

2ε
2B2∂B

∗

∂x1
− 2iε2B

∂ϕ̄

∂x1
+ O(ε3)

(2.109)
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to which the same procedure is repeated to obtain

∂B

∂x1
= − 2∂B

∂t1
− i

4ε
(

− 2
(

− 2∂B
∂t21

− i
4ε

∂3B

∂t1∂x2
1

+ i
2ε

∂3B

∂t1∂y2
1

− 2iε|B|2∂B
∂t1

− iεB2∂B
∗

∂t1

)

− i
4ε
(

− 2 ∂3B

∂t1∂x2
1

)
+ i

2ε
(

− 2 ∂3B

∂t1∂y2
1

)
− 2iε|B|2

(
− 2∂B

∂t1

)
− iεB2

(
− 2∂B

∗

∂t1

))

+ i
2ε
∂2B

∂y2
1

− εi|B|2B + 1
8ε

2
(

− 2 ∂3B

∂t1∂x2
1

)
− 3

4ε
2
(

− 2 ∂3B

∂t1∂y2
1

)
− 5

2ε
2|B|2

(
− 2∂B

∂t1

)

− 1
2ε

2|B|2
(

− 2∂B
∂t1

)
− 1

2ε
2B2

(
− 2∂B

∗

∂t1

)
− 2iε2B

∂ϕ̄

∂x1
+ O(ε3).

(2.110)

Thankfully, this simplifies to

∂B

∂x1
= − 2∂B

∂t1
− iε∂

2B

∂t21
+ i

2ε
∂2B

∂y2
1

− iε|B|2B

+ ε2 ∂3B

∂t1∂y2
1

+ 8ε2|B|2∂B
∂t1

+ 2ε2B2∂B
∗

∂t1
− 2iε2B

∂ϕ̄

∂x1
+ O(ε3)

(2.111)

which is accurate to the third order. We don’t care about higher order terms
since that would exceed the accuracy of the MNLS-equation. It then only
remains to get rid of the derivative of the induced slow drift. This requires
that we make the assumption that also this quantity satisfies the linear
advection equation

∂ϕ̄

∂t1
+ 1

2
∂ϕ̄

∂x1
= 0. (2.112)

Moving all terms in (2.111) over to the left-hand side it then follows that

∂B

∂x1
+ 2∂B

∂t1
+ ε

(
i∂

2B

∂t21
− i

2
∂2B

∂y2
1

+ i|B|2B
)

− ε2
(
∂3B

∂t1∂y2
1

+ 8|B|2∂B
∂t1

+ 2B2∂B
∗

∂t1
+ 4iB ∂ϕ̄

∂t1

)
= 0

(2.113)

is the desired form of the MNLS-equation. In an analogous manner, we
rewrite the surface condition and governing equation for the induced slow
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drift as

∂ϕ̄

∂z1
= 1

2
∂|B|2

∂x1
= 1

2
∂B

∂x1
B∗+1

2B
∂B∗

∂x1
= −∂B

∂t1
B∗−B∂B

∗

∂t1
= −∂|B|2

∂t1
at z1 = 0

(2.114)
and

4∂
2ϕ̄

∂t21
+ ∂2ϕ̄

∂y2
1

+ ∂2ϕ̄

∂z2
1

= 0 for − h < z1 < 0 (2.115)

respectively.
Now that the equations agree with the experimental point of view, we

can either keep them in their normalized nondimensional form or reintroduce
the original dimensional variables. From hereon we will choose the latter
alternative, such that the equations that we will analyse and simulate read

∂B

∂x
+ 2kc

ωc

∂B

∂t
+ ikc

ω2
c

∂2B

∂t2
− i

2kc

∂2B

∂y2 + ik3
c |B|2B

− 1
ωckc

∂3B

∂t∂y2 − 8k3
c

ωc

|B|2∂B
∂t

− 2k3
c

ωc

B2∂B
∗

∂t
− 4ik3

c

ω2
c

B
∂ϕ̄

∂t
= 0 at z = 0

(2.116)

∂ϕ̄

∂z
= −kc

∂|B|2

∂t
at z = 0 (2.117)

4k2
c

ω2
c

∂2ϕ̄

∂t2
+ ∂2ϕ̄

∂y2 + ∂2ϕ̄

∂z2 = 0 for − h < z < 0 (2.118)

∂ϕ̄

∂z
= 0 at z = −h, (2.119)

where the first line of the MNLS-equation (2.116) constitutes the NLS-
equation.

2.5 Modulational instability of Stokes waves
Perturbations of the uniform wave train appear naturally despite the effort
to ensure even the most ideal conditions for our experiments. It is therefore
in our interest to see if we can gain any insight through a perturbation
analysis of the equations governing the wave train. That is, we want to
study how deviations from the Stokes wave, given by

B(x, y, t) = B0e
−ik3

c |B0|2x and ϕ̄(x, y, z, t) = 0, (2.120)
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behave according to equations (2.116)-(2.119). Let’s therefore assume slow
perturbations in space and time of the form

B(x, y, t) = B0(1 + α(x, y, t) + iβ(x, y, t))e−ik3
c |B0|2x. (2.121)

Inserting this into the MNLS equation (2.116), we obtain an equation that
can be divided into its real part

∂α

∂x
+ 2kc

ωc

∂α

∂t
− kc

ω2
c

∂2β

∂t2
+ 1

2kc

∂2β

∂y2 − k3
c |B0|2(2α + α2 + β2)β − 1

ωckc

∂3α

∂t∂y2

− 10k3
c

ωc

|B0|2(1 + 2α + α2)∂α
∂t

− 6k3
c

ωc

|B0|2β2∂α

∂t
− 4k3

c

ωc

|B0|2(β + αβ)∂β
∂t

+ 4k3
c

ω2
c

β
∂ϕ̄

∂t
= 0 at z = 0

(2.122)

and its imaginary part

∂β

∂x
+ 2kc

ωc

∂β

∂t
+ kc

ω2
c

∂2α

∂t2
− 1

2kc

∂2α

∂y2 + k3
c |B0|2(2α + 3α2 + α3 + β2 + αβ2)

− 1
ωckc

∂3β

∂t∂y2 − 6k3
c

ωc

|B0|2(1 + 2α + α2)∂β
∂t

− 10k3
c

ωc

|B0|2β2∂β

∂t

− 4k3
c

ωc

|B0|2(β + αβ)∂α
∂t

− 4k3
c

ω2
c

(1 + α)∂ϕ̄
∂t

= 0 at z = 0.

(2.123)

It can be shown that the first five terms of both (2.122) and (2.123) descend
from the NLS equation. We also have to take into account, the effect of
(2.121) on the induced slow drift ϕ̄ through equation (2.117), namely

∂ϕ̄

∂z
= −2kc|B0|2

(
∂α

∂t
+ α

∂α

∂t
+ β

∂β

∂t

)
at z = 0. (2.124)

At this point, it is appropriate to confine ourselves to a linear perturbation
analysis by neglecting the nonlinear terms in α, β and ϕ̄. We then obtain a
linear real part

∂α

∂x
+ 2kc

ωc

∂α

∂t
− kc

ω2
c

∂2β

∂t2
+ 1

2kc

∂2β

∂y2 − 1
ωckc

∂3α

∂t∂y2 − 10k3
c

ωc

|B0|2
∂α

∂t
= 0, (2.125)
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a linear imaginary part

∂β

∂x
+ 2kc

ωc

∂β

∂t
+ kc

ω2
c

∂2α

∂t2
− 1

2kc

∂2α

∂y2 + 2k3
c |B0|2α− 1

ωckc

∂3β

∂t∂y2 − 6k3
c

ωc

|B0|2
∂β

∂t

− 4k3
c

ω2
c

∂ϕ̄

∂t
= 0 at z = 0,

(2.126)

as well as a linear surface condition for ϕ̄

∂ϕ̄

∂z
= −2kc|B0|2

∂α

∂t
at z = 0. (2.127)

These three equations can be solved by assuming harmonic long wave
perturbations of the form

α

β

ϕ̄

 =


α̂

β̂

ϕ̂

 ei(λx+µy−Ωt) + c.c., (2.128)

where ϕ̂ depends on the vertical scale z. With this assumption, the BVP
for ϕ̄ reduces to a BVP for ϕ̂

dϕ̂
dz = 2ikc|B0|2Ωα̂ at z = 0 (2.129)

d2ϕ̂

dz2 −
(4k2

c Ω2

ω2
c

+ µ2
)
ϕ̂ = 0 for − h < z < 0 (2.130)

dϕ̂
dz = 0 at z = −h. (2.131)

Equation (2.130) is a linear, second order, homogenous ODE whose general
solution is

ϕ̂(z) = c1e
Rz + c2e

−Rz for − h < z < 0 (2.132)

with

R =

√√√√4k2
c Ω2

ω2
c

+ µ2. (2.133)
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The constants c1 and c2 are determined from the boundary conditions (2.129)
and (2.131), so that the resulting expression for ϕ̂ is

ϕ̂(z) = 2ikc|B0|2Ω cosh(R(z + h))
R sinh(Rh) α̂ for − h ≤ z ≤ 0. (2.134)

Inserting (2.128) into equation (2.125) and (2.126) then leads to the following
linear system of equations for α̂ and β̂ iλ− 2ikcΩ

ωc
− iΩµ2

ωckc
+ 10ik3

c |B0|2Ω
ωc

Q

−Q+ 2k3
c |B0|2 − 8k4

c |B0|2Ω2 coth(Rh)
ω2

c R
iλ− 2ikcΩ

ωc
− iΩµ2

ωckc
+ 6ik3

c |B0|2Ω
ωc


α̂
β̂

 = 0

(2.135)
where

Q = kcΩ2

ω2
c

− µ2

2kc

. (2.136)

As the first four and five terms of (2.125) and (2.126) respectively are
descendants of the NLS equation, we also find a more manageable system of
equations for α̂ and β̂ iλ− 2ikcΩ

ωc
Q

−Q+ 2k3
c |B0|2 iλ− 2ikcΩ

ωc


α̂
β̂

 = 0. (2.137)

In order for these systems to have nontrivial solutions, we must require their
coefficient matrices to be singular. This is equivalent to the requirement
that the determinants of the coefficient matrices are zero, which results
in the following growth rates for the perturbation according to the MNLS
equation

λMNLS =

(
2k2

c + µ2 − 8k4
c |B0|2

)
Ω

ωckc

±

√√√√Q(Q− 2k3
c |B0|2 + 8k4

c |B0|2Ω2 coth(Rh)
ω2

cR

)
+ 4k6

c |B0|4Ω2

ω2
c

(2.138)

and the NLS equation

λNLS = 2kcΩ
ωc

±

√√√√Q(Q− 2k3
c |B0|2

)
. (2.139)

25



2.5. Modulational instability of Stokes waves

These growth rates are either real or complex valued, depending on
the radicands being nonnegative or negative respectively. Looking back
at equation (2.128), we see that in the latter case, the perturbations are
free to grow exponentially as they propagate along the tank. These are the
unstable perturbations of the Stokes wave, whose growth rates are shown in
figure (2.1) for ε = 0.1. It is apparent that the imaginary parts of λNLS and
λMNLS, plotted in figure (2.1a) and (2.1b) respectively, are both symmetric
about the origin. As such, neither the lower nor the upper sidebands should
dominate the modulation of the Stokes wave in these models. The validity
of this interpretation is discussed in section 5, where we analyse the results
of a simulation of the two governing equations in question. In figure (2.1a),
the level curves of λNLS are seen to be hyperbolas out of which

Ω2 − ω2
c

2k2
c

µ2 = ω2
ck

2
c |B0|2 (2.140)

yields the maximum growth rate. The upper part of this hyperbola is
represented by dashed lines. There are no such curves on which λMNLS

attains its maximum. We can however locate two isolated points with this
property in the limit of infinite depth. In this case the growth rate reaches
its maximum for µ = 0 [McL82]. With this in mind, the radicand in (2.138)
simplifies to

k2
c Ω4

ω4
c

− 2k4
c |B0|2Ω2

ω2
c

+ 4k4
c |B0|2|Ω|3

ω3
c

+ 4k6
c |B0|4Ω2

ω2
c

, (2.141)

which can be differentiated with respect to Ω to obtain

4k2
c Ω3

ω4
c

− 4k4
c |B0|2Ω
ω2

c

+ 12k4
c |B0|2|Ω|Ω
ω3

c

+ 8k6
c |B0|4Ω
ω2

c

. (2.142)

The maximum growth rate is achieved by setting this expression to zero,
leaving us at the quadratic equation

|Ω|2 + 3ωck
2
c |B0|2|Ω| + 2ω2

ck
4
c |B0|4 − ω2

ck
2
c |B0|2 = 0 (2.143)

whose solution is given by

|Ω| = −3
2ωck

2
c |B0|2 + 1

2ωckc|B0|
√
k2

c |B0|2 + 4. (2.144)

The two values of Ω satisfying this requirement are both represented by a
cross in figure (2.1b). This particular distinction in the growth rates λNLS

and λMNLS implies that there is a qualitative difference in the modulational
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(a) (b)

Figure 2.1: Contour plot indicating the growth rates Im(λ)
kc

for unstable
perturbations ( Ω

ωc
, µ

kc
) in the angular frequency and wavenumber respectively.

According to a stability analysis of (a): the NLS equation, the most unstable
perturbations: −−, lie on a hyperbola while according to (b): the MNLS
equation, the most unstable perturbations: ×, are isolated points. ε = 0.1.

instability governed by the NLS and MNLS equation. While the predominant
instabilities are spread out in all three directions according to the NLS
equation, its counterpart insists they appear in the direction of propagation.
In practice this means that if modulations are free to grow until the point
of breaking, then we should see this behaviour largely in the longitudinal
direction of the tank. It is also worth noticing from the colorbars of figure
(2.1) that the growth rate due to the NLS equation in general is higher
than that of the MNLS equation. We keep these remarks in mind when
we later on investigate the extent to which the emergence of sidebands in
the experimental data from Marintek is in agreement with the instability
regions of this section.
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CHAPTER 3

Analysis of experimental data

3.1 About the experiment
As a complement to this thesis, access has been given to experimental data
collected in 1999 from the towing tank at Marintek, Trondheim, currently
known as Sintef Ocean. The data in question are probe measurements of
the surface elevation, varying due to the presence of Stokes waves generated
at the beginning of a tank of length 260 m and width 10.5 m. Capacitance
probes, positioned with the intent of capturing transversal modulations
in the wavetrain, were located in groups of five at 10, 80, 120 and 160
meters from the wave paddle. We assume that the amount of waves reflected
off the sloping beach at the far end of the tank is negligible1 so that the
measurements are not significantly contaminated. The tank along with the
specific arrangement of probes is depicted in figure 3.1. When programming
the wave paddle, the height H0 and period T0 of the wavetrain were set to
0.1 m and 1.0 s respectively. Through the linear dispersion relation (2.82)
we find that this corresponds to the nominal wavenumber

k0 = 4π2

gT 2
0

= 4.0202 m−1, (3.1)

where g = 9.82 ms−2 is the acceleration of gravity. As the depth of the tank
was 10 m within the first 80 m of the wave paddle and 5 meters throughout
the rest of the tank, the nondimensional depth k0h was no less than 20.1.
In addition, we roughly estimate the steepness ϵ0 ≈ H0k0

2 = 0.2010. These
numbers reflect that the waves generated at Marintek were indeed weakly

1The nominal period of this experiment is within a range which traditionally is well
absorbed by a sloping beach. Besides, as the distance between the probes and the beach
was at least about 100 meters, it is probable that viscous damping wore down any reflected
waves by the time they arrived at the probes.
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3.2. Characterizing the experiment

Figure 3.1: The experimental setup: ×, capacitance probes were placed in
groups of five at 10, 80, 120 and 160 meters from the wave paddle.

nonlinear, deep water gravity waves, which we know are governed by the
equations in section 2.3. We will spend some time analysing the experimental
data, in order to get an idea of the kind of behavior that can be expected
from a real world Stokes wave.

3.2 Characterizing the experiment
Before embarking on the analysis of the experimental data, we need to know
what kind of tools we have at hand. One of the very first things we should
know, is whether or not the data exhibits stationarity or homogeneity. In
particular we ask if the data are weakly stationary or weakly homogenous
as this enables the use of the spectrum. The former property of the data
is established through the fact that the wave paddle itself was driven by a
weakly stationary signal and through the assumption of negligible reflection
off of the beach. In the transversal direction, however, the situation is
different. Any modulation in this direction is reflected off the tank walls and
weak homogeneity is thus an implausible assumption. Let’s calculate the
autocorrelation of the data to see if this is a problem or not. The statistical
theory that enables the following calculations can be found in the lecture
notes written by Professor Karsten Trulsen [Tru22].

In order to estimate the transversal autocorrelation function R(yi, yl) at
any given distance from the wave paddle, we consider each measurement
in time to be a realisation of the stochastic variable η(yi) thereby creating
an ensemble {ηj(yi)}N−1

j=0 . This allows us to calculate the autocorrelation by
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means of an ensemble average

R(yi, yl) = E[η(yi)η(yl)] = 1
N

N−1∑
j=0

ηj(yi)ηj(yl) i, l = 0, 1, 2, 3, 4. (3.2)

It is however more informative to look at the correlation coefficients r(yi, yl)
obtained from normalizing the autocorrelation by the standard deviations σi

and σl of the stochastic variables η(yi) and η(yl) respectively. The calculation
to be performed for every pair of points yi, yl is then

r(yi, yl) = E[η(yi)η(yl)]
σiσl

= 1
σiσlN

N−1∑
j=0

ηj(yi)ηj(yl) i, l = 0, 1, 2, 3, 4. (3.3)

The results, obtained through a Matlab implementation, are presented in
the tables of figure 3.2. Notice that at any given distance from the wave
paddle, the correlation coefficients are symmetric, that is, r(yi, yl) = r(yl, yi).
Moreover, the correlation coefficient of a stochastic variable η(yi) with itself
is seen to be roughly equal to unity as expected. In each of the tables,
the diagonals represent a deviation in the spatial variable y according
to the discretization ξκ = κ∆y, κ = 0, 1, 2, 3, 4. For example, both
correlation coefficients r10(y2, y4) and r10(y0, y2) are seen to correspond
to a spatial deviation of ξ2 = 2∆y. Nevertheless, their numerical values are
different. If the data were weakly homogenous, each diagonal would have to
contain only identical numbers as this would imply the independence of the
autocorrelation function from the absolute position y. Looking at the data,
it is clear that this is not the case no matter the distance from the wave
paddle. Therefore, we will not be able to compute the spectrum across the
tank. We will however employ the spectrum in time in order to estimate
the characteristic amplitude ac.

Unfortunately, we cannot expect that the characteristic variables of
the physical wave train are equal to the nominal values that was used to
program the wave paddle. In the following, we therefore elaborate on how
the characteristic variables are estimated from the experimental data we have
at hand. We begin by determining the characteristic angular frequency from
the measurements that are closest to the wave paddle. We simply compute
the spectrum 1

∆ω
|η̃n(0, yi)|2 of each time series across the tank and locate

the peak frequency. From this procedure, we find that the characteristic
angular frequency is ωc = 6.2928 s−1. This is slightly larger than the nominal
angular frequency ω0 = 2π s−1. The characteristic wavenumber is estimated
through the linear dispersion relation

kc = ω2
c

g
= 4.0325 m−1 (3.4)
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r10 y0 y1 y2 y3 y4

y0 0.9997 0.9932 0.9914 0.9750 0.9890
y1 0.9932 0.9997 0.9864 0.9697 0.9833
y2 0.9914 0.9864 0.9997 0.9920 0.9941
y3 0.9750 0.9697 0.9920 0.9997 0.9888
y4 0.9890 0.9833 0.9941 0.9888 0.9997

ξ0

ξ1

ξ2

ξ3

ξ4

(a)

r80 y0 y1 y2 y3 y4

y0 0.9997 0.9670 0.8640 0.8227 0.7168
y1 0.9670 0.9997 0.8627 0.8295 0.7214
y2 0.8640 0.8627 0.9997 0.9358 0.8212
y3 0.8227 0.8295 0.9358 0.9997 0.9305
y4 0.7168 0.7214 0.8212 0.9305 0.9997

ξ0

ξ1

ξ2

ξ3

ξ4

(b)

r120 y0 y1 y2 y3 y4

y0 0.9997 0.8592 0.7058 0.6242 0.5266
y1 0.8592 0.9997 0.8768 0.7606 0.6705
y2 0.7058 0.8768 0.9997 0.8648 0.7664
y3 0.6242 0.7606 0.8648 0.9997 0.9102
y4 0.5266 0.6705 0.7664 0.9102 0.9997

ξ0

ξ1

ξ2

ξ3

ξ4

(c)

r160 y0 y1 y2 y3 y4

y0 0.9997 0.8281 0.5774 0.5745 0.5996
y1 0.8281 0.9997 0.7950 0.7165 0.6307
y2 0.5774 0.7950 0.9997 0.8325 0.6730
y3 0.5745 0.7165 0.8325 0.9997 0.7802
y4 0.5996 0.6307 0.6730 0.7802 0.9997

ξ0

ξ1

ξ2

ξ3

ξ4

(d)

Figure 3.2: Correlation coefficients r(yi, yl) at (a): 10, (b): 80, (c): 120 and
(d): 160 meters from the wave paddle. The diagonals represent a deviation
in the spatial variable y according to the discretization ξκ = κ∆y, κ =
0, 1, 2, 3, 4.

Estimating the characteristic amplitude is a somewhat more involved
procedure. We return to the autocorrelation function, this time as a function
of the temporal variable t, keeping both spatial variables x and y constant.
The definition remains analogous to that of the first equality in (3.2)

R(tj, tl) = E[η(tj)η(tl)] j, l = 0, . . . , N − 1. (3.5)

Setting the temporal deviation τ = tj − tl to zero we obtain the mean power

R(tj, tj) = E[η2(tj)] =
N−1∑
n=0

|η̃n|2 (3.6)

where the second equality is due to the Wiener-Khinchin relations. To
leading order, the surface elevation is given by

η(xk, yi, tj) = ac cos(kcxk − ωctj + θ), (3.7)

where the phase θ is assumed to be uniformly distributed2 over the interval
2It is pointed out in [Hol07] that ”For most wave records, the phases turn out to have

any value between 0 and 2π without any preference for any one value...this is almost
always the case in deep water”(p. 31).
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[0, 2π]. We can then calculate the expected value

E[η2(tj)] = E[a2
c cos2(kcxk − ωctj + Θ)] = a2

c

2π

∫ 2π

0
cos2(kcxk − ωctj + θ) dθ

= a2
c

4π

∫ 2π

0

(
1 + cos(2kcxk − 2ωctj + 2θ)

)
dθ

= a2
c

2 + a2
c

8π sin(2kcxk − 2ωctj + 2θ)|2π
0 = a2

c

2
(3.8)

From (3.6) and (3.8) it then follows that the characteristic amplitude can
be estimated by

ac =

√√√√2
N−1∑
n=0

|η̃n|2 (3.9)

at each of the first five probes. Upon taking the average of the five resulting
values we find that

ac = 0.0522 m (3.10)

and
ϵ = ackc = 0.2105. (3.11)

It is seen that all the estimated characteristic variables are greater than the
corresponding nominal variables. This is a common observation for a wave
that is generated in the laboratory. We also find that the relative width of
the tank is

∆µ0 = 0.0744. (3.12)

Thus, we should expect to see some modulation to transversal sidebands.

3.3 Energy estimates and distributions
It is through analysing the energy content of the waves that we are able
to gain insight about their evolution as they propagate along the tank.
In practice, such an analysis is a deep dive into the frequency content of
the waves. In this section we will therefore analyse the distribution of
energy across longitudinal and transversal modes3 and examine how this
distribution changes with an ever increasing distance from the wave paddle.

3When speaking about transversal modes we are really referring to the transversal
wavenumber k.
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It is natural to begin with the discretization of the surface elevation
η(x, y, t). At a given distance x from the wavemaker, we consider the
continuous, harmonic representation of η(y, t) as

η(y, t) =
∞∑

n=−∞

∞∑
m=0

η̃m,n cos(kmy)e−iωnt, (3.13)

with
km = mπ

Ly

and ωn = 2πn
T

. (3.14)

The dependency of η and η̃m,n on longitudinal position x is left out for
simplicity. Let us also, for the time being, fix the transversal position y and
focus our attention on the behaviour of the surface elevation in time. We
then allow ourselves to write

η(y, t) =
∞∑

n=−∞
ζ̃n(y)e−iωnt, (3.15)

with
ζ̃n(y) =

∞∑
m=0

η̃m,n cos(kmy). (3.16)

We place the computational grid tj in time so that it coincides with the
sampling rate of the probes (20 Hz)

tj = j∆t = jT

N
; j = 0, . . . , N − 1; N = 3914. (3.17)

As this grid is finite, the summation in (3.15) must naturally be finite as
well and the semi-discrete surface elevation become

ηj(y) =
N−1∑
n=0

ζ̃n(y)e− i2πnj
N . (3.18)

The resulting discrete basis functions e− i2πnj
N are orthogonal according to

our calculations in section 2.1, from which we recall that

〈
e− i2πnj

N , e− i2πqj
N

〉
l2

=
N−1∑
j=0

e− i2π(n−q)j
N =

0, n ̸= q

N, n = q.
(3.19)
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3.3. Energy estimates and distributions

We can now estimate the energy per unit time or mean power for fixed
x and y as follows

1
N

N−1∑
j=0

η2
j = 1

N

N−1∑
j=0

ηjη
∗
j = 1

N

N−1∑
j=0

(
N−1∑
n=0

ζ̃ne
− i2πnj

N

)(
N−1∑
q=0

ζ̃qe
− i2πqj

N

)∗

= 1
N

N−1∑
j=0

(
N−1∑
n=0

ζ̃ne
− i2πnj

N

)(
N−1∑
q=0

ζ̃∗
q e

i2πqj
N

)

= 1
N

N−1∑
j=0

N−1∑
n,q=0

ζ̃nζ̃
∗
q e

− i2π(n−q)j
N = 1

N

N−1∑
n,q=0

ζ̃nζ̃
∗
q

N−1∑
j=0

e− i2π(n−q)j
N

(3.19)=
N−1∑
n=0

ζ̃nζ̃
∗
n.

(3.20)

This result is an instance of the famous theorem of Parseval. If the waves were
long crested, this latter expression would give an estimate for the average
energy per unit horizontal surface area. Taking the transversal modulation
of the waves into account, we however discover that this expression is
insufficient to describe energy distribution across modes. Therefore, we need
to take an average of the acquired expression in (3.20) over an appropriate
transversal grid.

If we try to discretize y according to the positioning of the probes, we
quickly run into problems. It turns out that this grid

yi = (i+ 1)Ly

M
; i = 0, . . . ,M − 2; M = 6 (3.21)

is incompatible with orthogonality of the basis functions cos(kmyi). Specific-
ally, it can be shown that

〈
cos

(mπ(i+ 1)
M

)
, cos

(pπ(i+ 1)
M

)〉
l2

=
M−2∑
i=0

cos
(mπ(i+ 1)

M

)
cos

(pπ(i+ 1)
M

)

=


0, m ̸= p, m− p is odd
−4, m ̸= p, m− p is even
1
2(M − 2), m = p ̸= 0
4(M − 1), m = p = 0.

(3.22)
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3.3. Energy estimates and distributions

If we were to ignore the lack of orthogonality4 and carry on with the
calculation of energy, the resulting description would contain terms with
products of different modes. Such a description does not contribute to
physical insight into the experiment, as it invalidates the visual inferences
that we would like to make based on the harmonic components of η.
Therefore, to tackle this problem, we need another configuration of the
transversal grid yi. The most convenient one is

yi = (i+ 1/2)Ly

M
; i = 0, . . . ,M − 1; M = 6 (3.23)

whose corresponding basis functions are orthogonal with respect to the l2
inner product

M−1∑
i=0

cos
(mπ(i+ 1/2)

M

)
cos

(pπ(i+ 1/2)
M

)
=


0, m ̸= p
M
2 , m = p ̸= 0
M, m = p = 0

(3.24)

as we have already seen in section 2.1. This grid has the same spatial
step ∆y = Ly

M
, but is shifted a distance ∆y

2 to the left and consists of an
extra point. To retrieve this extra point we still have to make use of the
nonorthogonal basis above. Therefore, let us first make a discretization of
(3.16) in terms of (3.21)

ζ̃n(yi) =
M−2∑
m=0

η̃m,n cos
(mπ(i+ 1)

M

)
; i = 0, . . . ,M − 2; M = 6 (3.25)

for fixed n. This is a linear system of equations

ζ̃n(y0)
ζ̃n(y1)
ζ̃n(y2)
ζ̃n(y3)
ζ̃n(y4)


=



1
√

3
2

1
2 0 −1

2

1 1
2 −1

2 −1 −1
2

1 0 −1 0 1
1 −1

2 −1
2 1 −1

2

1 −
√

3
2

1
2 0 −1

2





η̃0,n

η̃1,n

η̃2,n

η̃3,n

η̃4,n


(3.26)

4Effort has been made to find a weighted inner product with respect to which the
functions cos

(mπ(i+1)
M

)
are orthogonal, but the attempt resulted in a trivial solution for

the weights. The problem is presumably that one missing point.
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3.3. Energy estimates and distributions

from which we calculate the coefficients η̃m,n by inverting the matrix


η̃0,n

η̃1,n

η̃2,n

η̃3,n

η̃4,n


=



1
3 0 1

3 0 1
3

√
3

3 0 0 0 −
√

3
3

1
2 −1

2 0 −1
2

1
2

√
3

6 −1
2 0 1

2 −
√

3
6

1
6 −1

2
2
3 −1

2
1
6





ζ̃n(y0)
ζ̃n(y1)
ζ̃n(y2)
ζ̃n(y3)
ζ̃n(y4)


. (3.27)

Returning to the continuous description (3.16) of ζ̃n, we see that we obtain
an interpolation from which we are able to make the approximation

ζ̃n(y) ≈
M−2∑
m=0

η̃m,n cos(kmy); M = 6 (3.28)

provided there is no aliasing. This expression is exact when y coincides with
(3.21), while the desired orthogonality properties are achieved by inserting
(3.23)

ζ̃n(yi) ≈
M−2∑
m=0

η̃m,n cos
(mπ(i+ 1/2)

M

)
; i = 0, . . . ,M − 1; M = 6. (3.29)

Finally then, we are ready to take the summation of (3.20) over the
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3.4. The evolution of a physical Stokes wave

transversal grid

Ē := 1
N

1
M

M−1∑
i=0

N−1∑
j=0

η2
i,j

(3.20)= 1
M

M−1∑
i=0

N−1∑
n=0

ζ̃n(yi)ζ̃n(yi)∗

(3.29)
≈ 1

M

M−1∑
i=0

N−1∑
n=0

(
M−2∑
m=0

η̃m,n cos
(mπ(i+ 1/2)

M

))(M−2∑
p=0

η̃p,n cos
(pπ(i+ 1/2)

M

))∗

= 1
M

M−1∑
i=0

N−1∑
n=0

(
M−2∑
m=0

η̃m,n cos
(mπ(i+ 1/2)

M

))(M−2∑
p=0

η̃∗
p,n cos

(pπ(i+ 1/2)
M

))

= 1
M

M−1∑
i=0

N−1∑
n=0

M−2∑
m,p=0

η̃m,nη̃
∗
p,n cos

(mπ(i+ 1/2)
M

)
cos

(pπ(i+ 1/2)
M

)

= 1
M

N−1∑
n=0

M−2∑
m,p=0

η̃m,nη̃
∗
p,n

M−1∑
i=0

cos
(mπ(i+ 1/2)

M

)
cos

(pπ(i+ 1/2)
M

)

(3.24)= 1
2

N−1∑
n=0

M−2∑
m,p=0

η̃m,nη̃
∗
p,nδm,p(1 + δ0,p) = 1

2

N−1∑
n=0

M−2∑
m=0

η̃m,nη̃
∗
m,n(1 + δ0,m)

= 1
2

N−1∑
n=0

M−2∑
m=0

|η̃m,n|2(1 + δ0,m) =
N−1∑
n=0

M−2∑
m=0

Ēm,n.

(3.30)

We see that the estimate for the average energy5 per unit horizontal
surface area reduces to a weighted sum of the square of the coefficients
in the harmonic expansion of η. This expression is used extensively in the
following, both in the analysis of experimental results and in the subsequent
simulations.

3.4 The evolution of a physical Stokes wave
Throughout the rest of the thesis, we will frequently be interested in how
energy is distributed across modes. There are many ways to visualize this. A
natural option is to plot Ēm,n against ωn and km on a three dimensional axis,

5Strictly speaking, to obtain the actual energy we would have to multiply (3.30) by
ρg. We choose to overlook this detail as it is immaterial for the distribution of energy
across modes.

37



3.4. The evolution of a physical Stokes wave

Figure 3.3: Energy distribution across longitudinal modes for km = 0
at 10 meters from the wave paddle. The first five contributions to the
corresponding distribution of an unperturbed Stokes wave: ×, is included.

like we have done with the experimental data in figure (3.4) for the relevant
values of x. However, to accentuate that we are dealing with the evolution of
a Stokes wave, we can plot the energy distribution at the first set of probes
for km = 0 on a semi-logarithmic axis, like the one in figure (3.3). The
corresponding plots for km ̸= 0 are insignificant, as their contribution to the
energy at this stage is negligible. The energy in the first five harmonics of
an unperturbed Stokes wave, as obtained from [Fen85], is also illustrated in
the figure with the red crosses. They are seen to deviate somewhat from the
experimental results. This is an indication that perturbations have grown
significantly by the time the waves reach the first set of probes, and started
the modulation process. The data exhibits nonetheless the same pattern as
that of an unperturbed Stokes wave; the spikes of energy occur at integer
multiples of the characteristic frequency and their intensity decreases as we
move along the horizontal axis.

Let’s look into how this Stokes wave evolves during its course along
the tank. For this purpose, we return to figure (3.4) in which the energy
distribution Ēm,n is plotted over the instability region of the NLS equation
at various distances from the wave paddle. At the beginning of its course,
the wavetrain is seen to carry essentially all energy in the characteristic
frequency. Transversal modes are yet to appear, at least macroscopically. It
is well known that this uniform configuration is unstable. Indeed there is no
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3.4. The evolution of a physical Stokes wave

doubt, judging from figure (3.4b), that by the time the waves arrive at the
second set of probes, they have undergone modulation to the extent that
we can no longer state that they are regular. Although the peak remains
unchanged, we see that a vast amount of its energy is redistributed to
both lower and upper frequency sidebands as well as transversal modes.
From this moment on, the contribution from nonzero wavenumbers to the
total energy is thus important, which furthermore suggests that the waves
have become short crested. Figure (3.4c) shows that a lot happens during
the next 40 meters. The peak in the energy distribution is seen not only
to be downshifted from the characteristic frequency, but also to be much
smaller than it was before. This trend continues as the now highly irregular
wavetrain passes the final set of probes. The previous remarks are supported

(a) (b)

(c) (d)

Figure 3.4: Energy distribution across longitudinal and transversal modes
at (a): 10, (b): 80, (c): 120 and (d): 160 meters from the wave paddle. The
instability region of the NLS equation, calculated in section 2.5, is included
for comparison.
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3.4. The evolution of a physical Stokes wave

Figure 3.5: Distribution of energy across transversal modes with increasing
distance from the wave paddle. The total energy is included as a reference.

by figure (3.5), in which the transversal energy distribution

Ēm =
N−1∑
n=0

Ēm,n; m = 0, . . . ,M − 2 (3.31)

is plotted on a semi-logarithmic axis. It is worth noticing from this figure
that the energy distribution is not entirely monotonic with respect to the
wavenumber k.

The preceding observations do not exactly fit the narrative of the
instability region of the NLS equation. The symmetric growth of sidebands,
that is anticipated about the characteristic frequency in the second order
theory, is not present in the experimental data. In fact, the upper sidebands
are barely noticeable compared to the lower ones. In addition, the emergence
of oblique sidebands is not at all uniform. Instead, it seems like the
short transverse wave components receive less energy than the long ones.
The energy distribution across the lower, two dimensional sidebands show
nonetheless decent conformity with the theoretical growth rates. Similar
remarks can be made from figure (3.6), in which the energy distribution is
plotted over the instability region of the MNLS equation. From this figure
alone, we might conclude that also the third order theory fails to foresee
the asymmetric growth of sidebands. We will see later on that this actually
is not the case. There is no doubt, however, that the nonuniform growth of
oblique sidebands is much better represented with this increasingly accurate
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3.4. The evolution of a physical Stokes wave

theory. It should be kept in mind that although the energy distribution
is presented together with these instability regions, a direct comparison
between them is not really valid beyond the second set of probes; this is
due to the findings of section (2.5) only being valid in the early stages
of modulation. The instability regions are therefore only expected to say
something about the general behaviour of the modulated waves. Yet, figure
(3.6b) demonstrates that the most unstable lower sideband is effectively
reproduced by the MNLS equation as far as 80 meters from the wave paddle.

Figure (3.5) indicates that the evolution of the wavetrain is nonconser-
vative in nature. Indeed, the waves seem to have lost over one third of
their energy by the time they reach the far end of the tank. The reason for

(a) (b)

(c) (d)

Figure 3.6: Energy distribution across longitudinal and transversal modes
at (a): 10, (b): 80, (c): 120 and (d): 160 meters from the wave paddle.
The instability region of the MNLS equation, calculated in section 2.5, is
included for comparison.
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3.4. The evolution of a physical Stokes wave

this may be a combination of dissipation due to viscosity in the fluid and
friction on the tank walls and air-liquid interface, as well as damping due to
wave breaking if the waves become too steep. The precise conditions are
complicated and nonuniform. It seems, however, that a good approximation
is obtained with an exponentially decaying model. That is, we can estimate
the energy evolution Ē(x) by a straight line, like we have done in figure (3.7)
using the method of least squares. On linear axes this line corresponds to

10mx+b = eln 10(mx+b) = emx ln 10+b ln 10 = eb ln 10emx ln 10, (3.32)

with m = −0.0017 m−1 and b = −0.2782. That is, the total energy should
behave somewhat according to

Ē ∝ e−0.0040x. (3.33)

According to equation (3.30) and (2.102), the wave envelope should in turn
be proportional to the square root

B ∝ e−0.0020x. (3.34)

For the moment, neither the NLS equation nor the MNLS equation includes
this type of behaviour. A basic way to fix this is to simply include a linear
term such as

νB, (3.35)

with ν = 0.0020 m−1 describing the intensity of the damping.

Figure 3.7: The total energy evolution can be approximated by a straight line
according to the method of least squares. The rate of decay is determined
by the slope m of this line.
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CHAPTER 4

The numerical models and their
implementation

4.1 The NLS scheme
The nonlinear Schrödinger equation

∂B

∂x
+ 2kc

ωc

∂B

∂t
+ ikc

ω2
c

∂2B

∂t2
− i

2kc

∂2B

∂y2 + ik3
c |B|2B = 0 (4.1)

consists almost entirely of linear terms. Such terms are exactly solvable
with respect to the harmonic methods that we encountered in section 2.1.
For this reason we may write (4.1) as

∂B

∂x
+ S1B + S2B = 0, (4.2)

where the two operators S1 and S2 acting on B are given by

S1B = 2kc

ωc

∂B

∂t
+ ikc

ω2
c

∂2B

∂t2
− i

2kc

∂2B

∂y2 ,

S2B = ik3
c |B|2B.

(4.3)

This operator splitting leads to the two sub-equations
∂B1
∂x

+ 2kc

ωc

∂B1
∂t

+ ikc

ω2
c

∂2B1
∂t2 − i

2kc

∂2B1
∂y2 = 0, (4.4a)

∂B2
∂x

+ ik3
c |B2|2B2 = 0, (4.4b)

which can be solved interchangeably according to the Lie scheme (2.36)
or the Strang scheme (2.42), in order to achieve an approximate solution
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4.1. The NLS scheme

to equation (4.1). Before getting into the details of the particular scheme,
let us examine the solutions to (4.4a) and (4.4b) independently. With a
periodic Dirichlet condition in time and a homogenous Neumann condition1

in space, we can transform equation (4.4a) according to (2.11) and (2.22)
respectively, resulting in

dB̂1 m,n

dx + 2kc

ωc

(−iωn)B̂1 m,n+ ikc

ω2
c

(−iωn)2B̂1 m,n− i
2kc

(−k2
m)B̂1 m,n = 0, (4.5)

for m ∈ N and n ∈ Z. For every pair (km, ωn) this is a linear, first order,
homogenous ODE

dB̂1 m,n

dx − i
(

2kcωn

ωc

+ kcω
2
n

ω2
c

− k2
m

2kc

)
B̂1 m,n = 0, (4.6)

whose solution is given by

B̂1 m,n(x) = B̂1 m,n(x0)e
i
(

2kcωn
ωc

+ kcω2
n

ω2
c

− k2
m

2kc

)
(x−x0) (4.7)

for x ≥ x0 and some appropriate initial condition B̂1 m,n(x0). Equation
(4.4b) can also be solved exactly since the absolute value of the solution
remains unaffected with respect to the evolution variable;

|B2(x, y, t)| = |B2(x0, y, t)| for all x ≥ x0. (4.8)

This allows us to consider (4.4b) as a linear, first order, homogenous ODE
whose solution is given by

B2(x, y, t) = B2(x0, y, t)e−ik3
c |B2(x0,y,t)|2(x−x0). (4.9)

Before combining the above solutions in terms of a splitting scheme, we
must discretize the independent variables x, y and t. The discretization of
y and t depends on the number of modes M × N that we include in the
numerical model, which due to the bandwidth constraint is limited by the
requirement that

km

kc

< 1 and |ωn|
ωc

< 1. (4.10)

This ensures that there is no energy leakage2 to arbitrarily high modes.
Choosing M and N so that (4.10) is satisfied, we can place the computational

1A Dirichlet condition specifies the solution on the boundary of the domain, while a
Neumann condition specifies its derivative there.

2A discussion on energy leakage in the three dimensional NLS equation can be found
in [MY80].
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grid according to

xk = k∆x; ∆x = Lx

K
; k = 0, . . . , K, (4.11a)

yi = (i+ 1/2)∆y; ∆y = Ly

M
; i = 0, . . . ,M − 1, (4.11b)

tj = j∆t; ∆t = T

N
; j = 0, . . . , N − 1, (4.11c)

and write B̂1
k

m,n andB2
k
i,j in place of B̂1 m,n(xk) andB2(xk, yi, tj) respectively.

It is clear that S1 and S2 do not commute since

S1S2B ̸= S2S1B. (4.12)

Let us therefore combine (4.7) and (4.9) according to the Strang scheme
(2.42) so that we achieve a second order accurate solution to equation (4.1).
Given an initial condition B̂0

m,n = B̂m,n(x0), this results in the iterative
scheme 

B̂1
k+ 1

2
m,n = B̂k

m,ne
i
(

2kcωn
ωc

+ kcω2
n

ω2
c

− k2
m

2kc

)
∆x
2

B2
k+1
i,j = B1

k+ 1
2

i,j e
−ik3

c

∣∣∣B1
k+ 1

2
i,j

∣∣∣2∆x

B̂k+1
m,n = B̂2

k+1
m,ne

i
(

2kcωn
ωc

+ kcω2
n

ω2
c

− k2
m

2kc

)
∆x
2

(4.13)

which can be stopped at any k ≤ K − 1. This allows us to analyse the
evolution of a Stokes wave through the transform of the envelope B̂k+1

m,n or
the transform of the surface elevation η̂k+1

m,n which is reconstructed from Bk+1
i,j .

In chapter 5 we take on this latter approach.

4.2 The MNLS scheme
The modified nonlinear Schrödinger equation

∂B

∂x
+ 2kc

ωc

∂B

∂t
+ ikc

ω2
c

∂2B

∂t2
− i

2kc

∂2B

∂y2 + ik3
c |B|2B

− 1
ωckc

∂3B

∂t∂y2 − 8k3
c

ωc

|B|2∂B
∂t

− 2k3
c

ωc

B2∂B
∗

∂t
− 4ik3

c

ω2
c

B
∂ϕ̄

∂t
= 0 at z = 0

(4.14)
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contains information about the induced slow drift ϕ̄. This requires that we
solve, in addition, the following BVP

∂ϕ̄

∂z
= −kc

∂|B|2

∂t
at z = 0 (4.15)

4k2
c

ω2
c

∂2ϕ̄

∂t2
+ ∂2ϕ̄

∂y2 + ∂2ϕ̄

∂z2 = 0 for − h < z < 0 (4.16)

∂ϕ̄

∂z
= 0 at z = −h. (4.17)

Considering the fact that these equations are linear in ϕ̄, we should be able
to do this with little effort using once again the transforms (2.11) and (2.22).
With this procedure, equation (4.16) reduces to

4k2
c

ω2
c

(−iωn)2ϕ̂m,n + (−k2
m)ϕ̂m,n + ∂2ϕ̂m,n

∂z2 = 0 for − h < z < 0, (4.18)

which is a linear, second order, homogenous ODE

∂2ϕ̂m,n

∂z2 −
(4k2

cω
2
n

ω2
c

+ k2
m

)
ϕ̂m,n = 0 for − h < z < 0 (4.19)

for m = 0, . . . ,M − 1 and n = −N/2, . . . , N/2 − 1. The general solution to
this equation is given by

ϕ̂m,n(x, z) = cm,n(x)ePm,nz + dm,n(x)e−Pm,nz for − h < z < 0, (4.20)

where

Pm,n =

√√√√4k2
cω

2
n

ω2
c

+ k2
m (4.21)

and cm,n(x) and dm,n(x) are constants to be determined from the transformed
boundary conditions

∂ϕ̂m,n

∂z
= −kc(−iωn) ̂|B|2m,n at z = 0

∂ϕ̂m,n

∂z
= 0 at z = −h.

(4.22)

Inserting (4.20) into the bottom condition we obtain

ϕ̂m,n(x, z) = 2dm,n(x)ePm,nh cosh (Pm,n(z + h)), (4.23)
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which in turn yields

2dm,n(x)Pm,ne
Pm,nh sinh (Pm,nh) = ikcωn

̂|B|2m,n (4.24)

when inserted into the surface condition. If m and n are not both zero we
find that

dm,n(x) =
ikcωne

−Pm,nh ̂|B|2m,n

2Pm,n sinh (Pm,nh) , (4.25)

while equation (4.24) is automatically satisfied for any choice of d0,0.
Therefore let us choose d0,0 = 0 for simplicity such that

ϕ̂m,n(x, z) =


0, m = n = 0

ikcωn |̂B|2m,n cosh (Pm,n(z+h))
Pm,n sinh (Pm,nh) , otherwise.

(4.26)

If we multiply this by −iωn we obtain the transform

∂̂ϕ̄

∂t m,n
(x, 0) =


0, m = n = 0

kcω2
n |̂B|2m,n coth (Pm,nh)

Pm,n
, otherwise

(4.27)

of the desired quantity ∂ϕ̄
∂t

∣∣∣
z=0

, which is readily obtained with inverse
transforms in time and space.

In the previous section we saw how the linear terms and the nonlinear
reaction term could be solved exactly when isolated against the evolution
operator. Let us therefore split the MNLS equation into three parts such
that (4.14) is written as

∂B

∂x
+ S1B + S2B + S3B = 0, (4.28)

where the three operators S1, S2 and S3 acting on B are given by

S1B = 2kc

ωc

∂B

∂t
+ ikc

ω2
c

∂2B

∂t2
− i

2kc

∂2B

∂y2 − 1
ωckc

∂3B

∂t∂y2 ,

S2B = ik3
c |B|2B,

S3B = −8k3
c

ωc

|B|2∂B
∂t

− 2k3
c

ωc

B2∂B
∗

∂t
− 4ik3

c

ω2
c

B
∂ϕ̄

∂t

∣∣∣∣
z=0

.

(4.29)
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The resulting three sub-equations are

∂B1
∂x

+ 2kc

ωc

∂B1
∂t

+ ikc

ω2
c

∂2B1
∂t2 − i

2kc

∂2B1
∂y2 − 1

ωckc

∂3B1
∂t∂y2 = 0, (4.30a)

∂B2
∂x

+ ik3
c |B2|2B2 = 0, (4.30b)

∂B3
∂x

− 8k3
c

ωc
|B3|2 ∂B3

∂t
− 2k3

c

ωc
B2

3
∂B∗

3
∂t

− 4ik3
c

ω2
c
B3

∂ϕ̄
∂t

∣∣∣∣
z=0

= 0. (4.30c)

We solve equation (4.30a) in the same way as equation (4.4a). Its solution
in given in frequency-wavenumber space by

B̂1 m,n(x) = B̂1 m,n(x0)e
i
(

2kcωn
ωc

+ kcω2
n

ω2
c

− k2
m

2kc
+ ωnk2

m
ωckc

)
(x−x0)

, (4.31)

while the solution to equation (4.30b) is given by (4.9) as before. The
new challenge is to figure out how to solve equation (4.30c) which, by all
accounts, is not exactly solvable. As suggested at the very end of section
2.2, we must resort to some numerical method that has at least the same
order of accuracy as the splitting method itself. Since we will use the second
order Strang scheme (2.42) to compose the solutions to the sub-equations
(4.30a-4.30c), an easy, yet appropriate choice is the second order, explicit
Runge-Kutta method (2.48). With the discretization (4.11a-4.11c) this
implies that B3(xk+1, yi, tj) is approximated by

B3
k+1
i,j = B3

k
i,j − 1

2∆x(S3B3
k
i,j + S3(B3

k
i,j − ∆xS3B3

k
i,j)), (4.32)

where B3
k
i,j is an initial condition on the interval [xk, xk+1]. This requires

that we somehow replace the derivatives appearing in the operator

S3B3
k
i,j = −8k3

c

ωc

|B3
k
i,j|2

∂B3

∂t

k

i,j
− 2k3

c

ωc

(B3
k
i,j)2∂B

∗
3

∂t

k

i,j
− 4ik3

c

ω2
c

B3
k
i,j

∂ϕ̄

∂t

∣∣∣∣
z=0

k
i,j.

(4.33)
The standard way to do this is to once again resort to the theory of chapter
2.1. In particular, the identity (2.13) allows us to write

∂̂B3

∂t

k

m,n
= −iωnB̂3

k

m,n (4.34)

to which inverse transforms are applied in space and time to yield

∂B3

∂t

k

i,j
and ∂B∗

3
∂t

k

i,j
=
(
∂B3

∂t

k

i,j

)∗

. (4.35)
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These quantities are calculated together with ∂ϕ̄
∂t

∣∣∣∣
z=0

k
i,j from the initial

condition at every iteration of the resulting operator splitting scheme

B̂1
k+ 1

2
m,n = B̂k

m,ne
i
(

2kcωn
ωc

+ kcω2
n

ω2
c

− k2
m

2kc
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m
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)
∆x
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2
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k+ 1
2
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2
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∣∣∣2 ∆x
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2∆x
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S̃3B2
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(
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2

i,j − ∆xS̃3B2
k+ 1

2
i,j

))

B2
k+1
i,j = B3

k+1
i,j e

−ik3
c

∣∣∣B3
k+1
i,j

∣∣∣2 ∆x
2

B̂k+1
m,n = B̂2

k+1
m,ne

i
(

2kcωn
ωc

+ kcω2
n

ω2
c

− k2
m

2kc
+ ωnk2

m
ωckc

)
∆x
2 .

(4.36)

4.3 The model with damping
Both the NLS and MNLS equations conserve the total energy in the waves.
In the real world, however, energy is lost in a multitude of ways, which was
made clear in our analysis of the experimental data in chapter 3. As our goal
is to investigate the effects of damping on three dimensional modulation of
Stokes waves, we explain in the following how we can alter the conservative
nature of the governing equations. In section 3.4 we found that the waves
measured at Marintek were damped according to

B ∝ e−νx (4.37)

where ν = 0.0020 m−1. It is well-known that the exponential function in
(4.37) solves the equation

∂B

∂x
+ νB = 0, (4.38)

so by adding a linear term such as νB to our governing equations, we should
already be able to describe, in a simplified manner, the damping of waves.
We picture that the parameter ν describes the combined effects of friction
on the tank walls and air-water interface as well as viscosity in the water
due to the water molecules themselves and the organic matter that builds
up over time. This is readily accounted for in the splitting scheme above.
We simply alter the exponent of the linear solution such that it reads

B̂1 m,n(x) = B̂1 m,n(x0)e
i
(

2kcωn
ωc

+ kcω2
n

ω2
c

− k2
m

2kc
+ ωnk2

m
ωckc

+iν
)

(x−x0)
. (4.39)
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4.3. The model with damping

Wave breaking on the other hand is a somewhat more complicated
process that only happens in the areas where the waves are steep enough.
For this reason we only want to add a breaking term when the local steepness
kc|B| exceeds some predetermined threshold kcB

⋆. This can be achieved
with the Heaviside step function, defined by

H(x) =

0, x < 0

1, x ≥ 0.
(4.40)

Taking inspiration from [TD90], we introduce the term

kc

τ
B
(( |B|

B⋆

)r

− 1
)

H(|B| −B⋆) (4.41)

where r and τ are constants that determine how fast the local amplitude |B|
decays towards the threshold B⋆. To get a better idea of the role of these
parameters, let’s look for the solution when the Heaviside step function
outputs unity and the breaking term is isolated against the evolution operator

∂B

∂x
+ kc

τ
B
(( |B|

B⋆

)r

− 1
)

= 0. (4.42)

Assuming that B = |B|eiθ, we obtain an equation that can be separated
into its real and imaginary parts

∂|B|
∂x

+ kc

τ
|B|

(( |B|
B⋆

)r

− 1
)

= 0, ∂θ

∂x
|B| = 0. (4.43)

The real part is effectively a separable ODE. We can therefore rearrange
the terms and integrate with respect to x so that∫ d|B|

|B|
((

|B|
B⋆

)r
− 1

) = −kc

τ

∫
dx. (4.44)

With the substitution u =
(

|B|
B⋆

)r
− 1, this simplifies to

1
r

∫ du

u(u+ 1) = −kcx

τ
+ c (4.45)

where the integration constant c depends on y and t. We perform a partial
fraction decomposition to the integrand and complete the integration so
that

1
r

ln
(

u

u+ 1

)
= −kcx

τ
+ c (4.46)
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4.3. The model with damping

or equivalently
u

u+ 1 = ce− rkcx
τ . (4.47)

Upon undoing the substitution and solving for the amplitude we then find
that

|B(x, y, t)| = B⋆(1 − c(y, t)e− rkcx
τ )− 1

r , (4.48)

which implies that the typical breaking event has a duration of τ
rkc

. The
constant c can be determined from the local amplitude when breaking starts
at some x0 such that

|B(x, y, t)| = B⋆
(

1 −
(

1 −
( |B(x0, y, t)|

B⋆

)−r)
e− rkc(x−x0)

τ

)− 1
r

. (4.49)

This solution is illustrated in figure 4.1 for kc = 2.9920 m−1, r = 4, τ = 1
8 ,

kcB
⋆ = 0.25 and kc|B| = 0.27. It is seen that the breaking event transpires

exponentially, but never past the threshold B⋆ which is indicated by the
horizontal dashed line. The typical duration of a breaking event can be
seen where the vertical dashed line meets the x−axis. As the solution to
the imaginary part is constant with respect to x, the complete solution to
equation (4.42) can be written

B(x, y, t) = B⋆
(

1 −
(

1 −
( |B(x0, y, t)|

B⋆

)−r)
e− rkc(x−x0)

τ

)− 1
r

eiθ(x0,y,t). (4.50)

Since the breaking term (4.41) can be solved exactly when isolated
against the evolution operator, we split the damped MNLS equation into
four parts such that

∂B

∂x
+ S1B + S2B + S3B + S4B = 0. (4.51)

Figure 4.1: The local amplitude |B|: − is plotted for kc = 2.9920 m−1, r = 4,
τ = 1

8 , kcB
⋆ = 0.25 and kc|B| = 0.27. The typical duration of a breaking

event τ
rkc

: −− and the threshold B⋆: −− is included.
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4.3. The model with damping

This time we let the operators S1, S2, S3 and S4 acting on B be defined by

S1B = 2kc

ωc

∂B

∂t
+ ikc

ω2
c

∂2B

∂t2
− i

2kc

∂2B

∂y2 − 1
ωckc
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∂t∂y2 ,
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τ
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− 1
)

H(|B| −B⋆),
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z=0
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(4.52)

so that the sub-equations that we solve read
∂B1
∂x

+ 2kc

ωc

∂B1
∂t

+ ikc

ω2
c

∂2B1
∂t2 − i

2kc

∂2B1
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ωckc

∂3B1
∂t∂y2 = 0, (4.53a)

∂B2
∂x

+ ik3
c |B2|2B2 = 0, (4.53b)

∂B3
∂x
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τ
B3
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B⋆

)r
− 1

)
H(|B3| −B⋆) = 0, (4.53c)
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= 0. (4.53d)

After discretization of (4.50), the operator splitting scheme (4.36) can be
adjusted to account for breaking. The result is
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(4.54)
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where the third solution operator is replaced by the identity operator
whenever the initial conditions satisfy∣∣∣B2

k+ 1
2

i,j

∣∣∣ < B⋆,
∣∣∣B4

k+1
i,j

∣∣∣ < B⋆. (4.55)
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CHAPTER 5

Simulation results

5.1 Verifying the implementation
There are several ways in which we can verify the implementation of the
schemes (4.13) and (4.36). It is well known that both the NLS and MNLS
equations conserve the energy when no damping is introduced and that they
preserve the periodic uniform shape of an unperturbed Stokes wave. It is
easy to check that the implementation indeed maintains these properties.
A little bit of work is required, however, to show that the implementation
is second order accurate. For this purpose, fix x and let Bq

i,j denote the
numerical approximation of B(yi, tj) corresponding to a grid of width ∆x

2q .
Do not confuse the superscript with the evolution index. We say that the
numerical method is p−th order accurate if

Bq
i,j −B(yi, tj) = c

(∆x
2q

)p

+ O((∆x)p+1) (5.1)

for some constant c ∈ C depending on the exact solution B. Consider the
ratio of differences between approximations with consecutively smaller grid
size

Bq
i,j −Bq+1

i,j

Bq+1
i,j −Bq+2

i,j

. (5.2)

After adding and subtracting the exact solution B(yi, tj) in the numerator
and denominator we can apply (5.1) to obtain

Bq
i,j −Bq+1

i,j

Bq+1
i,j −Bq+2

i,j

=
c
(

∆x
2q

)p
− c

(
∆x

2q+1

)p
+ O

((
∆x
2q

)p+1)
c
(

∆x
2q+1

)p
− c

(
∆x

2q+2

)p
+ O

((
∆x
2q

)p+1) =
1 − 2−p + O

(
∆x
2q

)
2−p − 2−2p + O

(
∆x
2q

) .
(5.3)
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Upon performing the long division on the right and taking the square of the
absolute value we get∣∣∣∣∣ B

q
i,j −Bq+1

i,j

Bq+1
i,j −Bq+2

i,j

∣∣∣∣∣
2

= 22p + O
(∆x

2q

)
(5.4)

which can be summed over i ∈ I = {0, . . . ,M−1} and j ∈ J = {0, . . . , N−1}
such that

∑
i,j

∣∣∣∣∣ B
q
i,j −Bq+1

i,j
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i,j −Bq+2

i,j

∣∣∣∣∣
2

=
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∥∥∥∥∥
2

l2(I,J)
= MN

(
22p + O

(∆x
2q

))
. (5.5)

The order of accuracy, also referred to as the convergence rate, should then
be readily obtained from the base 2 logarithm

p = log2

(
1√
MN

∥∥∥∥∥ Bq −Bq+1

Bq+1 −Bq+2

∥∥∥∥∥
l2(I,J)

)
+ O

(∆x
2q

)
. (5.6)

It is clear from this expression that the estimate of p is improved if we shrink
the width of the grid ∆x

2q . It is therefore best that we compute (5.6) for
multiple values of q.

We intend to use the NLS and MNLS equations to study the evolution of
a Stokes wave with steepness ε = ackc = 0.1. The wavenumber is chosen so
that the ratio ∆µ = ∆k

kc
= π

kcLy
= 0.1. We perturb the Stokes wave randomly

on 128 sidebands inside the square determined by n = −21,−20, . . . , 21
and m = 0, 1, 2. This ensures that some of the perturbations lie within the
unstable regions (2.1a-2.1b) and that energy is transfered to transversal
modes as the waves propagate along the tank. The analytically most unstable
sidebands are not perturbed. With this initialization of the program, we run
the conservative schemes (4.13) and (4.36) for seven different discretizations
∆x
2q where ∆x = 0.5 and q = 0, . . . , 6. The corresponding numerical solutions
are stored at x = 70 m and we compute thereafter five consecutive estimates
for the accuracy p. The results are presented in table 5.1. Both schemes
show second order accuracy as the grid size progressively gets smaller, which
suggests that the implementation is correct. It is evident that, in order to
obtain a stable and satisfactory numerical solution, we should at least ensure
that ∆x = 0.5

23 = 0.0625. In the upcoming simulations, we let ∆x = 0.05.
With this choice of ∆x we are confident that the numerical solution yields
reliable insight about the evolution of a Stokes wave. The script of the
program, as implemented in Matlab, can be found in the appendix.
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q pNLS pMNLS

0 8.774433215743645 NaN
1 2.317779495134089 2.154207330430582
2 2.045860210138446 2.024248251207924
3 2.010074151045264 2.007276316830951
4 2.002422784270935 2.003598848424581

Table 5.1: The convergence rate p is estimated for the implementation of
the NLS and MNLS schemes at x = 70 m with ∆x = 0.5.

5.2 The evolution of a Stokes wave

The conservative model
We let the randomly perturbed Stokes wave that we introduced in the
previous section propagate along a tank, such as the one in figure 3.1, without
the influence of damping. The evolution, according to the MNLS equation,
is presented in figure (5.1). The energy distribution across longitudinal and
transversal modes can be seen at (a): 0, (b): 40, (c): 80, (d): 120, (e) 160
and (f): 200 meters from the wave paddle. The nonlinear narrow-banded
modulations that initiate the energy transfer between modes begin shortly
after the waves leave the wave paddle. At this moment the carrier represents
the most energetic frequency component, which shall be denoted hereon
as the peak frequency ωpeak. Energy is transferred from the peak to both
longitudinal and transversal modes as the waves propagate along the tank.
In fact, the rate of energy transfer from the peak ωpeak increases during this
initial modulation stage. This observation can be made from figure 5.2a
where the total energy and the energy evolution of the peak is indicated
by the red dash-dotted line and blue solid line respectively. At 80 meters
from the wave paddle the peak has lost almost 90 percent of its energy to
adjacent sidebands. Although many of the lower sidebands grow past the
upper, the mean frequency

ωmean = 1
Ē

N/2−1∑
n=0

ωn(2 − δ0,n)
M−1∑
m=0

Ēm,n (5.7)

is upshifted, as we can see from the red dash-dotted line in figure 5.2b.
This is indicative of the emergence of a long tail of upper sidebands which
becomes more prominent as the waves continue to propagate. Figure 5.2b
also shows the frequency evolution of the peak ωpeak through the blue
solid line. The sudden jump at x = 82.1 m indicates that one of the
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(a) (b)

(c) (d)

(e) (f)

Figure 5.1: Energy distribution across longitudinal and transversal modes
according to the conservative MNLS equation at (a): 0, (b): 40, (c): 80, (d):
120, (e): 160 and (f): 200 meters from the wave paddle. The corresponding
instability region, calculated in section 2.5, is included for reference.
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unstable lower sidebands eventually grows past the carrier and that the
peak is downshifted. From figure 5.2a we see that this sideband continues
to grow until it reaches a maximum at x = 120 m. From this point on the
transversal modulation becomes much more perceptible as the energy is
spread over a large number of sidebands. The asymmetrical shape of the
energy distribution persists nonetheless as the mean ωmean stabilizes at a
frequency slightly larger than the characteristic frequency ωc and the peak
ωpeak oscillates between neighboring lower sidebands.

The conservative evolution of the randomly perturbed Stokes wave,
according to the NLS equation, is included in figure 5.3. In the beginning
stages of propagation, the modulation of the carrier is qualitatively the
same as before. Energy is lost to the sidebands at an increasing rate and
the peak frequency ωpeak remains unchanged for over 80 meters. When the
downshift finally happens at x = 89.4 m it is, however, not permanent. The
many subsequent jumps testify that the peak frequency ωpeak is no longer
well defined. In addition, the mean frequency ωmean does not at any point
significantly shift away from the characteristic frequency ωc. These two
observations suggest that the energy is smeared across a large number of
unstable sidebands and that the energy distribution is more or less symmetric
about the characteristic frequency. For this reason, the NLS equation is not
particularly suited as a model for permanent frequency downshift. Similar
observations have been made by many before us. We therefore do not see
any reason as to why we should continue to use the NLS equation. In the
upcoming discussion we therefore confine ourselves to the application of the
MNLS equation.

(a) (b)

Figure 5.2: The conservative evolution of a Stokes wave according to the
MNLS equation. (a): The total energy: − · − and the energy in the peak
frequency: −. (b): The peak frequency ωpeak: − and the mean frequency
ωmean: − · −.
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(a) (b)

Figure 5.3: The conservative evolution of a Stokes wave according to the
NLS equation. (a): The total energy: − · − and the energy in the peak
frequency: −. (b): The peak frequency ωpeak: − and the mean frequency
ωmean: − · −.

The impact of viscous damping
The above results are in accordance with the findings of [TD97]. They
were the first to show numerically using the broader bandwidth nonlinear
Schrödinger (BMNLS) equation that, unlike the two dimensional evolution
of Stokes waves, three dimensional evolution does not require damping in
order to produce a permanent downshift of the peak ωpeak. It is nonetheless
interesting to investigate what the effects of damping can be. We therefore
let the randomly perturbed Stokes wave propagate according to the viscously
damped MNLS equation with ν = 0.0005 m−1 and ν = 0.001 m−1. The
evolution is presented in figures 5.4a-5.4b and 5.4c-5.4d respectively. It is
readily compared with the conservative evolution which is indicated in the
background. The energy evolution of the peak is qualitatively the same as
before. This time, however, energy is not solely transferred to longitudinal
and transversal modes, but also to the immediate surroundings. The energy
evolution of the five smallest transverse modes is depicted in figure 5.5
together with the total energy for ν = 0.0005 m−1. It is evident that as
the waves propagate along the tank, the viscous dissipation of energy slows
down the emergence of each and every one of these modes. We note in
this context that the mean ωmean evolves in essentially the same way as
before. The downshift of the peak ωpeak is however noticeably delayed and
is witnessed at x = 84.35 m and x = 87.7 m for ν = 0.0005 m−1 and
ν = 0.001 m−1 respectively. Still it is the same unstable lower sideband
that becomes dominant for both values of the viscosity parameter ν. The
oscillation of the peak ωpeak that was observed between neighboring lower
sidebands at the end of the tank in the conservative evolution is completely
gone.
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5.2. The evolution of a Stokes wave

(a) (b)

(c) (d)

Figure 5.4: The evolution of a Stokes wave subjected to viscous damping.
(a-b): ν = 0.0005 m−1. (c-d): ν = 0.0010 m−1. The conservative results: −−
are included for reference. See caption of figure 5.2 for line styles.

Figure 5.5: The energy evolution of the five smallest transversal modes
according to the conservative: ⃝ and viscous: × model. The total
energy: blue, and the energy in k0: red, k1: yellow, k2: purple, k3: green and
k4: light blue, is plotted for ν = 0.0005 m−1.
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5.2. The evolution of a Stokes wave

The impact of wave breaking
We subject the randomly perturbed Stokes wave to damping through wave
breaking, where the typical duration of a breaking event τ

rkc
is determined

by r = 4 and τ = 1
8 . The evolution corresponding to the two thresholds

kcB
⋆ = 0.3 and kcB

⋆ = 0.25 can be seen in figures 5.6a-5.6b and 5.6c-5.6d
respectively. Throughout the initial stages of propagation, the nonlinear
modulation has yet to raise the steepness ε past the limiting threshold. The
first signs of breaking can be seen, for both values of the threshold, from the
sudden decrease of total energy at approximately 40 meters form the wave
paddle. From hereon, it seems that the sidebands are damped selectively as
the upshift of the mean ωmean is strongly opposed even though the loss of
total energy is small. This suggests that the long tail of upper sidebands,
that results from the nonlinear modulation of the wave train, goes to zero
faster than before. The selective damping of upper sidebands is emphasized
in figure 5.7 where the energy evolution of the five smallest transversal
modes can be seen together with the total energy for kcB

⋆ = 0.25. The two
smallest components k0 and k1 are barely affected by the breaking term.
The consecutive modes are, however, significantly damped as the waves
propagate along the tank. According to [TD90], who investigated the impact
of modulation and breaking on frequency downshift in two dimensional wave
trains, this feature is due to ”. . . the tendency towards spatial localization
of the part of the wavetrain contributing to the upper sidebands”. Their
assertion is supported by the experimental results of [Mel83]. The accelerated
downshift of the peak ωpeak, which is seen at x = 80.8 m and x = 80.25
m for kcB

⋆ = 0.3 and kcB
⋆ = 0.25 respectively, is also in contrast to the

results obtained from the viscous model. However, we have found that if we
let the threshold kcB

⋆ be small enough, the delayed downshift recurs. We
verify on the other hand that the specific choice of values for the parameters
r and τ are insignificant for the results that we obtain. This is in agreement
with the findings of [TD90].
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5.2. The evolution of a Stokes wave

(a) (b)

(c) (d)

Figure 5.6: The evolution of a Stokes wave subjected to breaking. (a-b):
kcB

⋆ = 0.3. (c-d): kcB
⋆ = 0.25. The conservative results: −− are included

for reference. See caption of figure 5.2 for line styles.

Figure 5.7: The energy evolution of the five smallest transversal modes
according to the conservative: ⃝ and wave-broken: × model. The total
energy: blue, and the energy in k0: red, k1: yellow, k2: purple, k3: green and
k4: light blue, is plotted for kcB

⋆ = 0.25.
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CHAPTER 6

Concluding remarks

We have shown, using the modified nonlinear Schrödinger equation, that
different types of damping can influence the frequency downshift of a three
dimensional wave train. We have seen that viscous damping can postpone
the downshift, while careful wave breaking may accelerate or expedite the
downshift. We have also seen that while all modes are damped in the viscous
model, the breaking model damps sidebands selectively. This extends the
observations of [TD90] to three dimensions.

The present conclusions are drawn from the observations of only one
randomly perturbed Stokes wave. In order to generalize these observations
to the general Stokes wave, we would need to perform a thorough statistical
analysis with ensemble averaging. This may be an interesting continuation
of the present thesis.
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APPENDIX A

The MATLAB code

Listings

A.1 Implementation of the growth rates, the MNLS scheme and
the corresponding accuracy test . . . . . . . . . . . . . . . 65

A.2 Implementation of the nonlinear operator (4.33) in the MNLS
equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Listing A.1: Implementation of the growth rates, the MNLS scheme and
the corresponding accuracy test

1 clc; clear;
2
3 %% variables that stay constant
4 m = 42;
5 Ly = 10.5;
6 dky = pi/Ly;
7 ky = (0:m-1)*dky;
8 n = 4000;
9 T = 300;

10 dt = T/n;
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Listings

11 dw = 2*pi/T;
12 w = (-n/2:n/2-1)*dw;
13 g = 9.82;
14 h = 5;
15
16 %% parameters that can be varied
17
18 %steepness and transverse modulation
19 epsilon = 0.1;
20 dmu = 0.1;
21
22 %characteristic variables, group velocity and

nondimensional depth
23 kc = dky/dmu;
24 ac = epsilon/kc;
25 wc = sqrt(g*kc);
26 Cg = g/(2*wc);
27 d = kc*h;
28
29 %% Analytical region of unstable perturbations
30
31 [omega,mu] = meshgrid(-0.8*wc:0.01:0.8*wc,0:0.01:0.95*kc);
32 Q = kc/wc^2*omega.^2-1/(2*kc)*mu.^2;
33 R = sqrt(4*kc^2/wc^2*omega.^2+mu.^2);
34
35 %analytical region of unstable perturbations - NLS equation
36 growth_rate_NLS = imag(sqrt(Q.*(Q-2*kc*epsilon^2)));
37
38 %hyperbola of maximum growth rate - NLS equation
39 max_growth_rate_NLS = real(sqrt(2*kc^2/wc^2*omega(1,:)

.^2-2*kc^2*epsilon^2));
40
41 %analytical region of unstable perturbations - MNLS

equation
42 growth_rate_MNLS = imag(sqrt(Q.*(Q-2*kc*epsilon^2+8*kc^2*

epsilon^2./(wc^2*R).*coth(R*h).*omega.^2)+4*kc^2*epsilon
^4/wc^2*omega.^2));

43
44 %points of maximum growth rate - MNLS equation
45 omega1 = wc*epsilon*(-3/2*epsilon+1/2*sqrt(epsilon^2+4));
46 omega2 = wc*epsilon*(3/2*epsilon-1/2*sqrt(epsilon^2+4));
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Listings

47
48 %% setup of program and initial condition
49
50 %bandwidth constraint on envelope
51 sim_idx_w = find(-wc<w & w<wc);
52 sim_idx_w = [sim_idx_w(1)-1,sim_idx_w];
53 sim_idx_ky = find(ky<kc);
54
55 %frequency and wavenumber mesh
56 [W,KY] = meshgrid(w(1,sim_idx_w),ky(sim_idx_ky));
57 [M,N] = size(W); %ensure that N is even
58
59 %constants appearing in the NLS and MNLS equations
60 c1 = 2*kc/wc;
61 c2 = kc/wc^2;
62 c3 = -1/(2*kc);
63 c4 = kc^3;
64 c5 = 1/(wc*kc);
65
66 %constants appearing in the solution for the induced slow

drift
67 P = sqrt(4*kc^2/wc^2*W.^2+KY.^2);
68 const = kc*W.^2./P.*coth(P*h);
69 const(1,N/2+1) = 0;
70
71 %Stokes wave initial condition
72 BStilde = zeros(M,N);
73 BStilde(1,N/2+1) = ac;
74
75 %perturbed Stokes wave initial condition
76 B0tilde = zeros(M,N);
77 B0tilde(1:ceil(M/4),floor(11*N/24)+1:floor(13*N/24)) = ac*

epsilon*complex(rand(ceil(M/4),length(floor(11*N/24)+1:
floor(13*N/24)))-0.5,rand(ceil(M/4),length(floor(11*N
/24)+1:floor(13*N/24)))-0.5);

78 B0tilde(1,N/2+1) = ac;
79
80 %initial envelope
81 B0 = [B0tilde;complex(zeros(m-M,N))];
82 B0 = [complex(zeros(m,(n-N)/2)),B0,complex(zeros(m,(n-N)/2)

)];
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83 B0 = sqrt(M)*[B0(1,:);1/sqrt(2)*B0(2:end,:)];
84 B0 = fft(idct(ifftshift(B0,2),'Type',2).').';
85
86 %initial temporal mesh
87 T0 = repelem(0:dt:T-dt,m,1);
88
89 %initial surface elevation
90 Z0 = real(B0.*(1-3/8*kc^2*B0.^2).*exp(1i*(0*kc-wc*T0))+kc

/2*B0.^2.*exp(2i*(0*kc-wc*T0))+3/8*kc^2*B0.^3.*exp(3i

*(0*kc-wc*T0)));
91
92 %transform
93 Z0tilde = fftshift(ifft(dct(Z0,'Type',2).').',2);
94 Z0tilde = 1/sqrt(m)*[Z0tilde(1,:);sqrt(2)*Z0tilde(2:end,:)

];
95
96 %initial energy
97 H0 = abs(Z0tilde).^2;
98 E0 = 1/2*sum(sum([2*H0(1,:);H0(2:end,:)])); %total energy
99 EK0 = 1/2*sum([2*H0(1,:);H0(2:M,:)].').'; %energy in each

transversal mode
100
101 %the energy is used as a probability density function
102 HOS0 = [H0(:,n/2+1),2*H0(:,n/2+2:end)];
103 PDF0 = 1/sum(sum([2*HOS0(1,:);HOS0(2:end,:)]))*[2*HOS0(1,:)

;HOS0(2:end,:)];
104
105 %initial nondimensional bandwidth
106 Delta_w0 = sqrt(sum(PDF0)*(w(1,n/2+1:end).'-wc).^2)/wc;
107 Delta_k0 = sqrt(sum(PDF0.')*(ky.').^2)/kc;
108
109 %initial peak frequency and spectral mean
110 peak0 = max(max(PDF0));
111 [peak_idx_ky0,peak_idx_w0] = find(PDF0==peak0);
112 kyp0 = ky(peak_idx_ky0);
113 wp0 = w(n/2+peak_idx_w0);
114 wm0 = sum(PDF0)*w(1,n/2+1:end).';
115
116 %% This code-section solves the MNLS-equation in space.
117
118 dx = 0.05;
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Listings

119 Lx = 250;
120 K = Lx/dx;
121
122 %viscous damping parameter
123 nu = 0.0005;
124
125 %wave breaking parameters - the results are insensitive to

variations in r and tau
126 tau = 1/8;
127 r = 4;
128 B_critical = 0.25/kc;
129 WB = exp(-r*kc/tau*dx/2);
130
131 %store the peak frequency, spectral mean and total energy

at every x_k
132 PEAK = [[wp0;kyp0;1/2*peak0*sum(sum([2*HOS0(1,:);HOS0(2:end

,:)]))],zeros(3,K)];
133 MEAN = [wm0,zeros(1,K)];
134 ENERGY = [E0,zeros(1,K)];
135
136 %store the energy in each transversal wavenumber every 40 m
137 EK = [EK0,zeros(M,5)];
138 count=0;
139
140 %linear solution - the damping term in the exponent can be

removed for
141 %conservative computations or computations with wave

breaking
142 LS = exp(1i*(c1*W+c2*W.^2+c3*KY.^2+c5*W.*KY.^2+1i*nu)*dx/2)

;
143
144 %MULTI-COMPONENT OPERATOR SPLITTING - STRANG SYMMETRIZED

SCHEME
145 Btilde = B0tilde;
146 for k = 0:K-1
147 %solve linear problem on (xk,xk+1/2)
148 Btilde = Btilde.*LS;
149 Btilde = sqrt(M)*[Btilde(1,:);1/sqrt(2)*Btilde(2:end,:)];
150 B = fft(idct(ifftshift(Btilde,2),'Type',2).').';
151
152 %solve second order nonlinear problem on (xk,xk+1/2)
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153 B = B.*exp(-1i*c4*abs(B).^2*dx/2);
154
155 %solve the breaking term on (xk,xk+1/2)
156 breaking_idx = abs(B)>=B_critical;
157 B(breaking_idx) = B_critical*(1-(1-(abs(B(breaking_idx))/

B_critical).^(-r))*WB).^(-1/r).*exp(1i*angle(B(
breaking_idx)));

158
159 %solve third order nonlinear problem on (xk,xk+1)
160 SB = S(B,W,const,kc,wc);
161 B = B - 1/2*dx*(SB+S(B-dx*SB,W,const,kc,wc)); %explicit

Runge-Kutta method
162
163 %solve the breaking term on (xk+1/2,xk+1)
164 breaking_idx = abs(B)>=B_critical;
165 B(breaking_idx) = B_critical*(1-(1-(abs(B(breaking_idx))/

B_critical).^(-r))*WB).^(-1/r).*exp(1i*angle(B(
breaking_idx)));

166
167 %solve second order nonlinear problem on (xk+1/2,xk+1)
168 B = B.*exp(-1i*c4*abs(B).^2*dx/2);
169
170 %solve linear problem on (xk+1/2,xk+1)
171 Btilde = fftshift(ifft(dct(B,'Type',2).').',2);
172 Btilde = 1/sqrt(M)*[Btilde(1,:);sqrt(2)*Btilde(2:end,:)];
173 Btilde = Btilde.*LS;
174
175 %break if the scheme is unstable
176 if sum(sum(isnan(Btilde))) > 0
177 break;
178 end
179
180 %interpolation to account for the higher frequency content

of the surface elevation
181 B = [complex(zeros(m,(n-N)/2)),[Btilde;complex(zeros(m-M,N)

)],complex(zeros(m,(n-N)/2))];
182 B = sqrt(M)*[B(1,:);1/sqrt(2)*B(2:end,:)];
183 B = fft(idct(ifftshift(B,2),'Type',2).').';
184
185 %temporal mesh varies according to the group velocity
186 TK = repelem((k+1)*dx/Cg:dt:(k+1)*dx/Cg+T-dt,m,1);
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187
188 %reconstruction
189 Z = real(B.*(1-3/8*kc^2*B.^2).*exp(1i*(kc*(k+1)*dx-wc*TK))+

kc/2*B.^2.*exp(2i*(kc*(k+1)*dx-wc*TK))+3/8*kc^2*B.^3.*
exp(3i*(kc*(k+1)*dx-wc*TK)));

190
191 %transform
192 Ztilde = fftshift(ifft(dct(Z,'Type',2).').',2);
193 Ztilde = 1/sqrt(m)*[Ztilde(1,:);sqrt(2)*Ztilde(2:end,:)];
194
195 %energy
196 H = abs(Ztilde).^2;
197 ENERGY(1,k+2) = 1/2*sum(sum([2*H(1,:);H(2:end,:)]));
198
199 %the energy in each transversal mode is stored every 40 m
200 if mod((k+1)*dx,40)==0
201 EK(:,count+2) = 1/2*sum([2*H(1,:);H(2:M,:)].').';
202 count=count+1;
203 end
204
205 %the energy is used as a probability density function
206 HOS = [H(:,n/2+1),2*H(:,n/2+2:end)];
207 PDF = 1/sum(sum([2*HOS(1,:);HOS(2:end,:)]))*[2*HOS(1,:);HOS

(2:end,:)];
208
209 %dimensional bandwidth
210 Delta_w = sqrt(sum(PDF)*(w(1,n/2+1:end).'-wc).^2);
211 Delta_k = sqrt(sum(PDF.')*(ky.').^2);
212
213 %peak frequency and spectral mean
214 peak = max(max(PDF));
215 [peak_idx_ky,peak_idx_w] = find(PDF==peak);
216 PEAK(:,k+2) = [w(n/2+peak_idx_w);ky(peak_idx_ky);1/2*peak*

sum(sum([2*HOS(1,:);HOS(2:end,:)]))];
217 MEAN(1,k+2) = sum(PDF)*w(1,n/2+1:end).';
218
219 end
220
221 %% Convergence-rate test for the MNLS equation
222
223 Lx = 70; %compare solutions at this value of x
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224 U2 = zeros(M,N,7); %store consecutive solutions
225
226 for i=1:size(U2,3)
227
228 %halve the step-size in each iteration
229 dx = 0.5*(1/2)^(i-1);
230 K = Lx/dx;
231
232 %linear solution
233 LS = exp(1i*(c1*W+c2*W.^2+c3*KY.^2+c5*W.*KY.^2)*dx/2);
234
235 %MULTI-COMPONENT OPERATOR SPLITTING - STRANG SYMMETRIZED

SCHEME
236 Btilde = B0tilde;
237 for k = 0:K-1
238 %solve linear problem on (xk,xk+1/2)
239 Btilde = Btilde.*LS;
240 Btilde = sqrt(M)*[Btilde(1,:);1/sqrt(2)*Btilde(2:end,:)];
241 B = fft(idct(ifftshift(Btilde,2),'Type',2).').';
242
243 %solve second order nonlinear problem on (xk,xk+1/2)
244 B = B.*exp(-1i*c4*abs(B).^2*dx/2);
245
246 %solve third order nonlinear problem on (xk,xk+1)
247 SB = S(B,W,const,kc,wc);
248 B = B - 1/2*dx*(SB+S(B-dx*SB,W,const,kc,wc));
249
250 %solve second order nonlinear problem on (xk+1/2,xk+1)
251 B = B.*exp(-1i*c4*abs(B).^2*dx/2);
252
253 %solve linear problem on (xk+1/2,xk+1)
254 Btilde = fftshift(ifft(dct(B,'Type',2).').',2);
255 Btilde = 1/sqrt(M)*[Btilde(1,:);sqrt(2)*Btilde(2:end,:)];
256 Btilde = Btilde.*LS;
257 end
258 Btilde = sqrt(M)*[Btilde(1,:);1/sqrt(2)*Btilde(2:end,:)];
259 B = fft(idct(ifftshift(Btilde,2),'Type',2).').';
260
261 U2(:,:,i) = B;
262 end
263
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264 %vector containing the l2-norm of the ratio of differences
between consecutive approximations

265 L2 = zeros(1,size(U2,3)-2);
266 for q=1:size(U2,3)-2
267 L2(q)=sqrt(sum(sum(abs((U2(:,:,q)-U2(:,:,q+1))./(U2

(:,:,q+1)-U2(:,:,q+2))).^2)));
268 end
269
270 %estimate of the convergence rate p
271 log2([1/sqrt(M*N)*L2(1),1/sqrt(M*N)*L2(2),1/sqrt(M*N)*L2(3)

,1/sqrt(M*N)*L2(4),1/sqrt(M*N)*L2(5)])

Listing A.2: Implementation of the nonlinear operator (4.33) in the MNLS
equation

1 function [SB] = S(B,W,const,kc,wc)
2
3 dphi_dt_tilde = const.*fftshift(ifft(dct(abs(B).^2,'Type'

,2).').',2);
4 dphi_dt = fft(idct(ifftshift(dphi_dt_tilde,2),'Type',2).')

.';
5
6 dB_dt_tilde = -1i*W.*fftshift(ifft(dct(B,'Type',2).').',2);
7 dB_dt = fft(idct(ifftshift(dB_dt_tilde,2),'Type',2).').';
8
9 dBc_dt = conj(dB_dt);

10
11 SB = -8*kc^3/wc*abs(B).^2.*dB_dt-2*kc^3/wc*B.^2.*dBc_dt-4i*

kc^3/wc^2*B.*dphi_dt;
12
13 end
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