

rkfsbopfqv=lc=lpil=

aÉé~êíãÉåí=çÑ=áåÑçêã~íáÅë=
=

=

=

bî~äì~íáåÖ=íÜÉ=rëÉ=çÑ==

apjpë=~åÇ=`bm=ëóëíÉãë=

áå=eçãÉ=`~êÉ=açã~áå=

íÜêçìÖÜ=~=`çãé~êáëçå=çÑ=

qÉäÉÖê~éÜ`n=~åÇ=`~óìÖ~=
=

=

=

j~ëíÉê=íÜÉëáë=
=

=

=

=

pìã~åÇÉÉé=dêÉï~ä=h~ìê=

=

=

=

NVíÜ=g~åì~êó=OMMV

Abstract

Nowadays patients like to have the option of staying at home in their illness
period. This can be realized through observing and monitoring the patients
motion and temperature with an home care application. Sensors are placed in the
home and create a real-time stream which have to be analyzed.

Data Stream Management Systems (DSMSs) and Complex Event Processing
systems (CEP) support real-time analysis of data streams which is a continuous
ordered sequence of tuples. There are some differences in the design and
implementation of these systems. We analyze these differences and similarities
for two such systems; TelegraphCQ, a DSMS and Cayuga, a CEP system, with a
focus on how well they might suit the needs of home care application domain.

Some of the most important criteria for a system in a home care environment are
to have a system with a language that allows an application to formulate
appropriate queries. In consideration of this we conclude that compared to
Cayuga, TelegraphCQ is the most capable system for home care domain. The
reason for this is that the query language of Cayuga has too limited expressiblity.
And its operators are too difficult to use for expressing the queries that are typical
in this application domain.

TelegraphCQ in contrast does report the correct value and time interval with the
possibility to use built in functions from SQL and do not demand query with lot of
complexity.

The comparison is done in two parts; theoretical and practical. We focus on
topics like tuple definition, aggregation, consecutiveness, concurrency and
optimization. Through the first part we investigate the literature concerning the
two types of systems. The second part consist of testing these systems in the
home care application domain. This part allows us to test the topics discussed in
the theoretical part.

Preface

This Master’s Thesis is written at the Distributed Multimedia Systems Research
Group at the Department of Informatics, University of Oslo, during the semester
of autumn 2008.

I want to thank my supervisors, Ellen Munthe-Kaas and Jarle Søberg for their
guidance, vital feedback and support. This have been of great importance to me.
I would also like to thank Hashmat Khan to have read through the thesis and
given me great feedback.

Sumandeep Grewal Kaur
University of Oslo

Januar, 2009
.

Contents

1 INTRODUCTION .. 1

2 BACKGROUND .. 3

2.1 DSMS in general .. 3

2.2 CEP in general.. 5

2.3 Cayuga ... 6

2.3.1 Cayuga query language ... 6

2.4 TelegraphCQ in general ... 7

2.4.1 The Query Language of TelegraphCQ ... 9

2.5 Existing applications for DSMSs and CEP systems .. 9

2.5.1 Sensor Networks ... 10

2.5.2 Network Monitoring ... 12

2.5.3 Stock Trading ... 13

2.6 Home Care Application ... 13

2.7 Cayuga and Application Domain ... 14

2.8 TelegraphCQ and Application Domain .. 14

3 Comparison of Cayuga and TelegraphCQ .. 15

3.1 Tuple/event Definition .. 15

3.2 Aggregations ... 17

3.3 Consecutiveness .. 19

3.4 Concurrency .. 22

3.5 Optimization .. 24

3.6 Cayuga vs. TelegraphCQ .. 25

4 Using Cayuga and TelegraphCQ in the Home Care Scenario 27

4.1 Tasks .. 27

4.2 Schema .. 29

4.3 Stream ... 29

4.4 Cayuga and Home Care Application Domain .. 30

4.4.1 Design .. 30

4.4.2 Test Setup .. 31

4.4.3 Queries .. 32

4.5 TelegraphCQ and Home Care Application Domain ... 42

4.5.1 Design .. 42

4.5.2 Test Setup .. 44

4.5.3 Queries .. 44

4.6 Conclusion ... 54

5 Conclusion and Future Work .. 57

References .. 61

Appendix ... 63

CAYUGA ... 63

Stream.txt .. 63

SensorsSchema.xml ... 65

Queries .. 65

Config files ... 68

Witnesses.txt ... 71

TELEGRAPHCQ ... 75

Stream.txt .. 75

Schema.sql .. 77

Queries .. 78

Result.txt ... 83

FIGURE LIST

Figure 1: DBMS vs. DSMS [INF5090] ... 3

Figure 2: Generic DSMS Architecture [INF5090] ... 4

Figure 3: The TelegraphCQ Architecture [TWW] .. 8

Figure 4: Sensor nodes scattered in a sensor field [WSN01] .. 11

Figure 5: Basic structure of tools [INF5090] .. 12

Figure 6: Double top formation marked in red [CWW] .. 13

Figure 7: Consecutiveness with linearly timestamp ... 20

Figure 8: Consecutiveness with interval timestamp ... 20

Figure 9: Cayuga event T successor of event S ... 21

Figure 10: Cayuga event T not a successor of event S .. 21

Figure 12: SensorSchema.xml ... 30

Figure 13: Cayuga SensorStream.txt ... 31

Figure 14: Config file ... 32

Figure 15: TelegraphCQ schema.sql .. 43

Figure 16: TelegraphCQ Stream.txt ... 43

EXAMPLE LIST

Example 1: Cayuga Query Form[CHPE] ... 7

Example 2: TelegraphCQ Query Form [TWW] ... 9

Example 3: Cayuga tuple example [TEPS] ... 16

Example 4: TelegraphCQ tuple example ... 16

Example 5: Cayuga Average example [CWW] ... 17

Example 6: Cayuga Count example [CWW] .. 18

Example 7: Cayuga MIN and MAX example [CWW] ... 18

Example 8: TelegraphCQ Aggregation example [TWW] ... 19

Example 9: TelegraphCQ The syntax of the for-loop [NEXT] .. 22

Example 10: Concurrency NEXT operator ... 23

Example 11: Concurrency FOLD operator ... 23

Example 12: TelegraphCQ WITH clause .. 24

1

1

INTRODUCTION

In the home care application domain one needs to monitor different events
generated by preplaced sensors nodes. One example is to monitor a patient
which has been sent home. Having patients in their homes instead of in hospitals
or nursing homes is important. It gives the patient a familiar environment and the
hospital resources to treat more severe injuries or illness. For instance, long
durations of non movement can indicate a problem and that a rescue unit needs
to be sent to the home for checking the patient.

By automating the home care application domain, several questions arise with
respect to which type of system to use:

• How important is it that the system reports the exact value?
• How important is it that the system reports the right time interval?
• How important is it to have a reliable system?

Our opinion is that the home care domain is a domain which can be described as
a sensitive domain. With a system in such a domain it is important that the
system is able:

• to catch a problem fast and alert the rescue unit.
• to report the exact value
• to report the right time interval
• to manage large amount of data
• to have a reliable and stable system
• to maintain the privacy of the patient (not taken into consideration).

Two technical possibilities which can be applicable for the home care domain is
Data Stream Management Systems (DSMSs) and Complex Event Processing
systems (CEP).

DSMSs and CEP support real-time analysis of data streams, which is a
continuous ordered sequence of tuples. There are some differences in the design
and implementation of these systems. We analyze these differences and
similarities with focus on home care domain by comparing TelegraphCQ, a
DSMS with Cayuga, a CEP.

TelegraphCQ is an adaptive system that should be able to repeatedly measure a
home care environment. Using a dataflow engine TelegraphCQ is able to move
large amounts of data through an amount of operators running on one or many
computers. TelegraphCQ uses new dataflow technologies to route unpredictable

2

and fractured dataflow through computing recourses on a network, resulting in
manageable streams of useful information.

Cayuga is a system that can be used in the home care domain since it is a
complex event monitoring system for high speed data streams, which supports
on-line detection of a large number of complex patterns in event streams. Based
on nondeterministic limited state automata with buffers, Cayuga manages to
merge a simple query language for composing stateful queries with a scalable
query processing engine. It is not only able to scale with the arrival rate of events
in the stream, but also with the number of queries, which is an important feature.

In addition to do research on the technology we are also interested in discovering
differences and similarities between Cayuga and TelegraphCQ based on already
available information and research work. To underline these differences and
similarities we focus on vital and relevant topics. Through comparing these two
systems we also discover if they are capable of being used as a technical
solution in a home care environment, where the outcome is crucial.

The comparison is done in two parts; theoretical and practical. The theoretical
part focuses on topics like:

• How tuple and event are defined in each system.
• We investigate the five standard types of aggregates; AVG, SUM, MIN,

MAX, and COUNT.
• We investigate how well the systems manage to capture consecutive

events.
• If the systems can query and join the information of results from several

data sources and concurrent execution of several independent queries.
• To what extent is optimization possible in the systems.

The practical part is based on the theoretical part. In this part we go through five
relevant tasks and analyze and evaluate how well the systems in practice can be
used in a home care environment. The goal is see how the two systems solve the
same type of queries on the same event stream.

The rest of this thesis is organized as follows. We begin with Chapter 2 by
covering the background of DSMSs and CEP. This chapter also consists of
general information about Cayuga and TelegraphCQ together with their query
language. In chapter 3 we focus on the topics; tuple/event definition, aggregation,
consecutiveness, concurrency and optimization, based on already existing
research work and information. Further in chapter 4 we test the topics on each of
the systems. The last chapter consists of conclusion and further work.

3

2

BACKGROUND

This chapter is an introduction to Data Stream Management Systems (DSMSs)
and Complex Event Processing system (CEP). Further we continue with general
information about Cayuga and TelegraphCQ together with their query languages
and some application domain.

2.1 DSMS in general

The content in this chapter is mainly based on [DSS], [DSM] and [ICI].

A data stream is a sequence of tuples. Tuples are streaming, not stored in a
table. Each tuple consists of a set of attributes, similar to a row in a database
table. Data Stream Management Systems (DSMSs) support on-line analysis of
(such rapidly changing) data streams. Different from traditional Database
Management Systems (DBMSs) where data is stored on disks and the queries
are performed against the stored data, in DSMSs there is no storage of data on
disk, all operations are performed in main memory, see Figure 1 [ICI].

Figure 1: DBMS vs. DSMS [INF5090]

In DSMSs the information is arriving in main memory as an unpredictable stream
of data. The data stream is unbounded and ordered; implicitly by arrival time or
explicitly by timestamp. An input monitor regulates the input possibly by dropping
packets or transactions as well as preprocessing and buffering. The data stream
is too large to be stored entirely in main memory. For that reason data is stored in

4

three partitions in main memory: the Working Storage, e.g. for window queries,
the Summary Storage for stream synopses, and the Static Storage for meta-data,
e.g. physical location of each source. In addition a Query Repository is used for
long-running, continuous queries. A Query Processor communicates with the
Input Monitor; it may also re-optimize the query plans in response to changing the
input rates on the data. Results are then temporarily buffered through an Output
Buffer and streamed to the user and, see Figure 2 [DSM].

Figure 2: Generic DSMS Architecture [INF5090]

To control the order in which items arrive and locally store a stream in its entirety,
is impossible. Queries over streams run continuously over a period of time and
incrementally return new results as new data arrive. These are known as long-
running, continuous, standing, and persistent queries. Requirements to a DMMS
are formed by the characteristics of data streams and continuous queries: (1)
order-based and time-based operations must be allowed by the data model and
query semantics, e.g. queries over a five-minute moving window, (2) the use of
approximate summary structures, in the literature referred to as synopses or
digests; as an outcome, queries over the summaries may not return precise
answers, (3) not using blocking operators which consume the entire input before
any results are produced, (4) not possible for backtracking over a data stream
due to performance and storage constraints; on-line stream algorithms are
restricted to making only one pass over the data, (5) applications that monitor
streams in real-time must react quickly to unusual data values, (6) long-running
queries may run into changes in system conditions throughout their execution
lifetimes for instance, variable stream rates, and (7) to ensure scalability, shared
execution of many continuous queries are needed.

A method for managing such data when the queries will go over a period is to use
reduction techniques, which imply sampling, shedding, and synopsis. This implies
to respectively only use a part of the data which has arrived, reduce or drop parts
of the data, or summing up data in several ways. There are three main ways of
managing data which has arrived: accuracy, history and real-time.

Accuracy; because of the limited memory it is not possible to collect the accurate
answer, but instead it is possible to obtain summary or headword.

5

History; for looking at the most recent data, windowing has to be deployed. There
are three types of windows: sliding windows which is used if it is important to
gather all the information, jumping windows is advantageous to use and as result
sampling will be received, and overlap windows which are known as the least
effective windows; it uses the same data several times but with a lot of queries it
can be reasonable to deploy it.

The last way of managing data is real-time which handles the data immediately
and therefore cannot accommodate everything in advance. For this reason the
query plan is made at the same time, here and now or on the way in contrast to
conditions where the query plan already exists.

To conclude this section about DSMSs we will portray basic continuous query
operations over streaming data: (1) selection; all streaming applications require
support for complex filtering, (2) nested aggregation are needed to compute
trends in the data, (3) multiplexing and demultiplexing are used to decompose
and merge logical streams, (4) frequent item queries, also known as top-k or
threshold queries, are dependent on the cutoff condition, (5) stream mining is for
on-line mining of streaming data; operations like pattern matching, similarity
searching and forecasting are needed, (6) joins are used to support multistream
joins and join of streams with static metadata, and (7) windowed queries; all of
the query types mentioned above may be constrained to return results inside a
window.

2.2 CEP in general

In the mid 1990’s academic research in automated analysis of event traces
formed the beginning of Complex Event Processing (CEP) at Cal Tech (Mani
Chandy), Cambridge University (John Bates), and Stanford University (David
Luckham). It was now focus on giving more detailed information about the
behavior of the models into the event traces, like the cause and effect between
events, by developing models to process streaming event data by identifying
complex sequences events with temporal and spatial constraints, and to control
complex actions as a outcome of these patterns [CWW] [CAGP].

A complex event is when no one can directly detect the situation; one has to
conclude or assume that the situation has taken place from a combination of
other events. CEP helps detect such complex, inferred events by analyzing and
correlating other events. It is a technology that can aggregate, analyze and
respond immediately to real-time event data, with minimal latency [CHPE]
[TEPS].

In more detail CEP is a technology for extracting information which can be low
level network processing data or high level enterprise management intelligence,
depending on the users’ interest. It is detecting pattern or trends that characterize
incidents or warnings in real time, as they happen so one can respond
immediately. In CEP you can know your position at all time by combining data

6

from multiple sources and continuously computing aggregate values. CEP gives
you also the possibility to adjust the changing conditions by constantly observing
the interaction of data [TEPS] [CEP].

2.3 Cayuga

This chapter is based on content from [CHPE] [CAGP].

Cayuga is described as a complex event monitoring system for high speed data
streams, which supports on-line detection of a large number of complex patterns
in event streams.
Based on nondeterministic limited state automata with buffers, Cayuga manages
to merge a simple query language for composing stateful queries with a scalable
query processing engine. It is not only able to scale with the arrival rate of events
in the stream, but also with the number of queries which is an important feature.

The Complex patterns in event streams which is mentioned above are described
by using a query language based on composable operators which have well-
defined formal semantics. With this Cayuga is able to perform query-rewrite
optimizations and can build up complex patterns from simpler sub-patterns.

The Cayuga system also implements several techniques for query processing,
indexing, and garbage collection, resulting in an efficient execution engine that
can process data streams at very high rates.

Cayuga also supports resubscription, the output event stream from one query
can be used as the input stream to one or more other queries. Resubscription
enables complex event pattern queries, and it extends the expressiveness of the
query language.

Cayuga has a web-based frontend which is running on a custom Python Web
server, with AJAX-based controls for asynchronous communication and user-
friendly interfaces in the browser. The users can enter persistent queries and
register them with a running Cayuga engine. Users are given a choice of
predefined templates from a dropdown menu. Then, they can modify these to
their need, or write one from scratch.

2.3.1 Cayuga query language

The Cayuga query language(CEL) is a result from an event algebra. It is a
mapping of the operators in algebra into a SQL like syntax. Each query has the
following form:

7

Example 1: Cayuga Query Form[CHPE]

The SELECT section state the attributes in the output stream schema, the FROM
section indentify a Cayuga event pattern, and the PUBLISH clause gives the
output stream
a name.

The event pattern can be built with three different operators; FILTER; NEXT and
FOLD. The FILTER { � } operator selects those events from the stream that
satisfy the predicate �. The second operator NEXT { � } allows to correlate
events over time. When applied in a query it combines each event from two
streams which satisfies the predicate � and occurs after the detection time of the
event in the first stream. The last operator FOLD { � } is a generalization of the
NEXT. The difference is that FOLD looks for patterns comprising two or more
events. It is used in situations where we need to iterate over an a-priori unknown
number of events until a stopping condition is satisfied [CAGP].

2.4 TelegraphCQ in general

This chapter is based on content from [TWW].

TelegraphCQ is an adaptive dataflow system . Using a dataflow engine
TelegraphCQ is able to move large amounts of data through an amount of
operators running on one or many machines. Dataflow operators can be compare
d with loops, which repeatedly receive data from their inputs, and place data on
their output. All the operators used in Telegraph are pipelining, which means that
they produce data to their output before they finish receiving all the data from
their inputs. Thus TelegraphCQ uses new dataflow technologies to route
unpredictable and fractured dataflow through computing recourses on a network,
resulting in manageable streams of useful information.

As an adaptive system TelegraphCQ should be able to repeatedly measure its
environment, and decide how to take actions based on such measurements. The
design of TelegraphCQ is predicated on the assumption that most of the new
computing problems will take place in very unpredictable environments.
TelegraphCQ consist of two basic adaptive dataflow techniques, Eddies and
Rivers. Eddies are used to continuously remodel dataflow graphs to
maximize performance. Eddies provide to adaptively route data through
operators, continuously changing the order of operators in a dataflow
graph by observing the rates at which operators consume and produce
data. An eddy is implemented as a special iterator that can be injected
into any dataflow graph to make it adapt its shape. Rivers are used to
continuously load-balance work across multiple machines on a network.

8

Rivers adaptively route data to different machines, by observing the rates
at which the machines can handle additional work.

TelegraphCQ is implemented as an open-source DSMS prototype, based on the
PostgreSQL database system.

Figure 3: The TelegraphCQ Architecture [TWW]

In the TelegraphCQ architecture in Figure 3 we can see that a separate
PostgreSQL process TelegraphCQ Front End (TFE) is forked for each client
connection. This process runs all queries that do not involve streams using the
normal PostgreSQL executor. When PostgreSQL receives a continuous query,
the TFE parses and plans the query in shared memory. It uses the output of the
PostgreSQL optimizer to construct a continuous query plan.

Further, the TFE passes the plan to the TelegraphCQ Back End executor (TBE)
using a shared memory queue. The TBE runs the TelegraphCQ eddy which
merges all continuous query plans into one so that query processing may be
shared amongst queries. The TBE receives the plan, and integrates it into the
TelegraphCQ eddy. Finally, the Eddy returns results to the appropriate TFE via
shared memory result queues, one per query.

9

2.4.1 The Query Language of TelegraphCQ

The query language of TelegraphCQ is also comparable with SQL. It is a
straightforward extension to SQL for manipulating streams. Each query has the
following form:

Example 2: TelegraphCQ Query Form [TWW]

The SELECT section state the attributes in the output stream schema, the FROM
section state the stream with a interval expression. WHERE state the conditions.
GROUP BY and ORDER BY state the ordering.

The interval expression in FROM clause is the window section. Using the window
section we can specify streams with sliding, tumbling or jumping time window.
Parameters used for these in the query language is respectively ”RANGE BY…”,
“SLIDE BY…” and “START AT…”.

The parameters have different functional purpose, the RANGE parameter in a
query defines the size of the window in a specified time, as an example we can
state the window section in the query accordingly: RANGE BY ´5 minutes´. With
the SLIDE parameter we can define the interval after which this window will be
re-calculated, again by specifying a time, as an example to this: SLIDE BY ´1
minutes´. And the START parameter define the time at which the window begins,
an example on this will be: START AT ´2008-09-09 12:12:00´. All the three
parameters above can be stated separately or in the same query [TWW].

2.5 Existing applications for DSMSs and CEP systems

Efficient asynchronous interaction among distributed applications has been an
active field of research for many years now, with focus on topics like spanning
active databases, event systems, high performance implementations of
Publish/Subscribe, and distributed Publish/Subscribe [CWW].

In complex event processing users are interested in finding matches to event
patterns which are usually sequences of correlated events. A case of such a
pattern is a safety condition; in safety condition the users want to make sure that
nothing bad happens between two events which are set by condition and terms
which corresponds users requirements. An example of this kind of pattern:
”between leaving the farm (start event) and arriving at the store (end event), fresh

10

produce should not have spent more than 1 hour total above a temperature of
25°C”[CAGP].

2.5.1 Sensor Networks

In today’s world it is possible to monitor physical or environmental conditions with
a sensor network. For instance observing and analyzing human behavior or
detection of forest fire are applications where wireless sensor networks can be
helpful.

The motivation for the development of sensor networks was originally military
applications such as battlefield surveillance. The aim was monitoring friendly
forces, equipment and ammunition, reconnaissance of opposing forces and
terrain, and nuclear, biological and chemical attack detection and
reconnaissance. Now sensor networks are used in many other applications as
well; civilian application areas include environment, health care applications,
home automation, and traffic control.

The target of environmental applications is to track movements of birds, animals,
etc. and to monitor environmental conditions that affect crops and livestock. It can
also detect chemical/biological, monitor earth and environmental in marine, soil,
and atmospheric contexts. Environmental applications also helps meteorological
or geophysical research, pollution study, precision agriculture, irrigation. Or
biocomplexity mapping of environment, detection of forest fire or flood[INF5090].

Health application applies integrated patient monitoring and telemonitoring of
human physiological data. Can also be used for tracking and monitoring doctors
and patients inside a hospital. Or tracking and monitoring patients and rescue
operations[INF5090].

Commercial applications are for instance used for monitoring product quality or
machine diagnostics. It can also provide work for construct smart office spaces
or smart structures with sensor nodes embedded inside. Interactive toys or
museums. Managing inventory control. Environmental control of office buildings.
Commercial applications can also be used for detecting and monitoring car thefts
or for vehicle tracking and detection[INF5090].

A sensor network is a collection of autonomous sensor nodes which consist of
sensing, data processing, and communicating components [WSN01]. Every
sensor node is equipped with a sensing unit; usually composed of sensors and
analog to digital converters (ADCs), processing unit; manages the procedures
that make the sensor node collaborate with the other nodes to carry out the
assigned sensing tasks, transceiver unit; connects the node to the network or
satellite, and a power unit; usually a battery and the most important unit
[INF5090]. The sensor node receives waves or other variations from one system
and transmits related ones to another with a communications infrastructure aim to
monitor and collect physical data. Based on sensed physical effects and incidents
the processing unit manages the procedures that make the sensor node

11

collaborate with other nodes to carry out the assigned sensing tasks. Transceiver
unit receives commands from a central computer (base station), connects the
node to the network and transmits data [INF5090].

Figure 4: Sensor nodes scattered in a sensor field [WSN01]

In the figure above [WSN01] we can see sensor nodes spread in a sensor field,
they are deployed either inside the incident or very close to it. These sensor
nodes duties are to collect data and route data back to the sink and the end user.
Through the sink in the figure, data are routed back to the end user by a multihop
infrastructure less architecture. The sink may communicate with the task
manager node via internet or satellite.

Wireless sensor networks also have some limitations, the most important relates
to; communication, power consumption, computation and uncertainty in sensor
readings.

• Communication: The wireless network connecting the sensor nodes
constraints to limited quality of service, latency with high variance, limited
bandwidth, and frequently drops packets[QPSN].

• Power consumption: Energy conservation is an important system design
considerations of any sensor network application, because sensor nodes
have limited supply of energy. An example of this is MICA mote from
Berkeley, the motes is powered by two AA batteries which provide about
2000mAh, powering the mote for approximately one year in the idle state
and for one week under full load [QPSN].

• Computation: Sensor nodes have restricted computing power and
memory sizes. This limits the types of data processing algorithms on a
sensor node, and it limits the sizes of intermediate results that can be
stored on the sensor nodes [QPSN].

• Uncertainty in sensor readings: Sensor malfunction might generate
inaccurate data, and unfortunate sensor placement such as a temperature
sensor directly next to the air conditioner might bias individual readings
[QPSN].

12

2.5.2 Network Monitoring

Large networks are growing complex by increasing demands, over provisioning,
hardware changes, and manual configuration, etc and are consequently difficult
to manage. Therefore it is necessary to monitor and analyze the network traffic
flowing through the systems [GIGA].

Network monitoring implies the use of systems that constantly monitors a
computer network for slow or failing systems and then alerts the network
administrator in case of outage through alarms. A network monitoring system
detect problems caused by overloaded or crashed servers, network connections
or other devices [Wiki]. But the monitoring requirements vary from the long term
such as monitoring link utilization, computing traffic matrices to the ad-hoc such
as detecting network intrusions, debugging performance problems [GIGA].

As the internet continues to grow fast both in size and complexity, it has become
gradually more important to have tools to analyze the internet traffic. Many of the
tools which exists are complex (e.g., reconstruct TCP/IP sessions), query layer-7
data (find streaming media connections), operate over huge volumes of data
(Gigabit and higher speed links), and have real-time reporting requirements (e.g.,
to raise performance or intrusion alerts) [GIGA].

As mentioned before the need of analyzing internet traffic is increasing and many
tools for analyzing internet traffic exist, such as ISP monitor service levels,
identify bottlenecks and so on. Further we have an example of traffic analysis
which analyze internet traffic in near real-time to computer traffic statistics and
detect critical conditions. Figure below describes the basic structure of tools for
network monitoring which consist of packet capturing, trace file, analysis and in
the end result [INF5090].

Figure 5: Basic structure of tools [INF5090]

With this basic network monitoring you are able to analyze data both online and
offline. Packet capturing happens in real time hence online monitoring is possible.
With trace file it is possible to monitor offline because the data is stored. The
same tool is used to both manage and analyze data (trace file and result).

13

2.5.3 Stock Trading

An example on stock trading is stock ticker event monitoring, a system that
allows financial analysts to compose subscriptions over a stream of stock ticks. It
is about on-line analysis of stock prices, discover correlations and identify trends,
it is about predicting future price. In this field technical analysts look for many
different patterns in price movements. The interpretations of such patterns are
used to support trading decisions. Investors that are able to see trends before
other market players will be able to make early moves and thus increase profit
margins.

A well-known pattern amongst analysts is the double top pattern; the analysts are
interested in being notified whenever there is double top formation in the price
chart of any stock[CWW].

Figure 6: Double top formation marked in red [CWW]

2.6 Home Care Application

In situations were people are sick, disabled or old there might be a need for
nursing and observation of these. But due to different circumstances it is not
always possible or desirable to be taken care of. Finances can be one of the
reasons where the hospital for instance can not afford the expenses, or they do
not have the facilities like nurses, beds, etc. As mentioned it is not always
desirable to be taken care of, the reason for this can be that people for instance
want to live a normal life as possible.

These people in different situations can still be taken care of with the home care
application. With home care application a person can live a normal life without
being dependent on others. Hospitals which do not have the facilities like nurses
can observe patients with such home care applications.

The home care application domain covers the need for monitoring different
events generated by preplaced sensor nodes. As an example motion sensors

14

can be placed around the home to monitor the movement of a patient. Long
durations of non movement can then indicate a problem and that a rescue unit
needs to be sent to the home.

Disabled persons can manage home devices easily and remotely by for instance
with embed sensor nodes and actuator in different units such as vacuum
cleaners, TVs and refrigerators. Such sensor nodes inside the unit can interact
with the external network via the Internet or Satellite [UCEP].

2.7 Cayuga and Application Domain

Cayuga is like traditional Publish/Subscribe system but predicate filtering of
events, correlation of events and aggregation of events. Standard
Publish/Subscribe is a dominant paradigm where users are allowed to express
stateless subscriptions; these are evaluated over each event that arrives at the
system [CWW].

Cayuga is designed for pattern matching queries. Cayuga on a single PC can
scale up to hundreds of thousands of concurrently running pattern matching
queries. So the main distinguishing feature of Cayuga is its scalability. But it exist
queries which are not expressible in Cayuga. The aim of Cayuga is occupy a
spot between simple Publish/Subscribe and the full power of SQL-like queries in
DSMSs, and achieves greater expressiveness than Publish/Subscribe while
keeping most of its advantages in terms of scalability[CWW].

2.8 TelegraphCQ and Application Domain

TelegraphCQ contain two types of application: pull-based and push-based
applications [TCDP]. As in traditional database systems the pull-based
applications pull data from the disk to the query processor by the user upon
demand. And in push-based application data are constantly “pushed” from disk to
the query processor out to the user.

An example on pull-based application is sensor network. In sensor network the
sensors pull data from the environment depending on the sensing device, and as
shown in the chapter about Sensor Networks above the sensors send data
through the network back to a central node for querying and data analysis.

Network monitoring, Stock trading and Home Application is examples on push
based application. Applications like these produce streams which are intense
loaded with data. And as a result of this these systems cannot control the arrival
frequency at which data elements are received.

15

3

Comparison of Cayuga and TelegraphCQ

We are interested in discovering differences and similarities between Cayuga and
TelegraphCQ based on already available information and research work. To
underline these differences and similarities we focus on the following five vital
and relevant topics; 1) Tuple/event definition, 2) Aggregation, 3)
Consecutiveness, 4) Concurrency and 5) Optimization.

3.1 Tuple/event Definition

Generally speaking an event is described as an occurrence indicating that
something has happened or is in the process of happening. As a practical
example an event can be a sensor reporting the movement of an object, it can be
a change in the financial market or it can be a seismic sensor sensing an
earthquake.

Event is represented in the system as a tuple, a sequence of values. Each value
is called a component of the tuple. These tuples form an event stream. An event
stream is apossibly unbounded set of timestamped tuples. The timestamp can be
externally provided or by the system.

Event stream in Cayuga has fixed relational schema, and events in the stream
are treated as relational tuples. Each event has two timestamps, a start time and
a detection time, also called end time. Events can have a non-zero but finite
duration. The detection times determine the order of events. Event with the same
detection time are considered to happen simultaneously. Cayuga processes
events in epochs. Through one epoch all events with the same detection time are
processed [General].

In Cayuga set of tuples in event stream occurs in this arrangement <ā; ��, �� >.
Here ā � 	
�, … . . a�� are data values for the corresponding attributes and �� , ��

are values representing the start and end timestamps of the current event. Tuples
in Cayuga is timestamped by the system. Below is an example on a tuple [TEPS].

16

Example 3: Cayuga tuple example [TEPS]

It is various type of events [CEP]; for instance simple -, complex -, raw -, derived
– and instantaneous events. A simple event does not represent other events, it is
not an abstraction of other events and it is neither composition of other events.
While a complex event is an abstraction of other events called its members which
can be simple events or other complex events. Raw events may represent both
simple event and complex event; it is an event object that records a real-world
event. An event that is generated as a result of applying a methods or process to
one or more other events is called derived event or synthesized event. For
instance the absence of an event in a given time interval can lead to a derived
event reporting that the first event did not happen. An instantaneous event object
will have a single timestamp signifying when the event happened. This applies
where the start and end times are the same.

When it comes to TelegraphCQ a stream is an infinite bag of events < s, t > pairs.
Where s is the tuple and t is the timestamp of the event [CQL]. Timestamp
specifies the creation time of a tuple. As opposed to Cayuga tuples can be
externally timestamped, or timestamped by the system. If they are time-stamped
by system, they will be in monotonically increasing order [TWW].

We have two types of data streams in TelegraphCQ; archived and unachieved.
The tuples that are streamed into archived streams will be copied onto disk by
TelegraphCQ. Tuples that are streamed into unachieved streams are discarded
when the query is cancelled [TWW].

Below is an example on tuple in TelegraphCQ shown:

Example 4: TelegraphCQ tuple example

If we compare this example from TelegraphCQ with the example above from
Cayuga we will for instance notice the difference between the timestamps. As we
have mentioned before In Cayuga the timestamp is defined with a start time and
a detection time (also called end time), while in TelegraphCQ the timestamp only
specifies the creation time of the tuple.

17

3.2 Aggregations

An aggregate function is a function that returns a single value from a collection of
input values such as a set, a bag or a list. As described earlier streams are
unbounded. This makes aggregate queries difficult to process, since they cannot
produce any results unless they have observed all their input. A way to handle
this is to limit the number of input tuples to aggregate query over streams. But let
us see how Cayuga and TelegraphCQ manage aggregation.

Cayuga compare its query language CEL with SQL, but SQL has a lot of built-in
functions for counting and calculations which CEL doesn’t have. For instance
SQL has the five standard types of aggregates such as; AVG, SUM, MIN, MAX
and COUNT. CEL must instead take help of ‘and’, ‘as’, =, <=, <, > and >= to
write query from.

Cayuga’s algebra contains three aggregate functions. When the topic about
aggregation is discussed in the sources [e.g. TEPS, CWW] it is stated that in
Cayuga’s algebra aggregate functions fit naturally in. The aggregation occurs
over a sequence of events. But in further research there is no trace of the five
standard types of aggregation in Cayuga’s query language. Queries where a
standard aggregate function is needed has been solved in different ways using
Cayuga’s built-in functions. Below we have shown examples of how the
aggregate functions can be implemented.

Example 5: Cayuga Average example [CWW]

Above is an example where they could have used aggregate functions like AVG
and SUM. In this example it has also been used divide and conquer to express
the query more easily. Resubscription is used to allow query to subscribe to the
output of another, so the PUBLISH clause can specify an identifier of the output
stream which other queries can specify as their input stream. This is possible
because the operators in Cayuga are stream-to-stream, assuming that the input
and output of every operator must be a stream. This example also show that

18

queries can be nested by declaring the output from an inner SELECT clause as
the input for the FILTER operator (see line two) [CWW].

Further an example for COUNT:

Example 6: Cayuga Count example [CWW]

An example for MIN and MAX:

Example 7: Cayuga MIN and MAX example [CWW]

Other aggregate functions in Cayuga for instance like GROUP BY is also solved
in their algebra [TEPS], but no trace of it in CEL examples.

To handle a limited portion of the stream for aggregate queries, TelegraphCQ
apply a window section to it’s query form to create a time-varying relation. This

19

allows us to retrieve results without waiting for the entire data stream to be
processed.

This windowing technique supports both the portion of streams that has already
arrived, as well as those portions that will arrive in the future. As mentioned
earlier TelegraphCQ has two kind of applications; pull-based and push-based
applications, execution of the query over consecutive windows is possible on
both [TCDP].

Windowing is needed if we want to use aggregation in our queries, since we need
to bound the aggregate state. Hence aggregates on streams are computed on
windows. Below is an example on aggregation [TWW]:

Example 8: TelegraphCQ Aggregation example [TWW]

When the query execute an aggregate, for instance grouped, it is based on the
interval expression of the different streams in the query.

TelegraphCQ has solved aggregation query like SQL with the aggregate
functions, but with help of windowing. Cayuga has solved the aggregation in its
algebra, though it convey the impression of that their query language is also very
alike SQL the aggregation is missing in CEL. It is possible to solve query where
aggregation could have been used in Cayuga, but as we can see in the given
examples it requires more.

As TelegraphCQ, Cayuga is also using a form of Windowing but it is different.
TelegraphCQ use time-based windowing while in Cayuga we have to make the
window with help of PUBLISH function before we can use aggregation. The
window of Cayuga can this way contain more. But after publishing a window in
Cayuga you can still not use the five standard aggregate functions, neither does
Cayuga has any other function which can replace these.

3.3 Consecutiveness

The concept consecutiveness is generally explained as periods of time or events
happen one after the other without interruption. If we look at det figure below event B
is a successor to event A because no event happened in between of these two
events. Hence is event C not a successor of event A because event B happened in
between them.

20

Figure 7: Consecutiveness with linearly timestamp

But as we know Cayuga and TelegraphCQ use different timestamp for managing
their data streams. (Cayuga use start and detection time, while TelegraphCQ use
only creation time). This can also cause to different understanding of
consecutiveness for each of them. As we know event systems are used to
analyze time series queries in real time. It is therefore an important factor that
these systems have some semantics for consecutiveness; when is one event a
successor of another.

Let us begin with the consecutiveness for Cayuga first. Cayuga is a system
where the outputs of a query are themselves events, which can be posted to the
event stream and used in other queries. Better known as complex events, since
they contains of several smaller events that together satisfy the query. Also the
query mentioned above might be a complex event since it contains several steps
[NEXT]. Therefore Cayuga use interval timestamps because these events may
have duration. For this reason complex events may overlap with each other. This
is something which can cause some difficulty in processing the sequencing
operator because for events with duration the successor is not obviously to state.

Figure 8: Consecutiveness with interval timestamp

Figure above is an example on interval timestamp. If we have to choose the
successor according to the end time of the interval, then event B is the successor
of event A. But if we look at event B it properly contains event A, so it may be a
reason to exclude it as a successor of event A, we do not want to “skip” over
some data. So instead should either event C or event D be the successor of
event A or both of them.

As mentioned before in CEP systems users register long running queries to
detect event patterns, which are typically sequences of events. An example on
such query can be to detect when something bad happens between to events;

21

Post a notification if an item, after being removed from shelf, exits the store
before being checked out at the counter [NEXT].

To solve this type of queries all event systems has sequencing operator, also
described as a concatenation operator, E1; E2. This operator finds any event
matching the sub pattern E1, and then finds the first match afterwards to the sub
pattern E2. But from previous finding Cayuga does not have this operator in it’s
query language. Question which is still unanswered is if it only finds E2 which
follow E1 or if it also look at if E2 follow immediately after E1[NEXT].

As mentioned Cayuga uses interval time stamps, where t = [t0, t1] is a successor
of s = [s0, s1] if t0 > s1 and there is no event with time stamp p = [p0, p1] such that
s1 < p0 < p1 < t1. That is, t is a successor of s if t follows s without overlap, and no
p that follows s without overlap finishes before t. This avoids unbounded
successor sets with their associated implementation difficulties. Explained in the
figures below.

Figure 9: Cayuga event T successor of event S

In this figure event T is successor of event S because as we can see t0 > s1 and
that event P does not appear in between of them. s1 < p0 < p1 < t1 is not correct.

Figure 10: Cayuga event T not a successor of event S

In Figure 10 event T is not a successor of event S because event P appears in
between. But here is also s1 < p0 < p1 < t1 correct.

In Cayuga the complex event is timestamped with the smallest interval containing
the intervals of all events that make up the query result. For example, if we have
a query made up of three events. And they happens at times 1, 4 and 7, then the
result time stamp would have been [1, 7] [NEXT].

22

A thorough survey of temporal models in the CEP literature shows that there is
no unique answer for choosing a successor to A in the figure above
(Consecutiveness with interval timestamp) [NEXT, CWW].

The semantics of queries in TelegraphCQ is a bit differing from Cayuga. In
TelegraphCQ for every instant in time, a set of tuples over which the query is to
be executed is defined by a window on a stream. The output of a query is
presented to the end-user as a sequence of sets since each execution of the
query produces a set. And each set is being associated with an instant in time.

Time in TelegraphCQ is treated as a partial order in order to accommodate
insecurely synchronized distributed data sources. Multiple simultaneous notions
of time, such as logical sequence numbers or physical time is also allowed. An
algebra with expanded relational operators exist to operate on streams and to
allow a stream defined using one notion of time to be transformed into a stream
using another [TCDP].

This is done by using a for-loop construct to state the sequence of windows over
which the user requests the answers to the query. A variable t moves over the
timeline as the for-loop iterates, and the left and right ends of each window in the
sequence, and the stopping condition for the query can be defined with
consideration to this variable t [NEXT].

For each stream in the query the for-loop contains the statement ‘WindowIs’, an
input without this statement is assumed to be a static table by default. And for
every group of streams that express the same window transition behavior there is
one for-loop. Figure below shows the syntax of the for-loop [NEXT].

Example 9: TelegraphCQ The syntax of the for-loop [NEXT]

By appropriately setting the increment statement for t in the for-loop windows can
also be defined to move on-demand, or in the reverse-timestamp direction.

How both of the systems manages to capture consecutive events is determined
by how they use timestamp. Where Cayuga use interval timestamp TelegraphCQ
go for partial order.

3.4 Concurrency

23

Concurrency is about the systems capability to execute several queries at the
same time, (and the possibility to interact with each other). It is also about joining
the information of results from several data sources.

Cayuga’s operators NEXT and FOLD reflect the concept of concurrency in the
case of joining data streams. Each of these create an output stream from two
input streams. By using these operators we can correlate events over two data
streams thus enabling us to concurrently interact with two streams. As an
example, consider two streams; S1 and S2 , and apply the NEXT operator to
these like in ‘S1 NEXT {�} S2’, we combine each event from S1 with the next event
in S2 depending on if the condition {�} is satisfied[CHP]. An example of a query
with NEXT where two streams are joined with given condition:

Example 10: Concurrency NEXT operator

‘$.’ indicate attribute from S1 and ‘$1.’ indicate attribute from S2 . In this example
we are joining the streams where the condition with timestamp is depending.

If we are interested in looking for patterns comprising two or more events we can
use the FOLD operator. This operator is actually an iterated form of NEXT. The
FOLD construct has the form FOLD{predExpr1, predExpr2, aggExpr}. These
parameters consist of two conditions and in the end one aggregate computation.
The first parameter describes which input events to choose in the next iteration,
the second parameter implies the stopping condition for the iteration and the last
parameter performs aggregate computation between iteration steps [CHP]. An
example of a query with FOLD:

Example 11: Concurrency FOLD operator

Through these operators Cayuga makes it possible to perform querying and
joining of information from several data sources.

Cayuga have also another concept in concurrency, Cayuga also makes it
possible to execute several queries at the same time on several streams if
wanted. It is done through the execution process.

TelegraphCQ also allow performing querying and joining information from
several data sources. With the possibility to execute several queries at the same

24

time on several streams is possible through the WITH clause in the query. To
make it possible we need to limit the data sources with help of the window
semantic. As mentioned earlier windowing uses a interval to bound a portion of
the event stream. With the WITH clause you create new streams using the
CREATE STREAM statement. Example on this:

Example 12: TelegraphCQ WITH clause

In this example the attributes is defined for the stream, further with the WITH
clause it is described what the stream should contain. This stream is created of
an existing stream [TWW].

3.5 Optimization

Regarding this topic we look at optimization in the contents as the process for
improving a system to make some aspect of it work more efficiently or use fewer
resources.

Cayuga present a feature called Multi-Query Optimization (MQO) [CWW], but any
description or further information is not much to find. We assume this is a part
which is still under development and therefore not focus more on this topic
considering Cayuga.

TelegraphCQ have a continuously adaptive query processing mechanism eddy.
Eddy is a routing operator that contains a number of modules that perform work
on behalf of queries, and a number of sources that provide input data. Eddy can
intercept tuples that flow into and out of these modules, observing the module
behavior and choosing the order that tuples take through the modules.

25

The eddy obtains data from sources, determines which modules a particular tuple
must visit before all processing for the tuple is complete. After a tuple has visited
all required modules, it is output to all relevant result queues by the eddy. [EDY]

3.6 Cayuga vs. TelegraphCQ

Cayuga and TelegraphCQ are both systems which support on-line analysis of
data streams. There are some differences in the design and implementation of
these systems. We focus on topics like 1) Tuple/event definition, 2) Aggregation,
3) Consecutiveness, 4) Concurrency and 5) Optimization.

Tuple/event definitions in the systems are very similar. Both consist of id, value
and timestamp(s). The difference lies in the timestamp information. Cayuga
provides a start timestamp (T0) and an end timestamp (T1). In contrast
TelegraphCQ only provides of a creation timestamp which is assumed to be the
same as T0. With this difference Cayuga has the ability to calculate the duration
of an event while TelegraphCQ does not allow events to have duration.

Events in streams occur differently in the systems. The reason is their unlike
definition of timestamp(s). The end timestamp determines the order of events in
Cayuga, where events with the same detection time are considered to happen
simultaneously. Tuples are time-stamped by the system and are in monotonically
increasing order.

As opposed to Cayuga tuples can either be externally timestamped, or
timestamped by the system. Time in TelegraphCQ is considered to be partial
order, since events can occur in synchronized distributed data sources. Multiple
simultaneous notions of time are also allowed.

Both of the systems compare their query language with SQL which support the
five standard types of aggregates; AVG, SUM, MIN, MAX and COUNT. Cayuga
conveys the impression that their query language is very similar to SQL , but the
aggregation is missing in CEL. In contrast TelegraphCQ truly has built in
functionality like SQL for aggregations, but window semantics is required
because we have endless streams of data.

Information available about Cayuga reveals that the system has no restrictions
for choosing a successor of an event. Their timestamp enables freely selection of
a successor among events from the stream. We assert this as an advantage
since the user can define the successor based on the situation and subscriptions
which mostly is varying.

To determine the successor in TelegraphCQ we are dependent on the use of
push or pull applications, external or internal timestamps. But the main deciding
factor is the use of the window semantics. This window semantics has a function
‘wtime(*)’ which calculates the timestamp for the last tuple. Since the tuple
consists of one timestamp we know that the successor occurs after this

26

timestamp. We assume that in TelegraphCQ the successor can be determined by
the situation and subscription.

When it comes to concurrency, Cayuga allows to execute several queries at the
same time and the possibility to interact. This is done through the execution
process. Cayuga also allows us to concurrently interact with two streams by
using the NEXT and FOLD operators. Through these operators we can correlate
events over two data streams.

TelegraphCQ also makes it possible to perform querying and joining information
from several data sources. This is done through the WITH clause where you
create new streams using the CREATE STREAM statement in a complex query.
Even here is window semantic is needed.

Through research and study we conclude that the available information about
Cayuga is sparse. Detail information and evidence is missing about some of the
topics which we are interested in. For instance the Cayuga papers to some extent
mention the subject optimization but no evidence or more information is to be
found on their proposition.

Cayuga gives the impression of being able to solve different subscriptions
through their query language. But the solutions is generally discussed in the
algebra and not in the query language. This in fact reflects that Cayuga might not
be on the development stage they claim to be on. We assume they have only
developed and tested it on the algebra level.

TelegraphCQ manages to give evidence and information on a more detailed level
in contrast to Cayuga. Example on different topics are given and development is
shown through discussion. Window semantics with its different options is an
example on this. Window semantic is a crucial function for TelegraphCQ and
claims to make it able to solve most of the topics we are interested in.

We find the ability to define duration very useful in Cayuga, but the equivalent to
it in TelegraphCQ is not clear.

On a more superior level based on research and information our opinion about
DSMS and CEP is differing. We mean that it is not big differences between
DSMS and CEP and will judge CEP as a part of DSMS. Description given about
them both are very similar.

27

4

Using Cayuga and TelegraphCQ in the Home Care Scenario

This part of the paper covers the practical part. Based on the theory from
previous chapters we will go through some tasks which will illustrate the topics
we have discussed such as tuple definition, aggregation, consecutiveness,
concurrency and optimization. We will go through these tasks and analyze and
evaluate how well the systems in practice support the findings of Chapter 3 with
the focus on home care scenario.

In this home care example we have a home with a few rooms that are equipped
with total 5 different sensors; A, B, C, N and M. A and B read the temperature
and the remaining sensors C, N and M read the motion in the home.

The goal is see how the two systems solve the same type of queries on the same
event stream.

4.1 Tasks

We test the two systems against a total of five tasks. But first we explain which
topics each of the tasks are associated with through the table below. ‘Time
semantics’ reflect the topic tuple definition. In Chapter 3 we discussed the
difference regarding timestamp , we want to test these differences in the tasks
and see if the differences matters.

Task\Topic Time

semantics

Aggregation Consecutiveness Concurrency Optimization

Task 1 X X - X N/A

Task 2 X - X X N/A

Task 3 X - X - N/A

Task 4 X - - X N/A

Task 5 X - - X N/A

First we give a general description of each task and how we have interpreted it.

28

Task 1: Tell me when the average temperature of Sensor A for the last five
minutes increases more than the average temperature of Sensor B for the
same time period. Assume that sensor readings from A and B are supplied
by one and the same data stream”.

Through this task we test the two systems ability to solve aggregation. We pick a
time period of five minutes. This period consists of a time interval beginning five
minutes before the current time. The Figure below shows how the time interval is
defined with an example for Sensor A:

In this period the average temperature for sensor A and B has to be calculated.
Further we determine if the average temperature of A is greater then the average
temperature for B. If this incident occurs the system should give an output to the
user.

Task 2: Tell me when Sensor N sends a reading, followed by Sensor C,
while not receiving any readings from Sensor M meanwhile.

This task reflects the topic about consecutiveness and
concurrency. We will through this task discover how
the systems actually select one event’s successor.
We divide this task into two parts for better
understanding; 1) we have taken into consideration
that in the first occurrence Sensor N reads value ‘1’

and Sensor M reads value ‘0’, while the value of Sensor C is insignificant. 2) In
the next occurrence, Sensor C reads value ‘1’ and Sensor M still reads value ‘0’,
while the value of Sensor N now is insignificant. The figure to the left shows an
example of this. The vertical lines show the time interval. In this case Sensor M
determines the total time this query occurs over, which starts with Sensor N and
ends with Sensor C. How the events take place in relation to each other can of
course be different;, it depends on the systems which we discuss later in this
chapter.

Task 3: Tell me when Sensor N does not report anything within a minute
after Sensor M has reported movement.

This task is very similar to the task above. This as well covers the topic
consecutiveness. Here we look for an incident based on a preceding incident; in
our case we are looking for value ‘0’ from Sensor N based on value ‘1’ from
Sensor M. With the figure below it is a complete understanding of the task.

29

We first look for the value ’1’ from Sensor M, value from
Sensor N is insignificant in that incident. When the first
condition is satisfied, we now look for value ‘0’ from
Sensor N. This value of ‘0’ from Senor N must occur

within a minute after the first detected occurrence. The value from Sensor M is
irrelevant in the second condition.

Task 4: Tell me when Sensor N and Sensor M report that one of them has
registered movement.

In this task the aim is to find incident where Sensor M
and Sensor N report different values at the same time. If
Sensor M reports value ‘0’ then the value of Sensor N
must report value ‘1’ or vice versa. Through this task we
examine how concurrency is used in each of the

systems.

Task 5: Tell me when both Sensor N and Sensor M read movement at the
same time.

This task also examines how Cayuga and TelegraphCQ
resolve concurrency. Here we are interested in incident
where the both Sensor M and N report value ‘1’ at the
same time.

4.2 Schema

The schema describes the format of the data occurring in the stream. The
systems use the schema as input for reading the stream accordingly. The data
occurring in the stream is described with attributes and the appropriate type; this
can be integer, float, etc. The attributes we are interested in in our home care
scenario is the id describing the sensors, a value for displaying temperature or
motion and the timestamp.

4.3 Stream

We create the event stream according to the schema. Since this is only a test
case we use a test file with assumed readings from the sensors. This event
stream is treated by the systems as an event stream in real time.

One of the goals regarding the home care scenario and the tasks is to use the
same test stream file for both. But as mentioned in the previous chapters Cayuga
and TelegraphCQ read streams differently. We have still tried to focus on one
stream file, where we have done adjustments as they were needed for each

30

system. The stream files are still very alike with regards to the data values and
the timestamps.

Each event tuple in the stream reports which sensor it belongs to, the value
which it has detected and timestamp. The timestamp is an example of the
adjustment which has been done; the small changes are described further.

Values in the stream have been selected with the tasks in mind and in
consideration to different situations which can occur. The values have been
selected to test the queries utmost. The temperature sensors report temperature
in integer form from value ‘1’ up to around ‘40’, while motion sensors report only
‘1’ if it is any movement otherwise ‘0’.

Our stream consists of two kinds of timestamps, the reason is the two different
systems which we want to test. In the first part of the stream you can find
timestamps which indicate that the event only lasts for 1 minute. While in the last
part of the stream you can find events with duration over more time. These
changes have been made so we could test both system properly.

4.4 Cayuga and Home Care Application Domain

Our test case in Cayuga consists of a schema file, stream file, config files, query
files and witness file.

4.4.1 Design

Each event stream has a fixed relational schema in Cayuga. The schema for our
test stream is ‘Sensors<ID, value, T0, T1>’, below is the schema file in xml.

Figure 11: SensorSchema.xml

The attribute ID specifies which sensor it is. The attribute value reflects the value
produced by the specific sensor, T0 tells us the start time for the event and T1
the end time. The name of the stream is also included in this schema as we can
see in the second line.

As previously pointed out, the stream file in Cayuga differs to some extent from
the one used in TelegraphCQ. You can see in the figure below that the tuple go
with the schema above, but in addition it contains the name of the stream, which

31

in this case is ‘Sensors’, the two last attributes represent the timestamp given
internally by the system.

Figure 12: Cayuga SensorStream.txt

4.4.2 Test Setup

After the queries have been defined in their SQL files we need a config xml file to
execute these queries. Figure below shows an example of such a config file. The
important statements that we take use of are ‘QueryInputName’, ‘QueryNumber’,
‘StreamSchema’, ‘DocInputName’ and ‘DocInputStream’. Cayuga allows us to
execute several queries at the same time. This can be done through using the
‘QueryInputName’ identifier. According to this we must specify the number of
queries we like to execute, this can be done with ‘QueryNumber’. We must
specify which schema we want to use, this must be stated with ‘StreamSchema’.
In this config file we must also define which stream we are using and the name of
the stream. This is defined in ‘DocInputName’ and ‘DocInputStream’.

32

Figure 13: Config file

When the queries have been executed the result is found in the ‘witnesses.txt’
file. Whenever we execute queries with the help of the config file, the result in
‘witnesses.txt’ will be replaced with the new result. The result in ‘witnesses.txt’
contains result from queries that uses the ‘PUBLISH’ statement.

4.4.3 Queries

Each task in this part is reflecting a complex query since we need several queries
to execute one task.

Task 1:

From studies done in one of the previous chapters we discovered that Cayuga’s
query language does not support the five standard types of aggregates in SQL.
Instead Cayuga take help of ‘and’, ‘as’, =, <=, <, > and >= to write a query from
the base by defining every operator. The question is how much we have to write
from the base to solve this query and if it is possible at all.

Cayuga has as also mentioned in one the of previous chapters an example of a
solution for average. The example is shown in the figure below.

33

If we take a look at this example they have a stream named S, with attributes
name and price. We tested this query but it was difficult to get any result out of
this since the query did not execute, it was too many error messages. But we will
try to make a query for our task with some changes, for instance by dividing the
query into several sub queries.

We begin with selecting events from sensors we are interested in. The first two
sub quires indicate this, we select all events with value increasing 0 from Sensor
A in one stream and in the other stream we do the same for Sensor B. In the third
query we now create a new stream by joining these streams. Further we now
have to calculate the values in this new stream. Since we now are interested in
looking for patterns comprising two or more events we are going to use the FOLD
operator. This operator is as mentioned earlier an iterated form of NEXT. We are
going to use FOLD on not two different streams but on one and same stream,
because we have already all the values we are interested in ‘SensorsAB’. We
begin with the timestamp statement, through this we are limiting the time to
accrue up to five minutes. The second and third line in the FOLD statement are
adding the values while the two next statements are counting the total. In the end
we are calculating the average for each of the sensors.

34

We have now calculated the average for values from the two Sensors. But since
we are interested in when average of the values from Sensor A increase average
values from Sensor B within a time interval of five minutes we do the last query.
With DUR we specify the duration which must at least be 5 minutes and average
of values from Sensor A must be larger than the average of values from Sensor B
within this duration.

This query did not work completely; parts of this query did work and gave results,
but not the end result which we were interested in. If we only concentrate about
calculating average of values from Sensor A and Sensor B each of them works,
but when it comes to compare the time interval on error occurs. The reason is
that we in Cayuga it is difficult or impossible to join two streams on equal

35

timestamps. With that problem in mind we created this query, but it still did not
work properly.

Task 2:

In this task we are supposed to find out when
events from Sensor C with value ‘1’ which
follow after events from Sensor N that also
have value ‘1’, while Sensor M should have
value ‘0’ in the mean time. So with other
words we are going to discover how Cayuga
actually compute consecutiveness.

As mentioned before, our stream consists of
event with no duration, and some events with
duration which cause overlapping. A snip of
this is shown in the figure to left where we
can see events with no duration in the top,
and with some duration in the end.

In this stream we can see that Sensor N
reports value ‘1’ at timestamp 2 and Sensor
M repots value ‘0’. In next timestamp we can

see Sensor C report the value ‘1’ and Sensor M still report ‘0’. According to this
part our query is expected to among other results report timestamp [2, 3]. If we
look further in this snip of the stream we can see events which are overlapping.
The question now is what Cayuga will report in result for this type of incident.

We begin with creating a stream by selecting events from Sensor N with value ‘1’.
Then we make a stream of events from C with also value ‘1’. Further in the third
query we make a new stream, ‘SensorNC’, by using the FOLD operator. We
choose to join the two first streams where events from Sensor C has a start
timestamp later than the start timestamp of events from Sensor N, since one of
our conditions is that events from Sensor C should follow events from Sensor N.
We already here in our query actually decide what the successor should be. If we
instead of ‘$1.T0 < $2.T0’ write ‘$1.T1 < $2.T0’ we exclude the last events shown
in the stream figure above.

In the third query we are also defining duration on 1 minute between the events.
We have to discover how this affects the last events in the stream. We had also
to take events from Sensor M in consideration, so we make another stream with
events from Sensor M with value ‘0’. We have to join this stream with the stream
‘SensorNC’. Here we use the NEXT operator and join these two streams where
start timestamp and end timestamp is the same.
(The Figure below shows the queries.)

36

Figure below is a snip of the result file after executing the queries above. The
result file shows that the first two queries matched the right events and so did
query which was interested in events with value ‘0’ from Sensor M. Further the
lines in italic font shows the result from the join of events from Sensor C and
Sensor N. Also this is correct according to the stream file regarding the first
condition where events from Sensor C were supposed to have start timestamp
later start timestamp of events from Sensor N. And if we look at the second
condition which limit the duration we can see that the last events from the stream
have not been matched. But if we change the duration time to for instance 3 then
this query also match the last events. If we choose not to define any duration we
end with many matched events which would have caused overlapping. Example
on such matched event is for instance events addition to [2`3] also be [2`4] and
continue from timestamp 2 till the end for instance [2`40] [2`60] and then to the
same for next timestamp; [3`4], [3`5] and so on.

The lines in bold font show the end results we are interested in. The quires
together have according to the stream and conditions matched on the right
events. Again if we had used different time for duration it would have affected this
result as well.

37

But if we take a closer look at the timestamp we can see that instead of for
instance [2`3] it is [2`4]. Reason for this is as mentioned in task 1 is the time-lag
which occur when we want to use timestamp from a stream which has been
created through the FOLD operator.

Task 3:

This task can resemble Task 2. In this task we
only care about values from Sensor M and N
and drop the part with Sensor C from the task
above. We want the events from Sensor N
where the value is ‘0’ and from Sensor M we
want the events which report value ’1’ in the
same time interval.

The figure at the left is a snip of the stream file
where we have picked out events from Sensor
N and M where they matches to the tasks
requirement. As we can see the last event has
duration over 1minute.

We start with creating a stream with events
from Sensor N which have the value ‘1’ and

38

another stream with events from Sensor M which have the value ‘0’. We call
these streams ‘SensorN’ and ‘SensorM’.
Further we are now joining these streams with the conditions which fulfill the
requirement of this task. As pointed out we want only the events where they
report the interested values at the same time interval. The queries are shown in
the figure below.

Because of the latter requirement which has been mentioned in our third query
we are defining both timestamps to be equal. In the end we are also defining the
duration which is limited up to 4 minutes. The reason for this limitation is to avoid
all the overlapping events as also explained in the previous tasks. The result of
this query is shown in the figure below.

39

We expected answers like [6`7], [7`9], [11`11], [13`14] and [36`40] based on the
stream file shown in the beginning of this task. These answers compared to the
result file shown above only events in timestamp [6`7], [7`9] and [13`14] are
similar. Timestamps which do not properly agree with the conditions given in the
third query are [9`10], [11`12] and the missing event in time interval [36`40].

Assumptions for why our query reported [9`10], [11`12] instead of the time
interval [11`11] could be the time-lag which occur when joining two streams. Ergo
for the same reason as in the previous tasks.

 Through modifying the query by changing the timestamp definition in the third
query we have discovered that the reason can also be how Cayuga read the
events. For instance if we look at the line in bold font where ‘query3’ has reported
the interval [7`9] Cayuga read event from ‘SensorN’ with value ‘0’. Therefore
‘query3’ reports [9`10] in the next line, since the timestamp condition is fulfill
because of the time-lag.

Cayuga does not report an event in the time interval [36`40]. We try to modify the
duration interval from 4 to for instance 5 but it still do not report this time interval.
We modified the stream file to test out possible reason for why Cayuga is not
reporting this event. After the time interval [36, 40] the next event comes in the
interval [40`45]. In this next time interval we changed the event where M was
reporting value ‘1’ and Sensor N was reporting value ‘0’. The reason for this was

40

because of the time-lag which happens. We expected Cayuga to report [36, 45]
or [40`45]. But these changes did not affect the result, which still reported the
same as the result file shown in this task.

Task 4:

The goal of this task is to make a query which will
tell us when only one of Sensor N or Sensor M
reports movement, i.e. value ‘1’. The Figure to left
shows a small part of the stream where we have
picked out only events from Sensor N and M. In this
figure we can see that from timestamp 1 including
timestamp 3 only one of the sensors report value ‘1’
until timestamp 4, then both of the sensors report
value ‘0’.

The simplest thing we could do is to make a new
stream which consists of every event Sensor N has

reported in the stream, we do not bother about the value now. We do the same
with events from Sensor M.

 Further we might have made a query where we could have joined these streams
with the condition that the value was not similar. But Cayuga does not have the
operator which indicates ‘not equal’.

Instead we try to solve this query by stating streams like the following. We first
create streams ‘SensorN’ and ‘SensorM’. These streams consist every event
which has been reported from the belonging Sensor. Further we in the third query
join these streams with the FOLD operator. Figure below shows the third query,
on which conditions we have tried to join the two streams.

41

In the last query we tried to add the values from stream ‘SensorN’ with the values
from stream ‘SensorM’ where the result should be 1. The thought behind this was
that since we are only interested in events where one of them had the value’1’,
than the other naturally had to report value ‘0’. Adding the values together would
have been 1.

But this query did not report any value at all. It has been modified many times, for
instance using NEXT instead of FOLD. The reason for this is the operators cause
to time-lag will this always be evaluated to FALSE and no result will come.

Task 5:

With this last task we want to know when both
sensor N and M report movement at the same
time. The lines in bold font in the figure to the
left show where in the stream this happens.

To match this event with our query we begin
with creating two streams. One for events from
Sensor M and one for events from Sensor N.
Both of the streams contain events which
reported value ‘1’.

Further we now join these two streams on the
condition that their timestamps are equal.
Because of previous tasks we are now familiar
that if we do not limit this with duration we will
end up with many event combinations.
Therefore we limit our query with duration on 1

minute. The Figure below shows how our queries look like.

42

Through the previous tasks we have also noticed the time-lag and what is leaded
to. Therefore even this time our result is differing from the expected result. Result
is shown in the figure below.

The query matched on event in time interval [5`6] and [8`9], which is not what we
expected according to our stream file. But if we look back to the snip from the
stream which was shown in the starting of this task, we can see that the interval
which is reported in the result file does cover the timestamps we was expecting,
but has instead merged it. In the interval [5`6] and [8`9] is both of the sensors
reporting value ‘1’. So with the time-lag explanation this query is actually
reporting the correct time interval. But if we take a closer look to the snip of the
stream file, we can see that Sensor M reports value ‘1’ with the timestamp 7. So
the question is why this timestamp is not included in the result file which is
expected since timestamp 8 which is the next event report value ‘1’ from Sensor
N. If we had used NEXT this timestamp would also have been included, but with
many combinations of time interval. The reason for why this is not included with
this query might be how Cayuga read the events. Because if Cayuga have
compared events from time interval 7 with the previous time interval 6, then it is
correct that our query does not match.

4.5 TelegraphCQ and Home Care Application Domain

Our test case in TelegraphCQ consists of schema file, stream file, query files and
output files.

4.5.1 Design

43

The schema in TelegraphCQ is defined in a SQL file, shown in the figure below.
In this file we create a stream by giving the stream a name, in this case
‘streams.cep’, further we declare the attributes we are interested in. The
attributes we use are ID, value, t0, t1 and tcqtime timestamp.

Figure 14: TelegraphCQ schema.sql

As we recall from previous chapters TelegraphCQ has only one timestamp, t0.
But since we want to use the same stream for both of the systems we define ‘t1’
also. The statement ‘tcqtime timestamp TIMESTAMPCOLOUMN’ gives the
current time, this time is set externally.

Stream in TelegraphCQ will accordingly to the schema contain <ID, value, t0, t1>.
You can see in the figure below how the stream file in TelegraphCQ is.

Figure 15: TelegraphCQ Stream.txt

44

As we can see this stream file does not contain the stream name and extra
timestamp attributes as seen in the stream file for Cayuga. But otherwise we
have used the same values and timestamps.

4.5.2 Test Setup

Compared to Cayuga only one query can be executed at a time. The queries are
executed with the help of two main commands that are executed in each
terminal. Example of the commands:

Terminal 1:PSQL.sh <name of the query file> <selected output file>
Terminal 2: cat <name of the stream file> | source.pl localhost 9556
csvwrapper,< name of the stream> <sleep time> <lines per sleep time>

(We have executed our queries with sleep time 1 and lines per sleep time 5).

4.5.3 Queries

This chapter will answer the tasks above. Queries made to solve the tasks will be
shown with the result compared to the result we were expecting. In this chapter
we will also explain why particular task is associated to the particular topic which
was presented earlier.

Task 1:

Since this is a test we have replaced five minutes with two
seconds in this task. To the left we have a snip of the stream
file. Our query should give the first output from this part of the
stream since in TelegraphCQ time stamping happen internal .
We are now on timestamp 2 and 3. On two second the query
manages to read two events from each sensor. Here in the
stream is the first time average of values from Sensor A
increase the average from values of Sensor B. In the pervious

timestamp average of values from Sensor B was increasing.

The query solved for this in TelegraphCQ starts with creating two new streams.
One for the calculated average of value from Sensor A and one for the calculated
average of value from Sensor B. With the WITH clause we have defined what the
stream should consist of. TelegraphCQ makes it possible to let the user use the
AVG operator. But if we use this operator without the window clause, we end up
with error messages. The query will not execute without the window clause.
Since the task asks for the last five minutes (two seconds) we define the window
clause with ‘RANGE BY’ and with the ‘SLIDE BY’ statement to make sure it will
be the last minutes (seconds).

45

In the end we join these two streams where the time matches and the average of
Sensor A exceeds the average of Sensor B.

The result shown in the figure on left side is from the query.
This reflects the expected result and we assume this to be
the right answer. The result shows the average of Sensor A
over the given time in window clause where it increases the
average of Sensor B.

This query and its output show that TelegraphCQ allow us to
perform aggregate operators on streams, the only thing which

46

is a must is the use of windowing. We also have to create new streams because
this task required calculating average for two sensors. If it has been a simple task
it might have not been necessary.

Task 2:

In TelegraphCQ an event contains only one timestamp, for this
reason we can not know the duration of an event. We can
assume it from the timestamp of the next event, but the time
difference can also mean that the particular sensor has not
reported anything in that time duration. For that reason as
mentioned before our stream with consideration to TelegraphCQ
consist of no duration time between t0 and t1. But because of
this we avoid overlapping when events occur. Events with the
equal timestamp occur with different sensors id so every tuple is
unique this way.

The Figure to left is a snip out of the stream file. The query should first notice this
part of the stream. At the first timestamp Sensor N is reading value’1’, while
Sensor C and Sensor M reads value ‘0’. In the next timestamp it is a “hit”, Sensor
C has reported value ‘1’ and Sensor M is still reporting value ‘0’.

Solving this query we have in mind that the following event from Sensor C has a
timestamp later than event from Sensor N and the condition will restrict it to be
the first next event. The condition is of course the value which the sensors
reports. But how to define “meanwhile” is the challenge since events in
TelegraphCQ does not have any duration time. A attempt to solve this could be
the use of T1, but it would not work either also because it is no duration time.

If we declare that T0 for events from Sensor M is the same as T0 for events from
Sensor N, and T0 for events from Sensor C start later than T0 for events from
Sensor N, we can not state that timestamp for Sensor C and M should also be he
same. It can only be equal with one of them. The query was solved as following:

47

48

As we can see we have created three streams, first with value ‘1’ from Sensor N,
second with value ‘1’ from Sensor C and the third stream with value ‘0’ from
Sensor M. In the end we have to join it right.

Our query did not report correct result, when it came to events from Sensor M.

Task 3:

We can see on the left values from sensors N and M from a
snip of the stream file. The first hit from the query should be
from this part of the stream. The first time Sensor M reports
value ‘1' is at timestamp 6, and since we are interested in value
‘0’ from Sensor N after the M has reported, the “hit” should be
then value reported from Sensor N next at the next timestamp,
in our case timestamp 7.

This task as well as the task above will test consecutiveness

and see how it actually works. We start with creating two new streams, one with
value ‘1’ from Sensor M and one with value ‘0’ from Sensor N. The challenge
here is how to define “within a minute after”. It is implicitly that t0 for Sensor N
has to be later than t0 for Sensor M. But we have to define a limit for timestamp
y0 from Sensor M. Below is the solution we have used to hit on the right answer.

49

The last WHERE clause defines the limit for timestamp t0 for
Sensor N. Since we are using integer format for our
timestamp, this allows us to write the query like this.

The result from the query, and which reflects the expected
result is shown on the left side. We can see from the value
with the timestamp that the result according to the stream is
correct.

If we look at the last line in the result figure, the query has also managed to
match on events with duration. The timestamp for event from sensor M is (31,
33). And the timestamp for the event from Sensor N is (32, 34). From this result

50

we can then assume that next event in TelegraphCQ is an event which has the
start timestamp after its start timestamp of the first event.

Task 4:

This task is meant to reflect concurrency. We will through this
task see if TelegraphCQ manages to solve this kind of tasks.
Let us see on the figure to left which contain some few values
from Sensor N and M got from the stream file. We can see that
until timestamp 4 one of the report movement by reading value
‘1’. So our query should not report timestamp 4 considering
this part of the stream.

The query we defined begins with creating two streams, one
with all the values from Sensor N and the other with all the
values from Sensor M. It is in the last SELECT clause we talk
about the values when joining the two streams together as
seen in the figure below.

51

52

In the last WHERE clause we define that the timestamp from each stream should
be the same when their values differ. With other words, when their values don’t
show the same values, either if it is the value ‘1’ or value ‘0’.

The result reflects the correct assumed answer and is
shown in the figure to the left. The result shows us the
value with the timestamp. We can see here by
comparing it with the stream file that they have manage
to skip timestamp 4 which would have been wrong.

This task shows us that TelegraphCQ can manage to
join and match on concurrency.

Task 5:

This task is very alike the task above, but now we have to
search in the stream where they have the same value as
well as timestamp. The Figure to the left shows us a snip of
the stream file where the query should hit on. This is the only
hit, since this is the only place in the stream where Sensor N
and M report value ‘1’ at the same time.

We could have changed only the last line in the query above, but chose to create
new streams of Sensor N and Sensor M which only contains value ‘1’. In the end
we joined the two streams where the timestamp was the same.

53

The result according to the stream was correct. This is evidence on how
TelegraphCQ manages to join two streams which are created
from one and the same stream and hits on the demanded
event.

54

4.6 Conclusion

The tasks have given us insight on how both Cayuga and TelegraphCQ manage
and resolve the different topics. The table below is a general view describing with
the signs; + and – if the system have managed to solve the topics or not
respectively. There are some topics which has been resolved partly this is
pointed out with +/-.

Topic\System Cayuga TelegraphCQ

Time semantics + -

Aggregation - +

Consecutiveness +/- +

Concurrency +/- +

Optimization - +

Tuple definition in Cayuga consists of id; indicating the sensor it belongs to,
value, start timestamp (T0) and end timestamp (T1). The last mentioned has
been an advantage in Cayuga. Since Cayuga has two timestamps it is possible to
calculate duration, in addition to have a built in operator like DUR to also
calculate duration. To have the ability to calculate the duration became important
in tasks where we had to take into consideration of terms like; same time period,
meanwhile, within a minute and same time.

Tuples in TelegraphCQ compared to Cayuga originally do not have an end
timestamp (T1). Truly we have used T1 in our test stream file, but an event in
TelegraphCQ has no duration.

If it is important to know the duration for one particular event, Cayuga has the
possibility to answer this question because of T1, compared to the originally tuple
definition of TelegraphCQ.

Aggregation is attempted in task 1 where the systems are supposed to resolve
average. TelegraphCQ solve this task by allowing the use of aggregation
functions, the syntax is alike SQL. The only thing which is demanded is the use of
window semantic which is needed because we are in general facing infinite
streams in real-time.

Compared to TelegraphCQ, Cayuga does not support any of the five standard
types of aggregates and does not have any other built in functions to replace
them neither. Aggregates can however be constructed without the built in
functions. But their query fails and neither does it work with sub queries where we

55

divide the whole query in several parts. An attempt to begin from the base and
define the functions does not work either. One of the problems which occurs
when we divide the query or start from the bottom is the time-lag which after
some queries is difficult to have control over.

In task 2 which reflect both consecutiveness and concurrency, Cayuga manage
to report a result, but because of the time-lag it is not the exact expected result.
In Cayuga time-lag occurs when for instance creating a new stream with the help
of FOLD or NEXT. In addition to time-lag Cayuga also merges for instance
events from two to one. If you want events with duration 1, Cayuga do reports
more than demanded. It does not have to be the totally wrong result, but more
than the expected result.

This incident also applies to the next task which tests the consecutiveness topic.
Cayuga makes new timestamps after joining two streams with the FOLD or NEXT
operator. To use these timestamps further is almost impossible. An attempt on
this has also been tested by renaming the timestamp in the SELECT statement
when joining. But to use these new renamed timestamp is giving no result.

The last two tasks where we try to resolve concurrency Cayuga does not report
anything in task 4. Cayuga describes its query language as SQL-like, but it not
only does not support the five standard aggregates, but also for instance does
not have <>. Many attempts were done, but none of the queries did report
anything near the correct answer or did not report any answer at all. But in the
last query Cayuga reported result which was very close to the expected result. As
mentioned earlier time-lag occurs and events are been merged. In this task
several events have been merged to one. This is not a problem if they do not
contain timestamps where the condition which has been set is not fulfilled, but
which happen. In addition to the extra timestamp which had been added in the
most incident the last events which should be included in the end result is
missing.

In contrast to Cayuga TelegraphCQ reports the expected results for every task
except the second task. The second task reflects the topic consecutiveness and
concurrency together. TelegraphCQ did resolve tasks where it was focus on only
one of the topics without making very complex queries. But due to the second
task we discovered that TelegraphCQ does not manage to resolve concurrency
and consecutiveness together, where it has to take care of three events
timestamp. As mentioned, TelegraphCQ does not consider events to have a
duration, which might have solved this task. Then we could have defined duration
over several time intervals when joining streams.

56

57

5

Conclusion and Future Work

In this thesis we discover the differences and similarities between Cayuga and
TelegraphCQ. To underline these differences and similarities we focus on vital
and relevant topics. Through comparing these two systems we also discover if
they are capable of being used as a technical solution in a home care
environment, where the outcome is crucial.

The comparison is done in two parts; theoretical and practical. The theoretical
part focus on topics like: focus on the topics; tuple/event definition, aggregation,
consecutiveness, concurrency and optimization.

The practical part is based on the theoretical part. In this part we go through five
relevant tasks and analyze and evaluate how well the systems in practice can be
used in a home care environment. The goal is see how the two systems solve the
same type of queries on the same event stream.

Through research and study we conclude that the available information about
Cayuga is sparse. Detailed information and evidence is missing about some
topics which we are interested in. Cayuga gives the impression of being able to
solve different subscriptions through their query language, but most of the
solutions are given only in algebra. When testing these statements in the
practical part it turns out that the query language is not capable of doing what it
has been proposed to do in the theoretical part. This in fact reveals that Cayuga
might not be on the development stage it claims to be on. For this reason none of
the five tasks reported results as expected or executed completely.

In the theoretical part we also discovered that Cayuga merges time intervals
when joining events with different timestamps. This we experienced in the
practical part as varying. In some incidents it did apply and some not. The
incidents which it applied for anyhow did not merge the right timestamps. Time-
lag occurred during the joining. Also this caused to not provide the expected
results.

Overall the query language of Cayuga did not work as described in the theoretical
part. The expected result based on the given statements in the available
information differs and reflect lack of ability to complete different tasks.

58

But we find the ability to define duration very useful in Cayuga. This enables us to
define consecutiveness and concurrency in a query. But as mentioned the main
problem is how streams are joined.

TelegraphCQ manages to give evidence and information on a more detailed level
in contrast to Cayuga. Examples on different topics are given and development is
shown through discussion and founding. Window semantics with its different
options is an example on this. Window semantics is a crucial function for
TelegraphCQ and claims to make it able to solve most of the topics we are
interested in. This was proven in the practical part, where almost every task
completed with the correct expected result.

TelegraphCQ completed the task with not much complexity. The query containing
both consecutiveness and concurrency showed to be too much to handle for
TelegraphCQ and the query failed. Tuples containing a real end timestamp , thus
describing the events duration, could have been utilized to provide the expected
correct result.

Some of the most important criteria for a system in a home care environment are
to report the correct value and time in addition to manage large amount of data.
In consideration of this we conclude that compared to Cayuga, TelegraphCQ is
the most capable system for the home care domain. The reason for this is that
Cayuga does not report the correct value at times and neither the time interval.
And part of the query language is insufficient and too complex to perform
correctly.

TelegraphCQ in contrast reports the correct value and time interval with the
possibility to use built in functions from SQL, and does not demand queries with
lot of complexity. If TelegraphCQ also could support the duration function as
Cayuga it might have resolved the task where it failed. It is difficult to find a
replacement for the duration function in TelegraphCQ. Another solution is to have
the possibility to define duration through an end timestamp defined explicitly in
the tuples.

TelegraphCQ compared to Cayuga with focus on the topics with in the home care
domain is a more capable system to use. Implementation to execute queries with
both consecutiveness and concurrency could be a plus for TelegraphCQ. It is
now only possible to determine the successor with foundation on start timestamp,
but we miss the ability to determine the successor based on the end timestamp.

During the discussions in this thesis we could see that there is much more to do
and learn. In the beginning of this thesis the first question which arise is if it is big
dissimilarity between CEP and DSMS. Our opinion is that CEP might be a DSMS
but more investigation and research is needed to assume this completely.

Optimization was a topic which is not much discussed in this thesis because of
the limited information. By analyzing Cayuga’s algebra more in the depth we

59

assume many unanswered question will be answered. But it is a process in itself
to translate the algebra information into the query language level.

The duration was a drawback in TelegraphCQ, to investigate a solution for this
will make TelegraphCQ a very strong choice concerning home care domain.

Cayuga was not a relevant system for a home care domain, but it will be
interesting to compare TelegraphCQ with other system which support real-time
analysis of data streams.

60

61

References

 [CAGP] Alan J. Demers, Johannes Gehrke, Biswanath Panda, Mirek
Riedewald, Varun Sharma, Walker M. White: Cayuga: A General
Purpose Event Monitoring System. CIDR 2007 412-422

[CEP] http://complexevents.com/

[CHPE] Lars Brenna, Alan J. Demers, Johannes Gehrke, Mingsheng
Hong, Joel Ossher, Biswanath Panda, Mirek Riedewald, Mohit
Thatte, Walker M. White: Cayuga: A high-performance event
processing engine. SIGMOD Conference 2007: 1100-1102.

[CMAN] Mingsheng Hong.Cayuga User Manual. 2008

 [COM] David Luckham. A short History of Complex Event Processing Part
1: Beginnings. 2007

[CPS] David C. Luckham and Brian Frasca. Complex Event
ProceSassing in Distributed Systems. Stanford University
Technical Report CSL-TR-98-754, March 1998, 28 pages.

[COM2] David Luckham. A short History of Complex Event Processing Part
2: the rise of CEP. 2007

[CWW] http://www.cs.cornell.edu/database/cayuga/

[DSS] Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J. Models
and issues in data stream systems; PODS '02: Proceedings of the
twenty-first ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems. 2002

[DSM] Golab, L., Tamer Ozsu, M. Issues in data stream management";
SIGMOD Rec., Volume 32, No. 2. 2003

[EDY] Samuel Madden, Mehul Shah, Joseph M. Hellerstein,
Vijayshankar Raman. Continuously Adaptive Continuous
Queries over Streams. UC Berkeley, IBM Almaden Research
Center

[GIGA] Chuck Cranor, Y. Gao, Theodore Johnson, Vladislav Shkapenyuk,
and Oliver Spataschek. Gigascope: High performance network
monitoring with an sql interface. In Proceedings of the 21st ACM
SIGMOD International Conference on Management of Data /
Principles of Database Systems, June 2002.

[ICI] Lindeberg, M. Data Stream Management Systems (DSMS) –
Introduction, Concepts and Issues; University of Oslo, INF5100
Advanced Database Systems lecture notes, 10/10/2007

62

[INF5090] Vera Goebel, Thomas Plagemann Data Stream Management
Systems – Applications, Concepts and Systems; University of
Oslo, INF5190 Advanced Topics in Distribuerte Systems lecture
notes, 2008

[MTJ] Jarle Søberg. Implementation,and Evaluation of Network
Monitoring Tasks with the TelegraphCQ Data Stream Management
System. Master Thesis 2006

[NEXT] Walker White, Mirek Riedewald, Johannes Gehrke, Alan Demers

What is “Next” in Event Processing?.Cornell University 2006

[TCDP] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael

J. Franklin, Joseph M. Hellerstein, Wei Hong, Sailesh
Krishnamurthy, Samuel R. Madden, Vijayshankar Raman, Fred
Reiss, and Mehul A. Shah. TelegraphCQ: Continuous Dataflow
Processing for an Uncertain World. CIDR 2003

 [TEPS] A. Demers, J. Gehrke, M. Hong, M. Riedewald, and W. White.
Towards expressive publish/subscribe systems. In Proc. EDBT,
2006

 [TWW] http://telegraph.cs.berkeley.edu/telegraphcq/v2.1/

[UCEP] Jarle Søberg, André Rodrigues, Vera Goebel, and Thomas
Plagemann. Using Complex Event Processing of Data Streams for
Movement Tracking in Home Care Environments

 [WSN01] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirc.
Wireless sensor networks: a survey. Computer Networks, 2002
Volume 38, Issure 4, 15 March 2002, Pages 393-422.

[QPSN] Y. Yao and J. E. Gehrke. Query processing for sensor networks. In
Proceedings of the 2003 Conference on Innovative Data Systems
Research (CIDR 2003), January 2003.

63

Appendix

CAYUGA

Stream.txt

A` 20` 1` 1` Sensors` 1` 1

B` 36` 1` 1` Sensors` 1` 1

C` 0` 1` 1` Sensors` 1` 1

N` 1` 1` 1` Sensors` 1` 1

M` 0` 1` 1` Sensors` 1` 1

A` 26` 2` 2` Sensors` 2` 2

B` 19` 2` 2` Sensors` 2` 2

C` 0` 2` 2` Sensors` 2` 2

N` 1` 2` 2` Sensors` 2` 2

M` 0` 2` 2` Sensors` 2` 2

A` 36` 3` 3` Sensors` 3` 3

B` 15` 3` 3` Sensors` 3` 3

C` 1` 3` 3` Sensors` 3` 3

N` 1` 3` 3` Sensors` 3` 3

M` 0` 3` 3` Sensors` 3` 3

A` 35` 4` 4` Sensors` 4` 4

B` 33` 4` 4` Sensors` 4` 4

C` 1` 4` 4` Sensors` 4` 4

N` 0` 4` 4` Sensors` 4` 4

M` 0` 4` 4` Sensors` 4` 4

A` 28` 5` 5` Sensors` 5` 5

B` 8` 5` 5` Sensors` 5` 5

C` 1` 5` 5` Sensors` 5` 5

N` 1` 5` 5` Sensors` 5` 5

M` 0` 5` 5` Sensors` 5` 5

A` 37` 6` 6` Sensors` 6` 6

B` 28` 6` 6` Sensors` 6` 6

C` 0` 6` 6` Sensors` 6` 6

N` 0` 6` 6` Sensors` 6` 6

M` 1` 6` 6` Sensors` 6` 6

A` 17` 7` 7` Sensors` 7` 7

B` 31` 7` 7` Sensors` 7` 7

C` 1` 7` 7` Sensors` 7` 7

N` 0` 7` 7` Sensors` 7` 7

M` 1` 7` 7` Sensors` 7` 7

A` 4` 8` 8` Sensors` 8` 8

B` 28` 8` 8` Sensors` 8` 8

64

C` 1` 8` 8` Sensors` 8` 8

N` 1` 8` 8` Sensors` 8` 8

M` 0` 8` 8` Sensors` 8` 8

A` 40` 9` 9` Sensors` 9` 9

B` 31` 9` 9` Sensors` 9` 9

C` 1` 9` 9` Sensors` 9` 9

N` 0` 9` 9` Sensors` 9` 9

M` 1` 9` 9` Sensors` 9` 9

A` 12` 10` 10` Sensors` 10` 10

B` 9` 10` 10` Sensors` 10` 10

C` 0` 10` 10` Sensors` 10` 10

N` 0` 10` 10` Sensors` 10` 10

M` 0` 10` 10` Sensors` 10` 10
A` 7` 11` 11` Sensors` 11` 11
B` 37` 11` 11` Sensors` 11` 11
C` 0` 11` 11` Sensors` 11` 11
N` 0` 11` 11` Sensors` 11` 11
M` 1` 11` 11` Sensors` 11` 11
A` 30` 12` 12` Sensors` 12` 12
B` 13` 12` 12` Sensors` 12` 12
C` 1` 12` 12` Sensors` 12` 12
N` 0` 12` 12` Sensors` 12` 12
M` 0` 12` 12` Sensors` 12` 12
A` 19` 13` 13` Sensors` 13` 13
B` 29` 13` 13` Sensors` 13` 13
C` 0` 13` 13` Sensors` 13` 13
N` 0` 13` 13` Sensors` 13` 13
M` 1` 13` 13` Sensors` 13` 13
A` 29` 14` 14` Sensors` 14` 14
B` 15` 14` 14` Sensors` 14` 14
C` 0` 14` 14` Sensors` 14` 14
N` 0` 14` 14` Sensors` 14` 14
M` 1` 14` 14` Sensors` 14` 14
A` 14` 27` 27` Sensors` 27` 27
B` 36` 27` 27` Sensors` 27` 27
C` 1` 27` 27` Sensors` 27` 27
N` 1` 27` 27` Sensors` 27` 27
M` 1` 27` 27` Sensors` 27` 27
A` 23` 28` 29` Sensors` 28` 29
B` 12` 28` 29` Sensors` 28` 29
C` 1` 28` 29` Sensors` 28` 29
N` 0` 28` 29` Sensors` 28` 29
M` 0` 28` 29` Sensors` 28` 29
A` 1` 31` 33` Sensors` 31` 33
B` 14` 31` 33` Sensors` 31` 33
C` 1` 31` 33` Sensors` 31` 33
N` 1` 31` 33` Sensors` 31` 33

65

M` 0` 31` 33` Sensors` 31` 33
A` 37` 32` 35` Sensors` 32` 35
B` 37` 32` 35` Sensors` 32` 35
C` 1` 32` 35` Sensors` 32` 35
N` 0` 32` 35` Sensors` 32` 35
M` 0` 32` 35` Sensors` 32` 35
A` 16` 36` 40` Sensors` 36` 40
B` 6` 36` 40` Sensors` 36` 40
C` 1` 36` 40` Sensors` 36` 40
N` 0` 36` 40` Sensors` 36` 40
M` 1` 36` 40` Sensors` 36` 40
A` 40` 40` 45` Sensors` 40` 45
B` 4` 40` 45` Sensors` 40` 45
C` 1` 40` 45` Sensors` 40` 45
N` 1` 40` 45` Sensors` 40` 45
M` 0` 40` 45` Sensors` 40` 45
A` 22` 57` 60` Sensors` 57` 60
B` 41` 57` 60` Sensors` 57` 60
C` 1` 57` 60` Sensors` 57` 60
N` 1` 57` 60` Sensors` 57` 60
M` 0` 57` 60` Sensors` 57` 60

SensorsSchema.xml

<?xml version="1.0" encoding="utf-8"?>

<StreamType xmlns="http://tempuri.org/SensorsSchema.xsd" Name="Sensors">

 <AttrNameType Name="ID" Type="string"/>

 <AttrNameType Name="Value" Type="int"/>

 <AttrNameType Name="T0" Type="int"/>

 <AttrNameType Name="T1" Type="int"/>

</StreamType>

Queries

::::::::::::::

cayuga1_1.txt

::::::::::::::

SELECT *, Value AS Asum, 1 AS Acount, Value AS Aavg

FROM FILTER{ID = 'A' AND Value > 0 } Sensors

PUBLISH SensorsA

::::::::::::::

cayuga1_2.txt

::::::::::::::

66

SELECT *, Value AS Bsum, 1 AS Bcount, Value AS Bavg

FROM FILTER{ID = 'B' and Value > 0} Sensors

PUBLISH SensorsB

::::::::::::::

cayuga1_3.txt

::::::::::::::

SELECT *, Value

FROM SensorsA NEXT{ } SensorsB

PUBLISH SensorsAB

::::::::::::::

cayuga1_4.txt

::::::::::::::

SELECT *

FROM SensorsAB FOLD{,

 $1.T0 < $2.T1 + 5,

 $.Asum + $2.Value AS Asum,

 $.Bsum + $2.Value AS Bsum,

 $.Acount + 1 AS Acount,

 $.Bcount + 1 AS Bcount,

 ($.Asum + $2.Value)/($.Acount + 1) AS Aavg,

 ($.Bsum + $2.Value)/($.Bcount + 1) AS Bavg}

SensorsAB

PUBLISH SensorsABagg

::::::::::::::

cayuga1_5.txt

::::::::::::::

SELECT

FROM FILTER{DUR >= 5 AND Aavg > Bavg} SensorsABagg

PUBLISH Query1

::::::::::::::

cayuga2_1.txt

::::::::::::::

SELECT ID, T0, T1, Value

FROM FILTER {ID = 'N' AND Value = 1} Sensors

PUBLISH SensorN

::::::::::::::

cayuga2_2.txt

::::::::::::::

SELECT ID, T0, T1, Value

FROM FILTER {ID = 'C' AND Value = 1 } Sensors

PUBLISH SensorC

::::::::::::::

67

cayuga2_3.txt

::::::::::::::

SELECT T0, T1, Value

FROM SensorN FOLD {, ($1.T0 < $2.T0) as T0 AND ($1.T1 < $2.T1) as T1 AND DUR = 1 ,}

SensorC

PUBLISH SensorNC

::::::::::::::

cayuga2_4.txt

::::::::::::::

SELECT ID, T0, T1, Value

FROM FILTER {ID = 'M' AND Value = 0 } Sensors

PUBLISH SensorM

::::::::::::::

cayuga2_5.txt

::::::::::::::

SELECT T0, T1

FROM SensorNC NEXT {$1.T0 = T0 AND $1.T1 = T1} SensorM

PUBLISH Query2

::::::::::::::

cayuga3_1.txt

::::::::::::::

SELECT *

FROM FILTER {ID = 'M' AND Value = 1} Sensors

PUBLISH SensorM

::::::::::::::

cayuga3_2.txt

::::::::::::::

SELECT *

FROM FILTER {ID = 'N' AND Value = 0 } Sensors

PUBLISH SensorN

::::::::::::::

cayuga3_3.txt

::::::::::::::

SELECT *

FROM SensorM FOLD {, $1.T0 = $.T0 AND $1.T1 = $.T1 AND DUR <= 4 ,} SensorN

PUBLISH Query3

::::::::::::::

cayuga4_1.txt

::::::::::::::

68

SELECT ID, Value, T0, T1

FROM FILTER {ID = 'M' AND (Value < 2) AS Value } Sensors

PUBLISH SensorM

::::::::::::::

cayuga4_2.txt

::::::::::::::

SELECT ID, Value, T0, T1

FROM FILTER {ID = 'N' AND (Value < 2) AS Value } Sensors

PUBLISH SensorN

::::::::::::::

cayuga4_3.txt

::::::::::::::

SELECT *

FROM SensorN FOLD { , $1.T0 = $2.T0 AND $1.T1 = $2.T1 AND $1.Value + $2.Value = 1 , }

SensorM

PUBLISH Query4

::::::::::::::

cayuga5_1.txt

::::::::::::::

SELECT ID, Value, T0, T1

FROM FILTER {ID = 'N' AND Value = 1} Sensors

PUBLISH SensorN

::::::::::::::

cayuga5_2.txt

::::::::::::::

SELECT ID, Value, T0, T1

FROM FILTER {ID = 'M' AND Value = 1} Sensors

PUBLISH SensorM

::::::::::::::

cayuga5_3.txt

::::::::::::::

SELECT *

FROM SensorN FOLD {, $1.T0 = T0 AND $1.T1 = T1 AND DUR = 1 , } SensorM

PUBLISH Query5

Config files

69

<?xml version="1.0" encoding="utf-8"?>

<Config xmlns="http://tempuri.org/ConfigSchema.xsd">

 <Option Name="QueryInputMode" Value="FILE"/>

 <Option Name="AirQuery" Value="false"/>

 <Option Name="QueryInputName"

Value="req3/queries/cayuga1_1.txt;req3/queries/cayuga1_2.txt;req3/queries/cayuga1_

3.txt;req3/queries/cayuga1_4.txt;req3/quer

ies/cayuga1_5.txt"/>

 <Option Name="QueryNumber" Value="5"/>

 <Option Name="StreamSchema" Value="req3/schemas/SensorsSchema.xml"/>

 <Option Name="DocInputMode" Value="FILE"/>

 <Option Name="DocInputName" Value="req3/streams/Stream.txt"/>

 <Option Name="DocInputStream" Value="Sensors"/>

 <Option Name="DocNumber" Value="1"/>

 <Option Name="Verbose" Value="true"/>

 <Option Name="RecordTrace" Value="true"/>

 <Option Name="Measure" Value="true"/>

 <Option Name="CheckPointFrequency" Value="1"/>

 <Option Name="CheckPointAndTraceDir" Value="log/"/>

 <Option Name="AttrDelimiter" Value="`"/>

</Config>

<?xml version="1.0" encoding="utf-8"?>

<Config xmlns="http://tempuri.org/ConfigSchema.xsd">

 <Option Name="QueryInputMode" Value="FILE"/>

 <Option Name="AirQuery" Value="false"/>

 <Option Name="QueryInputName"

Value="req3/queries/cayuga2_1.txt;req3/queries/cayuga2_2.txt;req3/queries/cayuga2_

3.txt;req3/queries/cayuga2_4.txt;req3/quer

ies/cayuga2_5.txt"/>

 <Option Name="QueryNumber" Value="5"/>

 <Option Name="StreamSchema" Value="req3/schemas/SensorsSchema.xml"/>

 <Option Name="DocInputMode" Value="FILE"/>

 <Option Name="DocInputName" Value="req3/streams/Stream.txt"/>

 <Option Name="DocInputStream" Value="Sensors"/>

 <Option Name="DocNumber" Value="1"/>

 <Option Name="Verbose" Value="true"/>

 <Option Name="RecordTrace" Value="true"/>

 <Option Name="Measure" Value="true"/>

 <Option Name="CheckPointFrequency" Value="1"/>

 <Option Name="CheckPointAndTraceDir" Value="log/"/>

 <Option Name="AttrDelimiter" Value="`"/>

</Config>

70

<?xml version="1.0" encoding="utf-8"?>

<Config xmlns="http://tempuri.org/ConfigSchema.xsd">

 <Option Name="QueryInputMode" Value="FILE"/>

 <Option Name="AirQuery" Value="false"/>

 <Option Name="QueryInputName"

Value="req3/queries/cayuga3_1.txt;req3/queries/cayuga3_2.txt;req3/queries/cayuga3_

3.txt"/>

 <Option Name="QueryNumber" Value="3"/>

 <Option Name="StreamSchema" Value="req3/schemas/SensorsSchema.xml"/>

 <Option Name="DocInputMode" Value="FILE"/>

 <Option Name="DocInputName" Value="req3/streams/Stream.txt"/>

 <Option Name="DocInputStream" Value="Sensors"/>

 <Option Name="DocNumber" Value="1"/>

 <Option Name="Verbose" Value="true"/>

 <Option Name="RecordTrace" Value="true"/>

 <Option Name="Measure" Value="true"/>

 <Option Name="CheckPointFrequency" Value="1"/>

 <Option Name="CheckPointAndTraceDir" Value="log/"/>

 <Option Name="AttrDelimiter" Value="`"/>

</Config>

<?xml version="1.0" encoding="utf-8"?>

<Config xmlns="http://tempuri.org/ConfigSchema.xsd">

 <Option Name="QueryInputMode" Value="FILE"/>

 <Option Name="AirQuery" Value="false"/>

 <Option Name="QueryInputName"

Value="req3/queries/cayuga4_1.txt;req3/queries/cayuga4_2.txt;req3/queries/cayuga4_

3.txt"/>

 <Option Name="QueryNumber" Value="3"/>

 <Option Name="StreamSchema" Value="req3/schemas/SensorsSchema.xml"/>

 <Option Name="DocInputMode" Value="FILE"/>

 <Option Name="DocInputName" Value="req3/streams/Stream.txt"/>

 <Option Name="DocInputStream" Value="Sensors"/>

 <Option Name="DocNumber" Value="1"/>

 <Option Name="Verbose" Value="true"/>

 <Option Name="RecordTrace" Value="true"/>

 <Option Name="Measure" Value="true"/>

 <Option Name="CheckPointFrequency" Value="1"/>

 <Option Name="CheckPointAndTraceDir" Value="log/"/>

 <Option Name="AttrDelimiter" Value="`"/>

</Config>

71

<?xml version="1.0" encoding="utf-8"?>

<Config xmlns="http://tempuri.org/ConfigSchema.xsd">

 <Option Name="QueryInputMode" Value="FILE"/>

 <Option Name="AirQuery" Value="false"/>

 <Option Name="QueryInputName"

Value="req3/queries/cayuga5_1.txt;req3/queries/cayuga5_2.txt;req3/queries/cayuga5_

3.txt"/>

 <Option Name="QueryNumber" Value="3"/>

 <Option Name="StreamSchema" Value="req3/schemas/SensorsSchema.xml"/>

 <Option Name="DocInputMode" Value="FILE"/>

 <Option Name="DocInputName" Value="req3/streams/Stream.txt"/>

 <Option Name="DocInputStream" Value="Sensors"/>

 <Option Name="DocNumber" Value="1"/>

 <Option Name="Verbose" Value="true"/>

 <Option Name="RecordTrace" Value="true"/>

 <Option Name="Measure" Value="true"/>

 <Option Name="CheckPointFrequency" Value="1"/>

 <Option Name="CheckPointAndTraceDir" Value="log/"/>

 <Option Name="AttrDelimiter" Value="`"/>

</Config>

Witnesses.txt

::::::::::::::

Task 1

::::::::::::::

 -

::::::::::::::

Task 2

::::::::::::::

12`WITNESS`ID`N`T0`1`T1`1`Value`1`SensorN`1`1`

12`WITNESS`ID`M`T0`1`T1`1`Value`0`SensorM`1`1`

12`WITNESS`ID`N`T0`2`T1`2`Value`1`SensorN`2`2`

12`WITNESS`ID`M`T0`2`T1`2`Value`0`SensorM`2`2`

12`WITNESS`ID`C`T0`3`T1`3`Value`1`SensorC`3`3`

12`WITNESS`ID`N`T0`3`T1`3`Value`1`SensorN`3`3`

12`WITNESS`ID`M`T0`3`T1`3`Value`0`SensorM`3`3`

10`WITNESS`T0`3`T1`3`Value`1`SensorNC`2`3`

12`WITNESS`ID`C`T0`4`T1`4`Value`1`SensorC`4`4`

12`WITNESS`ID`M`T0`4`T1`4`Value`0`SensorM`4`4`

72

10`WITNESS`T0`4`T1`4`Value`1`SensorNC`3`4`

8`WITNESS`T0`4`T1`4`Query2`2`4`

12`WITNESS`ID`C`T0`5`T1`5`Value`1`SensorC`5`5`

12`WITNESS`ID`N`T0`5`T1`5`Value`1`SensorN`5`5`

12`WITNESS`ID`M`T0`5`T1`5`Value`0`SensorM`5`5`

8`WITNESS`T0`5`T1`5`Query2`3`5`

12`WITNESS`ID`C`T0`7`T1`7`Value`1`SensorC`7`7`

12`WITNESS`ID`C`T0`8`T1`8`Value`1`SensorC`8`8`

12`WITNESS`ID`N`T0`8`T1`8`Value`1`SensorN`8`8`

12`WITNESS`ID`M`T0`8`T1`8`Value`0`SensorM`8`8`

12`WITNESS`ID`C`T0`9`T1`9`Value`1`SensorC`9`9`

10`WITNESS`T0`9`T1`9`Value`1`SensorNC`8`9`

12`WITNESS`ID`M`T0`10`T1`10`Value`0`SensorM`10`10`

8`WITNESS`T0`10`T1`10`Query2`8`10`

12`WITNESS`ID`C`T0`12`T1`12`Value`1`SensorC`12`12`

12`WITNESS`ID`M`T0`12`T1`12`Value`0`SensorM`12`12`

12`WITNESS`ID`C`T0`27`T1`27`Value`1`SensorC`27`27`

12`WITNESS`ID`N`T0`27`T1`27`Value`1`SensorN`27`27`

12`WITNESS`ID`C`T0`28`T1`29`Value`1`SensorC`28`29`

12`WITNESS`ID`M`T0`28`T1`29`Value`0`SensorM`28`29`

12`WITNESS`ID`C`T0`31`T1`33`Value`1`SensorC`31`33`

12`WITNESS`ID`N`T0`31`T1`33`Value`1`SensorN`31`33`

12`WITNESS`ID`M`T0`31`T1`33`Value`0`SensorM`31`33`

12`WITNESS`ID`C`T0`32`T1`35`Value`1`SensorC`32`35`

12`WITNESS`ID`M`T0`32`T1`35`Value`0`SensorM`32`35`

12`WITNESS`ID`C`T0`36`T1`40`Value`1`SensorC`36`40`

12`WITNESS`ID`C`T0`40`T1`45`Value`1`SensorC`40`45`

12`WITNESS`ID`N`T0`40`T1`45`Value`1`SensorN`40`45`

12`WITNESS`ID`M`T0`40`T1`45`Value`0`SensorM`40`45`

12`WITNESS`ID`C`T0`57`T1`60`Value`1`SensorC`57`60`

12`WITNESS`ID`N`T0`57`T1`60`Value`1`SensorN`57`60`

12`WITNESS`ID`M`T0`57`T1`60`Value`0`SensorM`57`60`

::::::::::::::

Task 3

::::::::::::::

12`WITNESS`ID`N`Value`0`T0`4`T1`4`SensorN`4`4`

12`WITNESS`ID`N`Value`0`T0`6`T1`6`SensorN`6`6`

12`WITNESS`ID`M`Value`1`T0`6`T1`6`SensorM`6`6`

12`WITNESS`ID`N`Value`0`T0`7`T1`7`SensorN`7`7`

12`WITNESS`ID`M`Value`1`T0`7`T1`7`SensorM`7`7`

20`WITNESS`ID_1`M`Value_1`1`T0_1`6`T1_1`6`ID`N`Value`0`T0`7`T1`7`Query3`6`7`

12`WITNESS`ID`N`Value`0`T0`9`T1`9`SensorN`9`9`

12`WITNESS`ID`M`Value`1`T0`9`T1`9`SensorM`9`9`

73

20`WITNESS`ID_1`M`Value_1`1`T0_1`7`T1_1`7`ID`N`Value`0`T0`9`T1`9`Query3`7`9`

12`WITNESS`ID`N`Value`0`T0`10`T1`10`SensorN`10`10`

20`WITNESS`ID_1`M`Value_1`1`T0_1`9`T1_1`9`ID`N`Value`0`T0`10`T1`10`Query3`9`10`

12`WITNESS`ID`N`Value`0`T0`11`T1`11`SensorN`11`11`

12`WITNESS`ID`M`Value`1`T0`11`T1`11`SensorM`11`11`

12`WITNESS`ID`N`Value`0`T0`12`T1`12`SensorN`12`12`

20`WITNESS`ID_1`M`Value_1`1`T0_1`11`T1_1`11`ID`N`Value`0`T0`12`T1`12`Query3`11`1

2`

12`WITNESS`ID`N`Value`0`T0`13`T1`13`SensorN`13`13`

12`WITNESS`ID`M`Value`1`T0`13`T1`13`SensorM`13`13`

12`WITNESS`ID`N`Value`0`T0`14`T1`14`SensorN`14`14`

12`WITNESS`ID`M`Value`1`T0`14`T1`14`SensorM`14`14`

20`WITNESS`ID_1`M`Value_1`1`T0_1`13`T1_1`13`ID`N`Value`0`T0`14`T1`14`Query3`13`1

4`

12`WITNESS`ID`M`Value`1`T0`27`T1`27`SensorM`27`27`

12`WITNESS`ID`N`Value`0`T0`28`T1`29`SensorN`28`29`

20`WITNESS`ID_1`M`Value_1`1`T0_1`27`T1_1`27`ID`N`Value`0`T0`28`T1`29`Query3`27`2

9`

12`WITNESS`ID`N`Value`0`T0`32`T1`35`SensorN`32`35`

12`WITNESS`ID`N`Value`0`T0`36`T1`40`SensorN`36`40`

12`WITNESS`ID`M`Value`1`T0`36`T1`40`SensorM`36`40`

::::::::::::::

Task 4

::::::::::::::

12`WITNESS`ID`N`Value`1`T0`1`T1`1`SensorN`1`1`

12`WITNESS`ID`M`Value`0`T0`1`T1`1`SensorM`1`1`

12`WITNESS`ID`N`Value`1`T0`2`T1`2`SensorN`2`2`

12`WITNESS`ID`M`Value`0`T0`2`T1`2`SensorM`2`2`

12`WITNESS`ID`N`Value`1`T0`3`T1`3`SensorN`3`3`

12`WITNESS`ID`M`Value`0`T0`3`T1`3`SensorM`3`3`

12`WITNESS`ID`N`Value`0`T0`4`T1`4`SensorN`4`4`

12`WITNESS`ID`M`Value`0`T0`4`T1`4`SensorM`4`4`

12`WITNESS`ID`N`Value`1`T0`5`T1`5`SensorN`5`5`

12`WITNESS`ID`M`Value`0`T0`5`T1`5`SensorM`5`5`

12`WITNESS`ID`N`Value`0`T0`6`T1`6`SensorN`6`6`

12`WITNESS`ID`M`Value`1`T0`6`T1`6`SensorM`6`6`

12`WITNESS`ID`N`Value`0`T0`7`T1`7`SensorN`7`7`

12`WITNESS`ID`M`Value`1`T0`7`T1`7`SensorM`7`7`

12`WITNESS`ID`N`Value`1`T0`8`T1`8`SensorN`8`8`

12`WITNESS`ID`M`Value`0`T0`8`T1`8`SensorM`8`8`

12`WITNESS`ID`N`Value`0`T0`9`T1`9`SensorN`9`9`

74

12`WITNESS`ID`M`Value`1`T0`9`T1`9`SensorM`9`9`

12`WITNESS`ID`N`Value`0`T0`10`T1`10`SensorN`10`10`

12`WITNESS`ID`M`Value`0`T0`10`T1`10`SensorM`10`10`

12`WITNESS`ID`N`Value`0`T0`11`T1`11`SensorN`11`11`

12`WITNESS`ID`M`Value`1`T0`11`T1`11`SensorM`11`11`

12`WITNESS`ID`N`Value`0`T0`12`T1`12`SensorN`12`12`

12`WITNESS`ID`M`Value`0`T0`12`T1`12`SensorM`12`12`

12`WITNESS`ID`N`Value`0`T0`13`T1`13`SensorN`13`13`

12`WITNESS`ID`M`Value`1`T0`13`T1`13`SensorM`13`13`

12`WITNESS`ID`N`Value`0`T0`14`T1`14`SensorN`14`14`

12`WITNESS`ID`M`Value`1`T0`14`T1`14`SensorM`14`14`

12`WITNESS`ID`N`Value`1`T0`27`T1`27`SensorN`27`27`

12`WITNESS`ID`M`Value`1`T0`27`T1`27`SensorM`27`27`

12`WITNESS`ID`N`Value`0`T0`28`T1`29`SensorN`28`29`

12`WITNESS`ID`M`Value`0`T0`28`T1`29`SensorM`28`29`

12`WITNESS`ID`N`Value`1`T0`31`T1`33`SensorN`31`33`

12`WITNESS`ID`M`Value`0`T0`31`T1`33`SensorM`31`33`

12`WITNESS`ID`N`Value`0`T0`32`T1`35`SensorN`32`35`

12`WITNESS`ID`M`Value`0`T0`32`T1`35`SensorM`32`35`

12`WITNESS`ID`N`Value`0`T0`36`T1`40`SensorN`36`40`

12`WITNESS`ID`M`Value`1`T0`36`T1`40`SensorM`36`40`

12`WITNESS`ID`N`Value`1`T0`40`T1`45`SensorN`40`45`

12`WITNESS`ID`M`Value`0`T0`40`T1`45`SensorM`40`45`

12`WITNESS`ID`N`Value`1`T0`57`T1`60`SensorN`57`60`

12`WITNESS`ID`M`Value`0`T0`57`T1`60`SensorM`57`60`

::::::::::::::

Task 5

::::::::::::::

12`WITNESS`ID`N`Value`1`T0`1`T1`1`SensorN`1`1`

12`WITNESS`ID`N`Value`1`T0`2`T1`2`SensorN`2`2`

12`WITNESS`ID`N`Value`1`T0`3`T1`3`SensorN`3`3`

12`WITNESS`ID`N`Value`1`T0`5`T1`5`SensorN`5`5`

12`WITNESS`ID`M`Value`1`T0`6`T1`6`SensorM`6`6`

20`WITNESS`ID_1`N`Value_1`1`T0_1`5`T1_1`5`ID`M`Value`1`T0`6`T1`6`Query5`5`6`

12`WITNESS`ID`M`Value`1`T0`7`T1`7`SensorM`7`7`

12`WITNESS`ID`N`Value`1`T0`8`T1`8`SensorN`8`8`

12`WITNESS`ID`M`Value`1`T0`9`T1`9`SensorM`9`9`

20`WITNESS`ID_1`N`Value_1`1`T0_1`8`T1_1`8`ID`M`Value`1`T0`9`T1`9`Query5`8`9`

12`WITNESS`ID`M`Value`1`T0`11`T1`11`SensorM`11`11`

12`WITNESS`ID`M`Value`1`T0`13`T1`13`SensorM`13`13`

12`WITNESS`ID`M`Value`1`T0`14`T1`14`SensorM`14`14`

75

12`WITNESS`ID`N`Value`1`T0`27`T1`27`SensorN`27`27`

12`WITNESS`ID`M`Value`1`T0`27`T1`27`SensorM`27`27`

12`WITNESS`ID`N`Value`1`T0`31`T1`33`SensorN`31`33`

12`WITNESS`ID`M`Value`1`T0`36`T1`40`SensorM`36`40`

12`WITNESS`ID`N`Value`1`T0`40`T1`45`SensorN`40`45`

12`WITNESS`ID`N`Value`1`T0`57`T1`60`SensorN`57`60`

TELEGRAPHCQ

Stream.txt

A, 20, 1, 1

B, 36, 1, 1

C, 0, 1, 1

N, 1, 1, 1

M, 0, 1, 1

A, 26, 2, 2

B, 19, 2, 2

C, 0, 2, 2

N, 1, 2, 2

M, 0, 2, 2

A, 36, 3, 3

B, 15, 3, 3

C, 1, 3, 3

N, 1, 3, 3

M, 0, 3, 3

A, 35, 4, 4

B, 33, 4, 4

C, 1, 4, 4

N, 0, 4, 4

M, 0, 4, 4

A, 28, 5, 5

B, 8, 5, 5

C, 1, 5, 5

N, 1, 5, 5

M, 0, 5, 5

A, 37, 6, 6

B, 28, 6, 6

C, 0, 6, 6

N, 0, 6, 6

M, 1, 6, 6

A, 17, 7, 7

B, 31, 7, 7

76

C, 1, 7, 7

N, 0, 7, 7

M, 1, 7, 7

A, 4, 8, 8

B, 28, 8, 8

C, 1, 8, 8

N, 1, 8, 8

M, 0, 8, 8

A, 40, 9, 9

B, 31, 9, 9

C, 1, 9, 9

N, 0, 9, 9

M, 1, 9, 9

A, 12, 10, 10

B, 9, 10, 10

C, 0, 10, 10

N, 0, 10, 10

M, 0, 10, 10

A, 7, 11, 11

B, 37, 11, 11

C, 0, 11, 11

N, 0, 11, 11

M, 1, 11, 11

A, 30, 12, 12

B, 13, 12, 12

C, 1, 12, 12

N, 0, 12, 12

M, 0, 12, 12

A, 19, 13, 13

B, 29, 13, 13

C, 0, 13, 13

N, 0, 13, 13

M, 1, 13, 13

A, 29, 14, 14

B, 15, 14, 14

C, 0, 14, 14

N, 0, 14, 14

M, 1, 14, 14

A, 14, 27, 27

B, 36, 27, 27

C, 1, 27, 27

N, 1, 27, 27

M, 1, 27, 27

A, 23, 28, 29

B, 12, 28, 29

77

C, 1, 28, 29

N, 0, 28, 29

M, 0, 28, 29

A, 1, 31, 33,

B, 14, 31, 33

C, 1, 31, 33

N, 1, 31, 33

M, 0, 31, 33

A, 37, 32, 35

B, 37, 32, 35

C, 1, 32, 35

N, 0, 32, 35

M, 0, 32, 35

A, 16, 36, 40

B, 6, 36, 40

C, 1, 36, 40

N, 0, 36, 40

M, 1, 36, 40

A, 40, 40, 45

B, 4, 40, 45

C, 1, 40, 45

N, 1, 40, 45

M, 0, 40, 45

A, 22, 57, 60

B, 41, 57, 60

C, 1, 57, 60

N, 1, 57, 60

M, 0, 57, 60

Schema.sql

drop schema streams;

create schema streams;

drop stream streams.cep;

create stream streams.cep (

 ID text,

 value int,

 t0 int,

 t1 int,

 tcqtime timestamp TIMESTAMPCOLUMN

) type unarchived;

78

alter stream streams.cep add wrapper csvwrapper;

Queries

:::::::::::::::::::::::::::

Telegraphcq1.sql

::::::::::::::::::::::::::::

drop stream streams.avgA;

create stream streams.avgA (

 ID text,

 averageA float,

 tcqtime timestamp TIMESTAMPCOLUMN

) type unarchived;

alter stream streams.avgA add wrapper csvwrapper;

drop stream streams.avgB;

create stream streams.avgB (

 ID text,

 averageB float,

 tcqtime timestamp TIMESTAMPCOLUMN

) type unarchived;

alter stream streams.avgB add wrapper csvwrapper;

WITH

 streams.avgA

 AS

 (SELECT ID, AVG(value) as averageA, wtime(*)

 FROM streams.cep [RANGE BY '2 seconds' SLIDE BY '1 seconds']

 WHERE ID = 'A'

 GROUP BY ID)

 streams.avgB

 AS

 (SELECT ID, AVG(value) as avgerageB, wtime(*)

 FROM streams.cep [RANGE BY '2 seconds' SLIDE BY '1 seconds']

 WHERE ID = 'B'

 GROUP BY ID)

79

(SELECT A.ID, A.averageA, B.ID, B.averageB, A.tcqtime

FROM streams.avgA AS A,

 streams.avgB AS B

WHERE A.tcqtime = B.tcqtime AND A.averageA > B.averageB);

::::::::::::::

telegraph2.sql

::::::::::::::

drop stream streams.readN;

create stream streams.readN (

 ID text,

 value int,

 t0 int,

 tcqtime timestamp TIMESTAMPCOLUMN

) type unarchived;

alter stream streams.readN add wrapper csvwrapper;

drop stream streams.readC;

create stream streams.readC (

 ID text,

 t0 int,

 value int,

 tcqtime timestamp TIMESTAMPCOLUMN

) type unarchived;

alter stream streams.readC add wrapper csvwrapper;

drop stream streams.readM;

create stream streams.readM (

 ID text,

 t0 int,

 value int,

 tcqtime timestamp TIMESTAMPCOLUMN

) type unarchived;

alter stream streams.readM add wrapper csvwrapper;

WITH

80

 streams.readN

 AS

 (SELECT ID, t0, value, wtime(*)

 FROM streams.cep [RANGE BY '1 seconds' SLIDE BY '1 seconds']

 WHERE ID = 'N' AND value = '1'

 GROUP BY ID, t0, value)

 streams.readC

 AS

 (SELECT ID, t0, value, wtime(*)

 FROM streams.cep [RANGE BY '1 seconds' SLIDE BY '1 seconds']

 WHERE ID = 'C' AND value = '1'

 GROUP BY ID, t0, value)

 streams.readM

 AS

 (SELECT ID, t0, value, wtime(*)

 FROM streams.cep [RANGE BY '1 seconds' SLIDE BY '1 seconds']

 WHERE ID = 'M' AND value = '0'

 GROUP BY ID, t0, value)

(SELECT C.ID, C.value,C.t0, N.ID, N.value, N.t0, M.ID, M.value, M.t0

FROM streams.readN AS N,

 streams.readC AS C,

 streams.readM AS M

WHERE N.value = C.value AND N.t0 < C.t0 AND N.t0 = M.t0);

::::::::::::::

telegraph3.sql

::::::::::::::

drop stream streams.repM;

create stream streams.repM (

 ID text,

 value int,

 t0 int,

 tcqtime timestamp TIMESTAMPCOLUMN

) type unarchived;

alter stream streams.repM add wrapper csvwrapper;

drop stream streams.repN;

81

create stream streams.repN (

 ID text,

 value int,

 t0 int,

 tcqtime timestamp TIMESTAMPCOLUMN

) type unarchived;

alter stream streams.repN add wrapper csvwrapper;

WITH

 streams.repM

 AS

 (SELECT ID, value, t0, wtime(*)

 FROM streams.cep [RANGE BY '1 seconds' SLIDE BY '1 seconds']

 WHERE ID = 'M' AND value = '1'

 GROUP BY ID, value, t0)

 streams.repN

 AS

 (SELECT ID, value, t0, wtime(*)

 FROM streams.cep [RANGE BY '1 seconds' SLIDE BY '1 seconds']

 WHERE ID = 'N' AND value = '0'

 GROUP BY ID, value, t0)

(SELECT M.ID, M.value, M.t0, N.ID, N.value, N.t0

FROM streams.repM AS M,

 streams.repN AS N

WHERE M.t0 + 1 = N.t0 AND N.value < M.value);

::::::::::::::

telegraph4.sql

::::::::::::::

drop stream streams.onlyN;

create stream streams.onlyN (

 ID text,

 t0 int,

 value int,

 tcqtime timestamp TIMESTAMPCOLUMN

) type unarchived;

alter stream streams.onlyN add wrapper csvwrapper;

82

drop stream streams.onlyM;

create stream streams.onlyM (

 ID text,

 t0 int,

 value int,

 tcqtime timestamp TIMESTAMPCOLUMN

) type unarchived;

alter stream streams.onlyM add wrapper csvwrapper;

WITH

 streams.onlyN

 AS

 (SELECT ID, t0, value, wtime(*)

 FROM streams.cep [RANGE BY '1 seconds' SLIDE BY '1 seconds']

 WHERE ID = 'N'

 GROUP BY ID, t0, value)

 streams.onlyM

 AS

 (SELECT ID, t0, value, wtime(*)

 FROM streams.cep [RANGE BY '1 seconds' SLIDE BY '1 seconds']

 WHERE ID = 'M'

 GROUP BY ID, t0, value)

(SELECT N.ID, N.value, N.t0, M.ID, M.value, M.t0

FROM streams.onlyN AS N,

 streams.onlyM AS M

WHERE N.t0 = M.t0 AND M.value <> N.value);

::::::::::::::

telegraph5.sql

::::::::::::::

drop stream streams.moveN;

create stream streams.moveN (

 ID text,

 t0 int,

 value int,

 tcqtime timestamp TIMESTAMPCOLUMN

) type unarchived;

83

alter stream streams.moveN add wrapper csvwrapper;

drop stream streams.moveM;

create stream streams.moveM (

 ID text,

 t0 int,

 value int,

 tcqtime timestamp TIMESTAMPCOLUMN

) type unarchived;

alter stream streams.moveM add wrapper csvwrapper;

WITH

streams.moveN

 AS

 (SELECT ID, t0, value, wtime(*)

 FROM streams.cep [RANGE BY '1 seconds' SLIDE BY '1 seconds']

 WHERE ID = 'N' AND value = '1'

 GROUP BY ID, t0, value)

 streams.moveM

 AS

 (SELECT ID, t0, value, wtime(*)

 FROM streams.cep [RANGE BY '1 seconds' SLIDE BY '1 seconds']

 WHERE ID = 'M' AND value = '1'

 GROUP BY ID, t0, value)

(SELECT N.ID,N.value, N.t0, M.ID, M.value, M.t0

FROM streams.moveN AS N,

 streams.moveM AS M

WHERE N.t0 = M.t0);

Result.txt

::::::::::::::

resultat1.res

::::::::::::::

A,31,B,17,2009-01-12 11:03:26

A,35.5,B,24,2009-01-12 11:03:27

A,31.5,B,20.5,2009-01-12 11:03:28

A,32.5,B,18,2009-01-12 11:03:29

A,26,B,20,2009-01-12 11:03:33

84

A,24.5,B,21,2009-01-12 11:03:36

A,24,B,22,2009-01-12 11:03:37

A,26.5,B,21.5,2009-01-12 11:03:42

A,28,B,5,2009-01-12 11:03:43

A,31,B,22.5,2009-01-12 11:03:44

success=0, cqcancel=1

::::::::::::::

resultat2.res

::::::::::::::

success=0, cqcancel=1

::::::::::::::

resultat3.res

::::::::::::::

M,1,6,N,0,7

M,1,9,N,0,10

M,1,11,N,0,12

M,1,13,N,0,14

M,1,31,N,0,32

success=0, cqcancel=1

::::::::::::::

resultat4.res

::::::::::::::

N,1,1,M,0,1

N,1,2,M,0,2

N,1,3,M,0,3

N,1,5,M,0,5

N,0,6,M,1,6

N,0,7,M,1,7

N,1,8,M,0,8

N,0,9,M,1,9

N,0,11,M,1,11

N,0,13,M,1,13

N,0,14,M,1,14

N,1,27,M,0,27

N,0,36,M,1,36

N,1,40,M,0,40

success=0, cqcancel=1

85

::::::::::::::

resultat5.res

::::::::::::::

N,1,31,M,1,31

success=0, cqcancel=1

