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Abstract 
 
 
Nowadays patients like to have the option of staying at home in their illness 
period. This can be realized through observing and monitoring the patients 
motion and temperature with an home care application. Sensors are placed in the 
home and create a real-time stream which have to be analyzed.  
 
Data Stream Management Systems (DSMSs) and Complex Event Processing 
systems (CEP) support real-time analysis of data streams which is a continuous 
ordered sequence of tuples. There are some differences in the design and 
implementation of these systems. We analyze these differences and similarities 
for two such systems; TelegraphCQ, a DSMS and Cayuga, a CEP system, with a 
focus on how well they might suit the needs of home care application domain. 
 
Some of the most important criteria for a system in a home care environment are 
to have a system with a language that allows an application to formulate 
appropriate queries. In consideration of this we conclude that compared to 
Cayuga, TelegraphCQ is the most capable system for home care domain. The 
reason for this is that the query language of Cayuga has too limited expressiblity. 
And its operators are too difficult to use for expressing the queries that are typical 
in this application domain.  
 
TelegraphCQ in contrast does report the correct value and time interval with the 
possibility to use built in functions from SQL and do not demand query with lot of 
complexity.  
 
The comparison is done in two parts; theoretical and practical. We focus on 
topics like tuple definition, aggregation, consecutiveness, concurrency and 
optimization. Through the first part we investigate the literature concerning the 
two types of systems.  The second part consist of testing these systems in the 
home care application domain. This part allows us to test the topics discussed in 
the theoretical part.  
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INTRODUCTION 
 

 

In the home care application domain one needs to monitor different events 
generated by preplaced sensors nodes. One example is to monitor a patient 
which has been sent home. Having patients in their homes instead of in hospitals 
or nursing homes is important. It gives the patient a familiar environment and the 
hospital resources to treat more severe injuries or illness. For instance, long 
durations of non movement can indicate a problem and that a rescue unit needs 
to be sent to the home for checking the patient. 
 
By automating the home care application domain, several questions arise with 
respect to which type of system to use: 
 

• How important is it that the system reports the exact value?  
• How important is it that the system reports the right time interval?  
• How important is it to have a reliable system?  

 
Our opinion is that the  home care domain is a domain which can be described as 
a sensitive domain. With a system in such a domain it is important that the 
system is able: 

• to catch a problem fast and alert the rescue unit.  
• to report the exact value  
• to report the right time interval  
• to manage large amount of data 
• to have a reliable and stable system 
• to maintain the privacy of the patient (not taken into consideration).  

 
Two technical possibilities which can be applicable for the home care domain is 
Data Stream Management Systems (DSMSs) and Complex Event Processing 
systems (CEP). 
 
DSMSs and CEP support real-time analysis of data streams, which is a 
continuous ordered sequence of tuples. There are some differences in the design 
and implementation of these systems. We analyze these differences and 
similarities with focus on home care domain by comparing TelegraphCQ, a 
DSMS with Cayuga, a CEP.  
 
TelegraphCQ is an adaptive system that should be able to repeatedly measure a 
home care environment. Using a dataflow engine TelegraphCQ is able to move 
large amounts of data through an amount of operators running on one or many 
computers. TelegraphCQ uses new dataflow technologies to route unpredictable 
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and fractured dataflow through computing recourses on a network, resulting in 
manageable streams of useful information. 
 
Cayuga is a system that can be used in the home care domain since it is a 
complex event monitoring system for high speed data streams, which supports 
on-line detection of a large number of complex patterns in event streams. Based 
on nondeterministic limited state automata with buffers, Cayuga manages to 
merge a simple query language for composing stateful queries with a scalable 
query processing engine. It is not only able to scale with the arrival rate of events 
in the stream, but also with the number of queries, which is an important feature. 
 
In addition to do research on the technology we are also interested in discovering 
differences and similarities between Cayuga and TelegraphCQ based on already 
available information and research work. To underline these differences and 
similarities we focus on vital and relevant topics. Through comparing these two 
systems we also discover if they are capable of being used as a technical 
solution in a home care environment, where the outcome is crucial.  
 
The comparison is done in two parts; theoretical and practical. The theoretical 
part focuses on topics like: 

• How tuple and event are defined in each system. 
• We investigate the five standard types of aggregates; AVG, SUM, MIN, 

MAX, and COUNT. 
• We investigate how well the systems manage to capture consecutive 

events. 
• If the systems can query and join the information of results from several 

data sources and concurrent execution of several independent queries. 
• To what extent is optimization possible in the systems. 

 
The practical part is based on the theoretical part. In this part we go through five 
relevant tasks and analyze and evaluate how well the systems in practice can be 
used in a home care environment. The goal is see how the two systems solve the 
same type of queries on the same event stream. 
 
The rest of this thesis is organized as follows. We begin with Chapter 2 by 
covering the background of DSMSs and CEP. This chapter also consists of 
general information about Cayuga and TelegraphCQ together with their query 
language. In chapter 3 we focus on the topics; tuple/event definition, aggregation, 
consecutiveness, concurrency and optimization, based on already existing 
research work and information. Further in chapter 4 we test the topics on each of 
the systems. The last chapter consists of conclusion and further work. 
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BACKGROUND 
 

 

This chapter is an introduction to Data Stream Management Systems (DSMSs) 
and Complex Event Processing system (CEP). Further we continue with general 
information about Cayuga and TelegraphCQ together with their query languages 
and some application domain. 
 

2.1 DSMS in general 

 
The content in this chapter is mainly based on [DSS], [DSM] and [ICI].  

A data stream is a sequence of tuples. Tuples are streaming, not stored in a 
table. Each tuple consists of a set of attributes, similar to a row in a database 
table. Data Stream Management Systems (DSMSs) support on-line analysis of 
(such rapidly changing) data streams. Different from traditional Database 
Management Systems (DBMSs) where data is stored on disks and the queries 
are performed against the stored data, in DSMSs there is no storage of data on 
disk, all operations are performed in main memory, see Figure 1 [ICI]. 

 

Figure 1: DBMS vs. DSMS [INF5090] 

 

In DSMSs the information is arriving in main memory as an unpredictable stream 
of data. The data stream is unbounded and ordered; implicitly by arrival time or 
explicitly by timestamp. An input monitor regulates the input possibly by dropping 
packets or transactions as well as preprocessing and buffering. The data stream 
is too large to be stored entirely in main memory. For that reason data is stored in 
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three partitions in main memory: the Working Storage, e.g. for window queries, 
the Summary Storage for stream synopses, and the Static Storage for meta-data, 
e.g. physical location of each source. In addition a Query Repository is used for 
long-running, continuous queries. A Query Processor communicates with the 
Input Monitor; it may also re-optimize the query plans in response to changing the 
input rates on the data. Results are then temporarily buffered through an Output 
Buffer and streamed to the user and, see Figure 2 [DSM]. 

 

Figure 2: Generic DSMS Architecture [INF5090] 

 

To control the order in which items arrive and locally store a stream in its entirety, 
is impossible. Queries over streams run continuously over a period of time and 
incrementally return new results as new data arrive. These are known as long-
running, continuous, standing, and persistent queries. Requirements to a DMMS 
are formed by the characteristics of data streams and continuous queries: (1) 
order-based and time-based operations must be allowed by the data model and 
query semantics, e.g. queries over a five-minute moving window, (2) the use of 
approximate summary structures, in the literature referred to as synopses or 
digests; as an outcome, queries over the summaries may not return precise 
answers, (3) not using blocking operators which consume the entire input before 
any results are produced, (4) not possible for backtracking over a data stream 
due to performance and storage constraints; on-line stream algorithms are 
restricted to making only one pass over the data, (5) applications that monitor 
streams in real-time must react quickly to unusual data values, (6) long-running 
queries may run into changes in system conditions throughout their execution 
lifetimes for instance, variable stream rates, and (7) to ensure scalability, shared 
execution of many continuous queries are needed. 

A method for managing such data when the queries will go over a period is to use 
reduction techniques, which imply sampling, shedding, and synopsis. This implies 
to respectively only use a part of the data which has arrived, reduce or drop parts 
of the data, or summing up data in several ways. There are three main ways of 
managing data which has arrived: accuracy, history and real-time.  

Accuracy; because of the limited memory it is not possible to collect the accurate 
answer, but instead it is possible to obtain summary or headword.  
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History; for looking at the most recent data, windowing has to be deployed. There 
are three types of windows: sliding windows which is used if it is important to 
gather all the information, jumping windows is advantageous to use and as result 
sampling will be received, and overlap windows which are known as the least 
effective windows; it uses the same data several times but with a lot of queries it 
can be reasonable to deploy it. 

The last way of managing data is real-time which handles the data immediately 
and therefore cannot accommodate everything in advance. For this reason the 
query plan is made at the same time, here and now or on the way in contrast to 
conditions where the query plan already exists. 

To conclude this section about DSMSs we will portray basic continuous query 
operations over streaming data: (1) selection; all streaming applications require 
support for complex filtering, (2) nested aggregation are needed to compute 
trends in the data, (3) multiplexing and demultiplexing are used to decompose 
and merge logical streams, (4) frequent item queries, also known as top-k or 
threshold queries, are dependent on the cutoff condition, (5) stream mining is for 
on-line mining of streaming data; operations like pattern matching, similarity 
searching and forecasting are needed, (6) joins are used to support multistream 
joins and join of streams with static metadata, and (7) windowed queries; all of 
the query types mentioned above may be constrained to return results inside a 
window. 
 

2.2 CEP in general 

 

In the mid 1990’s academic research in automated analysis of event traces 
formed the beginning of Complex Event Processing (CEP) at Cal Tech (Mani 
Chandy), Cambridge University (John Bates), and Stanford University (David 
Luckham). It was now focus on giving more detailed information about the 
behavior of the models into the event traces, like the cause and effect between 
events, by developing models to process streaming event data by identifying 
complex sequences events with temporal and spatial constraints, and to control 
complex actions as a outcome of these patterns [CWW] [CAGP]. 
 
A complex event is when no one can directly detect the situation; one has to 
conclude or assume that the situation has taken place from a combination of 
other events. CEP helps detect such complex, inferred events by analyzing and 
correlating other events. It is a technology that can aggregate, analyze and 
respond immediately to real-time event data, with minimal latency [CHPE] 
[TEPS]. 
 
In more detail CEP is a technology for extracting information which can be low 
level network processing data or high level enterprise management intelligence, 
depending on the users’ interest. It is detecting pattern or trends that characterize 
incidents or warnings in real time, as they happen so one can respond 
immediately. In CEP you can know your position at all time by combining data 
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from multiple sources and continuously computing aggregate values. CEP gives 
you also the possibility to adjust the changing conditions by constantly observing 
the interaction of data [TEPS] [CEP]. 
 

2.3 Cayuga   

 

This chapter is based on content  from [CHPE] [CAGP].  
 
Cayuga is described as a complex event monitoring system for high speed data 
streams, which supports on-line detection of a large number of complex patterns 
in event streams.  
Based on nondeterministic limited state automata with buffers, Cayuga manages 
to merge a simple query language for composing stateful queries with a scalable 
query processing engine. It is not only able to scale with the arrival rate of events 
in the stream, but also with the number of queries which is an important feature. 
 
The Complex patterns in event streams which is mentioned above are described 
by using a query language based on composable operators which have well-
defined formal semantics. With this Cayuga is able to perform query-rewrite 
optimizations and can build up complex patterns from simpler sub-patterns. 
 
The Cayuga system also implements several techniques for query processing, 
indexing, and garbage collection, resulting in an efficient execution engine that 
can process data streams at very high rates. 
 
Cayuga also supports resubscription, the output event stream from one query 
can be used as the input stream to one or more other queries. Resubscription 
enables complex event pattern queries, and it extends the expressiveness of the 
query language. 
 
Cayuga has a web-based frontend which is running on a custom Python Web 
server, with AJAX-based controls for asynchronous communication and user-
friendly interfaces in the browser.  The users can enter persistent queries and 
register them with a running Cayuga engine. Users are given a choice of 
predefined templates from a dropdown menu. Then, they can modify these to 
their need, or write one from scratch.  
 

2.3.1 Cayuga query language 

 

The Cayuga query language(CEL) is a result  from an event algebra. It is a 
mapping of the operators in algebra into a SQL like syntax. Each query has the 
following form: 
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Example 1: Cayuga Query Form[CHPE] 

 

The SELECT section state the attributes in the output stream schema, the FROM 
section indentify a Cayuga event pattern, and the PUBLISH clause gives the 
output stream 
a name. 
 
The event pattern can be built with three different operators; FILTER; NEXT and 
FOLD. The FILTER { � } operator selects those events from the stream that 
satisfy the predicate �. The second operator NEXT { � } allows to correlate 
events over time. When applied in a query it combines each event from two 
streams which satisfies the predicate � and occurs after the detection time of the 
event in the first stream. The last operator FOLD { � } is a generalization of the 
NEXT. The difference is that FOLD looks for patterns comprising two or more 
events. It is used in situations where we need to iterate over an a-priori unknown 
number of events until a stopping condition is satisfied [CAGP].  
 

2.4 TelegraphCQ in general 

 

This chapter is based on content  from [TWW].  
 
TelegraphCQ is an adaptive dataflow system . Using a dataflow engine 
TelegraphCQ is able to move large amounts of data through an amount of 
operators running on one or many machines. Dataflow operators can be compare 
d with loops, which repeatedly receive data from their inputs, and place data on 
their output. All the operators used in Telegraph are pipelining, which means that 
they produce data to their output before they finish receiving all the data from 
their inputs. Thus TelegraphCQ uses new dataflow technologies to route 
unpredictable and fractured dataflow through computing recourses on a network, 
resulting in manageable streams of useful information. 
 
As  an adaptive system TelegraphCQ should be able to repeatedly measure its 
environment, and decide how to take actions based on such measurements. The 
design of TelegraphCQ is predicated on the assumption that most of the new 
computing problems will take place in very unpredictable environments. 
TelegraphCQ consist of two basic adaptive dataflow techniques, Eddies and 
Rivers. Eddies are used to continuously remodel dataflow graphs to 
maximize performance.  Eddies provide to adaptively route data through 
operators, continuously changing the order of operators in a dataflow 
graph by observing the rates at which operators consume and produce 
data.  An eddy is implemented as a special iterator that can be injected 
into any dataflow graph to make it adapt its shape. Rivers are used to 
continuously load-balance work across multiple machines on a network.  
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Rivers adaptively route data to different machines, by observing the rates 
at which the machines can handle additional work. 
 
TelegraphCQ is implemented as an open-source DSMS prototype, based on the 
PostgreSQL database system. 
 
 

 
Figure 3: The TelegraphCQ Architecture [TWW] 

 

 
In the TelegraphCQ architecture in Figure 3 we can see that a separate 
PostgreSQL process TelegraphCQ Front End (TFE) is forked for each client 
connection. This process runs all queries that do not involve streams using the 
normal PostgreSQL executor.  When PostgreSQL receives a continuous query, 
the TFE parses and plans the query in shared memory. It uses the output of the 
PostgreSQL optimizer to construct a continuous query plan.   
 
Further, the TFE passes the plan to the TelegraphCQ Back End executor (TBE) 
using a shared memory queue. The TBE runs the TelegraphCQ eddy which 
merges all continuous query plans into one so that query processing may be 
shared amongst queries. The TBE receives the plan, and integrates it into the 
TelegraphCQ eddy.  Finally, the Eddy returns results to the appropriate TFE via 
shared memory result queues, one per query. 
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2.4.1 The Query Language of TelegraphCQ 

 

The query language of TelegraphCQ is also comparable with SQL. It is a 
straightforward extension to SQL for manipulating streams. Each query has the 
following form: 
 

 
Example 2: TelegraphCQ  Query Form [TWW] 

 
The SELECT section state the attributes in the output stream schema, the FROM 
section state the stream with a interval expression. WHERE state the conditions. 
GROUP BY and ORDER BY state the ordering.  
 
The interval expression in FROM clause is the window section. Using the window 
section we can specify streams with sliding, tumbling or jumping time window. 
Parameters used for these in the query language is respectively ”RANGE BY…”, 
“SLIDE BY…” and “START AT…”.  
 
The parameters have different functional purpose, the RANGE parameter in a 
query defines the size of the window in a specified time, as an example we can 
state the window section in the query accordingly: RANGE BY ´5 minutes´. With 
the SLIDE parameter we can define the interval after which this window will be 
re-calculated, again by specifying a time, as an example to this: SLIDE BY ´1 
minutes´. And the START parameter define the time at which the window begins, 
an example on this will be: START AT ´2008-09-09 12:12:00´. All the three 
parameters above can be stated separately or in the same query [TWW]. 
 

2.5 Existing applications for DSMSs and CEP systems 

 

Efficient asynchronous interaction among distributed applications has been an 
active field of research for many years now, with focus on topics like spanning 
active databases, event systems, high performance implementations of 
Publish/Subscribe, and distributed Publish/Subscribe [CWW].  
 
In complex event processing users are interested in finding matches to event 
patterns which are usually sequences of correlated events. A case of such a 
pattern is a safety condition; in safety condition the users want to make sure that 
nothing bad happens between two events which are set by condition and terms 
which corresponds users requirements. An example of this kind of pattern: 
”between leaving the farm (start event) and arriving at the store (end event), fresh 
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produce should not have spent more than 1 hour total above a temperature of 
25°C”[CAGP]. 

2.5.1 Sensor Networks 

 

In today’s world it is possible to monitor physical or environmental conditions with 
a sensor network. For instance observing and analyzing human behavior or 
detection of forest fire are applications where wireless sensor networks can be 
helpful. 
 
The motivation for the development of sensor networks was originally military 
applications such as battlefield surveillance. The aim was monitoring friendly 
forces, equipment and ammunition, reconnaissance of opposing forces and 
terrain, and nuclear, biological and chemical attack detection and 
reconnaissance. Now sensor networks are used in many other applications as 
well; civilian application areas include environment, health care applications, 
home automation, and traffic control. 
 
The target of environmental applications is to track movements of birds, animals, 
etc. and to monitor environmental conditions that affect crops and livestock. It can 
also detect chemical/biological, monitor earth and environmental in marine, soil, 
and atmospheric contexts. Environmental applications also helps meteorological 
or geophysical research, pollution study, precision agriculture, irrigation. Or 
biocomplexity mapping of environment, detection of forest fire or flood[INF5090].  
 
Health application applies integrated patient monitoring and telemonitoring of 
human physiological data. Can also be used for tracking and monitoring doctors 
and patients inside a hospital. Or tracking and monitoring patients and rescue 
operations[INF5090].  
 
Commercial applications are for instance used for monitoring product quality or 
machine diagnostics. It  can also provide work for construct smart office spaces 
or smart structures with sensor nodes embedded inside. Interactive toys or 
museums. Managing inventory control. Environmental control of office buildings. 
Commercial applications can also be used for detecting and monitoring car thefts 
or for vehicle tracking and detection[INF5090]. 
 
A sensor network is a collection of autonomous sensor nodes which consist of 
sensing, data processing, and communicating components [WSN01]. Every 
sensor node is equipped with a sensing unit; usually composed of sensors and 
analog to digital converters (ADCs), processing unit; manages the procedures 
that make the sensor node collaborate with the other nodes to carry out the 
assigned sensing tasks, transceiver unit; connects the node to the network or 
satellite, and a power unit; usually a battery and the most important unit 
[INF5090]. The sensor node receives waves or other variations from one system 
and transmits related ones to another with a communications infrastructure aim to 
monitor and collect physical data. Based on sensed physical effects and incidents 
the processing unit manages the procedures that make the sensor node 
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collaborate with other nodes to carry out the assigned sensing tasks. Transceiver 
unit receives commands from a central computer (base station), connects the 
node to the network and transmits data [INF5090]. 
 

 

Figure 4: Sensor nodes scattered in a sensor field [WSN01] 

 
In the figure above [WSN01] we can see sensor nodes spread in a sensor field, 
they are deployed either inside the incident or very close to it. These sensor 
nodes duties are to collect data and route data back to the sink and the end user. 
Through the sink in the figure, data are routed back to the end user by a multihop 
infrastructure less architecture. The sink may communicate with the task 
manager node via internet or satellite.  
 
Wireless sensor networks also have some limitations, the most important relates 
to; communication, power consumption, computation and uncertainty in sensor 
readings. 
 

• Communication: The wireless network connecting the sensor nodes 
constraints to limited quality of service, latency with high variance, limited 
bandwidth, and frequently drops packets[QPSN]. 

• Power consumption: Energy conservation is an important system design 
considerations of any sensor network application, because sensor nodes 
have limited supply of energy. An example of this is MICA mote from 
Berkeley, the motes is powered by two AA batteries which provide about 
2000mAh, powering the mote for approximately one year in the idle state 
and for one week under full load [QPSN]. 

• Computation: Sensor nodes have restricted computing power and 
memory sizes. This limits the types of data processing algorithms on a 
sensor node, and it limits the sizes of intermediate results that can be 
stored on the sensor nodes [QPSN]. 

• Uncertainty in sensor readings: Sensor malfunction might generate 
inaccurate data, and unfortunate sensor placement such as a temperature 
sensor directly next to the air conditioner might bias individual readings 
[QPSN]. 



12 

 

2.5.2 Network Monitoring 

 

Large networks are growing complex by increasing demands, over provisioning, 
hardware changes, and manual configuration, etc and are consequently difficult 
to manage. Therefore it is  necessary to monitor and analyze the network traffic 
flowing through the systems [GIGA].  
 
Network monitoring implies the use of systems that constantly monitors a 
computer network for slow or failing systems and then alerts the network 
administrator in case of outage through alarms.  A network monitoring system 
detect problems caused by overloaded or crashed servers, network connections 
or other devices [Wiki]. But the monitoring requirements vary from the long term 
such as monitoring link utilization, computing traffic matrices to the ad-hoc such 
as detecting network intrusions, debugging performance problems [GIGA].  
 
As the internet continues to grow fast both in size and complexity, it has become 
gradually more important to have tools to analyze the internet traffic. Many of the 
tools which exists are complex (e.g., reconstruct TCP/IP sessions), query layer-7 
data (find streaming media connections), operate over huge volumes of data 
(Gigabit and higher speed links), and have real-time reporting requirements (e.g., 
to raise performance or intrusion alerts) [GIGA]. 
 
As mentioned before the need of analyzing internet traffic is increasing and many 
tools for analyzing internet traffic exist, such as ISP monitor service levels, 
identify bottlenecks and so on. Further we have an example of traffic analysis 
which analyze internet traffic in near real-time to computer traffic statistics and 
detect critical conditions. Figure below describes the basic structure of tools for 
network monitoring which consist of packet capturing, trace file, analysis and in 
the end result [INF5090].  
 

 
Figure 5: Basic structure of tools [INF5090] 

 

With this basic network monitoring you are able to analyze data both online and 
offline. Packet capturing happens in real time hence online monitoring is possible. 
With trace file it is possible to monitor offline because the data is stored. The 
same tool is used to both manage and analyze data (trace file and result).  
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2.5.3 Stock Trading 

 

An example on stock trading is stock ticker event monitoring, a system that 
allows financial analysts to compose subscriptions over a stream of stock ticks. It 
is about on-line analysis of stock prices, discover correlations and identify trends, 
it is about predicting future price. In this field technical analysts look for many 
different patterns in price movements. The interpretations of such patterns are 
used to support trading decisions. Investors that are able to see trends before 
other market players will be able to make early moves and thus increase profit 
margins. 
 
A well-known pattern amongst analysts is the double top pattern; the analysts are 
interested in being notified whenever there is double top formation in the price 
chart of any stock[CWW]. 
 

 

Figure 6: Double top formation marked in red [CWW] 

 

2.6 Home Care Application 

 

In situations were people are sick, disabled or old there might be a need for 
nursing and observation of these. But due to different circumstances  it is not 
always possible or desirable to be taken care of. Finances can be one of the 
reasons where the hospital for instance can not afford the expenses, or they do 
not have the facilities like nurses, beds, etc. As mentioned it is not always 
desirable to be taken care of, the reason for this can be that people for instance 
want to live a normal life as possible. 
  
These people in different situations can still be taken care of with the home care 
application. With home care application a person can live a normal life without 
being dependent on others. Hospitals which do not have the facilities like nurses 
can observe patients with such home care applications. 
 
The home care application domain covers the need for monitoring different 
events generated by preplaced sensor nodes. As an example motion sensors 
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can be placed around the home to monitor the movement of a patient. Long 
durations of non movement can then indicate a problem and that a rescue unit 
needs to be sent to the home.  
 
Disabled persons can manage home devices easily and remotely by for instance  
with embed sensor nodes and actuator in different units such as vacuum 
cleaners, TVs and refrigerators. Such sensor nodes inside the unit can interact 
with the external network via the Internet or Satellite [UCEP].  
 

2.7 Cayuga and Application Domain 

 

Cayuga is like traditional Publish/Subscribe system but predicate filtering of 
events, correlation of events and aggregation of events. Standard 
Publish/Subscribe is a dominant paradigm where users are allowed to express 
stateless subscriptions; these are evaluated over each event that arrives at the 
system [CWW]. 
 
Cayuga is designed for pattern matching queries. Cayuga on a single PC can 
scale up to hundreds of thousands of concurrently running pattern matching 
queries. So the main distinguishing feature of Cayuga is its scalability. But it exist 
queries which are not expressible in Cayuga.  The aim of Cayuga is occupy a 
spot between simple Publish/Subscribe and the full power of SQL-like queries in 
DSMSs, and achieves greater expressiveness than Publish/Subscribe while 
keeping most of its advantages in terms of scalability[CWW]. 
 

2.8 TelegraphCQ and Application Domain 

 

TelegraphCQ contain two types of application: pull-based and push-based 
applications [TCDP]. As in traditional database systems the pull-based 
applications pull data from the disk to the query processor by the user upon 
demand. And in push-based application data are constantly “pushed” from disk to 
the query processor out to the user. 
 
An example on pull-based application is sensor network. In sensor network the 
sensors pull data from the environment depending on the sensing device, and as 
shown in the chapter about Sensor Networks above the sensors send data 
through the network back to a central node for querying and data analysis. 
 

Network monitoring, Stock trading and Home Application is examples on push 
based application. Applications like these produce streams which are intense 
loaded with data. And as a result of this these systems cannot control the arrival 
frequency at which data elements are received.  
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3  

 

 

Comparison of Cayuga and TelegraphCQ 
 

 

We are interested in discovering differences and similarities between Cayuga and 
TelegraphCQ based on already available information and research work. To 
underline these differences and similarities we focus on  the following five vital 
and relevant topics; 1) Tuple/event definition, 2) Aggregation, 3) 
Consecutiveness, 4) Concurrency and 5) Optimization. 
 

3.1 Tuple/event Definition 

 

Generally speaking an event is described as an occurrence indicating that 
something has happened or is in the process of happening. As a practical 
example an event can be a sensor reporting the movement of an object, it can be 
a change in the financial market or it can be a seismic sensor sensing an 
earthquake.    
 
Event  is represented in the system as a tuple, a sequence of values. Each value 
is called a component of the tuple. These tuples form an event stream. An event 
stream is apossibly unbounded set of timestamped tuples. The timestamp can be 
externally provided or by the system. 
 
Event stream in Cayuga has fixed relational schema, and events in the stream 
are treated as relational tuples. Each event has two timestamps, a start time and 
a detection time, also called end time. Events can have a non-zero but finite 
duration. The detection times determine the order of events. Event with the same 
detection time are considered to happen simultaneously. Cayuga processes 
events in epochs. Through one epoch all events with the same detection time are 
processed [General]. 
 
In Cayuga set of tuples in event stream occurs in this arrangement  <ā; ��, �� >. 
Here ā � 	
�, … . . a�� are data values for the corresponding attributes and  �� ,  ��  

are values representing the start and end timestamps of the current event. Tuples 
in Cayuga is timestamped by the system. Below is an example on a tuple [TEPS]. 
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Example 3: Cayuga tuple example [TEPS] 

 
It is various type of events [CEP]; for instance simple -, complex -, raw -, derived 
– and instantaneous events. A simple event does not represent other events, it is 
not an abstraction of other events and it is neither composition of other events. 
While a complex event is an abstraction of other events called its members which 
can be simple events or other complex events. Raw events may represent both 
simple event and complex event; it is an event object that records a real-world 
event. An event that is generated as a result of applying a methods or process to 
one or more other events is called derived event or synthesized event. For 
instance the absence of an event in a given time interval can lead to a derived 
event reporting that the first event did not happen. An instantaneous event object 
will have a single timestamp signifying when the event happened. This applies 
where the start and end times are the same.  
 
When it comes to TelegraphCQ a stream is an infinite bag of events < s, t > pairs. 
Where s is the tuple and t is the timestamp of the event [CQL]. Timestamp 
specifies the creation time of a tuple. As opposed to Cayuga tuples can be 
externally timestamped, or timestamped by the system. If they are time-stamped 
by system, they will be in monotonically increasing order [TWW]. 
 
We have two types of data streams in TelegraphCQ; archived and unachieved. 
The tuples that are streamed into archived streams will be copied onto disk by 
TelegraphCQ. Tuples that are streamed into unachieved streams  are discarded 
when the query is cancelled [TWW]. 
 
Below is an example on tuple in TelegraphCQ shown: 
 

 
Example 4: TelegraphCQ tuple example 

 
If we compare this example from TelegraphCQ with the example above from 
Cayuga we will for instance notice the difference between the timestamps. As we 
have mentioned before In Cayuga the timestamp is defined with a start time and 
a detection time (also called end time), while in TelegraphCQ the timestamp only 
specifies the creation time of the tuple.  
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3.2 Aggregations 

 

An aggregate function is a function that returns a single value from a collection of 
input values such as a set, a bag or a list. As described earlier streams are 
unbounded. This makes aggregate queries difficult to process, since they cannot 
produce any results unless they have observed all their input. A way to handle 
this is to limit the number of input tuples to aggregate query over streams. But let 
us see how Cayuga and TelegraphCQ manage aggregation. 
 
Cayuga compare its query language CEL with SQL, but SQL has a lot of built-in 
functions for counting and calculations which CEL doesn’t have. For instance 
SQL has the five standard types of aggregates such as; AVG, SUM, MIN, MAX 
and COUNT. CEL must instead take help of ‘and’, ‘as’,  =, <=, <, > and >= to 
write query from.  
 
Cayuga’s algebra contains three aggregate functions. When the topic about 
aggregation is discussed in the sources [e.g. TEPS, CWW] it is stated that in 
Cayuga’s algebra aggregate functions fit naturally in. The aggregation occurs 
over a sequence of events. But in further research there is no trace of the five 
standard types of aggregation in Cayuga’s query language. Queries where a 
standard aggregate function is needed has been solved in different ways using 
Cayuga’s built-in functions. Below we have shown examples of how the 
aggregate functions can be implemented. 
 

 
Example 5: Cayuga Average example [CWW] 

 

Above is an example where they could have used aggregate functions like AVG 
and SUM. In this example it has also been used divide and conquer to express 
the query more easily. Resubscription is used to allow query to subscribe to the 
output of another, so the PUBLISH clause can specify an identifier of the output 
stream which other queries can specify as their input stream. This is possible 
because the operators in Cayuga are stream-to-stream, assuming that the input 
and output of every operator must be a stream. This example also show that 
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queries can be nested by declaring the output from an inner SELECT clause as 
the input for the FILTER operator (see line two) [CWW].  
 
Further an example for COUNT: 

 
Example 6: Cayuga Count example [CWW] 

 
An example for MIN and MAX: 

 
Example 7: Cayuga MIN and MAX example [CWW] 

 
Other aggregate functions in Cayuga for instance like GROUP BY is also solved 
in their algebra [TEPS], but no trace of it in CEL examples.   
 
To handle a limited portion of the stream for aggregate queries, TelegraphCQ 
apply a window section to it’s query form to create a time-varying relation. This 
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allows us to retrieve results without waiting for the entire data stream to be 
processed.  
 

This windowing technique supports both the portion of streams that has already 
arrived, as well as those portions that will arrive in the future. As mentioned 
earlier TelegraphCQ has two kind of applications; pull-based and push-based 
applications, execution of the query over consecutive windows is possible on 
both [TCDP]. 
 

Windowing is needed if we want to use aggregation in our queries, since we need 
to bound the aggregate state. Hence aggregates on streams are computed on 
windows. Below is an example on aggregation [TWW]: 

 
Example 8: TelegraphCQ Aggregation example [TWW] 

 
When the query execute an aggregate, for instance grouped, it is based on the 
interval expression of the different streams in the query. 
 

TelegraphCQ has solved aggregation query like SQL with the aggregate 
functions, but with help of windowing. Cayuga has solved the aggregation in its 
algebra, though it convey the impression of that their query language is also very 
alike SQL  the aggregation is missing in CEL. It is possible to solve query where 
aggregation could have been used in Cayuga, but as we can see in the given 
examples it requires more.  
 
As TelegraphCQ, Cayuga is also using a form of Windowing but it is different. 
TelegraphCQ use time-based windowing while in Cayuga we have to make the 
window with help of PUBLISH function before we can use aggregation. The 
window of Cayuga can this way contain more. But after publishing a window in 
Cayuga you can still not use the five standard aggregate functions, neither does 
Cayuga has any other function which can replace these.  
 

3.3 Consecutiveness 

 

The concept consecutiveness is generally explained as periods of time or events 
happen one after the other without interruption. If we look at det figure below event B 
is a successor to event A because no event happened in between of these two 
events. Hence is event C not a successor of event A because event B happened in 
between them. 
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Figure 7: Consecutiveness with linearly timestamp 

 

But as we know Cayuga and TelegraphCQ use different timestamp for managing 
their data streams. (Cayuga use start and detection time, while TelegraphCQ use 
only creation time). This can also cause to different understanding of 
consecutiveness for each of them. As we know event systems are used to 
analyze time series queries in real time. It is therefore an important factor that 
these systems have some semantics for consecutiveness; when is one event a 
successor of another. 
 
Let us begin with the consecutiveness for Cayuga first. Cayuga is a system 
where the outputs of a query are themselves events, which can be posted to the 
event stream and used in other queries. Better known as complex events, since 
they contains of several smaller events that together satisfy the query. Also the 
query mentioned above might be a complex event since it contains several steps 
[NEXT]. Therefore Cayuga use interval timestamps because these events may 
have duration. For this reason complex events may overlap with each other. This 
is something which can cause some difficulty in processing the sequencing 
operator because for events with duration the successor is not obviously to state. 
 

 
Figure 8: Consecutiveness with interval timestamp 

 
Figure above is an example on interval timestamp. If we have to choose the 
successor according to the end time of the interval, then event B is the successor 
of event A. But if we look at event B it properly contains event A, so it may be a 
reason to exclude it as a successor of event A, we do not want to  “skip” over 
some data. So instead should either event C or event D be the successor of 
event A or both of them. 
 
As mentioned before in CEP systems users register long running queries to 
detect event patterns, which are typically sequences of events. An example on 
such query can be to detect when something bad happens between to events; 
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Post a notification if an item, after being removed from shelf, exits the store 
before being checked out at the counter [NEXT]. 
 
To solve this type of queries all event systems has sequencing operator, also 
described as a concatenation operator, E1; E2. This operator finds any event 
matching the sub pattern E1, and then finds the first match afterwards to the sub 
pattern E2. But from previous finding Cayuga does not have this operator in it’s 
query language. Question which is still unanswered is if it only finds E2 which 
follow E1 or if it also look at if E2 follow immediately after E1[NEXT]. 

As mentioned Cayuga uses interval time stamps, where t = [t0, t1] is a successor 
of s = [s0, s1] if t0 > s1 and there is no event with time stamp p = [p0, p1] such that 
s1 < p0 < p1 < t1. That is, t is a successor of s if t follows s without overlap, and no 
p that follows s without overlap finishes before t. This avoids unbounded 
successor sets with their associated implementation difficulties. Explained in the 
figures below. 
 

 
Figure 9: Cayuga event T successor of event S 

 

 
In this figure event T is successor of event S because as we can see t0 > s1 and 
that event P does not appear in between of them. s1 < p0 < p1 < t1 is not correct.  
 

 
Figure 10: Cayuga event T not a successor of event S 

 
In Figure 10 event T is not a successor of event S because event P appears in 
between. But here is also s1 < p0 < p1 < t1 correct. 
 
In Cayuga the complex event is timestamped with the smallest interval containing 
the intervals of all events that make up the query result. For example, if we have 
a query made up of three events. And they happens at times 1, 4 and 7, then the 
result time stamp would have been [1, 7] [NEXT]. 
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A thorough survey of temporal models in the CEP literature shows that there is 
no unique answer for choosing a successor to A in the figure above 
(Consecutiveness with interval timestamp) [NEXT, CWW]. 
 
The semantics of queries in TelegraphCQ is a bit differing from Cayuga. In 
TelegraphCQ for every instant in time, a set of tuples over which the query is to 
be executed is defined by a window on a stream. The output of a query is 
presented to the end-user as a sequence of sets since each execution of the 
query produces a set. And each set is being associated with an instant in time. 
 
Time in TelegraphCQ is treated as a partial order in order to accommodate 
insecurely synchronized distributed data sources. Multiple simultaneous notions 
of time, such as logical sequence numbers or physical time is also allowed. An 
algebra with expanded relational operators exist to operate on streams and to 
allow a stream defined using one notion of time to be transformed into a stream 
using another [TCDP]. 
 
This is done by using a for-loop construct to state the sequence of windows over 
which the user requests the answers to the query. A variable t moves over the 
timeline as the for-loop iterates, and the left and right ends of each window in the 
sequence, and the stopping condition for the query can be defined with 
consideration to this variable t [NEXT]. 
 
For each stream in the query the for-loop contains the statement ‘WindowIs’, an 
input without this statement is assumed to be a static table by default. And for 
every group of streams that express the same window transition behavior there is 
one for-loop. Figure below shows the syntax of the for-loop [NEXT]. 
 

 
Example 9: TelegraphCQ The syntax of the for-loop [NEXT] 

 
By appropriately setting the increment statement for t in the for-loop windows can 
also be defined to move on-demand, or in the reverse-timestamp direction. 
 
How both of the systems manages to capture consecutive events is determined 
by how they use timestamp. Where Cayuga use interval timestamp TelegraphCQ 
go for partial order.  
 

3.4 Concurrency 
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Concurrency is about the systems capability to execute several queries at the 
same time, (and the possibility to interact with each other). It is also about joining 
the information of results from several data sources. 
 
Cayuga’s operators NEXT and FOLD reflect the concept of concurrency in the 
case of joining data streams. Each of these create an output stream from two 
input streams. By using these operators we can correlate events over two data 
streams thus enabling us to concurrently interact with two streams. As an 
example, consider two streams; S1 and S2 , and apply the NEXT operator to 
these like in ‘S1 NEXT {�} S2’, we combine each event from S1 with the next event 
in S2 depending on if the condition {�} is satisfied[CHP]. An example of a query 
with NEXT where two streams are joined with given condition: 
 

 
Example 10: Concurrency NEXT operator 

 
‘$.’ indicate attribute from S1 and ‘$1.’ indicate attribute from S2 . In this example 
we are joining the streams where the condition with timestamp is depending. 
 
If we are interested in looking for patterns comprising two or more events we can 
use the FOLD operator. This operator is actually an iterated form of NEXT. The 
FOLD construct has the form FOLD{predExpr1, predExpr2, aggExpr}. These 
parameters consist of two conditions and in the end one aggregate computation. 
The first parameter describes which input events to choose in the next iteration, 
the second parameter implies the stopping condition for the iteration and the last 
parameter performs aggregate computation between iteration steps [CHP]. An 
example of a query with FOLD: 
 

 
Example 11: Concurrency FOLD operator 

 
Through these operators Cayuga makes it possible to perform querying and 
joining of information from several data sources.  
 
Cayuga have also another concept in concurrency, Cayuga also makes it 
possible to execute several queries at the same time on several streams if 
wanted. It is done through the execution process.  
 

TelegraphCQ also allow  performing querying and joining information from 
several data sources. With the possibility to execute several queries at the same 
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time on several streams is possible through the WITH clause in the query. To 
make it possible we need to limit the data sources with help of the window 
semantic. As mentioned earlier  windowing uses a interval to bound a portion of 
the event stream. With the WITH clause you create new streams using the 
CREATE STREAM statement. Example on this: 
 

 
Example 12: TelegraphCQ WITH clause 

 
In this example the attributes is defined for the stream, further with the WITH 
clause it is described what the stream should contain. This stream is created of 
an existing stream [TWW]. 
 

3.5 Optimization 

 
Regarding this topic we look at optimization in the contents as  the process for 
improving a system to make some aspect of it work more efficiently or use fewer 
resources. 
 
Cayuga present a feature called Multi-Query Optimization (MQO) [CWW], but any 
description or further information is not much  to find.  We assume this is a part 
which is still under development and therefore not focus more on this topic 
considering Cayuga. 
 
TelegraphCQ have a  continuously adaptive query processing mechanism  eddy. 
Eddy is a routing operator that contains a number of modules that perform work 
on behalf of queries, and a number of sources that provide input data.  Eddy can 
intercept tuples that flow into and out of these modules, observing the module 
behavior and choosing the order that tuples take through the modules. 
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The eddy obtains data from sources, determines which modules a particular tuple 
must visit before all processing for the tuple is complete.  After a tuple has visited 
all required modules, it is output to all relevant result queues by the eddy.  [EDY] 

3.6 Cayuga vs. TelegraphCQ 

 
Cayuga and TelegraphCQ are both systems which support on-line analysis of 
data streams. There are some differences in the design and implementation of 
these systems. We focus on topics like 1) Tuple/event definition, 2) Aggregation, 
3) Consecutiveness, 4) Concurrency and 5) Optimization. 
 
Tuple/event definitions in the systems are very similar. Both consist of id, value 
and timestamp(s). The difference lies in the timestamp information. Cayuga 
provides a start timestamp (T0) and an end timestamp (T1). In contrast 
TelegraphCQ only provides of a creation timestamp which is assumed to be the 
same as T0.  With this difference Cayuga has the ability to calculate the duration 
of an event while TelegraphCQ does not allow events to have duration. 
 
Events in streams occur differently in the systems. The reason is their unlike 
definition of timestamp(s). The end timestamp determines the order of events in 
Cayuga, where events with the same detection time are considered to happen 
simultaneously. Tuples are time-stamped by the system and are in monotonically 
increasing order. 
 
As opposed to Cayuga tuples can either be externally timestamped, or 
timestamped by the system. Time in TelegraphCQ is considered to be partial 
order, since events can occur in synchronized distributed data sources. Multiple 
simultaneous notions of time are also allowed.  
 
Both of the systems compare their query language with SQL which support the 
five standard types of aggregates; AVG, SUM, MIN, MAX and COUNT. Cayuga 
conveys the impression that their query language is very similar to SQL , but the 
aggregation is missing in CEL. In contrast TelegraphCQ truly has built in 
functionality like SQL for aggregations, but window semantics is required 
because we have endless streams of data. 
 
Information available about Cayuga reveals that the system has no restrictions 
for choosing a successor of an event. Their timestamp enables freely selection of 
a successor among events from the stream. We assert this as an advantage 
since the  user can define the successor based on the situation and subscriptions 
which mostly is varying. 
 
To determine the successor in TelegraphCQ we are dependent on the use of 
push or pull applications, external or internal timestamps. But the main deciding 
factor is the use of the window semantics. This window semantics has a function 
‘wtime(*)’ which calculates the timestamp for the last tuple. Since the tuple 
consists of one timestamp we know that the successor occurs after this 
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timestamp. We assume that in TelegraphCQ the successor can be determined by 
the situation and subscription. 
 
When it comes to concurrency, Cayuga allows to execute several queries at the 
same time and the possibility to interact. This is done through the execution 
process. Cayuga also allows us to concurrently interact with two streams by 
using the NEXT and FOLD operators. Through these operators  we can correlate 
events over two data streams. 
 
TelegraphCQ also makes it possible to perform querying and joining information 
from several data sources. This is done through the WITH clause where you 
create new streams using the CREATE STREAM statement in a complex query. 
Even here is  window semantic is needed.  
 
Through research and study we conclude that the available information about 
Cayuga is sparse. Detail information and evidence is missing about some of the 
topics which we are interested in. For instance the Cayuga papers to some extent 
mention the subject optimization but no evidence or more information is to be 
found on their proposition.  
 
Cayuga gives the impression of being able to solve different subscriptions 
through their query language. But the solutions is generally discussed in the 
algebra and not in the query language. This in fact reflects that Cayuga might not 
be on the development stage they claim to be on. We assume they have only 
developed and tested it on the algebra level. 
 
TelegraphCQ manages to give evidence and information on a more detailed level 
in contrast to Cayuga. Example on different topics are given and development is 
shown through discussion. Window semantics with its different options is an 
example on this. Window semantic is a crucial function for TelegraphCQ and 
claims to make it able to solve most of the topics we are interested in.   
 
We find the ability to define duration very useful in Cayuga, but the equivalent to 
it in TelegraphCQ is not clear. 
 
On a more superior level based on research and information our opinion about 
DSMS and CEP is differing. We mean that it is not big differences between 
DSMS and CEP and will judge CEP as a part of DSMS. Description given about 
them both are very similar.  
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4  

 

 

Using Cayuga and TelegraphCQ in the Home Care Scenario 
 
 
This part of the paper covers the practical part. Based on the theory from 
previous chapters we will go through some tasks which will illustrate the topics 
we have discussed such as tuple definition, aggregation, consecutiveness, 
concurrency and optimization. We will go through these tasks and analyze and 
evaluate how well the systems in practice support the findings of Chapter 3 with 
the focus on home care scenario.  
 
In this home care example we have a home with a few rooms that are equipped 
with total 5 different sensors; A, B, C, N and M. A and B read the temperature 
and the remaining sensors C, N and M read the motion in the home.  

The goal is see how the two systems solve the same type of queries on the same 
event stream. 

4.1 Tasks 

 
We test the two systems against a total of five tasks. But first we explain which 
topics each of the tasks are associated with through the table below. ‘Time 
semantics’ reflect the topic tuple definition. In Chapter 3 we discussed the 
difference regarding timestamp , we want to test these differences in the tasks 
and see if the differences matters.  
 
Task\Topic Time 

semantics 

Aggregation Consecutiveness Concurrency Optimization 

Task 1 X X - X N/A 

Task 2 X - X X N/A 

Task 3 X - X - N/A 

Task 4 X - - X N/A 

Task 5 X - - X N/A 

 
 
First  we give a general description of each task and how we have interpreted it.  
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Task 1: Tell me when the average temperature of Sensor A for the last five 
minutes increases more than the average temperature of Sensor B for the 
same time period. Assume that sensor readings from A and B are supplied 
by one and the same data stream”.  

 
Through this task we test the two systems ability to solve aggregation. We pick a 
time period of five minutes. This period consists of a time interval beginning five 
minutes before the current time. The Figure below shows how the time interval is 
defined with an example for Sensor A: 
 

 

In this period the average temperature for sensor A and B has to be calculated. 
Further we determine if the average temperature of A is greater then the average 
temperature for B. If this incident occurs the system should give an output to the 
user. 
 

Task 2: Tell me when Sensor N sends a reading, followed by Sensor C, 
while not receiving any readings from Sensor M meanwhile.  

 

This task reflects the topic about consecutiveness and 
concurrency. We will through this task discover how 
the systems actually select one event’s successor.  
We divide this task into two parts for better 
understanding; 1) we have taken into consideration 
that in the first occurrence Sensor N reads value ‘1’ 

and Sensor M reads value ‘0’, while the value of Sensor C is insignificant. 2) In 
the next occurrence, Sensor C reads value ‘1’ and Sensor M still reads value ‘0’, 
while the value of Sensor N now is insignificant. The figure to the left shows an 
example of this. The vertical lines show the time interval. In this case Sensor M 
determines the total time this query occurs over, which starts with Sensor N and 
ends with Sensor C. How the events take place in relation to each other can of 
course be different;, it depends on the systems which we discuss later in this 
chapter.  
 

Task 3: Tell me when Sensor N does not report anything within a minute 
after Sensor M has reported movement.  

 
This task is very similar to the task above. This as well covers the topic 
consecutiveness. Here we look for an incident based on a preceding incident; in 
our case we are looking for value ‘0’ from Sensor N based on value ‘1’ from 
Sensor M. With the figure below it is a complete understanding of the task.  
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We first look for the value ’1’ from Sensor M, value from 
Sensor N is insignificant in that incident. When the first 
condition is satisfied, we now look for value ‘0’ from 
Sensor N. This value of ‘0’ from Senor N must occur 

within a minute after the first detected occurrence. The value from Sensor M is 
irrelevant in the second condition.  
 

Task 4: Tell me when Sensor N and Sensor M report that one of them has 
registered movement.  
 

In this task the aim is to find incident where Sensor M 
and Sensor N report different values at the same time. If 
Sensor M reports value ‘0’ then the value of Sensor N 
must report value ‘1’ or vice versa. Through this task we 
examine  how  concurrency is used in each of the 

systems. 
  

 
Task 5: Tell me when both Sensor N and Sensor M read movement at the 
same time.  

 
This task also examines how Cayuga and TelegraphCQ 
resolve concurrency. Here we are interested in incident 
where the both Sensor M and N report value ‘1’ at the 
same time.  

 

4.2 Schema 

 
The schema describes the format of the data occurring in the stream. The 
systems use the schema as input for reading the stream accordingly. The data 
occurring in the stream is described with attributes and the appropriate type; this 
can be integer, float, etc. The attributes we are interested in in our home care 
scenario is the id describing the sensors, a value for displaying temperature or 
motion and the timestamp. 
 

4.3 Stream 

 
We create the event stream according to the schema. Since this is only a test 
case we use a test file with assumed readings from the sensors.  This event 
stream is treated by the systems as an event stream in real time.  
 
One of the goals regarding the home care scenario and the tasks is to use the 
same test stream file for both. But as mentioned in the previous chapters Cayuga 
and TelegraphCQ read streams differently. We have still tried to focus on one 
stream file, where we have done adjustments as they were needed for each 
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system. The stream files are still very alike with regards  to the data values and 
the timestamps. 
 
Each event tuple in the stream reports which sensor it belongs to, the value 
which it has detected and timestamp. The timestamp is an example of the 
adjustment which has been done; the small changes are described further.  
 
Values in the stream have been selected with the tasks in mind and in 
consideration to different situations which can occur. The values have been 
selected to test the queries utmost. The temperature sensors report temperature 
in integer form from value ‘1’ up to around ‘40’, while motion sensors report only 
‘1’ if it is any movement otherwise ‘0’.  
 
Our stream consists of two kinds of timestamps, the reason is the two different 
systems which we want to test. In the first part of the stream you can find 
timestamps which indicate that the event only lasts for 1 minute. While in the last 
part of the stream you can find events with duration over more time. These 
changes have been made so we could test both system properly. 
 

4.4 Cayuga and Home Care Application Domain 

 
Our test case in Cayuga consists of a schema file, stream file, config files, query 
files and witness file. 
 

4.4.1 Design 

 
Each event stream has a fixed relational schema in Cayuga. The schema for our 
test stream is ‘Sensors<ID, value, T0, T1>’, below is the schema file in xml.   
 

 
Figure 11: SensorSchema.xml 

The attribute ID specifies which sensor it is. The attribute value reflects the value 
produced by the specific sensor, T0 tells us the start time for the event and T1 
the end time. The name of the stream is also included in this schema as we can 
see in the second line. 
 
As previously pointed out, the stream file in Cayuga differs to some extent from 
the one used in TelegraphCQ. You can see in the figure below that the tuple go 
with the schema above, but in addition it contains the name of the stream, which 
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in this case is ‘Sensors’, the two last attributes represent the timestamp given 
internally by the system.   

 

  

Figure 12: Cayuga SensorStream.txt 

4.4.2 Test Setup 

 

After the queries have been defined in their SQL files we need a config xml file to 
execute these queries. Figure below shows an example of such a config file. The 
important statements that we take use of are ‘QueryInputName’, ‘QueryNumber’, 
‘StreamSchema’, ‘DocInputName’ and ‘DocInputStream’. Cayuga allows us to 
execute several queries at the same time. This can be done through using the 
‘QueryInputName’ identifier. According to this we must specify the number of 
queries we like to execute, this can be done with ‘QueryNumber’.  We must 
specify which schema we want to use, this must be stated with ‘StreamSchema’. 
In this config file we must also define which stream we are using and the name of 
the stream. This is defined in ‘DocInputName’ and ‘DocInputStream’.  
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Figure 13: Config file 

When the queries have been executed the result is found in the ‘witnesses.txt’ 
file. Whenever we execute queries with the help of the config file, the result in 
‘witnesses.txt’ will be replaced with the new result. The result in ‘witnesses.txt’ 
contains result from queries that uses the ‘PUBLISH’ statement.  
 

4.4.3 Queries 

 
Each task in this part is reflecting a complex query since we need several queries 
to execute one task.  
 

Task 1:  
 
From studies done in one of the previous chapters we discovered that Cayuga’s 
query language does not support the five standard types of aggregates in SQL. 
Instead Cayuga take help of ‘and’, ‘as’,  =, <=, <, > and >= to write a query from 
the base by defining every operator. The question is how much we have to write 
from the base to solve this query and if it is possible at all. 
 
Cayuga has as also mentioned in one the of previous chapters an example of a 
solution for average. The example is shown in the figure below.  
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If we take a look at this example they have a stream named S, with attributes 
name and price. We tested this query but it was difficult to get any result out of 
this since the query did not execute, it was too many error messages. But we will 
try to make a query for our task with some changes, for instance by dividing the 
query into several sub queries. 
 
We begin with selecting events from sensors we are interested in. The first two 
sub quires indicate this, we select all events with value increasing 0 from Sensor 
A in one stream and in the other stream we do the same for Sensor B. In the third 
query we now create a new stream by joining these streams. Further we now 
have to calculate the values in this new stream. Since we now are interested in 
looking for patterns comprising two or more events we are going to use the FOLD 
operator. This operator is as mentioned earlier an iterated form of NEXT. We are 
going to use FOLD on not two different streams but on one and same stream, 
because we have already all the values we are interested in ‘SensorsAB’. We 
begin with the timestamp statement, through this we are limiting the time to 
accrue up to five minutes. The second and third line in the FOLD statement are 
adding the values while the two next statements are counting the total. In the end 
we are calculating the average for each of the sensors. 
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We have now calculated the average for values from the two Sensors. But since 
we are interested in when average of the values from Sensor A increase average 
values from Sensor B within a time interval of five minutes we do the last query. 
With DUR we specify the duration which must at least be 5 minutes and average 
of values from Sensor A must be larger than the average of values from Sensor B 
within this duration. 
 
This query did not work completely; parts of this query did work and gave results, 
but not the end result which we were interested in. If we only concentrate about 
calculating average of values from Sensor A and Sensor B each of them works, 
but when it comes to compare the time interval on error occurs. The reason is 
that we in Cayuga it is difficult or impossible to join two streams on equal 
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timestamps. With that problem in mind we created this query, but it still did not 
work properly.  
 

 
Task 2:  

 
In this task we are supposed to find out when 
events from Sensor C with value ‘1’ which 
follow after events from Sensor N that also 
have value ‘1’, while Sensor M should have 
value ‘0’ in the mean time. So with other 
words we are going to discover how Cayuga 
actually compute consecutiveness.  
 
As mentioned before, our stream consists of 
event with no duration, and some events with 
duration which cause overlapping. A snip of 
this is shown in the figure to left where we 
can see events with no duration in the top, 
and with some duration in the end. 
 
In this stream we can see that Sensor N 
reports value ‘1’ at timestamp 2 and Sensor 
M repots value ‘0’. In next timestamp we can 

see Sensor C report the value ‘1’ and Sensor M still report ‘0’.  According to this 
part our query is expected to among other results report timestamp [2, 3]. If we 
look further in this snip of the stream we can see events which are overlapping. 
The question now is what Cayuga will report in result for this type of incident.  
 
We begin with creating a stream by selecting events from Sensor N with value ‘1’. 
Then we make a stream of events from C with also value ‘1’. Further in the third 
query we make a new stream, ‘SensorNC’, by using the FOLD operator. We 
choose to join the two first streams where events from Sensor C has a start 
timestamp later than  the start timestamp of events from Sensor N, since one of 
our conditions is that events from Sensor C should follow events from Sensor N. 
We already here in our query actually decide what the successor should be. If we 
instead of ‘$1.T0 < $2.T0’ write ‘$1.T1 < $2.T0’ we exclude the last events shown 
in the stream figure above.  
 
In the third query we are also defining duration on 1 minute between the events. 
We have to discover how this affects the last events in the stream. We had also 
to take events from Sensor M in consideration, so we make another stream with 
events from Sensor M with value ‘0’. We have to join this stream with the stream 
‘SensorNC’. Here we use the NEXT operator and join these two streams where 
start timestamp and end timestamp is the same. 
(The Figure below shows the queries.) 



36 

 

 
 
Figure below is a snip of the result file after executing the queries above. The 
result file shows that the first two queries matched the right events and so did 
query which was interested in events with value ‘0’ from Sensor M. Further the 
lines in italic font shows the result from the join of events from Sensor C and 
Sensor N. Also this is correct according to the stream file regarding the first 
condition where events from Sensor C were supposed to have start timestamp 
later start timestamp of events from Sensor N. And if we look at the second 
condition which limit the duration we can see that the last events from the stream 
have not been matched. But if we change the duration time to for instance 3 then 
this query also match the last events. If we choose not to define any duration we 
end with many matched events which would have caused overlapping. Example 
on such matched event is for instance events addition to [2`3] also be [2`4] and 
continue from timestamp 2 till the end for instance [2`40] [2`60] and then to the 
same for next timestamp; [3`4], [3`5] and so on.  
 
The lines in bold font show the end results we are interested in. The quires 
together have according to the stream and conditions matched on the right 
events. Again if we had used different time for duration it would have affected this 
result as well.   
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But if we take a closer look at the timestamp we can see that instead of for 
instance [2`3] it is [2`4]. Reason for this is as mentioned in task 1 is the time-lag 
which occur when we want to use timestamp from a stream which has been 
created through the FOLD operator. 

 
 

 
Task 3:  

 
This task can resemble Task 2. In this task we 
only care about values from Sensor M and N 
and drop the part with Sensor C from the task 
above. We want the events from Sensor N 
where the value is ‘0’ and from Sensor M we 
want the events which report value ’1’ in the 
same time interval.  
 
The figure at the left is a snip of the stream file 
where we have picked out events from Sensor 
N and M where they matches to the tasks 
requirement. As we can see the last event has 
duration over 1minute.  
 
We start with creating a stream with events 
from Sensor N which have the  value ‘1’ and 
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another stream with events from Sensor M which have the value ‘0’. We call 
these streams ‘SensorN’ and ‘SensorM’. 
Further we are now joining these streams with the conditions which fulfill the 
requirement of this task. As pointed out we want only the events where they 
report the interested values at the same time interval. The queries are shown in 
the figure below. 

 
 
Because of the latter requirement which has been mentioned in our third query 
we are defining both timestamps to be equal. In the end we are also defining the 
duration which is limited up to 4 minutes.  The reason for this limitation is to avoid 
all the overlapping events as also explained in the previous tasks. The result of 
this query is shown in the figure below. 
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We expected answers like [6`7], [7`9], [11`11], [13`14] and [36`40] based on the 
stream file shown in the beginning of this task. These answers compared to the 
result file shown above only events in timestamp [6`7], [7`9] and [13`14] are 
similar. Timestamps which do not properly agree with the conditions given in the 
third query are [9`10], [11`12] and the missing event in time interval [36`40].  
 
Assumptions for why our query reported [9`10], [11`12] instead of the time 
interval [11`11] could be the time-lag which occur when joining two streams. Ergo 
for the same reason as in the previous tasks. 
 
 Through modifying the query by changing the timestamp definition in the third 
query we have discovered that the reason can also be how Cayuga read the 
events. For instance if we look at the line in bold font where ‘query3’ has reported 
the interval [7`9] Cayuga read event from ‘SensorN’ with value ‘0’. Therefore 
‘query3’ reports [9`10] in the next line, since the timestamp condition is fulfill 
because of the time-lag. 
 
Cayuga does not report an event in the time interval [36`40]. We try to modify the 
duration interval from 4 to for instance 5 but it still do not report this time interval. 
We modified the stream file to test out possible reason for why Cayuga is not 
reporting this event. After the time interval [36, 40] the next event comes in the 
interval [40`45]. In this next time interval we changed the event where M was 
reporting value ‘1’ and Sensor N was reporting value ‘0’. The reason for this was 
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because of the time-lag which happens. We expected Cayuga to report [36, 45] 
or [40`45]. But these changes did not affect the result, which still reported the 
same as the result file shown in this task. 
 

Task 4:  
 
The goal of this task is to make a query which will 
tell us when only one of Sensor N or Sensor M 
reports movement, i.e. value ‘1’.  The Figure to left 
shows a small part of the stream where we have 
picked out only events from Sensor N and M. In this 
figure we can see that from timestamp 1 including 
timestamp 3 only one of the sensors report value ‘1’ 
until timestamp 4, then both of the sensors report 
value ‘0’.  
 
The simplest thing we could do is to make a new 
stream which consists of every event Sensor N has 

reported in the stream, we do not bother about the value now. We do the same 
with events from Sensor M.  
 
 Further we might have made a query where we could have joined these streams 
with the condition that the value was not similar. But Cayuga does not have the 
operator which indicates ‘not equal’.   
 
Instead we try to solve this query by stating streams like the following. We first 
create streams ‘SensorN’ and ‘SensorM’. These streams consist every event 
which has been reported from the belonging Sensor. Further we in the third query 
join these streams with the FOLD operator. Figure below shows  the third query, 
on which conditions we have tried to join the two streams. 
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In the last query we tried to add the values from stream ‘SensorN’ with the values 
from stream ‘SensorM’ where the result should be 1. The thought behind this was 
that since we are only interested in events where one of them had the value’1’, 
than the other naturally had to report value ‘0’. Adding the values together would 
have been 1.  
 
But this query did not report any value at all. It has been modified many times, for 
instance using NEXT instead of FOLD. The reason for this is the operators cause 
to time-lag will this always be evaluated to FALSE and no result will come. 

 
Task 5:  

 
With this last task we want to know when both 
sensor N and M report movement at the same 
time. The lines in bold font in the figure to the 
left show where in the stream this happens. 
 
To match this event with our query we begin 
with creating two streams.  One for events from 
Sensor M and one for events from Sensor N. 
Both of the streams contain events which 
reported value ‘1’. 
 
Further we now join these two streams on the 
condition that their timestamps are equal. 
Because of previous tasks we are now familiar 
that if we do not limit this with duration we will 
end up with many event combinations. 
Therefore we limit our query with duration on 1 

minute. The Figure below shows how our queries look like. 
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Through the previous tasks we have also noticed the time-lag and what is leaded 
to. Therefore even this time our result is differing from the expected result. Result 
is shown in the figure below. 
 

 
 
The query matched on event in time interval [5`6] and [8`9], which is not what we 
expected according to our stream file. But if we look back to the snip from the 
stream which was shown in the starting of this task, we can see that the interval 
which is reported in the result file does cover the timestamps we was expecting, 
but has instead merged it. In the interval [5`6] and [8`9] is both of the sensors 
reporting value ‘1’. So with the time-lag explanation this query is actually 
reporting the correct time interval. But if we take a closer look to the snip of the 
stream file, we can see that Sensor M reports value ‘1’ with the timestamp 7. So 
the question is why this timestamp is not included in the result file which is 
expected since timestamp 8 which is the next event report value ‘1’ from Sensor 
N. If we had used NEXT this timestamp would also have been included, but with 
many combinations of time interval. The reason for why this is not included with 
this query might be how Cayuga read the events. Because if Cayuga have 
compared events from time interval 7 with the previous time interval 6, then it is 
correct that our query does not match. 
 

4.5 TelegraphCQ and Home Care Application Domain 

 
Our test case in TelegraphCQ consists of schema file, stream file, query files and 
output files. 

4.5.1 Design 
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The schema in TelegraphCQ is defined in a SQL file, shown in the figure below. 
In this file we create a stream by giving the stream a name, in this case 
‘streams.cep’, further we declare the attributes we are interested in. The 
attributes we use are ID, value, t0, t1 and tcqtime timestamp. 
 

 
Figure 14: TelegraphCQ schema.sql 

 

As we recall  from previous chapters TelegraphCQ has only one timestamp, t0. 
But since we want to use the same stream for both of the systems we define ‘t1’ 
also. The statement ‘tcqtime timestamp TIMESTAMPCOLOUMN’ gives the 
current time, this time is set externally.  
 
Stream in TelegraphCQ will accordingly to the schema contain <ID, value, t0, t1>. 
You can see in the figure below how the stream file in TelegraphCQ is.   
 

  
Figure 15: TelegraphCQ Stream.txt 
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As we can see this stream file does not contain the stream name and extra 
timestamp attributes as seen in the stream file for Cayuga. But otherwise we 
have used the same values and timestamps.  

4.5.2 Test Setup 

 
Compared to Cayuga only one query can be executed at a time. The queries are 
executed with the help of two main commands that are executed in each 
terminal. Example of the commands: 
 
Terminal 1:PSQL.sh <name of the query file> <selected output file> 
Terminal 2: cat <name of the stream file> | source.pl localhost 9556 
csvwrapper,< name of the stream> <sleep time> <lines per sleep time> 
 
(We have executed our queries with sleep time 1 and lines per sleep time 5). 

4.5.3 Queries 

 
This chapter will answer the tasks above. Queries made to solve the tasks will be 
shown with the result compared to the result we were expecting. In this chapter 
we will also explain why particular task is associated to the particular topic which 
was presented earlier.  
 

Task 1: 
 

Since this is a test we have replaced five minutes with two 
seconds in this task. To the left we have a snip of the stream 
file. Our query should give the first output from this part of the 
stream since in TelegraphCQ time stamping happen internal . 
We are now on timestamp 2 and 3. On two second the query 
manages to read two events from each sensor. Here in the 
stream is the first time average of values from Sensor A 
increase the average from values of Sensor B. In the pervious 

timestamp average of values from Sensor B was increasing.  
 
The query solved for this in TelegraphCQ starts with creating two new streams. 
One for the calculated average of value from Sensor A and one for the calculated 
average of value from Sensor B. With the WITH clause we have defined what the 
stream should consist of. TelegraphCQ makes it possible to let the user use the 
AVG operator. But if we use this operator without the window clause, we end up 
with error messages. The query will not execute without the window clause.  
Since the task asks for the last five minutes (two seconds) we define the window 
clause with ‘RANGE BY’ and with the ‘SLIDE BY’ statement to make sure it will 
be the last minutes (seconds). 
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In the end we join these two streams where the time matches and the average of 
Sensor A exceeds the average of Sensor B.  
 

The result shown in the figure on left side is from the query. 
This reflects the expected result and we assume this to be 
the right answer. The result shows the average of Sensor A 
over the given time in window clause where it increases the 
average of Sensor B. 
 
This query and its output show that TelegraphCQ allow us to 
perform aggregate operators on streams, the only thing which 
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is a must is the use of windowing. We also have to create new streams because 
this task required calculating average for two sensors. If it has been a simple task 
it might have not been necessary. 
 

Task 2:  
 
In TelegraphCQ an event contains only one timestamp, for this 
reason we can not know the duration of an event. We can 
assume it from the timestamp of the next event, but the time 
difference can also mean that the particular sensor has not 
reported anything in that time duration. For that reason as 
mentioned before our stream with consideration to TelegraphCQ 
consist of no duration time between t0 and t1. But because of 
this we avoid overlapping when events occur. Events with the 
equal timestamp occur with different sensors id so every tuple is 
unique this way. 

 
The Figure to left is a snip out of the stream file. The query should first notice this 
part of the stream. At the first timestamp Sensor N is reading value’1’, while 
Sensor C and Sensor M reads value ‘0’. In the next timestamp it is a “hit”, Sensor 
C has reported value ‘1’ and Sensor M is still reporting value ‘0’. 
 
Solving this query we have in mind that the following event from Sensor C has a 
timestamp later than event from Sensor N and the condition will restrict it to be 
the first next event. The condition is of course the value which the sensors 
reports. But how to define “meanwhile” is the challenge since events in 
TelegraphCQ does not have any duration time. A attempt to solve this could be 
the use of T1, but it would not work either also because it is no duration time.  
 
If we declare that T0 for events from Sensor M is the same as T0 for events from 
Sensor N, and T0 for events from Sensor C start later than T0 for events from 
Sensor N, we can not state that timestamp for Sensor C and M should also be he 
same. It can only be equal with one of them. The query was solved as following: 
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As we can see we have created three streams, first with value ‘1’ from Sensor N, 
second with value ‘1’ from Sensor C and the third stream with value ‘0’ from 
Sensor M. In the end we have to join it right.  
 
Our query did not report correct result, when it came to events from Sensor M. 
 
 

Task 3:   
 
We can see on the  left values from sensors N and M from a 
snip of the stream file. The first hit from the query should be 
from this part of the stream. The first time Sensor M reports 
value ‘1' is at timestamp 6, and since we are interested in value 
‘0’ from Sensor N after the M has reported, the “hit” should be 
then value reported from Sensor N next at the next timestamp, 
in our case timestamp 7. 
  
This task as well as the task above will test consecutiveness 

and see how it actually works. We start with creating two new streams, one with 
value ‘1’ from Sensor M and one with value ‘0’ from Sensor N. The challenge 
here is how to define “within a minute after”. It is implicitly that t0 for Sensor N 
has to be later than t0 for Sensor M. But we have to define a limit for timestamp 
y0 from Sensor M. Below is the solution we have used to hit on the right answer.  
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The last WHERE clause defines the limit for timestamp t0 for 
Sensor N. Since we are using integer format for our 
timestamp, this allows us to write the query like this.  
 
The result from the query, and which reflects the expected 
result is shown on the left side. We can see from the value 
with the timestamp that the result according to the stream is 
correct. 

 
If we look at the last line in the result figure, the query has also managed to 
match on events with duration. The timestamp for event from sensor M is (31, 
33). And the timestamp for the event from Sensor N is (32, 34). From this result 
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we can then assume that next event in TelegraphCQ is an event which has the 
start timestamp after its start timestamp of the first event.  
 
 

Task 4:  
 

This task is meant to reflect concurrency. We will through this 
task see if TelegraphCQ manages to solve this kind of tasks. 
Let us see on the figure to left which contain some few values 
from Sensor N and M got from the stream file. We can see that 
until timestamp 4 one of the report movement by reading value 
‘1’. So our query should not report timestamp 4 considering 
this part of the stream.  
 
The query we defined begins with creating two streams, one 
with all the values from Sensor N and the other with all the 
values from Sensor M.  It is in the last SELECT clause we talk 
about the values when joining the two streams together as 
seen in the figure below. 
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In the last WHERE clause we define that the timestamp from each stream should 
be the same when their values differ. With other words, when their values don’t 
show the same values, either if it is the value ‘1’ or value ‘0’. 

 
The result reflects the correct assumed answer and is 
shown in the figure to the left. The result shows us the 
value with the timestamp. We can see here by 
comparing it with the stream file that they have manage 
to skip timestamp 4 which would have been wrong. 
 
This task shows us that TelegraphCQ can manage to 
join and match on concurrency. 
 
 
 
 

 
Task 5:  

 
This task is very alike the task above, but now we have to 
search in the stream where they have the same value as 
well as timestamp. The Figure to the left shows us a snip of 
the stream file where the query should hit on. This is the only 
hit, since this is the only place in the stream where Sensor N 
and M report value ‘1’ at the same time. 

 
We could have changed only the last line in the query above, but chose to create 
new streams of Sensor N and Sensor M which only contains value ‘1’. In the end 
we joined the two streams where the timestamp was the same.  
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The result according to the stream was correct. This is evidence on how 
TelegraphCQ manages to join two streams which are created 
from one and the same stream and hits on the demanded 
event. 
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4.6 Conclusion 

 
The tasks have given us insight on how both Cayuga and TelegraphCQ manage 
and resolve the different topics. The table below is a general view describing with 
the signs; + and – if the system have managed to solve the topics or not 
respectively. There are some topics which has been resolved partly this is 
pointed out with +/-. 
 

Topic\System Cayuga TelegraphCQ 

Time semantics + - 

Aggregation - + 

Consecutiveness +/- + 

Concurrency +/- + 

Optimization - + 

 

Tuple definition in Cayuga consists of id; indicating the sensor it belongs to, 
value, start timestamp (T0) and end timestamp (T1). The last mentioned has 
been an advantage in Cayuga. Since Cayuga has two timestamps it is possible to 
calculate duration, in addition to have a built in operator like DUR to also 
calculate duration. To have the ability to calculate the duration became important 
in tasks where we had to take into consideration of terms like; same time period, 
meanwhile, within a minute and same time. 
 
Tuples in TelegraphCQ compared to Cayuga originally do not have an end 
timestamp (T1). Truly we have used T1 in our test stream file, but an event in 
TelegraphCQ has no duration.  
 
If it is important to know the duration for one particular event, Cayuga has the 
possibility to answer this question because of T1, compared to the originally tuple 
definition of TelegraphCQ.  
 
Aggregation is attempted in task 1 where the systems are supposed to resolve 
average. TelegraphCQ solve this task by allowing the use of aggregation 
functions, the syntax is alike SQL. The only thing which is demanded is the use of 
window semantic which is needed because we are in general facing infinite 
streams in real-time.  
 
Compared to TelegraphCQ, Cayuga does not support any of the five standard 
types of aggregates and does not have any other built in functions to replace 
them neither. Aggregates can however be constructed without the built in 
functions. But their query fails and neither does it work with sub queries where we 
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divide the whole query in several parts. An attempt to begin from the base and 
define the functions does not work either. One of the problems which occurs 
when we divide the query or start from the bottom is the time-lag which after 
some queries is difficult to have control over. 
 
In task 2 which reflect both consecutiveness and concurrency, Cayuga manage 
to report a result, but because of the time-lag it is not the exact expected result. 
In Cayuga time-lag occurs when for instance creating a new stream with the help 
of FOLD or NEXT. In addition to time-lag Cayuga also merges for instance 
events from two to one. If you want events with duration 1, Cayuga do reports 
more than demanded. It does not have to be the totally wrong result, but more 
than the expected result.  
 

This incident also applies to the next task which tests the consecutiveness topic. 
Cayuga makes new timestamps after joining two streams with the FOLD or NEXT 
operator. To use these timestamps further is almost impossible. An attempt on 
this has also been tested by renaming the timestamp in the SELECT statement 
when joining. But to use these new renamed timestamp is giving no result. 
 
The last two tasks where we try to resolve concurrency Cayuga does not report 
anything in task 4. Cayuga describes its query language as SQL-like, but it not 
only does not support the five standard aggregates, but also for instance does 
not have <>. Many attempts were done, but none of the queries did report 
anything near the correct answer or did not report any answer at all. But in the 
last query Cayuga reported result which was very close to the expected result. As 
mentioned earlier time-lag occurs and events are been merged. In this task 
several events have been merged to one. This is not a problem if they do not 
contain timestamps where the condition which has been set is not fulfilled, but 
which happen. In addition to the extra timestamp which had been added in the 
most incident the last events which should be included in the end result is 
missing. 
 
In contrast to Cayuga TelegraphCQ reports the expected results for every task 
except the second task. The second task reflects the topic consecutiveness and 
concurrency together. TelegraphCQ did resolve tasks where it was focus on only 
one of the topics without making very complex queries. But due to the second 
task we discovered that TelegraphCQ does not manage to resolve concurrency 
and consecutiveness together, where it has to take care of three events 
timestamp. As mentioned, TelegraphCQ does not consider events to have a 
duration, which might have solved this task. Then we could have defined duration 
over several time intervals when joining streams. 
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5  

 

 

Conclusion and Future Work 
 
 
In this thesis we discover the differences and similarities between Cayuga and 
TelegraphCQ. To underline these differences and similarities we focus on vital 
and relevant topics. Through comparing these two systems we also discover if 
they are capable of being used as a technical solution in a home care 
environment, where the outcome is crucial.  
 
The comparison is done in two parts; theoretical and practical. The theoretical 
part focus on topics like: focus on the topics; tuple/event definition, aggregation, 
consecutiveness, concurrency and optimization. 
 
The practical part is based on the theoretical part. In this part we go through five 
relevant tasks and analyze and evaluate how well the systems in practice can be 
used in a home care environment. The goal is see how the two systems solve the 
same type of queries on the same event stream. 
 
Through research and study we conclude that the available information about 
Cayuga is sparse. Detailed information and evidence is missing about some 
topics which we are interested in. Cayuga gives the impression of being able to 
solve different subscriptions through their query language, but most of the 
solutions are given only in algebra. When testing these statements in the 
practical part it turns out that the query language is not capable of doing what it 
has been proposed to do in the theoretical part. This in fact reveals that Cayuga 
might not be on the development stage it claims to be on. For this reason none of 
the five tasks reported results as expected or executed completely. 
 
In the theoretical part we also discovered that Cayuga merges time intervals 
when joining events with different timestamps. This we experienced in the 
practical part as varying. In some incidents it did apply and some not. The 
incidents which it applied for anyhow did not merge the right timestamps. Time-
lag occurred during the joining. Also this caused to not provide the expected 
results.  
 
Overall the query language of Cayuga did not work as described in the theoretical 
part. The expected result based on the given statements in the available 
information differs and reflect lack of ability to complete different tasks.  
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But we find the ability to define duration very useful in Cayuga. This enables us to 
define consecutiveness and concurrency in a query. But as mentioned the main 
problem is how streams are joined.  
 
TelegraphCQ manages to give evidence and information on a more detailed level 
in contrast to Cayuga. Examples on different topics are given and development is 
shown through discussion and founding. Window semantics with its different 
options is an example on this. Window semantics is a crucial function for 
TelegraphCQ and claims to make it able to solve most of the topics we are 
interested in. This was proven in the practical part, where almost every task 
completed with the correct expected result. 
 
TelegraphCQ completed the task with not much complexity. The query containing 
both consecutiveness and concurrency showed to be too much to handle for 
TelegraphCQ and the query failed. Tuples containing a real end timestamp , thus 
describing the events duration, could have been utilized to provide the expected 
correct result.    
 
Some of the most important criteria for a system in a home care environment are 
to report the correct value and time in addition to manage large amount of data. 
In consideration of this we conclude that compared to Cayuga, TelegraphCQ is 
the most capable system for the home care domain. The reason for this is that 
Cayuga does not report the correct value at times and neither the time interval. 
And part of the query language is insufficient and too complex to perform 
correctly. 
 
TelegraphCQ in contrast reports the correct value and time interval with the 
possibility to use built in functions from SQL, and does not demand queries with 
lot of complexity. If TelegraphCQ also could support the duration function as 
Cayuga it might have resolved the task where it failed. It is difficult to find a 
replacement for the duration function in TelegraphCQ. Another solution is to have 
the possibility to define duration through an end timestamp defined explicitly  in 
the tuples. 
 
TelegraphCQ compared to Cayuga with focus on the topics with in the home care 
domain is a more capable system to use. Implementation to execute queries with 
both consecutiveness and concurrency could be a plus for TelegraphCQ. It is 
now only possible to determine the successor with foundation on start timestamp, 
but we miss the ability to determine the successor based on the end timestamp.  
 
During the discussions in this thesis  we could see that there is much more to do 
and learn. In the beginning of this thesis the first question which arise is if it is big 
dissimilarity between CEP and DSMS. Our opinion is that CEP might be a DSMS 
but more investigation and research is needed to assume this completely.    
 
Optimization was a topic which is not much discussed in this thesis because of 
the limited information. By analyzing Cayuga’s algebra more  in the depth we 
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assume many unanswered question will be answered. But it is a process in itself 
to translate the algebra information into the query language level.  
 
The duration was a drawback in TelegraphCQ, to investigate a solution for this 
will make TelegraphCQ a very strong choice concerning home care domain.  
 
Cayuga was not a relevant system for a home care domain, but it will be 
interesting to compare TelegraphCQ with other system which support real-time 
analysis of data streams. 
 
 
 
 
 
  



60 

 

  



61 

 

References 

 

 [CAGP] Alan J. Demers, Johannes Gehrke, Biswanath Panda, Mirek 
Riedewald, Varun Sharma, Walker M. White: Cayuga: A General 
Purpose Event Monitoring System. CIDR 2007 412-422 

[CEP]   http://complexevents.com/ 

[CHPE] Lars Brenna, Alan J. Demers, Johannes Gehrke, Mingsheng 
Hong, Joel Ossher, Biswanath Panda, Mirek Riedewald, Mohit 
Thatte, Walker M. White: Cayuga: A high-performance event 
processing engine. SIGMOD Conference 2007: 1100-1102. 

[CMAN]  Mingsheng Hong.Cayuga User Manual. 2008 

 [COM ] David Luckham. A short History of Complex Event Processing Part 
1: Beginnings. 2007 

[CPS] David C. Luckham and Brian Frasca. Complex Event 
ProceSassing in Distributed Systems. Stanford University 
Technical Report CSL-TR-98-754, March 1998, 28 pages. 

[COM2] David Luckham. A short History of Complex Event Processing Part 
2: the rise of CEP. 2007 

[CWW]  http://www.cs.cornell.edu/database/cayuga/ 

[DSS] Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J. Models 
and issues in data stream systems; PODS '02: Proceedings of the 
twenty-first ACM SIGMOD-SIGACT-SIGART symposium on 
Principles of database systems. 2002 

[DSM] Golab, L., Tamer Ozsu, M. Issues in data stream management"; 
SIGMOD Rec., Volume 32, No. 2. 2003 

[EDY]  Samuel Madden, Mehul Shah, Joseph M. Hellerstein, 
Vijayshankar Raman. Continuously Adaptive Continuous 
Queries over Streams. UC Berkeley, IBM Almaden Research 
Center  

[GIGA]   Chuck Cranor, Y. Gao, Theodore Johnson, Vladislav Shkapenyuk, 
and Oliver Spataschek. Gigascope: High performance network 
monitoring with an sql interface. In Proceedings of the 21st ACM 
SIGMOD International Conference on Management of Data / 
Principles of Database Systems, June 2002. 

[ICI] Lindeberg, M. Data Stream Management Systems (DSMS) – 
Introduction, Concepts and Issues; University of Oslo, INF5100 
Advanced Database Systems lecture notes, 10/10/2007 



62 

 

[INF5090]  Vera Goebel, Thomas Plagemann Data Stream Management 
Systems – Applications, Concepts and Systems; University of 
Oslo, INF5190 Advanced Topics in Distribuerte Systems lecture 
notes, 2008 

[MTJ] Jarle Søberg. Implementation,and Evaluation of Network 
Monitoring Tasks with the TelegraphCQ Data Stream Management 
System. Master Thesis 2006 

 
[NEXT]  Walker White, Mirek Riedewald, Johannes Gehrke, Alan Demers 

What is “Next” in Event Processing?.Cornell University 2006 
 
[TCDP]   Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael 

J. Franklin, Joseph M. Hellerstein, Wei Hong, Sailesh 
Krishnamurthy, Samuel R. Madden, Vijayshankar Raman, Fred 
Reiss, and Mehul A. Shah. TelegraphCQ: Continuous Dataflow 
Processing for an Uncertain World. CIDR 2003 

 [TEPS]  A. Demers, J. Gehrke, M. Hong, M. Riedewald, and W. White. 
Towards expressive publish/subscribe systems. In Proc. EDBT, 
2006 

 [TWW]   http://telegraph.cs.berkeley.edu/telegraphcq/v2.1/ 

[UCEP]   Jarle Søberg, André Rodrigues, Vera Goebel, and Thomas 
Plagemann. Using Complex Event Processing of Data Streams for 
Movement Tracking in Home Care Environments 

 [WSN01]  I. F.  Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirc. 
Wireless sensor networks: a survey. Computer Networks, 2002 
Volume 38, Issure 4, 15 March 2002, Pages 393-422. 

[QPSN]  Y. Yao and J. E. Gehrke. Query processing for sensor networks. In 
Proceedings of the 2003 Conference on Innovative Data Systems 
Research (CIDR 2003), January 2003. 

 

 

 

  



63 

 

Appendix   

 

CAYUGA  

 

Stream.txt 

 

A` 20` 1` 1` Sensors` 1` 1 

B` 36` 1` 1` Sensors` 1` 1 

C` 0` 1` 1` Sensors` 1` 1 

N` 1` 1` 1` Sensors` 1` 1 

M` 0` 1` 1` Sensors` 1` 1 

A` 26` 2` 2` Sensors` 2` 2 

B` 19` 2` 2` Sensors` 2` 2 

C` 0` 2` 2` Sensors` 2` 2 

N` 1` 2` 2` Sensors` 2` 2 

M` 0` 2` 2` Sensors` 2` 2 

A` 36` 3` 3` Sensors` 3` 3 

B` 15` 3` 3` Sensors` 3` 3 

C` 1` 3` 3` Sensors` 3` 3 

N` 1` 3` 3` Sensors` 3` 3 

M` 0` 3` 3` Sensors` 3` 3 

A` 35` 4` 4` Sensors` 4` 4 

B` 33` 4` 4` Sensors` 4` 4 

C` 1` 4` 4` Sensors` 4` 4 

N` 0` 4` 4` Sensors` 4` 4 

M` 0` 4` 4` Sensors` 4` 4 

A` 28` 5` 5` Sensors` 5` 5 

B` 8` 5` 5` Sensors` 5` 5 

C` 1` 5` 5` Sensors` 5` 5 

N` 1` 5` 5` Sensors` 5` 5 

M` 0` 5` 5` Sensors` 5` 5 

A` 37` 6` 6` Sensors` 6` 6 

B` 28` 6` 6` Sensors` 6` 6 

C` 0` 6` 6` Sensors` 6` 6 

N` 0` 6` 6` Sensors` 6` 6 

M` 1` 6` 6` Sensors` 6` 6 

A` 17` 7` 7` Sensors` 7` 7 

B` 31` 7` 7` Sensors` 7` 7 

C` 1` 7` 7` Sensors` 7` 7 

N` 0` 7` 7` Sensors` 7` 7 

M` 1` 7` 7` Sensors` 7` 7 

A` 4` 8` 8` Sensors` 8` 8 

B` 28` 8` 8` Sensors` 8` 8 
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C` 1` 8` 8` Sensors` 8` 8 

N` 1` 8` 8` Sensors` 8` 8 

M` 0` 8` 8` Sensors` 8` 8 

A` 40` 9` 9` Sensors` 9` 9 

B` 31` 9` 9` Sensors` 9` 9 

C` 1` 9` 9` Sensors` 9` 9 

N` 0` 9` 9` Sensors` 9` 9 

M` 1` 9` 9` Sensors` 9` 9 

A` 12` 10` 10` Sensors` 10` 10 

B` 9` 10` 10` Sensors` 10` 10 

C` 0` 10` 10` Sensors` 10` 10 

N` 0` 10` 10` Sensors` 10` 10 

M` 0` 10` 10` Sensors` 10` 10 
A` 7` 11` 11` Sensors` 11` 11 
B` 37` 11` 11` Sensors` 11` 11 
C` 0` 11` 11` Sensors` 11` 11 
N` 0` 11` 11` Sensors` 11` 11 
M` 1` 11` 11` Sensors` 11` 11 
A` 30` 12` 12` Sensors` 12` 12 
B` 13` 12` 12` Sensors` 12` 12 
C` 1` 12` 12` Sensors` 12` 12 
N` 0` 12` 12` Sensors` 12` 12 
M` 0` 12` 12` Sensors` 12` 12 
A` 19` 13` 13` Sensors` 13` 13 
B` 29` 13` 13` Sensors` 13` 13 
C` 0` 13` 13` Sensors` 13` 13 
N` 0` 13` 13` Sensors` 13` 13 
M` 1` 13` 13` Sensors` 13` 13 
A` 29` 14` 14` Sensors` 14` 14 
B` 15` 14` 14` Sensors` 14` 14 
C` 0` 14` 14` Sensors` 14` 14 
N` 0` 14` 14` Sensors` 14` 14 
M` 1` 14` 14` Sensors` 14` 14 
A` 14` 27` 27` Sensors` 27` 27 
B` 36` 27` 27` Sensors` 27` 27 
C` 1` 27` 27` Sensors` 27` 27 
N` 1` 27` 27` Sensors` 27` 27 
M` 1` 27` 27` Sensors` 27` 27 
A` 23` 28` 29` Sensors` 28` 29 
B` 12` 28` 29` Sensors` 28` 29 
C` 1` 28` 29` Sensors` 28` 29 
N` 0` 28` 29` Sensors` 28` 29 
M` 0` 28` 29` Sensors` 28` 29 
A` 1` 31` 33` Sensors` 31` 33 
B` 14` 31` 33` Sensors` 31` 33 
C` 1` 31` 33` Sensors` 31` 33 
N` 1` 31` 33` Sensors` 31` 33 
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M` 0` 31` 33` Sensors` 31` 33 
A` 37` 32` 35` Sensors` 32` 35 
B` 37` 32` 35` Sensors` 32` 35 
C` 1` 32` 35` Sensors` 32` 35 
N` 0` 32` 35` Sensors` 32` 35 
M` 0` 32` 35` Sensors` 32` 35 
A` 16` 36` 40` Sensors` 36` 40 
B` 6` 36` 40` Sensors` 36` 40 
C` 1` 36` 40` Sensors` 36` 40 
N` 0` 36` 40` Sensors` 36` 40 
M` 1` 36` 40` Sensors` 36` 40 
A` 40` 40` 45` Sensors` 40` 45 
B` 4` 40` 45` Sensors` 40` 45 
C` 1` 40` 45` Sensors` 40` 45 
N` 1` 40` 45` Sensors` 40` 45 
M` 0` 40` 45` Sensors` 40` 45 
A` 22` 57` 60` Sensors` 57` 60 
B` 41` 57` 60` Sensors` 57` 60 
C` 1` 57` 60` Sensors` 57` 60 
N` 1` 57` 60` Sensors` 57` 60 
M` 0` 57` 60` Sensors` 57` 60 
 

SensorsSchema.xml 

 

<?xml version="1.0" encoding="utf-8"?> 

<StreamType xmlns="http://tempuri.org/SensorsSchema.xsd" Name="Sensors"> 

        <AttrNameType Name="ID" Type="string"/> 

        <AttrNameType Name="Value" Type="int"/> 

        <AttrNameType Name="T0" Type="int"/> 

        <AttrNameType Name="T1" Type="int"/> 

</StreamType> 

 

Queries 

 

:::::::::::::: 

cayuga1_1.txt 

:::::::::::::: 

SELECT *, Value AS Asum, 1 AS Acount, Value AS Aavg 

FROM FILTER{ID = 'A' AND Value > 0 } Sensors 

PUBLISH SensorsA 

 

:::::::::::::: 

cayuga1_2.txt 

:::::::::::::: 
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SELECT *, Value AS Bsum, 1 AS Bcount, Value AS Bavg 

FROM FILTER{ID = 'B' and Value > 0} Sensors 

PUBLISH SensorsB 

:::::::::::::: 

cayuga1_3.txt 

:::::::::::::: 

SELECT *, Value 

FROM SensorsA NEXT{ } SensorsB 

PUBLISH SensorsAB 

:::::::::::::: 

cayuga1_4.txt 

:::::::::::::: 

SELECT * 

FROM SensorsAB FOLD{, 

                               $1.T0 < $2.T1 + 5, 

                               $.Asum + $2.Value AS Asum, 

                               $.Bsum + $2.Value AS Bsum, 

                               $.Acount + 1 AS Acount, 

                               $.Bcount + 1 AS Bcount, 

                               ($.Asum + $2.Value)/($.Acount + 1) AS Aavg, 

                               ($.Bsum + $2.Value)/($.Bcount + 1) AS Bavg} 

SensorsAB 

PUBLISH SensorsABagg 

:::::::::::::: 

cayuga1_5.txt 

:::::::::::::: 

SELECT 

FROM FILTER{DUR >= 5 AND Aavg > Bavg} SensorsABagg 

PUBLISH Query1 

 

 

 

:::::::::::::: 

cayuga2_1.txt 

:::::::::::::: 

SELECT ID, T0, T1, Value 

FROM FILTER {ID = 'N' AND Value = 1} Sensors 

PUBLISH SensorN 

:::::::::::::: 

cayuga2_2.txt 

:::::::::::::: 

SELECT ID, T0, T1, Value 

FROM FILTER {ID = 'C' AND Value = 1 } Sensors 

PUBLISH SensorC 

:::::::::::::: 
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cayuga2_3.txt 

:::::::::::::: 

SELECT T0, T1, Value 

FROM SensorN FOLD {, ( $1.T0 < $2.T0 ) as T0 AND ( $1.T1 < $2.T1 ) as T1 AND DUR = 1 ,} 

SensorC 

PUBLISH SensorNC 

:::::::::::::: 

cayuga2_4.txt 

:::::::::::::: 

SELECT ID, T0, T1, Value 

FROM FILTER {ID = 'M' AND Value = 0 } Sensors 

PUBLISH SensorM 

:::::::::::::: 

cayuga2_5.txt 

:::::::::::::: 

SELECT T0, T1 

FROM SensorNC NEXT {$1.T0 = T0 AND $1.T1 = T1} SensorM 

PUBLISH Query2 

 

 

 

:::::::::::::: 

cayuga3_1.txt 

:::::::::::::: 

SELECT * 

FROM FILTER {ID = 'M' AND Value = 1} Sensors 

PUBLISH SensorM 

:::::::::::::: 

cayuga3_2.txt 

:::::::::::::: 

SELECT * 

FROM FILTER {ID = 'N' AND Value = 0 } Sensors 

PUBLISH SensorN 

:::::::::::::: 

cayuga3_3.txt 

:::::::::::::: 

SELECT * 

FROM SensorM FOLD {, $1.T0 = $.T0 AND $1.T1 = $.T1 AND DUR <= 4 ,} SensorN 

PUBLISH Query3 

 

 

 

:::::::::::::: 

cayuga4_1.txt 

:::::::::::::: 
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SELECT ID, Value, T0, T1 

FROM FILTER {ID = 'M' AND (Value < 2) AS Value } Sensors 

PUBLISH SensorM 

 

:::::::::::::: 

cayuga4_2.txt 

:::::::::::::: 

SELECT ID, Value, T0, T1 

FROM FILTER {ID = 'N' AND (Value < 2) AS Value } Sensors 

PUBLISH SensorN 

 

:::::::::::::: 

cayuga4_3.txt 

:::::::::::::: 

SELECT * 

FROM SensorN FOLD { , $1.T0 = $2.T0 AND $1.T1 = $2.T1  AND $1.Value + $2.Value = 1 , } 

SensorM 

PUBLISH Query4 

 

 

 

:::::::::::::: 

cayuga5_1.txt 

:::::::::::::: 

SELECT ID, Value, T0, T1 

FROM FILTER {ID = 'N' AND Value = 1} Sensors 

PUBLISH SensorN 

 

:::::::::::::: 

cayuga5_2.txt 

:::::::::::::: 

SELECT ID, Value, T0, T1 

FROM FILTER {ID = 'M' AND Value = 1} Sensors 

PUBLISH SensorM 

:::::::::::::: 

cayuga5_3.txt 

:::::::::::::: 

SELECT * 

FROM SensorN FOLD {, $1.T0 = T0 AND $1.T1 = T1 AND DUR = 1 , } SensorM 

PUBLISH Query5 

 

 

Config files 
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<?xml version="1.0" encoding="utf-8"?> 

<Config xmlns="http://tempuri.org/ConfigSchema.xsd"> 

  <Option Name="QueryInputMode" Value="FILE"/> 

  <Option Name="AirQuery" Value="false"/> 

  <Option Name="QueryInputName" 

Value="req3/queries/cayuga1_1.txt;req3/queries/cayuga1_2.txt;req3/queries/cayuga1_

3.txt;req3/queries/cayuga1_4.txt;req3/quer 

ies/cayuga1_5.txt"/> 

  <Option Name="QueryNumber" Value="5"/> 

  <Option Name="StreamSchema" Value="req3/schemas/SensorsSchema.xml"/> 

  <Option Name="DocInputMode" Value="FILE"/> 

  <Option Name="DocInputName" Value="req3/streams/Stream.txt"/> 

  <Option Name="DocInputStream" Value="Sensors"/> 

  <Option Name="DocNumber" Value="1"/> 

  <Option Name="Verbose" Value="true"/> 

  <Option Name="RecordTrace" Value="true"/> 

  <Option Name="Measure" Value="true"/> 

  <Option Name="CheckPointFrequency" Value="1"/> 

  <Option Name="CheckPointAndTraceDir" Value="log/"/> 

  <Option Name="AttrDelimiter" Value="`"/> 

</Config> 

 

 

 

<?xml version="1.0" encoding="utf-8"?> 

<Config xmlns="http://tempuri.org/ConfigSchema.xsd"> 

  <Option Name="QueryInputMode" Value="FILE"/> 

  <Option Name="AirQuery" Value="false"/> 

  <Option Name="QueryInputName" 

Value="req3/queries/cayuga2_1.txt;req3/queries/cayuga2_2.txt;req3/queries/cayuga2_

3.txt;req3/queries/cayuga2_4.txt;req3/quer 

ies/cayuga2_5.txt"/> 

  <Option Name="QueryNumber" Value="5"/> 

  <Option Name="StreamSchema" Value="req3/schemas/SensorsSchema.xml"/> 

  <Option Name="DocInputMode" Value="FILE"/> 

  <Option Name="DocInputName" Value="req3/streams/Stream.txt"/> 

  <Option Name="DocInputStream" Value="Sensors"/> 

  <Option Name="DocNumber" Value="1"/> 

  <Option Name="Verbose" Value="true"/> 

  <Option Name="RecordTrace" Value="true"/> 

  <Option Name="Measure" Value="true"/> 

  <Option Name="CheckPointFrequency" Value="1"/> 

  <Option Name="CheckPointAndTraceDir" Value="log/"/> 

  <Option Name="AttrDelimiter" Value="`"/> 

</Config> 
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<?xml version="1.0" encoding="utf-8"?> 

<Config xmlns="http://tempuri.org/ConfigSchema.xsd"> 

  <Option Name="QueryInputMode" Value="FILE"/> 

  <Option Name="AirQuery" Value="false"/> 

  <Option Name="QueryInputName" 

Value="req3/queries/cayuga3_1.txt;req3/queries/cayuga3_2.txt;req3/queries/cayuga3_

3.txt"/> 

  <Option Name="QueryNumber" Value="3"/> 

  <Option Name="StreamSchema" Value="req3/schemas/SensorsSchema.xml"/> 

  <Option Name="DocInputMode" Value="FILE"/> 

  <Option Name="DocInputName" Value="req3/streams/Stream.txt"/> 

  <Option Name="DocInputStream" Value="Sensors"/> 

  <Option Name="DocNumber" Value="1"/> 

  <Option Name="Verbose" Value="true"/> 

  <Option Name="RecordTrace" Value="true"/> 

  <Option Name="Measure" Value="true"/> 

  <Option Name="CheckPointFrequency" Value="1"/> 

  <Option Name="CheckPointAndTraceDir" Value="log/"/> 

  <Option Name="AttrDelimiter" Value="`"/> 

</Config> 

 

 

 

<?xml version="1.0" encoding="utf-8"?> 

<Config xmlns="http://tempuri.org/ConfigSchema.xsd"> 

  <Option Name="QueryInputMode" Value="FILE"/> 

  <Option Name="AirQuery" Value="false"/> 

  <Option Name="QueryInputName" 

Value="req3/queries/cayuga4_1.txt;req3/queries/cayuga4_2.txt;req3/queries/cayuga4_

3.txt"/> 

  <Option Name="QueryNumber" Value="3"/> 

  <Option Name="StreamSchema" Value="req3/schemas/SensorsSchema.xml"/> 

  <Option Name="DocInputMode" Value="FILE"/> 

  <Option Name="DocInputName" Value="req3/streams/Stream.txt"/> 

  <Option Name="DocInputStream" Value="Sensors"/> 

  <Option Name="DocNumber" Value="1"/> 

  <Option Name="Verbose" Value="true"/> 

  <Option Name="RecordTrace" Value="true"/> 

  <Option Name="Measure" Value="true"/> 

  <Option Name="CheckPointFrequency" Value="1"/> 

  <Option Name="CheckPointAndTraceDir" Value="log/"/> 

  <Option Name="AttrDelimiter" Value="`"/> 

</Config> 
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<?xml version="1.0" encoding="utf-8"?> 

<Config xmlns="http://tempuri.org/ConfigSchema.xsd"> 

  <Option Name="QueryInputMode" Value="FILE"/> 

  <Option Name="AirQuery" Value="false"/> 

  <Option Name="QueryInputName" 

Value="req3/queries/cayuga5_1.txt;req3/queries/cayuga5_2.txt;req3/queries/cayuga5_

3.txt"/> 

  <Option Name="QueryNumber" Value="3"/> 

  <Option Name="StreamSchema" Value="req3/schemas/SensorsSchema.xml"/> 

  <Option Name="DocInputMode" Value="FILE"/> 

  <Option Name="DocInputName" Value="req3/streams/Stream.txt"/> 

  <Option Name="DocInputStream" Value="Sensors"/> 

  <Option Name="DocNumber" Value="1"/> 

  <Option Name="Verbose" Value="true"/> 

  <Option Name="RecordTrace" Value="true"/> 

  <Option Name="Measure" Value="true"/> 

  <Option Name="CheckPointFrequency" Value="1"/> 

  <Option Name="CheckPointAndTraceDir" Value="log/"/> 

  <Option Name="AttrDelimiter" Value="`"/> 

</Config> 

 

Witnesses.txt 

 

:::::::::::::: 

Task 1 

:::::::::::::: 

  

   - 

:::::::::::::: 

Task 2 

:::::::::::::: 

12`WITNESS`ID`N`T0`1`T1`1`Value`1`SensorN`1`1` 

12`WITNESS`ID`M`T0`1`T1`1`Value`0`SensorM`1`1` 

12`WITNESS`ID`N`T0`2`T1`2`Value`1`SensorN`2`2` 

12`WITNESS`ID`M`T0`2`T1`2`Value`0`SensorM`2`2` 

12`WITNESS`ID`C`T0`3`T1`3`Value`1`SensorC`3`3` 

12`WITNESS`ID`N`T0`3`T1`3`Value`1`SensorN`3`3` 

12`WITNESS`ID`M`T0`3`T1`3`Value`0`SensorM`3`3` 

10`WITNESS`T0`3`T1`3`Value`1`SensorNC`2`3` 

12`WITNESS`ID`C`T0`4`T1`4`Value`1`SensorC`4`4` 

12`WITNESS`ID`M`T0`4`T1`4`Value`0`SensorM`4`4` 
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10`WITNESS`T0`4`T1`4`Value`1`SensorNC`3`4` 

8`WITNESS`T0`4`T1`4`Query2`2`4` 

12`WITNESS`ID`C`T0`5`T1`5`Value`1`SensorC`5`5` 

12`WITNESS`ID`N`T0`5`T1`5`Value`1`SensorN`5`5` 

12`WITNESS`ID`M`T0`5`T1`5`Value`0`SensorM`5`5` 

8`WITNESS`T0`5`T1`5`Query2`3`5` 

12`WITNESS`ID`C`T0`7`T1`7`Value`1`SensorC`7`7` 

12`WITNESS`ID`C`T0`8`T1`8`Value`1`SensorC`8`8` 

12`WITNESS`ID`N`T0`8`T1`8`Value`1`SensorN`8`8` 

12`WITNESS`ID`M`T0`8`T1`8`Value`0`SensorM`8`8` 

12`WITNESS`ID`C`T0`9`T1`9`Value`1`SensorC`9`9` 

10`WITNESS`T0`9`T1`9`Value`1`SensorNC`8`9` 

12`WITNESS`ID`M`T0`10`T1`10`Value`0`SensorM`10`10` 

8`WITNESS`T0`10`T1`10`Query2`8`10` 

12`WITNESS`ID`C`T0`12`T1`12`Value`1`SensorC`12`12` 

12`WITNESS`ID`M`T0`12`T1`12`Value`0`SensorM`12`12` 

12`WITNESS`ID`C`T0`27`T1`27`Value`1`SensorC`27`27` 

12`WITNESS`ID`N`T0`27`T1`27`Value`1`SensorN`27`27` 

12`WITNESS`ID`C`T0`28`T1`29`Value`1`SensorC`28`29` 

12`WITNESS`ID`M`T0`28`T1`29`Value`0`SensorM`28`29` 

12`WITNESS`ID`C`T0`31`T1`33`Value`1`SensorC`31`33` 

12`WITNESS`ID`N`T0`31`T1`33`Value`1`SensorN`31`33` 

12`WITNESS`ID`M`T0`31`T1`33`Value`0`SensorM`31`33` 

12`WITNESS`ID`C`T0`32`T1`35`Value`1`SensorC`32`35` 

12`WITNESS`ID`M`T0`32`T1`35`Value`0`SensorM`32`35` 

12`WITNESS`ID`C`T0`36`T1`40`Value`1`SensorC`36`40` 

12`WITNESS`ID`C`T0`40`T1`45`Value`1`SensorC`40`45` 

12`WITNESS`ID`N`T0`40`T1`45`Value`1`SensorN`40`45` 

12`WITNESS`ID`M`T0`40`T1`45`Value`0`SensorM`40`45` 

12`WITNESS`ID`C`T0`57`T1`60`Value`1`SensorC`57`60` 

12`WITNESS`ID`N`T0`57`T1`60`Value`1`SensorN`57`60` 

12`WITNESS`ID`M`T0`57`T1`60`Value`0`SensorM`57`60` 

 

 

:::::::::::::: 

Task 3 

:::::::::::::: 

12`WITNESS`ID`N`Value`0`T0`4`T1`4`SensorN`4`4` 

12`WITNESS`ID`N`Value`0`T0`6`T1`6`SensorN`6`6` 

12`WITNESS`ID`M`Value`1`T0`6`T1`6`SensorM`6`6` 

12`WITNESS`ID`N`Value`0`T0`7`T1`7`SensorN`7`7` 

12`WITNESS`ID`M`Value`1`T0`7`T1`7`SensorM`7`7` 

20`WITNESS`ID_1`M`Value_1`1`T0_1`6`T1_1`6`ID`N`Value`0`T0`7`T1`7`Query3`6`7` 

12`WITNESS`ID`N`Value`0`T0`9`T1`9`SensorN`9`9` 

12`WITNESS`ID`M`Value`1`T0`9`T1`9`SensorM`9`9` 



73 

 

20`WITNESS`ID_1`M`Value_1`1`T0_1`7`T1_1`7`ID`N`Value`0`T0`9`T1`9`Query3`7`9` 

12`WITNESS`ID`N`Value`0`T0`10`T1`10`SensorN`10`10` 

20`WITNESS`ID_1`M`Value_1`1`T0_1`9`T1_1`9`ID`N`Value`0`T0`10`T1`10`Query3`9`10` 

12`WITNESS`ID`N`Value`0`T0`11`T1`11`SensorN`11`11` 

12`WITNESS`ID`M`Value`1`T0`11`T1`11`SensorM`11`11` 

12`WITNESS`ID`N`Value`0`T0`12`T1`12`SensorN`12`12` 

20`WITNESS`ID_1`M`Value_1`1`T0_1`11`T1_1`11`ID`N`Value`0`T0`12`T1`12`Query3`11`1

2` 

12`WITNESS`ID`N`Value`0`T0`13`T1`13`SensorN`13`13` 

12`WITNESS`ID`M`Value`1`T0`13`T1`13`SensorM`13`13` 

12`WITNESS`ID`N`Value`0`T0`14`T1`14`SensorN`14`14` 

12`WITNESS`ID`M`Value`1`T0`14`T1`14`SensorM`14`14` 

20`WITNESS`ID_1`M`Value_1`1`T0_1`13`T1_1`13`ID`N`Value`0`T0`14`T1`14`Query3`13`1

4` 

12`WITNESS`ID`M`Value`1`T0`27`T1`27`SensorM`27`27` 

12`WITNESS`ID`N`Value`0`T0`28`T1`29`SensorN`28`29` 

20`WITNESS`ID_1`M`Value_1`1`T0_1`27`T1_1`27`ID`N`Value`0`T0`28`T1`29`Query3`27`2

9` 

12`WITNESS`ID`N`Value`0`T0`32`T1`35`SensorN`32`35` 

12`WITNESS`ID`N`Value`0`T0`36`T1`40`SensorN`36`40` 

12`WITNESS`ID`M`Value`1`T0`36`T1`40`SensorM`36`40` 

 

 

 

:::::::::::::: 

Task 4 

:::::::::::::: 

 

12`WITNESS`ID`N`Value`1`T0`1`T1`1`SensorN`1`1` 

12`WITNESS`ID`M`Value`0`T0`1`T1`1`SensorM`1`1` 

12`WITNESS`ID`N`Value`1`T0`2`T1`2`SensorN`2`2` 

12`WITNESS`ID`M`Value`0`T0`2`T1`2`SensorM`2`2` 

12`WITNESS`ID`N`Value`1`T0`3`T1`3`SensorN`3`3` 

12`WITNESS`ID`M`Value`0`T0`3`T1`3`SensorM`3`3` 

12`WITNESS`ID`N`Value`0`T0`4`T1`4`SensorN`4`4` 

12`WITNESS`ID`M`Value`0`T0`4`T1`4`SensorM`4`4` 

12`WITNESS`ID`N`Value`1`T0`5`T1`5`SensorN`5`5` 

12`WITNESS`ID`M`Value`0`T0`5`T1`5`SensorM`5`5` 

12`WITNESS`ID`N`Value`0`T0`6`T1`6`SensorN`6`6` 

12`WITNESS`ID`M`Value`1`T0`6`T1`6`SensorM`6`6` 

12`WITNESS`ID`N`Value`0`T0`7`T1`7`SensorN`7`7` 

12`WITNESS`ID`M`Value`1`T0`7`T1`7`SensorM`7`7` 

12`WITNESS`ID`N`Value`1`T0`8`T1`8`SensorN`8`8` 

12`WITNESS`ID`M`Value`0`T0`8`T1`8`SensorM`8`8` 

12`WITNESS`ID`N`Value`0`T0`9`T1`9`SensorN`9`9` 
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12`WITNESS`ID`M`Value`1`T0`9`T1`9`SensorM`9`9` 

12`WITNESS`ID`N`Value`0`T0`10`T1`10`SensorN`10`10` 

12`WITNESS`ID`M`Value`0`T0`10`T1`10`SensorM`10`10` 

12`WITNESS`ID`N`Value`0`T0`11`T1`11`SensorN`11`11` 

12`WITNESS`ID`M`Value`1`T0`11`T1`11`SensorM`11`11` 

12`WITNESS`ID`N`Value`0`T0`12`T1`12`SensorN`12`12` 

12`WITNESS`ID`M`Value`0`T0`12`T1`12`SensorM`12`12` 

12`WITNESS`ID`N`Value`0`T0`13`T1`13`SensorN`13`13` 

12`WITNESS`ID`M`Value`1`T0`13`T1`13`SensorM`13`13` 

12`WITNESS`ID`N`Value`0`T0`14`T1`14`SensorN`14`14` 

12`WITNESS`ID`M`Value`1`T0`14`T1`14`SensorM`14`14` 

12`WITNESS`ID`N`Value`1`T0`27`T1`27`SensorN`27`27` 

12`WITNESS`ID`M`Value`1`T0`27`T1`27`SensorM`27`27` 

12`WITNESS`ID`N`Value`0`T0`28`T1`29`SensorN`28`29` 

12`WITNESS`ID`M`Value`0`T0`28`T1`29`SensorM`28`29` 

12`WITNESS`ID`N`Value`1`T0`31`T1`33`SensorN`31`33` 

12`WITNESS`ID`M`Value`0`T0`31`T1`33`SensorM`31`33` 

12`WITNESS`ID`N`Value`0`T0`32`T1`35`SensorN`32`35` 

12`WITNESS`ID`M`Value`0`T0`32`T1`35`SensorM`32`35` 

12`WITNESS`ID`N`Value`0`T0`36`T1`40`SensorN`36`40` 

12`WITNESS`ID`M`Value`1`T0`36`T1`40`SensorM`36`40` 

12`WITNESS`ID`N`Value`1`T0`40`T1`45`SensorN`40`45` 

12`WITNESS`ID`M`Value`0`T0`40`T1`45`SensorM`40`45` 

12`WITNESS`ID`N`Value`1`T0`57`T1`60`SensorN`57`60` 

12`WITNESS`ID`M`Value`0`T0`57`T1`60`SensorM`57`60` 

 

 

 

:::::::::::::: 

Task 5 

:::::::::::::: 

 

12`WITNESS`ID`N`Value`1`T0`1`T1`1`SensorN`1`1` 

12`WITNESS`ID`N`Value`1`T0`2`T1`2`SensorN`2`2` 

12`WITNESS`ID`N`Value`1`T0`3`T1`3`SensorN`3`3` 

12`WITNESS`ID`N`Value`1`T0`5`T1`5`SensorN`5`5` 

12`WITNESS`ID`M`Value`1`T0`6`T1`6`SensorM`6`6` 

20`WITNESS`ID_1`N`Value_1`1`T0_1`5`T1_1`5`ID`M`Value`1`T0`6`T1`6`Query5`5`6` 

12`WITNESS`ID`M`Value`1`T0`7`T1`7`SensorM`7`7` 

12`WITNESS`ID`N`Value`1`T0`8`T1`8`SensorN`8`8` 

12`WITNESS`ID`M`Value`1`T0`9`T1`9`SensorM`9`9` 

20`WITNESS`ID_1`N`Value_1`1`T0_1`8`T1_1`8`ID`M`Value`1`T0`9`T1`9`Query5`8`9` 

12`WITNESS`ID`M`Value`1`T0`11`T1`11`SensorM`11`11` 

12`WITNESS`ID`M`Value`1`T0`13`T1`13`SensorM`13`13` 

12`WITNESS`ID`M`Value`1`T0`14`T1`14`SensorM`14`14` 
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12`WITNESS`ID`N`Value`1`T0`27`T1`27`SensorN`27`27` 

12`WITNESS`ID`M`Value`1`T0`27`T1`27`SensorM`27`27` 

12`WITNESS`ID`N`Value`1`T0`31`T1`33`SensorN`31`33` 

12`WITNESS`ID`M`Value`1`T0`36`T1`40`SensorM`36`40` 

12`WITNESS`ID`N`Value`1`T0`40`T1`45`SensorN`40`45` 

12`WITNESS`ID`N`Value`1`T0`57`T1`60`SensorN`57`60` 

 

TELEGRAPHCQ 

 

Stream.txt 

 

A, 20, 1, 1  

B, 36, 1, 1 

C, 0, 1, 1 

N, 1, 1, 1 

M, 0, 1, 1 

A, 26, 2, 2 

B, 19, 2, 2 

C, 0, 2, 2 

N, 1, 2, 2 

M, 0, 2, 2 

A, 36, 3, 3 

B, 15, 3, 3 

C, 1, 3, 3 

N, 1, 3, 3 

M, 0, 3, 3 

A, 35, 4, 4 

B, 33, 4, 4 

C, 1, 4, 4 

N, 0, 4, 4 

M, 0, 4, 4 

A, 28, 5, 5 

B, 8, 5, 5 

C, 1, 5, 5 

N, 1, 5, 5 

M, 0, 5, 5 

A, 37, 6, 6 

B, 28, 6, 6 

C, 0, 6, 6 

N, 0, 6, 6 

M, 1, 6, 6 

A, 17, 7, 7 

B, 31, 7, 7 
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C, 1, 7, 7 

N, 0, 7, 7 

M, 1, 7, 7 

A, 4, 8, 8 

B, 28, 8, 8 

C, 1, 8, 8 

N, 1, 8, 8 

M, 0, 8, 8 

A, 40, 9, 9 

B, 31, 9, 9 

C, 1, 9, 9 

N, 0, 9, 9 

M, 1, 9, 9 

A, 12, 10, 10 

B, 9, 10, 10 

C, 0, 10, 10 

N, 0, 10, 10 

M, 0, 10, 10 

A, 7, 11, 11 

B, 37, 11, 11 

C, 0, 11, 11 

N, 0, 11, 11 

M, 1, 11, 11 

A, 30, 12, 12 

B, 13, 12, 12 

C, 1, 12, 12 

N, 0, 12, 12 

M, 0, 12, 12 

A, 19, 13, 13 

B, 29, 13, 13 

C, 0, 13, 13 

N, 0, 13, 13 

M, 1, 13, 13 

A, 29, 14, 14 

B, 15, 14, 14 

C, 0, 14, 14 

N, 0, 14, 14 

M, 1, 14, 14 

A, 14, 27, 27 

B, 36, 27, 27 

C, 1, 27, 27 

N, 1, 27, 27 

M, 1, 27, 27 

A, 23, 28, 29 

B, 12, 28, 29 
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C, 1, 28, 29 

N, 0, 28, 29 

M, 0, 28, 29 

A, 1, 31, 33,  

B, 14, 31, 33 

C, 1, 31, 33 

N, 1, 31, 33 

M, 0, 31, 33 

A, 37, 32, 35 

B, 37, 32, 35 

C, 1, 32, 35 

N, 0, 32, 35 

M, 0, 32, 35 

A, 16, 36, 40 

B, 6, 36, 40 

C, 1, 36, 40 

N, 0, 36, 40 

M, 1, 36, 40 

A, 40, 40, 45 

B, 4, 40, 45 

C, 1, 40, 45 

N, 1, 40, 45 

M, 0, 40, 45 

A, 22, 57, 60 

B, 41, 57, 60 

C, 1, 57, 60 

N, 1, 57, 60 

M, 0, 57, 60 

 

 

Schema.sql 

 

drop schema streams; 

create schema streams; 

 

drop stream streams.cep; 

 

create stream streams.cep ( 

        ID text,  

        value int, 

        t0 int, 

        t1 int, 

        tcqtime timestamp TIMESTAMPCOLUMN 

) type unarchived; 
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alter stream streams.cep add wrapper csvwrapper; 

 

 

Queries 

 

::::::::::::::::::::::::::: 

Telegraphcq1.sql 

:::::::::::::::::::::::::::: 

drop stream streams.avgA; 

 

create stream streams.avgA ( 

        ID text, 

        averageA float, 

        tcqtime timestamp TIMESTAMPCOLUMN 

) type unarchived; 

 

alter stream streams.avgA add wrapper csvwrapper; 

 

drop stream streams.avgB; 

 

create stream streams.avgB ( 

        ID text, 

        averageB float, 

        tcqtime timestamp TIMESTAMPCOLUMN 

) type unarchived; 

 

alter stream streams.avgB add wrapper csvwrapper; 

 

WITH  

        streams.avgA 

        AS 

        (SELECT ID, AVG(value) as averageA, wtime(*) 

        FROM streams.cep [RANGE BY '2 seconds' SLIDE BY '1 seconds'] 

        WHERE ID = 'A' 

        GROUP BY ID) 

 

        streams.avgB 

        AS 

        (SELECT ID, AVG(value) as avgerageB, wtime(*) 

        FROM streams.cep [RANGE BY '2 seconds' SLIDE BY '1 seconds'] 

        WHERE ID = 'B' 

        GROUP BY ID) 
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(SELECT A.ID, A.averageA, B.ID, B.averageB, A.tcqtime 

FROM streams.avgA AS A,  

     streams.avgB AS B 

WHERE A.tcqtime = B.tcqtime AND A.averageA > B.averageB); 

 

 

 

:::::::::::::: 

telegraph2.sql 

:::::::::::::: 

drop stream streams.readN; 

 

create stream streams.readN ( 

        ID text, 

        value int, 

        t0 int, 

        tcqtime timestamp TIMESTAMPCOLUMN 

) type unarchived; 

 

alter stream streams.readN add wrapper csvwrapper; 

 

drop stream streams.readC; 

 

create stream streams.readC ( 

        ID text, 

        t0 int, 

        value int, 

        tcqtime timestamp TIMESTAMPCOLUMN 

) type unarchived; 

 

alter stream streams.readC add wrapper csvwrapper; 

 

drop stream streams.readM; 

 

create stream streams.readM ( 

        ID text, 

        t0 int, 

        value int, 

        tcqtime timestamp TIMESTAMPCOLUMN 

) type unarchived; 

 

alter stream streams.readM add wrapper csvwrapper; 

 

 

WITH 
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        streams.readN 

        AS 

        (SELECT ID, t0, value, wtime(*) 

        FROM streams.cep [RANGE BY '1 seconds' SLIDE BY '1 seconds'] 

        WHERE ID = 'N' AND value = '1' 

        GROUP BY ID, t0, value) 

 

 

        streams.readC 

        AS 

        (SELECT ID, t0, value, wtime(*) 

        FROM streams.cep [RANGE BY '1 seconds' SLIDE BY '1 seconds'] 

        WHERE ID = 'C' AND value = '1' 

        GROUP BY ID, t0, value)  

 

        streams.readM 

        AS 

        (SELECT ID, t0, value, wtime(*) 

        FROM streams.cep [RANGE BY '1 seconds' SLIDE BY '1 seconds'] 

        WHERE ID = 'M' AND value = '0' 

        GROUP BY ID, t0, value) 

 

(SELECT C.ID, C.value,C.t0, N.ID, N.value, N.t0, M.ID, M.value, M.t0 

FROM  streams.readN AS N, 

      streams.readC AS C, 

      streams.readM AS M  

WHERE N.value = C.value AND N.t0 < C.t0 AND N.t0 = M.t0 ); 

 

 

 

:::::::::::::: 

telegraph3.sql 

:::::::::::::: 

drop stream streams.repM; 

 

create stream streams.repM ( 

        ID text, 

        value int, 

        t0 int, 

        tcqtime timestamp TIMESTAMPCOLUMN 

) type unarchived; 

 

alter stream streams.repM add wrapper csvwrapper; 

 

drop stream streams.repN; 
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create stream streams.repN ( 

        ID text, 

        value int, 

        t0 int, 

        tcqtime timestamp TIMESTAMPCOLUMN 

) type unarchived; 

 

alter stream streams.repN add wrapper csvwrapper; 

 

WITH 

 

        streams.repM 

        AS 

        (SELECT ID, value, t0, wtime(*) 

        FROM streams.cep [RANGE BY '1 seconds' SLIDE BY '1 seconds'] 

        WHERE ID = 'M' AND value = '1' 

        GROUP BY ID, value, t0) 

 

        streams.repN 

        AS 

        (SELECT ID, value, t0, wtime(*) 

        FROM streams.cep [RANGE BY '1 seconds' SLIDE BY '1 seconds'] 

        WHERE ID = 'N' AND value = '0' 

        GROUP BY ID, value, t0) 

 

(SELECT M.ID, M.value, M.t0, N.ID, N.value, N.t0 

FROM streams.repM AS M,  

     streams.repN AS N 

WHERE M.t0 + 1 = N.t0 AND N.value < M.value); 

 

 

:::::::::::::: 

telegraph4.sql 

:::::::::::::: 

drop stream streams.onlyN; 

 

create stream streams.onlyN ( 

        ID text, 

        t0 int, 

        value int, 

        tcqtime timestamp TIMESTAMPCOLUMN 

) type unarchived; 

 

alter stream streams.onlyN add wrapper csvwrapper; 
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drop stream streams.onlyM; 

 

create stream streams.onlyM ( 

        ID text, 

        t0 int, 

        value int, 

        tcqtime timestamp TIMESTAMPCOLUMN 

) type unarchived; 

 

alter stream streams.onlyM add wrapper csvwrapper; 

 

WITH  

                streams.onlyN 

                AS 

                (SELECT ID, t0, value, wtime(*) 

                FROM streams.cep [RANGE BY '1 seconds' SLIDE BY '1 seconds'] 

                WHERE ID = 'N'  

                GROUP BY ID, t0, value) 

  

                streams.onlyM 

                AS 

                (SELECT ID, t0, value, wtime(*) 

                FROM streams.cep [RANGE BY '1 seconds' SLIDE BY '1 seconds'] 

                WHERE ID = 'M'  

                GROUP BY ID, t0, value) 

 

(SELECT N.ID, N.value, N.t0, M.ID, M.value, M.t0 

FROM streams.onlyN AS N, 

     streams.onlyM AS M 

WHERE N.t0 = M.t0 AND M.value <> N.value); 

 

 

 

:::::::::::::: 

telegraph5.sql 

:::::::::::::: 

drop stream streams.moveN; 

 

create stream streams.moveN ( 

        ID text, 

        t0 int, 

        value int, 

        tcqtime timestamp TIMESTAMPCOLUMN 

) type unarchived; 
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alter stream streams.moveN add wrapper csvwrapper; 

 

drop stream streams.moveM; 

 

create stream streams.moveM ( 

        ID text, 

        t0 int, 

        value int, 

        tcqtime timestamp TIMESTAMPCOLUMN 

) type unarchived; 

 

alter stream streams.moveM add wrapper csvwrapper; 

 

WITH 

streams.moveN 

                AS 

                (SELECT ID, t0, value, wtime(*) 

                FROM streams.cep [RANGE BY '1 seconds' SLIDE BY '1 seconds'] 

                WHERE ID = 'N' AND value = '1' 

                GROUP BY ID, t0, value) 

  

                streams.moveM 

                AS 

                (SELECT ID, t0, value, wtime(*) 

                FROM streams.cep [RANGE BY '1 seconds' SLIDE BY '1 seconds'] 

                WHERE ID = 'M' AND value = '1' 

                GROUP BY ID, t0, value) 

 

(SELECT N.ID,N.value, N.t0, M.ID, M.value, M.t0 

FROM streams.moveN AS N, 

     streams.moveM AS M 

WHERE N.t0 = M.t0); 

 

Result.txt 

 

:::::::::::::: 

resultat1.res 

:::::::::::::: 

A,31,B,17,2009-01-12 11:03:26 

A,35.5,B,24,2009-01-12 11:03:27 

A,31.5,B,20.5,2009-01-12 11:03:28 

A,32.5,B,18,2009-01-12 11:03:29 

A,26,B,20,2009-01-12 11:03:33 
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A,24.5,B,21,2009-01-12 11:03:36 

A,24,B,22,2009-01-12 11:03:37 

A,26.5,B,21.5,2009-01-12 11:03:42 

A,28,B,5,2009-01-12 11:03:43 

A,31,B,22.5,2009-01-12 11:03:44 

success=0, cqcancel=1 

 

 

:::::::::::::: 

resultat2.res 

:::::::::::::: 

success=0, cqcancel=1 

 

 

 

:::::::::::::: 

resultat3.res 

:::::::::::::: 

M,1,6,N,0,7 

M,1,9,N,0,10 

M,1,11,N,0,12 

M,1,13,N,0,14 

M,1,31,N,0,32 

success=0, cqcancel=1 

 

 

 

:::::::::::::: 

resultat4.res 

:::::::::::::: 

N,1,1,M,0,1 

N,1,2,M,0,2 

N,1,3,M,0,3 

N,1,5,M,0,5 

N,0,6,M,1,6 

N,0,7,M,1,7 

N,1,8,M,0,8 

N,0,9,M,1,9 

N,0,11,M,1,11 

N,0,13,M,1,13 

N,0,14,M,1,14 

N,1,27,M,0,27 

N,0,36,M,1,36 

N,1,40,M,0,40 

success=0, cqcancel=1 



85 

 

 

 

 

:::::::::::::: 

resultat5.res 

:::::::::::::: 

N,1,31,M,1,31 

success=0, cqcancel=1 


