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Abstract

The innate behavior of TCP is bursty with a constantly varying density
of packets being transmitted. This behavior is part of how TCP is, but
as network speeds are increasing, this bursty behavior is causing more
and more unnecessary pressure on networks.

An increasing number of modern TCP congestion control algorithms
have a need for pacing out packets rather than transmitting as soon as
possible. Some of the old algorithms also see performance advantages
in employing pacing to well established solutions. Pacing may reduce
pressure on network bottlenecks, improve bandwidth utilization, and
enable senders to measure bottleneck capacity.

At the same time, faster and faster network links and network
interfaces push the boundaries for CPUs trying to handle the flow of
packets to and from the transport layer.

TSO was introduced to reduce CPU pressure by enabling the kernel
to bundle packets into larger packets for the network interface card
to process. This frees up the CPU by offloading work to the network
interface card, reducing overhead and number of stack traversals.

As TSO has been put to widespread use, we have limited the
possibilities of employing pacing where we want to. There is a
discrepancy between pacing and TSO because TSO forces us to delegate
responsibility to the network interface cards. The network interface
cards are all about speed and quality and do not offer us control over
transmit rates. They simply split the bigger bundles into smaller
packets and push them all onto the wire as fast as possible.

Patches limiting these bursts have been introduced, but that does
not resolve the incompatibility of TSO and pacing, and hence we are
missing out on some unused potential in the collaboration between
kernel and the network interface cards which could result in positive
effects for networks in general.

Modern programmable network interface cards seek to enhance our
ability to control the exact behavior of the cards. The ambition is to
improve the capabilities of our networks and save more CPU cycles by
enabling more offloading than before.

In this thesis we will explore the capabilities of the Netronome Agilio
SmartNICs to see if it is possible to enable pacing in their hardware
through the abstractions they offer. If so, it could help bridge the gap
between pacing and TSO, and it could open up the possibility of new
and more complex variants of pacing and congestion control in general.
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Chapter 1

Introduction

Transmission Control Protocol (TCP) made its entry into networks
decades ago when networks were constructed on completely different
scales than they are today. The change in scale has forced our protocols
and algorithms to continuously change. What once were unproblematic
aspects or side effects of our algorithms have since turned out to cause
problems previously unforeseen. One aspect discussed a lot in today’s
research is the innate bursty behavior of classical TCP.

Bursts naturally form as TCP flows change their rate, wait for
signals or batch operations to save time and resources. The resulting
oscillations found in networks have been there since flow control was
first introduced to TCP, but as bandwidths, speeds and distances have
increased by several orders of magnitude, such bursty behavior appears
to be more and more problematic to the performance of our networks.
Fluctuations and unpredictable variance in network load may lead to
under-utilized networks.

1.1 Pacing - a promising solution
Several solutions to tackling bursts exist (buffer size increase, limiters
and other creative methods), but as will become clear, most of them
function more like band-aids patching up the effects, rather than
removing the problem itself. Pacing differs from these by trying to
tackle the cause of bursts itself.

Pacing was first introduced to TCP to tackle a quite specific problem
related to bursts forming in networks due to ACK compression, but the
principal idea has since seen more general usage and investigations.

Pacing is a technique of actively introducing gaps in time between
packets where we would otherwise have a negligible gap or no gap at
all. On the face of it, this should provide a more even flow of packets
and reduce the stress on networks. Upon further inspection, pacing can
have several other intricate advantages, but also a few limitations and
negative effects which are not present in non-paced flows.
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1.1.1 The limitations of pacing

Pacing is intended to give more stable utilization and less latency
fluctuation, but it also poses some challenges for both end-systems and
intermediate nodes. The implementation of pacing is not necessarily
trivial,1 and because bursts have been an intrinsic part of TCP for a long
time, a lot of the dynamics surrounding the flow of data has naturally
formed around it. Changing it has some unexpected effects.

When working with multiple concurrent paced flows in data center
networks with high bandwidth and shallow buffers, tests have shown
that they may cause a synchronized bursting effect across flows and
a worsened bandwidth-utilization due to a synchronized or delayed
congestion effect.[20]

In end-systems, pacing may impose more CPU cost, and for very
high bandwidths, simply being able to time gaps small enough proves
difficult even to operating systems even though they are running
modern CPUs with high clock speeds.

1.1.2 TSO

Pacing may also come into conflict with solutions made to rationalize
CPU usage. One of these solutions, TCP Segmentation Offloading
(TSO), reduces a lot of CPU usage by offloading work to the Network
Interface Controller (NIC). This technique is used by most modern
operating systems, but it is a well-known fact that using TSO does not
mix well with pacing.

TSO is an offloading of tasks to the NIC, and by offloading we lose
some element of control. The NICs are responsible for getting the
packets out onto the wire, and they are specialized in doing so. The main
focus has always been speed and quality, and it has been optimized over
decades.

When using TSO, we batch up packets and deliver them to the NIC
as larger segments. The NIC is then responsible of splitting up the
segments into Maximum Transmission Unit (MTU)-sized packets and
transmit them. It does this and it does it as fast as possible because
that has been one of the main criteria for a well-functioning NIC. To
have a working solution for pacing, the transport layer (L4) needs to
maintain some type of control of what rate packets are transmitted at.
The traditional way of achieving this is by having L4 control the flow of
packets down to the NIC. The NIC then can transmit packets as fast as
it receives them.

We see how these to interests collide. We can save CPU load by
offloading the segments, but that would mean that L4 would lose control
over the rate at which the packets enter the network.

1This depends on how the implementation is done (hardware or not), and what
level of control one can expect to have in high performance networks. There is also
the question of how dynamical the implementation can be. As with most data path
programming, speed and dynamicity is typically correlated, but the use of SmartNICs
shown in this thesis is showing promise of combining the two extremes

2



1.2 Pacing in hardware
One recent development in hardware is the upsurge of programmable
hardware; more specifically programmable NICs (SmartNICs). These
NICs allow us to program them dynamically with custom packet
handling actions. This seems to open up a possibility of regaining
control over the packet transmission rate while at the same time taking
advantage of TSO.

Netronome has manufactured a series of SmartNICs that offer
advanced abstractions for programming the NICs to a number of
customized offloadable actions to boost efficiency and performance.

1.3 The goal of this thesis
The goal of this thesis is to explore the abstractions provided by
Netronome to the Agilio SmartNICs to see if it is possible to implement
pacing in hardware and have L4 control the pace at which packets are
transmitted at the same time as TSO is enabled.

1.3.1 Outlining

TSO is standard in the most widespread operating systems and
considered a necessity to keep CPU usage at an acceptable level in high
speed networks. Pacing does not have the same status even though
it has been gaining territory over time. We will therefore spend some
time in part I mapping out the different aspects of congestion control
and pacing, discussing what solutions exist and what advantages and
disadvantages pacing has when used in networks of today.

This will motivate our decision and lead to part II where we explore
the possibilities of pacing in hardware. Specifically we will look into
the tools provided by Netronome to program their Agilio SmartNICs.
They have several tools and abstractions aimed at making it as easy as
possible to accelerate network with hardware acceleration.

The question is if the toolbox has what it takes for us to achieve
an L4 controlled pacing that can contribute to modern TCP algorithms
without having to disable TSO.
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Part I

TCP congestion control
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Chapter 2

TCP

The purpose of this thesis is to shed light on and provide new solutions
and considerations to some of the challenges posed by how TCP works
today. It is not the purpose of this thesis to give a detailed depiction
of all the different algorithms and variations of TCP. That said; in
order to ground the desire to attempt the solutions in part II, it is
necessary to give an outline of TCP as a protocol, and then give a quite
comprehensive walk-through and discussion of the different abilities
and challenges of congestion control in TCP with special attention to
the aspects related to bursts and offloading.

This first chapter gives an overview of TCP as a protocol. The
next two chapters provide a more thorough explanation of the different
parts of flow control and congestion control seen in TCP; how they have
come into existence and what challenges they have encountered along
the way. Some challenges have been resolved with new algorithms or
modifications, while other still remain today.

2.1 The drunken mailman
Because networks are complex collections of many different entities
(cables, wireless transmission entities (links), switches, routers etc.),
sending a packet from one end system to another is not a trivial matter
even though it is done all the time. Packets may get delayed, lost or
damaged along the way, and communication needs to take this into
account.

As far as networks go, the Internet is the biggest one today and
serves as a good grounds for outlining the different layers of networking.

The Internet is based on the Internet Protocol (IP) for routing
packets from one end system to another. IP is a protocol much like the
postal system; an address system making it possible to find out where a
packet should be sent.

While being much like the postal system, its mailman is more
resemblant of a drunken mailman with nothing more than a best effort
principle where nothing is guaranteed. Packets are sent towards the
address of a machine, but they may get corrupted along the way, be

5



delivered in wrong order or simply lost. IP does not guarantee anything
more than trying its best to deliver the packets to the address put on
them. Any obstacles along the way will directly impact what one may
expect to actually be delivered.

With IP being this unreliable, it makes it difficult to build applica-
tions or systems on top of it. If nothing is guaranteed, it makes all
applications relying on IP unreliable as well. To deal with this, TCP is
set up on top of IP1 as a connection oriented protocol using IP.

2.2 Connection oriented protocol
TCP is a connection oriented protocol where the sender and receiver
first agree upon having a connection and transmission between them
before sending any data at all.2 This as opposed to one of the other
dominant network protocols today, User Datagram Protocol (UDP),
which is a connectionless communication protocol.

Once a connection has been established, the sender and receiver
keep communicating until all packets have been delivered in-order.3

On the face of it this seems quite straightforward, but as will
become apparent in the following chapters, it soon gets complicated
to determine if a packet is lost,4 when it should be resent, how many
packets may be sent, and when a packet is successfully received. The
internet seems to be quite simple and organized, but in reality it is
a complex and at times chaotic collection of end-systems trying to
communicate by sending out packets on an IP overlay with best effort
precision.

2.2.1 Error detection and recovery

Packets are what we will define to be data of some size sent from
one destination to another. TCP packets have a header5 containing
metadata for the packet and a payload containing the actual data
intended for transfer.6 As packets traverse a network they may get
corrupted either by natural causes disturbing the bits in the packet, or
by malicious entities altering the content intentionally. TCP guarantees
integrity of data, enabling the receiver to check the contents of a packet
against a check sum in the packet header.

1On top meaning that TCP uses IP to route packets, well aware of the limitations of
its capabilities

2This is a generalization. Some modern protocols like TCP Fast Open send some
payload with the SYN, but the connection is still made

3TCP guarantees to deliver the packets in-order
4If it is even possible to determine this for sure
5The packet header is the ”wrapper” sent at the head of the packet containing

addresses, checksums, payload size and so on
6In this thesis we will mostly refer to these types of collections of data as packets

even though lower layers usually refer to them as frames.
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2.2.2 Multiplexing

The packet header also contains information enabling application
multiplexing. Each end-system is commonly set up with one IP address
used by other entities trying to communicate with it. One end-
system may have multiple applications though, and to enable multiple
applications to communicate at the same time, the TCP header provides
room for port numbers.

A port number in a TCP header informs the end-system of what
application the packet is destined for. This enables several applications
on one end-system to communicate out through one IP address.

The flow between two end system applications is thus identified by a
5-tuple comprised of sender- and receiver-addresses, port numbers and
the protocol used. This 5-tuple identification is used in both TCP and
UDP for unique identification of flows.

7



Chapter 3

Flow control

TCP provides a connection oriented communication, but simply agree-
ing to have a connection is not enough to ensure that the packets are
received as planned.

If one end-system is to send some amount of data to another end-
system, it is a good idea to employ some sort of flow control. Flow control
means the sender does not send more data than the receiver is capable
of receiving at any given moment. To do this, the sender and receiver
need to agree on either a specific sending rate or a specific amount of
data that may be sent at any one time.

3.1 Variants
There are several ways to implement flow control, but they may be
divided into two main categories:

• Rate-based: The receiver tells the sender what rate it may send
at. This is communicated initially in the connection setup, and
may be adjusted through the lifespan of the flow.

• Credit-based: The sender receives credits from the receiver
telling it how much data may be sent at any one time. If there are
no credits left, the transmission halts until otherwise informed.

Both of these flow controls provide a means to ensure that the
receiver is not flooded with packets, but they have different use cases.

3.1.1 Sliding Window

TCP uses a variant of credit-based flow control called sliding window.
In sliding window, the sender and receiver agree on a window of some
size which tells us how much data may be in transit1 at any one time.

By holding a window of data, the sender is able to keep track of
which packets the receiver has received and which packets may be

1I.e. on the wire and not confirmed by the receiving end-system
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deemed lost and need to be retransmitted. Keeping track of this is
done using the header-field sequence number. The sequence number
starts at an arbitrary value within the 32 bit range, and is set to
indicate a number for the first byte of the first packet transmitted in
the connection. For each packet, the number is incremented according
to the number of bytes in the packet.

The window tells us how many packets the sender is allowed send
into the network at any one time without receiving any confirmation
from the recipient. Sliding window has the advantage of allowing a
certain amount of data to be in transit at any one time rather than just
allowing one packet at a time. It is like a frame defining the amount of
data which can be sent, and the limits of it are defined through sequence
numbers.

The frame slides when the first packet of the frame is confirmed.
Hence the name sliding window.

3.2 Acknowledgments
The flow of information back from the receiver to the sender in TCP
is done with packets called Acknowledgement (ACK)s. A pure ACK
has no payload. It simply conveys information in the TCP header
confirming the delivery of packets by returning the sequence number
of the next byte to be expected.2 An ACK acknowledges that individual
or multiple3 packets have been delivered As will become clear in the
following sections, ACKs may provide us with a lot more valuable
information about the network, but their very nature as messengers
also comes with some limitations and room for interpretation.

Depending on how we use ACKs and what information they provide,
we may categorize them and some of their effects with the following
terms used throughout the thesis:

• Delayed ACK: A case where ACKs are not sent immediately for
every packet received, but more rarely. Normally every other
packet is ACKed. Often used in wireless networks

• Duplicate ACK (DUPACK): ACK confirming the same contents
as the previous ACK sent. DUPACKs serve the purpose of
indicating that an out of order packet has been received, i.e. that
an earlier packet is missing. More on their use in section 4.3
concerning Fast Retransmit.

• Selective Acknowledgement (SACK): A modification to the
original ACK used in DUPACKs to provide the sender with the
extra information of which out of order packets that have actually
been received, not just that a packet is missing. By doing so, we

2Or indicating a missing packet with duplicate ACKs
3Cumulative ACKs
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avoid making the sender retransmit a lot of packets that have been
successfully received (albeit being received out of order).

• Stretch ACKs: ACKs that acknowledge more than two packets.
This is usually caused by ACKs being lost on their way to the
sender, but can also occur by design (though that is not very
common).

• ACK thinning or ACK suppression: A term much like delayed
ACKs where some ACKs are discarded either by the receiver or
elsewhere in the system to reduce the downstream pressure. This
has shown positive effects in e.g. wireless networks.

As we will see in later sections, these various types of use cases each
have their strengths and weaknesses. Either way, data delivery in TCP
is confirmed by the receiver using ACKs in some way.
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Chapter 4

Congestion control

Flow control is necessary to keep the receiver from overflowing, but
between two end-systems there are usually some intermediate nodes
that make sure the that the flow of packets reaches its destination.1

Once the packets move out on the link on route to their destination,
they may pass by several intermediate nodes along the way. If we do
not take into account that these intermediate nodes have limitations
just like the receiver, we risk ending up with the same type of problems
that arise with a lack of flow control between two end-systems.

Because of this, we need some sort of control for the intermediate
nodes as well. This control mechanism is called congestion control, and
it will be the focus of this chapter.

4.1 Congestion collapse
The intermediate nodes in a network are normally routers or switches
functioning as relays between end-systems. In the intermediate nodes
the flow of data needs to be received, processed2 and passed on to the
next leg of the race. If the senders send at a rate higher than what the
nodes are able to forward, packets may get lost (dropped).

The intermediate nodes must have some sort of buffers to handle
incoming packets. These buffers normally exist both for ingress3 and
egress traffic and are usually referred to as queues.

Having buffers for intermediate storage4 may reduce the amount of
packets dropped, but if the difference is sustained, the buffers will fill
up and the node will be forced to drop packets.

This issue was not accounted for in TCP until 1988 when Van
Jacobson and Mike Karels published [24] as a result of investigations
into a series of congestion collapses in October 1986 in the ARPANET
connection between LBL and UC Berkeley. They experienced the

1That is, if we are to use some sort of connection-oriented protocol like TCP
2E.g. lookup to route the packet to the next node
3Ingress - entering or incoming. Egress - exiting or outgoing
4More on buffers and queue management in Chapter 5
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throughput5 dropping from 32 Kbps to 40 bps, and realized it was the
lack of congestion control that caused it. The problem was that once
congestion formed in the network, no action was taken, and as a result,
the congestion worsened until a full congestion collapse was a fact.

The big congestion collapses of ‘88 were a result of packets
overflowing the three Interface Message Processors (IMP) between LBL
and Berkeley. The packets arrived at the IMPs at a higher rate than
they could handle, which caused the buffers to get filled up. Once
the buffers were full, the packets got dropped, and that caused those
packets to be sent once more from the sender. In TCP a sender can
potentially retransmit all the packets in its window, causing buffers to
keep getting filled. Once that happened, more packets were lost and we
got even more copies of packets being retransmitted.

This lead to the throughput dropping drastically, and eventually we
had what we call a collapse. As long as no one slows down their sending
rate (often referred to as backing off ), the congestion persists. The
majority of packets experience retransmissions, and the throughput
stays at a minimum.6

4.2 Conservation principle
To tackle the issues described, Jacobson and Karels introduced the
conservation principle; a flow on a TCP connection ”should obey a
’conservation of packets’ principle”[24], meaning that for flows ’in
equilibrium’, no new packet enters the network before an old one has
left the network. This would ensure that congestion collapses like those
in 1986 ”would become the exception rather than the rule” [24].

By creating control mechanisms that enforce the conservation-
principle, the big collapse may be avoided. As long as a whole window of
packets is on the wire, no new packet enters the network until a time-
out occurs (indicating packet loss) or an ACK is received. This natural
pacing of packets where a new packet is sent when an ACK has been
received, is called ACK-clocking.

Several algorithms were presented in [24]. Not all will be examined
in depth here, but a couple of them are crucial both to the understanding
of congestion control, and to making congestion control work even today.
We first take a look at slow start, the algorithm that starts the ACK
clock and tries to get flows up to speed. Once slow start has done the
first ramp up, the sender needs to monitor the congestion level and try
to close in on equilibrium. This is done in congestion avoidance; a state
explained in detail after slow start.

5The amount of data transferred from sender to receiver at a time interval (usually
per second)

6With several competing flows, one flow may actually experience its throughput
dropping to 0 because another flow is sending or retransmitting at such a high rate
that nothing else gets into the constantly full queues.
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4.3 Slow Start
The conservation principle states that no new packet is introduced into
a network before one leaves. An important element here is that this
holds only for a flow ’in equilibrium’. Reaching equilibrium is a whole
challenge on its own. We need get to equilibrium, and to get there
Jacobson and Karels introduced two algorithms, the first of which was
named the Slow Start algorithm:

• Add a Congestion Window (cwnd) to the per-connection state (this
is common to all algorithms using sliding window, not only in slow
start)

• When starting or restarting after a loss, set cwnd to one packet.7

• On each ACK for new data, increase cwnd by one packet.

• When sending, send the minimum of the receiver’s advertised
window and cwnd [24]

The algorithm seems simple enough, but it has some clever
solutions. When loss is detected, instead of sending the same amount of
packets per Round-trip time (RTT) (maintaining the congestion-level),
the cwnd is reduced to one packet and slow start restarts. The Slow
Start Threshold (ssthresh)8 is set to half of the amount of data inflight
in the network at the time when the loss was detected. Halving the size
of the window means going down to the the last window size that got
through the path without loss. Using this as a new threshold seems
rational and safe.

When packet loss is detected, we react by reducing the window
size. Importantly, this reaction is quite substantial; according to the
original algorithm presented by Jacobson and Karels (named Tahoe),
the reaction to loss (interpreted as congestion) is to reduce the sending
rate to 1 packet per RTT. This eases the pressure on the bottleneck to
avoid congestion building up further.

But packet loss is detected implicitly, not explicitly. The absence of
an ACK is used as a detection method, and because of this we need
to make an active decision as to whether a packet may be deemed lost
or not. To have some confidence that a packet actually has been lost,
we need to define the grounds for making the decision. According to
Jacobson and Karels one of two mechanisms may be used:

1. Retransmission Time-Out (RTO) The sender keeps a timer
for the packet. Once the timer has run out, the packet may be
considered lost.

7Van Jacobson and Karels define the window in terms of packets, and so does Linux
8ssthresh is the threshold indicating when slow start should stop. Initially this

”SHOULD be set arbitrarily high”[4]
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2. Fast retransmit: For each packet arriving receiver-side, an ACK
is sent. The ACK contains information about the last in-order
packet received. I.e. if packet 1, 3 and 4 are received, but packet
2 is missing, both packet 3 and 4 will result in an ACK indicating
to the sender that 2 is missing (the next in-order packet missing
is packet 2). Once the sender has received three9 such DUPACKs,
the packet may be considered lost and retransmitted. That way a
retransmit may be done with some level of confidence, but without
waiting for a timeout.10

RTO is calculated using the measured RTT. It must be set high
enough to avoid spurious timeouts occurring (premature timeouts
indicating loss when the packet is simply delayed or has a different RTT
than expected). Because of this, the wait for an RTO can be comparably
long, and an RTO must be set to have a proportionate impact on the
sender. It should restart slow start all over with a cwnd reset to 1 and a
new ssthresh.

Using fast retransmit is not that invasive. It simply halves
ssthresh and tries to retransmit the missing packet. In either case
(if we restart slow start or do fast retransmit), if another RTO occurs
or another triple DUPACK is received, the same series of events take
place, reducing ssthresh once more. Slow start ends either if we reach
ssthresh or if we do fast retransmit.

Once slow start ends, we enter a new state called congestion
avoidance. This is where we employ the second algorithm presented by
Jacobson and Karels, working our way up much more slowly, trying to
maximize the bandwidth utilization whilst reacting to any new changes
in the network. More on this in section 4.4.

4.3.1 Queue overshoot

Slow start was created to reach a state of equilibrium in a fast way
without causing major congestion. It is still a vital part of TCP today
and has done the job it was set out to do. The algorithm gets a flow up
and running, but it achieves its goal in a somewhat coarse manner. This
coarse manner also exposes the flow to a risk of missing the target quite
massively. As the authors state;

”overestimating the available bandwidth is costly. But an
exponential, almost regardless of its time constant, increases
so quickly that overestimates are inevitable”[24]

Overestimating the Bottleneck Bandwidth (BtlBw) by using a too
large window results in the bottleneck queues filling up until they
eventually overflow and we experience packet loss. It is not necessary

9In Linux, this number is adjustable. When routes are unstable, it may be better to
increase the number.

10Fast Retransmit was introduced in [24], but formally standardized in RFC-
1122[13].

14



to hit the forwarding rate of the bottleneck with pinpoint precision (that
is why we have buffers), but in the case of slow start, we may overshoot
substantially.

The bottleneck has ingress and egress queues, the main purpose of
which is coping with some variance in flow rate, but the capacity has
its limits. The queues will fill up if the sender sends at a higher rate
than what the bottleneck can process. Any difference in rate will cause
queue changes. If the sender rate is higher than the bottleneck limit,
the queues will get more filled (limited by the size of the buffer), and
any difference where the sender rate is lower than the bottleneck limit
will cause the queue to drain (limited by the buffer becoming empty).
The longer the difference sustains or the bigger the rate difference is,
the faster the queue will either fill up or get drained.

Slow start does an exponential increase until loss is detected, and
because of this rapid increase, we risk ending up with a sending rate
even more than twice the rate manageable by the bottleneck. As Misund
et.al explain; if the flow is sending at a rate equal to BtlBw, then the
next time around it will send at double that rate.[28] Add in the effect
of the delay from the time at which the packet gets dropped until the
sender realizes it is dropped, and we have a lot of potentially overshot
packets. This overshoot results in full queues, delay and packet loss.

The intention of Tahoe was to reach a state of equilibrium and keep
it there. By doing this one wishes to fill the pipe,11 not the queue. Filling
the queue causes congestion and latency. The wider and longer the pipe,
the more the pipe can hold.12 When bandwidths and distances increase,
slow start may potentially grow further, and the amount overshooting
the target may get bigger. As will become apparent later on, increasing
the buffers does not solve the issue.

The main issue is that the algorithm itself does the increase in a
coarse manner and the impact increases as the BDP increases. These
considerations have led to some algorithms seeking to do slow start
in new ways. I have chosen to highlight two of them, the first one
being HyStart which is the slow start algorithm used by the current
TCP algorithm in e.g. Linux and Mac OS. The second one is Paced
Chirping; a brand new experimental algorithm under development
showing promising results for both speed and queue overshooting.

11A pipe is another word for the path between two endpoints. When we talk about
the size of the pipe, we talk about the Bandwidth Delay Product (BDP) of the pipe.

12BDP is the term for how much data the pipe is able to have in transit at any one
time. It is calculated as the product of bandwidth and RTT:

BDP = BW ∗ RTT

Pipes with high bandwidth and big RTTs (in other words, big BDPs are nicknamed
Long Fat Pipes.
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4.3.2 HyStart

Traditional slow start may potentially overshoot by as much as twice
the amount accepted by a bottleneck. To reduce the risk of severe queue
overshoot, the creators of TCP Cubic (CUBIC)13 created a new slow
start algorithm named Hybrid Slow Start. By measuring variations
in inter-packet gaps (ACK train length) and variations in RTT (delays),
the intention is to determine whether congestion is starting to build
up without having to wait for packets being dropped. As we will see
in the later sections, this type of early detection through measurement
is being implemented more and more in algorithms of today. The idea
seems promising, but it is not done without challenges. The solutions
and challenges seen in Hybrid Slow Start are related to bursts and
measurements. It will be enlightening to give a brief walk through of it.

The principal idea behind Hybrid Slow Start is reasonable. Conges-
tion results in increased delay because queues get filled (higher queue
occupancy), and each packet needs to spend more and more time wait-
ing in queue as queue lengths increase. This may be detected by mon-
itoring the RTT or by observing inter-packet gaps between ACKs. The
challenge with such a solution is that it may react too early (spurious
delay), or the measurements may be unreliable due to congestion in the
path of ACKs rather than the data. The authors suggest two ways to
do congestion detection in Hybrid Slow Start: Inter-Packet Arrival and
Delay Increase.[7]

Inter-Packet Arrival relies on the bursty behavior of slow start.
Because all the packets in a burst are sent back-to-back, the idea is
that one may detect congestion by measuring the length of an ACK
train (the sum of the interpacket gaps between a certain number of
packets) when it arrives at the end-system after traversing the whole
path. One may detect when congestion is starting to build up or whether
the packets in flight are approaching the BDP [21] by observing an
increase in the train length. The advantage of using a train is that
it does not require a high-resolution clock (because we measure a whole
train and need only clock the start and end of the train), and it is not
that sensitive to small variations in delay seen when using e.g. only
2 packets. To avoid the train being affected by the burst size itself
filling up a queue, only some of the first packets of the burst are used.14

However, this method is susceptible to ACK compression, delayed ACKs
and SACKs. It is dependent on ACKs arriving without compression or
receiver interference. According to Ha et.al, delayed ACKs are not that
big an issue (at least on Linux) because Linux uses quick ACKs for up
to 16 initial segments in slow start to ramp up the speed. Quick ACKs
here meaning that ACKs are not delayed but sent as quick as possible.
Even so, there seems to be quite a few challenges with the other types
of ACK variations.

The Delay Increase algorithm seems perhaps a bit more promising
13see section 4.4.3
14CUBIC in the current Linux version (v5.11.11) uses the 8 first packets
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because it uses RTTs and, more importantly, changes in RTT. The
main idea is that a substantial change in RTT indicates that congestion
is starting to build up. When the change in RTT surpasses a
predetermined threshold, Hybrid Slow Start exits slow start and enters
congestion avoidance. But this may also be affected by RTT variation
not caused by congestion; e.g. idle periods or aggregation (seen in Wi-
Fi), or path changes.

Even when Hybrid Slow Start works as intended (if we disregard
the challenges with inter-packet measurement and assume the RTT
measurements give a fairly descent indication, it is not flawless. If
several flows are using the same link, they have to fight for capacity. If
a flow uses Hybrid Slow Start, it risks not getting its fair share because
it backs off when the link capacity is reaching its limit. Thus, the more
aggressive flows retain a higher share of the link capacity.15 It may
also be that there is congestion downstream (the ACK stream) which
may be interpreted as congestion upstream. All in all, hystart has a
high risk of exiting too early. Because of this, Hystart++ was proposed
in an RFC draft in 2019 [7] where Limited Slow-Start for TCP (LSS)
is used to bring the flow from the slow start exit point up to the point
of saturation faster than traditional congestion avoidance, but slower
than slow start. In sum we then go from Hybrid Slow Start to LSS to
congestion avoidance.

Hystart++ is very new, but has recently been implemented in the
Windows 10 implementation of CUBIC. Hybrid Slow Start is used in the
Linux implementation. Even as early as in 2014, 46.92% of web servers
used TCP BIC (BIC) or CUBIC [42], and CUBIC is the Linux and
MacOS standard today. Hybrid Slow Start may have some limitations,
but it is in use, and the idea of reacting early and avoid packet loss has
some appealing advantages which will be discussed in further detail in
section 5.1.

4.3.3 Paced Chirping

The main goal of Paced Chirping is much the same as Hybrid Slow
Start, but it uses active measurements as opposed to the passive
measurements used in Hybrid Slow Start.

Paced Chirping uses several series of packets (chirps) sent at a
gradually higher rate to measure the capacity of the bottleneck. By
measuring the change in queueing delay, the idea is that we can
infer the capacity of the bottleneck from the inter-send gaps and the
queueing delay measurments. By making the chirps not just small
bursts but a series of packets sent at an exponentially increasing rate,
the algorithm is able to measure the capacity of a bottleneck queue
quite well in experiments over fixed links. The gaps between the chirps

15The advantage of being aggressive and merciless is prominent in several aspects
when working with internet protocols. In some cases the more fair or kind algorithms
never get a foothold at all in the wilderness that is the internet. More examples will be
mentioned along the way
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allow the queues to relax, and by gradually reducing these gaps, one
is able to increase the utilization of the link without overshooting.
One interesting case for this thesis is whether pacing in hardware will
contribute to Paced Chirping. Pacing in hardware may provide better
granularity, and that is of interest to the implementation of Paced
Chirping and other algorithms.

Paced Chirping difficulties

As with Hybrid Slow Start, Paced Chirping is a delay based version
of the slow start algorithm (albeit different in methodology and
persistence). To do proper measurements, we need to make some
assumptions about the flow of ACKs. The ACKs and their pace are the
grounds for the measurements performed. The sender sends out paced
chirps and measures the change in pace of the ACKs as they arrive.

The measurement therefore is sensitive to ACK compression and
other events downstream resulting in ACKs being delayed, reordered
or lost. Some challenges also arise when faced with discontinuous links
like Wi-Fi , docsis and mobile networks where aggregation and other
deviant behavior is observed. This poses difficulties for algorithms
relying on measurement rather than loss. More work is being done to
mitigate these challenges in Paced Chirping.

4.4 Congestion avoidance
Slow start starts the ACK clock and ramps up the speed of a flow. In
classical congestion control algorithms, this is done until we receive
three DUPACKs and enter fast retransmit, or if we have RTO and
restart slow start. If we restart, we repeat the same steps until we
either reach ssthresh or enter fast retransmit. In more modern
algorithms like Hybrid Slow Start, we detect congestion early and end
slow start.

Because of the coarse nature of classical slow start, Jacobson et
al. suggested that the final approximation for capacity (finding the
equilibrium) needs to be done a lot slower so as to not overshoot
again. After doing slow start, we have an approximate idea of what
the bottleneck capacity is. It should reside somewhere between the size
of our cwnd when we encountered a packet loss, and half of that. To find
the saturation point somewhere between those to points, they proposed
to do what they called an additive increase.16 Jacobson and Karels
named this state congestion avoidance, and it is the second central
algorithm to the congestion control presented in [24]:

1) On any timeout, set cwnd to half the current window size (multi-
plicative decrease).

16Linear increase of the cwnd
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2) On each ACK for new data, increase cwnd by 1
cwnd (additive increase).

3) When sending, send the minimum of the receiver’s advertised
window and cwnd.

The biggest difference between slow start and congestion avoidance
is in 2). On each ACK we increase the window with 1/cwnd rather than
increasing it by 1. By doing this, we effectively increase the window
with 1 each time a whole window is ACKed.

This solution proved to work very well. It made it possible to get
closer to a state of maximum utilization than what was possible with
slow start alone. Slow start and congestion avoidance work together as
a complementing pair where the first one does the dirty work of getting
us into the same ballpark, while the other one seeks to utilize the last
half of the potential as gently and widely as possible.

Tahoe solved the initial problems discovered in ‘86, but some obvious
limitations and areas of improvement were discovered in the years to
come, causing several different algorithms to spawn.

4.4.1 Fast recovery

According to Tahoe, slow start should restart every time an RTO occurs.
This may result in under-utilizing the capacity because we need to
ramp up from 1 to the new halved ssthresh before we can enter
congestion avoidance. If we have an indication that the ACK clock is
still ticking (packets leave the network and cause ACKs to be sent),
reducing ssthresh to 1 seems a bit extreme.

These observations led to TCP Reno being introduced in 1990. Reno
is very similar to Tahoe in many respects, but it reacts differently to
DUPACKs. Tahoe restarts slow start with a reduced ssthresh upon
receiving 3 DUPACKs. Reno also reduces ssthresh, but it does not set
cwnd to 1. Instead it halves the cwnd and does fast retransmit. For
each successive DUPACK it keeps increasing the cwnd with 1 because
a DUPACK indicates that the receiver is still receiving packets with
higher sequence numbers, allowing the cwnd to increase. Once the
missing packet is ACKed, Reno enters congestion avoidance and does
additive increase. This modification is called Fast Recovery and is
associated with Fast Retransmit.17 In short, both Reno and Tahoe do
Fast Retransmit, retransmitting the lost packet without waiting for
RTO, but Tahoe drops its cwnd to 1 and enters slow start while Reno
does Fast Recovery with cwnd halved.

Reno enters Fast Recovery when it detects packet loss (through
DUPACKs) . One problem with Reno is that it exits Fast Recovery when
the missing packet is ACKed, and this may cause bad performance if
there are multiple packets lost in the same window. We risk performing
FRR several times before the packets lost in the same window are
ACKed. This observation led to TCP New-Reno which handles multiple

17Often referred to as Fast Retransmit and Fast Recovery (FRR)
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packet losses in one window by staying in Fast Recovery until all the
packets in transit from the original window are successfully ACKed.

4.4.2 Improving New-Reno with SACK

One challenge with TCP New-Reno is that the loss-handling is quite
slow. The sender needs to be informed about each of the lost packets
individually. In other words a lot of RTTs are used to finish Fast
Recovery. The introduction of SACK made it possible to convey
information about several packets at the same time. A list of packets
lost may be sent at one time, and the sender may retransmit them at
once. The trouble with SACK is that it has some more overhead and this
may impair the speed if the cwnd is very big or we have large bursts of
packets lost.

4.4.3 BIC and CUBIC

As network capacity increases we need more time to ramp up to
maximum capacity during slow start and congestion avoidance, and
that makes us more likely to encounter packet loss along the way.
Traditional loss based algorithms have some challenges when faced
with big fat pipes because it can take a long time reaching equilibrium.
Even if we have no congestion, we are likely to encounter packet loss due
to packet error before we get up to speed using congestion avoidance.
The congestion avoidance algorithm worked just fine in general for
small, slow links, but today it poses a problem because it is too slow. We
can easily end up with the risk of having issues even with the theoretical
limit of network bit error rates.18

In addition to the need for a very long period of time with basically
no packet loss, we can see that we spend a very long time moving from
(theoretically) half capacity to full capacity. In other words, we have
poor utilization all this time. Prior to BIC, several algorithms tried to
mitigate this challenge by altering the rate at which the cwnd increases
per RTT.19 The idea was simply to ramp up faster, and it seemed to work
well. The protocols adaptively increased their rates; e.g. STCP had a
reduced multiplicative decrease and a defined ramp up of the cwnd of
1/100 ACKs instead of 1/cwnd. As the window increases in size, the size
of the rate increase ramped up because the amount of cwnd-increases
became a lot more than 1 per RTT as the window increased in size. By
doing this, the time needed to fill a big fat pipe was greatly reduced. The
solution was effective, but doing it this way would also turn out to favor
flows with short RTTs rather than long, and it risked larger overshoots.

Shorter RTT means shorter time intervals between each increase.
In the end we get an unfair distribution of bandwidth where the flows
with short RTTs get a lot more bandwidth than those with long RTTs. It

18If RTT is 100ms we need 1 hour to ramp up from half to full utilization on a 10Gbps
link with a loss rate of less than 1 per 2.6 Bn packets[27]

19SABUL, FAST, High Speed TCP (HSTCP), and Scalable TCP (STCP) [27]
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may even lead to starvation. Another RTT unfairness stems from how
synchronized loss has a higher probability of hitting flows with large
windows, but it turns out that flows with shorter RTTs recover faster
than flows with longer RTTs even though they may have much larger
windows and greater loss than those with long RTTs.[27]

Binary Search Increase

Xu et al. sought to achieve better bandwidth utilization in high
bandwidth networks while at the same time managing to avoid the RTT
unfairness discovered in some previous solutions to the problem. Their
solution (BIC) was to do what they called a binary search increase; Once
congestion avoidance starts, we do a binary search for capacity rather
than the traditional additive increase. thus significantly reducing the
time needed to reach full utilization.

Binary search increase uses the cwnd present before halving as
a maximum window size Wmax and cwnd after halving as minimum
window size Wmin. Then it tests the capacity by setting cwnd to the
midpoint between Wmax and Wmin. If another packet loss is encountered
using the midpoint, the midpoint is used as the new Wmax. If not, the
midpoint is used as the new Wmin. In either case, this midpoint testing
continues until the distance between Wmin and Wmax is less than some
predefined threshold Smin.

Doing this binary search reduces the impact of RTT on fairness
because the number of RTTs needed to reach the desired capacity
is reduced to log2 of the bandwidth capacity rather than a linear
increment. Furthermore, the increase function is logarithmic; it is
halved in each step, thus reducing the potential overshoot as we
approach the saturation point. The algorithm also combines the binary
search increase with an additive increase called window clamping.
If the distance to the midpoint is very large (larger than a preset
threshold), it does an additive increase until the distance is within the
threshold. By doing so it reduces the risk of adding too much stress on
the network.

CUBIC

BIC ended up being the Linux standard because it proved to be very
stable and efficient. Because the binary search increase is a logarithmic
concave function, its overshooting potential is reduced for each step it
narrows in towards the saturation point as opposed to a linear function
(additive increase) which increases at the same rate the whole way, or
(at worst) an exponential/convex function increasing the rate.

If the bottleneck capacity suddenly increases, BICs binary search
will not find the new max just by using the previous max. Once it
reaches the previous max without any packet loss, it shifts to a convex
function called max probing, ramping up (much like a slow start from
the previous max) to find the new point of saturation.
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This combination of a convex and a concave function is replaced
in CUBIC using a cubic rather than a binary function to find the
saturation point. It is very much like BIC in having both a convex
and a concave part,20 thus maintaining the same stability with regards
to treading gently around the saturation point while also being very
efficient in finding the saturation point. The algorithm displays the
same RTT fairness as BIC because the methodology is similar.

CUBIC removed the window clamping because testing proved it to
be unnecessary. This reduced the complexity of the algorithm, as did
shifting to a cubic function rather than two different functions. It
also turned out that BIC was too aggressive in some situations. If the
RTT was small, BIC would score badly on TCP friendliness.21 CUBIC
sought to improve on this by introducing TCP mode; a mode where
the increase of the cwnd per ACK is equal to that found in standard
TCP. To determine what mode the algorithm is in, CUBIC measures the
time from when congestion avoidance was started (i.e. the time passed
since the packet loss triggering the state). By knowing this time, it
may calculate a classical additive increase to measure against. Three
modes exist in total; the TCP mode if needed to be friendly, then the
concave mode once we close in on the saturation point and are within
TCP friendly bounds, and finally the convex mode if cwnd surpasses the
Wmax.

4.5 Limitations of loss based detection
According to Jacobson and Karels, packets may get lost due to damage
in transit or congestion, but congestion is the main cause ( >99% [24]),
and thus seemed to be a fair parameter to use. Using dropped packets
as the sole indicator for congestion (loss based congestion control) has
worked just fine for a long time, but with the emergence of faster and
longer links it has become more and more apparent that the loss based
approach seems to fall short in some areas. Hybrid Slow Start and
Paced Chirping (PaC) try to deal with exactly this recognizing that
queue overshoot is very costly to all the flows sharing a bottleneck.
It leads to higher latency and more packets getting dropped; which in
turn leads to flows backing off and retransmitting packets that could
have already been delivered had the queue not been put under too much
pressure in the first place. As section 4.4.3 showed us, as the bandwidth
increases, the time spent to grow linearly to the saturation point
increases with the classical congestion control algorithms employing
linear increase. The more time spent in this state, the higher the risk
of packet loss leading to further decrease of flow rate. Thus, the bigger
the BDP, the more important it seems to avoid packet loss in the first

20A cubic function (or any odd order function) has the property of having both a convex
and concave part

21TCP friendliness is a measure for how greedy an algorithm is when competing with
classical TCP algorithms
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place. BIC and CUBIC tackle this by increasing the speed at which
they ramp up, but we still have a situation where we spend a lot of the
time under-utilizing the network capacity because we have a repetitive
pattern where we constantly:

1. Fill the pipe until packets are lost

2. Back off to let the queues drain

3. Start increasing the rate again

This produces the classical saw-tooth pattern in TCP shown in figure
4.1, and it is not an ideal situation when it comes to utilization or
latency. It is also worth noting that using loss as the primary indicator
of congestion implies that congestion can not be detected before queues
overflow and packets are dropped. Full queues and dropped packets
are signs that the state of congestion is at its worst, and repairing
the damage is thus at its hardest. Congestion detection may be done
differently, and the following paragraphs will explore some of the
alternative solutions.

Figure 4.1: Dynamics of a classic TCP connection displaying saw-tooth
pattern[2]

We must also remember that traditional loss detection is indirect
loss detection. A lost packet can not let the sender know it is lost. The
detection is done either through RTO where we simply ”give up” because
too much time has passed, or through receiving three DUPACKs. These
indicators are only implicit indications that a packet has been lost,
and as such, they have an implicitly delayed notification capability.
We use time to indicate that a loss has occurred (either waiting out
the whole RTO or waiting for three DUPACKs). This delay is in
itself a problem because it results in the sender reacting later than
theoretically possible. Reacting later causes the sender to continue at a
higher rate than wanted for a longer time, thus adding to the congestion
problem at the bottleneck, potentially causing more packet drops and
further delays.
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Indirect detection is time consuming, and it is not a 100% exact
science. A timeout makes us draw the conclusion that a packet is lost
(which may not be the case), and from that we infer that the problem is
congestion (which it need not be).

Changing the main principle for congestion detection from loss to
some more explicit or direct sign of congestion paves the way for
detecting congestion before the congestion is at its worst. It also makes
the algorithms less sensitive to the occasional packet loss due to reasons
other than congestion. One important addition to this is active queue
management, and that will be the focus of the next chapter.
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Chapter 5

Active Queue Management

Buffers are necessary to allow for fluctuations in flow-rates. Sudden
bursts should not cause massive packet loss, but simply use the
available buffer space. But as we have seen, the very nature of
loss based congestion detection leads to the buffers gradually filling
up if the flows live long enough, no matter how big the buffers are.
Simply increasing the buffer size to avoid packet loss is a poor solution
potentially as the very nature of classical congestion control is to add
pressure to the system until the buffers fill up. Increasing buffer sizes
may lead to even more latency without avoiding the potential packet
loss anyway.1

5.1 Queue length is not the whole story
When we say that buffers are necessary to deal with fluctuations or
bursts, this is not just bursts or fluctuations caused by e.g. a sender
producing slow start bursts. Buffers are needed in all cases where
a node has a higher ingress rate than the egress rate. As Jacobson
described it; we often need to connect a fire hose to a soda straw, and
the adapter for such plumbing is called a queue.[39]

According to Jacobson et al., queue length is not a good measure-
ment for congestion because, at steady state, it tells nothing about the
rate. The queue length resonates with the window size. If the window
size is bigger than the BDP, this difference is present in a persistent
queue which may not necessarily be detected by the queue manager or
the sender as congestion. But it does result in unnecessary latency.

Some of these observations led to the idea of Active Queue
Management (AQM). Simply put, AQM is the idea that the intermediate
nodes actively monitor the buffer occupancy and take action before the
buffers fill up completely. Three possible ways of acting are listed here
and will be examined in the following sections:

• Random Early Detection (RED) (1993)
1Excess buffering to deal with increased packet loss is often called bufferbloat
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• Explicit Congestion Notification (ECN) (2001)

• Controlled Delay (CoDel) (2012)

5.2 Random Early Detection (RED)
One of the first versions of AQM as we know it today was called Random
Early Detection, and it was named this way because of the way it
functioned: Select packets to get dropped randomly, and do it early.
Early as in before the buffers are actually full, and random as in the
queue manager selecting the connection randomly. The probability of
a connection getting picked is simply ”proportional to that connection’s
share of the throughput through the gateway.”[19] 2

When we say that a connection would get notified, this could happen
in one of two ways; either explicitly with markings (see section 5.4),
or implicitly by dropping packets like it would normally happen in
full bottlenecks; the difference now being that the packets would get
dropped before the buffers were actually full.

By doing early detection, the idea is that one may keep the latency
low while still being able to handle bursts. By making flows back off
earlier, the congestion is reduced before it reaches its maximum (as
mentioned earlier).

Doing the marking (or dropping) with a random (probability)
calculation avoids a separate problem with classical tail drops. In
classical queue management, packets are simply dropped at the tail
of the queue which is natural because the queue is full and the
arriving packets must be dropped. This may cause what is called
a synchronized drop with packets from several connections getting
dropped, causing several connections to back off. This leads to the
total throughput dropping and poor bandwidth utilization. In RED, the
packets are marked based on a random selection. The randomization
results in the connections with the highest throughput to be most
likely to get marked, which in sum causes the connections affecting
the queue the most to be most likely to back off. This reduces the
chance of small bursts getting punished unfairly, and increases overall
throughput/bandwidth utilization because it makes flows back of at
different times.

5.2.1 Limitations

According to Feng et al., ”The inherent problem with these queue
management algorithms is that they use queue lengths as the indicator
of the severity of congestion.”[16] And ”while the presence of persistent

2Because of the early detection, this type of congestion control is often called
congestion avoidance. We try to avoid congestion from happening in the first place
as opposed to congestion control trying to react to and get control of congestion that has
already occurred.
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queue indicates congestion, its length gives very little information as to
the severity of the congestion.”

Because packets arrive queues in bursts and hence have an uneven
distribution, the queue length is not an expression of the severity
of the congestion. One flow filling the queue by sending one large
burst is less severe than several flows sending at a too high rate, but
this is not easily detected by the queue manager. Using only queue
length makes it difficult for the queue manager to determine what the
different parameters should be for optimal throughput and latency. The
thresholds need to be set well, and the buffers should be deep enough. It
has proven to be a complex matter to adjust the parameters optimally;
”little guidance was available to set its configuration parameters and it
functioned poorly in a number of cases.”[32] This is a problem for many
AQMs, not only RED. The can work great, but are difficult to optimize.

This observation has led to several alternative ways to do AQM like
BLUE introduced by Feng et al., and CoDel introduced by Jacobson
which we will discuss further in the next section.

5.3 Controlled Delay (CoDel)
CoDel came about based on observations made by Jacobson in 2006
[39] concerning bufferbloat and queue management. He stated that
the traditional perception of bufferbloat used in e.g. RED was a
misconception of what bufferbloat actually is. In traditional RED,
bufferbloat is detected by calculating an average queue length, but
Jacobson demonstrated that this is highly affected by the innate bursty
behavior of TCP transmissions. The basic idea described with the
plumbing adapter is that we need buffers to manage the transitions
from links with high bandwidth to links with lower bandwidth. As
previously mentioned this enables us to handle bursts without having
to drop lots of packets. Thus, buffers are necessary to deal with bursts
hitting links with lower bandwidth, and these bursts are part of several
of the algorithms described earlier in this thesis.

Jacobson argued that bursts increase queue lengths (and should do
that), and this triggers classical RED to mark or drop packets. But the
average queue length increasing for a short amount of time due to a
transient burst is not something one should react to; it is simply the
intended behavior of a well-functioning buffer coping with burst. The
problematic queue length one should actually be worried about is the
persistent queue length. That is, a queue filled to some degree for a
sustained period of time.

According to Jacobson, a sustained queue is an expression of one
(or more) senders having more packets in transit than the bottleneck is
capable of handling without draining the queue. The average queue
length need not be very long, but it does not go away, and hence is
unnecessary. If the sender has a window larger than the BDP, it will
result in a persistent queue at the bottleneck. This persistent queue
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may be below the threshold for RED to react, and therefore the window
will just keep being too big, causing unnecessary latency and reduced
capability to deal with incoming bursts. A transient queue may come
about because a burst arrives at a bottleneck, but as long as the window
is smaller than the BDP, it will be drained and disappear after one RTT.

Because of this, Jacobson and Nichols came up with the concept of
good and bad queues where good queues are transient queues that come
and go due to burst handling, and bad queues are persistent queues
caused by too many packets being in the pipeline at any one time.
Bad queues are what one should properly call bufferbloat (unnecessary
queue occupancy), and good queues are just a necessary aspect of TCP
flows having variations in rates from one time or place to another.

Figure 5.1 shows how a persistent bad queue comes about due to
a constantly too big sender-window, while figure 5.2 shows how a good
queue builds up and drains constantly.

Figure 5.1: TCP connection with persistent queue after one RTT [32]

Figure 5.2: A good queue handling bursts [32]

To achieve an AQM where good queues are allowed and bad queues
are detected and handled, Jacobson and Nichols created CoDel. CoDel
does not measure queue length as an amount of bytes in queue, but
rather measures the sojourn time of each packet. The threshold for
queue length is set as a maximum sojourn time of a packet. Measuring
sojourn time rather than number of bytes is an easier parameter to put
in use. We avoid the need to to set different thresholds for different
bandwidth links. The buffer for a link with a high bandwidth needs
to be bigger (as previously discussed) than the buffer for a small
bandwidth link, but the sojourn time may be the same. Further
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more, calculating sojourn time is easily done by simply stamping each
packet upon arrival. Not all packet sojourn times are compared to
the threshold, only the minimum sojourn time of all packets passing
through in a predefined interval of time is compared to the threshold.
By doing this, the work done by the queue manager is simplified, and it
allows for variations in sojourn time. According to the authors; ”Use of
the actual delay experienced by each packet is independent of link rate,
gives superior performance to use of buffer size, and is directly related
to the user-visible performance.”[32]

If the minimum sojourn time is larger than the threshold when the
last packet in the interval is processed, the packet gets dropped3, and
the interval length is reduced to increase the drop frequency until the
minimum delay is within bounds. If the number of bytes in queue is
less than the link MTU, no action is taken. If the minimum is within
bounds, the interval length is reset.

The optimal thresholds and interval lengths are defined to be 5 ms
for minimum and 100 ms for interval length: ”Below a target of 5 ms,
utilization suffers for some conditions and traffic loads; above 5 ms there
is very little or no improvement in utilization... ...A setting of 100 ms
works well across a range of RTTs from 10 ms to 1 second (excellent
performance is achieved in the range from 10 to 300 ms).” [32] But later
works argue that minimum target ”should be tuned to be at least the
transmission time of a single MTU-sized packet at the prevalent egress
link speed”.[23]

Optimizing CoDel is simpler than RED and other classical AQMs,
making it easier to implement it in a wide range of networks and
hardware At the same time it shows very good performance compared
to them.

5.3.1 FQ CoDel

Flow Queue CoDel is a variant of CoDel which combines CoDel with a
fair queuing scheduler. Each flow is given its own separate queue, and
each queue is monitored by CoDel AQM. The queues are picked with
a variant of Round Robin4 based on byte counting. The byte counting
ensures that all flows get the same amount of bytes through, regardless
of packet size.

New flows get a lot more leeway to start with in CoDel, and Flow
Queue CoDel takes longer ”to converge towards an ideal drop rate for
a given new flow but does so within fewer delivered packets from that
flow.”[23] It is also has a more accurate drop from large flows, and it
reacts faster to changes in a link. It is proven to be very effective,

3Dropped may be actual dropping or explicit notification (ECN) if the ECN bool is
set

4Deficit Round Robin: ”the only difference from traditional round-robin is that if a
queue was not able to send a packet in the previous round because its packet size was
too large, the remainder from the previous quantum is added to the quantum for the
next round. Thus deficits are kept track off, queues that were shortchanged in a round
are compensated in the next round.”[37]
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but also has some issues with specific conditions like the need for other
fairness-criteria, or when combined with congestion control algorithms
that need more clear delay-indications than what Flow Queue codel
provides to detect congestion.

5.4 Explicit Congestion Notification
The queue manager may inform the sender in two ways; either
implicitly by dropping packets as previously explained, or explicitly by
passing information to the sender (via the receiver). The latter is done
using ECN.

In ECN, once the AQM decides that a queue has built up enough
and that the senders should reduce their sending rates, packets passing
through will get marked by setting the ECN-bits, notifying the receiver.
The receiver then passes that information to the sender through the
ACKs. This explicit notification has its advantage in enabling the
sender to respond more quickly because no DUPACKs or timeouts are
needed. On top of that, the actual packet is not dropped, and that
reduces the amount of retransmits. Considering the fact that the
sender gets immediate notification, it does not need to wait for the
triple DUPACKs, and it does not need to retransmit any packets. With
such advantages one would believe it should be in everyone’s interest
to employ this everywhere, but it has not been used very much in the
internet primarily due to two reasons mentioned in[26];

1. It requires changes to all intermediate nodes.

2. Early detection often starves when competing with more aggres-
sive algorithms using loss based detection.

Agreeing on the use of ECN between sender and receiver is quite
simple, but in order to ensure that the sender gets informed that
congestion is building up, the bottleneck needs to employ ECN. This
is not that easy to put together in the Internet. But of course, if the
advantages of using it are as good at they seem to be, it can seem odd
that it is not more widespread. The reason for this lies mostly in point 2.
Because ECN is early and makes the sender respond quickly, it tends to
back off before other more greedy, loss based schemes. This may result
in unfairness or risk of starvation.

ECN has been put to good use in controlled environments like data
centers. Once deployed in a controlled environment, it provides advan-
tages to performance that are difficult to achieve with conventional loss
based congestion detection because it may react preventive with less
latency due to more shallow buffer needs.

5.4.1 Data Center TCP

One algorithm relying on ECN is Data Center TCP (DCTCP) which
manages to combine low latency with high throughput. It came
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about in 2010 because Alizadeh et al. observed that loss based
congestion control struggled with too high latency for short messages
and queries/aggregate in data centers where these types of flows are
greatly mixed with ”long-lived, greedy TCP flows”.[3]

Ever since [40], the general rule of thumb has been that the buffer
sizes of an intermediate node (e.g. a router) should be equal to the BDP.
The reason for this is simply that the ”worst case data burst remains
approximately equal to the”[40] BDP (assuming that the flows stay
below the saturation point.

Some variations to this rule of thumb have been made[6]:

• dividing the BDP by the square root of the number of flows
(assuming that the flows are asynchronous and independent of
each other). This has proven to work well and is often used today.

• even smaller buffers (assuming that bursts are non-existent,
which excludes a lot of networks)

Either way, it becomes apparent that the buffers will get deeper as
the bandwidth increases. In data centers the RTT may be small, but the
bandwidth may still get big for certain flows, and this poses a problem
because of the variety of flow types present in a data center. As Alizadeh
et al. put it, the greedy, long-lived flows running in the background
”will cause the length of the bottleneck queue to grow until packets are
dropped, resulting in the familiar saw-tooth pattern”. This will happen
over and over with congestion avoidance building it up and backing off
when overflow happens. In a data center, this causes problems because
short-lived, latency sensitive flows mix with the long-lived flows, and
these flows experience an increase in latency because of the long-lived
flows filling up the buffers.[3]

One way to deal with this would be to reduce the buffer sizes, but
if the buffers were reduced, the heavy background flows would suffer
because smaller buffers makes for reduced burst-tolerance resulting
in an increased risk of packet loss and an unwanted reduction in
throughput. Using ordinary TCP, the solutions to these challenges
could be summed up in two separate options that both seem insufficient:

1. Keep the buffers large: Accommodate larger flows and provide
burst tolerance, but increase the latency.

2. Reduce the buffer size: Accommodate the latency-sensitive flows
(queries and short messages), but impact the throughput of the
long-lived flows and increase the odds of overflowing when faced
with bursts.

The solution that Alizadeh et al. created in DCTCP seeks to achieve
the positives of both these options by using (or actually misusing5) ECN
to provide early detection. Rather than dropping packets, the packets

5According to the original RFC (3168)[35], a ECN marked packet should cause ”the
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are marked to inform the sender that action needs to be taken. The
threshold for marking packets is set well below the buffer size, thus
providing very early detection, resulting in a very low queue occupancy.
By doing this, the buffer is more resilient to bursts arriving because
there is a lot of empty buffer space to use. At the same time the average
latency is kept low because the average occupancy is low. The larger
bursts may surpass the threshold, thereby resulting in packets being
marked, but the risk of packet loss is low because we are operating well
below the buffer size limit. Once a burst increases the occupancy, the
sending rates should be reduced, and the queue should get drained, thus
re-establishing the low occupancy and low latency.

Seeing as the thresholds are set quite low relative to the buffer
size, this results in a fair amount of markings. If marks would cause
reactions equal to those of packet loss (reducing cwnd to half) this could
cause major underflow. Therefore, to ensure good link usage and keep
the thresholds low for low latency and high burst tolerance, the reaction
to marks is calculated using the following function:

cwnd← cwnd ∗ (1− α/2)

where α is calculated using the number of marked packets per RTT like
this:

α← (1− g) ∗ α + g ∗ F

”where F is the fraction of packets that were marked in the last window
of data, and 0 < g < 1 is the weight given to new samples against
the past in the estimation of α ”[3]. If congestion is small, only a small
fraction of the packets are marked and cwnd is just slightly reduced,
but if congestion is high, α is equal to 1, and cwnd is halved just like in
ordinary TCP.

On paper, DCTCP seems to mitigate a lot of the problems raised
by the special demands in data centers. It provides low latency and
higher burst tolerance by keeping the queue occupancy low, and it
is very resilient to packet loss. The main challenge with DCTCP is
the difficulties related to implementing it outside of fully controlled
environments and that it tends to starve against regular TCP.6 Even
though this might be the case, it is used in some form in a lot of data-
centers today, and a lot of work is put into getting some version of
DCTCP to the internet.7

transport layer to respond, in terms of congestion control, as it would to a packet drop.”
As will become clear, the idea of DCTCP is not to react to markings exactly like one
would to a packet drop, but to react more mildly. The behavior defined in RFC 3168 has
since been relaxed in RFC 8311

6Briscoe et al. in [26]; ”no way has yet been found for DCTCP traffic to coexist with
conventional TCP without being starved”

7See e.g. the L4S standard[41] or [26] on configuring a new AQM scheme to make
DCTCP deployable in the internet
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DCTCP difficulties

Huge amounts of bursts are one of the challenges DCTCP was
constructed to handle, but batching of packets in Large Segment
Offload (LSO) creates larger bursts than bursts caused by the algorithm
itself. Tests show that the this results in very frequent queue-length
oscillations, and it may cause buffer underflow and reduced throughput
when LSO is used.[36]

DCTCP has an extensive use of markings, and with large segments
bursting into the network, we have a high risk of single flows getting
punished harder than others because a whole train of packets arrive
the queue from the same flow. In DCTCP such a flow risks getting a lot
of markings and could consequentially back off a lot more than actually
needed.

Batching caused by offloading is problematic to several algorithms
and it will be thoroughly examined in chapters 7 and 9, but the
extensive marking-scheme of DCTCP makes it extra sensitive to such
cases as the one described above.
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Chapter 6

Measurement based
congestion detection

AQM has the potential advantage of reducing latency and packet loss
by reacting early and avoiding the big congestion buildups. When using
ECN it is also possible to avoid the negative effect of dropping packets.
This reduces the number of DUPACKs and RTOs, thus improving the
performance of the flows.

The major challenge with AQM is that it requires active monitoring
and configuration of the intermediate nodes. In the case of ECN, all
entities need to be configured. The advantage of not using AQM is the
plug-and-play effect. All configurations are done sender-side or may
perhaps be negotiated with the receiver during the initial handshake.
Avoiding computations and monitoring in the intermediate nodes also
reduces overhead in the nodes.

AQM has some important advantages. It tackles the bufferbloat
problem, and it enables us to use smaller buffer than would otherwise
be possible without risking massive packet loss. The question is if it
is possible to have some of these advantages in place without involving
any other entities than the sender. The following sections investigate
some of the proposed solutions. One common aspect to them all is that
they try to react early by using measurements rather than reacting to
packet loss.

6.1 TCP Vegas
TCP Vegas (Vegas) is not a modern algorithm, but it is worth
mentioning here because it was one of the first TCP algorithms
employing a delay based congestion detection. As early as 1994[14],
Vegas introduced the notion of using delay to detect congestion before
packets were lost.

The idea of Vegas is simply to keep track of the RTTs and measure
them against a base RTT (an estimate for the smallest possible RTT of a
path). Once the observed RTTs get too high compared to the base RTT,
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congestion is assumed to be building up. The results of the algorithm
were included in the abstract of the publication as achieving ”between
40 and 70% better throughput, with one-fifth to one-half the losses, as
compared to the implementation of TCP in the Reno distribution of BSD
Unix”[14].

With these positive figures it seems odd that Vegas or some other
algorithm with the same logic has not prevailed as the dominant
congestion control algorithm in most networks today. The reason is,
simply put, that Vegas is not greedy enough to get implemented into a
free market like the internet. When competing with e.g. Reno, Reno
seems to get up to 50 percent more bandwidth than Vegas. This is a
major issue for implementing and spreading the usage of an algorithm.
If it is starved it does not help that it is ”kinder” to the bottleneck link.
It will simply get pushed aside.

In addition to this issue, some other issues were revealed in the
years after its creation. It proved to be very conservative during slow
start, using an additive increase for a larger portion of the time, thus
using a lot longer time to get up to speed. It also had an issue with
handling route change. Routes may change in the network at any time,
and for a protocol dependent on a base RTT, this posed a problem. As
will be discussed in the following section, Bottleneck Bandwidth and
Round-trip propagation time (BBR) also uses a base RTT but solves the
issue by continuously re-estimating it.

All in all, Vegas was a very promising attempt at what some
of our most modern algorithms seem to pick up on. The version
presented by Brakmo et al. in 1994 had some shortcomings, but several
modern algorithms emerging now use delay rather than loss to detect
congestion. BBR is one of them, and it shows big promise to some of
the challenges posed by both loss based congestion detection, and the
shortcomings of the Vegas algorithm.

Interestingly for us, it uses pacing actively to achieve its results.

6.2 Bottleneck Bandwidth and Round-
trip propagation time

BBR is an algorithm presented by Van Jacobson et al. as recent as
2016 as a direct response to the challenges posed by having loss based
congestion detection:

”When bottleneck buffers are large, loss based congestion
control keeps them full, causing bufferbloat. When bottle-
neck buffers are small, loss based congestion control misin-
terprets loss as a signal of congestion, leading to low through-
put.”[15]

They argue that traditional, loss based congestion control does not
operate in the optimal area of bandwidth-usage. Loss based congestion
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control continuously pushes more data into the network until packets
are lost. Once a packet is lost, the flows slow down before speeding back
up until packets are lost again. Doing this results in the bottleneck
queues constantly being filled up, and full queues result in both high
latency and frequent packet loss. Furthermore, they argue that loss
is not a good metric alone for detecting congestion because you can
very well get packet loss before there is sustained congestion. Loss
based congestion control is sensitive to this, and as a result we get poor
throughput.

In short; if loss occurs before congestion, we get low throughput -
and if loss occurs after congestion, we end up with bufferbloat with
constantly full buffers because the flows will keep making the buffers
overflow (they have no other way of knowing when to slow down).

BBR proposes a new approach to congestion control by attempting to
measure the actual BtlBw. A flow at any time only has one bottleneck1

with a specific BtlBw, and calculating that one variable is sufficient. If
we are able to measure the actual BtlBw, we do not need to overshoot
the capacity of the bottleneck, and we do not need to slow down more
than necessary. In theory, we may get a more optimal bandwidth
utilization with all the positives that implies.

The goal of BBR is to meet two conditions at the same time; sending
packets at a rate equal to the BtlBw, and having a cwnd equal to the
BDP. To achieve this, it is necessary to firstly pace out the transmission
to send at an appropriate rate, and secondly to measure the BtlBw and
optimum RTT. By not only adjusting the cwnd, but also adjusting the
sending rate, they argue, it is possible to reduce the queue lengths
because the bursts are removed. If we calculate the correct BDP, but
do not pace the flow, we end up with the bottleneck buffer constantly
filling up and draining due to the bursts. It may also lead to packet loss
because the buffers are too small.

Pacing out the packets is easy as long as we know the cwnd and RTT.
The main challenge is finding the actual BtlBw. BBR uses two separate
probing techniques to find the minimal RTT and the BtlBw respectively:

1. ProbeRTT

2. ProbeBW

Probing for RTT is simply to try to determine the Round-Trip
propagation time (RTprop). RTprop is the minimal amount of time
a packet needs to traverse a path if there is no congestion (”noise
introduced by the queues”[15]). The RTprop is physically determined
by the length of the path and medium the signal has to traverse. In the
ProbeRTT phase, the sending rate is reduced significantly so as to drain
the queues over a period of at least 200ms and get an RTT as close to
the RTprop as possible. This phase is repeated every 10 seconds to be
able to detect changes in the RTprop (i.e. changes in the physical path).

1There must necessarily be one slowest link or hop in the path
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In the ProbeBW phase, 8 RTprops are used to test an increased
sending rate. The first round (RTprop) sends at a rate of 5/4 of the
old sending rate. The next round reduces to 3/4 to ease the stress on
the queues, and the last 6 rounds send with a sending rate equal to
the old sending rate. By observing the ACKs, it is determined whether
the increased sending rate of the first round was successful (i.e. did not
increase the observed delay, indicating an increase in queue occupancy).

Every ACK contributes with an RTT, and combined with the sender
monitoring the amount of data inflight, we get a delivery rate. ”Average
delivery rate between send and ack is the ratio of data delivered to time
elapsed”[15]. As long as the amount of data inflight is less than the
BDP, the delivery rate should reflect the sending rate. Added delay
indicates that the queues are getting filled.

The main idea of BBR is to use RTprop as a limit, and figure
out what amount of delay/noise the flow experiences throughout the
lifespan of the flow. RTprop is the minimal amount of time a packet
needs to traverse a path if there is no congestion (”noise introduced by
the queues”[15]). By measuring the delivery-rate found by analyzing
the ACKs, the propagation-time and combining them with the amount
of data inflight, Jacobson et al. argue it is possible to find the BtlBw as
the maximum delivery-rate at that time. TCP measures RTTs all the
time, so all information needed to do the calculation is to keep track of
the amount of data inflight.

An important point here is that it is not possible to measure
bandwidth and RTprop at the same time. To measure the latter, the
pipe needs to be as empty as possible, and to to measure the former, we
need to fill the pipe as much as possible.

Combining these different phases and constantly alternating be-
tween them provides us with the possibility of estimating the BDP quite
efficiently and accurately. Once this is combined with pacing, we are
able to maximize the cwnd without filling the queues.

The pacing in BBR is an interesting focus shift from earlier
algorithms. ”BBR must match the bottleneck rate, which means pacing
is integral to the design and fundamental to operation - pacing rate is
BBR’s primary control parameter”[15].

As will become apparent in chapter 8, pacing seems like a very
promising way to maximize bandwidth utilization whilst reducing
buffer sizes and latency. Jacobson created both RED and CoDel to tackle
certain side-effects of packet bursts. With BBR it seems that we are
shifting our focus to the sender and the way the sender is transmitting
to remove some of the issues further down the path.

BBR is deployed in the Google B4 backbone and YouTube for
testing, and it shows good promise. Vegas was also founded on
estimating delay variations, but had trouble competing with loss based
algorithms. Experiments show that BBR does not lose against loss
based algorithms. In fact it is a lot more aggressive during its
start-up phase than e.g. CUBIC. In addition to a more aggressive

37



probing for bandwidth during its slow start phase, it provides a faster
convergence to equilibrium and fairness because it quickly calculates a
more accurate BtlBw and adapts to BtlBw-changes[11].

6.2.1 BBR difficulties

The fast and aggressive convergence also has some negative effects
because it results in the BBR flow using more than its fair share when
it competes against other algorithms (e.g. CUBIC). Tests also indicate
that BBR beats CUBIC with regards to throughput if the buffers are
shallow, but that the results are opposite when the buffers are deep[11].
This may be caused by the loss based flows taking advantage of the
empty space of deep buffers (left empty by BBR) to send more data.
Another observation is that BBR appears to have more throughput
oscillations due to its drainage phases. It is unclear as to whether this
affects the overall throughput a lot, but it calls for further testing. There
are also indications that throughput is better when we have just a single
CUBIC flow than a single BBR flow.[11]

All in all there are several advantages to BBR if the buffers are
shallow, and if loss is a major negative. As to the negative sides, it
all depends on the competing flows, and what type of environment it is
used in. Development is ongoing and BBRv2 is being rolled out with
improvements to many detected weaknesses like e.g. coexistence with
Reno and CUBIC with better fairness[44]. It also takes advantage of
ECN signals where they can be found with results similar to DCTCP,
and it may react to loss if needed.
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Chapter 7

Bursts

Traditional TCP is window based rather than rate based. Because of
this, bursts seem to be not only an inevitable, but a natural part of
TCP flow- and congestion control. The previous chapter showed that
a lot of effort has gone into dealing with bursts. Dealing with bursts
may be done proactively to avoid bursts being created in the first place,
or reactively by doing proper buffer sizing or AQM to make room for
bursts hitting the networks.

The goal of this thesis is to shed light on and provide one way to
reduce the formation of bursts, but to further argue that such a solution
is even needed, it is important to clarify what bursts are, what events
cause them, and what types of mitigations actually exist specifically for
bursts.

There are many causes of bursts, and different states may also effect
which possible effects they may have. To fully understand the effects of
a burst or what type of mitigation is either possible or preferable when
presented with it, it is important to list the most prominent ones before
listing the known solutions to either reducing the bursts themselves or
the effect of them.

7.1 Definition
Bursts are what we will call a collection of packets sent back-to-back
as close together as possible.1 It seems reasonable to define a burst as
a sequence of at least 4 segments like it is done in ”On the Impact of
Bursting on TCP Performance”[10] .2 Where this line is drawn does not
have an impact on the effects of bursts, but rather whether they may
avoided at all.

We may split bursts into two categories:3

• Micro-bursts: Bursts sent as a response to a single event like an
ACK resulting in a window slide or some other response.

1As close to each other as the link allows us to
22-3 segments at line rate is an intricate part of TCP algorithms
3This division is mentioned in several articles concerning bursts, e.g. [10] and [5]
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• Macro-bursts The bursty behavior over time of a flow due to TCP
behavior like slow start, ACK compression etc.

Bursts occur in both UDP and TCP, but we will only concern
ourselves with TCP here.4 As shown in chapter 2, a typical TCP flow
has a lot of (mostly unintended) bursts, and there is a wide range of
causes for them. In the following, the most prominent ones will be
presented. We will not categorize the bursts into micro- or macro-bursts.
The categorization does not add to the understanding of their impact or
what type of mitigation we should consider for them, but it seems fair
to state that larger bursts are more interesting to our implementation
and analysis, as will become more clear later on.

7.2 Causes
7.2.1 Slow start

Most slow start implementations follow the same principal idea as the
one first outlined in Tahoe. We do an exponential increase until packet
loss is detected, and then react to the loss. The different parameters;
initial window, reaction to loss and so on may vary, but the main idea
is the same, and the formation of bursts takes place the same way in
either case.

New packets are sent out when ACKs arrive. If there is little
congestion,5 we may expect two packets sent back-to-back to be ACKed
back-to-back.6 When those ACKs arrive at the sender, they will
generate four new packets being sent back-to-back.7 The next RTT,
this is increased to eight, and this continues until we reach ssthresh
or detect packet loss in some way.

The original (and subsequent variants) of slow start does not specify
when or how packets should be sent. The idea is that new packets
are introduced to the network as soon as possible. The ACKs may get
stretched out due to bottleneck limitations, but each time around the
density is doubled due to the increase in cwnd. Best case, we spread out
the burst due to the ACKs being paced out by the bottleneck rate, but
worst case, we may have delayed ACKs or ACK compression causing
large bursts the size of cwnd.

7.2.2 ACK compression

ACK compression is a phenomenon discovered by Zhang et al. [43]
which occurs when a cluster of ACK packets encounter a non-empty

4If we expand our implementation to the more general case of LSO, it will most likely
facilitate handling of UDP bursts caused by UDP Segmentation Offloading

5Even with some competing traffic and congestion, the packets may end up back-to-
back in the queue

6At least at bottleneck rate
7Two due to the ACKs leaving the network, and two due to the slow start phase

causing cwnd increase
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queue;

”their spacing in time upon leaving the queue is no longer the
transmission time of a data packet but rather becomes the
transmission time of an ACK packet. Since ACK packets are
typically much smaller than data packets (in our simulations
ACK packets are 1/10 the size of a data packet), this causes
the ACK packets to arrive at the source much more closely
spaced. The ACK packets are thus no longer reliable
indicators of departures of data packets from the queue.”[43]

7.2.3 TCP Segmentation Offloading

TSO will be explained in more detail in chapter 9, but in short TSO
results in burst in the network because larger chunks of data are sent
from the kernel to the NIC, and those larger chunks may be sent onto
the wire as a series of packets of size MTU sent back-to-back.

7.2.4 Fast Retransmit

If we use Fast Retransmit, we risk a hole in the window being filled if
a retransmitted packet is successfully received. This filling of the hole
may result in the whole window being moved, and all packets in the new
window being sent back-to-back. The burst will often be sent at least
within half an RTT[1]. SACKs contribute to this effect by efficiently
acknowledging selected packets that may fill wholes in the window.

7.2.5 Delayed ACKs, Stretch ACKs and ACK thinning

The bursting effect is present in much the same way with delayed ACKs
as with ordinary ACKs. The only difference is the number of bursts and
their sizes. A delayed ACK simply worsens the effect, acknowledging
several packets at the same time, resulting in the cwnd being increased
several steps at the same time, and a larger burst being sent. The same
may naturally be said about stretch ACKs and ACK thinning.

7.2.6 Multiplexing

Bursts from a single flow may hit a bottleneck back-to-back with bursts
from other flows, causing the cumulative effect of a bigger burst hitting
the bottleneck.

7.2.7 Unused cwnd increases

This variant is mentioned in [25] as seen e.g. in scp. In this example,
a flow may send several control messages before sending a larger
message. Every control message increases the cwnd, and when the final,
large message is sent, it creates a burst.

This burst cause has similarities with any type of transmission
starting after some idle time. Usually the idle time is a result of the
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application waiting some period of time. Once the application tries to
transmit again, this may result in a burst because as much as a whole
window may get sent. To tackle this there is usually some idle time
threshold where slow start is restarted if the idle time is out.

7.3 Effects
In general one may say that bursts have a negative effect on networks
because they create oscillations in queue length, varying the load on
the network from one time to another. Such effects are negative due
to the unpredictability they create, but also because they have several
secondary effects on the sender, receiver or other flows in the network.
We will mention a couple of them in the following.

7.3.1 Packet loss

According to [10] the probability of losing a packet from a burst
increases depending on how large the bursts are. At some point the
ratio between buffer size and burst size is so strained that we get a
massive increase in packet loss probability. The smaller the buffer size,
the smaller the burst needs to be to have a massively negative impact
on the probability of loss.

Packet loss is the worst consequence we may have because it may
result in retransmit or a full RTO in which case the cwnd is severely
reduced in classical TCP.

7.3.2 Buffer underflow and throughput loss

Shan et al. show that bursts caused by batching (interrupt coalesc-
ing/segmentation offloading) in DCTCP seems to cause queue oscilla-
tions that may lead to buffer underflow (14,3% throughput loss [36]) and
3 times larger oscillations compared to running without batching. Rela-
tive to the BDP in DCTCP we go from O(

√
BDP) oscillations to O(BDP).

To avoid throughput loss in DCTCP we need to adjust ECN threshold
61,6% higher (thereby increasing latency/queue length).

Even though the studies performed by Shan et al. are specific
to DCTCP, the results are applicable to TCP in general concerning
throughput. If we have huge queue oscillations, our throughput is likely
to be reduced because it may result in packet loss and delay. Packet loss
and delay cause flows to back off because they assume it is caused by
congestion, and when the flows back up, they need to ramp up towards
equilibrium again, and in the meantime throughput is reduced.

7.3.3 Slow Start effects

While in the slow start phase, a flow is sensitive to packet loss to get up
to speed. If all packets in a cwnd are sent in one burst, and that burst
encounters a queue which is almost full, we may experience packet

42



loss without being close to the potential BtlBw. The loss may cause
overshoot and make the flow back off.

The problem is that we are aiming to make the flow run at a rate
as close to the rate of the bottleneck as possible, but we try to do it
without tuning into the rate. The classical TCP algorithms focus only
on cwnd size, not actual rate. This makes us send big bursts of packets,
and packet drops are affected not only by the BtlBw, but also the buffer
capacity. Variations in buffer capacity directly impacts the experienced
BtlBw because of both latency and packet loss. This limits us not to
the forwarding rate of the bottleneck, but the ingress buffer capacity of
the bottleneck. In addition to that, we know that the buffer capacity is
expected to vary over time because of varying bandwidths (as mentioned
in section 5.3). If we send out windows as fast as possible, worrying not
about the forwarding rate, but only the size of bursts handled, we clearly
see that we get bottlenecks with varying window-capacity over time as
the buffer occupancy varies.

Ideally, we want our window to be as close to the BDP as possible,
but as the discussions in 5.3 and 6.2 have showed us, we must also
consider the buffer size of the bottleneck if we are to tackle the bursts
innate in classical slow start.

The effect of a burst depends on several factors; the burst size, rate,
bottleneck buffer size, and bottleneck buffer occupancy. With regards
to packet loss, the worse the ratio between free queue space and burst
size is, the worse the effect of the burst is. Regardless of packet loss, the
effect of bursts is that we get an increase in queue length if the intra-
gap of the packets in the bursts is lower than the forwarding rate of the
bottleneck.

7.3.4 ACK compression effects

When ACK compression occurs, the spacing between the ACKs is
reduced, and they arrive a lot closer than they departed from their
origin. Some traffic caused them to get queued up together much like
when there is a safety car in Formula 1. This may in turn result in
a burst of data packets being sent into the network, filling the free
space in the pipe communicated by the ACKs. The ACK clock is also
disturbed. This poses a problem for several different algorithms. As
mentioned in section 4.3.3, algorithms that use delay or intra-packet
gap (like Hybrid Slow Start and Paced Chirping) to measure the level
of congestion, ACK compression is problematic. ACK compression
removes the value of measuring intra-gaps because the spacing between
ACKs is not the same as the space created by the state and forwarding
rate of the bottleneck.

Algorithms that are not dependent on the spacing between packets
to detect congestion are still affected by ACK compression because it
causes potentially larger bursts than would otherwise be the case. The
compression causes the sender to send even more packets back to back
than would otherwise be the case. Zhang et al. observed that two-
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way traffic caused sharp increases in queue lengths because the ACK
clock got disturbed. When the ACKs are not ”separated in time by at
least the transmission time of a data packet”, [43] we get oscillations
in the rate at which new packets are sent. This extra bursty behavior
causes queue length increases which in turn causes delay and possible
overflow. Because the packets are introduced without the spacing
intended, we may get a premature congestion or even congestion that
could otherwise have been avoided had the packets been spaced out as
originally intended.

7.4 Mitigations
Mitigating these effects may be done using mainly one of these
approaches or a combination of them:

1. Increasing buffer sizes

2. Using explicit signaling

3. Removing or reducing bursts by either limiting their potential max
size or by using pacing.

7.4.1 Increasing buffer sizes

Increasing the buffer sizes may work to some extent, but as mentioned
in section 5.3, this only masks the problem because the loss based
algorithms keep increasing their cwnd until the buffers are full either
way.8 Increasing the buffer sizes may give more room for bursts, but
queue management seems just as important.

7.4.2 Explicit signaling

Using explicit signaling is one way to do AQM and react before the
packets actually need to get dropped. But if e.g. ECN is used the
way it was intended to, the packet should be considered lost and resent
once it is marked. This does not solve the issue of e.g. exiting slow
start prematurely, but the lower queue occupancy at least betters the
performance with regards to latency.

(Mis)using ECN needs some proper calibration, usually tuned
specifically for a certain environment. No matter what solution or
calibration is picked, tuning AQM is not trivial, and slow start is
generally sensitive to shallow buffers or an aggressive AQM, but it is
a valid solution to the problem.

8That is, if the buffers are used over time by either one or more flows
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7.4.3 Alternative algorithms

Hybrid Slow Start, BBR and Paced Chirping use measurements to
detect when we are approaching the saturation point during slow start,
but they have some important differences. Hybrid Slow Start actually
relies on the bursty behavior of slow start to measure inter-packet delay.
The first packets of the burst are assumed to be sent back-to-back (as a
burst), and their corresponding ACKs are measured. Paced Chirping
uses active measurement through chirps to measures the available
capacity. BBR also uses measurements, but it differs in one important
aspect. It introduces pacing as a means to achieve the best possible
utilization.

Hybrid Slow Start may provide us with the possibility of exiting
slow start before packets actually get dropped, but as long as bursts
are used, it makes itself sensitive to buffer sizes and capacity, not only
the forwarding rate of the bottleneck. By measuring only the first (8)
packets of the burst, the idea is that the size of the burst does not affect
the measurement.

7.4.4 Pacing

In sum, the solutions presented above have some limitations. By
not removing the bursts, our slow start exit risks being premature.
Reducing the burst sizes or increasing the buffer sizes may postpone
packet loss caused by bursts, but at some point the buffers will get filled.
More so, even if we avoid packets getting lost, we introduce an increase
in latency due to buffers filling up. Buffers were introduced to tackle
variations in ingress rates, but having buffer capacity does not make it
necessary to fill that capacity.

BBR uses rate rather than window size as the measure of bottleneck
capacity, and it paces out the packets at that rate. This has the
important effect of removing bursts sender-side. By pacing out the
bursts, we may reduce the negative impact on the bottleneck queue,
thus increasing the potential size of cwnd before buffers get filled up.

Zhang et al. introduced the concept of pacing to mitigate the effect
of ACK compression. The idea was that the sender may pace out the
packets to ease the pressure on the bottleneck, and restore some of
the clocking effect. ACK compression may happen during any phase
of a TCP algorithm, and using pacing should be considered a possible
solution to the problem either way.

Pacing enables the bottleneck to potentially handle a larger amount
of packets in one RTT than in the case where all the packets are sent in
one burst. There is a significant difference for the bottleneck receiving
100 packets in 2 ms and receiving 100 packets in 100 ms.9 Pacing out
the packets over the RTT shows better promise to avoid filling up buffers
prematurely and enable us to approach the actual forwarding rate of

9Off course, if the burst is within the buffer capacity of the bottleneck, we can still
argue that getting all packets out at once might even be better.
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the bottleneck in a controlled manner both with a single flow and with
multiple flows competing for capacity.

Pacing may be introduced into several different phases of a TCP
connection, slow start being one of them. Pacing is one of the main
foci of this thesis, the whole next chapter is dedicated to it. Pacing as an
augmentation of traditional slow start will be examined further there,
but in short, the advantage of pacing seems to be that we may reduce
pressure on bottleneck queues without reducing the cwnd, and this in
turn reduces the probability of packet loss due to buffers filling up.

That being said, pacing is not error-free. As will be discussed in
chapter 8, pacing has some limitations and challenges that need to be
addressed if it is to be used in e.g. slow start. If we pace out very
small windows, we get a slower slow start, and if we ease our way in
with pacing, we risk maximizing our queue overshoot. In addition to
this, pacing introduces problems that are not prominent in non-paced
implementations; like delayed reaction, synchronized flows increasing
pressure on bottlenecks, and some other issues. More on this in chapter
8.

An alternative approach

An alternative way to pace is used in Gallop-Vegas where slow start
itself is paced [17]. The idea is to reduce the bursty behavior of slow
start by reducing the exponential increase. Gallop-Vegas achieves this
by increasing the cwnd more rarely (on every other ACK rather than
on every ACK). In sum, this results in smaller bursts, but it does
not remove them. If we have several ACKs arriving back-to-back, we
preserve this block of packets and add on them (though the add-on is
smaller than in traditional slow start). The solution tries to reduce
the problem without actually removing it. Another problem with this
solution is that it reduces the exponential increase of the slow start
algorithm itself. We may postpone some negative effect, but at the cost
of ramp-up speed.

Alternative ways to reduce the exponential growth of slow start
exist. As mentioned in section 4.3.2, HyStart++ introduces LSS to
be used when the window size becomes very large. LSS reduces
the increase of the cwnd to avoid major overshoot. This reduces the
potential overshoot at the cost of growth rate. Again, it seems plausible
that tackling the bursty behavior of slow start could prolong the time
spent in slow start before entering LSS or other similar growth reducing
measures because a non-bursty flow may close in on the BDP with less
risk of loss than a bursty flow will. This remains to be discussed and
tested later on.

7.4.5 TCP Segmentation Offloading

TSO may result in as much as 64 KB being sent in one burst of MTU
sized packets. The effect of TSO to a network is much like other
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bursts, but as mentioned previously, Shan et al. showed that batching
like TSO has a more negative effect on DCTCP than the other burst
causes. Because of this, patches have been made to make it possible
for the kernel to dynamically size the TSO-packets. In Linux this
is called automatic sizing of TSO packets, and it is done per socket
approximating the current sending rate and dynamically sizing the TSO
packets so that at least one packet is sent every millisecond.

7.4.6 Summary

A lot of work has been put into avoiding the negative effects of bursts.
The solutions may be divided into two kinds; either make room for the
bursts or try to remove as much of the bursts as possible.

Making room for bursts by increasing the buffer sizes is a solution
that has had a lasting legacy, but it has some shortcomings. It comes at
a cost of increased latency because the queues are deep and need to get
filled before traditional algorithms react to the congestion formed. At
its worst, the deep buffers do not solve our initial problem of extensive
packet loss because the loss based algorithms will keep filling the
buffers no matter how deep they are. In the end we end up with bursts
resulting in packet loss because the buffers are full (only now, we have
also increased the overall latency of the path).

DCTCP tries to solve the issue by having buffers deep enough to
cope with bursts, but avoid having full buffers by (mis)using ECN. But
DCTCP still has problems with large bursts created by TSO.

It seems like a change in congestion detection is crucial to avoid the
problematic behavior of loss based detection where we either get high
latency due to deep buffers, or big losses and low throughput due to
shallow buffers.

The other approach is the main focus of this thesis. Solutions like
limiting burst sizes sender side, limiting the number of packets sent as
a response to an ACK, or reducing the growth rate of the cwnd all try
to reduce the sizes of bursts. They reduce the burst sizes and negative
effects on queues, but they also limit the intended convergence speed of
the algorithms. Pacing is also used to reduce or sometimes completely
remove bursts, and on the surface of it pacing seems to achieve this
without having to limit the algorithms and their convergence speed.
There are some challenges, though, and the next chapter will delve into
pacing as a concept, discussing both positives and negatives. After a
more thorough walk through of pacing, we will move on to the Linux
stack and TSO. There is an increasing desire to use pacing both as an
innate part of the algorithm logic and as an augmentation to existing
algorithms, but pacing and TSO do not interoperate well as of today.
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Chapter 8

Pacing

8.1 The origins and definition of pacing
The initial idea of pacing was introduced to TCP by Zhang et al.[43]
to tackle some effects of ACK compression. Since its first introduction,
pacing has been used and tested with different parts of TCP in various
different environments. Different implementations of pacing exist; from
pacing with Proportional Rate Reduction (PRR) or rate-halving, to more
recent pacing in hardware for end systems or routers.1 Regardless of
how pacing is done, we will define it as transmission where packets are
deliberately spaced out in time.

8.2 Advantages of pacing
Since the first paper introduced pacing in 1991, a lot of both develop-
ment and usage has followed. Pacing seems positive in a lot of different
settings, some of which have already been mentioned.

8.2.1 Reducing queueing delay variation

Big oscillations in queue length is negative for the throughput if the
buffers can not cope with it. If so it leads to more frequent loss and
drop in throughput (low bandwidth utilization). It also may cause an
increase in latency.

The unpredictability or variation in queue length can make flows
back off more often than if the queues were more predictable. The
more unpredictable the queue length is, the more likely flows will either
overflow or underflow the queue.2

1PRR or rate-halving which seems more like spreading out than delaying, but it is a
type of delaying/spacing of packets that could otherwise be sent at once after a pause.
The whole intention of PRR or rate-halving is to better utilize capacity by removing the
large delay followed by a burst imposed by fast recovery. It is done by pacing out small
gaps rather than one big gap

2Variations in queue length may be interpreted as congestion and cause the flows
to back off. The same thing happens if the intermediate nodes employ some sort of
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By employing pacing, the queues build up or drain at a more steady
pace. This creates less variation for flows trying to estimate the amount
of congestion present in the network. Removing bursts may also remove
the short term queue buildup entirely (assuming that the cwnd is less
than the BDP and the paced rate is kept below the forwarding rate of
the bottleneck).

8.2.2 Reducing loss rate

As mentioned, employing pacing reduces loss rate because of less queue
variation. Less queue variation and a more smooth convergence to
bottleneck rate may result in less packets getting dropped because
queues fill up more slowly, allowing for more predictive action. The
odds of a packet being dropped is less as the rate at which a queue
builds up to its limit decreases. A sudden burst of packets filling up a
queue may cause extensive loss because the queue went from a state of
having available capacity to having no capacity in no time.

While this holds some merit, we also must comment that network
environments and flow settings may impact the advantage. If the
sending rate is higher than the bottleneck forwarding rate, queues will
start to fill up. The bigger the difference, the faster the build. A burst is
the outer extreme of this where most of the cwnd may end up filling the
buffer rather than being forwarded as it hits the bottleneck. The larger
the cwnd and the higher the sending rate relative to the capability of the
bottleneck, the more likely we are to overflow the buffer and experience
packet loss.

8.2.3 Worst-flow completion time is reduced

According to Wei et al. employing pacing reduces worst-flow completion
time[18]3 Worst-flow completion time is used as ”a measure of fairness
among a set of flows that start around the same time and have the same
RTT. Simply put, a worst-flow latency is the latency of the slowest flow
to finish the transfer”. Their measurements show a clear advantage
to the paced flows when it comes to worst-flow completion time. The
results are based on tests using various algorithms (Reno, NewReno,
SACK, FACK, BIC and FAST). Aggregate throughput is also improved.4

8.2.4 More time spent in slow start

Tests show that paced flows (Reno) stay longer in slow start than non-
paced flows because non-paced flows overflow buffers once the cwnd gets
larger than the available buffer size.[1] Once this happens, slow start is

preemptive signalling like ECN. If not, the queue length oscillations may lead to packet
loss

3Wei et al. call it worst-flow latency, but the term is interchangeable with worst-flow
completion time.

4The experiments are run on various scenarios with TCP Reno and BIC-TCP using
1Gbps links and a variation of settings.

49



exited, and congestion avoidance begins. The larger the bandwidth, the
larger the impact of this early exit. For paced flows with a rate lower
than the forwarding rate of the bottleneck, the bottleneck buffers start
to fill only when the pipe is saturated, i.e. when cwnd = BDP.5

One could argue that this increases the risk of a maximal overshoot
in slow start because there is no indication to the bottleneck that we
have reached a saturated point and are about to double our window.
The effect of this depends on how large the buffers are and what type
of AQM is used. But potentially a large portion of the doubled window
could get dropped if the doubling fills the buffer. Unless we have way of
making the sender back off before the buffers are completely full, this
will lead to a massive drop. A way to reduce the consequence is using
ECN or by actively measuring sender side (like BBR)).

8.2.5 Allows for smaller buffers

Both Wei et al. and Beheshti et al. [8] argue that pacing is necessary
in shallow buffered networks if the link-speed is high. As previously
mentioned, smaller buffers easily overflow when link-speed is high if
bursts/unpaced flows arrive at the bottleneck. It also complements the
comments made by Van Jacobson in [15] that higher link-speed results
in deeper buffers because higher link-speed causes smaller buffers to
more easily overflow due to rate variations. Remember that this is
one of the principle ideas behing DCTCP; to ensure low latency (short
queues), we either need to make the buffers smaller, or enforce some
AQM to keep the buffer occupancy low. Using smaller buffers causes
problems faced with the bursty behavior of data-center flows, and this
resulted in the (mis)use of ECN. The main problem is combining the
low latency (i.e. small buffers) with burst tolerance. Employing pacing
seems promising as to avoid this issue.

On the face of it one may be lead to think that the BDP to buffer
ratio is the main impact on what advantages we get from pacing; If
the buffers are shallow, pacing shows promise when it comes to packet
loss, and if the buffers are larger, the advantage seems more unclear.
There is some merit to this if we do not factor in what type of algorithm
we are employing. If we use e.g. DCTCP or something like BBR, the
advantages of pacing proves prominent even for larger buffers. BBR
reacts to the experienced latency (seeking to avoid bufferbloat), and
thus attempts to keep the queue occupancy low even though the buffers
may be deep.6 Loss based algorithms on the other hand, may not
see the same immediate advantages of pacing, but pacing will reduce
queue length oscillations and provide more linear growth and thus more
predictable states for the flows. The varying pressure on the bottleneck

5Given that they don‘t share the bottleneck with non-paced flows
6As mentioned earlier, bufferbloat is not just persistently full buffers, but persis-

tently unnecessary occupied buffers like ”a standing queue that cannot dissipate.”[32]
If the cwnd is larger than the BDP, we necessarily need to fill up the queue to have
room for the whole window. The pipe is full, but we have more packets to spare.
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is reduced.

8.2.6 Allows for network measurements

Pacing or rate control may be used to do active or passive measurements
of network capacity (used in Paced Chirping, Hybrid Slow Start, BBR
etc). As mentioned throughout chapter 7, network measurements used
for congestion control with other congestion detection methods than
packet loss, seem to need some sort of pacing. To be able to do active
measurements, one may need to control the gap set in the first place.

Pacing helps to reduce the noise otherwise seen from bursty
behaviors in the lower layers.

8.3 Challenges with pacing
Wei et al. argue that the main challenge with pacing is migration. Paced
flows may get preyed on by non-paced flows, and this hinders migration
into e.g. the Internet much like what happened to Vegas.

Upon further inspection, further challenges seem to emerge. We will
try to list most of them here.

8.3.1 Migration

Migrating from a non-paced network to a paced network will not
necessarily happen by itself by enabling pacing in some spot and waiting
for the others to join. If one flow uses the same algorithm as other flows,
but employs pacing, simulations show that ”the performance of paced
flows is often lower than that of nonpaced flows when they share the
same network”[18]. This is a natural effect from the fact that paced
flows are less aggressive than non-paced flows. This is not to say that
pacing is not better for the general performance of networks,7 it only
states that the migration from a non-paced network to a paced network
does not happen by itself. Figure 8.1 illustrates this skewness. Even
though the ”figure is not meant to be quantitatively accurate ”[18] I
think it illustrates the issue well. It is an illustration of what the
authors call ” the key message we have learnt from a comprehensive
set of simulation experiments.”[18]

8.3.2 Delayed signaling

TCP as a flow- and congestion control mechanism needs to pass implicit
or explicit information to the sender, causing increase or decrease in
cwnd or rate. This information either comes from the receiver itself
(flow control), or is sent from an intermediate node and relayed via the

7Quite the contrary according to Wei et al. Performance is improved in several areas,
and they recommend it for both high-performacne computing and applications use. It
seems to improve the performance not only of paced flows, but also concurrent non-
paced flows
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Figure 8.1: Graph displaying performance related to distribution of
paced- vs nonpaced flows in a network[18]

receiver to the sender. Pacing out packets e.g. over an RTT causes
the last packet to be sent close to 1 RTT after the first packet of the
window. If the last packet is lost or causes an explicit notification, that
information arrives at the sender no earlier than 1 RTT later than the
ACK for the first packet in the window.

If no pacing was employed, that information could have been
conveyed to the sender as much as 1 RTT earlier (given that the packets
were sent back-to-back and no other latency was introduced. This
difference may have a negative impact on the reaction time of the
sender, which may cause further negative impacts on the network. Bear
in mind that this is a worst case scenario, but any variance between the
extremes is possible.

We must also be aware of the other effects that can occur due to
our pacing in this example. Pacing makes the probability of the packet
experiencing other traffic greater, but it will reduce the odds of other
spurious signals like loss or other events caused by the burst that would
otherwise be there.

8.3.3 Greater risk of overwhelming the network

According to [1], pacing increases the risk of overwhelming the network
because pacing delays the signaling scheme of TCP. The idea is that
we steadily fill up the buffer over time, allowing all flows to increase
their windows. Once the buffer is full, we have a lot of flows with a
larger window than would be the case if we did not have pacing, and
this causes more pressure on the bottleneck. Aggarwal et al. argue
that this causes more latency and may cause synchronized drops across
several flows.

”TCP uses feedback from the network to detect congestion
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and adjust to it. With pacing, this feedback is delayed until
the network is saturated, making it difficult for senders to
”avoid” overwhelming the network.”[1]

It is important to remember that this argument is created based
on tests with Reno. Reno uses loss based congestion detection, which
makes the argument valid. For algorithms more sensitive to latency
and queue build-up, this argument seems to fall short. As the authors
themselves comment, a good AQM may remove some of these issues.
Using AQM with early detection has the same effect as e.g. the
delay based algorithms reacting to changes in delay before packets are
acutally dropped.

But this assumes that we have buffers with enough capacity to make
the sender experience the increase in delay and react to it before we
overflow them. If the buffers are shallow, this may not be possible.
The signaling is delayed until the buffer starts filling up, and when
it happens the buffer gets filled up before the sender notices anything
(because we e.g. have a doubling of the cwnd taking full effect.

8.3.4 Costly pacing with small cwnd

In slow start, we may theoretically start with an initial cwnd set to
10. The next RTT, we increase this to 20, and then 40. If we employ
pacing from the start, we quickly see that the performance of slow start
is heavily reduced.8 A non-paced slow start may send the 70 packets
from the these rounds in 3 RTTs. A paced slow start will try to spread
out each window over 1 RTT, causing the transmission of a window to
take 2 RTTs (the last packet leaves the sender basically 1 RTT after the
first, and the sender has to wait one more RTT for the ACK of the last
packet to arrive back. In effect, we may spend close to double the time
on each window.

Starting at an initial window of 10 rather than 1 contributes
positively here, but the possible reduction in performance in the early
stages of a flow still remains.

8.3.5 Multiple concurrent flows in high performance
networks

Some recent research indicates that paced flows in data center networks
with high bandwidth, shallow buffers, bursty behavior and short-lived
flows9 may perform worse than non-paced flows if the number of
concurrent flows exceed what Ghobadi et al. call Point of Inflection
[20]. The results merit that some considerations need to be taken into
account in certain environments and setups.

8Theoretically we start at 1, but the standard today is to start at 10 because 1 so low
9Similar to the environments for which DCTCP was created
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Point of inflection is the number of concurrent flows where non-paced
TCP outperforms paced TCP. They define it with this lower bound:

LinkCapacity ∗ RTT
Bu f f ersize

In short, Ghobadi et al. found that:

”while the number of concurrent flows is below the PoI
bound, pacing offers improvements on link utilization, drop
rate, average and 99th percentile flow completion times. As
the number of flows passes twice the PoI bound, however,
these benefits are diminished.[20]

When several flows pace out their packets over an RTT, we risk
some packets from different flows to end up back to back on the wire.
According to Ghobadi et al., the probability of packets bundling together
like this increases as the number of concurrent flows increases. They
prove the lower boundary holds by comparing the worst case scenario of
paced flows and the best case of non-paced flows. The proof states that
the best case of non-paced flows is when the burst of all the concurrent
flows are spread out throughout the RTT (hence not overlapping or
back to back). The worst case for N concurrent paced flows is when
all N flows have the same pace and send their packets at the same time
(synchronized) such that we get bursts of size N sent at a the paced rate.

Critique

These findings are important to the discussion regarding whether to
employ pacing or not in specific environments. Theoretically, it is
not problematic to grasp. The question is how likely these two outer
extremes are to happen, and what one may assume to be the most
probable middle point.

We need to point out that the calculations in [20] are based on
all the flows sharing the same path; i.e. having the same RTT. If
the RTT is the same, the rate for two flows on the same link will
have the same pacing rate if they both calculate their rate to be cwnd

RTT .
In a specific datacenter environment, this might be probable, but for
Internet situations, this would not hold. It is also important to note
that if these presumptions hold, and the number of flows passes twice
the bound of point of inflection, the benefit simply starts to diminish,
not suddenly disappear.

Ghobadi et al. also claim that the bigger the buffers are (bigger
buffer-to-BDP ratio), the lower the number of flows N are needed to
make non-paced TCP outperform paced TCP. This may be an extra
argument for using pacing in shallow-buffered networks. The tests and
reasoning is performed with CUBIC. It is likely that the advantage of
paced vs non-paced flows is bigger for BBR or a similar type of algorithm
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even though the buffers are deep (simply because the algorithm does not
encourage filling up the buffers or allow flows to be aggressive with the
buffers).

The experiments supporting the argument are quite constrained in
this regard. The results concerning bigger buffers stem from using
buffer sizes of 6,8% of BDP where they observe that no packets are
dropped even with non-paced traffic. This shows something about the
general properties of these tests. There are some constraints in order
for this to be a fact seeing as all buffers will overflow if flows in sum
send at more than bottleneck rate, and the flows live long enough. Also,
measuring by drop-rate is important, but does not exhaust the subject
considering other types of algorithms developing today.

Synchronized drops due to concurrency

If concurrent flows cause bursty behavior because the packets from dif-
ferent flows bundle together, we also risk getting a massive degradation
of performance for the bottleneck link. If a burst consisting of pack-
ets from several flows encounter a queue with high occupancy, we risk
packets from several flows being dropped at the same time. These drops
in turn cause several flows to back off at the same time, which causes
us to under-utilize the link.

”increasing the number of concurrent flows sharing the
bottleneck increases the inter-flow burstiness, and as a
result, increases the chance of many flows experiencing the
drop event.”[20]

Mitigations

Ghobadi et al. propose the following solution:

”applying per-host TCP pacing on top of per-flow pacing to
reduce the inter-flow bursts and drop events. The objective
of per-host pacing, or more precisely per-egress port pacing,
is to smooth the aggregate traffic leaving an egress port”[20]

If we have a data center where some of the mentioned restrictions
are in place (severel concurrent flows with the same path or RTT (most
likely from the same end system), pacing out the aggregate seems like a
fair solution. If not, it still seems fair to assume that the bursty behavior
across concurrent flows seems more improbable to happen than not.

8.3.6 Synchronized drops and under-utilization

Synchronized drops due to inter-flow bursts is not the only synchroniza-
tion challenge posed by pacing. If several flows share the same bottle-
neck and apply pacing, we are more likely to experience loss for several
flows once the bottleneck buffer is full. If packets arrive unpaced, they
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arrive as bursts from each flow. When the bottleneck queue is full, we
will most likely drop a lot of packets coming from the same flow, rather
than several flows. Spreading out the packets gives us a more fair dis-
tribution of packets entering the queues, but we also risk a more spread
impact once the queues are full. The number of packets lost per flow
is reduced, but it is important to remember that only one packet lost
may cause significant impact to a flow. We may reduce the amount of
packets to be retransmitted in e.g. fast recovery, but we still halve our
window, exit slow start and so on. Spreading out the impact may actu-
ally increase the total impact across flows because we inflict packet loss
on many flows at once.

Once again, the impact may be smaller for delay based algorithms,
but it does seem as a relevant issue that needs to be evaluated. Once
flows are in congestion avoidance phase they will inevitably reduce
and increase their windows according to the saw tooth pattern. This
happens with delay based as much as with loss based algorithms. If
we end up with several flows reducing their window at the same time
because of the fair distribution of packet entering the queue, we end
up with an almost persistently under-utilized bottleneck. Employing an
AQM with early detection constructed around the issue may be more
relevant.

Hardware limitations and CPU overhead

As links get faster and faster, a new problem arises for pacing. If a
link is fast enough, the end system may not be able to space out the
small MTU sized packets with such small gaps. The timing may get too
coarse. In a case where we have MTU of 1500 bytes and a 10 Gbps link,
a packet would have to be generated every 1.2 µs.10

This is a problem not only for timers, but as will be clear in the next
chapter, a problem for the CPU.

Mitigations

One solution presented in [38] is simply to insert empty packets in
between the ordinary packets, thus creating a time delay. These
packets are often called gap packets or PAUSE packets, and their size
may be variable depending on what gap is needed. The gap packets
should be discarded at the first intermediate node (preferably the switch
connected to the NIC. Even so, it does result in a lot of resource use.

Another solution is to have dedicated hardware do the timing or
spacing. A dedicated NIC may be better suited for the job than a CPU.
As networks are getting faster and faster it is all the more feasible that
such solutions should be available.11 Hardware timing or spacing also

101Gb / (12kb per packet) = 833 333 packets per second.
11TCP TIMELY has had a similar challenge because the timers provided by the CPU

are to coarse to what TIMELY needs. Dedicated hardware has caused TIMELY to work
much better and be a more relevant algorithm today.
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saves a lot of CPU-time. The kernel may deliver the packets to the
NIC, and the NIC may do the tedious work. E.g. Hany et al. have
implemented pacing in hardware on routers egress queues in order to
cope with optical switches‘ small buffers and high bandwidth [22].
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Chapter 9

TCP Segmentation
Offloading

The constant work on improving network performance has resulted in
vastly increased bandwidths over bigger and bigger distances. NICs
have evolved to cope with this development, but as the NICs evolved,
the CPUs needed to keep up with the increasing demands from the
NICs. Seeing as the congestion- and flow control is performed in the
transport layer (L4), and the NIC is placed in the other end of the
stack, each MTU-sized packet and each ACK needs to traverse the
whole TCP/IP stack in the host. This requires a lot of CPU resources
to when the bandwidth is in the gigabit range.

The communication is bidirectional with packets being sent up as
well as down the stack, and the resources used in all stack-traversal
are controlled and provided by the kernel. We can easily see that this
poses a problem if the speed of CPUs does not keep up with (and indeed
surpass1) the speed of NICs.

A more viable strategy is to not only increase the speed of the CPUs,
but distribute the workload in a smarter and more efficient way. The
most widespread approach in this regard is implementing different
types of offloading to the NIC; one of them being TCP Segmentation
Offloading which is the technique of most interest for this thesis.

9.1 Stateless vs stateful offloading
As previously described, a lot of work is done in TCP to keep track of
packets, do error-checking, send ACKs and so on. A lot of these tasks
may be handled lower down, and modern network cards facilitate just
that. When talking about offloading in the sense of having work handed
over to different components (e.g. the NIC), it is purposeful to split the
tasks into stateful vs stateless tasks.

1Given that the number of instructions needed to pass packets up and down the stack
and process the contents in the receiving layer is greater than receiving and forwarding
packets in the NIC
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9.1.1 Stateful offloading

In stateful offloading, the NIC needs to keep some sort of state table
and be able to perform tasks depending on different states. One of these
tasks may be responding to the sender with an ACK if that is the next
desired step in the communication. In order to make the decision to
send an ACK and create a proper ACK, the NIC needs to keep track of
some of the state normally kept at L4. By letting the NIC keep some
state tracking and act upon information along the way, the kernel may
be spared for traversals and monitoring. Several different variants of
stateful offloading exist, from small tasks all the way up to what is
call full stack offload where the whole stack is offloaded to the NIC.
This may seem like a very promising approach, but it puts a lot of
constraints on the L4 possibilities as the NICs are hardware designed
to specification. If one wants to make some adjustments to an algorithm
it may require new hardware.

9.1.2 Stateless offloading

Stateless offloading tackles tasks not requiring knowledge exceeding
the information contained in the packet at hand2. Typical tasks include
checksum-calculation, TSO, LSO, Large Receive Offload (LRO), Receive
Side Scaling (RSS) and TCP Support for Sensory nodes (TSS).3 Some of
these are specific to TCP, and some are more generic. A common aspect
to all of them is that they reduce the pressure on the kernel of the host
by either doing some labor that would otherwise be done by the CPU or
by doing some sort of batch operations.

9.2 Segmentation Offloading
The batch operations found in segmentation offloading can be split into
two; sender side and receiver side. The use of one does not imply the
use of the other. Each end system handles this irrespective of the rest
of the path.

9.2.1 Sender side

Sender side we have the aforementioned TSO. TSO is also referred to
as LSO. LSO is the general term in TCP for offloading the CPU by
bundling several packets into one larger packet before passing them
down to lower layers. This type of offloading is not unique to TCP, and a
completely generic term for offloading of this type regardless of protocol
is Generic Segmentation Offload (GSO).

2That packet coming from the wire or from L4
3Letting intermediate sensor nodes cache TCP data segments and perform local

retransmissions in case of errors
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9.2.2 Receiver side

Receiver side we have LRO and Genereic Receive Offload (GRO) which
are not more mysterious than the variants sender side. They are the
TCP and generic variants of the bundling of packets in the lower layers
before passing them up the stack.

9.3 TCP Segmentation Offloading
TSO is specific to TCP. As such, it is the main focus of this thesis. TSO
is in widespread use and is the default on most systems where possible.

9.3.1 TCP/IP stack traversal

When TSO is enabled, the transport layer fills up a memory buffer of up
to 64KB, and passes the whole buffer down to the driver. In the Linux
kernel (which we use) this process is made possible and efficient by the
help of a data structure called sk buff . This data structure is a struct
with pointers to the different parts of the buffer. At the transport layer,
a TCP header is added to the payload, and this is done by writing the
header to the area adjacent to the payload itself, and the pointer to the
header start is moved to the header start of the TCP header.

A pointer to the sk buff is passed down from one layer to the
next, and each layer adds on the header as needed along the way as
illustrated in figure 9.1. This way, the payload rests in the same memory
location the whole way, and can be easily copied into the NIC once it
reaches the NIC driver. Once inside the NIC, the payload is split up
into MTU sized packets, headers are duplicated for each of them, and
they are queued for transmit.

Figure 9.1: Buffer being filled in while traversing the stack from the
TCP layer down to the link layer [9]
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9.3.2 TSO automatic sizing

While using TSO has great advantages it has seen some adjustments
along the way. At lower rates, using TSO can have a lot worse effect
on burstyness than in networks with higher rates. The lower the rate,
the more time is spent batching up each TSO-segment. This can result
in noticeable periods of time with no packets before a new burst of
packets are sent out. For higher rates, this is not problematic as it only
contributes to keeping the link saturated, but on lower rates it could
cause more fluctuations in the network than needed. In sum it could
have more disadvantages than advantages.

Because of this, Eric Dumazed in proposed to add a patch to the
kernel reducing the potential negative effect of TSO on such low rate
flows. The patch allows the TSO-size to be dynamically adjusted so that
we always send out a segment at least every 1 ms.

This reduced the bursty behavior noticeable when windows were
small or speeds were low. It is a limitation one needs to keep in mind
when working with TSO and pacing. TSO autosizing is enabled by
default and is part of the main output file for TCP in the Linux kernel,
tcp output.c

9.3.3 Limitations to offloading in traditional NICs

TSO causes some headache for the algorithms employing pacing. By
offloading the job of splitting payloads into smaller segments, we lose
control of the departure time for each packet. Several algorithms
want detailed control over every departure-time, and even for those
algorithms that do not employ pacing, it is arguable that network
throughput could be improved by spacing out packets rather than
lumping them together the way TSO may end up doing. As Welzl et
al. [34] summarize it:

”Because software timers do not have control over the
individual packets that are created from such a larger data
block, TSO is usually disabled when using pacing. As an
alternative, Linux can dynamically change the size of the
TSO data blocks. Naturally, reducing the size of TSO blocks
comes at a cost”

Yet another issue with the various forms of offloading is the fact
that the offloading is done using programmed hardware. The NICs are
designed from the producer or on request from a customer to offer a
specific set of offloading capabilities. Once the NIC is constructed, the
capabilities are well defined and unchangeable.

The advantage of hardware processing is speed and reliability. The
disadvantage is the lack of adaptation. As networks keep evolving as
fast paced as we have seen over the last decades, such classical NICs
may surely pose some limitations to the possibilities one would hope to
have. Because of this, the last decade has given rise to a new form of
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network hardware in what has been named Smart NICs and dynamic
datapath programming.

9.4 Pacing in hardware
The challenge with doing pacing in hardware is that hardware
traditionally has had a need to be customized by the manufacturer
for specific tasks, but this is about to change with the emergence of
programmable hardware. One programmable hardware variant that
has been around for a while is FPGA-circuits. FPGA allows the
programmer to manually configure the circuits to do what is wanted.

9.4.1 Hardware calendar

Many functioning FPGA implementations of various data path pro-
gramming exist, one of which is a hardware calendar created by Welzl et
al. [34] intended for use in TCP. The main idea is to be able to do pacing
with high resolution in the NIC while keeping TSO enabled. That is,
enable software timing at the same time as we pass larger TSO blocks
to the NIC.

The hardware calendar shows that we are closing in on possibilities
not seen before when it comes to precision, flexibility and programma-
bility of hardware. Their solution uses FPGA and enables us to have
a per packet pacing which may be infeasible for CPU controlled pacing
due to a lack of enough resolution. They also make it possible to have
a more dynamic hardware which can be quite easily changed compared
to traditional hardware in need of manufacturing.

9.4.2 New SmartNICs and abstractions

The use of FPGA is very promising, but as we will see in the next part,
more flexible and accessible APIs may become available with the new
Smart NICs being developed these days. The more depth of control we
get over the NICs, and the more speed, flexibility and adaptation, the
more promising a complete offloading of pacing seems.

The second part of this thesis will investigate the possibilities
provided in the Netronome Agilio SmartNICs. Our main aim has been
to see if the abstractions in P4, C and MicroC provided by Netronome
can enable us to employ pacing in hardware. If so, we could get the
best of both worlds; a finely grained clock in hardware and TSO without
creating big bursts in the network.
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Part II

Solutions in a world of
SmartNICs

63



Chapter 10

SmartNICs and data path
programming

It has become a well known fact that Moore’s law1 is coming to an end
as the laws of physics tell us that the more dense the chip is, the more
heat it will produce, and the more energy will be needed to cool it down,
thus reducing the efficiency. Moore’s law has in principle been dead
for a while, but the claim on computing power has prevailed thanks to
Dennard scaling and Amdahl’s law. Now they too are facing a challenge
to prevail.

One of the issues of today is the workload put on the CPUs by the
more and more demanding network processing. Distributed processing
and cloud solutions are pushing the limits of networks, and private end
systems are also catching up. The CPUs are at a stretch to keep up
with the amount of data and processing needed to maintain high speed
networks. Especially for demanding protocols like TCP.

10.1 NICs to the rescue
While the rate evolution of CPUs is flattening, the NIC development is
still steady. NICs are getting more and more capacity and more and
more capabilities. Thankfully these capabilities can help the CPU out
in doing more work.

10.1.1 Offloadable NICs

A CPU is designed to be versatile, handling anything needed by the
kernel, while a NIC can have highly specified processing finely tuned
for fast and efficient processing of a smaller set of operations. Because
of this it has become natural to make the NIC offload the CPU to do
tasks that are easily done further down the stack.

1Moore stated that he number of transistors per square inch would double roughly
every 18 months. This implied that CPUs would become increasingly more efficient as
time went by, and it is a ”law” that has been quite accurate for a long time.
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The offloading mentioned in the previous chapter has been present
for a while in what we may call offloadable NICs. The simplest
offloadable NICs have a processor capable of doing predetermined tasks
like TSO or the like. They may also assist in checksum calculation and
other simple tasks.

10.1.2 SmartNICs

If one wants more advanced or custom offloading, the way to go has
been to order customized hardware from the manufacturer. As long as
we have a long term perspective on what we want customized, that can
be a viable solution. But customized hardware is costly and can take
years to deliver.

As fast as algorithms and use cases develop today, this sort of cost
and delivery-time is not necessarily good enough. Spending time and
money to put custom solutions into silicon is simply not always worth it
in systems of today. It is also less versatile for the customer because the
level of customization can only go thus far. On top of that it forces the
customer to share private information with the hardware manufacturer
which is not always ideal.

Enabling the customer to manipulate the hardware itself has
emerged as a good way to create customized solutions for faster
networks and saving more CPU usage than ever before. The hardware
is broadly nicknamed SmartNICs because they are ”smart” enough to be
modified, but their exact capabilities vary about as much as the number
of variants of producers and cards.

One variant of SmartNICs is FPGA. FPGAs have been around for
a long time and are well known for their customization capabilities
and speed. They enable the user to change the logic blocks on the
card in such a way that they can perform highly customized operations
like the hardware calendar in section 9.4.1. The process for this is
quite cumbersome, but at least it offers a highly customizable piece of
hardware.

Some new SmartNICs take this a step further and add the
possibility for customization through an even simpler API, and may in
some cases offer more computational power too.

We will define a SmartNIC as a NIC capable of offloading, having
computational power and capability of reconfiguration of the hardware.
Most SmartNICs have all the offloading capabilities seen in standard
offloadable NICs.

10.1.3 Hardware acceleration

Using dedicated hardware to offload specific tasks from the general
purpose CPU is broadly called hardware acceleration. The use of
hardware specialized for the tasks at hand is a lot more efficient than
using the general purpose hardware found running the kernel.
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The term hardware acceleration can be used for a lot of different
applications such as GPUs handling graphics processing, machine
learning/AI, sound or signal processing and a lot more. It can also be a
type of offloading internally on a NIC as we will see in the next section.

One could argue that there is a distinction between hardware
offloading and hardware acceleration. We will not make that
distinction in the following, but it does not seem relevant to the term
as we use it either.

10.2 Netronome Agilio SmartNICs
The Netronome Agilio family of SmartNICs is a series of fully
programmable NICs. The firmware of these cards can be downloaded
and uploaded just like any other application. It can even be uploaded
while the NIC is running. This opens up the possibility of having
them reprogrammed remotely using IP, possibly enabling a user to
dynamically change the hardware of a whole path without having to
do any physical modifications.

The Agilio SmartNICs have a lot of offloading capabilities, and they
offer programmability through P4, C, a hybrid of them both and MicroC.
This section will create an overview of the hardware architecture before
the next sections examine the actual possibilities this offers using the
different programming techniques.

10.2.1 NFP-4000 Flow Processor

In our project we are using Netronome 4000 2x10GbE cards. As such,
they fall in under a group called 4000 for short. The 4000 family comes
in a variety of specifications (2x10GbE, 2x25GbE, 50GbE and more
still), but they all share the same basic architecture with the same
amount of cores and functionality.

The 6000 family is built up in much the same way, just more of
everything.

10.2.2 Micro Engines

One of the most important components of the Netronome 4000 NICs is
their 108 Micro Engines (ME).2 The MEs are divided into two types,
Flow Processing Core (FPC) or Packet Processing Core (PPC).

There are 60 programmable FPCs and 48 PPCs. Each core has 8
threads, enabling the NIC to process up to 480 packets simultaneously.3

The packet processing is performed by the FPCs. The PPCs facilitate
and aid the FPCs in their work. More on this later.

A key takeaway with the cores on the NIC as opposed to CPU cores
is not only their optimized packet processing, but also the high level

2Netronome themselves use the term ME and Processing Core interchangeably
3Each thread handles one packet and we have at most 60 FPCs handling packets
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Figure 10.1: NFP-4000 Flow Processor Block Diagram [31]

of concurrency and fast context switching. A CPU core has a different
purpose and needs to support more long lived processes and complex
instruction sets.4 It therefore has more invasive switches.

The whole NIC is built around making the cores work as efficient as
possible with packet processing and nothing else. This includes internal
hardware acceleration, fast memory and very fast thread switching (2
cycles).

10.2.3 Hardware organization

To help out in enabling the cores to do their work as fast as possible, the
NIC has a lot of hardware function accelerators that offload the FPCs to
keep the cores focused on packet processing and making this as simple
as possible.

The hardware function accelerators include functions like statistics
collection, traffic management, load balancing and lookup. Their
functions are mostly atomic and lockless, which lets the threads work
without having to worry about multi-thread issues. There is also a load
balancer that takes care of picking the next available thread or the one

4The Netronome Agilio NICs have an instruction set optimized for networking
whereas a standard CPU needs to support a full general purpose instruction set
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with the least amount of backlog at all times. This way, the threads
mostly need only concern themselves about themselves.

It also makes it a lot easier to the programmer writing code for
the FPCs. The actual programs for the FPCs can be simplified a
lot, less concern can be put on thinking about message passing and
synchronization, and tasks one would otherwise need to write out can
be omitted as the hardware accelerator functions take care of it.

The FPCs and PPCs are organized into what Netronome refers to as
islands. An island consists of 12 cores, and the Netronome 4000 NIC
family has a total of 5 FPC islands and 4 PPC islands.

In addition to the accelerator functions and MEs, we have various
memory areas, memory management, and a distributed switching fabric
connecting it all together.

10.2.4 Scheduling

When software is uploaded to the NIC and runs, we have a thread pool
handling packets picked from the queue. All the threads are scheduled
with a ”run to completion” style where every thread runs until finishing
or yielding.

The scheduling is handled by the PPCs and is not part of what the
programmer will handle in standard programming of the NICs using
the Netronome abstractions.

10.2.5 Memory

In standard data plane processing we have match/action handling
where actions are performed based on packets matching some criteria
defined in a table. These types of actions (part of the FPC actions)
are performed in on-chip memory for best performance. The on-chip
memory is a single cycle memory directly accessible to the core, making
the actions very efficient.

Host memory is also accessible if wanted. We have multiple PCIe
buses which allow us to connect to different host sockets directly so that
we can have software running with the memory of a specific socket if
needed.

Packets are placed in a work queue designed as a ring. Depending on
what processing is needed, this queue can be accessed by several MEs
as well. This makes it possible to offload specific work to other MEs so
that a thread can have a thread on a whole different ME assist with
some specific custom function being done.

When passing a packet off to another thread, one can use signaling
through signal-pairs to have the packet passed back to the original
thread if needed. If not, the new thread can handle passing the packet
off to the next step in the pipeline. More on the pipeline and ingress and
egress queues in section 10.3.
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The memory on the Agilio 4000 NICs can be divided into these main
regions:

• Local Memory

• SRAM (deprecated)

• MU (Memory Unit)

• CLS (Cluster Local Scratch)

The MU consists of Internal Memory (IMEM), External Memory
(EMEM formerly known as DRAM) and Cluster Target Memory (CTM).
Each memory area has its set of capabilities suitable for different
purposes.

When programming in MicroC or C on these cards you need to
specify which memory region allocations are done to. This is a
requirement and one should make considerations as to what area of
memory would best suit the purpose. In addition to specifying what
memory region we want to allocate from, we can also specify where in
memory the pointer should reside:

dec l spec (mem) buffer * dec l spec ( c l s ) buf ptr 1 ;

10.2.6 Code and variables

Code is uploaded per ME, making all threads in one ME share the
same code, just with their own copies of variables and data structures
in IMEM. Each ME has 256 general purpose registers (GPR) and 512
transfer registers used for communication with I/O and memory (256 in
and 256 out). They also have 128 next neighbor registers (NN) which act
as both in- and out-registers for communication between neighboring
MEs. These registers are either in receiving mode or sending mode,
allowing for either read or write to or from the closest neighboring ME.5

As we can see the whole structure of registers is focused on
concurrency and fast communication between threads and MEs.

Every ME has a local memory the size of 4KB private to the ME. This
memory can be shared via registers between contexts or kept completely
local. By default, all variables and data are kept local to the ME.

The system also allows for easy declaration of variables shared
among all threads on the ME with the parameter ”shared” and a
specifier for what memory region it should reside in. Note that variables
in local memory cannot be exported to other MEs.

Declaration of variables on global or island scope is just as easily
done using the ”export” and ”import” arguments and defining the scope
to be either ”global” or ”island”.

The EMEM is slower, and access is asynchronous. The threads can
either wait for a signal for completion or swap themselves out while

5Specified by setting a bit
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Figure 10.2: Overview of all important memory-types[33]

waiting to allow other threads to run. The manuals do not specify with
code how the scheduling is handled for threads waiting on I/O, but it
is mentioned in several places that the thread model found on these
cards is designed to prioritize thread-swapping when waiting on I/O to
maximize throughput.

Figure 10.3: Allowed combinations of attributes on data
[29]

10.2.7 The power of threads

The architecture is what we can call a thread-based architecture, not
a cache-based architecture. Multithreading gives a better effect than
simple cache-usage when it comes to networking because the NIC
gets constantly bombarded with packets, and each packet may need
completely different information or treatment.

One packet may need looking up into one table for routing, while the
next one may need something completely different. This would require
very much memory to be efficient the same way threads may make work
done, having one thread do one thing on one packet while another one
is doing something else with a different packet.

The high number of cores and large number of threads and helper
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functions, combined with their specialized instruction sets, is the secret
to the efficiency of these NICs and why they can enable us to save CPU
time.

10.3 Packet flow
The flow for a packet depends on whether the packet is going from
host to network or arriving from network to host. The flow for host-
to-network is a bit simpler than the one for network-to-host.

10.3.1 Network-to-host

In the case of a network-to-host packet, the journey starts with the load
balancer.

Each island has its own ring buffer used for ingress packets. The
egress buffer is shared among all the islands. In a standard scenario
all the packets share all the threads to achieve the highest bandwidth
possible.

With one work queue accessible for the load balancer, it can make
sure to pick an available thread or the thread with the least amount of
backlog and pass the packet to the ring buffer of the suitable island.

Figure 10.4: Packet Flow through chip [33]

The packets get parsed by the parser (done by the 48 PPCs), adding
on metadata if needed, and saving the headers in CTM-memory of the
designated FPC island destined to process the packet. All threads in
the island can access CTM and pick a packet. This process is software
controlled.

Once the packets are parsed and get picked up by a thread, they are
run through a set of match table lookups. This matching can consist
of several lookups, and the process can be further improved by using a
flow tracker which can match up with a cached result table. A hit in
this table will make the flow bypass the matching step and go straight
to action.

Due to the concurrent processing with a pool of threads, order is not
guaranteed. Threads may spend a different length of time processing
a packet, and we therefore need to take care of reordering afterwards
before the packets are transmitted.
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Figure 10.5: Packet Flow through chip detailed [33]

All the packets from all the MEs are placed in one ring buffer and
the chip has built in reordering working on that buffer ensuring that
we maintain order. The parallelization is handled in its entirety by the
NIC by providing load balancing, function accelerators and reordering.

10.3.2 Host-to-network

In the case of a host-to-network path, the flow is a bit different. The
packets are delivered to a PCI-island using the tx-descriptor from the
driver. The packets are stored in the PCI-island before being moved to
the appropriate next handlers (e.g. the FPCs).

Once the packets are passed on to the FPCs the process is much
the same as for Network-to-host processing. See figure 10.6. The
hardware accelerator functions provided by the egress PPC6 are said
to be configurable by appending metadata to the packet in the FPC, but
the documentation here is not very clear.

10.3.3 Data Path offloading

The flow of packets through the chip is a concurrent effort to process
packets according to a table of actions. Looking up and performing
actions based on various criteria is standard, but these NICs allow us
to program this match-action into the chips. It can also be done with a

6Traffic Manager, Packet Modification Engine and Reordering Engine
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Figure 10.6: Host-to-network flow [30]

lot of customization where we program the data path for the NIC using
P4, eBPF or C.

The topology shown in the figure 10.4 is the standard variant, but
it is possible to change this to have a different flow with e.g. some
processing done by other cores. This can be done using the built in
areas of communication and it can be implemented using P4 or some
hybrid variant with a P4 data path with embedded C functions that can
do custom packet handling. The C functions can have fully customized
parsing, and the control/action table can be programmed with P4.
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Chapter 11

Programming Agilio
SmartNICs

11.1 eBPF/XDP
This is perhaps the simplest way of offloading data paths. The NICs
simply offer the possibility to offload eBPF or XDP directly to the NIC
rather than having the CPU do the work. As such it works as a really
good hardware accelerator for data path processing that can be written
as eBPF or XDP.

We will not go into much detail with the use of eBPF because
eBPF has a lot of constraints, one of which is the lack of support for
conditional loops. If we are to introduce pacing in some way, it is
obvious that we will need to have conditional loops or some other ways
to wait out specified lengths of time, and that length of time needs to
be dynamically adjustable and not pre-programmed as a set number of
cycles or something similar.

11.2 P4
The programming method prioritized by Netronome on the Agilio
SmartNICs is standalone P4 or P4 in some combination with C.

P4 is an open source, domain-specific programming language de-
signed specifically for data plane programming and packet processing.
It is optimized for hardware implementation and aimed at making the
construction of match-action tables as custom and easy as possible. It
is a relatively new language, originating in 2014 in ”P4: programming
protocol-independent packet processors”[12].

P4 is intended to be as versatile as possible and is based on a Proto-
col Independent Switch Architecture (PISA). The PISA-architecture can
roughly be defined with these three parts:

• A programmable parser

• The programmable match-action pipeline
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• A programmable deparser

The parser is a state machine which parses the packets into a parsed
representation. The headers are stored one place in memory and can be
manipulated along their way, while the payload resides in a different
place in memory.

The match-action pipeline can consist of various control actions like
table lookup. We can have several stages of this pipeline, each with a
specific match-action.

The deparser is a simple state machine which puts the whole packet
back together.

With P4 we can further improve on this architecture by having
more complex pipelines and communicate or transfer packets between
islands, but the base architecture is based on PISA.

The P4 compiler exists for many different devices (targets), making
it versatile for the programmer. The pipeline and architecture can be
handled as a black box where the hardware itself fits into the interface
needed for the compiler. Compilers exist for many manufacturers and
many types of devises, from Netronome Agilio to Altera with FPGA.

11.2.1 Limitations

P4 is a quite pure data plane language, and as such it is mostly
stateless. The packets are processed using lookups and match table
logic. As we are working with hardware, it is highly optimized to do
these types of operations.

The P4 pipeline can be dynamically programmed, but it has not
got unlimited capabilities. Scheduling and buffer management is also
harder to control, which will prove to be a important to achieve our goal.
More on this in the next chapter.

More advanced functions can sometimes be better handled using
C or MicroC, and the P4 programming environment from Netronome
supports extended functionality using C.

11.2.2 Netronome Programmer Studio IDE

The programmer studio created by Netronome offers a full GUI for
programming the NICs using P4 and C. It is only available on Windows,
but works perfectly fine using Wine or a VM running Windows. We
used Wine in our experiments and it worked fine. The programming
environment offers all the standard functionality found in a modern
IDE with a more traditional high level programming language like
Java.

Below we show a P4 program as basic as they get where we can see
all actions from parser to deparser. Normally the program starts out
with defining how to parse headers so that they get put in local memory
(1 cycle access) before moving on to the control flow where we state what
to do with the packets.

75



A basic P4 program dropping packets as shown in the NFP−lab 1 :

header type eth hdr {
f i e l d s {
dst : 48;
src : 48;
etype : 16;
}

}

header eth hdr eth ;

parser start {
return eth parse ;

}

parser eth parse {
extract ( eth ) ;
return ingress ;

}

contro l ingress {
apply ( encap tbl ) ;

}

table encap tbl{
act ions {

drop act ;
}

}

action drop act ( ) {
drop ( ) ;

}

The programmer studio also provides a debugger which lets the
programmer inspect specific MEs and step through the code line by line
while it executes on a thread on an actual Netronome SmartNIC on.

Figure 11.1: P4 debugger as shown in P4CDevCon Lab1 by Open-NFP
https://youtu.be/f8b9y2P6Ib8
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11.2.3 Actions and helper functions

The actions are defined in separate rule-files defining the tables. Setting
them up is quite straight forward, but as previously mentioned it has
some limitations. P4 is evolving, but if you want to have as many
possibilities as possible, injecting C code is the way to go.

When defining the actions, you can use standalone C functions.
These C functions have access to everything that the P4 space can
access (headers, metadata, memory, co-processors and libraries). In
addition to this, creating functions in C gives us a greater liberty to
create more custom handling with more statefull processing and more
complex logic because C provides us with better data structures. It is
also possible to do advanced filtering and handling with deep packet
inspection with access to the packet payloads in our C code.

The functions are written in standard C style in their own files. The
compiler handles all the linking of the C code to the P4 code. All we need
to do is call the functions using predefined keywords. Everything else
is handled by the compiler. This code also supports the use of timers.
Using a combination of me tsc read() and sleep() one can loop and
make things happen with a delay.1

11.3 MicroC programming
Sometimes we want to control the flow in a more bare bones way than
using P4 through the IDE. When using MicroC it is possible to write
small bits of code and compile and install them without all the P4
programming. In a lot of cases it can be a lot simpler to simply write a
small snippet in MicroC than solving it using P4 and e.g. some callback
in C. With MicroC you can program just the part you need, e.g. some
custom packet matcher.

MicroC is perhaps more familiar to a lot of programmers with its C
syntax than P4.

As with P4 in the IDE we can also specify details for the compiler as
to how many MEs we will have execute the code (as all MEs have their
separate code).

11.3.1 The C compiler

The C compiler allows for most types of functions, but there are some
limitations worth noting:

• Recursion

• Variable length argument lists

• Pointers to functions
1This is essential for what we are trying to achieve, and we will explain in more

detail later, but as will become clear in the next few sections, we had to abandon this
path for P4 due to other obstacles.
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• Passing aggregates larger than 64 bytes2 as function arguments
or return value.

The compiler is based on C89, and most of the C99 additions are not
supported. There is extensive support for inline assembly. Various flags
for compiler optimization are available (like loop unrolling)

Again, we have the possibility of doing time-based actions like
sleep(), and we have done tests using this functionality in section
12.3.1.

Netronome provides good descriptions and tutorials on their web-
sites for programming in MicroC on the Agilio NICs, and we will not go
into all details here. Some more help concerning troubleshooting, pit-
fall avoidance and usage can be found in the GitHub repository for this
thesis.3

11.4 Compiling and uploading - our
main challenge

When compiling and uploading P4 or hybrid C code we can use the IDE.
When compiling and running MicroC code, we compile and install the
firmware much like a standard C program. In order to enable firmware
modifications, though, we must first enable the Run Time Environment
(RTE).

The appropriate package needs to be downloaded, and in our case
this was the nfp-sdk-6-rte binary for Ubuntu. The necessary files
are available through login to Netronome support pages which will be
provided by contacting Netronome with information about the NIC you
have purchased.

Once the files are obtained, the RTE-service can be installed using
the shell-script in the folder. At this point you may run into some issues.
We recommend following a great guide provided by Mauricio Tavares
UnixWars installing Netronome drivers.4

In addition to the challenges listed by Tavares, it is not unusual
that there will be a conflict between the upstream driver and the RTE-
installer. After reaching out to Netronome, we were told we needed to
manually remove the agilio-nfp-driver-dkms before continuing:

sudo apt−get remove ag i l i o −nfp−driver −dkms

With the driver removed, we could install the SDK and run the RTE-
service, and once the RTE-service was running, code could be dumped
onto the cards using IP and the port number of the service for P4, and

2128 bytes in 4-context mode. In NFP Enhanced Mode, 128 bytes in 8-context mode,
256 bytes in 4-context mode.

3Permki PacedLinux https://github.com/Permki/PacedLinux
4http://unixwars.blogspot.com/2019/05/programming-netronome-network-card.html
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by using the provided Makefile for the MicroC program.5 This is also
how we can run the debugger.6

11.4.1 Missing host-to-network functionality

Installing and running the RTE-service worked fine, but running our
custom P4 or MicroC firmware created a whole different problem.

The intended use for P4 this way is to have it loaded onto the NICs
the RTE service is running. When trying to run a simple packet handler
with P4 running the RTE-service, the interfaces formerly associated
with the NIC disappeared from the list of interfaces on the host.

We could run our P4 programs, but only using the host basically
as a switch, not as a host sending out packets. This made us attempt
a simple program in MicroC instead, but it had the same result. We
could install our new firmware, but that resulted in the NIC not being
accessible to the host.

We contacted Netronome support and discovered that this is the
intended result according to Netronome. When installing our own
firmware (P4 or C), the upstream firmware recognized by the OS will
not be present, and hence the normal functionality as a host NIC will
not be available.7

Our intended use of the NIC as a host to network card clearly is
not the same as the intended use from the manufacturer. The main
target group for these NICs is accelerating networks by dynamically
programming switches, firewalling and similar functions throughout a
network, not to offload the sender or receiver. This is problematic for
our use case. Without being able to use the NICs as host, the whole
idea of offloading and pacing in union with L4 is not doable.

This finding is worse than other challenges as it actually excludes
the use of the abstractions. There is no need to investigate modifications
to the abstracted methods unless there is some way of combining the
upstream firmware with the modified code provided either with MicroC
or P4.

Even though this seemed quite hopeless to our project, we still
did tests and other modifications needed before further investigating
the issue and looking at possible workarounds. The workarounds and
optional solutions will be discussed at the end of the next chapter after
further laying out our implementations.

5The default port numbers are 20206 for the RTE-service and 20406 for the debugger
6Note that the debugger can require as much as 8GB RAM on the node and can be

quite straining if the machine is of a smaller size.
7See Problems starting RTE-service

https://help.netronome.com/support/solutions/articles/36000152964-problems-
starting-rte-service

and Interfaces not present
https://help.netronome.com/support/solutions/articles/36000152961-smartnic-

interfaces-are-not-present- for more information
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11.5 Traffic Manager
The traffic manager is not part of the data plane constructed using
P4. It resides in the control plane. The same goes for the buffer
manager. There is limited control over the traffic manager offered to
us using P4 at the time of this writing. According to David George in
Netronome (2017) they are planning on implementing the feature in a
later release.8

There seems to have been released some version later with support
for some control of priority queues, but the documentation is sparse.
The issue definitely could need some further examination in future work
as it could prove to be very useful for a working solution using P4 or C.

8Claim found in the NFP forum (Google Group https://groups.google.com/g/open-
nfp/c/GVZ9GzEkMNw/m/UcGzx2kEDwAJ)
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Chapter 12

Outlining a solution to
pacing in SmartNICs

The overall plan for this project has been to have L4 calculate an ideal
rate for packets given a cwnd and RTT and pass that information down
to the NIC so that the individual packets created from a TSO-segment
could be spaced out with a delay causing the actual rate of packets going
out on the wire to be the same as the calculated rate from L4.

Classical offloadable NICs are not capable of doing such work, but
on paper our SmartNICs from Netronome might be able to do it. Using
the abstractions from Netronome is not viable for our intent of use, but
they reveal that some needed underlying functionality is present, like
clocks and timers. Before we can look into possible workarounds for
the missing interface challenge, we must first make sure we have some
other elements in place.

Mainly, we can split this problem into two parts:

1. Message passing from L4 to the NIC

2. Make the NIC pace out packets using the information passed down

The hardware implementation in number 2 is the main focus of
this thesis as it is the main area of concern, but the decisions made
concerning communication from L4 will affect the solutions to be
discussed for the hardware implementation. Therefore we will first
delve into our thoughts and implementations of message passing from
the upper layers before exploring the hardware solutions.

12.1 Means of communication
As the Linux kernel uses the sk buff both to pass packets up and
down the stack and to collate information for TSO, the sk buff would
seem like an obvious data structure for message passing from L4 to the
NIC.

The sk buff has an area called skb shared info which is accessi-
ble for all layers. Here we find information about GSO segments, length
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and other relevant information for the bundled packets contained in
the buffer. A possible solution to the communication challenge is to ex-
pand the skb shared info struct with the information necessary to
calculate a pace-rate. It seems like an obvious solution, but it is not
unproblematic.

In the transition to the driver, things become more complicated. The
buffers get moved to tx-ring buffers, and it is unclear where, how or
if this information can actually be picked up by our custom code further
down in the NIC. To make sure the relevant information gets passed all
the way down we could risk having to modify the drivers themselves,
which is error prone and difficult in itself.1

The appeal of using sk buff lies in its simplicity. Modifying a
struct makes it easy to implement and (in theory) easy to parse out.
Our challenge is that we do not have full control of how the packets are
passed further down before they eventually end up parsed in memory
ready to be processed.

One thing we know for certain is that the information in the actual
packets is persistent throughout the packets lifespan from one end
system to another (or until it is wholly lost and gone). Because of
this, we opted for using the packets themselves. It may not be the
optimal way for a final solution, but it is a very safe way to do initial
implementation and testing. It also makes it easier to modify the
content along the way if needed.

12.1.1 Message content

Pacing out packets is the same as waiting a specified amount of time (a
gap) before sending the next packet in line. Seeing as the classical TCP
algorithms operate with a max send rate of 1 cwnd per RTT, the gap
may, in its simplest version, be expressed as:

RTT
cwnd

This of course assumes that we want an equal distribution of all the
packets in one TSO segment. If we were to further explore more complex
solutions here it would be very interesting to look at a more smoothing
function. One could have an average gap for the segment, but distribute
it unevenly either for use in an algorithm like Paced Chirping or some
other algorithm focusing on e.g. the slow start phase.

To convey this information we can either send the rate, the desired
delta-time, or pass the variables themselves; RTT and cwnd. We
decided on using the delta-time as it is simple to handle and, most
importantly; unambiguous. The delta-time passed down is the desired
amount of delay between two consecutive packets in a TSO segment. It
is important to note that this is the desired delay of one packet relative

1Professor Andreas J. Kassler from the University of Karlstad, Sweden, joined in
on some fruitful discussions on this topic with his experience using the Netronome
SmartNICs.

82



to the previous packet in the original line. We will discuss this later on,
but it is not necessarily trivial to control the order of the packets and
how to ensure that the delays are added when wanted, so we may need
some extra calculations here.

With all these unkowns, we decided on uing using the desired gap
between the packet in question and the previous one. It seemed like the
most versatile solution and simple solution.

12.2 TCP option modification
The TCP-header consists of 5 words (20 bytes) of standard information
followed by a maximum of 10 words (40 bytes) worth of optional
information. The optional information (options) is a series of small
collections of bytes, each containing different relevant information.
Adding an extra option is something which is quite common, safe and
controllable. We know the headers are parsed into memory and made
accessible to the MEs in CTM, so it seems reasonable to have this as a
first solution to the communication-challenge.

There may of course be better ways to handle the communication,
but the important thing here is to just have a means of communication
that could work and enable us to do start tackling the bigger challenge
of programming the hardware itself.

The following paragraphs will give some details to how we have
implemented this for anyone who wants to do the same.

Figure 12.1: TCP header in full

The TCP-header information is added in tcp output.c,2 and specifi-
cally the options are added in the function tcp options write.

A simple solution for initial testing could be to hard-code a value
into the write-function, but that would be very limiting to realizing a
solution where L4 can dynamically adjust the rate according to state.

To enable functions on L4 to provide relevant information to the
function in tcp output.c, we need to create a callback function. The

2The names are hyperlinks to the respective files at bootlin.com for those who are
interested
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Linux source code makes this quite easy by adding the function to the
tcp congestion ops-struct. By adding a callback function like this, we
can have any TCP-algorithm make use of the new option in the header.
We can make any kernel module use this function to add information of
the same type to this option.

In our case we add a u32 value for the time-gap to be conveyed. This
should provide enough space to be able to test a great variance in gaps.

The callback function and some identificators and sizes are added to
tcp.h.

Modified tcp.h3:
#define TCPOPT PACEOFFLOAD 200
#define TCPOLEN PACEOFFLOAD 6
#define TCPOLEN PACEOFFLOAD ALIGNED 8

struct tcp congest ion ops {
. . .

u32 (* pace o f f l oad ) ( struct tcp sock *tp ) ;
. . .

} ;

To add the function in L4, we add it to the list of functions in
tcp congestion ops found in the L4 file, and make an implementa-
tion of it. In our case we have made a copy of CUBIC with only that
modification.

tcp cubic paced.c:
static u32 b i c t cp pace o f f l oad ( struct tcp sock *tp ){

return tp−>sr t t us / tp−>snd cwnd ;
}

static struct tcp congest ion ops cubictcp read mostly = {
. i n i t = b i c t c p i n i t ,
. ssthresh = bic t cp reca l c ss thresh ,
. cong avoid = bictcp cong avoid ,
. s e t s ta te = b ic t cp state ,
. undo cwnd = tcp reno undo cwnd ,
. cwnd event = bictcp cwnd event ,
. pkts acked = bictcp acked ,
. pace o f f l oad = b ic t cp pace o f f l oad ,
. owner = THIS MODULE,
.name = ” cubic paced ” ,

} ;

Finally we need to actually add the option to the header run-time if
needed. That is, if the callback is actually used. This is done in
tcp output.c after all other options are written to the header. Once
that is done, we need to make sure that the size-calculation of the
header takes the new option type into consideration.

3Reference to the whole file in my Github repoository
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Modified tcp output.c:
#define OPTION PACE OFFLOAD (1 << 4)

static void t cp opt ions wri te ( be32 *ptr , struct tcp sock *tp ,
struct t cp out opt ions * opts ){

. . .

i f ( tp == NULL)
return ;

i f ( unlikely (OPTION PACE OFFLOAD & options ) ) {
* ptr++ = htonl ( (TCPOPT NOP << 24)
| (TCPOPT NOP << 16)
| (TCPOPT PACEOFFLOAD << 8)
| TCPOLEN PACEOFFLOAD) ;
* ptr++ = inet csk ( ( struct sock *) tp)−>
i csk ca ops −>pace o f f l oad ( tp ) ;

}
}

static unsigned int t cp estab l i shed opt ions ( struct sock *sk ,
struct sk buf f *skb , struct t cp out opt ions *opts ,
struct tcp md5sig key **md5){
. . .

i f ( inet csk ( sk)−> i csk ca ops −>pace o f f l oad ){
const unsigned int remaining =

MAX TCP OPTION SPACE − size ;
i f ( remaining >= TCPOLEN PACEOFFLOAD ALIGNED){

s ize += TCPOLEN PACEOFFLOAD ALIGNED;
opts−>options |= OPTION PACE OFFLOAD;

}
}
. . .

}

The complete implementation can be found in the repo of this thesis
Paced Linux https://github.com/Permki/PacedLinux

12.2.1 Compiling and loading

Once all files are modified, they need to be added to a kernel.
tcp output.c and tcp.h need to be compiled into the kernel while
the L4 code can be compiled and loaded into a running kernel using the
insmod-function.

Before compiling the kernel it is important to note that all
functionality of the Agilio NICs not necessarily runs on all kernel
versions. In our case we were advised by Netronome to use a kernel
version no higher than v4.x.4 We opted for version 4.15 which was the
newest supported kernel for Ubuntu 18 when we started working on it.

4See Tested Linux versions for Netronome software
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The kernel version is important if all software from Netronome
(RTE-service and so on) is wanted. It is not necessary just for using
the upstream driver of the NIC.

When the kernel is compiled and installed with the modified
kernel code, we can insert our custom L4 module (in our case the
tcp cubic paced.c using insmod. With the module inserted, the
congestion control algorithm needs to be selected by adding it to
/etc/sysctl.conf and running sysctl -p.

At this point we have a functioning kernel which inserts the value
for packet gaps run-time into the options of every TCP-header. We did
this and verified it both by adding a kernel print inside tcp output.c
and by running tcpdump on a neighboring machine receiving data from
our host.

All that is left at this point then is to enable TSO in the NIC and
start working on the hardware implementation.

sudo ethtool -K [interface-name] tso on

The commands and aliases are all in the repository for this thesis.

12.3 Hardware implementation
Once we have a means of communication in place, we need to be able
to parse this information out in the NIC and act upon it. All packets
should be parsed automatically by the parser in the NIC, putting the
headers in CTM for the FPCs. At that point we need to be able to parse
out the option value for the delay and execute the delay.

12.3.1 Timing and sleep

Doing delays in P4 can be problematic. We can recirculate packets in
some way, but it will be highly inefficient as it will fill up the queues
and be quite demanding to the card to constantly be putting stuff back
in the ingress queue just to have it happen again and again. It did
not seem like a plausible solution as it would be highly inefficient and
exhaust the card at some point.

There are sleep-functions available using C for P4, but we know we
most likely will be needing a lot of customization. Because of that we
moved over to working on a solution using MicroC. MicroC appears to be
more straight forward with easily accessible functions for adding delay
and more intricate parsing.

The sleep-function available in C for P4 is also available in MicroC.
It can be found in lib/nfp/ c/me.c. This is available both in the
MicroC-programs provided by Netronome, and in the NFP firmware.
sleep sets an alarm and waits to be signaled. It is not the most efficient
solution,5 but it does do a delay.

5If we are to look a bit further than the scope of this thesis, it could seem inefficient
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i n t r i n s i c void
sleep (unsigned int cyc les )
{

unsigned int batch ;
SIGNAL sig ;

do {
batch = ( cyc les > 0 x f f f f f ) ? 0 x f f f f f : cyc les ;

i m p l i c i t w r i t e (&sig ) ;
set alarm ( batch , &sig ) ;
w a i t f o r a l l (&sig ) ;
cyc les −= batch ;

} while ( cyc les ) ;
}

With this functionality, we can add delays on packets. We wrote a simple
program which parses packets, reads out the delay from the options
and induces a delay before transmitting the packet.

Here is an extract of the most relevant part of the code:
int main ( void ){

/* The packet header rece ived by the thread */
struct pkt rxed pkt rxed ;
/* The packet in the CTM */

mem40 struct pkt hdr *pkt hdr ;

for ( ; ; ) {
pkt hdr = receive packet (&pkt rxed , sizeof ( pkt rxed ) ) ;
i f ( pkt hdr−>tcp hdr . o f f > MIN TCP HEADER LEN) {

parse tcp opt ions ( pkt hdr ) ;
send packet(&pkt rxed . nbi meta , pkt hdr ) ;

}
}
return 0;

}

void parse tcp opt ions ( mem40 struct pkt hdr *pkt hdr ){
mem40 char * opt ptr = pkt hdr−>tcp opt ions ;

int length = ( pkt hdr−>tcp hdr . o f f
− MIN TCP HEADER LEN)
* WORDSIZE;

while ( length > 0) {
int opcode = * opt ptr ++;
int opsize ;

switch ( opcode ) {
case TCPOPT EOL:

return ;
/* Ref : RFC 793 sec t i on 3.1 */
case TCPOPT NOP:

length −−;
continue ;

to have a lot of threads spinning like this, waiting to continue. With multiple flows,
this could create a bottleneck in the NIC. A better solution would be to have more
centralized delay on a queue or dispatcher for a specific flow. More on this in the sections
to come.
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default :
i f ( length < 2)

return ;
opsize = * opt ptr ++;

/* ” s i l l y options ” */
i f ( opsize < 2)

return ;
/* don ’ t parse par t ia l options */
i f ( opsize > length )

return ;
i f ( opcode ==

TCPOPT PACEOFFLOAD){
opt ptr += 2;
t iming loop (* opt ptr ) ;
return ;

}
opt ptr += opsize −2;
length −= opsize ;

}
}

}

void t iming loop ( long microsecs ){
long period = microsecs *633 ;
while ( period > MAX SLEEP TIME){

sleep (MAX SLEEP TIME ) ;
period −= MAX SLEEP TIME;

}
sleep ( period ) ;

}

When testing this, we connected a machine directly to our SmartNIC
and manually sent single packets to the NIC. The program receives a
packet, sleeps and returns the packet back.6

12.4 Testing and workarounds
The first version of the program simply did a 500ms delay before
returning the packet. With tcpdump and Wireshark on the connected
machine, we could see that the packet was delayed when our modified
code was set up to sleep. When we removed the sleep, we could see
that the gap disappeared. In other words, we know that the sleep-
functionality found in me.c works as wanted. We then experimented on
sending packets using a Python-program with options modified, having
the MicroC-program parse the options and do delay based on the value
in the option. It worked as expected, which made us optimistic about
making this work.

We then had to delve into how this could be used when we did not
have access to the NIC from our host machine. The test itself was a
workaround due to not having access to the NIC host-side.

We discussed some other options to see if we could work around the
issue of having to use the NIC remotely. One could have one machine

6The rest of the code is available in the repository of this thesis.
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send bursts of packets to the running SmartNIC much like we did with
the Python program but ramping it up to create bursts. The SmartNIC
could then pace and return the packets to the connected machine.

If the SmartNIC was successful in pacing out the packets, it could
be measured at the connected system. The issue with this thought
experiment is that we get a lot of unknowns. We do not know what
egress rate the connected system has, and we lose control over the
segments.

As will be clear in the next section, we cannot just delay packets a
specified amount of time. We need to take the order into consideration.
If we have 10 packets in one segment, we will have to delay the last
packet 9 times longer than the second packet if we have an even
distribution. That information needs to be conveyed. If we simply write
it to the option when the TSO-segment is created, we still have the
issue of the packets arriving at varying times at the SmartNIC because
it is on a different macine.

We would need to ensure some ordering, and we would need to know
which segments the packets belong to. The segments themselves would
be theoretical. And the higher the speeds, the longer the distance
and the more saturated the path is, the more this issue affects the
experiment. We lose control of the path. On top of that, we know that
the packet flow for host-to-network and network-to-host is not the same.

12.5 One queue to rule them all
The considerations concerning the actual spacing is what remains as
the second big challenge with implementing pacing on these NICs. The
concurrent processing of the threads must be taken into account.

If we wish to space out packets with inter-packet gaps, we need to
manage the relative gap between the packets in a TSO-segment. Simply
making a thread spin for a certain amount of time will not do. Imagine
42 packets arriving the NIC as a TSO-segment. The segment gets split
into individual packets before being dispatched to the MEs CTM. We
risk several threads picking up packets at the same time. They will all
spin (or yield waiting for a signal depending on the final solution) until
the requested delay-time has passed. The packets are then forwarded
to the egress queue basically at the same time, causing them to enter
the network without the inter-packet delay.

Doing this will just create a delay on the TSO-segment as a whole
or in part, not the individual packets. We need a way to make sure that
the packets are delayed relative to the previous packet in the segment.
There are a couple of ways we can approach this challenge.

We either stamp each packet with a delay relative to the first packet
in the segment when it is created on L4, or we create our own queue
system on an ME responsible for managing how much delay each packet
has relative to a start. This can be combined with the first solution.

Yet another solution could be to calculate the accumulative delay
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when the TSO-splitting is happening and pass it on to the MEs
assigned.

12.5.1 Queue management

All the viable solutions mentioned require a lot more than just adding
a sleep when a thread is processing a packet based on a fixed value
sent down from L4. We need some management in the form of a
queue manager responsible of organizing the delay being executed by
the threads. The queue manager can perhaps be as simple as the ME
doing the TSO splitting, or it could be a designated queue manager for
several MEs or threads.

This and the challenge of our missing interfaces is the focus of the
last chapter of this thesis. We ended up realizing that our intended
use of the NICs was not compatible with how the abstractions were
designed, but in the following we will propose a path to pursue to make
the pacing happen. We hope our thoughts and ideas will be of help.
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Chapter 13

Outlining future work with
the CoreNIC

13.1 A solution without abstractions
The abstractions provided by Netronome have proved to be designed
to fit a very different need than ours. Unless Netronome changes the
compilers to enable us to compile custom code into the existing firmware
code, we are at a loss with solving this problem using either P4 or the
vanilla MicroC approach.

The positive discovery thus far is that we now know that it is
possible to do timing on the cards, and we know that there are a lot
of possibilities when it comes to inter-thread and -core communication
with both global, semi-global and local memory sharing.

Another positive is that the functioning upstream firmware can be
downloaded and installed at will, and we have some ideas as to how
a working solution could be. We want to retain the existing firmware
and add on some customized handling or packets with the pace-option
enabled.

13.1.1 Firmware modifiction

As we have access to the upstream firmware and know the NICs are
capable of timing, we propose that future research can focus on trying
to modify the standard firmware. The firmware code is available and
modifiable, and it can be compiled and installed just like any other
application. By modifying the firmware itself, rather than creating a
whole new one, we can keep the interfaces and have the cards do all the
things they usually do, and just create a special handling for packets
with the pace-option enabled.

We have done some initial attempts at modifications and started
exploring the code, and the following sections will discuss some of our
findings.
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13.2 CoreNIC
The Netronome NIC firmware implementation for the Agilio SmartNiCs
(nicknamed CoreNIC) is available through the Netronome Repository
(https://github.com/Netronome/nic-firmware).

The repository has extensive information about the cards, the
firmware and how to compile the code. Commands and aliases for
easily compiling and installing the firmware can also be found in the
repository for this thesis.

13.3 TSO split
As we know that the TSO-segments need to be split by the NIC before
any processing is done, we considered this to be the best place to start
looking.

The code for the splitting can be found in
blocks/vnic/pci in/issue dma.c. The more generic name LSO is
used, but that is where it is processed. Initially we believed we could
simply add a delay in the loop that splits the packets, but that will not
work, for two reasons.

Firstly, it seems like this function parses the packets and puts them
all into a queue before finally signaling the queue handler(s) that the
split is done.

Secondly, we have 8 threads working here, and we need to make
sure they all have the same baseline for the clock. If we only have
one thread it is unproblematic to have it wait for a specified amount of
time between the packets, but when we have several threads handling
different packets, we must make sure that they all use the same clock
and delay with a delay calculated for the specific packet from time 0.

We tested it and found that we could stall the whole process by
adding an infinite loop, but we could not delay on a packet by packet
basis by simply sleeping for a specified amount of time.

Making the split-function do the work could be a potential solution,
but it would require adding an option-parser and change the flow so
that packets can be signaled for transmit when needed.

A challenge needed to be taken into consideration when rewriting
this code is that the compiler is strict about how many instructions
the resulting code will have. Some efficiency is needed in how the
code is performed. A lot of instructions can be saved by e.g. avoiding
unnecessary nesting or assignments.

13.3.1 Clocking

If this is to work, one would need to figure out how the queues are
managed and how this code is executed. One TSO-segment seems to
be handled and split by one ME. Looking at the code, it seems that we
need to take into consideration that each thread is unaware of which
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number in the line the packet is. As the code is shared among all
threads of the ME, it would be necessary to make sure there is some
shared information about time.

Having an absolute delay calculated at L4 rather than a relative
delay, could seem helpful as each thread would not need to know which
packet in the segment it is handling. But all the threads handling the
same segment need have access to the same clock with some starting
point.

Either we make sure that only one thread works on a segment
(which seems unreasonable), or we need some centralized clock or queue
manager.

Adding a shared variable for an ME should be unproblematic given
the opportunities we have for both local and non-local variables. It
would seem viable to have the code issue a variable shared by the
threads of the ME holding e.g. the timestamp of the start of the TSO
segment. Each thread would then issue a sleep waiting for the ME clock
to reach the desired value.

In me.c where we find sleep(), we also find me tsc read() which
seems to read off the current time from local csr timestamp low
and local csr timestamp hihg. This would likely be the information
needed to read time shared among the threads, and the threads could
run a loop on sleep checking the value of the clock every given interval
of time.1

This solution seems very plausible as long as one is able to find out
where it can be done and how to make sure that each packet gets put up
for transmit when needed. It also has the advantage of all the threads
sharing the same clock as they belong to the same ME.2

13.4 Queue management
Doing work inside the TSO split is not necessarily the best solution. The
splitting is not just a simple for-loop. It is close to 800 lines of code, doing
a lot of different things to the packets being processed. Adding a delay
to this processing seems easiest, but it would cause a lot of stalling, and
it would be necessary to be absolutely sure when to perform the delay in
the loop (if possible), and make sure that other parts of the flow would
not be affected by it.

As the actual code splitting up the packet is complex it could be
wise to look into what happens after the split is done. The packets are
split up and most likely put into a queue ready for further processing
or transmit. By looking into this part of the flow, one could have the
advantage of doing the delay at a stage where all other processing is
done.

1It is not possible for one thread to set a timer at a specific time. It will need to sleep
a defined amount of time and then check the clock, repeating this in a loop until the
needed amount of time has elapsed.

2Assuming that one TSO-segment is handled by one ME and not several.

93



To make this work, one could either look at the queue used today
or create a new queue for the packets to be delayed. We know we
will need some sort of queue management in the form of the threads
signaling packets for transmit at specific times. Having a simple
priority queue using a timestamp relative to a global clock could be
a good solution. Having one queue manager handling the queue and
ordering the packets based on timestamps would be how we would solve
this in higher level programming.

Each thread splitting up packets could add on metadata to the
packet in the form of a timestamp relative to the clock used by the
queue-administrator. By retrieving the timestamp from the queue-
managing-ME, all MEs splitting segments could calculate a timestamp
by adding on the delay found in the options. We would then need to have
the delay-value in the packet option be an absolute delay set in L4, not
a relative one.

Once the timestamp for departure time has been added to the
packet, the packet can be given to the queue manager for further
handling.

One big advantage with this solution is that it would be efficient if
we have multiple flows. The FPCs would finish in much the same time
as usual. The only delay would be in the priority queue, and as long as
the queue is based only on timestamp, we could have multiple flows in
the same queue. The queue manager wold simply handle the ordering
and signaling for transmit when needed.

13.4.1 Buffer capacity and management

One of the challenges by adding delay and have packets wait in queue
is that we start hogging resources. Rather than transmitting the whole
segment at once, we make the NIC hold on to it while waiting for a clock.

Depending on capacity one could be forced to have one queue per
segment, and one could get issues with capacity either way, but it also
depends on how the queue is constructed. The queue manager can be
implemented using only header pointers and a timestamp. The headers
themselves would need to be moved out of the ME CTM if we are to
be able to process more packets while waiting. If we can not move the
headers to some other memory, we would risk running out of threads
quite fast as all threads would have to wait for their packet to be picked
for transmit by the queue manager.

Given all the different areas of memory on these cards, it would be
pessimistic to assume that we could not make it work at least for a
limited scope. Either way all of these thoughts are mostly theoretical
reflections on the matter. They all need to be rooted in actual code, and
there is more work to be done to do that.
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Chapter 14

Final reflections

Employing pacing to improve network performance is something which
is very relevant today, and so is the use of TSO.

For high speed networks, turning off TSO can simply be too costly or
too inefficient to achieve the desired performance. At the same time,
it is getting increasingly more relevant to let L4 control the actual
transmission rate from the NICs. At higher speeds even having a
clock with enough granularity is difficult without the help of specialized
hardware.

All of these considerations have been mapped out, and we have
argued that a possible solution to the apparent dichotomy of these two
aspects of networking may be found with pacing in hardware.

14.1 Netronome Agilio abstractions
The main intention of this thesis has been to investigate whether it
could be possible to implement pacing in hardware using Netronome
Agilio SmartNICs with the abstractions provided by Netronome.

We have concluded that this is not possible simply by using the
provided abstractions the way they are set up today. If Netronome
at some point makes it possible to make the custom code coexist with
the upstream firmware, it would be highly relevant to explore further
capabilities both for P4 and MicroC. Until then we believe it is best to
explore other options with these cards.

14.2 CoreNIC
Even though we did not find a clear cut way to pacing in hardware
using P4 or MicroC, we have been positively surprised by the sheer
capabilities of these cards and have high beliefs in the possibility of
making pacing work by doing more research into the CoreNIC firmware.

A substantial amount of work remains to make it work, but given
the abilities and organization of these cards, it seems highly plausible
to us that a working solution is obtainable and is worth looking into.
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14.3 The future of pacing
As we see it, making TSO harmonize with pacing seems important to
try to achieve. TSO is here to stay, and having L4 lose control of the
actual transmission rate seems like a loss to all present and future
TCP algorithms. If future research into the firmware is successful, who
knows what more can be done. Perhaps even more functionality could
be offloaded from the transport layer.

We at least hope someone will continue to look into it. Hopefully this
thesis and its resources can be of help to anyone attempting to make it
work.
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Acronyms
ACK Acknowledgement. Glossary: ACK, 9, 10, 12, 13, 14, 16, 17, 18,

19, 20, 22, 30, 37, 39, 40, 41, 43, 44, 45, 46, 47, 52, 53, 58, 59

ACK compression ACK compression. Glossary: ACK compression

AQM Active Queue Management. Glossary: AQM, 25, 26, 27, 28, 29,
30, 32, 34, 39, 44, 50, 53, 56

BBR Bottleneck Bandwidth and Round-trip propagation time. Glos-
sary: BBR, 35, 36, 37, 38, 45, 50, 51, 54

BDP Bandwidth Delay Product. Glossary: BDP, 15, 16, 22, 25, 27, 28,
31, 36, 37, 42, 43, 46, 49, 50, 55

BIC TCP BIC. Glossary: BIC, 17, 20, 21, 22, 23

BtlBw Bottleneck Bandwidth. Glossary: BtlBw, 14, 15, 36, 37, 38, 43

CoDel Controlled Delay. Glossary: CoDel, 26, 27, 28, 29, 37

CUBIC TCP Cubic. Glossary: CUBIC, 16, 17, 22, 23, 37, 38, 54, 84

cwnd Congestion Window. Glossary: cwnd, 13, 14, 18, 19, 20, 21, 22,
32, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 53, 81, 82

DCTCP Data Center TCP. Glossary: DCTCP, 30, 31, 32, 33, 38, 42, 47,
50, 53

DUPACK Duplicate ACK. Glossary: DUPACK, 9, 14, 18, 19, 23, 30, 34

ECN Explicit Congestion Notification. Glossary: ECN, 26, 29, 30, 31,
34, 38, 42, 44, 47, 49, 50

FPC Flow Processing Core. Glossary: FPC, 66, 67, 68, 71, 72, 94

FRR Fast Retransmit and Fast Recovery. Glossary: FRR, 19

GRO Genereic Receive Offload. Glossary: GRO, 60

GSO Generic Segmentation Offload. Glossary: GSO, 59, 81

IP Internet Protocol. Glossary: IP

LRO Large Receive Offload. Glossary: LRO, 59, 60

LSO Large Segment Offload. Glossary: LSO, 33, 40, 59, 92

LSS Limited Slow-Start for TCP. Glossary: LSS, 17, 46
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MTU Maximum Transmission Unit. Glossary: MTU, 2, 29, 41, 46, 56,
58, 60

NIC Network Interface Controller. Glossary: NIC, 2, 3, 41, 56, 57, 58,
59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 78, 79,
81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 94, 95

PaC Paced Chirping. Glossary: PaC, 22

PPC Packet Processing Core. Glossary: PPC, 66, 68, 71, 72

PRR Proportional Rate Reduction. Glossary: PRR, 48

RED Random Early Detection. Glossary: RED, 25, 26, 27, 28, 29, 37

RSS Receive Side Scaling. Glossary: RSS, 59

RTO Retransmission Time-Out. Glossary: RTO, 13, 14, 18, 19, 23, 34,
42

RTprop Round-Trip propagation time. Glossary: RTprop, 36, 37

RTT Round-trip time. Glossary: RTT, 13, 14, 15, 16, 17, 20, 21, 22, 28,
31, 32, 34, 35, 36, 37, 40, 41, 45, 52, 53, 54, 55, 81, 82

SACK Selective Acknowledgement. Glossary: SACK, 9, 16, 20, 41

ssthresh Slow Start Threshold. Glossary: ssthresh, 13, 14, 18, 19, 40

TCP Transmission Control Protocol. Glossary: TCP, 1, 2, 3, 5, 6, 7, 8,
9, 10, 11, 12, 14, 15, 19, 20, 22, 23, 27, 28, 31, 32, 34, 37, 39, 40,
42, 43, 45, 46, 48, 51, 52, 54, 56, 58, 59, 60, 61, 62, 64, 82, 83, 84,
86, 96

TOE TCP stack Offload Engine. Glossary: TOE

TSO TCP Segmentation Offloading. Glossary: TSO, 2, 3, 41, 46, 47, 59,
60, 61, 62, 65, 81, 82, 86, 89, 90, 92, 93, 95, 96

UDP User Datagram Protocol. Glossary: UDP, 6, 7, 40

Vegas TCP Vegas. Glossary: Vegas, 34, 35, 51
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