
The application of penalized logistic
regression for fraud detection
Studying measures of prediction performance for class imbalanced and high-dimensional
data

Shuijing Liao
Master’s Thesis, Autumn 2022

This master’s thesis is submitted under the master’s programme Stochastic Modelling,
Statistics and Risk Analysis, with programme option Statistics, at the Department of
Mathematics, University of Oslo. The scope of the thesis is 60 credits.

The front page depicts a section of the root system of the exceptional Lie group E8,
projected into the plane. Lie groups were invented by the Norwegian mathematician
Sophus Lie (1842–1899) to express symmetries in differential equations and today they
play a central role in various parts of mathematics.

Abstract

Typically, fraud data are class imbalanced, and possibly high-dimensional. They have
a mixture of discrete and continuous covariates, among which a certain dependence
structure exists. Building good prediction models for detecting the fraudulent cases faces
challenges, for instance, due to inappropriate measures of prediction performance. We
study, in the setting of fraud detection, whether and how the prediction performance of a
penalized logistic regression model may be improved by applying appropriate optimality
measures in cross-validation of the penalty parameters. This includes investigating the
effect of different optimality measures on the prediction performance of penalized logistic
regression methods, and exploring different performance measures used in the validation
phase. A simulation study and an illustration on a real credit card default data, are
conducted. Copulas is utilised in the simulation study, for generating data that share
the aforementioned characteristics of fraud data. The results from the simulation study
show that, for class imbalanced and high-dimensional data, the prediction performance
of the elastic net, in terms of the AUC, the AUCPR, the AGm and the variable
selection property, is significantly boosted by the optimality measure AUCPR used in
cross-validation of the penalty parameters. Meanwhile, the illustration on real data
shows that, the optimality measure AUCPR, only improves the AUC and the AUCPR
of the lasso and elastic net regression in the third decimal. We conclude that, whether
and how the optimality measure will affect the prediction performance, depends on
many factors, such as the learning method, the type of data, etc. Nevertheless, we
recommend reporting the AUCPR for model selection in the setting of fraud detection,
especially when the AUC gives overly optimistic results.

i

Acknowledgements

The whole experience of this research work was memorable, and the learning process
was challenging but fun. I would like to thank my supervisor Ingrid Hobæk Haff for
her guidance, support, patience and encouragement throughout the the whole period of
my master thesis.

ii

Contents

1 Introduction 1

2 Methods 3
2.1 Fraud detection problem . 3

2.1.1 Class imbalanced and high-dimensional fraud data 3
2.1.2 Problems and possible solutions 4

2.2 Logistic regression . 5
2.2.1 Model presentation . 5
2.2.2 Maximum likelihood estimation 6
2.2.3 Deviance . 7
2.2.4 Extension and potential problems 7

2.3 The bias-variance trade-off and model complexity 8
2.4 Regularization methods . 9

2.4.1 The lasso . 9
2.4.2 Ridge regression . 10
2.4.3 The elastic net . 11
2.4.4 Standardization . 12

2.5 Cross-validation . 12
2.5.1 Regular k-fold cross-validation 13
2.5.2 Stratified k-fold cross-validation 13
2.5.3 The choice of k . 14

2.6 Evaluation metrics . 16
2.6.1 Threshold based metrics . 17
2.6.2 Ranking metrics . 22
2.6.3 Probabilistic metrics . 27

3 Simulation study 29
3.1 Data simulation methods . 29

3.1.1 Generating covariates from copulas 29
3.1.2 Generating a data set . 32

3.2 Simulation design . 34

iii

CONTENTS iv

3.2.1 Experiment design . 34
3.2.2 Model for simulated data . 35
3.2.3 Implemented cross-validation 36
3.2.4 The logistic regression without penalty 37
3.2.5 Implementation of the regularization methods 37
3.2.6 Optimality measures used in the cross-validation of the penalty

parameters . 38
3.2.7 More evaluation metrics . 38
3.2.8 Parallel computing . 41

3.3 Results . 41
3.3.1 Ranking ability . 41
3.3.2 Binary classification performance 46
3.3.3 The Brier score: a measure of sharpness 49
3.3.4 The accuracy of predicted event probabilities 51

3.4 Summary . 57
3.5 Re-sampling methods . 59

3.5.1 Random under-sampling and oversampling 59
3.5.2 The SMOTE method . 60
3.5.3 Earlier work . 60
3.5.4 Future possibility . 60

4 Illustration on credit card default data 62
4.1 Data description and data preprocessing 62
4.2 Setup . 64
4.3 Results . 65

4.3.1 Ranking ability . 65
4.3.2 Binary classification performance 67
4.3.3 The Brier score . 68
4.3.4 Tuning the penalty parameter 70
4.3.5 An additional evaluation metric 72

4.4 Summary . 73

5 Conclusion and discussion 75

Appendices 78

A Figures and tables 79
A.1 Methods . 79
A.2 Simulation study . 81
A.3 Illustration on credit card default data 88

CONTENTS v

B R-code 92
B.1 Data simulation . 92
B.2 Stratified k-fold cross-validation . 94
B.3 Computing the true event probabilities 95
B.4 Evaluation metrics . 98
B.5 Exporting the results of the simulation study 99

Bibliography 105

Chapter 1

Introduction

Economically, fraudulent activities may cause potentially serious losses for many financial
institutions, such as insurance companies, banks and the Norwegian tax administration,
etc. Therefore, they tend to prioritise fraud detection highly. Fraud detection involves
the task of detecting whether an actual case is fraudulent or not, which may be done
by prediction models that are built with the help of regression and machine leaning
techniques, for instance, logistic models.

Typically, there are a large amount of cases, and only a small proportion of them
are fraudulent, resulting in class imbalanced data. Class imbalance may impair the
prediction performance of many of the regression and machine learning methods used for
fraud detection (Japkowicz and Stephen, 2002). Possible solutions have been proposed,
for instance, re-sampling methods that manipulate the imbalance level of the training
data before estimating the model (Batista et al., 2004; Chawla et al., 2002; Estabrooks
et al., 2004). However, oversampling, under-sampling and SMOTE were not promising
in improving the prediction performance, in terms of the AUC, of logistic models in
Halsteinslid (2019).

In comparison to the development of methods for building the classifier with imbalanced
data, choosing appropriate measures of prediction performance is often underestimated.
In the earlier studies which dealt with class imbalanced data, the AUC was frequently
used as the measure of prediction performance for model selection (Blagus and Lusa,
2010; Burez and Van den Poel, 2009). However, typical measures like the accuracy and
the AUC mainly measure how well the model predicts the non-fraudulent cases, as they
are in majority, whereas the main interest within fraud detection is how well the model
detects fraudulent cases. The choice of measure of prediction performance needs to be
made with care, for class imbalanced data within fraud detection.

1

CHAPTER 1. INTRODUCTION 2

The AUCPR, which measures the average precision, is recommended for highly class
imbalanced data (Berrar, 2019). Additionally, the precision-recall curve has been
suggested as an alternative to the ROC curve for class imbalance (Davis and Goadrich,
2006; He and Edwardo A, 2009). Meanwhile, Saito and Rehmsmeier (2015) have shown
that the precision-recall plot is more informative than the ROC plot for imbalanced
data, as the former emphasizes the performance on the top-ranked cases. Therefore, the
corresponding summary metric AUCPR may be an appropriate performance measure
for class imbalanced data within fraud detection, despite the fact it is less frequently
used than the AUC. Several other measures are also included and discussed in our study,
such as the adjusted geometric mean of the TPR and TNR (Batuwita and Palade,
2009), Brier score (Brier, 1950), etc.

Here, the penalized logistic regression models will be used for fraud detection, since the
data one encounters in fraud detection are also possibly high-dimensional, which may
introduce variance and cause overfitting. Regularization methods may avoid overfitting
in logistic models. Since selecting the penalty parameter values plays an important role
in the prediction performance of such models (e.g., the ridge, lasso and elastic net), one
may ask whether choosing an appropriate optimality measure (used in cross-validation
of the penalty parameters) will boost the models’ prediction performance.

The main objective of this thesis is then to study the effect of different optimality
measures (used in cross-validation of the penalty parameters) on the prediction
performance of the penalized logistic regression methods, and to identify the appropriate
and inappropriate performance measures for imbalanced data, in the setting of fraud
detection.

On the one hand, we will incorporate the measures of prediction performance into the
automated tuning procedures (e.g., cross-validation) when estimating the model. On
the other hand, different measures of prediction performance will be explored in the
validation phase. This will be conducted on simulated data and real credit card default
data, which are class imbalanced and high-dimensional with a mixture of discrete and
continuous covariates. In the simulation study, the Gaussian copula and inversion
sampling will be used to generate such data, with arbitrary marginal distributions and
a dependence structure.

The rest of the thesis is organized as follows. In Chapter 2, we describe the statistical
methods for this study. Chapter 3 presents the methods for data simulation and
experimental results of the simulation study. In Chapter 4, we present an illustration
on a real credit card default data. Chapter 5 presents the conclusion of our study.

Chapter 2

Methods

2.1 Fraud detection problem
Fraud detection is an important task in many fields, including insurance, banking, tax
administration, etc. In practice, it may refer to detection of fraudulent insurance claims,
money laundering, tax fraud, etc. It is usually infeasible to manually investigate all
the cases (i.e., insurance claims, transactions, tax reports and the like), since the total
number of cases is typically very high. Also, such investigations are costly. In order to
identify those cases that are most likely to be fraudulent, good prediction models are
therefore required.

2.1.1 Class imbalanced and high-dimensional fraud data
Among the total cases, fraudulent activities occur rarely, so only a small proportion of
the cases are fraudulent, which results in class imbalanced data. The proportion of the
fraudulent cases is usually less than 2%. Under some circumstances, this proportion
may even be less than 1%. Further, fraud data may also be high-dimensional, meaning
the number of covariates is relatively large in comparison to the number of cases.
To be specific, the number p of covariates is often approximately the same as the
number n of cases, or sometimes, p is only slightly smaller than n. Additionally, the
data registered on each case usually contain many types of information, resulting in a
mixture of continuous (e.g., income) and discrete (e.g., gender) variables. There may
exist dependence between the covariates, and some of the covariates may be irrelevant
to the outcome.

3

CHAPTER 2. METHODS 4

2.1.2 Problems and possible solutions
The rare or fraudulent cases, which we are mainly interested in detecting, have proven
to be difficult to detect (Krawczyk, 2016; Weiss, 2004), and class imbalance may
cause suboptimal classification performance (Chawla et al., 2004). Traditional machine
learning methods may assume or expect a somewhat balanced class distributions in
the data (He and Edwardo A, 2009). For class imbalanced data, they may perform
poorly on the minority class. One reason may be that the models simply get too little
information about the minority class, which is often underrepresented and lacks a clear
structure (Krawczyk, 2016). Re-sampling methods directly transform the training data
into more class balanced data (not necessarily fully balanced) before building the model.
More details of re-sampling methods (e.g., oversampling) are given in Section 3.5.

Meanwhile, class imbalanced data are not always difficult to learn, for instance, when
the minority cases are not too few and there is little degree of overlapping among
the classes in the data (Batista et al., 2004). That is, however, untypical. Class
overlapping is common, and highly overlapping classes can impair model learning and
model performance substantially. Data cleaning methods using Tomek links, may relieve
the overlapping among the classes by removing the noisy and borderline cases. This is
also presented in Section 3.5. It is worth noting that the aforementioned methods in
Section 3.5 are only discussed, but not applied in this thesis, since we study mainly the
measures of prediction performance for class imbalance in the setting of fraud detection.

Typical measures of prediction performance, such as the accuracy, the AUC and the Brier
score, are dominated by the majority class, thus, the model may still give quite good
results, in spite of its poor prediction performance on the minority class. Consequently,
wrong conclusions about the prediction performance of a model may be drawn, and
suboptimal models may be chosen in model selection. Model selection here refers to the
whole procedure of estimating the performance of different models in order to choose
the best one (Hastie et al., 2009), including building the model and selecting the best
tuning parameters. For class imbalance, more appropriate evaluation metrics should be
applied in order to correctly evaluate the prediction performance, both in the training
phase and in the validation phase. Several evaluation metrics (e.g., the AUCPR and
the AUC) are discussed and compared in Section 2.6.

In addition, regular methods applied to high-dimensional data can lead to overfitting
along with high variance. Regularization methods may be used to avoid overfitting, and
they are given in Section 2.4. Variable selection applied before building the model may
be carried out to select a subset of covariates that are most informative, in an attempt
to achieve the optimal prediction performance (Haixiang et al., 2017). This is, however,
not considered in this thesis, since the selection procedure may be computationally

CHAPTER 2. METHODS 5

infeasible for a large number of covariates, and is extremely variable due to its inherent
discreteness (Hastie et al., 2009; Zou and Hastie, 2005). Meanwhile, it is worth noting
that some regularization methods (e.g., the lasso and elastic net) do automated variable
selection, in the sense that they do not include all the covariates in the model.

2.2 Logistic regression
This section describes the logistic regression method.

2.2.1 Model presentation
Let Y denote a binary response variable. Given n observations, the outcome value
of the ith observation is denoted by yi, where yi ∈ {0, 1}, and yi = 1 represents that
the ith observation is fraudulent. The corresponding p covariate values for each yi are
denoted by xi = (xi1, . . . , xip). The logistic regression method models the relationship
between the binary outcome Y and the corresponding covariates xi1, . . . , xip as

P (Yi = 1|xi) = exp(β0 + β1xi1 + · · ·+ βpxip)
1 + exp(β0 + β1xi1 + · · ·+ βpxip)

. (2.1)

Here, P (Yi = 1|xi) is the probability of fraud in the ith observation, given information
of the covariates. It is also the mean µi of the binary response Yi|xi, which follows a
Bernoulli distribution, i.e., Yi|xi ∼ Bernoulli(p(xi)), where p(xi) = P (Yi = 1|xi). The
regression coefficients are denoted by β = (β0, β1, . . . , βp), where β0 is the intercept.
The sigmoid structure of Equation (2.1) keeps the probability p(xi) from falling outside
the range (0, 1), while the p covariates can take values over the entire real line. The
Equation (2.1) can be reformulated as

log
(

p(xi)
1− p(xi)

)
= β0 + β1xi1 + · · ·+ βpxip, (2.2)

where we observe the logit link function g(µi) = log
(

µi
1− µi

)
on the left side of

Equation (2.2). On the right side of Equation (2.2) is the linear predictor η(xi), which
represents a linear combination of the covariates. Thus, the decision boundary that
separates the observations into two classes is linear for the logistic regression classifier.
A natural choice in many settings, for instance, for class balanced data, is to have a
threshold of 0.5 for converting predicted event probabilities produced by the logistic
regression models into binary labels, meaning that the ith observation is predicted to
be fraudulent (i.e., ŷi = 1) if its predicted event probability

p̂(xi) > 0.5. (2.3)

CHAPTER 2. METHODS 6

We therefore that
log

(
p̂(xi)

1− p̂(xi)

)
> 0.

Equivalently, according to Equation (2.2), ŷi = 1 if the linear predictor
η(xi) = β0 + β1xi1 + · · ·+ βpxip > 0.

However, for class imbalanced data, it does not have to be like that, and the threshold
could be fixed to the ratio of class imbalance, or may be optimized according to different
evaluation metrics. Further details related to the threshold are discussed in Section 2.6.

2.2.2 Maximum likelihood estimation
In order to estimate the parameters β, we usually fit logistic regression models with the
maximum likelihood estimation method. Given n data points that are independent and
Bernoulli distributed (i.e., Yi|xi ∼ Bernoulli(p(xi))), the likelihood function is given
by

L(β) =
n∏
i=1

p(xi)yi(1− p(xi))1−yi . (2.4)

The corresponding log-likelihood function is then

l(β) =
n∑
i=1

[yi log (p(xi)) + (1− yi) log (1− p(xi))] ,

which can be reformulated as

l(β) =
n∑
i=1

[
yi(β0 + β1xi1 + · · ·+ βpxip)− log(1 + eβ0+β1xi1+···+βpxip)

]
. (2.5)

Consequently, the maximum likelihood estimate is given by

β̂
MLE = argmax

β0,β1,...,βp

{
n∑
i=1

[
yi(β0 + β1xi1 + · · ·+ βpxip)− log(1 + eβ0+β1xi1+···+βpxip)

]}
.

(2.6)
To determine the β̂MLE values at which the log-likelihood function l(β) is maximized,
we set the derivatives of Equation (2.5) to zero and obtain

∂l(β)
∂β

=
n∑
i=1
xi (yi − p(xi))) = 0, (2.7)

which are p + 1 non-linear equations in β (through p(xi)). The solutions may be
determined by, for instance, iteratively reweighted least squares (Hastie et al., 2009),
which is implemented in the R function glm. The estimated probability of fraud, given
covariate information x = (x1, . . . , xp), is then modelled by

p̂(x) = exp(β̂0 + β̂1x1 + · · ·+ β̂pxp)
1 + exp(β̂0 + β̂1x1 + · · ·+ β̂pxp)

. (2.8)

CHAPTER 2. METHODS 7

2.2.3 Deviance
A relevant term here is the deviance (Agresti, 2015; Hosmer Jr et al., 2013), which is
given by

deviance = −2 · (l(β)− l?) .
Here, l? is the log-likelihood of the saturated model. If we treat the likelihood L(β)
in Equation (2.4) as a function of p(xi), for i = 1, . . . , n, the saturated model should
achieve the maximum likelihood with the perfect fit p̂(xi) = yi, for i = 1, . . . , n. The
likelihood of the saturated model is then given by

L? =
n∏
i=1

yyi
i (1− yi)1−yi = 1,

and then the log-likelihood of the saturated model

l? = 0.

Hence, the deviance of a fitted logistic regression model is given by

deviance = −2 · l(β). (2.9)

We can compare the deviance of two models in order to check if one gives a better fit
than the other. Here, to minimize the deviance is equivalent to maximize the likelihood.
The deviance may be used as an optimality measure in cross-validation (see Section
2.5) for determining the optimal values of tuning parameters.

2.2.4 Extension and potential problems
The logistic regression model can be used for interpretation of the role of covariates in
explaining the outcome and prediction. It is commonly used as a benchmark in empirical
studies and as a prediction tool in practice (e.g., credit card default). Alternatively, for
j = 1, . . . , p, a non-linear function f(xj) (e.g., a quadratic term) may be implemented
on the right side of Equation (2.2), if the non-linear effects are more informative about
the outcome and improve the predictive power. Interaction terms may also be added in
the model. However, they are unknown and must be found, which is difficult. For data
with p covariates, the number of possible interaction terms is p·(p−1)

2 , which can become
very large for a big p (e.g., p = 1000). Also, for high-dimensional data, it might not
be feasible or desirable to have more terms included in the model, as the maximum
likelihood estimation method may fail in high-dimensional situations with large numbers
of parameters (Efron and Hastie, 2021). Further, maximum likelihood may suffer in
case of complete separation where, for instance, a covariate perfectly separates the two
classes, and the model may not converge using the R function glm. Other concerns

CHAPTER 2. METHODS 8

with high-dimensional data are high variance in the maximum likelihood estimates and
overfitting.

Therefore, we turn to regularization approaches that can overcome the dimensionality
problem. To be specific, we choose penalized logistic regression models with constraints
imposed on the regression coefficients, or equivalently, with penalty terms attached
to the log-likelihood function, to handle class imbalanced and high-dimensional data
within fraud detection.

2.3 The bias-variance trade-off and model
complexity

Let X ∈ Rp denote a p dimensional random input vector, and Y ∈ R a random output
variable. The expected prediction error is given by

Err = E[L(Y, f̂(X))], (2.10)

where f̂ is the fitted model, and L(Y, f̂(X)) is an adequate loss function for measuring
errors between the outcome Y and the predicted outcome f̂(X).

To select the right prediction model out of many candidates, is basically to find a
model which minimizes the prediction error with some in-between model complexity.
Due to the trade-off between bias and variance, the prediction error will not always
decrease like the training error does, as the model complexity increases. This as can be
seen in Figure 2.1 from Hastie et al. (2009). The reason is that the training error is
the prediction error obtained by applying the fitted model to the same data used for
fitting it, while the prediction error is obtained on new data. The training error is often
lower than the prediction error, since the fitted model has already seen the training
sample. The training error may decrease to zero, as the model complexity increases
enough. The prediction error is related to whether the model will generalize well. We
want to minimize the prediction error, such that the model has good enough prediction
performance on new data.

Generally, the minimization of prediction error should take both the bias and the
variance into consideration as the model complexity varies. The bias and variance
typically act in the opposite way, and their behavior is strongly connected to the model
complexity. A more complex model tends to have smaller bias and larger variance,
while it is the other way around for a simpler model. An overfitted model with high
variance captures the noise along with the underlying pattern in the training data, and
hence, it may not generalize well. On the contrary, an underfitted model with large

CHAPTER 2. METHODS 9

Figure 2.1: Test and training error as a function of model complexity.

bias is not complex enough. Though with a low variance, i.e., a low uncertainty, it may
not represent the true underlying relation between covariates and outcome, and hence,
it may not generalize well, either. Overall, it is desired to build a neither overfitted
nor underfitted model. The problem of finding the right model is then finding the
intermediate point with the right balance between the bias and variance, in other words,
with the right model complexity.

2.4 Regularization methods
This section presents the lasso, ridge and elastic net for the logistic regression method.

2.4.1 The lasso
The lasso is a regularization method with the L1-norm penalty λ∑p

j=1|βj| (Tibshirani,
1996). Given n observations with inputs xi = (xi1, xi2, . . . , xip), for i = 1, 2, . . . , n, the
lasso solution for the logistic regression method is given by

β̂
lasso = argmax

β0,β1,...,βp

n∑
i=1

[
yi(η(xi))− log(1 + eη(xi))

]
− λ

p∑
j=1
|βj|

 , (2.11)

where ∑n
i=1

[
yi(η(xi))− log(1 + eη(xi))

]
is only the log-likelihood function l(β) in

Equation (2.5). Notice that the intercept term β0 is not considered in the regularization.
It is not a convention to shrink a parameter whose estimate gives the reference level of

CHAPTER 2. METHODS 10

log-odds. Also, for λ→∞, the intercept estimate is given as

β̂0 = log
(

ȳ

1− ȳ

)
,

where ȳ = 1
n

∑n
i=1 yi. The shrinkage parameter λ (λ ≥ 0) controls the magnitude of

penalization. When λ = 0, there is no penalty, thus, the maximum likelihood estimate
β̂
MLE is obtained. The larger the value of λ is, the more the coefficients are shrunk

towards zero. Further, with a sufficiently large λ, some of the coefficients are set exactly
to zero, due to the L1-norm penalty structure with non-differentiable corners. Therefore,
the lasso does some sort of variable selection and produces simpler and sparser models
than the unrestricted maximum likelihood. This shrinkage effect of the lasso is highly
effective, when there are a large number of covariates and only a few are expected to
have a considerable effect on modeling outcomes. Compared to the unrestricted logistic
regression model, the less complex model by the lasso is generally easier to interpret
and use in practice.

The penalty introduces some bias to the coefficient estimates, but it also provides
more stable estimates with smaller variance (Le Cessie and Van Houwelingen, 1992).
Hopefully, this will improve the prediction performance, provided with a good choice of
λ value. Deciding the optimal value of λ becomes a trade-off between bias and variance,
which was previously discussed in Section 2.3. Here, λ is also a tuning parameter. It is a
common choice to adaptively choose the λ value by cross-validation discussed in Section
2.5, such that the estimated expected prediction error is minimized. In other words,
the optimal value of λ gives theoretically the best expected prediction performance.

2.4.2 Ridge regression
Ridge regression is a regularization method like the lasso, but with the L2-norm penalty
λ
∑p
j=1|βj|2 (Hoerl and Kennard, 1970). The ridge estimate for the logistic regression

method is given by

β̂
ridge = argmax

β0,β1,...,βp

n∑
i=1

[
yi(η(xi))− log(1 + eη(xi))

]
− λ

p∑
j=1
|βj|2

 . (2.12)

As in the lasso, the intercept term is not involved in the penalization. With λ = 0, the
maximum likelihood estimate β̂MLE is obtained. The shrinkage parameter λ should
also be tuned, in order that the fitted model is neither underfitted nor overfitted. Unlike
the lasso penalty, the ridge penalty is now quadratic and differentiable at zero. As
the shrinkage parameter λ increases, the larger penalty will shrink all the coefficients
toward zero proportionally, but no coefficient will be exactly zero. All the covariates

CHAPTER 2. METHODS 11

are included in the model. The ridge regression does not do variable selection, but
it handles correlated covariates well, as the ridge penalty shrinks the coefficients of
correlated covariates towards each other (Hastie et al., 2021). The lasso, on the other
hand, can be a little chaotic in handling correlation in variables, as some coefficients
may enter, exit and reenter the model for different values of the penalty parameter λ.
The aforementioned shrinkage behavior of the lasso and ridge logistic regression can be
observed in Figure A.2 and Figure A.1, respectively (in Appendix A.1).

Which of the lasso and ridge regression is better, depends on the modeling task and the
type of data. The Lasso may be preferred over the ridge for interpretability reasons,
since the former selects variables. It is worth noting that regularized approaches that
do automated variable selection should, however, be used with care for interpretation or
inference, due to the fact that they introduce a bias in the coefficient estimates. Instead,
they are usually applied for the interest of prediction. For data with highly correlated
covariates, the ridge, which is better at handling correlated covariates, may perform
better than the lasso in prediction. Meanwhile, according to Hastie et al. (2009), it
is generally safer to use lasso rather than ridge regression due to the bet on sparsity
principle, especially when it is uncertain whether there exist many covariates with small
effect, or a few covariates with large effect on the outcome. In the former situation, the
ridge performs only slightly better, and the lasso may still not perform much worse.
However, in the latter situation, the lasso may perform much better than the ridge,
since the L1 penalty is better suited to sparse situations (Hastie et al., 2009).

2.4.3 The elastic net
The elastic net penalty introduced by Zou and Hastie (2005) is a compromise solution
between the lasso and ridge regression. It has both the L1-norm penalty and the
L2-norm penalty. The elastic net regression estimate for the logistic regression method
is given by

β̂
elnet = argmax

β0,β1,...,βp

n∑
i=1

[
yi(η(xi))− log(1 + eη(xi))

]
− λ

p∑
j=1

(α|βj|+ (1− α)|βj|2)
 ,
(2.13)

where α ∈ [0, 1]. Here, α controls the balance between the L1-norm and L2-norm
penalty, and the intercept term is not involved in the penalization. For α = 0, the ridge
is given, and α = 1 gives the lasso. The α is a tuning parameter, which must be found
in addition to λ. The optimal value of α may be found through a grid search, which
is a time consuming task. The extra computational cost is one disadvantage with the
elastic net penalty. Meanwhile, the elastic net is supposed to enclose the advantages of
both penalties. On the one hand, the elastic net penalty has non-differentiable corners
due to the L1-norm penalty, so it selects variables like the lasso and produces sparse

CHAPTER 2. METHODS 12

models. On the other hand, it handles correlated covariates like the ridge, through
shrinking together the coefficients of correlated covariates.

2.4.4 Standardization
The ridge, lasso and elastic net regression need initial standardization of the covariates,
such that the penalization is fair to all covariates (Tibshirani, 1997). Without
standardization, the penalty is dependent on the scaling of the covariates. For instance,
we assume that one covariate x1 is in a very large scale of thousands while another
covariate x2 varies from 0 to 1, and neither of them is standardized. Their coefficients
β1 and β2 are then not on the same scale, and probably |β1| << |β2|. Hence, the same
regularization λ would likely have less effect on x1 than on x2, which is not desired. The
standardization centers and scales the inputs, such that the transformed inputs have
mean zero and unit variance. It is carried out before solving Equation (2.11), Equation
(2.12) and Equation (2.13). Each xij in the inputs is standardized into x′ij by

x
′

ij = xij − x̄j
sj

(2.14)

with x̄j = 1
n

∑n
i=1 xij and sj =

√
1

n−1
∑n
i=1(xij − x̄j)2.

2.5 Cross-validation
With sufficient data, it is possible to split the available data into three parts, i.e., the
training set, validation set and test set. The training set is used to train the models, and
the validation set is used to estimate the prediction performance for different models.
Both data sets serve for the goal of model selection, that is, estimating the performance
of different models in order to find the best one with minimum prediction error (Hastie
et al., 2009). After having chosen the best model, the test set is used for estimating
its prediction performance. It is important that the test set is kept aside from model
selection and taken out only for model assessment.

However, in reality, it may happen that we are not in a data-rich situation, and the data
cannot be split into three sufficient parts. Assume, in this thesis, that we are in the
situation where there are insufficient data, the data are only abundant enough to be split
into a training set and a test set. An efficient sample reuse method, i.e., cross-validation
is used in model selection, not only to estimate the averaged prediction error, but also
to select the best values of tuning parameters. Therefore, cross-validation is applied
to the training set as part of the training process. We present cross-validation and
one slightly altered version, i.e., stratified cross-validation. Both methods estimate the

CHAPTER 2. METHODS 13

expected prediction error given in Equation 2.10, and they are applied to the training
set.

2.5.1 Regular k-fold cross-validation
To perform cross-validation, the training set is randomly divided into k folds, and each
fold has approximately the same amount of observations. A learning method is, in turn,
fitted to k − 1 folds, and evaluated on the remaining one fold. As a result, there are k
fitted models, and each model gives a prediction error estimate. By taking the average
of these prediction error estimates, we obtain an estimated expected prediction error

CV (f̂) = 1
k

k∑
i=1

L(f̂ i, (y,x)Ii
).

Here, L(f̂ i, (y,x)Ii
) represents the prediction error estimate of the ith model fit f̂ i,

which is trained on the training set without the ith fold, and evaluated on the remaining
ith fold. With the training set denoted by (y,x), the observations in the remaining ith
fold are represented by (y,x)Ii

, where Ii consists of indices of elements in the ith fold.

In order to reduce the randomness in the splitting of the training set into k folds, we
can use repeated cross-validation, where we repeat the splitting of the training set m
times, and in the end, take the average of m estimated expected prediction errors, i.e.,
CV 1(f̂), . . . , CV m(f̂).

For shrinkage methods (see Section 2.4), the problem of deciding one or several best
tuning parameters, may arise. The values of the tuning parameters vary the model
complexity, which is associated with the bias-variance trade-off (see Section 2.3). For
a learning method with shrinkage, finding the best model complexity is concerned
with finding the optimal values of the tuning parameters, which may be chosen based
on cross-validation. We perform cross-validation for a range of values of one tuning
parameter, or for a grid of values of two tuning parameters, depending on the shrinkage
method. An estimated expected prediction error curve may be obtained as a function
of the tuning parameters. We choose the values of the tuning parameters that minimize
the estimated expected prediction error.

2.5.2 Stratified k-fold cross-validation
Regular k-fold cross-validation, where the training data are randomly split into k
subsets, does not consider whether the distribution of the binary output in each fold is
approximately the same as in the original training set. It is very likely that some subsets
may contain fewer positive cases than they should, with respect to the proportion of

CHAPTER 2. METHODS 14

positive cases in the original data. Moreover, when the whole training data have very
few positive cases, some subsets may contain no positive cases at all.

Unlike regular cross-validation, stratified cross-validation makes sure that every fold
has roughly the same class distribution as the whole training set. This is important for
class imbalanced data, where the number of negative cases greatly exceeds the number
of positive cases. Therefore, it is more appropriate to apply stratified cross-validation
to class imbalanced data.

A general algorithm 2.1.1 for performing either regular cross-validation, or stratified
cross-validation, is given below, including the steps for computing prediction errors
for a range of values of one tuning parameter λ. As we can see in Algorithm 2.1.1,
the main difference between performing regular cross-validation and stratified cross-
validation is that, before sampling random labels for each observation, the former does
not separate the two classes, whereas the latter separates two classes, in order to achieve
approximately the same proportion of classes in each fold.

2.5.3 The choice of k
While it is clear that stratified cross-validation suits class imbalanced data, the number
k of folds remains to be determined. The choice of k is related to both the computational
complexity, and the typical bias and variance trade-off.

It is known that cross-validation is time consuming. For instance, the computational
complexity of k-fold cross-validation, is k times that of training the algorithm on the
whole training set once. For real fraud detection problems, where thousands of new
data come in constantly, it is necessary to give thought to the total time it costs, for a
prediction method to learn from the historical data and to produce reliable results.

Further, as fraudsters constantly adapt themselves to prevention and detection
technologies, fraud detection models need also to be adaptive and updated at fixed time
points, or continuously over time (Bolton and Hand, 2002). Thus, the time it takes
for the learning models to be constructed, or evolve, should preferably be rather short.
Therefore, the size of k should preferably be small, since the computational complexity
is roughly proportional to the number of data splits (Arlot and Celisse, 2010).

With a smaller k, the training folds contain less observations, and they will be more
different from the whole training set. Thus, it will lead to larger bias and lower variance
in the whole cross-validated estimator of expected prediction error, where the lower
variance is due to the effect of averaging.

CHAPTER 2. METHODS 15

Algorithm 2.1.1 K-fold cross-validation
Input: y = (y1, . . . , yn), k,method, I = {1, . . . , n} , λ1, . . . , λm

1: if (method = regular) then
2: Sample I1 from I without replacement
3: for i = 2, . . . , k do
4: Sample Ii from I \

i−1
∪
j=1

Ij # Ii consists of indices of elements in fold i
5: end for
6: else if (method = stratified) then
7: Generate I1 = {i : yi = 1} # I1 consists of indices of positive cases
8: Generate I0 = {i : yi = 0} # I0 consists of indices of negative cases
9: Sample I11 from I1 without replacement

10: Sample I01 from I0 without replacement
11: for i = 2, . . . , k do
12: Sample I1i from I1 \

i−1
∪
j=1

I1j # I1i consists of indices of positive elements in
fold i

13: Sample I0i from I0 \
i−1
∪
j=1

I0j # I0i consists of indices of negative elements in
fold i

14: end for
15: end if
16: for l = 1, . . . ,m do
17: for i = 1, . . . , k do
18: Fit the model to folds I \Ii and obtain a model fit f̂ i(λl)
19: Compute the loss L

(
f̂ i(λl), (y,x)Ii

)
(y,x)Ii

are observations in fold i
20: end for
21: Let CV (f̂ , λl) = 1

k

∑k
i=1 L

(
f̂ i(λl), (y,x)Ii

)
22: end for
23: Return: CV (f̂ , λ1), . . . , CV (f̂ , λm)

CHAPTER 2. METHODS 16

On the contrary, with a larger k, the training folds will consist of more observations, and
they will be more similar to the whole training set. Hence, the whole cross-validated
estimator will have smaller bias, but higher variance. The reason for higher variance is
that the training folds will also be very similar to each other, and similar models will
probably be produced over these similar folds. Therefore, the expected prediction error
estimate will be very sample-specific for this particular data set. With a different data
set from the same underlying distribution, one could obtain a very different estimate of
the expected prediction error. For instance, when the number of folds k is equal to the
number of observations in the training set, along with an excessively high computational
complexity, leave-one-out cross-validation gives almost unbiased expected prediction
error, but the whole cross-validation estimator can have very high variance.

In fact, Breiman and Spector (1992) have shown that five-fold (i.e., k = 5) cross-
validation performs better than leave-one-out cross-validation at submodel selection
and evaluation. Besides, five- or ten-fold cross-validation are recommended as a good
compromise in Hastie et al. (2009). Moreover, Kohavi (1995) has conducted a study in
comparing and evaluating the performance of cross-validation in accuracy estimation,
with different numbers of folds and whether the folds are stratified or not. The study
suggested the use of stratified cross-validation for model selection, since it improves
the performance, in terms of achieving both lower bias and smaller variance. Also,
stratified ten-fold (i.e., k = 10) cross-validation is recommended, even when more folds
are computationally possible (Kohavi, 1995).

However, stratified cross-validation does not consider whether or not a balanced
distribution in the feature space is maintained for each class. This may be a potential
problem and may affect the quality of estimated error (Zeng and Martinez, 2000), if the
feature distribution within each of the two classes consists of several clusters. Actually,
a method, which is called distribution-balanced stratified cross-validation (DBSCV),
is proposed and proven to improve the estimation quality in such cases (Zeng and
Martinez, 2000). We assume that there is only one cluster per class in this thesis, so
the distribution-balanced stratified cross-validation (DBSCV) method is not relevant.

2.6 Evaluation metrics
There are more than twenty measures to choose from when it comes to evaluating
and comparing the predictive abilities of classifiers. It is not straightforward to
directly draw conclusions on the most appropriate evaluation metrics for assessing the
performance of classifiers, for severe class imbalance. In fact, the problem of choosing
an evaluation metric is complicated, and solutions may be inconclusive, depending on
the characteristics of data, and the specific objectives of prediction problems.

CHAPTER 2. METHODS 17

In this section, we study several evaluation metrics, compare and discuss their
characteristics and limitations in measuring the prediction performance of classification
models, especially in imbalanced learning. The three types of evaluation metrics
are respectively threshold based metrics, ranking metrics and probabilistic metrics.
Threshold based metrics are developed on the basis of a confusion matrix, which is
defined by one threshold value. So the values of threshold based metrics vary over
different thresholds. They are useful measures in evaluating the classification ability of
a binary classifier. A binary classifier produces a class label, indicating the mostly likely
class that a case should belong to. Ranking metrics evaluate the ability of a probabilistic
classifier in ranking true positive cases higher than true negative cases. A probabilistic
classifier assigns a case an estimated probability of class membership, rather than a
crisp class label (i.e., positive or negative). For instance, a logistic regression model
produces a predicted event probability P̂ (Y = 1|x) = p̂(x) ∈ (0, 1), given covariate
information x. Probabilistic metrics assess the accuracy of probabilistic predictions by
checking the goodness of predicted probability scores. Evaluation metrics are evaluated
on the test set.

2.6.1 Threshold based metrics
Assume that the test set consists of P positive cases and N negative cases. Let τ denote
the ratio of class imbalance, which is defined as the proportion of positive cases among
all the cases, i.e., τ = P

P+N . We have τ = 0.5 for class balanced data.

Probabilities transformed to binary labels

A probabilistic classifier can be easily transformed into a binary classification model,
given a threshold value t ∈ [0, 1]. For instance, a logistic regression model produces a
predicted event probability p̂(x), to which a certain threshold value t may be applied.
The cases are predicted to be negative (or non-fraudulent) if p̂(x) < t, and positive (or
fraudulent), otherwise. The transformation rule is given by

ŷ =
0, p̂(x) < t,

1, otherwise.
(2.15)

The positive and negative cases are respectively represented by 1 and 0. If the threshold
value t = 0, all the cases are predicted to be positive, and if t = 1, all the cases are
predicted to be negative. The threshold value t is usually set to be τ for evaluating
and comparing the prediction performance of binary classifiers. In this thesis, we
select threshold values that maximize the prediction performance of binary classifiers,
Therefore, the optimal threshold value topt is flexible, and it depends on the ratio of
class imbalance, the type of measures, the learning methods, etc.

CHAPTER 2. METHODS 18

Confusion matrix

For each case, the binary classifier can produce only four possible outcomes, that is, an
actual positive case is classified to be positive (TP), an actual negative case is classified
to be negative (TN), an actual positive case is classified to be negative (FN), and an
actual negative case is classified to be positive (FP). It is practical to sum up all possible
prediction outcomes of the whole test set in a confusion matrix. A generic confusion
matrix for such binary classification problems is given in Table 2.1. It follows that

Actual positive (P) Actual negative (N)
Predicted positive True positive (TP) False positive (FP)
Predicted negative False negative (FN) True negative (TN)

Table 2.1: A confusion matrix

P = TP + FN and N = TN + FP . Threshold based measures are formed through
linear or nonlinear combinations of the four numbers (i.e., TP, TN, FN and FP) from
the confusion matrix. Their values depend on the threshold value t, since one threshold
value determines one confusion matrix.

Accuracy

One typical threshold based metric is the overall prediction accuracy, or, equivalently,
the misclassification rate (i.e., 1− accuracy). The overall prediction accuracy is the
proportion of correctly classified cases in the data, and is given by

accuracy = TP + TN

P +N
.

It evaluates a model’s performance in predicting both classes correctly. It is an adequate
measure in class balanced classification scenarios, where both the positive cases and
the negative cases are equally important. However, when the data are highly class
imbalanced, the accuracy will mainly measure how well the model predicts the majority
class, as it outnumbers the minority class to a large extent, thus, the model may give
overly optimistic results. As an example, we consider a test set with 100 positive cases
and 900 negative cases, and the learner predicts all the cases to be negative. Although
the accuracy is 0.9, which seems pretty good, this model does not correctly predict rare
events at all. In this case, the accuracy metric is not effective, considering that our main
interest within fraud detection lies in correctly predicting the true positives. Therefore,
in class imbalanced classification scenarios, using accuracy as the only performance
measure may lead to suboptimal classification models.

CHAPTER 2. METHODS 19

TPR, TNR and FPR

The sensitivity and specificity evaluate respectively the prediction performance in
correctly detecting the positives and negatives. Actually, the sensitivity and specificity
are the accuracy calculated for the positive class and the negative class, respectively.
They are also called the true positive rate (TPR) and the true negative rate (TNR),
respectively, and are given by

sensitivity = true positive rate = TP

P
,

specificity = true negative rate = TN

N
.

The 1-specificity, i.e., the false positive rate (FPR) is also an often used metric. It
equals 1− TNR, which leads to

1− specificity = false positive rate = FP

N
.

Obviously, there exists an inversion relation between the TNR and the FPR. The TPR,
TNR and FPR are dependent on the threshold value t. Using the prediction rule (2.15),
as t decreases, more cases will likely be assigned to be positive, thus, resulting in lower
TNR, higher TPR and FPR. This can be seen in Figure 2.2. Although it is desirable to

Figure 2.2: The TPR, TNR and FPR vary over all thresholds.

have higher TPR and TNR simultaneously, it is usually infeasible. In order to get a
higher TPR, it needs to sacrifice some part of the TNR.

CHAPTER 2. METHODS 20

Gm and AGm

As there exists a trade-off relationship between the TPR and TNR, other evaluation
metrics, which monitor the TPR and TNR at the same time, may be used. We consider
the geometric mean and the adjusted geometric mean of the TPR and TNR, denoted
by Gm and AGm, respectively. The Gm is given by

Gm =
√
sensitivity · specificity =

√
TPR · TNR,

which gives equal weight to the changes in both the TPR and the TNR, so it should
produce a relatively balanced combination of the TPR and the TNR. The Gm suits
balanced class learning, where the TPR could be increased without worrying too much
about the decrease in the TNR, in other words, a certain amount of increase in the
FPR is acceptable. However, in fraud detection, a small amount of increase in the FPR
may correspond to a large increase in FP, which is not wanted, considering the cost of
looking into these actual non-fraudulent cases. Therefore, in imbalanced class learning,
the Gm may lead to suboptimal models (Batuwita and Palade, 2009).

The adjusted geometric mean (AGm) of the TPR and the TNR is proposed in Batuwita
and Palade (2009), and is given by

AGm =
(Gm+ TNR ∗ (1− τ)) /(2− τ), TPR > 0,

0, TPR = 0.

Here, τ is the ratio of class imbalance. Compared to the Gm, the AGm is more sensitive
towards the changes in the TNR than towards the changes in the TPR. Moreover, the
lower the value of τ is, which corresponds to a more severe class imbalance, the more
sensitive the AGm is towards the changes in the TNR. The AGm aims at solving the
downside of Gm used as the performance measure in imbalanced class learning. It suits
the type of imbalanced classification problems, where we want to increase the TPR as
much as possible, while keeping the decrease in the TNR to the minimum, that is, the
FPR should increase as little as possible (Batuwita and Palade, 2009).

Figure 2.3 shows the trade-off between the TPR and TNR in the left column, and
the corresponding Gm and AGm in the right column, for Model I (upper panel) and
Model II (lower panel), respectively. Model I and Model II are fitted to class balanced
and class imbalanced data with τ = 0.5 and τ = 0.1, respectively. In the lower panel,
the red and black dashed lines refer to the optimal threshold values for achieving the
highest Gm and AGm, The cutoff on the x-axis is the threshold. respectively.

The Gm and AGm plots of Model I are very similar, as one can see in the upper panel
of Figure 2.3. It is sufficient to choose the Gm as the performance measure in class

CHAPTER 2. METHODS 21

Figure 2.3: Upper panel: The TPR and TNR trade-off plot (left), and the corresponding
Gm and AGm plots (right) for Model I. Lower panel: The TPR and TNR trade-off
plot (left), and the corresponding Gm and AGm plots (right) for Model II.

CHAPTER 2. METHODS 22

balanced classification scenarios. Model I obtains the highest Gm at the threshold of
0.471, which is quite close to 0.5. For class imbalanced data, it indeed makes more
sense to choose the Agm over the Gm. Model II achieves the highest Gm and AGm at
thresholds of 0.114 and 0.154, respectively. Compared to the highest Gm, the highest
AGm chooses a slightly higher threshold, which gives a lower TPR and a higher TNR.

Precision

Another threshold based metric, the precision, which is also referred to as the positive
predictive value (PPV), assesses how precise a classifier is with its predictions. It is
given by

precision = TP

TP + FP
.

Intuitively, the precision measures how many of the predicted positive cases are truly
positive, and it reflects the exactness of the prediction on the minority class.

The precision provides insight into how many cases are incorrectly assigned to the
positive class through FP in the denominator. In fraud detection, it is important to
have control over the size of FP. A rather big FP compared to TP gives a small precision
value. If FP is much larger than TP, the cost in investigating the false alarms may
exceed the gain from correctly detecting the true fraudulent cases, let alone the loss
in not detecting some of the actual fraudulent cases. A big FP is not desired in fraud
detection.

By checking the formula of the precision, it is clear that it is sensitive to class imbalance
in the data. For highly class imbalanced data, even a small percentage change in the
FPR corresponds to rather large changes in FP, and will lead to a distinctive change in
the precision. By comparing FP to TP instead of N (i.e., the number of true negatives),
the precision captures the effect of the large number of negative cases on the classifier’s
performance (Davis and Goadrich, 2006). Therefore, the precision could be a better
metric for class imbalanced data than, for instance, the FPR (i.e., 1-TNR) and the
accuracy. Both the FPR and the accuracy have N in the denominator, thus, the effect
of large changes in FP would not obviously be observed in the FPR and the accuracy.

2.6.2 Ranking metrics
Ranking metrics measure how well a classifier orders the true positives over the true
negatives based on the predicted class membership probability (Berrar, 2019). Unlike
threshold based metrics, ranking metrics do not require a predefined threshold value.
Before studying the behavior of such scalar measures, i.e., the AUC and the AUCPR, we
start with the corresponding graphical tools, i.e., the receiver operating characteristics

CHAPTER 2. METHODS 23

curve (Fawcett, 2006; Swets, 1988) and the precision-recall curve (Davis and Goadrich,
2006; He and Edwardo A, 2009). The recall refers to the sensitivity, i.e., the true
positive rate (TPR).

The receiver operating characteristics curve and the AUC

The ROC curve is the sensitivity (TPR) plotted against the 1-specificity (FPR) at all
thresholds. Every point on the curve corresponds to a confusion matrix, defined by a
threshold value. It is a useful visual tool for plotting the performance of classifiers. The
more the ROC curve lies to the top left corner of the graph, the better predictive power
the corresponding model has. Given the ROC curves of two classifiers, if the ROC
curve of classifier I lies above or on the ROC curve of classifier II at every threshold, we
say that classifier I dominates classifier II with better ranking performance. But if their
ROC curves are intersected at some point, it is not easy to tell by eye which classifier
is better on average. So it is generally impractical to use ROC plots for ranking the
models from best to worst. Scalar metrics are more appealing.

The area under the ROC curve (AUC) is a summary measure acquired from the ROC
curve. It tells us how good a classifier is in distinguishing one class from the other. It
is shown that calculating the AUC is equivalent to computing the probability that a
randomly chosen true positive case has a higher assigned score than a randomly chosen
true negative case (Bradley, 1997; Burez and Van den Poel, 2009; Hanley and McNeil,
1982). The AUC value reveals the ranking ability of a model. A random guessing
classifier has AUC = 0.5, and a perfect classifier has AUC = 1. Given that multiple
classifiers are applied to the same test set, the larger the AUC value, the better the
overall ranking ability of the corresponding model.

The precision-recall curve and the AUCPR

The precision-recall (PR) curve is constructed similarly as the ROC curve, but with the
precision on the y-axis and the recall (TPR) on the x-axis. Unlike the ROC curve, the
PR curve should lie close to the top right corner of the graph. A classifier’s dominance
is consistent in both ROC plots and PR plots. In other words, for a fixed number of
positive and negative cases, a classifier’s curve dominates other classifiers’ curves in
ROC space if and only if its curve dominates in PR space (Davis and Goadrich, 2006).
However, a model that optimizes the area under the ROC curve is not guaranteed to
optimize the area under the PR curve (Davis and Goadrich, 2006).

The area under the precision-recall curve (AUCPR), which is also referred to as the
average precision, provides a summary metric for a classifier’s performance. Both
the precision and the recall only deal with the positive class. Therefore, the AUCPR

CHAPTER 2. METHODS 24

focuses mainly on the positive class. The higher the AUCPR value, the better the
predictive performance on the minority class. However, unlike the AUC, the AUCPR
is not guaranteed to be in [0, 1], since there might be unreachable areas in PR space,
depending on the ratio of class imbalance (Boyd et al., 2012). In PR space, a random
guessing classifier is expected to have an AUCPR equal to the ratio τ of class imbalance
(Saito and Rehmsmeier, 2015). For class balanced data, the baseline value of the
AUCPR is 0.5. Hence, AUCPR = 0.35 indicates that the classifier performs much worse
than a random guessing classifier, whereas if the proportion of positive cases is only
0.01 in the data, AUCPR = 0.35 does not necessarily indicate bad performance.

Comparison and contrast

The ROC curves and the AUC are not very sensitive to the changes in class imbalance,
whereas the PR curves and the AUCPR may vary drastically as the ratio of class
imbalance alters. This can been seen in Figure 2.4, where P and N are respectively the
number of true positives and the number of true negatives in the test set. A learning
method (i.e., the ridge logistic regression method) is respectively fitted to class balanced
data with τ = 0.5, and class imbalanced data with τ = 0.1, thus, resulting in Model I
(upper panel) and Model II (lower panel). They produce similar AUC values which are
0.894 and 0.852. The difference is only 0.042, which is insignificant. However, there are
distinctive differences in terms of the PR curves and the AUCPR in the right column.
Model I and Model II produce respectively the AUCPR values of 0.904 and 0.606.
The AUCPR difference (0.298) is much larger than the AUC difference (0.042). The
AUCPR, rather than the AUC, manages to distinctly reveal the fact that the learning
method performs much better with class balanced data than with class imbalanced
data.

The ROC curves and the AUC may give an overly optimistic view of a classifier’s
performance for tasks with highly class imbalanced data (Davis and Goadrich, 2006).
The 1-specificity (FPR) on the horizontal line in ROC space, fails to reveal a decent
change in FP, since the denominator N of FPR is often rather big for class imbalanced
data with a majority of negatives. Consequently, over a wide range of thresholds
decreasing from 1 towards 0, the FPR is almost unchanged or increases very slowly
while the TPR increases, resulting in a nice ROC curve and a high AUC, despite many
negatives being falsely classified as positives. The almost unchanged ROC curves and
AUC values fail to capture the poor performance of the classifier for class imbalanced
data. Using the two models from Figure 2.4, Figure 2.5presents how the TPRs and
FPRs of Model I (upper panel) and Model II (lower panel) vary over all thresholds,
respectively. The cutoff on the x-axis is the threshold. The bottom right plot in Figure
2.5 shows that the FPR of Model II nearly stays close to zero for a large range of
thresholds from 1 to 0.2.

CHAPTER 2. METHODS 25

Figure 2.4: Upper panel: ROC and PR cuves for Model I. Lower panel: ROC and PR
cuves for Model II.

CHAPTER 2. METHODS 26

Figure 2.5: Upper panel: The TPR and FPR at all thresholds for Model I. Lower panel:
The TPR and FPR for Model II.

CHAPTER 2. METHODS 27

The AUC, rather than the AUCPR, is more often used in comparing the performance of
multiple classifiers. It is, however, insufficient to use only the AUC in class imbalanced
learning scenarios, unless we do not take the misclassification cost of a large FP into
consideration, and the objective of prediction is just to identify all the positive cases
without worrying about the exactness of predictions. Both the positive class and the
negative class should matter equally when using the AUC, which usually is not the case
in fraud detection.

In summary, the PR curves and the AUCPR should be preferred over the ROC curves
and the AUC, for tasks with severe class imbalance. The AUCPR, rather than the AUC,
can effectively distinguish between a good and a very good model. Also, we usually
care more about detecting the rare cases than the prevalent cases in fraud detection.
The AUCPR measures the average precision, which is more informative than the AUC
in accurately reflecting a classifier’s prediction performance on the minority class.

2.6.3 Probabilistic metrics
Ranking metrics are more concerned with the relative ordering of cases, and focus on
learning to distinguish between classes (Caruana, 2000). As a probabilistic metric,
the Brier score is rather a measure of sharpness of a prediction model. The sharpness
means specifically that the predicted event probabilities should be close to 1 for the
true positives and to 0 for the true negatives, which is unnecessary for getting a high
value of the AUC. A sharp prediction model means that it does not only distinguish
well between the negative class and positive class, but also is quite confident about the
predictions.

The Brier score (Brier, 1950) is an estimate of the true mean squared prediction error,
and is given by

BS = 1
n

n∑
i=1

(p̂(xi)− yi)2,

where n is the number of observations in the test set, and p̂(xi) is the predicted event
probability for the ith observation.

We say that the p̂(x) is sharp, if it is a small value close to 0 for a true negative case, or
a big value close to 1 for a true positive case. The more confident the predicted event
probabilities are, the smaller the Brier score is. A small Brier score indicates that the
prediction model is sharp.

A random guessing classifier assigns a p̂(x) of 0.5 to every observation, resulting in a
Brier score of 0.25. A Brier score of 0 shows perfect sharpness. Meanwhile, a Brier

CHAPTER 2. METHODS 28

score of 1 means perfect non-sharpness, where the model assigns p̂(x) = 1 to all the
true negatives and p̂(x) = 0 to all the true positives. However, these two situations
will never happen in practice. But hopefully, the p̂(x) is rather close to 0 for a true
negative case, or close to 1 for a true positive case. In that case, a rather small Brier
score will be obtained, and the prediction model is then sharp.

However, for class imbalanced data with a majority of negative cases, a very small Brier
score does not necessarily mean that a classifier is sharp and distinguishes well between
the negative cases and the positive cases. The Brier score has limitations when applied
to very rare events forecasts (Benedetti, 2010). Assume, for instance, that a classifier
gives p̂(x) ≈ 0 to every observation in a test set of 990 negative cases and 10 positive
cases. All the p̂(x)s are approximately 0 for the 990 true negatives, which is acceptable.
The Brier score is only 0.01, which is very small. This classifier seems to show good
performance in terms of the Brier score, but all the true positives are assigned very
small (close to 0) p̂(x)s. In this case, we cannot say that the prediction model is sharp,
even though the Brier score is rather small. The Brier score behaves like the accuracy
and the AUC, that they are biased towards the majority class when dealing with heavily
class imbalanced data, and may give overly optimistic prediction results, despite the
fact that they are useful measures in class balanced learning scenarios, where both the
positive class and the negative class are equally important.

To further examine how much the Brier score of each class contributes to the total Brier
score, we give respectively the Brier score bs1 of the positive class and the Brier score
bs0 of the negative class by

bs1 = 1
n1

n1∑
i=1

(p̂(xi)− 1)2,

and
bs0 = 1

n0

n0∑
i=1

(p̂(xi))2.

Here, n1 and n0 denote respectively the number of the true positives and the number
of the true negatives.

Chapter 3

Simulation study

This chapter is devoted to a simulation study, where we generate synthetic data sets and
use the penalized logistic regression methods for fraud detection. Different measures of
predictive performance are then explored, in particular, in the search for the optimal
values of the tuning parameters.

3.1 Data simulation methods
The simulated data should represent the important features of the real data within
fraud detection, that they are class imbalanced and high-dimensional. This section
introduces the statistical methods and algorithms used to generate class imbalanced
and high-dimensional data.

3.1.1 Generating covariates from copulas
In fraud detection, the data one encounters typically consist of a mixture of discrete
and continuous covariates. Besides, there exists dependence between certain covariates.
To tackle a situation like this, we need to find a way to generate such data, and
this may be done by using a copula. The Gaussian copula is used in this thesis to
simulate dependent covariates with arbitrary marginal distributions, which is achieved
by applying the inverse transformation method. The Gaussian copula with a parameter
matrix ρ describes the dependence structure between the covariates.

Copulas

A multivariate copula CU1,...,Up(u1, . . . , up) = P (U1 ≤ u1, . . . , Up ≤ up) is a joint
distribution function for a uniform and dependent vector (U1, . . . , Up). The variables
U1, . . . , Up follow the uniform distribution on the interval [0, 1], and they can be designed

29

CHAPTER 3. SIMULATION STUDY 30

to be dependent on each other through their joint function CU1,...,Up(u1, . . . , up). For that
reason, copulas can be used to describe and to model the dependence structure of random
variables. Sklar’s theorem(1959) provides the theoretical foundation for the application
of copulas. It states basically that any multivariate joint distribution function of a set
of random variables might be expressed in terms of its univariate marginal distributions
and a copula C. Suppose that p continuous random variables X1, . . . , Xp have a joint
cumulative distribution function FX1,...,Xp(x1, . . . , xp) = P (X1 ≤ x1, . . . , Xp ≤ xp), and
their marginal cumulative distribution functions are given by FX1(x1), . . . , FXp(xp). As
a result of the probability integral transform, the marginal cumulative distribution
functions FXj

(Xj), for j = 1, . . . , p, are uniformly distributed on the interval [0, 1]. It
follows from the Sklar’s theorem(1959) that

FX1,...,Xp(x1, . . . , xp) = CU1,...,Up(u1, . . . , up),

where u1 = FX1(x1), . . . , up = FXp(xp). The copula CU1,...,Up(u1, . . . , up) is a multivariate
joint distribution function of variables U1, . . . , Up and is unique. It contains all
information about the dependence structure between random variables X1, . . . , Xp.
Combined with the marginal distributions FX1 , . . . , FXp , it gives the joint distribution
FX1,...,Xp(x1, . . . , xp). Sklar’s theorem is also valid when at least one of the Xis is discrete,
but FXj

(Xj) is no longer uniform and the copula is not unique.

The Gaussian copula

The Gaussian copula, which allows for an elliptical dependence structure, is chosen for
simulating correlated marginals of covariates. Suppose that Φρ(z1, . . . , zp) is the joint
cumulative distribution function of a multivariate normal distribution over Rp, with a
mean vector 0 and a covariance matrix equal to a correlation matrix ρ. The Gaussian
copula with a parameter matrix ρ is givne by

CGauss
U1,...,Up;ρ(u1, . . . , up) = Φρ(Φ−1(u1), . . . ,Φ−1(u1)),

where ρ is a correlation matrix, and Φ−1(·) is the inverse cumulative distribution
function of the standard univariate normal distribution. A possible way for generating
samples u1, . . . , up from the Gaussian copula is to first sample z1, . . . , zp from a p-
dimensional multivariate normal distribution with means of 0, unit variances and
a correlation matrix ρ. Then we apply the cumulative distribution function of the
standard normal distribution Φ(·) to these samples z1, . . . , zp, and obtain uniform
values u1 = Φ(z1), . . . , up = Φ(zp). The joint distribution function of the corresponding
variables U1, . . . , Up is the Gaussian copula.

CHAPTER 3. SIMULATION STUDY 31

Sampling by inversion

Since fraud data usually have both continuous and discrete covariates, and they generally
follow different marginal distributions, we use the inverse transform method to generate
such data.

Suppose that a continuous variable X has a distribution function FX(x) which is
strictly increasing with inverse x = F−1(u). Then X = F−1(U), where U is uniformly
distributed on the interval [0, 1], and it follows the distribution FX(x). Consequently,
we have a general sampling technique for generating continuous covariates. That is
to say, in the setting of p dimensions, we may apply the inverse distribution functions
F−1

1 (·), . . . , F−1
p (·) to the uniform variables U1, . . . , Up, so as to generate variables

X1, . . . , Xp that follow respectively the desired marginal distributions FX1 , . . . , FXp .

In this simulation study, we consider only the Bernoulli distribution for discrete
covariates. Suppose that we want to generate a discrete variable X which follows
the Bernoulli distribution with probability of success pB(i.e., X ∼ Bernoulli(pB)),
namely, P (X = 1) = pB and P (X = 0) = 1− pB, for some pB ∈ (0, 1). Then a sample
x from this distribution is obtained as: let u be a randomly generated value of the
uniformly distributed variable U on the interval [0, 1], then x = 1, if u > 1− pB, and
x = 0, otherwise.

Through the Gaussian copula, the whole procedure for generating values of covariates
for one observation is given in Algorithm 3.1.1.

Algorithm 3.1.1 Sampling the covariates from the Gaussian copula
1: Draw z = (z1, . . . , zp) ∼ N(0p,ρ) . ρ is a p× p correlation matrix.
2: Generate uj = Φ(zj), j = 1, . . . , p
3: for j = 1, . . . , p do
4: if Xj ∼ Bernoulli(pB) then

5: xj =
1, uj > 1− pB

0, otherwise
6: else
7: xj = F−1

j (uj)
8: end if
9: end for

10: Return: x1, . . . , xp

CHAPTER 3. SIMULATION STUDY 32

The correlation matrix ρ

The correlation matrix ρ of the underlying multivariate normal distribution Φρ(·) needs
to be defined, before sampling the covariates from the Gaussian copula as presented
in Algorithm 3.1.1. After applying the inverse transform method to uniform values
u1, . . . , up, the correlation matrix for the finally generated samples x1, . . . , xp will not
end up the same as the correlation matrix ρ of the underlying function Φρ(·). However,
the Gaussian copula function with parameter matrix ρ contains all the dependence
information between random variables, independently of their marginal distributions.
Hence, the dependence structure among random variables, which is represented by
the copula function, is not altered. For p covariates, we simply sample a valid p × p
correlation matrix ρ randomly, using the R function randcorr.

3.1.2 Generating a data set
To simulate class imbalanced data, we may directly work with the proportion τ of
fraudulent cases in the data, in other words, we prefix and adjust the value of τ to
achieve the desired level of class imbalance in the data. A possible way of sampling
such class imbalanced data through the prefixed τ is inspired by Bayes’ theorem for
classification.

Bayes’ theorem

According to Bayes’ theorem, the event probability P (Y = 1|X) may be given by

P (Y = 1|X) = P (X|Y = 1)τ
P (X)

= P (X|Y = 1)τ
P (X|Y = 1)τ + P (X|Y = 0)(1− τ) ,

(3.1)

where τ = P (Y = 1) and 1− τ = P (Y = 0). A rather small value of τ , for instance,
τ = 0.01, means that the data are highly class imbalanced.

This inspires an adequate way of sampling class imbalanced data. With a prefixed
value of τ , we could generate the outcomes for both the positive and the negative
class, separately. Meanwhile, their covariates may be generated from the distributions
P (X|Y = 1) and P (X|Y = 0), respectively, as explained below. Consequently, the true
event probabilities of the simulated data can be computed using the Equation (3.1).

Data generation design

In what follows, we outline in detail the whole procedure of generating class imbalanced
data. Suppose we want to generate an n× p data set with a proportion τ of positive

CHAPTER 3. SIMULATION STUDY 33

cases. For i = 1, . . . , n, let the outcome Yi have a Bernoulli distribution with probability
of success τ , i.e., Yi ∼ Bernoulli(τ). As a result, there will be approximately n · τ of
positive cases and n · (1− τ) of negative cases. It is possible to simulate data sets with
different ratios of class imbalance with τ ≤ 0.2, since fraud data are usually very class
imbalanced.

In addition, the correlation matrices for both classes need to be determined before the
sampling of the covariates. The easiest way is to first randomly generate a positive
definite correlation matrix for each class, and then set only the correlations between the
significant covariates to be non-zero. Only 10% of the covariates are set to be significant
or truly influential for the outcome (see Subsection 3.2.2). We generate data from a
sparse model in the sense that only a few of the covariates affect the outcome. As a
result, it is easier to obtain resulting correlation matrices that are positive definite. We
denote the correlation matrix of the negative class by ρ0 and the correlation matrix of
the positive class by ρ1. We use different correlation matrices ρ0 and ρ1, in order that
the distributions of covariates in the two classes, i.e., P (X|Y = 1) and P (X|Y = 0),
do not overlap too much. Otherwise, it might be too challenging for the classifier to
separate between the positive and negative class.

If the generated outcome y = 0, that is, the case is negative, we sample the covariate
values x = (x1, . . . , xp) from the Gaussian copula with the parameter matrix ρ0,
following the procedure in Algorithm 3.1.1. However, if the generated outcome y = 1,
we sample the covariate values x = (x1, . . . , xp) from the Gaussian copula with the
parameter matrix ρ1, following the procedure in Algorithm 3.1.1 as well.

Further, the marginal distribution of each covariate Xj is of the same distribution family,
e.g., the normal distribution, in both classes, for j = 1, . . . , p. The covariates have the
same parameter values of marginals in both classes, except for the truly influential
covariates, that have different parameter values of marginals in the two classes. While
the parameter values of marginals in the negative class are kept fixed, we adjust the
parameter values for some covariates’ marginals in the positive class. The modification
should be moderate, in order that the classifier’s prediction performance is hopefully
just good enough for class balanced data. Otherwise, too much, or too little change in
the parameters of positives’ marginals will make it too easy, or too demanding for the
classifiers to detect well the positives well with highly class imbalanced data. Either
case will make the whole simulation study lose meaning and usefulness for real fraud
detection problems. The details about the marginal distributions of both classes are
presented in Section 3.2.1.

Lastly, an n× p data set is obtained by putting together the positive and negative cases
with corresponding covariate values. The whole procedure for generating an n× p data

CHAPTER 3. SIMULATION STUDY 34

set with a given ratio τ of class imbalance is given in Algorithm 3.1.2.

Algorithm 3.1.2 Generating a data set with a given ratio of class imbalance
Input: n, p, τ,ρ0,ρ1 . τ is the prefixed ratio of class imbalance.

1: for i = 1, . . . , n do
2: Draw yi ∼ Bernoulli(τ)
3: if yi = 0 then
4: Draw xi from F (X|Y = 0) #Algorithm 3.1.1
5: else if yi = 1 then
6: Draw xi from F (X|Y = 1) #Algorithm 3.1.1
7: end if
8: end for
9: Return: (yi,xi), i = 1, . . . , n

As we can see, at step 4 and step 6, X here is the vector of all p covariates with
X = (X1, . . . , Xp), and F (·|Y = y) is the copula with correlation matrix ρy and
marginal distributions F (Xj|Y = y), for y = 0, 1, and j = 1, . . . , p.

3.2 Simulation design
This section presents the specific settings which the simulations are run with, including
the information about experiment design, specified values of the parameters of
marginals in each class, the implemented cross-validation method, the implementation of
regularization methods in R, model optimization criteria and supplementary evaluation
metrics.

3.2.1 Experiment design
Data sets with various ratios of class imbalance and sample sizes are simulated, in order
to explore different simulation settings with respect to the objective of the simulation
study. To manipulate the level of class imbalance, we use the method discussed in
Subsection 3.1.2. The ratio τ of class imbalance is set to be 0.01, 0.05, 0.1, or 0.2. Each
number represents a rather high level of class imbalance. The number p of covariates in
all the data sets is set to 1000. Data sets with different dimensionalities will be obtained
by altering the sample size n, which is set to be 100, 800, 1000, or 3000. The ratio n

p
is

then given by 0.1, 0.8, 1 and 3, respectively. As a result, it leads to 16 different types
of training sets in total.

Since, in the simulation study, it is possible to generate an independent test set separately
from the training set, it is practical to have a big test set with many observations, in

CHAPTER 3. SIMULATION STUDY 35

order that the test set is representative of the underlying data, hence, the performance
of classifiers evaluated on the test set will not be affected by data rarity. For each
n × 1000 training set with a ratio τ of class imbalance, an independent 3000 × 1000
test set is sampled with the same ratio of class imbalance. Every learning algorithm is
applied to 100 pairs of such train-test data sets. The results obtained over all the test
sets are averaged in the end. The average results of 100 simulations are reported in
Section 3.3.

3.2.2 Model for simulated data
Before generating a data set with the method presented in Subsection 3.1.2, the
correlation matrices for both classes and the marginal distributions F (Xj|Y = y), for
y = 0, 1, and j = 1, . . . , p, should be specified. We choose marginal distributions
for the covariates, including the normal distribution, the gamma distribution, and
two Bernoulli distributions with different probabilities of success. Therefore, in both
classes, the covariate Xj comes from a normal distribution, for j = 1, . . . , 300, a gamma
distribution, for j = 301, . . . , 600, a Bernoulli distribution, for j = 601, . . . , 800, and
another Bernoulli distribution, for j = 801, . . . , 1000.

Only the first 10% of covariates within each distribution family are considered to be truly
influential for the outcome. Therefore, only correlations between these relevant covariates
are set to be non-zero, and it is done on two randomly generated positive definite
correlation matrices. The resulting correlation matrices will be used for generating all
the data sets in the simulation study.

For simplicity, the marginal distributions of the negative class are given by

Xj|Y = 0 ∼ N(0, 1), for j = 1, . . . , 300,

Xj|Y = 0 ∼ Gamma(2, 2), for j = 301, . . . , 600, (*)
Xj|Y = 0 ∼ Bernoulli(0.1), for j = 601, . . . , 800,

and Xj|Y = 0 ∼ Bernoulli(0.5), for j = 801, . . . , 1000.
Each covariate comes from the same distribution family in both classes. For the first 10%
of covariates within each distribution family, different values of parameters are used for
the positive class. Accordingly, the remaining 90% of covariates within each distribution
family of the positive class, should have exactly the same marginal distributions as in
the negative class. This ensures that only the first 10% of the covariates within each
distribution family have an effect on the outcome. The marginal distributions of the
positive class are given by

Xj|Y = 1 ∼ N(0.6, 1.5), for j = 1, . . . , 30,

CHAPTER 3. SIMULATION STUDY 36

Xj|Y = 1 ∼ Gamma(2.05, 2.01), for j = 301, . . . , 330,
Xj|Y = 1 ∼ Bernoulli(0.2), for j = 601, . . . , 620, (**)
Xj|Y = 1 ∼ Bernoulli(0.4), for j = 801, . . . , 820,

and for the remaining indices, it is as in (*).

The procedure for deciding the above parameters is illustrated as below. We first
generate a balanced 3000× 1000 training set with approximately half positive cases and
half negative cases, where the marginal distributions of the negative class are prefixed
as in (*). The positive cases are simulated with freely chosen parameter values of the
first 10% of covariates within each distribution family. Then, we fit the ridge logistic
regression with respect to the AUC in ten-fold cross-validation of the penalty parameter
λ. At last, the fitted model inserted with the optimal value of λopt is evaluated on
an independent balanced 3000x1000 test set in terms of the AUC. This procedure
is repeated 10 times, and all the obtained AUC values are averaged into one final
result. This final AUC should be just good enough, as explained in Section 3.1.2.
The Hosmer Jr et al. (2013) gives the general rules for determining whether an AUC
describes good discrimination. After testing with different parameter values of the first
10% of covariates within each distribution family of the positive class, we achieved
an outstanding discrimination with an AUC slightly larger than 0.9, by setting the
marginal distributions for the positive class as in (**).

3.2.3 Implemented cross-validation
Stratified cross-validation is used in the simulation study, mainly as a consequence
of class imbalance. It is challenging to carry out stratified ten-fold (i.e., k = 10)
cross-validation on all 16 types of training sets, as presented in Section 3.2.1, since
some types of training sets may have less than ten positives. Although the expected
number of positives in the training set, i.e., τ · n, equals ten, it is still possible that
there are less than ten positives in the actual sampled training set, which may make
the training very difficult. For this reason, stratified ten-fold cross-validation is applied
only when the expected number of positives in a training set is larger than ten. When
the expected number of positives in a training set is larger than five and less than ten,
stratified five-fold (i.e., k = 5) cross-validation is used. For those training sets with no
more than five expected number of positives, no experiments are conducted. Therefore,
it leaves us 14 types of simulated training sets, since it can very difficult to fit models
on a 100× 1000 training set with τ = 0.01, or 0.05.

CHAPTER 3. SIMULATION STUDY 37

3.2.4 The logistic regression without penalty
Logistic regression is often plagued with degeneracies when p > n, and exhibits wild
behavior even when n is close to p (Hastie et al., 2021). When handling high-dimensional
data, it is often easier for the logistic regression model to find a possible set of parameters,
such that the positive and negative class in the training set may be perfectly separated.
This full model, which is fitted without constraints on the parameters, has a tendency
to overfit the data, and it may not generalize well. But still, we fit the logistic regression
model by the R function glm, even though the model may not converge occasionally,
and report its performance for n = 3000.

3.2.5 Implementation of the regularization methods
The ridge and lasso penalty

The R function cv.glmnet is used for performing cross-validation on the training
set, and it automatically produces the optimal value of the shrinkage parameter λ for
penalized logistic regression models. With argument alpha = 0, the ridge regression is
called, while the lasso regression is called for argument alpha = 1. As for the argument
foldid, it may take the user-supplied folds (Hastie et al., 2021). Here, the labels are
generated with stratified cross-validation in Algorithm 2.1.1, since the simulated data
are highly class imbalanced. The default value of argument nlambda is 100 in the
R function cv.glmnet, such that 100 λ values are automatically constructed by the
program, and the model fit is computed for the lambda sequence (Hastie et al., 2021).

The λ value that gives the minimum mean cross-validated loss is chosen, for both the
ridge and the lasso regression. Since selecting the most parsimonious model with low
error is not the goal, we do not consider the value of λ obtained from one stand error
rule, where the most parsimonious or regularized model within one standard error of
the minimum is picked (Hastie et al., 2009). Besides, with high-dimensional data, the
one standard error rule may suit the lasso and elastic net better where some parameters
may be actually shrunk to zero. Using the one standard error rule means that the
interpretability is preferred over the predictive ability of a model, which is not the case
in this thesis. Here, we are interested in detecting the rare cases.

The elastic net penalty

For the elastic net penalty, a grid of values of the shrinkage parameters α and λ, are
screened, in order to find the optimal regularization path, namely, the combination of
values of α and λ that produces the minimum average cross-validated loss. We use a
sequence of α values, i.e., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9. For each α value, an
automatically constructed sequence of 100 λ values is used for computing the model fit.

CHAPTER 3. SIMULATION STUDY 38

3.2.6 Optimality measures used in the cross-validation of the
penalty parameters

The classification models should be trained under an appropriate loss function, or
an appropriate measure of prediction performance (Daskalaki et al., 2006). In model
selection, the class imbalanced training set is divided further into training and validation
folds, by stratified cross-validation (see Subsection 2.5.2), and a certain performance
measure is incorporated into the penalized logistic regression model when searching
for the optimal values of penalty parameters. A model fitted to the training folds is
evaluated on the validation fold with respect to this performance measure.

The deviance and the AUC are available as optimality criteria for the cross-validation by
specifying type.measure in the R function cv.glmnet. To minimize the misclassification
error is to maximize the overall prediction accuracy, which is not considered in the
simulation study. It is due to the fact that the overall prediction accuracy is biased
towards the majority class, and does not distinguish between the numbers of correctly
detected cases of different classes (Galar et al., 2012), let alone it fails the main interest
of correctly detecting the fraudulent cases within fraud detection. Overall, it may
result in inaccurate conclusions, and it is not an adequate measure for class imbalanced
data. Since the performance measure AUCPR is not available in built-in optimality
measures of the R function cv.glmnet, it is necessary to build our own function for
using AUCPR as the optimality measure for cross-validation.

3.2.7 More evaluation metrics
In the experiments, the logistic regression model with each of the ridge, lasso and
elastic net penalties are optimized with respect to each of the three types of optimality
measures, i.e., the deviance, the AUC and the AUCPR, respectively. Hence, it leads to
nine models for each simulated training set. The prediction performance of these fitted
models is evaluated and compared using the following evaluation metrics: the AUCPR,
the AUC, the maximal AGm with corresponding TPR and TNR, the maximal Gm
with corresponding TPR and TNR, the Brier score, the bias, the Rmse and the actual
ranking score.

All the mentioned evaluation metrics are discussed in Section 2.6, except the last three
measures, which involve the true event probabilities (i.e., p(x)s), which are unknown in
real applications. The true event probabilities can be computed for simulated data sets,
as briefly explained in Subsection 3.1.2.

CHAPTER 3. SIMULATION STUDY 39

Bias and Rmse

The bias and Rmse are respectively given by

Bias = 1
n

n∑
i=1

(p̂(xi)− p(xi)) ,

and

Rmse =
√√√√ 1
n

n∑
i=1

(p̂(xi)− p(xi))2.

Both the bias and the Rmse measure the difference between the predicted event
probabilities and the true event probabilities. Unlike the Rmse, the bias is not always
non-negative. The sign of the bias may be negative or positive, meaning that the
model systematically underestimates, or overestimates the true event probabilities,
respectively.

The Rmse is a measure of the spread, which is always non-negative. The prediction
error in an observation is the difference between its predicted event probability and
its true event probability. The Rmse is capable of reflecting some large errors, since it
gives more weight to errors with large absolute values rather than errors with small
absolute values. This can also be seen as a weakness, as in situations where most of
the errors are rather small, a few large errors (e.g., outliers) can increase RMSE a lot.
Nevertheless, the Rmse has a decent discrimination ability among several models, and
it usually reveals well the difference between the performance of models (Chai and
Draxler, 2014).

To further examine how much a model systematically underestimates or overestimates
the predicted event probabilities in each class, we give respectively bias b1 of the positive
class and bias b0 of the negative class by

b1 = 1
n1

n1∑
i=1

(p̂(xi)− p(xi)) ,

and
b0 = 1

n0

n0∑
i=1

(p̂(xi)− p(xi)) .

Here, n1 and n0 denote respectively the number of the true positives and the number
of the true negatives.

CHAPTER 3. SIMULATION STUDY 40

The actual ranking ability

The AUC examines a model’s ranking ability in giving higher predicted scores to the
true positives over the true negatives, so it measures a model’s overall ranking ability
over all cases. In fraud detection, it is practical and tempting to investigate only a few
cases that are most likely to be fraudulent according to the predicted event probabilities.
Otherwise, it can be too time consuming and expensive, or most likely impossible to
undertake thorough investigations over all cases. To reflect that, another measure that
evaluates the model’s actual ranking ability among a few top-ranked cases, is also
proposed.

We investigate the actual ranking ability by looking into a few top-ranked cases according
to the predicted event probabilities, of which we check how many are among the top-
ranked cases according to the true event probabilities. Here, let n1 be the number of
the true positives in the test set of 3000 observations, and only the top n1 cases with
the highest predicted event probabilities are examined. The actual ranking score is
given by

actual ranking score =
n1∑
i=1
1I

{
Îi
}
, (3.2)

where the indicator function

1I

{
Îi
}

=
1, if Îi ∈ I,

0, otherwise.

Here, Î =
{
i : p̂(xi) ≥ P̂(n1)

}
, and I =

{
i : p(xi) ≥ P(n1)

}
. The Îi is the ith element

in set Î. The P̂(n1) and P(n1) denote respectively the n1th highest predicted event
probability and the n1th highest true event probability. The set Î consists of the
indices of the cases that are among the top n1 cases with the highest predicted event
probabilities. The set I consists of the indices of the cases that are among the top n1
cases with the highest true event probabilities.

For any of the top-ranked n1 cases according to the predicted event probabilities, we
do not consider whether or not it has a predicted event probability that is close to its
true event probability, as long as it is among the top-ranked n1 cases according to the
true event probabilities. And we do not consider the order among those cases either.
The actual ranking score investigates the proportion of true positives among the cases
that are most likely to be positive according to the predicted event probabilities.

CHAPTER 3. SIMULATION STUDY 41

3.2.8 Parallel computing
The stratified cross-validation for methods optimized with respect to the deviance and
AUC, are run in parallel, since the R function cv.glmnet supports parallel computing,
which can substantially speed up the computation process, especially for large-scale
problems (Hastie et al., 2021). It does save computation time of the simulation study
to some degree. Unfortunately, no parallel computing is performed in stratified cross-
validation for the regularization models which are optimized with respect to the AUCPR.
Therefore, compared to other optimality measures, it takes longer to find the optimal
values of the tuning parameters that give the highest cross-validated AUCPR.

3.3 Results
This section presents the experimental results of the simulation study. In every table
that is shown in this section, the deviance, the AUC and the AUCPR are measures
used in cross-validation of the penalty parameters. The ratio τ of class imbalance is
the proportion of positive samples. The sample size n is the number of observations
in the training set. Elnet stands for the elastic net method. The standard logistic
regression model, without any constraints imposed on the coefficients, is denoted by
LR. Its results are reported for n = 3000, which is merely used as a reference, and is
not included in finding out the highest value in each simulation setting.

3.3.1 Ranking ability
AUCPR or AUC

Both the AUC and the AUCPR can be used to evaluate a model’s ranking ability, but
they may rank the models in different orders, and give different results of the same
model in the same simulation setting, especially for class imbalanced data. The purpose
here is to decide whether they are appropriate measures of the overall ranking ability,
for model selection in the setting of fraud detection.

Table 3.1 presents the average AUCPR (upper) and AUC (bottom), obtained with LR
and three penalized logistic regression models optimized with respect to each of the
three model optimization criteria, in each of the fourteen simulation settings. The
highest value in each simulation setting is printed in bold. Further, we denote, for
instance, the lasso regression optimized with respect to the AUCPR by lassoAUCPR.

The overall ranking ability of every regularization method, evaluated either by the
AUCPR or the AUC, is improved when either the proportion τ of positives, or the
sample size n is increased, that is, when there is less class imbalance in the data, or

CHAPTER 3. SIMULATION STUDY 42

Table 3.1: Average AUCPR (upper) and average AUC (bottom). The highest value in
each simulation setting is printed in bold. If a model has a score with an asterisk, it
performs worse than elastic netAUCPR at a significance level of 0.05.

Ridge Lasso Elnet
τ n LR Deviance AUC AUCPR Deviance AUC AUCPR Deviance AUC AUCPR

0.01 800 - 0.08∗ 0.08∗ 0.08∗ 0.12 0.12 0.12 0.15 0.15 0.14
1000 - 0.10∗ 0.10∗ 0.10∗ 0.14 0.15 0.14 0.16 0.14 0.16
3000 0.11 0.28∗ 0.26∗ 0.29∗ 0.40∗ 0.38∗ 0.40∗ 0.42 0.43 0.44

0.05 800 - 0.54∗ 0.55∗ 0.55∗ 0.62∗ 0.62∗ 0.61∗ 0.65∗ 0.67 0.69
1000 - 0.60∗ 0.60∗ 0.60∗ 0.67∗ 0.67∗ 0.66∗ 0.68∗ 0.70∗ 0.73
3000 0.48 0.73∗ 0.78∗ 0.78∗ 0.82∗ 0.82∗ 0.82∗ 0.82∗ 0.83∗ 0.85

0.1 100 - 0.32∗ 0.32∗ 0.32∗ 0.31∗ 0.33∗ 0.32∗ 0.38 0.36 0.37
800 - 0.75∗ 0.76∗ 0.76∗ 0.80∗ 0.80∗ 0.80∗ 0.81∗ 0.82∗ 0.85
1000 - 0.79∗ 0.79∗ 0.79∗ 0.83∗ 0.82∗ 0.83∗ 0.83∗ 0.84∗ 0.87
3000 0.63 0.84∗ 0.88∗ 0.89∗ 0.90∗ 0.90∗ 0.90∗ 0.90∗ 0.90∗ 0.91

0.2 100 - 0.56∗ 0.56∗ 0.56∗ 0.56∗ 0.55∗ 0.53∗ 0.62 0.62 0.60
800 - 0.88∗ 0.88∗ 0.88∗ 0.91∗ 0.91∗ 0.91∗ 0.91∗ 0.92∗ 0.93
1000 - 0.90∗ 0.90∗ 0.90∗ 0.91∗ 0.92∗ 0.92∗ 0.91∗ 0.92∗ 0.94
3000 0.75 0.92∗ 0.94∗ 0.94∗ 0.94∗ 0.95∗ 0.95∗ 0.94∗ 0.95∗ 0.95

0.01 800 - 0.78 0.78 0.78 0.72∗ 0.73∗ 0.73∗ 0.78 0.77 0.77
1000 - 0.80 0.80 0.80 0.74∗ 0.75∗ 0.76∗ 0.79 0.78 0.79
3000 0.81 0.89∗ 0.86∗ 0.90∗ 0.90∗ 0.89∗ 0.90∗ 0.91 0.91 0.91

0.05 800 - 0.90∗ 0.91∗ 0.91∗ 0.91∗ 0.90∗ 0.90∗ 0.92∗ 0.92 0.93
1000 - 0.92∗ 0.92∗ 0.92∗ 0.92∗ 0.92∗ 0.92∗ 0.93∗ 0.93∗ 0.94
3000 0.88 0.95∗ 0.96∗ 0.96∗ 0.97∗ 0.97∗ 0.97∗ 0.97∗ 0.97∗ 0.97

0.1 100 - 0.76 0.76 0.76 0.69∗ 0.70∗ 0.70∗ 0.76 0.73 0.75
800 - 0.94∗ 0.94∗ 0.94∗ 0.94∗ 0.94∗ 0.94∗ 0.95∗ 0.95∗ 0.96
1000 - 0.95∗ 0.95∗ 0.95∗ 0.95∗ 0.95∗ 0.95∗ 0.96∗ 0.96∗ 0.96
3000 0.89 0.96∗ 0.97∗ 0.97∗ 0.97∗ 0.97∗ 0.97∗ 0.97∗ 0.97∗ 0.98

0.2 100 - 0.80 0.81 0.81 0.77∗ 0.76∗ 0.74∗ 0.81∗ 0.81 0.79
800 - 0.95∗ 0.95∗ 0.95∗ 0.96∗ 0.96∗ 0.96∗ 0.96∗ 0.96∗ 0.97
1000 - 0.96∗ 0.96∗ 0.96∗ 0.96∗ 0.96∗ 0.97∗ 0.96∗ 0.97∗ 0.97
3000 0.90 0.97∗ 0.98∗ 0.98∗ 0.98∗ 0.98∗ 0.98∗ 0.98∗ 0.98∗ 0.98

more observations to use in the training process. The improvement is more distinct
with respect to the AUCPR. Compared to the AUC, the AUCPR is more sensitive
towards both the changes in the ratio τ of class imbalance, and the changes in the ratio
between the sample size n and the number p of covariates. In particular, the AUCPR
increases drastically as τ increases from 0.1 to 0.2, whereas the AUC remains almost
unaltered.

The AUCPR is also better at selecting models, since it can distinctly reveal the
performance differences that the AUC cannot. We observe in Table 3.1 that the ridge
and elastic net regression produce similar AUCs in many simulation settings. It may
be wrongly concluded that they have similar performance, if no significance tests are
conducted. Meanwhile, the elastic net often wins substantially over the ridge in terms of
the AUCPR. As a matter of fact, the elastic netAUCPR outperforms the ridge regression

CHAPTER 3. SIMULATION STUDY 43

at a significance level of 0.05 in almost all simulation settings, using a one-sided Wilcoxon
signed-rank test and the Holm’s adjustment method for multiple tests afterwards.

The AUCPR is very informative, and actually reveals rather poor performance of all
methods for severe class imbalance (e.g., τ = 0.01). Meanwhile, the AUC, regardless
of the ratio τ of imbalance, often gives excessively high values around 0.8, which is
considered at the low end of excellent discrimination (Hosmer Jr et al., 2013). The AUC
indeed provides an overly optimistic view of the performance in imbalanced classification
scenarios, which may result in misleading conclusions of the models’ performance.

As discussed in Chapter 2, the AUCPR considers the precision, instead of the TNR, so
it reveals the accurate prediction performance of a model with the focus on the positive
class in imbalanced learning, whereas the AUC is biased towards the negative cases
in majority. Based on the experimental results and the aforementioned advantages of
the AUCPR, the AUCPR is more appropriate than the AUC in this case. Here, the
AUCPR should be preferred as the measure of prediction performance.

Does the regularization work?

Consequently, we will mainly look at the results of the AUCPR when comparing the
differences between the models’ performance. For high-dimensional data (n ≤ p in
this thesis), all regularization methods perform much better than a random guessing
classifier, whose expected AUCPR is determined by the ratio τ of class imbalance. The
difference between the prediction performance of the regularization methods and LR is
considerable, except for τ = 0.01. A rather small proportion of positives in the training
data is expected to make it much more difficult for all the regularization methods to
learn the difference between the two classes.

For n = 3000, LR actually has some predictive ability and performs better than a
random guessing classifier. All regularization methods perform better, in terms of
the AUCPR, than LR at a significance level of 0.05. The ridge regression shrinks the
coefficients of correlated variables towards each other, which alleviates the problem
that the coefficients of those correlated variables may be poorly determined and have
high variance (Hastie et al., 2009). This probably explains why the ridge regression
also performs better than LR.

On average the lasso performs better than the ridge. The model we simulated from is
quite sparse for n 6= 100, which suits the lasso well. For the dense scenario n = 100, the
ridge performs slightly better than, if not similarly to, the lasso. In general the elastic
net performs better than the lasso, since the former can also handle correlated variables
like the ridge.

CHAPTER 3. SIMULATION STUDY 44

Preferable measure for the cross-validation of the penalty parameters

We will investigate if the model optimization criteria affect the overall ranking ability
of any of the regularization methods, and if there should be any preference for the
measure used in cross-validation of the penalty parameters.

Both the ridge (in the high-dimensional setting) and the lasso are hardly affected by
the optimality criteria, since each of them separately gives similar (if not identical)
results in many simulation settings, regardless of the measure used in cross-validation
of the penalty parameters. In the ridge regression, the penalty parameter λ chosen by
the AUCPR is larger than the λ chosen by the AUC, which is again larger than the λ
chosen by the deviance, as shown in Figure A.3 (in Appendix A.2). As the λ increases,
all coefficients in the ridge are shrunk towards zero proportionally but will never be
zero. Based on the structure of the sigmoid function, a larger shrinkage produces
smaller predicted event probabilities for all observations, but will hardly change the
order among them. So the λ over a wide interval gives approximately constant values
of both the AUCPR and the AUC, as shown in Figure A.4 (in Appendix A.2). This is
also observed in the lasso, where, in fact, different numbers of covariates are selected at
different λ values. The reason why the lasso is insensitive to the changes in the λ is
unknown. Nevertheless, which measure to use for selecting the optimal value of the λ
does not really matter for the ridge and lasso regression.

For n = 3000 with τ = 0.05, 0.1 and 0.2, both ridgeAUC and ridgeAUCPR perform better
than ridgedeviance, but only with a small advantage. The reason is probably that the
deviance usually chooses a much smaller λ than the AUC and the AUCPR. And in the
aforementioned simulation settings, the deviance chooses a much too small λ.

The AUCPR should be preferred as the optimality criterion for the elastic net regression,
since elastic netAUCPR consistently outperforms elastic netdeviance and elastic netAUC
at a significance level of 0.05, except for severe class imbalance and very high-dimensional
feature, where they have similar performance. The AUCPR frequently chooses an α that
is close to 0.1, as shown in Table A.1 (in Appendix A.2). Therefore, elastic netAUCPR
is more close to the ridge (α = 0) than the lasso (α = 1), which may contribute to the
fact that elastic netAUCPR often achieves the best prediction performance in the overall
ranking ability.

If one considers also the interpretability of a model, the AUCPR should be preferred as
the measure in cross-validation of the penalty parameters. For the lasso and elastic
net regression, the AUCPR selects values of the penalty parameters that give almost
consistently the highest proportion of truly influential covariates among the selected
variables. This can be observed in Table 3.2, which presents the average proportion

CHAPTER 3. SIMULATION STUDY 45

of truly influential variables among the selected variables, in the lasso and elastic
regression, respectively. Compared to elastic netdeviance and elastic netAUC , the elastic
netAUCPR tends to select much fewer irrelevant covariates, but also a relatively high
number of relevant covariates. A model probably has better prediction performance
with much less noise from a big reduction of non-significant variables, considering that
the true underlying data structure may be explained by only a few relevant covariates.

It is also of interest to investigate whether elastic netAUCPR also outperforms the other
regularization methods at all thresholds, provided that it actually performs the best in
terms of the AUCPR. After all, the AUCPR is a summary statistic of the PR curve. The
fact that a model outperforms the other in terms of the AUCPR, does not necessarily
mean that the former is better than the latter at all thresholds. Simulations are run
for n = 1000 with τ = 0.05 and 0.1, respectively. Only the simulations where elastic
netAUCPR gives the highest AUCPR are shown. The PR curves of all regularization
methods are plotted in the upper panel of Figure A.5 (in Appendix A.2). The ROC
curves are given in the bottom panel as a reference. The PR curves of elastic netAUCPR
lie above those of other regularization models at almost all thresholds. This also applies
to the ROC curve of elastic netAUCPR, but the difference between the ROC curves is
rather small. This behavior of elastic netAUCPR in the PR space is actually observed
in several other simulation settings.

Actual ranking score

Table 3.3 presents the average actual ranking scores of all methods. In general, the
actual ranking score and the AUCPR in Table 3.1 follow a similar pattern. For instance,
the ridge (in high-dimensional setting) and the lasso regression are barely affected by the
measure used in cross-validation of the penalty parameters. For n = 3000, ridgedeviance
performs the worst. The elastic netAUCPR gives the best actual ranking score, when
the data are neither severely class imbalanced nor very high-dimensional. Otherwise,
there is not that much difference between the three optimality measures for the elastic
net. Additionally, the elastic netAUCPR outperforms other models at a significance level
of 0.05, in many simulation settings.

The actual ranking ability of all methods improves as the data become less imbalanced,
and for larger ratios between the sample size n and the number p of covariates. LR
performs the worst. On average, the elastic net performs at least similarly to, if not
better than the lasso, which again performs at least similarly to, if not better than the
ridge. However, the difference between the performance of the lasso and elastic net
regression is not that much for n = 3000.

CHAPTER 3. SIMULATION STUDY 46

Table 3.2: Average proportion of truly influential variables among the selected variables.
The highest value is respectively printed in bold for the lasso and elastic net regression.
The values in pair under the proportion, are respectively the average number of truly
influential covariates that are selected, and the average number of total covariates that
are selected.

Lasso Elnet
τ n Deviance AUC AUCPR Deviance AUC AUCPR

0.01 800 0.56 0.43 0.55 0.33 0.18 0.38
8 13 10 24 9 16 14 44 20 108 13 34

1000 0.56 0.40 0.53 0.32 0.14 0.31
11 20 14 34 12 24 18 57 34 234 19 62

3000 0.51 0.50 0.53 0.41 0.27 0.38
32 62 30 61 31 59 36 88 43 159 40 105

0.05 800 0.55 0.54 0.67 0.40 0.28 0.50
33 61 32 60 28 42 39 99 44 157 38 76

1000 0.50 0.49 0.63 0.37 0.39 0.47
38 77 38 76 34 55 44 120 44 112 44 93

3000 0.40 0.52 0.58 0.34 0.47 0.51
59 147 55 106 54 93 62 180 57 121 62 121

0.1 100 0.62 0.52 0.56 0.29 0.20 0.35
7 11 8 16 8 14 17 57 21 103 16 46

800 0.47 0.50 0.64 0.34 0.34 0.53
46 97 44 87 41 65 54 161 52 152 51 97

1000 0.45 0.51 0.62 0.34 0.44 0.51
50 111 47 92 45 72 56 165 52 118 55 109

3000 0.38 0.57 0.66 0.35 0.57 0.58
66 175 61 106 59 90 68 195 61 108 66 115

0.2 100 0.54 0.49 0.68 0.32 0.27 0.49
13 24 13 28 9 14 24 73 27 99 16 34

800 0.42 0.55 0.64 0.30 0.49 0.56
54 130 50 91 48 76 61 205 54 111 58 104

1000 0.40 0.56 0.64 0.30 0.54 0.57
58 147 54 96 52 81 64 211 56 104 61 108

3000 0.34 0.54 0.64 0.33 0.54 0.59
71 207 66 122 65 101 72 217 67 125 70 118

3.3.2 Binary classification performance
We report the average maximal AGm (upper) and the average maximal Gm (bottom)
in Table 3.4. The elastic netAUCPR most often outperforms the other models at a

CHAPTER 3. SIMULATION STUDY 47

Table 3.3: Average actual ranking score. The highest value in each simulation setting
is printed in bold. The value with an asterisk is smaller than the result of elastic
netAUCPR at a significance level of 0.05.

Ridge Lasso Elnet
τ n LR Deviance AUC AUCPR Deviance AUC AUCPR Deviance AUC AUCPR

0.01 800 - 0.12∗ 0.12∗ 0.13∗ 0.19 0.17 0.17 0.20 0.19 0.19
1000 - 0.14∗ 0.14∗ 0.14∗ 0.19 0.18 0.18 0.21 0.19 0.20
3000 0.17 0.31∗ 0.35∗ 0.32∗ 0.41∗ 0.39∗ 0.41∗ 0.42 0.43 0.44

0.05 800 - 0.52∗ 0.52∗ 0.52∗ 0.58∗ 0.57∗ 0.57∗ 0.60∗ 0.61 0.63
1000 - 0.56∗ 0.56∗ 0.56∗ 0.61∗ 0.61∗ 0.61∗ 0.63∗ 0.64∗ 0.66
3000 0.48 0.66∗ 0.71∗ 0.71∗ 0.74∗ 0.75∗ 0.75∗ 0.74∗ 0.75∗ 0.78

0.1 100 - 0.35∗ 0.35∗ 0.35∗ 0.36 0.34∗ 0.33∗ 0.39 0.37 0.38
800 - 0.68∗ 0.68∗ 0.68∗ 0.72∗ 0.72∗ 0.72∗ 0.73∗ 0.75∗ 0.77
1000 - 0.71∗ 0.71∗ 0.71∗ 0.75∗ 0.75∗ 0.75∗ 0.75∗ 0.76∗ 0.79
3000 0.60 0.76∗ 0.80∗ 0.80∗ 0.82∗ 0.82∗ 0.82∗ 0.82∗ 0.83∗ 0.84

0.2 100 - 0.53∗ 0.53∗ 0.53∗ 0.52∗ 0.51∗ 0.50∗ 0.56 0.57 0.55
800 - 0.80∗ 0.80∗ 0.80∗ 0.82∗ 0.83∗ 0.83∗ 0.83∗ 0.84∗ 0.86
1000 - 0.81∗ 0.81∗ 0.81∗ 0.83∗ 0.84∗ 0.84∗ 0.83∗ 0.84∗ 0.86
3000 0.71 0.83∗ 0.87∗ 0.87∗ 0.87∗ 0.88∗ 0.88∗ 0.87∗ 0.88∗ 0.88

significance level of 0.05, in terms of both the maximal AGm and the maxiaml Gm. It
also gives the highest TPR and TNR in most of the simulation settings where it is best,
due to the fact that the elastic netAUCPR performs at least similarly to, if not better
than, other models in terms of the (TPR, 1-TNR) pair at almost every threshold. On
average, there is not that much difference between the performance of the lasso and
elastic net regression, and both of them perform better than the ridge with a rather
small advantage. All regularization methods obtain higher maximal AGm and Gm as
the data become less imbalanced, and for a larger sample size.

Here, the maximal AGm is often larger than the maximal Gm, and they actually
identify the same best and worst model in many simulation settings. Either of them
may be used to rank the models. However, they choose different thresholds and different
combinations of TPR and TNR. The maximal AGm is often achieved at a slightly
higher threshold than the maximal Gm. Therefore, the maximal AGm chooses a lower
TPR and a higher TNR than the maximal Gm, as shown in Table 3.5, which presents
the average TPR and TNR resulting in the maximal AGm and Gm, respectively. The
AGm is more suitable for deciding the threshold for imbalanced data within fraud
detection, since the investigations on many false positives can be quite costly.

On average, the optimality measure used in cross-validation of the penalty parameters,
rarely affect the maximal AGm of the ridge and lasso regression, except that for τ = 0.01,
where the ridgedeviance performs much better than ridgeAUC and ridgeAUCPR. This also
applies to the TPR and TNR. Usually, all the methods favor the negative class over
the positive class by giving higher TNR than TPR. The difference between TNR and

CHAPTER 3. SIMULATION STUDY 48

Table 3.4: Average maximal AGm (upper) and average maximal Gm (bottom). The
highest value in each simulation setting is printed in bold. The value with an asterisk
is smaller than the result of elastic netAUCPR at a significance level of 0.05.

Ridge Lasso Elnet
τ n LR Deviance AUC AUCPR Deviance AUC AUCPR Deviance AUC AUCPR

0.01 800 - 0.74 0.59∗ 0.45∗ 0.70 0.75 0.77 0.79 0.76 0.78
1000 - 0.78∗ 0.72∗ 0.60∗ 0.71∗ 0.77 0.79 0.81 0.75 0.80
3000 0.72 0.86∗ 0.64∗ 0.73∗ 0.88∗ 0.87∗ 0.88∗ 0.88 0.89 0.89

0.05 800 - 0.86∗ 0.85∗ 0.84∗ 0.88∗ 0.88∗ 0.87∗ 0.89∗ 0.89 0.90
1000 - 0.88∗ 0.84∗ 0.87∗ 0.89∗ 0.89∗ 0.89∗ 0.90∗ 0.90∗ 0.91
3000 0.85 0.91∗ 0.91∗ 0.92∗ 0.93∗ 0.93∗ 0.93∗ 0.93∗ 0.94∗ 0.94

0.1 100 - 0.75∗ 0.73∗ 0.73∗ 0.64∗ 0.74∗ 0.74∗ 0.77 0.75 0.76
800 - 0.89∗ 0.88∗ 0.89∗ 0.90∗ 0.90∗ 0.91∗ 0.91∗ 0.91∗ 0.92
1000 - 0.90∗ 0.90∗ 0.90∗ 0.91∗ 0.91∗ 0.91∗ 0.92∗ 0.92∗ 0.93
3000 0.86 0.92∗ 0.93∗ 0.93∗ 0.94∗ 0.94∗ 0.94∗ 0.94∗ 0.94∗ 0.95

0.2 100 - 0.77∗ 0.77∗ 0.77∗ 0.77∗ 0.77∗ 0.76∗ 0.79 0.79 0.78
800 - 0.90∗ 0.90∗ 0.90∗ 0.92∗ 0.92∗ 0.92∗ 0.92∗ 0.92∗ 0.93
1000 - 0.91∗ 0.91∗ 0.91∗ 0.92∗ 0.93∗ 0.93∗ 0.92∗ 0.93∗ 0.94
3000 0.87 0.92∗ 0.94∗ 0.94∗ 0.94∗ 0.94∗ 0.94∗ 0.94∗ 0.94∗ 0.95

0.01 800 - 0.68 0.53∗ 0.35∗ 0.63∗ 0.64∗ 0.69∗ 0.73 0.67 0.72
1000 - 0.72 0.70∗ 0.66∗ 0.64∗ 0.68∗ 0.72 0.74 0.69 0.74
3000 0.45 0.83∗ 0.61∗ 0.67∗ 0.84∗ 0.82∗ 0.84∗ 0.84 0.85 0.86

0.05 800 - 0.83∗ 0.80∗ 0.80∗ 0.84∗ 0.84∗ 0.83∗ 0.85∗ 0.86 0.86
1000 - 0.84∗ 0.82∗ 0.81∗ 0.86∗ 0.86∗ 0.85∗ 0.86∗ 0.87∗ 0.88
3000 0.77 0.89∗ 0.88∗ 0.89∗ 0.91∗ 0.91∗ 0.91∗ 0.91∗ 0.92∗ 0.92

0.1 100 - 0.70 0.69 0.68∗ 0.57∗ 0.66∗ 0.66∗ 0.71 0.68 0.70
800 - 0.86∗ 0.86∗ 0.86∗ 0.88∗ 0.88∗ 0.88∗ 0.88∗ 0.89∗ 0.90
1000 - 0.88∗ 0.86∗ 0.87∗ 0.89∗ 0.89∗ 0.89∗ 0.89∗ 0.90∗ 0.91
3000 0.81 0.90∗ 0.91∗ 0.92∗ 0.92∗ 0.92∗ 0.92∗ 0.92∗ 0.92∗ 0.93

0.2 100 - 0.73 0.72 0.72 0.71∗ 0.70∗ 0.69∗ 0.74 0.74 0.73
800 - 0.89∗ 0.88∗ 0.88∗ 0.90∗ 0.90∗ 0.90∗ 0.90∗ 0.91∗ 0.92
1000 - 0.90∗ 0.89∗ 0.89∗ 0.90∗ 0.91∗ 0.91∗ 0.91∗ 0.91∗ 0.92
3000 0.84 0.91∗ 0.92∗ 0.92∗ 0.93∗ 0.93∗ 0.93∗ 0.93∗ 0.93∗ 0.93

TPR is rather large, for highly imbalanced and very high-dimensional data. In such
simulation settings, it is impossible to get a high TPR with the AGm.

Figure A.6 (in Appendix A.2) presents the AGm, Gm, TPR and TNR curves of all
regularization methods from one simulation, which is run with n = 1000 and τ = 0.1.
The AGm and Gm curves follow a similar pattern, which can also be observed in the
TPR curves, whereas the TNR curves of all the methods are quite similar. As the
threshold t increases from 0 to 1, the TPR curves of the ridge reach zero much faster than
the TPR curves of the other methods, meaning that the ridge gives more concentrated
and much smaller predicted event probabilities to most of the true positives, than
the other methods. Hence, the AGm curves of the ridge are very sensitive to the
threshold, and a minor alteration in the threshold value will give large changes in the
TPR and TNR. The lasso and elastic net regression (except the elastic netAUCPR)

CHAPTER 3. SIMULATION STUDY 49

Table 3.5: τ = 0.01. Average TPR and average TNR according to the average maximal
AGm (upper) and the average maximal Gm (bottom), respectively. The TPR and
TNR resulting in the highest average maximal AGm and Gm, are printed in bold,
respectively.

Ridge Lasso Elnet
n Deviance AUC AUCPR Deviance AUC AUCPR Deviance AUC AUCPR

tpr,tnr tpr,tnr tpr,tnr tpr,tnr tpr,tnr tpr,tnr tpr,tnr tpr,tnr tpr,tnr
800 0.49 0.87 0.59 0.69 0.62 0.55 0.51 0.83 0.42 0.91 0.45 0.92 0.50 0.92 0.49 0.89 0.47 0.92
1000 0.53 0.88 0.61 0.78 0.80 0.55 0.53 0.83 0.48 0.90 0.49 0.92 0.54 0.92 0.55 0.86 0.54 0.91
3000 0.67 0.94 0.74 0.69 0.63 0.81 0.69 0.95 0.68 0.94 0.69 0.95 0.70 0.95 0.72 0.95 0.73 0.95

800 0.71 0.71 0.73 0.58 0.66 0.52 0.68 0.68 0.56 0.79 0.65 0.74 0.72 0.76 0.61 0.80 0.70 0.75
1000 0.73 0.73 0.77 0.65 0.86 0.52 0.70 0.69 0.61 0.79 0.67 0.77 0.72 0.78 0.70 0.74 0.70 0.78
3000 0.82 0.84 0.83 0.63 0.71 0.76 0.82 0.86 0.80 0.85 0.81 0.87 0.83 0.87 0.83 0.87 0.84 0.87

behave similarly in the TPR and TNR curves at all thresholds. And their AGm curves
are almost flat on the top. Hence, there is a lot of uncertainty as to which threshold
value is optimal.

3.3.3 The Brier score: a measure of sharpness
Table 3.6 presents the average Brier score. As the Brier score may be biased towards
the negative cases in majority, we present respectively the Brier score bs1 of the positive
class and the Brier score bs0 of the negative class in Table 3.7, where 0 does not really
mean that the average value is zero, since all the results here are with two decimal
digits.

On average, the lasso and elastic netdeviance perform the best with the lowest Brier
score, and thus give the sharpest models. The sharpness of the lasso is hardly affected
by the measure used in cross-validation of the penalty parameters. The elastic netAUC
produces much lager Brier score, for τ = 0.01, or n = 100, due to a quite large bs0,
which is unusual in the other methods. Also, the ridge performs much worse than the
lasso and elastic net, for τ = 0.1 and 0.2, whereas ridgedeviance performs often the best
among the ridges, in terms of the Brier score. Overall, the optimality measure deviance
is better than the AUC and AUCPR, in the sense that it tends to produce smaller Brier
score for the ridge and elastic net, and smaller bs1 for all the methods.

All the methods are much sharper in the negative class than in the positive class with
bs0 << bs1. Also, they (except the elastic netAUC) have bs0 ≈ 0 in many simulation
settings. A small bs0 (with bs0 ≈ 0) stems from the fact that most of the true negatives

CHAPTER 3. SIMULATION STUDY 50

Table 3.6: Average Brier score. The lowest value in each simulation setting is printed in
bold, except for τ = 0.01, where many values are identical.

Ridge Lasso Elnet
τ n LR Deviance AUC AUCPR Deviance AUC AUCPR Deviance AUC AUCPR

0.01 800 - 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.09 0.01
1000 - 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.12 0.01
3000 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.08 0.01

0.05 800 - 0.04 0.05 0.05 0.03 0.03 0.03 0.03 0.17 0.04
1000 - 0.04 0.05 0.05 0.03 0.03 0.03 0.03 0.06 0.04
3000 0.06 0.03 0.05 0.05 0.02 0.02 0.02 0.02 0.02 0.03

0.1 100 - 0.09 0.09 0.09 0.08 0.08 0.08 0.09 0.20 0.09
800 - 0.07 0.08 0.09 0.04 0.04 0.04 0.04 0.07 0.05
1000 - 0.07 0.08 0.09 0.04 0.04 0.04 0.04 0.05 0.05
3000 0.09 0.04 0.08 0.09 0.03 0.03 0.03 0.03 0.03 0.04

0.2 100 - 0.15 0.16 0.16 0.13 0.13 0.14 0.13 0.14 0.14
800 - 0.12 0.14 0.16 0.05 0.06 0.06 0.05 0.06 0.07
1000 - 0.11 0.14 0.16 0.05 0.05 0.05 0.05 0.06 0.07
3000 0.12 0.05 0.13 0.15 0.04 0.04 0.04 0.04 0.04 0.05

Table 3.7: Average Brier score bs1 of the positive class and average Brier score bs0 of
the negative class. The lowest bs1 in each simulation setting is printed in bold.

Ridge Lasso Elnet
τ n Deviance AUC AUCPR Deviance AUC AUCPR Deviance AUC AUCPR

bs1, bs0 bs1, bs0 bs1, bs0 bs1, bs0 bs1, bs0 bs1, bs0 bs1, bs0 bs1, bs0 bs1, bs0

0.01 800 0.96 0 0.95 0 0.96 0 0.92 0 0.93 0 0.92 0 0.93 0 0.88 0.09 0.94 0
1000 0.99 0 0.99 0 0.99 0 0.96 0 0.96 0 0.95 0 0.97 0 0.88 0.12 0.98 0
3000 0.94 0 0.95 0.01 0.97 0 0.75 0 0.78 0 0.75 0 0.78 0 0.81 0.07 0.84 0

0.05 800 0.88 0 0.93 0 0.95 0 0.60 0 0.60 0 0.62 0 0.63 0 0.63 0.15 0.74 0
1000 0.86 0 0.92 0 0.95 0 0.55 0 0.56 0 0.57 0 0.57 0 0.61 0.04 0.70 0
3000 0.53 0 0.92 0 0.95 0 0.35 0 0.36 0 0.37 0 0.35 0 0.39 0 0.51 0

0.1 100 0.91 0.01 0.91 0.01 0.90 0.01 0.83 0.01 0.83 0.01 0.82 0.01 0.83 0.02 0.77 0.17 0.85 0.01
800 0.76 0.01 0.85 0.01 0.89 0.01 0.39 0.01 0.41 0.01 0.42 0.01 0.41 0.01 0.48 0.03 0.55 0.01
1000 0.74 0.01 0.85 0.01 0.90 0.01 0.36 0.01 0.38 0.01 0.38 0.01 0.38 0.01 0.43 0.02 0.52 0.01
3000 0.34 0.01 0.80 0.01 0.87 0.01 0.24 0.01 0.25 0.01 0.25 0.01 0.24 0.01 0.26 0.01 0.35 0.01

0.2 100 0.80 0.03 0.79 0.05 0.80 0.05 0.67 0.04 0.68 0.04 0.69 0.04 0.68 0.03 0.74 0.03 0.73 0.03
800 0.59 0.03 0.73 0.04 0.79 0.05 0.26 0.02 0.27 0.02 0.28 0.02 0.26 0.02 0.30 0.02 0.37 0.02
1000 0.56 0.03 0.71 0.04 0.78 0.05 0.24 0.02 0.25 0.02 0.25 0.02 0.24 0.02 0.28 0.02 0.34 0.02
3000 0.23 0.02 0.65 0.04 0.77 0.05 0.17 0.02 0.18 0.02 0.18 0.02 0.17 0.02 0.18 0.02 0.25 0.01

are given predicted event probabilities p̂(x)s that are close to zero. For τ = 0.01, or
n = 100, most of the models produce very large bs1 that is close to 0.9, meaning that
they assign p̂(x)s that are far from one to most of the true positives. Further, Figure
A.7 (in Appendix A.2) shows histogram plots of the p̂(x)s and true event probabilities
of 3000 cases, given by all the regularization methods for τ = 0.01 and n = 1000. All
the methods assign p̂(x)s that are close to zero to most of the cases.

The Brier score of all the methods increases as the data become less imbalanced. This
stems from the dominating effect of the increasing bs0, due to less negative cases in the

CHAPTER 3. SIMULATION STUDY 51

training data (i.e., a larger τ). On the other hand, for a smaller sample size, there are
fewer positive and negative cases in the training data, thus, larger bs1, bs0 (for τ = 0.2)
and Brier score are acquired.

3.3.4 The accuracy of predicted event probabilities
Bias and Rmse

Table 3.8 reports the average bias (upper) and the average Rmse (bottom). Also, we
present respectively the average bias b1 of the positive class and the average bias b0 of
the negative class in Table 3.9.

Table 3.8: Average bias (upper) and average Rmse (bottom).

Ridge Lasso Elnet
τ n LR Deviance AUC AUCPR Deviance AUC AUCPR Deviance AUC AUCPR

0.01 800 - 0 0.01 0 0 0 0 0 0.08 0
1000 - 0 0 0 0 0 0 0 0.11 0
3000 -0.01 0 0.01 0 0 0 0 0 0.07 0

0.05 800 - -0.01 0 0 -0.01 -0.01 -0.01 -0.02 0.13 -0.01
1000 - -0.01 0 0 -0.01 -0.01 -0.01 -0.02 0.02 -0.01
3000 0.01 -0.02 0 0 -0.01 0 0 -0.01 0 0

0.1 100 - -0.02 -0.01 0 -0.01 -0.02 -0.01 -0.01 0.11 -0.01
800 - -0.01 0 0 -0.02 -0.01 -0.01 -0.02 0 -0.01
1000 - -0.01 0 0 -0.02 -0.01 -0.01 -0.02 0 -0.01
3000 0.03 -0.02 0 0 0 0 0 0 0 0

0.2 100 - -0.04 -0.01 0 -0.03 -0.04 -0.02 -0.05 -0.05 -0.01
800 - -0.01 0 0 -0.02 -0.01 -0.01 -0.02 -0.01 -0.01
1000 - -0.01 0 0 -0.01 -0.01 -0.01 -0.02 -0.01 -0.01
3000 0.03 -0.01 0 0 0 0 0 0 0 0

0.01 800 - 0.09 0.10 0.09 0.09 0.09 0.09 0.09 0.17 0.09
1000 - 0.10 0.10 0.10 0.09 0.09 0.09 0.09 0.20 0.09
3000 0.1 0.09 0.10 0.09 0.08 0.08 0.08 0.08 0.15 0.09

0.05 800 - 0.20 0.21 0.21 0.17 0.17 0.17 0.17 0.30 0.19
1000 - 0.20 0.21 0.21 0.16 0.16 0.16 0.16 0.20 0.18
3000 0.23 0.16 0.21 0.21 0.13 0.13 0.13 0.13 0.14 0.15

0.1 100 - 0.29 0.29 0.30 0.28 0.28 0.28 0.29 0.38 0.28
800 - 0.27 0.28 0.29 0.19 0.20 0.20 0.19 0.23 0.23
1000 - 0.26 0.28 0.29 0.19 0.19 0.19 0.19 0.21 0.22
3000 0.29 0.18 0.28 0.29 0.15 0.16 0.16 0.15 0.16 0.18

0.2 100 - 0.38 0.39 0.39 0.36 0.36 0.36 0.35 0.36 0.37
800 - 0.33 0.37 0.39 0.22 0.22 0.23 0.22 0.23 0.26
1000 - 0.32 0.37 0.39 0.21 0.22 0.22 0.21 0.22 0.25
3000 0.34 0.21 0.35 0.38 0.18 0.18 0.19 0.18 0.18 0.21

All methods systematically underestimate the event probabilities of true positives,
resulting in the b1 always being negative in Table 3.9. For τ = 0.01 and n = 3000,
the b0 ≈ 0, for methods with the optimality measure deviance. Other than that, all

CHAPTER 3. SIMULATION STUDY 52

Table 3.9: Average bias b1 of the positive class and average bias b0 of the negative class.
The b1 with the lowest absolute value in each simulation setting is printed in bold.

Ridge Lasso Elnet
τ n Deviance AUC AUCPR Deviance AUC AUCPR Deviance AUC AUCPR

b1, b0 b1, b0 b1, b0 b1, b0 b1, b0 b1, b0 b1, b0 b1, b0 b1, b0

0.01 800 -0.88 0.01 -0.88 0.01 -0.88 0.01 -0.86 0.01 -0.87 0.01 -0.86 0.01 -0.86 0.01 -0.80 0.09 -0.87 0.01
1000 -0.94 0.01 -0.94 0.01 -0.94 0.01 -0.90 0.01 -0.89 0.01 -0.90 0.01 -0.91 0.01 -0.81 0.12 -0.92 0.01
3000 -0.88 0 -0.89 0.02 -0.90 0.01 -0.75 0 -0.77 0.01 -0.75 0.01 -0.77 0 -0.77 0.08 -0.82 0.01

0.05 800 -0.91 0.04 -0.93 0.05 -0.94 0.05 -0.68 0.02 -0.68 0.02 -0.70 0.03 -0.70 0.02 -0.67 0.17 -0.82 0.03
1000 -0.90 0.04 -0.93 0.05 -0.94 0.05 -0.63 0.02 -0.63 0.02 -0.66 0.02 -0.65 0.02 -0.68 0.06 -0.79 0.03
3000 -0.62 0.01 -0.93 0.05 -0.95 0.05 -0.43 0.02 -0.45 0.02 -0.47 0.02 -0.44 0.02 -0.49 0.02 -0.64 0.03

0.1 100 -0.96 0.09 -0.96 0.10 -0.96 0.11 -0.91 0.09 -0.90 0.08 -0.90 0.09 -0.90 0.09 -0.81 0.22 -0.92 0.08
800 -0.87 0.08 -0.93 0.10 -0.95 0.10 -0.50 0.04 -0.52 0.04 -0.55 0.05 -0.52 0.03 -0.60 0.07 -0.71 0.06
1000 -0.86 0.08 -0.93 0.10 -0.96 0.10 -0.47 0.03 -0.49 0.04 -0.51 0.04 -0.48 0.03 -0.57 0.06 -0.68 0.06
3000 -0.44 0.03 -0.89 0.10 -0.93 0.10 -0.32 0.03 -0.35 0.03 -0.36 0.04 -0.32 0.03 -0.37 0.04 -0.52 0.05

0.2 100 -0.96 0.17 -0.96 0.22 -0.96 0.24 -0.84 0.16 -0.82 0.14 -0.87 0.19 -0.85 0.13 -0.90 0.15 -0.91 0.17
800 -0.81 0.19 -0.91 0.22 -0.96 0.24 -0.37 0.07 -0.41 0.08 -0.43 0.09 -0.38 0.06 -0.46 0.10 -0.60 0.11
1000 -0.79 0.18 -0.90 0.22 -0.95 0.24 -0.34 0.06 -0.38 0.08 -0.40 0.09 -0.35 0.06 -0.43 0.09 -0.56 0.10
3000 -0.34 0.06 -0.86 0.21 -0.95 0.23 -0.25 0.06 -0.28 0.07 -0.29 0.07 -0.26 0.06 -0.29 0.07 -0.43 0.08

methods systematically overestimate the event probabilities of true negatives, resulting
in positive b0.

The bias in Table 3.8 usually has a rather low absolute value, and it is often negative.
A negative bias means a systematic underestimation of the true event probabilities
for all the cases. Here, it stems from |b1| > |b0|. As the positives are in minority, a
model with a negative bias systematically underestimates the event probabilities of true
positives much more than it overestimates the event probabilities of true negatives.

A small Rmse, for instance, for τ = 0.01, means a small spread of the prediction error.
As discussed in the results of the Brier score, all the models are rather bad at predicting
event probabilities for the positive class for τ = 0.01. But there are only approximately
30 positives in the test set, hence, the Rmse is dominated by the well predicted event
probabilities of true negatives in majority.

On average, the deviance is better than the AUC and AUCPR for the ridge and elastic
net regression, as the former optimality measure gives relatively lower |b1|, |b0| and
Rmse. The lasso is almost unaffected by the measure used in cross-validation of the
penalty parameters, in terms of the bias and Rmse. As the class imbalance decreases,
the |b0| and Rmse increase, due to less negative cases in the training set. For a larger
sample size, the |b1|, |b0| and Rmse decrease. This stems from the fact that the models
get better at predicting event probabilities of the two classes, when there are more
positive and negative cases in the training set. The results here are in line with the
results of the Brier score in Subsection 3.3.3.

CHAPTER 3. SIMULATION STUDY 53

Illustration on the probability

Figure 3.1 shows histogram plots of the true and predicted event probabilities of each
class, given by all the regularization methods. The simulation is run with n = 1000
and τ = 0.1, which represents a normal situation. The true event probabilities of the
negative and positive class mainly locate at the left and right endpoint, respectively.

The ridge regression tends to produce predicted event probabilities p̂(x)s that are
close to the ratio τ of class imbalance. This problem is most severe in ridgeAUC and
ridgeAUCPR with concentrated p̂(x)s, but alleviated in ridgedeviance, which produces
p̂(x)s with a larger spread. The predicted event probabilities given by ridgedeviance are
closer to the true event probabilities, for each of the two classes, compared to ridgeAUC
and ridgeAUCPR. This explains why ridgedeviance has slightly lower |b1|, |b0| and Rmse
than the other ridges, for τ > 0.01, or n > 100.

Here, there is not that much visual difference between the distributions of p̂(x)s that
are given by the lasso, elastic netdeviance and elastic netAUC . They produce a bimodal
distribution of p̂(x)s for the true positives, of which many fall into the right most
interval (≥ 0.95). Also, most of the true negatives are provided with p̂(x)s that fall
into the left most interval (< 0.05). This should at least explain why the lasso and
elastic netdeviance usually have the lowest Brier score and RMSE. Compared to elastic
netdeviance and elastic netAUC , the elastic netAUCPR assigns higher p̂(x)s to more of
the true negatives and lower p̂(x)s to more of the true positives.

CHAPTER 3. SIMULATION STUDY 54

Ridge_deviance (P:344, N:2656)

Probability

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
10

00
15

00
20

00
25

00

Ridge_AUC (P:344, N:2656)

Probability

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
10

00
15

00
20

00
25

00

Ridge_AUCPR (P:344, N:2656)

Probability

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
10

00
15

00
20

00
25

00

Lasso_deviance (P:344, N:2656)

Probability

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
10

00
15

00
20

00
25

00

Lasso_AUC (P:344, N:2656)

Probability

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
10

00
15

00
20

00
25

00

Lasso_AUCPR (P:344, N:2656)

Probability

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
10

00
15

00
20

00
25

00

Elnet_deviance (P:344, N:2656)

Probability

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
10

00
15

00
20

00
25

00

Elnet_AUC (P:344, N:2656)

Probability

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
10

00
15

00
20

00
25

00

Elnet_AUCPR (P:344, N:2656)

Probability

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
10

00
15

00
20

00
25

00

Figure 3.1: Histogram plots of predicted event probabilities of true positives (red border),
event probabilities of true positives (light blue), predicted event probabilities of true
negatives (black border) and event probabilities of true negatives (grey), for τ = 0.1 and
n = 1000.

CHAPTER 3. SIMULATION STUDY 55

Furthermore, reliability diagrams are drawn to check if the regularization methods
are well calibrated. In Figure 3.2, the observed event frequency is plotted against
the average predicted probability in each bin. A well calibrated model should have
the points plotted lie on, or close to, the diagonal. The optimality measure deviance
gives a red line that lies closest to the diagonal. All the regularization methods are
better calibrated, when using the deviance, rather than the AUC and AUCPR, as
the measure in cross-validation of the penalty parameters. In general, all the models
severely underestimate the true event probabilities with high values, as the red line lies
way above the diagonal in bins to the right, and it is more severe with the optimality
measures AUC and AUCPR, but the true event probabilities with high values are few.
All the methods slightly overestimate the true event probabilities with low values, which
are in majority, and the optimality measure AUC and AUCPR perform slightly worse
than the deviance.

CHAPTER 3. SIMULATION STUDY 56

ridgedeviance

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Forecast probability, yi

O
bs

er
ve

d
re

la
tiv

e
fr

eq
ue

nc
y,

 o
1

Ridge_deviance

0.
0

0.
2

0.
4

0.
6

ridgeAUC

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Forecast probability, yi

O
bs

er
ve

d
re

la
tiv

e
fr

eq
ue

nc
y,

 o
1

Ridge_AUC

0.
0

0.
2

0.
4

0.
6

0.
8

ridgeAUCPR

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Forecast probability, yi

O
bs

er
ve

d
re

la
tiv

e
fr

eq
ue

nc
y,

 o
1

Ridge_AUCPR

0.
0

0.
2

0.
4

0.
6

0.
8

Lassodeviance

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Forecast probability, yi

O
bs

er
ve

d
re

la
tiv

e
fr

eq
ue

nc
y,

 o
1

Lasso_deviance

0.
0

0.
2

0.
4

0.
6

0.
8

LassoAUC

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Forecast probability, yi

O
bs

er
ve

d
re

la
tiv

e
fr

eq
ue

nc
y,

 o
1

Lasso_AUC

0.
0

0.
2

0.
4

0.
6

0.
8

LassoAUCPR

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Forecast probability, yi

O
bs

er
ve

d
re

la
tiv

e
fr

eq
ue

nc
y,

 o
1

Lasso_AUCPR

0.
0

0.
2

0.
4

0.
6

Elnetdeviance

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Forecast probability, yi

O
bs

er
ve

d
re

la
tiv

e
fr

eq
ue

nc
y,

 o
1

Elnet_deviance

0.
0

0.
2

0.
4

0.
6

0.
8

ElnetAUC

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Forecast probability, yi

O
bs

er
ve

d
re

la
tiv

e
fr

eq
ue

nc
y,

 o
1

Elnet_AUC

0.
0

0.
2

0.
4

0.
6

ElnetAUCPR

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Forecast probability, yi

O
bs

er
ve

d
re

la
tiv

e
fr

eq
ue

nc
y,

 o
1

Elnet_AUCPR

0.
0

0.
2

0.
4

0.
6

Figure 3.2: Reliability diagrams of the forecast probability plotted against the observed
relative frequency, for τ = 0.1 and n = 1000. At the bottom right corner of each
diagram, a sharpness diagram of the predicted event probabilities for all the cases is
plotted.

CHAPTER 3. SIMULATION STUDY 57

3.4 Summary
This section aims to summarize the results, and concentrates on drawing conclusions
from the simulation study.

The summarized results from this chapter are :

• The ridgedeviance performs slightly worse (in terms of the ranking ability) than
ridgeAUC and ridgeAUCPR, for class imbalanced data that are not high-dimensional.
On the other hand, it produces better predicted event probabilities than the other
ridges, in terms of much lower Brier score, Brier score of the positive class (bs1),
Rmse, bias of the positive class (b1) and bias of the negative class(b0). In fact, the
optimality measure deviance benefits also the lasso and elastic net in achieving
lower b1 and lower b0 in most of the simulation settings. Nevertheless, all methods
tend to systematically overestimate the event probabilities of the true negatives
and underestimate the event probabilities of the true positives.

• The prediction performance of the lasso is hardly affected by the optimality
measure used in cross-validation of the penalty parameter λ. For instance, the
lassoAUC , lassodeviance and lassoAUCPR perform equally well in terms of the
AUCPR, the AUC, the actual ranking score, the AGm, the Brier score and Rmse.
Meanwhile, the lassoAUCPR almost always achieves the highest average proportion
of truly influential variables among the selected variables.

• The elastic netAUCPR performs the best on average, in terms of the AUCPR, the
AUC, the actual ranking score and binary classification performance. It performs
also the best among the elastic nets in doing automated variable selection. The
performance of the elastic net seems to be boosted by using the AUCPR as the
optimality measure in cross-validation of the penalty parameters α and λ. The
AUCPR usually chooses an α close to 0, making the elastic net behave more like
the ridge, while the deviance and AUC typically choose an α close to 1, making
the elastic net behave more like the lasso.

• Non of the methods perform well for highly class imbalanced (τ = 0.01) data, or a
very small ratio n

p
= 0.1. Such simulation settings give rather difficult prediction

tasks, where the rather low AUCPR values, rather than the overly optimistic
AUC values, strongly express the models’ bad ranking ability.

• All penalized logistic regression methods have improved ranking ability (e.g., the
AUCPR) and binary classification performance (e.g., the AGm), either for a larger
τ (i.e., less imbalance), or a larger ratio n

p
.

CHAPTER 3. SIMULATION STUDY 58

• The improvement in the ranking ability of the models is drastic when the class
imbalanced learning problems change from very difficult (e.g., τ = 0.01) to
somewhat easier (e.g., τ = 0.05). The improvement in the ranking ability of
the models, however, is not significant for the simulation settings that vary from
τ = 0.1 to τ = 0.2, while n ≥ p. In this case, there is a limit to how well the
penalized logistic regression methods can predict, despite the fact that the class
imbalanced learning problem can become even easier as the τ further increases.

• On average the elastic net performs better than the lasso, which performs on
average better than the ridge. This is no surprise as the simulated data are often
sparse and with correlated covariates.

Also, the following conclusions are drawn from this chapter:

• Whether the optimality measure used in cross-validation of the penalty parameters
affect the prediction performance, depends on the type of learning methods,
evaluation metric used for model selection, ratio of class imbalance, sample size,
etc.

• Further, when dealing with class imbalanced data, one optimality measure (e.g.,
the AUC) does not necessarily result in a learning method (e.g., the elastic net)
with the optimized performance, in terms of the optimality measure (e.g., the
AUC). One needs to be careful with the choice of the optimality measure, for
regularized logistic regression approaches in class imbalanced learning scenarios.

• The models that achieve good ranking ability do not necessarily produce sharp
predicted event probabilities.

• Which evaluation metric is more appropriate for model selection, depends on the
objective of the learning problems. For class imbalanced learning problems within
fraud detection, both the AUC and the Brier score are insufficient, since they are
biased towards the negative class in majority.

• The AUCPR is strongly recommended for prediction tasks with class imbalanced
and high-dimensional data, either for evaluating the average precision of a classifier,
or comparing the prediction performance of multiple classifiers. This is important
for real fraud detection tasks, as the classifiers that produce decent AUC values
may actually perform rather badly in terms of the AUCPR.

• Additionally, the AUCPR, rather than the AUC, can distinctly expose the
difference in performance between classifiers when dealing with class imbalanced
data. If one is interested in improving the performance of an already good model,

CHAPTER 3. SIMULATION STUDY 59

in an attempt of a very good model, the performance measure AUCPR is more
appealing than the AUC, since the former may, hopefully, increase much more
than the latter does at the same cost of computational complexity.

• As the baseline in the PR space equals the proportion of positives in the data
(Saito and Rehmsmeier, 2015), it is a little tricky to use the AUCPR alone as
the performance measure for real fraud detection tasks, where the ratio of class
imbalance may vary with time, and is unknown for new coming data. Therefore,
it is suggested to give the results of both the AUCPR and the AUC for real fraud
detection problems with unknown level of class imbalance. This could lead to
more reliable conclusions about the models’ prediction performance.

3.5 Re-sampling methods
One alternative approach to handle class imbalance is to modify the class distribution of
the training data. This can be done by applying re-sampling techniques. In such cases,
a more balanced class distribution of the training data is obtained, and the classifier is
then fitted to the new sampled and artificial training data. As might be expected, the
fitted classifier is then, hopefully, more sensitive to the minority class and its prediction
performance on the minority class may be improved. Several studies have demonstrated
that re-sampling techniques are effective in improving the performance of classifiers
in class imbalanced learning scenarios (Estabrooks et al., 2004; Marques, Garcia, and
Sanchez, 2013; Weiss and Provost, 2001).

3.5.1 Random under-sampling and oversampling
There are two major sampling methods including under-sampling and oversampling.
The two basic methods can achieve a desired class distribution in the simplest way.
For instance, under-sampling randomly eliminates observations from the majority class
while keeping all the data of the minority class, whereas oversampling often randomly
duplicates observations of the minority class. Obviously, under-sampling reduces the
size of the training data, thus, leading to smaller computational complexity. This is,
however, the opposite for oversampling.

Regardless of the fact that the two sampling methods alleviate the level of class
imbalance in the training data, they have potential problems. Under-sampling may
result in losing useful information of the majority class, which could be important for
building a good classifier. When there is severe class imbalance with very rare minority
cases, under-sampling deletes too many majority cases in order to achieve a desired
class distribution, and the resulting training data points may end up being too few to
be able to build a good prediction model. As for oversampling, it may still be ineffective

CHAPTER 3. SIMULATION STUDY 60

in detecting the positive cases, due to the fact that no new data information of the
positive class is actually implemented, if only exact copies of randomly selected positive
cases are added in the training data. In the worst case, overfitting may happen when
too many identical data points make the decision regions too specific for the minority
class, hence, the fitted model probably does not generalize well.

3.5.2 The SMOTE method
Other more sophisticated sampling methods include the synthetic minority oversampling
technique (Chawla et al., 2002). The SMOTE may be viewed as an advanced version
of oversampling the minority class, as it involves creating synthetic minority class cases
rather than random oversampling with replacement (Chawla et al., 2002). The new
artificial data points are selected along the line segments between a randomly chosen
minority sample and its k nearest neighbors. The SMOTE provides new information
of the minority class, such that the decision regions become larger and less specific
for the minority class (Chawla et al., 2004). In such cases, overfitting is avoided, and
the classifier may generalize better. It is also common to combine oversampling and
under-sampling, and Chawla et al. (2002) showed that a combination of SMOTE and
under-sampling can achieve better prediction performance, in terms of the AUC, than
under-sampling alone.

3.5.3 Earlier work
The effectiveness of re-sampling methods depends on many factors, for instance, the
types of learning methods, evaluation metrics (Van Hulse et al., 2007), the number of
positive cases in the data (Batista et al., 2004), etc. In Van Hulse et al. (2007), the
logistic regression method was applied to several class imbalanced and low-dimensional
data sets, and none of the sampling techniques significantly improved the performance
of the LR in terms of the AUC. According to Halsteinslid (2019), with the penalized
logistic regression methods for class imbalanced data with a large amount of covariates,
the re-sampling methods (i.e., under- and oversampling, SMOTE) do not improve
much in terms of the AUC. Therefore, in this thesis, we do not experiment with the
re-sampling methods for the penalized logistic regression, as it has been done earlier.

3.5.4 Future possibility
Meanwhile, some other directions with the re-sampling methods might be relevant for
handling class imbalanced and high-dimensional data. As a perfectly balanced class
distribution does not always give optimal results (Weiss and Provost, 2001), one may,
therefore, investigate further the relation between the class distribution in the training
data and the performance of the penalized logistic regression methods. Hopefully,

CHAPTER 3. SIMULATION STUDY 61

there might exist an optimal amount of re-sampling that may give improved prediction
performance.

Moreover, since the AUC, rather than the AUCPR, is very insensitive towards the
changes in the ratio of class imbalance in the data, it would be interesting to investigate
whether the re-sampling methods significantly boost the penalized logistic regression
methods in terms of the AUCPR, while the penalized logistic regression methods are
optimized with respect to different measures used in cross-validation of the tuning
parameters.

Additionally, data cleaning methods that use Tomek links (Tomek, 1976) may be
relevant. A Tomek link consists of a pair of points from different classes and are each
other’s nearest neighbor. Among this pair of points, either one of them is noisy sample,
or both of them are borderline examples Batista et al. (2004). One can either remove
only the negative case, or both of the points in Tomek links. Therefore, Tomek links
methods not only alter the class distribution, but also identify and remove possibly
noisy and borderline samples, which may alleviate the overlapping among the classes
(Batista et al., 2004). Batista et al. (2004) showed that the SMOTE and Tomek links
are recommended for data sets with a small number of positive cases, since the two
together present very good AUC results. Hence, one may also investigate if Tomek
links, or Tomek links with the SMOTE, would affect the prediction performance of the
penalized logistic regression methods in terms of the AUCPR.

Chapter 4

Illustration on credit card default
data

In this chapter, we will apply the methods and analysis techniques from the simulation
study to a real credit card default data set, which is publicly available in Kaggle.

4.1 Data description and data preprocessing
The credit card default data are not directly fraud data, but they share many of the
characteristics of fraud data, such as high dimensionality, class imbalance, and a mixture
of discrete and continuous covariates. In addition, this data set contains information of
the covariates, which makes data preprocessing easier. It worth noting that real fraud
detection data are only available in anonymised form, or in the form of synthetic data
sets. The real credit card default data seem to be the best choice for now.

The credit card default data set consists of a dichotomous response and 121 covariates.
The ID variable SK_ID_PREV does not affect the outcome, and it is not considered
in the modeling process, so only 120 covariates are examined. A case is a default if
the outcome Target takes the value 1, and a non-default if the outcome is 0. There
are 24825 defaults out of 307511 cases, and the defaults or the positives account for
8.07% of all observations. This value is slightly lower than τ = 0.1 from the simulation
study, representing a rather high level of class imbalance. However, the data are not
complete, and around 96.31% of observations have missing values. Figure 4.1 shows
the proportion of missing data in each of the 120 covariates. Among the missing data,
the average proportion of defaults is 0.089, which is only slightly higher than the ratio
0.081 of imbalance in the whole data set.

62

CHAPTER 4. ILLUSTRATION ON CREDIT CARD DEFAULT DATA 63

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Variable index

P
ro

po
rt

io
n

of
 m

is
si

ng
s

Non−default
Default

Figure 4.1: The proportion of missing values in each of the 120 covariates. The black
horizontal dashed line is the average proportion (22.73%) of missing values. The blue
and red histograms represent, respectively, the proportion of non-defaults and defaults
among the missing data.

If we discard all the cases with missing values, a lot of information will be lost, and
the results may not be representative of the true underlying data pattern. As the
penalized logistic regression methods do not deal with missing values automatically,
imputation methods are used to preserve and to make best use of all the observations.
Imputation methods replace the missing data with appropriate values that are based
on the available information.

For instance, for numerical data, we simply replace a missing value with the median of
that variable, which is computed with the non-missing data of the other observations.
To distinguish original data from imputed data, a new indicator variable is generated
for each numerical variable with missing data. It equals one for a particular observation
if the value of that numerical variable is imputed, and zero, otherwise. There are
61 numerical covariates with missing data, so the additional indicator variables from
median imputation increase the number of covariates from 120 to 181.

As for categorical variables, a missing value is simply replaced with the missing category.
The missing level may serve as a new dummy variable of that categorical variable in the
predictive model, which may affect the prediction performance if the missing mechanism
is related to the outcome.

CHAPTER 4. ILLUSTRATION ON CREDIT CARD DEFAULT DATA 64

An illustration of the imputation practice is provided in Table 4.1. The substitution is
straightforward and easy to implement on the credit card default data set, which has
a large size. Unfortunately, this simple imputation process may introduce some bias.
Other more sophisticated imputation methods may be used, but it is not the objective
of this study to explore different imputation methods.

Table 4.1: Imputation methods. Here, X1 is a numerical variable, and X2 a categorical
variable.

X1 X2

3090 level1
449 NA
NA level2
1550 level3

=⇒

X1 X1,missing X2

3090 0 level1
449 0 missing
1550 1 level2
1550 0 level3

Among the 181 explanatory variables, 72 are numerical and 109 are categorical. For a
categorical variable with k levels and k > 2, we convert it into k − 1 dummy variables.
The reason is that one level will be captured by the intercept, and it is specified when all
the other k− 1 dummy variables are set to zero. Therefore, 115 additional variables are
introduced, which results in a total number of 296 covariates. Lastly, 41 variables are
dropped due to that, either they are perfectly linearly dependent with other variables,
or they have the same value for almost all the observations. The final number p of
covariates is then 255.

4.2 Setup
Compared to the size 307511 of the credit card default data set, the number 255 of
covariates is relatively small. Unfortunately, the credit card default data set does not
meet the requirement that fraud data are possibly high-dimensional (i.e., n ≤ p in
this thesis). Therefore, we will sample stratified subsets from the original data set.
The resulting subsets will have different ratios τ of class imbalance and varying ratios
between the sample size n and the number p of covariates, in order to explore different
model settings.

The ratio τ of class imbalance in both the training set and the test set takes the values
of 0.05, 0.1 and 0.2. The sample size n is set to be 100, 255, or 1000, leading to the
ratio n

p
values of 0.39, 1 and 3.92, respectively. The sample size of n = 1000 is only used

as a reference, since it is low-dimensional with n > p. The combination of τ = 0.05 and
n = 100 is not included, since there will be approximately five positive cases in the
sampled training set, which is very difficult for performing cross-validation. Therefore,
we have in total 8 model settings. The expected number of defaults or positive cases in

CHAPTER 4. ILLUSTRATION ON CREDIT CARD DEFAULT DATA 65

the training set is no more than 20 in most of the model settings. To avoid convergence
issues, stratified five-fold cross-validation in Subsection 2.5.2 is implemented for selecting
the optimal values of the penalty parameters.

The test set is sampled independently of the training set, and its size m is set to be
5000, which is large enough, such that the prediction performance is representative.
The sampling of a training set and a test set is repeated 100 times for each model
setting. As the main focus of the study is evaluation metrics, and the effect of
different optimality measures (used in cross-validation of the penalty parameters) on the
prediction performance of the penalized logistic regression methods, we do not sample
a third independent data set to assess the performance of the final chosen model.

Further, we use purely training data to identify the median of a variable for imputation,
so the missing numerical data in both the training set and the test set are replaced
with the median of that variable obtained from the training set. Moreover, numerical
covariates in the test set are standardized with the mean and standard deviation of
that covariate computed from the training set. By doing this, we avoid data leakage
from the training data to the test data.

4.3 Results
In this section, we present the results of the penalized logistic regression methods,
which are applied to stratified subsets of the credit card default data. The prediction
performance of all the methods is evaluated with the following measures: the AUCPR,
the AUC, the maximal AGm with corresponding TPR and TNR, the maximal Gm
with corresponding TPR and TNR, and the Brier score.

For n ≤ p with τ = 0.05 and 0.1, the lasso and elastic net regression only manage to
converge for around 50% and 75% of the 100 sampled data sets, respectively. The ridge
is quite powerful, in the sense that it almost has no problem in converging, regardless
of the ratio τ of class imbalance and the sample size n. Only the results from the
converged models are considered.

4.3.1 Ranking ability
Table 4.2 presents the average AUCPR and AUC. On average the lasso and elastic
net perform better than the ridge, and there is not that much difference between the
overall ranking ability of the lasso and elastic net. Among the lassos, lassoAUCPR most
often produces the highest AUCPR and AUC. This also applies to elastic netAUCPR
among the elastic nets, where the optimality measure AUCPR boost the AUC of the

CHAPTER 4. ILLUSTRATION ON CREDIT CARD DEFAULT DATA 66

Table 4.2: Average AUCPR (upper) and average AUC (bottom). The highest value in
each model setting is printed in bold.

Ridge Lasso Elnet
τ n Deviance AUC AUCPR Deviance AUC AUCPR Deviance AUC AUCPR

0.05 255 0.072 0.072 0.071 0.070 0.082 0.081 0.073 0.077 0.078
1000 0.085 0.085 0.083 0.104 0.103 0.107 0.099 0.099 0.101

0.1 100 0.133 0.132 0.132 0.122 0.126 0.130 0.136 0.130 0.133
255 0.149 0.149 0.147 0.163 0.168 0.167 0.161 0.166 0.167
1000 0.179 0.178 0.175 0.214 0.214 0.216 0.211 0.214 0.217

0.2 100 0.266 0.267 0.263 0.282 0.278 0.278 0.278 0.280 0.281
255 0.297 0.296 0.295 0.333 0.325 0.333 0.329 0.325 0.334
1000 0.347 0.346 0.336 0.390 0.390 0.392 0.389 0.389 0.391

0.05 255 0.604 0.603 0.599 0.574 0.631 0.632 0.602 0.615 0.627
1000 0.643 0.639 0.632 0.679 0.675 0.685 0.674 0.674 0.682

0.1 100 0.586 0.584 0.582 0.549 0.566 0.580 0.592 0.581 0.594
255 0.624 0.622 0.616 0.641 0.647 0.653 0.646 0.649 0.655
1000 0.669 0.666 0.651 0.704 0.700 0.703 0.702 0.701 0.705

0.2 100 0.603 0.603 0.596 0.619 0.615 0.619 0.621 0.621 0.625
255 0.639 0.636 0.628 0.670 0.659 0.670 0.668 0.661 0.671
1000 0.690 0.688 0.665 0.718 0.716 0.715 0.717 0.716 0.716

elastic net to a large extent. Still, the advantage with the optimality measure AUCPR
is only observed in the third decimal. Among the ridges, the ridgedeviance most often
performs the best in terms of the AUC in the third decimal. Nevertheless, none of
the regularization methods is significantly affected by the optimality measure used in
cross-validation of the penalty parameters.

All the methods have better performance as the data become less imbalanced, and for
a larger sample size. However, they all have poor performance in terms of both the
AUCPR and the AUC, especially for τ = 0.05 and n = 100. In general, the AUCPR
is not much higher than the ratio τ of class imbalance, and the AUC, for n ≤ p, only
varies from around 0.57 to 0.67. Therefore, none of the models predict much better
than a random guessing classifier. The learning from the credit card default data must
be much more difficult than learning from the simulated data in Chapter 3. This is no
surprise, as the tasks of learning from real imbalanced data are almost never easy. Also,
the AUC is rather low, even for much less imbalanced data with τ = 0.2. There might
be a lot overlapping among the classes in the credit card default data, or other methods
rather than logistic models may fit this imbalanced data set better, for instance, random
forest, neural networks, etc.

In this case, the AUC can be used for comparing the performance of multiple classifiers,
due to the fact that the AUC, for n ≤ p, actually reveals the poor ranking ability of all

CHAPTER 4. ILLUSTRATION ON CREDIT CARD DEFAULT DATA 67

the models through values that are hardly higher than 0.65. The AUCPR is, however,
seen to be a more appropriate measure if the positive class is more important than the
negative class for the decision maker, which is the case in fraud detection. Besides, for
the lasso and elastic net regression, the results of AUCPR is less variable than the AUC.
In Figure A.8 (in Appendix A.3), a much smaller standard deviation is observed in the
AUCPR (left) than in the AUC (right).

4.3.2 Binary classification performance
It is observed in Table 4.3 that the maximal AGm and Gm often select the same best
model. In this case, if the goal is to compare multiple classifiers in order to select the
best one, which of the AGm and GM to choose, does not matter.

Table 4.3: Average maximal AGm (upper) and average maximal Gm (bottom). The
highest value in each model setting is printed in bold.

Ridge Lasso Elnet
τ n Deviance AUC AUCPR Deviance AUC AUCPR Deviance AUC AUCPR

0.05 255 0.41 0.54 0.36 0.57 0.63 0.66 0.62 0.59 0.64
1000 0.61 0.60 0.53 0.62 0.68 0.70 0.60 0.65 0.67

0.1 100 0.58 0.58 0.52 0.62 0.63 0.63 0.64 0.59 0.64
255 0.54 0.61 0.49 0.64 0.68 0.69 0.67 0.63 0.68
1000 0.66 0.66 0.61 0.68 0.69 0.70 0.69 0.68 0.70

0.2 100 0.59 0.61 0.54 0.65 0.65 0.66 0.66 0.64 0.65
255 0.62 0.64 0.61 0.68 0.68 0.69 0.68 0.66 0.69
1000 0.67 0.67 0.65 0.70 0.70 0.70 0.70 0.70 0.70

0.05 255 0.41 0.51 0.42 0.49 0.54 0.56 0.53 0.51 0.55
1000 0.57 0.56 0.55 0.55 0.60 0.62 0.53 0.58 0.59

0.1 100 0.55 0.55 0.54 0.42 0.50 0.52 0.56 0.50 0.55
255 0.49 0.56 0.50 0.56 0.61 0.61 0.60 0.58 0.62
1000 0.60 0.60 0.57 0.63 0.63 0.64 0.63 0.63 0.64

0.2 100 0.56 0.56 0.54 0.58 0.58 0.60 0.60 0.58 0.60
255 0.57 0.58 0.53 0.63 0.63 0.63 0.63 0.60 0.63
1000 0.62 0.62 0.59 0.65 0.65 0.65 0.65 0.65 0.65

On average the ridge produces lower AGm than the lasso and elastic net, and ridgeAUCPR
performs the worst among the ridges. The lassoAUCPR out of all the methods most
often gives the highest AGm, whereas lassodeviance gives much lower AGm than the
other lassos, for τ = 0.05. The elastic netAUCPR most often gives the highest AGm
among the elastic nets, but the difference between the performance of elastic netAUCPR
and elastic netdeviance is negligible, for τ = 0.1 and 0.2. For the lasso and elastic net,
the optimality measure AUCPR may be preferred, since it on average gives better
results than the deviance and AUC.

CHAPTER 4. ILLUSTRATION ON CREDIT CARD DEFAULT DATA 68

The maximal AGm is obtained at a higher threshold than the maximal Gm. The latter
usually chooses the optimal threshold that is close to τ . Therefore, the AGm achieves
a higher TNR and a lower TPR than the Gm, as shown in Table 4.4. Even though
the TNR obtained with the maximal AGm is very high, indicating a relatively small
FPR (loss), the TPR (benefit) is less than 0.5. The best model chosen by the maximal
Gm gives a balanced combination of TPR and TNR, whose values vary only from 0.5
to 0.6. Regardless of whether the AGm or the Gm is chosen to decide the optimal
threshold for classification, the resulting TPR will not be very high. The TPR only
achieves a high value at a much smaller threshold than τ , as shown in Figure A.9 (in
Appendix A.3), where we observe also that rather small predicted event probabilities
are assigned to most of the cases. As there is a very large proportion of negative cases
in the data, a rather small FPR is desired in fraud detection. Therefore, the AGm is
still recommended for selecting the optimal threshold for such high-dimensional and
class imbalanced data.

Table 4.4: τ = 0.1. Average TPR and average TNR according to the average maximal
AGm (upper) and the average maximal Gm (bottom), respectively. The TPR and
TNR resulting in the highest average maximal AGm and Gm, are printed in bold,
respectively.

Ridge Lasso Elnet
n Deviance AUC AUCPR Deviance AUC AUCPR Deviance AUC AUCPR

tpr,tnr tpr,tnr tpr,tnr tpr,tnr tpr,tnr tpr,tnr tpr,tnr tpr,tnr tpr,tnr
100 0.37 0.71 0.37 0.72 0.47 0.60 0.20 0.90 0.24 0.86 0.22 0.87 0.30 0.82 0.30 0.78 0.28 0.83
255 0.43 0.67 0.34 0.78 0.32 0.72 0.36 0.81 0.33 0.85 0.35 0.85 0.35 0.83 0.36 0.80 0.35 0.84
1000 0.33 0.83 0.34 0.81 0.25 0.85 0.39 0.83 0.36 0.85 0.38 0.85 0.38 0.84 0.39 0.82 0.38 0.85

100 0.59 0.52 0.59 0.52 0.61 0.49 0.32 0.79 0.47 0.67 0.49 0.65 0.55 0.60 0.51 0.61 0.55 0.60
255 0.67 0.46 0.62 0.54 0.75 0.35 0.62 0.60 0.60 0.63 0.59 0.65 0.61 0.62 0.66 0.56 0.62 0.62
1000 0.61 0.59 0.60 0.60 0.64 0.51 0.64 0.63 0.62 0.64 0.64 0.64 0.63 0.64 0.64 0.63 0.64 0.64

4.3.3 The Brier score
Table 4.5 reports the average Brier score. Table 4.6 presents the average Brier score bs1
of the positive class and the average Brier score bs0 of the negative class.

All the methods produce almost identical Brier score in each model setting. The fact
that there is not that much difference between the bs0 of all the methods in each model
setting, explains why similar average Brier scores are produced, since the negative cases
are in majority, and the total Brier score is dominated by the bs0.

CHAPTER 4. ILLUSTRATION ON CREDIT CARD DEFAULT DATA 69

Table 4.5: Average Brier score.

Ridge Lasso Elnet
τ n Deviance AUC AUCPR Deviance AUC AUCPR Deviance AUC AUCPR

0.05 255 0.05 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.05
1000 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

0.1 100 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
255 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
1000 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09

0.2 100 0.16 0.16 0.16 0.16 0.17 0.16 0.16 0.17 0.16
255 0.16 0.16 0.16 0.15 0.16 0.15 0.15 0.16 0.15
1000 0.15 0.15 0.16 0.14 0.15 0.15 0.14 0.15 0.15

Table 4.6: Average Brier score bs1 of the positive class and average Brier score bs0 of
the negative class. The lowest bs1 in each model setting is printed in bold.

Ridge Lasso Elnet
τ n Deviance AUC AUCPR Deviance AUC AUCPR Deviance AUC AUCPR

bs1, bs0 bs1, bs0 bs1, bs0 bs1, bs0 bs1, bs0 bs1, bs0 bs1, bs0 bs1, bs0 bs1, bs0

0.05 255 0.89 0 0.89 0 0.90 0 0.89 0 0.88 0.01 0.88 0 0.89 0 0.90 0 0.88 0
1000 0.89 0 0.88 0 0.90 0 0.87 0 0.88 0 0.86 0 0.87 0 0.88 0 0.87 0

0.1 100 0.80 0.01 0.80 0.01 0.81 0.01 0.79 0.01 0.79 0.01 0.78 0.01 0.78 0.01 0.80 0.01 0.79 0.01
255 0.79 0.01 0.79 0.01 0.80 0.01 0.77 0.01 0.77 0.02 0.76 0.01 0.78 0.01 0.78 0.01 0.77 0.01
1000 0.77 0.01 0.77 0.01 0.80 0.01 0.75 0.01 0.75 0.01 0.75 0.01 0.75 0.01 0.77 0.01 0.76 0.01

0.2 100 0.63 0.04 0.63 0.04 0.64 0.04 0.61 0.04 0.62 0.06 0.61 0.05 0.61 0.04 0.63 0.05 0.62 0.04
255 0.61 0.04 0.62 0.04 0.64 0.04 0.59 0.04 0.59 0.05 0.59 0.04 0.59 0.04 0.60 0.05 0.60 0.04
1000 0.57 0.04 0.58 0.04 0.63 0.04 0.55 0.04 0.56 0.04 0.56 0.04 0.55 0.04 0.58 0.04 0.58 0.04

On average, the lasso and elastic netdeviance give lower bs1 than the other methods, but
the difference is not that much. The ridgeAUCPR gives usually slightly higher bs1 than
ridgedeviance and ridgeAUC , whereas the lassoAUCPR most often produces the lowest bs1
among all the methods. However, for the lasso and elastic net, the difference between
the bs1 resulted from different optimality measures is rather minor.

The average Brier score increases for a larger τ , meaning that a model is less sharp and
less confident about its prediction as the data become less imbalanced. It is worth noting
that, it does not necessarily mean that the model is worse in prediction performance, for
instance, in terms of the ranking ability. And the reason why the Brier score increases
for less imbalance, is that a fitted model becomes less sharp in the negative class, as
a consequence of much more positives or defaults in the training data. So the fitted
model produces a slightly higher bs0, which dominates the total Brier score due to a
very large number N of negative cases in the test set, despite the fact that the model is
actually much sharper in producing predicted event probabilities that are closer to 1
for true positives. As observed in Table 4.6, the bs1 actually decreases much more than
the bs0 increases, for a larger τ .

CHAPTER 4. ILLUSTRATION ON CREDIT CARD DEFAULT DATA 70

4.3.4 Tuning the penalty parameter
As discussed earlier, the ranking ability of each of the regularization methods is not
significantly affected (not until the third decimal) by the optimality measure used
in cross-validation of the penalty parameters. However, for the ridge regression, the
AUCPR tends to choose a much larger λ than the deviance and AUC, as shown in Figure
A.10 (in Appendix A.3). Too much penalization may be the reason why the ridgeAUCPR
most often produces lowest AUCPRs and AUCs in third decimal. Additionally, the
optimal value of λ decreases for a larger sample size. As shown in Figure A.11 (in
Appendix A.3), for the lasso regression, the optimal value of λ chosen by each of the
three optimality measures is quite similar, which directly explains why the lasso is not
affected by the measure used in tuning the penalty parameter.

Moreover, it is of interest to investigate whether tuning the penalty parameter affects
the prediction performance of the regularization methods, for the credit card default
data. Figure 4.2 shows respectively the cross-validated AUC curves (upper panel)
and the cross-validated AUCPR curves (bottom panel) as the functions of the penalty
parameter λ for the ridge, lasso and elastic net (α = 0.4) regression. The curves are
plotted from one random experiment run with τ = 0.1 and n = 255. All curves are
concave and have a maximum point, meaning that tuning the penalty parameter is not
meaningless. In the ridge regression, the cross-validated AUCPR curve is quite flat over
a wide range near the maximum, whereas the cross-validated AUC curve is pointed
around the maximal AUC. This explains why ridgeAUCPR produces much smaller AUC,
but only slightly lower (hardly noticeable) AUCPR than the other ridges, since the
AUCPR usually chooses a larger λ than the AUC and deviance in Figure A.10 (in
Appendix A.3). It is also observed that the AUCPR and AUC choose approximately
the same optimal value of λ for the lasso and elastic net (α = 0.4), which again gives
almost the same ranking ability, either evaluated by the AUC, or the AUCPR.

The elastic net tends to select many more covariates than the lasso, as shown in Figure
A.12 (in Appendix A.3). Although the lasso selects fewer variables, it still performs
similarly (in terms of the ranking ability) as the elastic net that selects many more
variables. The reason may be that, compared to the elastic net, the lasso selects
variables which consist of adequate truly influential variables. In terms of interpretation,
the simpler model is typically better. The lasso should be favored over the elastic net in
terms of model interpretation. The lassodeviance and elastic netAUCPR select respectively
the least amount of variables among the lassos and elastic nets. No particular relation
is observed between the number of selected variables and the prediction performance in
terms of the AUCPR and AUC.

CHAPTER 4. ILLUSTRATION ON CREDIT CARD DEFAULT DATA 71

Ridge
AUCmax = 0.6641

−4 −2 0 2 4

0.
50

0.
55

0.
60

0.
65

Log lambda

A
U

C

Lasso
AUCmax = 0.7076

−10 −8 −6 −4 −2

0.
50

0.
55

0.
60

0.
65

0.
70

Log lambda

A
U

C

Elastic net(α = 0.4)
AUCmax = 0.7085

−10 −8 −6 −4 −2

0.
50

0.
55

0.
60

0.
65

0.
70

Log lambda

A
U

C

AUCPRmax = 0.1721

−4 −2 0 2 4

0.
10

0.
12

0.
14

0.
16

Log lambda

A
U

C
P

R

AUCPRmax = 0.1872

−10 −8 −6 −4 −2

0.
10

0.
14

0.
18

Log lambda

A
U

C
P

R

AUCPRmax = 0.1857

−10 −8 −6 −4 −2
0.

10
0.

14
0.

18
Log lambda

A
U

C
P

R

Figure 4.2: Cross-validation plots of how the AUC (upper panel) and AUCPR (bottom
panel) vary with the penalty parameter λ in the ridge (left), the lasso (middle) and
elastic net (right) regression, for τ = 0.1 and n = 255. The grey dashed line marks the λ
value where the best ranking ability is achieved. The AUC and AUCPR actually select
respectively the same optimal value of λ in the lasso and elastic net (α = 0.4) regression.
Models do not converge for a too big penalty, therefore, producing an abnormal red
point that drops to the baseline level.

0.05 0.10 0.15 0.20

0
5

10
15

20
25

30
35

Lasso, n = 255

Class imbalance

A
ve

ra
ge

 n
um

be
r

of
 s

el
ec

te
d

co
va

ria
te

s

Deviance
AUC
AUCPR

0.05 0.10 0.15 0.20

0
5

10
15

20
25

30
35

Elastic net, n = 255

Class imbalance

A
ve

ra
ge

 n
um

be
r

of
 s

el
ec

te
d

co
va

ria
te

s

Deviance
AUC
AUCPR

Figure 4.3: Plots of average number of selected covariates in the lasso and elastic
net regression, respectively. The sample size n = 255, which is also the number p of
covariates.

CHAPTER 4. ILLUSTRATION ON CREDIT CARD DEFAULT DATA 72

4.3.5 An additional evaluation metric
Even if the models’ actual ranking ability measured by the actual ranking score cannot
be examined here, it is still possible to calculate the proportion of true positives among
the top n1 cases with the highest predicted event probabilities. The n1 is the number of
the true positives in the test set. Like the actual ranking score, this alternative measure
is also based on the assumption that the insurance company is only capable of manually
controlling a few cases that are most likely to be fraudulent, based on the predicted
event probabilities p̂(x)s returned by the prediction model. Further, whether the p̂(x)
is well-calibrated or not, does not affect the ordering among all the cases according
to the p̂(x). This additional measure should also equal the proportion of successfully
detected true positives among all the true positive cases. In other words, it corresponds
to the particular TPR determined by a threshold which gives n1 predicted positive
cases.

Table 4.7 reports the average proportion of true positives among the top n1 cases with
the highest p̂(x)s. On average, the lasso and elastic net regression perform better than
the ridge. The ridge preforms the same, regardless of the optimality measure used for
tuning the penalty parameter. This also applies to the lasso and elastic net regression for
n = 1000. The lassodeviance always gives the highest score, and it outperforms any other
method substantially, especially for very high-dimensional and severely class imbalanced
data. It is not easy to decide which optimality measure is the best or the worst for the
elastic net, as it seems to be sample-dependent, at least for high-dimensional data.

Table 4.7: Average proportion of true positives among the n1 cases with the highest
predicted event probabilities. The highest value in each model setting is printed in
bold.

Ridge Lasso Elnet
τ n Deviance AUC AUCPR Deviance AUC AUCPR Deviance AUC AUCPR

0.05 255 0.09 0.09 0.09 0.43 0.20 0.11 0.30 0.18 0.11
1000 0.11 0.11 0.11 0.15 0.14 0.15 0.14 0.14 0.14

0.1 100 0.15 0.15 0.15 0.49 0.27 0.18 0.16 0.23 0.15
255 0.18 0.18 0.18 0.26 0.22 0.22 0.23 0.21 0.21
1000 0.22 0.22 0.22 0.26 0.26 0.26 0.26 0.26 0.26

0.2 100 0.29 0.29 0.29 0.36 0.31 0.30 0.33 0.31 0.31
255 0.33 0.33 0.33 0.36 0.35 0.36 0.35 0.35 0.36
1000 0.38 0.38 0.36 0.41 0.41 0.41 0.41 0.41 0.41

Compared to the AUC which looks at the overall ranking ability, the proportion of
true positives among the n1 cases with the highest predicted event probabilities, is
more related to the practical purpose of detecting the few true positives among a large
number of cases. It is also related to ranking, but only of a subset of the cases.

CHAPTER 4. ILLUSTRATION ON CREDIT CARD DEFAULT DATA 73

4.4 Summary
In this chapter, we applied the penalized logistic regression methods to a real credit
card default data set.

The results from this chapter are summarized below:

• The ridgeAUCPR performs the worst among the ridges, in terms of the AUCPR and
AUC, and its worst performance is, however, only observed in the third decimal.
Other than that, the prediction performance of the ridge is hardly affected by the
optimality measure used in cross-validation of the penalty parameter λ.

• On average, the lassoAUCPR and elastic netAUCPR perform respectively the best
among the lassos and among the elastic nets, especially when they are evaluated in
terms of the AUCPR, the AUC, the AGm and the Gm. In particular, the elastic
net is boosted by the optimality measure AUCPR, as it very often achieves the
highest AUC and AUCPR among all the methods. Nevertheless, the difference
between the classifiers’ performance in terms of the AUCPR and the AUC is only
significant in the third decimal.

• Overall, all the methods show rather poor ranking ability, especially for highly
class imbalanced, or very high-dimensional data (i.e., τ = 0.05, or n = 100). The
imbalanced learning from the credit card default data is much more difficult than
the simulation study in Chapter 3. Here, the AUC reveals also the models’ poor
performance. In this case, either of the AUCPR and the AUC may be used as
the performance measure for model selection.

• The lasso and elastic net perform better than the ridge, in terms of both the
overall ranking ability and the binary classification performance. In each setting,
all the methods produce rather similar Brier score bs0 of the negative class, and,
therefore, obtain almost identical total Brier score. The difference in the Brier
score bs1 of the positive class is negligible, either between the penalized logistic
regression methods, or between the optimality measures used in cross-validation
of the penalty parameters.

• As the data become less imbalanced, or for a larger sample size n, all the methods
have better performance, in terms of larger AUCPR, AUC, AGm and Gm, and
smaller Brier score bs1 of the positive class.

• The lassodeviance significantly outperforms any other method, in achieving the
highest proportion of true positives among the top-ranked n1 cases according the

CHAPTER 4. ILLUSTRATION ON CREDIT CARD DEFAULT DATA 74

predicted event probabilities, especially for high imbalance (i.e., τ = 0.05), or
high-dimension (i.e., n = 100).

The following conclusions are drawn:

• The illustration on the credit card default data produces some different results
compared to the simulation study in Chapter 3. Still, we may conclude that,
whether the optimality measure used in cross-validation of the penalty parameters
is effective in selecting the optimal penalty parameter value that will optimize the
prediction performance, or if there should be any preference for the optimality
measure, seems to depend on the type of learning methods and data, evaluation
metric used for model selection, etc.

• When the imbalanced learning problem gets very difficult, the AUC may reveal
the poor ranking ability of a model, and thus, may be used to rank multiple
models in model selection. But the AUC may still not suit fraud detection, where
detecting the positive class is usually of the main interest.

• The Brier scores of both classes (i.e., bs1 and bs0) are suggested to be investigated,
in addition to the Brier score, for imbalanced learning problems.

• In this case, if one is even interested in the improvement in terms of the AUCPR
and AUC in the third decimal, the AUCPR is then suggested as the optimality
measure in cross-validation of the penalty parameters, for the elastic net and lasso
regression.

Chapter 5

Conclusion and discussion

In this thesis, we have used the penalized logistic regression models for handling class
imbalanced and high-dimensional data, and explored different measures of prediction
performance used for model selection in the setting of fraud detection. In particular, a
large part of the work has been devoted to investigating the behavior of the penalized
logistic regression models for different optimality measures used in cross-validation of the
penalty parameters, and to demonstrating the evaluation metrics that are appropriate,
or inappropriate for model selection when the data are class imbalanced, and possibly
high-dimensional.

This has been investigated on simulated data and on sample subsets of a real credit
card default data, with a range of imbalance levels, and with varying ratios between
the sample size and the number of covariates.

We have demonstrated that, for class imbalanced and high-dimensional data, the
AUCPR has many advantages over the AUC, both in comparing the performance of
multiple classifiers and in giving an accurate interpretation of a classifier’s prediction
performance. We recommend that the AUCPR, rather than the AUC, is of more
practical use for fraud detection, as it, when necessarily, can manage to reveal the poor
performance of a classifier on the minority class.

Furthermore, we discovered that, for data that are neither severely imbalanced nor
very high-dimensional, the optimality measure AUCPR used in cross-validation of the
penalty parameters, significantly boosted the performance of the logistic regression
method with the elastic net penalty, in terms of the AUCPR, the AUC, the variable
selection property and binary classification performance. Meanwhile, the elastic netAUC
did not give the highest AUC among the elastic nets, which seems to contradict the
intuition that, a learning method optimized with respect to measure A, is supposed to

75

CHAPTER 5. CONCLUSION AND DISCUSSION 76

perform at least similarly to, if not better than, the same learning method optimized
with respect to measure B, in terms of measure A. The lassoAUCPR achieved also the
best variable selection property among the lassos, despite the fact that the ranking
ability and Brier score of the lasso are hardly affected by the optimality measures used.

The learning from the credit card default data was so difficult that none of the
regularization methods performed very well. Neither were the methods strongly affected
by the optimality measure used in cross-validation of the penalty parameters. The
elastic netAUCPR and lassoAUCPR, however, provided respectively better results (e.g.,
the AUC, the AUCPR, the Agm, etc) than the other elastic nets and lassos, in the third
decimal. This result might still be useful for investigators who are even interested in a
small increase in the prediction performance, when no methods perform decently well
for rather challenging imbalanced learning problems. Also, the Brier score produced by
the penalized logistic regression methods was not very meaningful in comparing their
sharpness. Therefore, we recommend that investigators report also the Brier score of
the positive class, and the Brier score of the negative class, for class imbalanced data.
For real fraud detection tasks where the ratio of class imbalance is unknown for new
coming data, both the AUCPR and the AUC might be provided in order to draw more
reliable conclusions on the models’ prediction performance, since the baseline in the
PR space is not invariant.

Overall, the results have shown that whether and how the optimality measure used in
cross-validation of the penalty parameters, will affect the performance of each of the
regularization methods, depends on many factors. The choice of measure of prediction
performance used in the validation phase, and the choice of the measure used for
achieving the optimal performance in the training phase, should be made with care.
The two measures are not always consistent for highly imbalanced data, which is at
least true for the AUC.

Part of the conclusions drawn from the simulation study and the illustration on the credit
card default data are different, and the imbalanced learning from the credit card default
data seems to be much more difficult than from the simulated data. In the simulation
study, we could have also experimented with more complicated simulation settings,
for instance, by increasing the overlapping among the classes to make the imbalanced
learning problem more difficult. In such cases, more comprehensive conclusions could
have been drawn with respect to the objective of our study.

In addition, the imputation method for the numerical data is relatively naive in the
analysis of the credit card default data, which might contribute to the fact that the
imbalanced learning from the simply imputed data is rather challenging. We could have
also done the regression analysis on the relation between the outcome and covariates

CHAPTER 5. CONCLUSION AND DISCUSSION 77

with missing information, such that the missing numerical data are imputed in a more
advanced way. In such cases, different results may be obtained.

As we noticed that, for severe imbalance, or very high-dimension, each of the penalized
logistic regression methods, performed equally poorly, regardless of the measures used
in cross-validation of the penalty parameters. For such highly imbalanced and very high-
dimensional data, other possible approaches may be helpful in improving the prediction
performance (e.g., the AUCPR) of the penalized logistic regression models. For instance,
re-sampling techniques which are discussed in Section 3.5 may be implemented before
the training phase. Also, for highly class imbalanced data with a small number of
positive classes, data cleaning methods using Tomek links may be, hopefully, effective
in producing better results of the AUCPR.

Appendices

78

Appendix A

Figures and tables

A.1 Methods

−4 −2 0 2 4−0
.2

−0
.1

0.0
0.1

0.2
0.3

Log Lambda

Co
eff

icie
nts

1000 1000 1000 1000 1000

Figure A.1: Plot of how all the 1000 coefficients vary with the penalty parameter λ in
the ridge regression. All coefficients are shrunk proportionally to very small values, but
no coefficient will be exactly zero, as the λ increases from around 0.02 to 55.

79

APPENDIX A. FIGURES AND TABLES 80

−10 −8 −6 −4

−0
.5

0.0
0.5

1.0
1.5

Log Lambda

Co
eff

icie
nts

216 199 154 40

Figure A.2: Plot of how the lasso regression selects variables with different values of
the penalty parameter λ.

APPENDIX A. FIGURES AND TABLES 81

A.2 Simulation study
τ = 0.01

1000 1500 2000 2500 3000

0
2

4
6

8
10

Sample size n of the training set

L
am

b
d

a

Deviance
AUC
AUCPR

τ = 0.2

0 500 1500 2500

0
20

60
10
0

14
0

Sample size n of the training set

L
am

b
d

a

Deviance
AUC
AUCPR

Figure A.3: Plots of average shrinkage parameter λ chosen by the three measures in
the ridge regression.

APPENDIX A. FIGURES AND TABLES 82

Ridge

−4 −2 0 2 4

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Log lambda

A
U

C
P

R

−4 −2 0 2 4

0.
80

0.
85

0.
90

0.
95

Log(λ)

A
U

C

1000 1000 1000 1000 1000 1000

−4 −2 0 2 4

0.
50

0.
55

0.
60

0.
65

Log(λ)

B
in

om
ia

l D
ev

ia
nc

e

1000 1000 1000 1000 1000 1000

Lasso

−10 −8 −6 −4

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Log lambda

A
U

C
P

R

−10 −8 −6 −4

0.
6

0.
7

0.
8

0.
9

Log(λ)

A
U

C

218 211 199 184 147 83 40 16

−10 −8 −6 −4

0.
3

0.
4

0.
5

0.
6

Log(λ)

B
in

om
ia

l D
ev

ia
nc

e

218 211 199 184 147 83 40 16

Elastic net(α = 0.11)

−8 −6 −4 −2

0.
2

0.
4

0.
6

0.
8

Log lambda

A
U

C
P

R

−8 −6 −4 −2

0.
6

0.
7

0.
8

0.
9

Log(λ)

A
U

C

632 594 555 495 414 294 99 34 0

−8 −6 −4 −2

0.
3

0.
4

0.
5

0.
6

Log(λ)

B
in

om
ia

l D
ev

ia
nc

e

632 594 555 495 414 294 99 34 0

Figure A.4: Cross-validation plots of how the AUCPR (left), AUC (middle) and deviance
(right) vary with the penalty parameter λ in the ridge (upper panel), lasso (middle
panel) and elastic net (bottom panel) regression for τ = 0.1 and n = 1000. In the ridge
and lasso regression, each of the three measures chooses its own optimal λ value from a
very wide range of λ where the AUCPR stays constant.

APPENDIX A. FIGURES AND TABLES 83

Table A.1: Average α in the elastic net regression. A smaller α means a smaller
percentage of the L1-norm penalty and a larger percentage of the L2-norm penalty. For
reference, the ridge regression is with α = 0 and the lasso regression is with α = 1.

Elnet
τ n Deviance AUC AUCPR

0.01 800 0.53 0.41 0.51
1000 0.54 0.35 0.39
3000 0.70 0.37 0.27

0.05 800 0.62 0.37 0.21
1000 0.59 0.49 0.17
3000 0.71 0.71 0.11

0.1 100 0.48 0.39 0.29
800 0.52 0.53 0.14
1000 0.56 0.54 0.11
3000 0.79 0.85 0.10

0.2 100 0.51 0.29 0.29
800 0.52 0.58 0.12
1000 0.58 0.68 0.12
3000 0.89 0.85 0.10

APPENDIX A. FIGURES AND TABLES 84

τ = 0.05 τ = 0.1

Figure A.5: PR curves (upper panel) and ROC curves (bottom panel) of all regularization
methods. For each of the two ratios of class imbalance, all models are trained on the
same 1000× 1000 training set and evaluated on the same 3000× 1000 test set.

APPENDIX A. FIGURES AND TABLES 85

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Threshold

A
G

m

ridge_deviance
lasso_deviance
elnet_deviance
ridge_AUC
lasso_AUC
elnet_AUC
ridge_AUCPR
lasso_AUCPR
elnet_AUCPR

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Threshold

G
m

ridge_deviance
lasso_deviance
elnet_deviance
ridge_AUC
lasso_AUC
elnet_AUC
ridge_AUCPR
lasso_AUCPR
elnet_AUCPR

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Threshold

T
P

R

ridge_deviance
lasso_deviance
elnet_deviance
ridge_AUC
lasso_AUC
elnet_AUC
ridge_AUCPR
lasso_AUCPR
elnet_AUCPR

ridge_deviance
lasso_deviance
elnet_deviance
ridge_AUC
lasso_AUC
elnet_AUC
ridge_AUCPR
lasso_AUCPR
elnet_AUCPR

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Threshold

T
N

R

ridge_deviance
lasso_deviance
elnet_deviance
ridge_AUC
lasso_AUC
elnet_AUC
ridge_AUCPR
lasso_AUCPR
elnet_AUCPR

Figure A.6: The AGm, Gm, TPR and TNR curves of all the regularization methods
from one simulation, which is run with τ = 0.1 and n = 1000. The elastic netAUCPR is
the best, and it achieves the highest AGm and Gm at the thresholds of 0.197 and 0.16,
respectively.

APPENDIX A. FIGURES AND TABLES 86

Ridge_deviance (P:27, N:2973)

Probability

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
15

00
25

00

Ridge_AUC (P:27, N:2973)

Probability

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
15

00
25

00

Ridge_AUCPR (P:27, N:2973)

Probability

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
15

00
25

00

Lasso_deviance (P:27, N:2973)

Probability

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
15

00
25

00

Lasso_AUC (P:27, N:2973)

Probability

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
15

00
25

00

Lasso_AUCPR (P:27, N:2973)

Probability

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
15

00
25

00

Elnet_deviance (P:27, N:2973)

Probability

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
15

00
25

00

Elnet_AUC (P:27, N:2973)

Probability

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
15

00
25

00

Elnet_AUCPR (P:27, N:2973)

Probability

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
15

00
25

00

Figure A.7: Histogram plots of predicted event probabilities (red) and true event
probabilities (grey), for τ = 0.01 and n = 1000.

APPENDIX A. FIGURES AND TABLES 87

APPENDIX A. FIGURES AND TABLES 88

A.3 Illustration on credit card default data

0.05 0.10 0.15 0.20

0.
01

0.
02

0.
03

0.
04

0.
05

Lasso, n = 255

Class imbalance

S
d

of
 th

e
A

U
C

P
R

Deviance
AUC
AUCPR

(a)

0.05 0.10 0.15 0.20

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09

Lasso, n = 255

Class imbalance

S
d

of
 th

e
A

U
C

Deviance
AUC
AUCPR

(b)

0.05 0.10 0.15 0.20

0.
01

0.
02

0.
03

0.
04

0.
05

Elastic net, n = 255

Class imbalance

S
d

of
 th

e
A

U
C

P
R

Deviance
AUC
AUCPR

(c)

0.05 0.10 0.15 0.20

0.
01

0.
03

0.
05

0.
07

Elastic net, n = 255

Class imbalance

S
d

of
 th

e
A

U
C

Deviance
AUC
AUCPR

(d)

Figure A.8: Plots of the average standard deviation of the AUCPR and AUC in the lasso
(upper panel) and elastic net (bottom panel) regression, respectively. In Figure A.8a,
the lasso gives the same standard deviation of the AUCPR, regardless of the optimality
measure used in cross-validation of the penalty parameter. In Figure A.8c, the elastic
netAUCPR and elastic netAUC have the same standard deviation of the AUCPR.

APPENDIX A. FIGURES AND TABLES 89

Ridgedeviance

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Threshold

T
P

R

Predicted event probability

F
re

qu
en

cy
0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
5

10
15

20
25

30

Figure A.9: The TPR curve over all the thresholds (left) and the histogram plot of the
predicted event probabilities (right) given by ridgedeviance, for τ = 0.1, n = 255, and
m = 5000 (i.e., the number of cases in the test set). The training and test data are
sampled from the credit card default data. The TPR curves of the other regularization
methods follow a similar pattern, and thus not given. The blue line is the threshold
value of 0.103 chosen by the maximal Gm, and the red line is the threshold value of
0.114 chosen by the maximal AGm.

APPENDIX A. FIGURES AND TABLES 90

τ = 0.1

200 400 600 800 1000

0
10

20
30

40
50

60
70

Sample size n of the training set

La
m

bd
a

Deviance
AUC
AUCPR

τ = 0.2

200 400 600 800 1000

0
10

20
30

40
50

60
70

Sample size n of the training set

La
m

bd
a

Deviance
AUC
AUCPR

Figure A.10: Plots of average shrinkage parameter λ chosen by the three measures in
the ridge regression.

τ = 0.1

200 400 600 800 1000

0.
02

0.
04

0.
06

0.
08

Sample size n of the training set

La
m

bd
a

Deviance
AUC
AUCPR

τ = 0.2

200 400 600 800 1000

0.
02

0.
04

0.
06

0.
08

Sample size n of the training set

La
m

bd
a

Deviance
AUC
AUCPR

Figure A.11: Plots of average shrinkage parameter λ chosen by the three measures in
the lasso regression.

APPENDIX A. FIGURES AND TABLES 91

0.05 0.10 0.15 0.20

0
5

10
15

20
25

30
35

Lasso, n = 255

Class imbalance

A
ve

ra
ge

 n
um

be
r

of
 s

el
ec

te
d

co
va

ria
te

s

Deviance
AUC
AUCPR

0.05 0.10 0.15 0.20
0

5
10

15
20

25
30

35

Elastic net, n = 255

Class imbalance

A
ve

ra
ge

 n
um

be
r

of
 s

el
ec

te
d

co
va

ria
te

s

Deviance
AUC
AUCPR

Figure A.12: Plots of average number of selected covariates in the lasso and elastic net
regression, respectively. Here, the sample size n = 255, which is also the number p of
covariates.

Appendix B

R-code

B.1 Data simulation
1 library(MASS)
2 library(glmnet) # library to perform the ridge, lasso and elastic net regression
3 library(precrec) # library to compute the AUCPR and the AUC
4 library(caret) # library to compute the confusion matrix
5 library(doParallel) # library for parallel computing
6 library(rvinecopulib) # library to compute the true event probabilities
7
8 #Generate the correlation matrices
9 library(randcorr)

10 set.seed(12022022)
11 rho <- function(p){
12 rho<- randcorr(p)
13 if(sum(eigen(rho)$values<= 0)>0){
14 cat(" Correlation matrix is not positive definite.")
15 }else{
16 return(rho)
17 }
18 }
19 rho0 <- rho(1000);rho1<- rho(1000) # Generate two pre-fixed different correlation matrices
20 write.table(rho0, file=sprintf("rho0"));
21 write.table(rho1, file=sprintf("rho1"));
22
23 rho0<-read.table(file=sprintf("rho0"))
24 rho1<-read.table(file=sprintf("rho1"))
25
26
27 #Define sim_dat for generating the data by the Gaussian copula approach
28 sim_dat <- function(n,p,p.y,mu1,sigma1,alpha1,gamma1,pB1_1,pB2_1,ind.cov){
29 y<-rbinom(n,size=1, prob = p.y)
30 index0<-which(y==0)

92

APPENDIX B. R-CODE 93

31 n0<-length(index0)
32
33 index1<-which(y==1)
34 n1<-length(index1)
35
36 z0<-u0<-x0<-array(NA, c(n0,p))
37 z0<-mvrnorm(n0,rep(0,p),rho0)
38 u0<-pnorm(z0)
39
40 z1<-u1<-x1<-array(NA, c(n1,p))
41 z1<-mvrnorm(n1,rep(0,p),rho1)
42 u1<-pnorm(z1)
43
44 marg.types <- c(rep("norm",300),rep("gamma",300),
45 rep("bern_1",200),rep("bern_2",200))
46 if(p==1000){
47 for(i in 1:p)
48 {
49 if(marg.types[i] == "norm")
50 {
51 x0[,i]<-qnorm(u0[,i],0,1)
52 if(is.element(i,ind.cov))
53 {
54 x1[,i]<-qnorm(u1[,i],mu1,sigma1)
55 }
56 else
57 {
58 x1[,i]<-qnorm(u1[,i],0,1)
59 }
60 }
61 else if(marg.types[i] == "gamma")
62 {
63 x0[,i]<-qgamma(u0[,i],2,2)
64 if(is.element(i,ind.cov))
65 {
66 x1[,i]<-qgamma(u1[,i],alpha1,gamma1)
67 }
68 else
69 {
70 x1[,i]<-qgamma(u1[,i],2,2)
71 }
72 }
73 else if(marg.types[i] == "bern_1")
74 {
75 x0[,i]<-1*(u0[,i]<0.1)
76 if(is.element(i,ind.cov))
77 {
78 x1[,i]<-1*(u1[,i]<pB1_1)
79 }

APPENDIX B. R-CODE 94

80 else
81 {
82 x1[,i]<-1*(u1[,i]<0.1)
83 }
84 }
85 else if(marg.types[i] == "bern_2")
86 {
87 x0[,i]<-1*(u0[,i]<0.5)
88 if(is.element(i,ind.cov))
89 {
90 x1[,i]<-1*(u1[,i]<pB2_1)
91 }
92 else
93 {
94 x1[,i]<-1*(u1[,i]<0.5)
95 }
96 }
97 }
98
99 }else {cat("The dimension of predicitors p is not equal to 1000.")}

100 dat0<-cbind(rep(0,n0),x0)
101 dat1<-cbind(rep(1,n1),x1)
102 dat<-rbind(dat1,dat0)
103 rm(u0,z0,u1,z1)
104 gc()
105 return(dat)
106 }

B.2 Stratified k-fold cross-validation
1 scv <- function(y,k){ #y is the target set
2 index0<-which(y==0)
3 n0<-length(index0)
4
5 index1<-which(y==1)
6 n1<-length(index1)
7
8 n<-n0+n1
9 index<- numeric(n)

10 if ((n0%%k) == 0){
11 index[index0]<-sample(rep(1:k,times = n0%/%k))
12 }else if((n0%%k) > 0){
13 index[index0]<-sample(c(rep(1:k,times=n0%/%k),1:(n0%%k)))
14 }
15 if ((n1%%k) == 0){
16 index[index1]<-sample(rep(1:k,times = n1%/%k))
17 }else if((n1%%k) > 0){ #n1%%k returns the remainder
18 index[index1]<-sample(c(rep(1:k,times=n1%/%k),1:(n1%%k)))

APPENDIX B. R-CODE 95

19 }
20 return(index)
21 }

B.3 Computing the true event probabilities
The code in B.3 is provided by my supervisor Ingrid Hobæk Haff.

1 #Computing the true event probabilities
2 compute.prob <- function(y,x,p.y,marg.types,marg.par.0,
3 marg.par.1,corr.mat.0,corr.mat.1,var.types,
4 vine.0=NULL,vine.1=NULL,ind.cov=NULL)
5 {
6 d <- ncol(x)
7 n <- nrow(x)
8
9 if(length(ind.cov) == 0)

10 {
11 ind.cov <- 1:d
12 }
13
14 if(length(vine.0) == 0)
15 {
16 vine.comp.0 <- construct.vine(d,corr.mat.0,var.types)
17 vine.comp.1 <- construct.vine(d,corr.mat.1,var.types)
18
19 vine.0 <- vinecop_dist(vine.comp.0$pair.copulas,
20 vine.comp.0$vine.structure,var.types)
21 vine.1 <- vinecop_dist(vine.comp.1$pair.copulas,
22 vine.comp.1$vine.structure,var.types)
23 }
24
25
26 log.prob.x.0 <- compute.prob.x(x,vine.0,marg.types,marg.par.0,var.types,ind.cov)
27 log.prob.x.1 <- compute.prob.x(x,vine.1,marg.types,marg.par.1,var.types,ind.cov)
28
29 prob <- exp(log.prob.x.1-log.prob.x.0)/(exp(log.prob.x.1-log.prob.x.0)+(1-p.y)/p.y)
30
31 prob
32 }
33
34 compute.prob.x <- function(x,vine,marg.types,marg.par,var.types,ind.cov)
35 {
36 d <- ncol(x)
37 u <- F.all(x,marg.types,marg.par,var.types)
38 prob <- dvinecop(u,vine)
39 log.prob <- log(prob)

APPENDIX B. R-CODE 96

40 for(i in 1:d)
41 {
42 if(is.element(i,ind.cov))
43 {
44 if(marg.types[i] == "norm")
45 {
46 log.prob <- log.prob+dnorm(x[,i],
47 marg.par[[i]][1],marg.par[[i]][2],log=TRUE)
48 }
49 else if(marg.types[i] == "gamma")
50 {
51 log.prob <- log.prob+dgamma(x[,i],
52 marg.par[[i]][1],marg.par[[i]][2],log=TRUE)
53 }
54 else if(marg.types[i] == "lnorm")
55 {
56 log.prob <- log.prob*dlnorm(x[,i],
57 marg.par[[i]][1],marg.par[[i]][2],log=TRUE)
58 }
59 else if(marg.types[i] == "t")
60 {
61 log.prob <- log.prob+dt(x[,i],marg.par[[i]][1],log=TRUE)
62 }
63 else if(marg.types[i] == "bern")
64 {
65 log.prob <- log.prob+x[,i]*
66 log(marg.par[[i]][1])+(1-x[,i])*log(1-marg.par[[i]][1])
67 }
68 }
69 }
70
71 log.prob
72 }
73
74 construct.vine <- function(d,corr.mat,var.types)
75 {
76 vine.structure <- dvine_structure(1:d)
77 pair.copulas <- list(length = d-1)
78 pair.copulas[[1]] <- list()
79 for(i in 1:(d-1))
80 {
81 pair.copulas[[1]][[i]] <- bicop_dist("gaussian",0,
82 corr.mat[i,i+1],var_types=var.types[c(i,i+1)])
83 }
84 for(i in 2:(d-1))
85 {
86 pair.copulas[[i]] <- list()
87 for(j in 1:(d-i))
88 {

APPENDIX B. R-CODE 97

89 p.mat <- solve(corr.mat[j:(j+i),j:(j+i)])
90 part.corr.ij <- -p.mat[1,1+i]/sqrt(p.mat[1,1]*p.mat[1+i,1+i])
91 pair.copulas[[i]][[j]] <- bicop_dist("gaussian",0,
92 part.corr.ij,var_types=var.types[c(j,j+i)])
93 }
94 }
95
96 list(vine.structure=vine.structure,pair.copulas=pair.copulas)
97 }
98
99 construct.vine.level <- function(d,corr.mat,var.types,levels)

100 {
101 pair.copulas <- list(length = length(levels))
102 for(i in 1:length(levels))
103 {
104 pair.copulas[[i]] <- list(length = d-levels[i])
105 if(levels[i] == 1)
106 {
107 for(j in 1:(d-1))
108 {
109 pair.copulas[[i]][[j]] <- bicop_dist("gaussian",0,
110 corr.mat[j,j+1],var_types=var.types[c(j,j+1)])
111 }
112 }
113 else
114 {
115 for(j in 1:(d-levels[i]))
116 {
117 p.mat <- solve(corr.mat[j:(j+levels[i]),j:(j+levels[i])])
118 part.corr.ij <- -p.mat[1,1+levels[i]]/
119 sqrt(p.mat[1,1]*p.mat[1+levels[i],1+levels[i]])
120 pair.copulas[[i]][[j]] <- bicop_dist("gaussian",0,part.corr.ij,
121 var_types=var.types[c(j,j+levels[i])])
122 }
123 }
124 }
125
126 pair.copulas
127 }
128
129 F.all <- function(x,marg.types,marg.par,var.types)
130 {
131 d <- ncol(x)
132
133 u.x <- x
134 u.x.discr <- c()
135 for(i in 1:d)
136 {
137 if(var.types[i] == "c")

APPENDIX B. R-CODE 98

138 {
139 if(marg.types[i] == "norm")
140 {
141 u.x[,i] <- pnorm(x[,i],marg.par[[i]][1],marg.par[[i]][2])
142 }
143 else if(marg.types[i] == "gamma")
144 {
145 u.x[,i] <- pgamma(x[,i],marg.par[[i]][1],marg.par[[i]][2])
146 }
147 else if(marg.types[i] == "lnorm")
148 {
149 u.x[,i] <- plnorm(x[,i],marg.par[[i]][1],marg.par[[i]][2])
150 }
151 else if(marg.types[i] == "t")
152 {
153 u.x[,i] <- pt(x[,i],marg.par[[i]][1])
154 }
155 }
156 else
157 {
158 u.x[,i] <- 1-marg.par[[i]][1]*as.numeric(x[,i] == 0)
159 u.x.discr <- cbind(u.x.discr,
160 (1-marg.par[[i]][1])*as.numeric(x[,i] == 1))
161 }
162 }
163 u.x <- cbind(u.x,u.x.discr)
164
165 as.matrix(u.x,nrow=nrow(x))
166 }

B.4 Evaluation metrics
1 metrics<-function(model, x, y, p.y,p.y.1){
2
3 p.y.1_1<-p.y.1[which(y==1)]
4 p.y.1_0<-p.y.1[which(y==0)]
5
6 y.predicted<-predict(model, newx = x, type = ’response’)
7 p1<-length(which(y==1));p2<-length(which(y==0))
8 y.predicted_1<-y.predicted[which(y==1)]
9 y.predicted_0<-y.predicted[which(y==0)]

10
11 find<-find_gm(y.predicted,y,p.y) #Threshold based metrics
12 Gm<-find[2] #Maximal Gm of TPR and TNR
13 t_gm<-find[1] #Threshold which maximizes the Gm
14 Gm_sensi<-find[7] #TPR
15 Gm_spec<-find[8] #TNR
16

APPENDIX B. R-CODE 99

17 Agm<- find[6]
18 t_Agm<-find[5] #Threshold which maximizes the AGm
19 Agm_sensi<-find[11] #TPR
20 Agm_spec<-find[12] #TNR
21
22 curves<-evalmod(scores=y.predicted, labels=y);aucs<-auc(curves);
23 roc_auc<-aucs[1,4] #The AUC
24 pr_auc<-aucs[2,4] #The AUCPR
25
26
27 bs<- mean((y.predicted-y)^2) # Brier score
28 bs_1<-(sum((y.predicted_1-1)^2))/p1
29 bs_0<-(sum((y.predicted_0)^2))/p2
30
31 bias<-mean(y.predicted-p.y.1) #Bias
32 bias_1<-(sum(y.predicted_1-p.y.1_1))/p1
33 bias_0<-(sum(y.predicted_0-p.y.1_0))/p2
34
35 rmse<-sqrt(mean((y.predicted-p.y.1)^2)) #Rmse
36
37 ranking_score<-ranking(y.predicted,p.y.1,y) #The actual ranking score
38
39 return(rbind(pr_auc,roc_auc,ranking_score,
40 Agm,Agm_sensi,Agm_spec, Gm,Gm_sensi,Gm_spec,
41 bs,bs_1,bs_0,bias,bias_1,bias_0,rmse))
42 }

B.5 Exporting the results of the simulation study
1 loss.types <- c("deviance","AUC","AUCPR")
2 method.types <- c("ridge","lasso","elnet")
3 var.types <- c(rep("c",600),rep("d",400))
4 marg.types <- c(rep("norm",300),rep("gamma",300),rep("bern",200),rep("bern",200))
5 ind.cov <- c(1:30,1:30+300,1:20+600,1:20+800) #indices of significant covariates
6 marg.par.0 <- marg.par.1 <- list()
7 for(i in 1:length(marg.types))
8 {
9 if(i <= 300)

10 {
11 marg.par.0[[i]] <- c(0,1)
12 if(is.element(i,ind.cov))# Covariate i affects Y
13 {
14 marg.par.1[[i]] <- c(0.6,1.5)
15 }
16 else# Covariate i does not affect Y
17 {
18 marg.par.1[[i]] <- c(0,1)
19 }

APPENDIX B. R-CODE 100

20 }
21 else if((i > 300)&(i <= 600))
22 {
23 marg.par.0[[i]] <- c(2,2)
24 if(is.element(i,ind.cov))# Covariate i affects Y
25 {
26 marg.par.1[[i]] <- c(2.05,2.01)
27 }
28 else# Covariate i does not affect Y
29 {
30 marg.par.1[[i]] <- c(2,2)
31 }
32 }
33 else if((i > 600)&(i <= 800))
34 {
35 marg.par.0[[i]] <- 0.1
36 if(is.element(i,ind.cov))# Covariate i affects Y
37 {
38 marg.par.1[[i]] <- 0.2
39 }
40 else# Covariate i does not affect Y
41 {
42 marg.par.1[[i]] <- 0.1
43 }
44 }
45 else
46 {
47 marg.par.0[[i]] <- 0.5
48 if(is.element(i,ind.cov))# Covariate i affects Y
49 {
50 marg.par.1[[i]] <- 0.4
51 }
52 else# Covariate i does not affect Y
53 {
54 marg.par.1[[i]] <- 0.5
55 }
56 }
57 }
58 rho0<-read.table(file=sprintf("rho_0"))
59 rho1<-read.table(file=sprintf("rho_1"))
60
61 load("/home/shuijinl/vine.0.RData")
62 load("/home/shuijinl/vine.1.RData")
63
64 result_imbalanced<-function(n,m,p,p.y,k,mu1,sigma1,
65 alpha1,gamma1,pB1_1,pB2_1,loss.types,method.types){
66 p.y<-p.y #The proportion of positive cases in the data
67
68 #Generate the training set

APPENDIX B. R-CODE 101

69 train<-sim_dat(n,p,p.y,mu1,sigma1,alpha1,gamma1,pB1_1,pB2_1,ind.cov)
70 #Generate the test set
71 test<-sim_dat(m,p,p.y,mu1,sigma1,alpha1,gamma1,pB1_1,pB2_1,ind.cov)
72 x.train<-train[,-1]
73 y.train<-train[,1]
74 x.test<-test[,-1]
75 y.test<-test[,1]
76
77 #Compute the true event probabilities of the test set
78 p.y.1 <- compute.prob(y.test,x.test,p.y,marg.types,
79 marg.par.0,marg.par.1,corr.mat.0=rho0,
80 corr.mat.1=rho1,var.types,vine.0,vine.1,ind.cov)
81 #Standardization for pure prediction
82 x.mean <- apply(x.train, 2, mean)
83 x.sd <- apply(x.train, 2, sd)
84 x.train <- scale(x.train, center = TRUE, scale = TRUE) #default: scale(x, center = TRUE, scale = TRUE)
85
86 #Using the train mean and sd to standardize the test set
87 x.test <- sapply(1:ncol(x.test),
88 function(i, x.test, x.mean, x.sd) (x.test[, i] - x.mean[i])/x.sd[i],
89 x.test = x.test, x.mean = x.mean, x.sd = x.sd)
90
91 index <- scv(y.train,k) #Stratified k-folds cross-validation
92 registerDoParallel(2)
93 for (a in loss.types){
94 loss<-a
95 for (b in method.types){
96 method<-b
97 if (loss == ’deviance’){
98 if (method == ’ridge’){
99

100 lambda.ridge <-cv.glmnet(x.train, y.train,
101 family = ’binomial’, alpha = 0, foldid = index,
102 parallel = TRUE)$lambda.min
103 mod.ridge <-glmnet(x.train, y.train,
104 lambda = lambda.ridge, family = ’binomial’, alpha = 0)
105 error<-metrics(mod.ridge,x.test,y.test,p.y,p.y.1)
106 result1<-rbind(lambda.ridge,error)
107 }else if(method == ’lasso’){
108
109 lambda.lasso <-cv.glmnet(x.train, y.train,
110 family = ’binomial’, alpha = 1, foldid = index,
111 parallel = TRUE)$lambda.min
112 mod.lasso <-glmnet(x.train, y.train,
113 lambda = lambda.lasso, family = ’binomial’, alpha = 1)
114 error<-metrics(mod.lasso,x.test,y.test,p.y,p.y.1)
115 v_s<-vs(mod.lasso,ind.cov) #Variable selection property
116 result2<-rbind(lambda.lasso,v_s,error)
117 }else if(method == ’elnet’){

APPENDIX B. R-CODE 102

118
119 findLambda <- function(x, y, k, a)
120 {
121 tmp <- cv.glmnet(x, y, family = ’binomial’,
122 alpha = a, foldid = k, parallel = TRUE)
123 which.min(tmp$cvm)
124 c(min(tmp$cvm), tmp$lambda.min)
125 }
126 cv <- sapply(seq(0.1, 0.9, by = 0.1),
127 findLambda, x = x.train, y = y.train, k = index)
128 par <- list(alpha = NULL, lambda = NULL, choice = NULL)
129 par$choice <- which.min(cv[1,])
130 alpha.elnet<-par$alpha <- seq(0.1, 0.9, by = 0.1)[par$choice]
131 lambda.elnet<-par$lambda <- cv[2, par$choice]
132 mod.elnet <- glmnet(x.train, y.train,
133 family = ’binomial’, alpha = par$alpha,
134 lambda = par$lambda)
135 error<-metrics(mod.elnet,x.test,y.test,p.y,p.y.1)
136 v_s<-vs(mod.elnet,ind.cov)
137 result3<-rbind(alpha.elnet,lambda.elnet,v_s,error)
138 }
139 }else if(loss == ’AUC’){
140 if (method == ’ridge’){
141
142 lambda.ridge <-cv.glmnet(x.train, y.train,
143 family = ’binomial’, alpha = 0,
144 type.measure = ’auc’, foldid = index, parallel = TRUE)$lambda.min
145 mod.ridge <-glmnet(x.train, y.train,
146 lambda = lambda.ridge, family = ’binomial’, alpha = 0)
147 error<-metrics(mod.ridge,x.test,y.test,p.y,p.y.1)
148 result4<-rbind(lambda.ridge,error)
149 }else if(method == ’lasso’){
150
151 lambda.lasso <-cv.glmnet(x.train, y.train,
152 family = ’binomial’, alpha = 1,
153 type.measure = ’auc’, foldid = index, parallel = TRUE)$lambda.min
154 mod.lasso <-glmnet(x.train, y.train,
155 lambda = lambda.lasso, family = ’binomial’, alpha = 1)
156 error<-metrics(mod.lasso,x.test,y.test,p.y,p.y.1)
157 v_s<-vs(mod.lasso,ind.cov)
158 result5<-rbind(lambda.lasso,v_s,error)
159
160 }else if(method == ’elnet’){
161
162 findLambda <- function(x, y, k, a)
163 {
164 tmp <- cv.glmnet(x, y, family = ’binomial’,
165 alpha = a, type.measure = ’auc’,
166 foldid = k, parallel = TRUE)

APPENDIX B. R-CODE 103

167 which.min(tmp$cvm)
168 c(min(tmp$cvm), tmp$lambda.min)
169 }
170 cv <- sapply(seq(0.1, 0.9, by = 0.1),
171 findLambda, x = x.train, y = y.train, k = index)
172 par <- list(alpha = NULL, lambda = NULL, choice = NULL)
173 par$choice <- which.min(cv[1,])
174 alpha.elnet<-par$alpha <- seq(0.1, 0.9, by = 0.1)[par$choice]
175 lambda.elnet<-par$lambda <- cv[2, par$choice]
176 mod.elnet <- glmnet(x.train, y.train,
177 family = ’binomial’, alpha = par$alpha,
178 lambda = par$lambda)
179 error<-metrics(mod.elnet,x.test,y.test,p.y,p.y.1)
180
181 v_s<-vs(mod.elnet,ind.cov)
182 result6<-rbind(alpha.elnet,lambda.elnet,v_s,error)
183
184 }
185 } else if(loss == ’AUCPR’){
186 if (method == ’ridge’){
187 lambda.ridge<-get_lambda(k,20,y.train,x.train,0)[1]
188 mod.ridge <-glmnet(x.train, y.train,
189 lambda = lambda.ridge, family = ’binomial’, alpha = 0)
190 error<-metrics(mod.ridge,x.test,y.test,p.y,p.y.1)
191 result7<-rbind(lambda.ridge,error)
192 }else if(method == ’lasso’){
193 lambda.lasso<-get_lambda(k,20,y.train,x.train,1)[1]
194 mod.lasso <-glmnet(x.train, y.train,
195 lambda = lambda.lasso, family = ’binomial’, alpha = 1)
196 error<-metrics(mod.lasso,x.test,y.test,p.y,p.y.1)
197 v_s<-vs(mod.lasso,ind.cov)
198 result8<-rbind(lambda.lasso,v_s,error)
199
200
201 }else if(method == ’elnet’){
202 alpha<- seq(0.1, 0.9, by = 0.1)
203 z<-length(alpha)
204 lam<-pr_a<-numeric(z)
205 for (i in 1:z){
206 p_max<-get_lambda(k,20,y.train,x.train,alpha[i])
207 lam[i]<-p_max[1]
208 pr_a[i]<-p_max[2]
209 }
210 alpha.elnet<-alpha[which.max(pr_a)]
211 lambda.elnet<-lam[which.max(pr_a)]
212 mod.elnet<-glmnet(x.train, y.train,
213 family = ’binomial’, alpha = alpha.elnet, lambda = lambda.elnet)
214 error<-metrics(mod.elnet,x.test,y.test,p.y,p.y.1)
215 v_s<-vs(mod.elnet,ind.cov)

APPENDIX B. R-CODE 104

216 result9<-rbind(alpha.elnet,lambda.elnet,v_s,error)
217
218 }
219 }
220 }
221 }
222
223
224 rbind(result1,result4,result7,result2,
225 result5,result8,result3,result6,result9)
226
227 }
228
229 cores<-detectCores()-1
230 myCluster <- makeCluster(cores)
231 registerDoParallel(myCluster)
232
233 er<-foreach(i=1:q,.combine=’cbind’,
234 .packages=c(’MASS’,’glmnet’,’precrec’,’caret’,
235 ’rvinecopulib’,’doParallel’),.verbose=TRUE,
236 .errorhandling="remove")%dopar%{
237 res<-result_imbalanced(n,3000,1000,p.y,k,
238 0.6,1.5,2.05,2.01,0.2,0.4,loss.types,method.types)
239 res
240 }
241 stopCluster(myCluster)
242 ave_err<-rowMeans(er, na.rm = T) #Average results
243 err<-cbind(ave_err,er)
244 err<-as.data.frame(err)
245 write.table(err, file=sprintf
246 ("imbalance_%.2f_%.0fx%.0f_%.0f_folds",p.y,n,1000,k))
247
248
249 }

Bibliography

Agresti, A. (2015). Foundations of linear and generalized linear models. John Wiley &
Sons, pp. 132–133.

Arlot, S. and Celisse, A. (2010). “A survey of cross-validation procedures for model
selection”. In: Statistics surveys vol. 4, pp. 40–79.

Batista, G. E. et al. (2004). “A study of the behavior of several methods for balancing
machine learning training data”. In: ACM SIGKDD explorations newsletter vol. 6,
no. 1, pp. 20–29.

Batuwita, R. and Palade, V. (2009). “A New Performance Measure for Class
Imbalance Learning. Application to Bioinformatics Problems”. In: 2009 International
Conference on Machine Learning and Applications, pp. 545–550.

Benedetti, R. (2010). “Scoring rules for forecast verification”. In: Monthly Weather
Review vol. 138, no. 1, pp. 203–211.

Berrar, D. (2019). “Performance Measures for Binary Classification”. eng. In:
Encyclopedia of Bioinformatics and Computational Biology. Elsevier Inc, pp. 546–
560.

Blagus, R. and Lusa, L. (2010). “Class prediction for high-dimensional class-imbalanced
data”. In: BMC bioinformatics vol. 11, no. 1, pp. 1–17.

Bolton, R. J. and Hand, D. J. (2002). “Statistical fraud detection: A review”. In:
Statistical science vol. 17, no. 3, pp. 235–255.

Boyd, K. et al. (2012). “Unachievable region in precision-recall space and its effect on
empirical evaluation”. In: Proceedings of the... International Conference on Machine
Learning. International Conference on Machine Learning, p. 349.

Bradley, A. P. (1997). “The use of the area under the ROC curve in the evaluation of
machine learning algorithms”. In: Pattern recognition vol. 30, no. 7, pp. 1145–1159.

Breiman, L. and Spector, P. (1992). “Submodel selection and evaluation in regression.
The X-random case”. In: International statistical review/revue internationale de
Statistique, pp. 291–319.

Brier, G. W. (1950). “Verification of Forecasts Expressed in Terms of Probability”. In:
Monthly weather review, pp. 1–3.

105

BIBLIOGRAPHY 106

Burez, J. and Van den Poel, D. (2009). “Handling class imbalance in customer churn
prediction”. In: Expert Systems with Applications, pp. 4626–4636.

Caruana, R. (2000). “Learning from imbalanced data: Rank metrics and extra tasks”.
In: Proc. Am. Assoc. for Artificial Intelligence (AAAI) Conf, pp. 51–57.

Chai, T. and Draxler, R. R. (2014). eng. In: Geoscientific model development vol. 7,
no. 3, pp. 1247–1250.

Chawla, N. V. et al. (2002). “SMOTE: synthetic minority over-sampling technique”. In:
Journal of artificial intelligence research vol. 16, pp. 321–357.

— (2004). “Editorial: special issue on learning from imbalanced data sets”. eng. In:
SIGKDD explorations vol. 6, no. 1, pp. 1–6.

Daskalaki, S. et al. (2006). “Evaluation of classifiers for an uneven class distribution
problem”. In: Applied artificial intelligence, pp. 381–417.

Davis, J. and Goadrich, M. (2006). “The relationship between Precision-Recall and ROC
curves”. In: Proceedings of the 23rd international conference on Machine learning,
pp. 233–240.

Efron, B. and Hastie, T. (2021). Computer Age Statistical Inference, Student Edition:
Algorithms, Evidence, and Data Science. Vol. 6. Cambridge University Press, p. 41.

Estabrooks, A. et al. (2004). “A multiple resampling method for learning from
imbalanced data sets”. In: Computational intelligence vol. 20, no. 1, pp. 18–36.

Fawcett, T. (2006). “An introduction to ROC analysis”. In: Pattern recognition letters
vol. 27, no. 8, pp. 861–874.

Galar, M. et al. (2012). “A Review on Ensembles for the Class Imbalance Problem:
Bagging-, Boosting-, and Hybrid-Based Approaches”. eng. In: IEEE transactions
on systems, man and cybernetics. Part C, Applications and reviews vol. 42, no. 4,
pp. 463–484.

Haixiang, G. et al. (2017). “Learning from class-imbalanced data: Review of methods
and applications”. In: Expert systems with applications vol. 73, pp. 220–239.

Halsteinslid, E. L. (2019). Addressing collinearity and class imbalance in logistic
regression for statistical fraud detection. eng.

Hanley, J. A. and McNeil, B. J. (1982). “The meaning and use of the area under
a receiver operating characteristic (ROC) curve.” In: Radiology vol. 143, no. 1,
pp. 29–36.

Hastie, T. et al. (2009). Elements of Statistical Learning: Data Mining, Inference, and
Prediction. eng. Springer series in statistics. New York: Springer.

— (2021). “An Introduction to glmnet”. In: CRAN R Repositary.
He, H. and Edwardo A, G. (2009). “Learning from imbalanced data”. In: IEEE

Transactions on knowledge and data engineering vol. 21, no. 9, pp. 1263–1284.
Hoerl, A. E. and Kennard, R. W. (1970). “Ridge regression: Biased estimation for

nonorthogonal problems”. In: Technometrics vol. 12, no. 1, pp. 55–67.
Hosmer Jr, D. W. et al. (2013). Applied logistic regression. John Wiley & Sons, pp. 12,

177.

BIBLIOGRAPHY 107

Japkowicz, N. and Stephen, S. (2002). “The class imbalance problem: A systematic
study”. In: Intelligent data analysis vol. 6, no. 5, pp. 429–449.

Kohavi, R. (1995). “A study of cross-validation and bootstrap for accuracy estimation
and model selection”. In: Ijcai. Vol. 14. 2. Montreal, Canada, pp. 1137–1145.

Krawczyk, B. (2016). “Learning from imbalanced data: open challenges and future
directions”. In: Progress in Artificial Intelligence vol. 5, no. 4, pp. 221–232.

Le Cessie, S. and Van Houwelingen, J. C. (1992). “Ridge estimators in logistic regression”.
In: Journal of the Royal Statistical Society: Series C (Applied Statistics) vol. 41,
no. 1, pp. 191–201.

Marques, A. I., Garcia, V., and Sanchez, J. S. (2013). “On the suitability of resampling
techniques for the class imbalance problem in credit scoring”. eng. In: The Journal
of the Operational Research Society vol. 64, no. 7, pp. 1060–1070.

Saito, T. and Rehmsmeier, M. (2015). “The precision-recall plot is more informative
than the ROC plot when evaluating binary classifiers on imbalanced datasets”. In:
PloS one, e0118432–e0118432.

Swets, J. A. (1988). “Measuring the accuracy of diagnostic systems”. In: Science vol. 240,
no. 4857, pp. 1285–1293.

Tibshirani, R. (1996). “Regression shrinkage and selection via the lasso”. In: Journal of
the Royal Statistical Society: Series B (Methodological) vol. 58, no. 1, pp. 267–288.

— (1997). “The lasso method for variable selection in the Cox model”. In: Statistics in
medicine vol. 16, no. 4, pp. 385–395.

Tomek, I. (1976). “Two Modifications of CNN”. eng. In: IEEE transactions on systems,
man, and cybernetics vol. SMC-6, no. 11, pp. 769–772.

Van Hulse, J. et al. (2007). “Experimental perspectives on learning from imbalanced
data”. In: Proceedings of the 24th international conference on Machine learning,
pp. 935–942.

Weiss, G. M. (2004). “Mining with rarity: a unifying framework”. In: ACM Sigkdd
Explorations Newsletter vol. 6, no. 1, pp. 7–19.

Weiss, G. M. and Provost, F. (2001). The effect of class distribution on classifier
learning: an empirical study. Tech. rep. Rutgers University.

Zeng, X. and Martinez, T. R. (2000). “Distribution-balanced stratified cross-validation
for accuracy estimation”. In: Journal of Experimental & Theoretical Artificial
Intelligence vol. 12, no. 1, pp. 1–12.

Zou, H. and Hastie, T. (2005). “Regularization and variable selection via the elastic
net”. In: Journal of the royal statistical society: series B (statistical methodology)
vol. 67, no. 2, pp. 301–320.

	Introduction
	Methods
	Fraud detection problem
	Class imbalanced and high-dimensional fraud data
	Problems and possible solutions

	Logistic regression
	Model presentation
	Maximum likelihood estimation
	Deviance
	Extension and potential problems

	The bias-variance trade-off and model complexity
	Regularization methods
	The lasso
	Ridge regression
	The elastic net
	Standardization

	Cross-validation
	Regular k-fold cross-validation
	Stratified k-fold cross-validation
	The choice of k

	Evaluation metrics
	Threshold based metrics
	Ranking metrics
	Probabilistic metrics

	Simulation study
	Data simulation methods
	Generating covariates from copulas
	Generating a data set

	Simulation design
	Experiment design
	Model for simulated data
	Implemented cross-validation
	The logistic regression without penalty
	Implementation of the regularization methods
	Optimality measures used in the cross-validation of the penalty parameters
	More evaluation metrics
	Parallel computing

	Results
	Ranking ability
	Binary classification performance
	The Brier score: a measure of sharpness
	The accuracy of predicted event probabilities

	Summary
	Re-sampling methods
	Random under-sampling and oversampling
	The SMOTE method
	Earlier work
	Future possibility

	Illustration on credit card default data
	Data description and data preprocessing
	Setup
	Results
	Ranking ability
	Binary classification performance
	The Brier score
	Tuning the penalty parameter
	An additional evaluation metric

	Summary

	Conclusion and discussion
	Appendices
	Figures and tables
	Methods
	Simulation study
	Illustration on credit card default data

	R-code
	Data simulation
	Stratified k-fold cross-validation
	Computing the true event probabilities
	Evaluation metrics
	Exporting the results of the simulation study

	Bibliography

