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ABSTRACT
After some years of controversy, it was recently demonstrated how to obtain the correct long-distance limit [point-dipole approx-
imation (PDA)] of pseudo-contact nuclear magnetic resonance chemical shifts from rigorous first-principles quantum mechanics
[Lang et al., J. Phys. Chem. Lett. 11, 8735 (2020)]. This result confirmed the classical Kurland–McGarvey theory. In the present
contribution, we elaborate on these results. In particular, we provide a detailed derivation of the PDA both from the Van den
Heuvel–Soncini equation for the chemical shielding tensor and from a spin Hamiltonian approximation. Furthermore, we discuss in
detail the PDA within the approximate density functional theory and Hartree–Fock theories. In our previous work, we assumed a
relatively crude effective nuclear charge approximation for the spin–orbit coupling operator. Here, we overcome this assumption by
demonstrating that the derivation is also possible within the fully relativistic Dirac equation and even without the assumption of a
specific form for the Hamiltonian. Crucial ingredients for the general derivation are a Hamiltonian that respects gauge invariance,
the multipolar gauge, and functional derivatives of the Hamiltonian, where it is possible to identify the first functional derivative
with the electron number current density operator. The present work forms an important foundation for future extensions of the
Kurland–McGarvey theory beyond the PDA, including induced magnetic quadrupole and higher moments to describe the magnetic hyperfine
field.
© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0088162

I. INTRODUCTION

Nuclear magnetic resonance (NMR) observables, such as res-
onance frequencies and linewidths, are strongly affected by the
presence of unpaired electrons. These perturbations encode infor-
mation about the molecular structure and the electronic structure
and, therefore, represent a precious source of information in modern
chemistry. As a consequence, the study of paramagnetism in NMR
(pNMR) has attracted increasing attention,1 from both experimental
and theoretical standpoints.

For closed-shell systems, which have a nondegenerate ground
state usually well-separated from any excited states, it has been

known for many decades that the chemical shielding tensor can be
calculated via the equation originally derived by Ramsey.2,3 Moon
and Patchkovskii derived an equation for pNMR chemical shifts
for individual Kramers doublets in terms of spin Hamiltonian (SH)
parameters,4 an approach that was generalized to arbitrary spin
degeneracy by Pennanen and Vaara.5 In both cases, the chemical
shielding tensor is defined as the mixed second derivative of the
Boltzmann-averaged energy. Van den Heuvel and Soncini calculated
the shielding as the derivative of the averaged magnetic hyperfine
field6 and obtained expressions that are also valid in the strong
spin–orbit coupling limit. They successfully applied their theory
to pNMR shifts in lanthanide systems. Shortly after, it was found
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by the same authors that the chemical shielding tensor can actu-
ally be considered as the mixed second derivative of the electronic
Helmholtz free energy.7 This resulted in one of the most general
equations for chemical shieldings developed so far and showed that
earlier treatments based on the Boltzmann-averaged energy instead
of the free energy can lead to wrong conclusions. The Van den
Heuvel–Soncini equation can be employed practically in any situ-
ation, as long as the basic assumption of the different time scales
of electronic dynamics and nuclear spin dynamics and the weak-
field approximation (i.e., that shieldings are independent of the
magnetic field strength) are fulfilled. The same authors also used
their theory to obtain expressions in terms of SH parameters for
a single spin state subject to zero-field splitting (ZFS).8 Gendron
et al. were the first to evaluate the Van den Heuvel–Soncini equa-
tion in a sum-over-states (SOS) manner, without recourse to SH
parameters.9

An alternative route to the calculation and interpretation of
pNMR shifts that has been developed since the 1960s separates
isotropic chemical shifts into “contact” shifts, i.e., shifts arising
from the Fermi contact (FC) interaction, and “pseudocontact” shifts
(PCSs), arising from all other interactions. The isotropic shifts result
after rotational averaging of the full chemical shielding tensor and
only include contributions to the latter that have a non-zero trace.
Starting from the SH approximation, McConnell and Robertson10

used the point-dipole approximation (PDA) to derive an equation
for PCSs in terms of the g values of the paramagnetic center and
structural parameters. Their work was extended by Jesson.11 Kur-
land and McGarvey generalized their results under weaker assump-
tions and showed that the previous equations were special cases of an
equation that expresses the PCSs in terms of the susceptibility tensor
and structural parameters,12

δpc
≈

1
12πR3 [Δχax(3 cos2 θ − 1) + Δχrh

3
2

sin2 θ cos(2ϕ)]. (1)

Here, Δχax and Δχrh are parameters that describe the anisotropy
of the susceptibility tensor of the paramagnetic center, θ and ϕ are
the polar and azimuthal angle of the direction of the nucleus in the
principal axis system (PAS) of the susceptibility tensor, and R is the
distance between the nucleus and the paramagnetic center. It should
be stressed that compared to the Van den Heuvel–Soncini equation,
which is valid for any distance, Eq. (1) is more approximate and only
strictly valid in the long-distance limit.

The dependence of PCSs on geometrical parameters, as given
in Eq. (1), has been used extensively to extract information about
the molecular structure of metalloproteins and of small com-
plexes. This dependence can also provide insight into confor-
mational heterogeneity.13–15 More recently, the improved compu-
tational efficiency and quality of relativistic wavefunction-based
quantum chemistry (QC) methods16 made it possible to rapidly
and reliably calculate the magnetic susceptibility of metal com-
plexes from first principles.17–19 Therefore, the dependence of PCSs
on the magnetic susceptibility has been used to gain a deeper
understanding of the metal coordination, for instance, in param-
agnetic metal complexes,20,21 including single ion magnets,22 and
even to refine the structure of the active site of cobalt(II)-bound
enzymes.23

Equation (1) for the PCS can also be expressed via

δpc
= −

1
3

tr(σpc
) (2)

in terms of the pseudocontact contribution to the full chemical
shielding tensor,

σpc
≈ −

1
4πR3 χ(

3RRT

R2 − 1). (3)

This is one of the central equations around which the current work
revolves. We shall call it the Kurland–McGarvey (KM) equation,
although it did not appear in the full tensor form in the origi-
nal paper. Incidentally, the same equation was already derived by
McConnell in his treatment of the NMR chemical shielding in
closed-shell molecules arising from distant electrons.24 Equation (3)
has a clear physical content that can be intuitively understood as
follows: For a nucleus K at position RK that has a sufficiently large
distance from the paramagnetic center, the magnetic hyperfine field
due to induced currents can be described in the PDA, i.e.,

⟨BHF
(RK)⟩ ≈

μ0

4π
3R(⟨μ⟩ ⋅ R) − R2

⟨μ⟩
R5 , (4)

where ⟨μ⟩ is the average induced magnetic moment. The lat-
ter can be expressed in terms of the “single-molecule” magnetic
susceptibility (which has SI units of m3) via

⟨μ⟩ =
1
μ0
χ ⋅ B. (5)

Inserting this into Eq. (4) gives

⟨BHF
(RK)⟩ ≈

1
4πR3 (

3R(R ⋅ χ ⋅ B)
R2 − χ ⋅ B), (6)

which, compared with the expression ⟨BHF
(RK)⟩ = −σT

⋅ B for the
induced magnetic field in terms of the chemical shielding tensor,
immediately leads to Eq. (3).

In 2016,25 it was proposed that the susceptibility tensor χ in
Eq. (3) should be replaced by an unsymmetrical tensor χ′, where in
the SH approximation, χ′ = χ ⋅ ge(gT

)
−1.15 This can lead to signifi-

cantly different results compared to the original KM equation.1,26,27

The derivation of the equation containing χ′ started from the QC
expression for the chemical shielding in terms of SH parameters
and assumed that the only relevant contribution to the A tensor
is the spin–dipolar one, in particular neglecting the orbital con-
tribution induced by spin–orbit coupling (SOC). Several papers
found apparently good agreement of this approach with experimen-
tal results.28–30 However, as already noted before,31 the uncertainty
in the calculated SH parameters (g and D tensors) can lead to uncer-
tainties that are of the same order of magnitude as the expected
difference of the two approaches. Therefore, the better performance
of the equation with the unsymmetrical χ′ tensor in some cases could
also possibly be ascribed to fortuitous error cancellation. A recent
experimental study27 compared the performance of the two versions
of the KM equation for an S = 1/2 copper(II) ion in an axial coor-
dination environment, where there is no zero-field splitting (ZFS)
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FIG. 1. Overview of different approaches
for calculating PCSs and the approxima-
tions involved. Note that all the equations
are given in atomic units. The application
of the SH approximation (red solid lines)
is straightforward, while the correct appli-
cation of the PDA (blue dashed lines)
has been unclear in the recent past.
The top left arrow refers to the deriva-
tion of Eq. (3) involving Van Vleck’s
equation for the susceptibility from the
Van den Heuvel–Soncini equation. The
bottom right arrow refers to the derivation
of Eq. (7), the long-distance limit of the A
tensor. Both derivations are discussed in
depth in the present article.

and it was possible to experimentally obtain the g tensor under the
same conditions as the NMR data. The results were clearly in favor
of the classical equation with the symmetrical χ tensor.27 This led
to our reinvestigation of the derivation leading to the unsymmetri-
cal χ′ tensor. Based on rigorous first-principles quantum mechanics
and without invoking the SH approximation, we found that the KM
equation can be directly derived from the Van den Heuvel–Soncini
equation.31 In our derivation, we only assumed that the PDA holds
and that the Hamiltonian is the effective nuclear charge SOC Hamil-
tonian, including gauge correction terms. Thus, it became clear that
the neglect of contributions beyond the spin–dipolar interaction was
not justified. Within the SH approximation, the KM equation is
exactly equivalent to the approximation of the A tensor in terms of
the g tensor,32

A ≈
μBμ0h̵γ
4πR3 (

3RRT

R2 − 1)g, (7)

where γ is the gyromagnetic ratio. We found a proof for this long-
distance limit as well and could verify it via QC calculations.31 The
current work contains a detailed discussion of the proofs for Eqs. (3)
and (7), the latter also in the context of the approximate Kohn–Sham
density functional theory (DFT) and Hartree–Fock (HF) methods.
Figure 1 gives an overview of the different ways to calculate the
chemical shielding and the approximations involved. Furthermore,
we go beyond the simple effective nuclear charge Hamiltonian of our
previous work31 and generalize the results to arbitrary Hamiltonians
that fulfill a certain gauge invariance condition, including the fully
relativistic Dirac Hamiltonian.

II. DERIVATION OF THE LONG-DISTANCE LIMIT
OF THE QUANTUM-CHEMICAL EXPRESSION
FOR THE CHEMICAL SHIELDING

In this section, we present in detail our derivation of the
KM equation from rigorous first-principles quantum mechanics,

which we could only roughly sketch in our previous work31 due to
space limitations. The most important non-standard symbols used
throughout this article are given in Table I. Figure 2 illustrates the
meaning of the different position vectors used in our derivations.

A. Quantum-chemical Hamiltonian
Hartree atomic units (h = me = e = 4πϵ0 = 1) are used in the

following, where the Bohr magneton has the value μB = 1/2 and
the vacuum permeability is given by μ0 = 4πα2, with α being the
fine-structure constant. The nonrelativistic QC Hamiltonian in the
presence of a magnetic field with vector potential A is given by

Hnonrel
= Hnonrel,(0)

+
1
2∑i
(A(ri) ⋅ pi + pi ⋅A(ri))

+
ge

2∑i
B(ri) ⋅ si +

1
2∑i

A2
(ri), (8)

Hnonrel,(0)
=∑

i

p2
i

2
−∑

iA

ZA

riA
+∑

i<j

1
rij

. (9)

Here, Hnonrel,(0) is the nonrelativistic Hamiltonian in the absence of
magnetic fields. In order to go beyond “spin-only” magnetism, it is
necessary to extend this Hamiltonian and include spin–orbit cou-
pling (SOC). For simplicity, we assume it in this section to be of the
effective nuclear charge form,33

HSOC =∑
iA
ξA
(riA)liA ⋅ si, (10)

ξA
(r) =

α2

2
Zeff

A

r3 . (11)

If this operator is added to the Hamiltonian, a so-called “gauge
correction”34 must be added in the presence of magnetic fields,
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TABLE I. Symbols used throughout this article. Non-boldface versions of symbols representing vectors are used to denote their magnitudes. Furthermore, uppercase letters
(such as in S = ∑

i
si ) denote quantities summed over all electrons. The superscript is used for Cartesian indices.

H Electronic Hamiltonian (including relativistic effects such as SOC).
H(0) Hamiltonian in the absence of magnetic fields.
Hnonrel Nonrelativistic Hamiltonian [Eq. (8)].
Hnonrel,(0) Nonrelativistic Hamiltonian in the absence of magnetic fields [Eq. (9)].
∣Ψ(0)nν ⟩ Eigenstates of H(0).
E(0)n Eigenvalues of H(0).
∣ΨSM

I ⟩ Eigenstates of H(0),nonrel.
E(0),nonrel

I Eigenvalues of H(0),nonrel.
ξA
(r) Effective nuclear charge SOC factor [Eq. (11)].

B Homogeneous magnetic field.
MK Magnetic dipole moment of nucleus K.
(∂H/∂μ)(0) Derivative of the Hamiltonian with respect to some parameter μ, evaluated at B = 0, MK = 0.
O Gauge origin (chosen at the “location” of the paramagnetic center).
K Index of the nucleus whose chemical shielding we are interested in.
A Index of another nucleus that, e.g., creates SOC.
R = RO − RK Vector from the magnetic nucleus under consideration to the gauge origin.
i, j Electron indices.
riL = ri − RL Position of electron i relative to point L.
f(r) The vector-valued function defined in Eq. (33).
Pα−βμν = Pαμν − Pβμν Spin density matrix in the atomic orbital (AO) basis.
z Spatial part of the SOC operator [Eq. (88)].
∂Uσ

ai/∂μ Perturbed orbital coefficients for spin channel σ ∈ {α,β}.
(g∣h) Coulomb repulsion integrals [Eq. (91)].
χ(r) Scalar field that defines a gauge transformation.
(δH/δA(r))(0) Functional derivative of the Hamiltonian with respect to the magnetic vector potential evaluated at A(r) = 0.

which guarantees gauge-invariant observables. The gauge correction
for the effective nuclear charge SOC operator has the form

Hgauge
=∑

iA
ξA
(riA)(riA ×A(ri)) ⋅ si. (12)

Note that this term also arises when making the substitution p→ p
+A(r) in Eq. (10), i.e., when using the proper expression for kinetic
momentum instead of canonical momentum. If the vector potential
describes the sum of an external homogeneous magnetic field B and
the magnetic field created by a nucleus at position RK with magnetic
moment MK ,

A(r) = Ahom
(r) +Anuc

(r) =
1
2

B × rO + α2 MK × rK

r3
K

, (13)

the complete Hamiltonian can be written as

H = H(0) +∑
k
(

∂H
∂Mk

K
)

(0)

Mk
K +∑

k
(
∂H
∂Bk )

(0)
Bk

+
1
2∑kl
(

∂2H
∂Bk∂Bl )

(0)

BkBl
+∑

kl
(

∂2H
∂Bk∂Ml

K
)

(0)

BkMl
K

+
1
2∑kl
(

∂2H
∂Mk

K∂Ml
K
)

(0)

Mk
K Ml

K ⋅ (14)

The last term in Eq. (14) (quadratic in MK ) contributes to nuclear
spin–spin coupling constants but is not relevant for the current
work. Note that we use the notation rL = r − RL to denote a position
relative to a point L at position RL. The point O occurring in Eq. (13)
is the “gauge origin” of the vector potential for the homogeneous
magnetic field.35

The field-free zeroth order Hamiltonian is given by

H(0) = Hnonrel,(0)
+HSOC. (15)

For the purpose of the present discussion, only SOC is added to
the nonrelativistic zeroth order Hamiltonian. However, it is also
possible to add the direct electronic spin–spin coupling operator
without having to change any of the arguments that are presented
in the following. The first derivatives of the Hamiltonian can be
interpreted as the operators for the electronic magnetic moment,
Mel
= −∂H/∂B, and the magnetic hyperfine field created by the elec-

trons at the position of the nucleus, BHF
(RK) = −∂H/∂Mk. The

derivative with respect to the nuclear magnetic moment can be writ-
ten as the sum of four terms: The paramagnetic spin–orbit (PSO)
term is defined as

(
∂H
∂MK

)

(0)

PSO
= α2
∑

i

liK

r3
iK

, (16)

the spin–dipolar (SD) term is defined as
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FIG. 2. Position vectors occurring in our derivations. Dashed lines denote posi-
tion vectors with respect to some arbitrary coordinate origin 0, while full lines are
position vectors relative to other positions in the molecule. Red lines are vectors
describing the position of an electron with index i. The vectors are illustrated for
the NiSAL–HDPT complex from our previous work.20 For this example, where the
paramagnetism arises due to a single Ni ion, the gauge origin O is chosen at the
position of this ion. A is another nucleus that, e.g., causes SOC (in this example,
a N atom), and K is the nucleus whose chemical shielding we are considering (in
this example, a H atom).

(
∂H
∂MK

)

(0)

SD
= α2 ge

2∑i

3riK(si ⋅ riK) − r2
iK si

r5
iK

, (17)

the Fermi contact (FC) term is defined as

(
∂H
∂MK

)

(0)

FC
= α2 ge

2
8π
3 ∑i

δ3
(riK)si, (18)

and the spin–orbit gauge correction term is defined as

(
∂H
∂MK

)

(0)

gauge
= α2
∑
iA
ξA
(riA)

1
r3

iK
[si(riA ⋅ riK) − riA(si ⋅ riK)]. (19)

Likewise, the derivative with respect to the external magnetic field
can be written as the sum of three terms: an orbital part involving the
total angular momentum operator with respect to the chosen gauge
origin RO,

(
∂H
∂B
)

(0)

orb
=

1
2

LO =
1
2∑i

liO =
1
2∑i
(riO × pi), (20)

a spin part involving the total spin operator,

(
∂H
∂B
)

(0)

spin
=

ge

2
S =

ge

2∑i
si, (21)

and a gauge correction term given by

(
∂H
∂B
)

(0)

gauge
=

1
2∑iA

ξA
(riA)[si(riA ⋅ riO) − riA(si ⋅ riO)]. (22)

Finally, the second derivatives are given by

(
∂2H

∂Bk∂Bl )

(0)

=
1
4∑i
(r2

iOδkl − rk
iOrl

iO), (23)

(
∂2H

∂Bk∂Ml
K
)

(0)

=
α2

2 ∑i

(riO ⋅ riK)δkl − rk
iK rl

iO

r3
iK

. (24)

B. Chemical shielding and susceptibility as second
derivatives of the electronic free energy

Van den Heuvel and Soncini derived the following expres-
sion for the chemical shielding tensor in a molecule with arbitrary
degeneracy:

σVdHS
kl = (

∂2F
∂Bk∂Ml

K
)

(0)

=
1

Z(0)∑n
e−βE(0)

n

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− β∑
νν′
⟨Ψ(0)nν ∣(

∂H
∂Bk )

(0)
∣Ψ(0)nν′ ⟩⟨Ψ

(0)
nν′ ∣(

∂H
∂Ml

K
)

(0)

∣Ψ(0)nν ⟩ +∑
ν
⟨Ψ(0)nν ∣(

∂2H
∂Bk∂Ml

K
)

(0)

∣Ψ(0)nν ⟩

+ ∑
m≠n
∑
νμ

⟨Ψ(0)nν ∣(
∂H
∂Bk )

(0)
∣Ψ(0)mμ ⟩⟨Ψ

(0)
mμ ∣(

∂H
∂Ml

K
)
(0)
∣Ψ(0)nν ⟩ + c.c.

E(0)n − E(0)m

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (25)

Here, F = −kBT ln Z is the electronic Helmholtz free energy of
the molecule, Z(0) = ∑

n
exp(−βE(0)n ) is the canonical partition func-

tion belonging to the zeroth order Hamiltonian, and β = 1/kBT.
These expressions assume that the eigenfunctions and eigenvalues
of the relativistic zeroth order Hamiltonian are known,

H(0)∣Ψ(0)nν ⟩ = E(0)n ∣Ψ
(0)
nν ⟩, (26)

where ν is an additional label for states that are degenerate at zero
field. For completeness, we present a simplified derivation of Eq. (25)
in Appendix A. The basic assumptions in Eq. (25) are that the
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timescale of transitions between different electronic states is much
shorter than that of the nuclear spin dynamics, meaning that the
nuclei sense the average effect of all thermally populated electronic
states, and that the shielding is independent of the field strength

(weak-field approximation). These assumptions are fulfilled in most
cases.

Analogously to Eq. (25), the magnetic susceptibility can be
written as36

χVV
kl = −μ0(

∂2F
∂Bk∂Bl )

(0)

= 4πα2 1
Z(0)∑n

e−βE(0)
n

⎡
⎢
⎢
⎢
⎢
⎣

β∑
νν′
⟨Ψ(0)nν ∣(

∂H
∂Bk )

(0)
∣Ψ(0)nν′ ⟩⟨Ψ

(0)
nν′ ∣(

∂H
∂Bl )

(0)
∣Ψ(0)nν ⟩

− ∑
ν
⟨Ψ(0)nν ∣(

∂H
∂Bk∂Bl )

(0)
∣Ψ(0)nν ⟩ − ∑

m≠n
∑
νμ

⟨Ψ(0)nν ∣(
∂H
∂Bk )

(0)
∣Ψ(0)mμ ⟩⟨Ψ

(0)
mμ ∣(

∂H
∂Bl )

(0)
∣Ψ(0)nν ⟩ + c.c.

E(0)n − E(0)m

⎤
⎥
⎥
⎥
⎥
⎦

. (27)

This is the generalization of the van Vleck equation according
to Gerloch and McMeeking37 plus a diamagnetic term; see also the
discussion of Van den Heuvel and Soncini.7

C. Long-distance limit of the operator derivatives
We now investigate the limit of Eq. (25) for the case that

the magnetic nucleus is at a large distance from the paramag-
netic part of the molecule that gives rise to the chemical shield-
ing. McConnell performed a similar analysis24 based on Ramsey’s
expression for nondegenerate ground states.2,3 Choosing the gauge
origin used for the vector potential of the external magnetic field
in the region of space where the unpaired electrons are located, the
vector

R = RO − RK (28)

is a good measure for the distance between the nucleus and the
paramagnetic center. In principle, the gauge origin can be cho-
sen arbitrarily and should not influence any observables because
the effective nuclear charge Hamiltonian in Eq. (14) (including
the gauge correction term) is well-behaved under gauge transfor-
mations. For example, McConnell chose the gauge origin for the
external field at RK .24 However, this choice makes the derivation
more complicated.

If we only consider the effect of electrons i located at the
paramagnetic center, in the long-distance limit, riO can be consid-
ered small compared to R and then riK = riO + R ≈ R. Therefore,
it is possible to expand the inverse powers of riK occurring in
Eqs. (16), (17), (19), and (24) in a Taylor series around riO = 0 to
obtain24,31

1
r3

iK
=

1
R3 − 3

riO ⋅ R
R5 +

15(riO ⋅ R)2

2R7 −
3r2

iO

2R5 +O(r
3
iO), (29)

1
r5

iK
=

1
R5 − 5

riO ⋅ R
R7 +

35(riO ⋅ R)2

2R9 −
5r2

iO

2R7 +O(r
3
iO). (30)

Inserting these expansions into the expressions for the Hamiltonian
derivatives and retaining only the terms with inverse powers of R up
to three, one obtains

(
∂H
∂Ml

K
)

(0)

≈ α2
∑
m
(
∂H
∂Bm )

(0) 3RmRl
− R2δml

R5 + i[H(0),∑
i

f l
(ri)]

(31)

and

(
∂2H

∂Bk∂Ml
K
)

(0)

≈ α2
∑
m
(

∂2H
∂Bk∂Bm )

(0)
3RmRl

− R2δml

R5

+ i[(
∂H
∂Bk )

(0)
,∑

i
f l
(ri)] (32)

with

f(r) =
α2

R3 (R × rO) −
3α2

2R5 (R ⋅ rO)(R × rO). (33)

Note that Eq. (32) cannot be obtained as a derivative of Eq. (31)
because the latter is here evaluated at zero field. However, as we will
demonstrate in Sec. IV B, Eq. (31) is also true at non-zero fields. The
detailed derivation of Eqs. (31) and (32) is not trivial and is presented
in Secs. II D and II E. Note that the FC contribution to the hyperfine
field vanishes if there is no overlap between the nucleus and the elec-
tronic system that is responsible for the chemical shielding. It can be
observed that Eqs. (31) and (32) contain terms scaling as R−2 due
to the presence of the first term in f(r), in apparent violation of the
PDA, for which the lowest nonvanishing inverse power is expected
to be R−3. We will demonstrate below that these two R−2 operators
give rise to terms that are of equal size but of opposite sign such that
they exactly cancel each other.

D. Derivation of Eq. (31)
This section is quite technical and may be skipped without

compromises in conceptual understanding. A basic identity used
in this section is the commutator of the nonrelativistic field-free
Hamiltonian with an arbitrary local one-electron operator,

[Hnonrel,(0),∑
i

f (ri)] = −
1
2∑i

Δ f (ri) − i∑
i
∇ f (ri) ⋅ pi, (34)
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which can also be written as

i[Hnonrel,(0),∑
i

f (ri)] =
1
2∑i
[∇ f (ri) ⋅ pi + pi ⋅ ∇ f (ri)]. (35)

A local operator is one that is “diagonal” in the position represen-
tation, which is equivalent to saying that it is “multiplicative.” That
is, when acting on a wavefunction in the position representation, the
latter is multiplied by another function. A prominent example of a
local operator is the potential energy. Another useful expression is
the product of two Levi-Civita symbols in terms of a determinant of
Kronecker deltas,

ϵijkϵlmn =

RRRRRRRRRRRRRRRRRRR

δil δim δin

δjl δjm δjn

δkl δkm δkn

RRRRRRRRRRRRRRRRRRR

. (36)

From this equation, it follows that a product of two cross products
can be written as

(a × b)i
(c × d)l

= δil(a ⋅ c)(b ⋅ d) + aldi
(b ⋅ c) + blci

(a ⋅ d)

− δil(a ⋅ d)(b ⋅ c) − bldi
(a ⋅ c) − alci

(b ⋅ d). (37)

Furthermore, an expression for the contraction of two Levi-Civita
symbols over a common index can be obtained from Eq. (36),

∑
k
ϵijkϵlmk = δilδjm − δimδjl. (38)

It is also useful to note that the commutator of many-particle opera-
tors that are the sum of one-electron operators can be reduced to the
commutator of the corresponding one-particle operators,

⎡
⎢
⎢
⎢
⎢
⎣

∑
i

ai,∑
j

bj

⎤
⎥
⎥
⎥
⎥
⎦

=∑
i
[ai, bi]. (39)

Using Eq. (29), the long-distance limit of the PSO operator [Eq. (16)]
is given by

(
∂H
∂Ml

K
)

(0)

PSO
= α2
∑

i

lliK
r3

iK

≈ α2
∑

i
[

lliO
R3 +

1
R3 (R × pi)

l
−

3
R5 (riO ⋅ R)(R × pi)

l
],

(40)

where only terms scaling up to R−3 are kept. In the derivatives of the
Hamiltonian with respect to the magnetic field that occur in the van
Vleck equation for the susceptibility tensor [Eq. (27)], there are no
momentum operators except for the one that is part of the orbital
angular momentum operator. It is therefore necessary to remove the
remaining momentum operators from Eq. (40). By expressing the
total momentum operator as

P =∑
i

pi = i[Hnonrel,(0),∑
i

riO], (41)

which is a special case of Eq. (35), the second term in Eq. (40)
becomes

1
R3 (R × P)l

=
i

R3

⎡
⎢
⎢
⎢
⎢
⎣

Hnonrel,(0),(R ×∑
i

riO)

l⎤
⎥
⎥
⎥
⎥
⎦

. (42)

The third term in Eq. (40) can be written using the Levi-Civita
symbol as

∑
i
(riO ⋅ R)(R × pi)

l
=

3

∑
p,m,n=1

RpϵlmnRm
∑

i
r p

iOpn
i . (43)

Antisymmetric combinations of terms such as ∑
i

r p
iOpn

i occur in the

orbital angular momentum operator. Hence, using Eq. (38),

∑
k
ϵkpnLk

O =∑
i
(r p

iOpn
i − rn

iOpp
i ). (44)

Using Eq. (34), the corresponding symmetric combinations are
obtained via

i[Hnonrel,(0),∑
i

r p
iOrn

iO] = −iNδpn +∑
i
(r p

iOpn
i + rn

iOpp
i ), (45)

where N is the total electron number. Combining Eqs. (44)
and (45),

∑
i

r p
iOpn

i =
1
2
[∑

k
ϵkpnLk

O + i([Hnonrel,(0),∑
i

r p
iOrn

iO] +Nδpn)]. (46)

When Eq. (46) is inserted into Eq. (43), the following equation is
obtained:

∑
i
(riO ⋅ R)(R × pi)

l

=
1
2
[R2Ll

O − Rl
(R ⋅ LO) + i[Hnonrel,(0),∑

i
(R ⋅ riO)(R × riO)

l
] ].

(47)

Here, we used Eq. (38), and the term involving N vanishes because of
R × R = 0. Equations (42) and (47) can now be inserted into Eq. (40)
to obtain

(
∂H
∂Ml

K
)

(0)

PSO
≈ α2
∑
m
(
∂H
∂Bm )

(0)

orb

3RmRl
− R2δml

R5

+ i[Hnonrel,(0),∑
i

f l
(ri)], (48)

with f(r) defined in Eq. (33). In order to achieve a cancellation of the
R−2-scaling terms introduced by the f(r) function in the sum-over-
states expression Eq. (25), there should be a commutator with the full
effective nuclear charge Hamiltonian H(0) instead of Hnonrel,(0). We
therefore anticipate that another contribution to the long-distance
limit of (∂H/∂Ml

K)
(0) will produce the term i[HSOC,∑

i
f l
(ri)]. In

order to know what to look for, we now calculate this commuta-
tor. Since the one-electron spin operator commutes with any spatial
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operators, we leave it out of the expressions for now and only
consider one-particle operators [see Eq. (39)]. We can write

i[∑
A
ξA
(riA)lpiA, f l

(ri)] =∑
A
ξA
(riA)∑

mn
ϵpmnrm

iA
∂ f l
(ri)

∂rn
i

=∑
A
ξA
(riA)(riA ×∇ f l

(ri))
p. (49)

Using this, the commutators with the two terms in f l
(r) are, using

Eq. (38),

i[∑
A
ξA
(riA)lpiA, (R × riO)

l
] =∑

A
ξA
(riA)[(R ⋅ riA)δpl − rl

iARp
], (50)

i[∑
A
ξA
(riA)lpiA, (R ⋅ riO)(R × riO)

l
]

=∑
A
ξA
(riA)[(riA × R)p

(R × riO)
l
+ (R ⋅ riO)(R ⋅ riA)δpl

− (R ⋅ riO)rl
iARp
]. (51)

The term involving two cross products can be rewritten using
Eq. (37) as

(riA × R)p
(R × riO)

l
= δpl(riA ⋅ R)(R ⋅ riO) + R2rl

iAr p
iO

+ (riA ⋅ riO)RpRl
− (riA ⋅ R)Rlr p

iO

− δpl(riO ⋅ riA)R2
− (R ⋅ riO)rl

iARp. (52)

When inserted into Eq. (51), this gives

i[∑
A
ξA
(riA)lpiA, (R ⋅ riO)(R × riO)

l
]

=∑
A
ξA
(riA)[2δpl(riA ⋅ R)(R ⋅ riO) + R2rl

iAr p
iO

+ (riA ⋅ riO)RpRl
− (riA ⋅ R)Rlr p

iO − δpl(riO ⋅ riA)R2

− 2(R ⋅ riO)rl
iARp
]. (53)

We now turn our attention to the long-distance limit of the gauge
correction Eq. (19) (again just the one-particle part with omission of
the spin operator),

α2
∑
A
ξA
(riA)

1
r3

iK
[δpl(riA ⋅ riK) − rl

iAr p
iK]

≈ α2
∑
A
ξA
(riA)

1
R5 [R

2
(riA ⋅ riO)δpl − R2r p

iOrl
iA + R2

(riA ⋅ R)δpl

− R2Rprl
iA − 3(riO ⋅ R)(riA ⋅ R)δpl + 3(riO ⋅ R)rl

iARp
]. (54)

Here, we used Eq. (29) and only kept terms scaling up to R−3. When
combining Eqs. (50), (53), and (54), the following expression is
obtained:

α2
∑
A
ξA
(riA)

1
r3

iK
[δpl(riA ⋅ riK) − rl

iAr p
iK]

≈ α2
∑
m
(

1
2∑A

ξA
(riA)[(riA ⋅ riO)δmp − rm

iAr p
iO])

×
3RmRl

− R2δml

R5 + i[∑
A
ξA
(riA)lpiA, f l

(ri)]. (55)

Upon multiplication of this expression with s p
i and summation over

the Cartesian components p and electrons i [using Eq. (39)], we
obtain

(
∂H
∂Ml

K
)

(0)

gauge
≈ α2
∑
m
(
∂H
∂Bm )

(0)

gauge

3RmRl
− R2δml

R5

+ i[HSOC,∑
i

f l
(ri)]. (56)

We see that the long-distance limit for the gauge correction indeed
produces the desired commutator with the SOC operator.

Using Eq. (30), the long-distance limit of the spin–dipolar
part (retaining terms scaling up to R−3) can straightforwardly be
obtained as

(
∂H
∂Ml

K
)

(0)

SD
≈ α2
∑
m
(
∂H
∂Bm )

(0)

spin

3RmRl
− R2δml

R5 . (57)

The long-distance limit for the Fermi contact contribution (if there
is no spin density at the position of the nucleus) is 0. We can then
add Eqs. (48), (56), and (57) to obtain Eq. (31).

E. Treatment of the commutator terms
and derivation of Eq. (32)

Given two arbitrary Hermitian operators A and B, it is
straightforward to show that (see Appendix B)

∑
m≠n
∑
νμ

⟨Ψ(0)nν ∣i[H(0), B]∣Ψ(0)mμ ⟩⟨Ψ
(0)
mμ ∣A∣Ψ

(0)
nν ⟩ + c.c.

E(0)n − E(0)m

= −∑
ν
⟨Ψ(0)nν ∣i[A, B]∣Ψ(0)nν ⟩, (58)

which is valid for arbitrary n. A similar equation, valid only for
nondegenerate ground states, can be formulated in terms of the
polarization propagator and was, for example, used by Geertsen in
his proof of the gauge invariance of the second order energy in the
presence of magnetic fields.38

We now consider the case A = (∂H/∂Bk
)
(0) and B = ∑

i
f l
(ri),

for which we need to evaluate the commutator i[( ∂H
∂Bk )

(0)
,∑

i
f l
(ri)]

on the right-hand side of Eq. (58). Since local operators commute
with other local operators and with spin operators, only the orbital
part of (∂H/∂Bk

)
(0), which is proportional to the total angular

momentum, contributes to this commutator. Using
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i[(
∂H
∂B
)

(0)
,∑

i
f l
(ri)] =

i
2
[LO,∑

i
f l
(ri)]

=
1
2∑i
(riO ×∇ f l

(ri)) (59)

together with Eq. (38), one obtains

iα2

R3

⎡
⎢
⎢
⎢
⎢
⎣

(
∂H
∂Bk )

(0)
,(R ×∑

i
riO)

l⎤
⎥
⎥
⎥
⎥
⎦

=
α2

2R5∑
i
[R2
(riO ⋅ R)δkl − R2rl

iORk
]

(60)

for the first term and

−
3iα2

2R5 [(
∂H
∂Bk )

(0)
,∑

i
(R ⋅ riO)(R × riO)

l
]

=
α2

2R5∑
i
[

3
2
(riO × R)k

(riO × R)l
−

3
2
(R ⋅ riO)

2δkl

+
3
2
(R ⋅ riO)Rkrl

iO] (61)

for the second term of the commutator with ∑
i

f l
(ri) [defined in

Eq. (33)]. Using Eq. (37), the term involving two cross products can
be rewritten as

(riO × R)k
(riO × R)l

= [r2
iOR2
− (riO ⋅ R)2

]δkl − r2
iORkRl

− R2rk
iOrl

iO + (riO ⋅ R)(rk
iORl
+ rl

iORk
). (62)

Inserting this into Eq. (61) leads to

−
3iα2

2R5 [(
∂H
∂Bk )

(0)
,∑

i
(R ⋅ riO)(R × riO)

l
]

=
α2

2R5∑
i
[(−3(R ⋅ riO)

2
+

3
2

r2
iOR2
)δkl −

3
2

r2
iORkRl

−
3
2

R2rk
iOrl

iO + (riO ⋅ R)(3rl
iORk
+

3
2

rk
iORl
)]. (63)

Furthermore,

α2
∑
m
(

∂2H
∂Bk∂Bm )

(0)
3RmRl

− R2δml

R5

=
α2

2R5∑
i
(

3
2

RlRkr2
iO −

1
2

R2r2
iOδkl −

3
2

Rlrk
iO(riO ⋅ R)

+
1
2

R2rk
iOrl

iO). (64)

The long-distance expansion of the diamagnetic operator operator
Eq. (24) [using Eq. (29) and retaining only terms scaling up to R−3]
is given by

(
∂2H

∂Bk∂Ml
K
)

(0)

≈
α2

2R5∑
i
[R2r2

iOδkl − R2rk
iOrl

iO + R2
(riO ⋅ R)δkl

− R2Rkrl
iO − 3(riO ⋅ R)2δkl + 3(riO ⋅ R)Rkrl

iO .
(65)

It can now be seen that the sum of Eqs. (60), (63), and (64) is identical
to Eq. (65), which concludes the derivation of Eq. (32).

F. Long-distance limit of the chemical shielding
In the first term of Eq. (25), the term arising from the

commutator in Eq. (31) vanishes since for an arbitrary operator A,

⟨Ψ(0)nν′ ∣i[H
(0), A]∣Ψ(0)nν ⟩ = i(E(0)n − E(0)n )⟨Ψ

(0)
nν′ ∣A∣Ψ

(0)
nν ⟩ = 0. (66)

Equation (58) shows that the contributions to the second and third
term of Eq. (25) arising from the commutator terms in Eqs. (31)
and (32) exactly cancel each other. Together, these results mean that
inserting Eqs. (31) and (32) into Eq. (25) for the chemical shielding
gives

σVdHS
kl = −

1
4πR3∑

m
χVV

km(
3RmRl

R2 − δml) (67)

with χVV
km defined in Eq. (27). Equation (67) is exactly the KM equa-

tion [Eq. (3)] written component-wise. This shows that an exact QC
treatment confirms the KM long-distance expression and indicates
that the different results predicted by the use of the unsymmetrical
χ′ tensor are an artifact that derives from the neglect of the orbital
contribution to hyperfine coupling.

III. THE LONG-DISTANCE LIMIT IN THE SPIN
HAMILTONIAN FRAMEWORK

It is often a good approximation to assume that all electronic
states that make sizable contributions to the paramagnetic shift can
be described by a SH of the form

Hspin = S ⋅D ⋅ S + μBB ⋅ g ⋅ S + I ⋅A ⋅ S. (68)

Note that we employ the “IAS” convention for the magnetic hyper-
fine term in the SH. The A tensor in this convention is related to
the one in the also often used “SAI” convention by transposition. In
our previous work,31 we argued that within the SH approximation,
the validity of the KM equation [Eq. (3)] implies that in the long-
distance limit, the complete tensor A can be expressed in terms of
the tensor g,31,32

A ≈
α2γ
2R3 (

3RRT

R2 − 1)g, (69)

which is Eq. (7) written in atomic units. This expression was previ-
ously only known to hold for the SD contribution to the A tensor
in terms of the spin contribution to the g tensor.26 In this section,
we present a detailed derivation of Eq. (69) at the level of degenerate
perturbation theory up to second order (DPT2). It will turn out that
it is crucial to use gauge-invariant expressions for the SH parame-
ters, i.e., to properly include the gauge correction terms [Eqs. (19)
and (22)].
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A. Exact eigenstates
We now consider eigenstates of the nonrelativistic field-free

Hamiltonian, which are also eigenfunctions of the total spin operator
and its z component,

Hnonrel,(0)
∣ΨSM

I ⟩ = E(0),nonrel
I ∣ΨSM

I ⟩. (70)

Using DPT2, the g and A tensors can be written in terms of the
nonrelativistic eigenfunctions and eigenvalues as34,39–41

g = gspin
+ ggauge

+ gorb/SOC, (71)

gspin
kl = δklge, (72)

ggauge
kl =

1
S
⟨ΨSS

0 ∣∑
iA
ξA
(riA)[δkl(riA ⋅ riO) − rk

iArl
iO]s

z
i ∣Ψ

SS
0 ⟩, (73)

gorb/SOC
kl = −

1
S ∑b,Sb=S

⟨ΨSS
0 ∣L

k
O∣ΨSS

b ⟩⟨Ψ
SS
b ∣∑

iA
ξA
(riA)lliAsz

i ∣ΨSS
0 ⟩ + c.c.

E(0),nonrel
b − E(0),nonrel

0
(74)

and

A = AFC
+ASD

+Agauge
+APSO/SOC, (75)

AFC
kl = δkl

1
S
α2γ

ge

2
8π
3
⟨ΨSS

0 ∣∑
i
δ3
(riK)sz

i ∣Ψ
SS
0 ⟩, (76)

ASD
kl =

1
S
α2γ

ge

2
⟨ΨSS

0 ∣∑
i

3rk
iK rl

iK − r2
iKδkl

r5
iK

sz
i ∣Ψ

SS
0 ⟩, (77)

Agauge
kl =

1
S
α2γ⟨ΨSS

0 ∣∑
iA
ξA
(riA)

1
r3

iK
[δkl(riA ⋅ riK) − rk

iArl
iK]s

z
i ∣Ψ

SS
0 ⟩,

(78)

APSO/SOC
kl =−

1
S
α2γ∑

b,Sb=S

⟨ΨSS
0 ∣∑

i

lkiK
r3

iK
∣ΨSS

b ⟩⟨Ψ
SS
b ∣∑

iA
ξA
(riA)lliAsz

i ∣ΨSS
0 ⟩+c.c.

E(0),nonrel
b − E(0),nonrel

0

.

(79)

Equations (74) and (79) involve a sum over all excited states.
Hence, we will call those terms the sum-over-states (SOS) contri-
butions to the g tensor and the A tensor, respectively. The gauge
correction to A was only considered in a few ab initio studies
so far.42,43 In the latter article, it was called “diamagnetic orbital
contribution.” The fact that it is usually neglected in QC calculations
indicates that its contribution is often small in standard situa-
tions. However, without this contribution, the A tensor is not gauge
invariant.

The spatial integrals that are necessary to evaluate Eq. (78) are
very similar to the integrals needed for calculating the contribution

of SOC to NMR indirect nuclear spin–spin couplings.42 In practice,
there is the problem that the integrals diverge for K = A. One, there-
fore, usually follows the pragmatic approach to leave out the SOC
contribution of the nucleus for which the property is calculated.42,44

We expect this to be an excellent approximation for the numer-
ical results in our previous31 and present work since the probe
nucleus is far away from the electronic system of interest. Hence,
SOC due to this nucleus should be negligible. Note that the neces-
sity for such an ad hoc approach is an artifact of the approximate
effective nuclear charge Hamiltonian employed in this section. For
the Dirac Hamiltonian discussed below, no such divergence issues
arise.

The Fermi contact contribution to A is easily seen to vanish
in the long-distance limit, where riK ≠ 0. However, note that there
are examples of extended electron spin delocalization, e.g., across π
systems. In these cases, our basic assumption of a spatially confined
paramagnetic center is not strictly applicable. For the spin–dipolar
contribution, it was already known before that26

ASD
≈
α2γ
2R3 (

3RRT

R2 − 1)gspin
=
α2γge

2R3 (
3RRT

R2 − 1), (80)

which can also immediately be obtained by using Eq. (30). This
leaves us with the investigation of the long-distance behavior of the
SOS contribution and the contribution due to the gauge correction.
For an arbitrary Hermitian operator A and an arbitrary Hermitian
singlet operator B, i.e., one that does not mix different total spins
and magnetic sublevels of nonrelativistic zeroth order states, there is
a relation similar to Eq. (58),

∑
b,Sb=S

⟨ΨSS
0 ∣i[H

nonrel,(0), B]∣ΨSS
b ⟩⟨Ψ

SS
b ∣A∣Ψ

SS
0 ⟩+c.c.

E(0),nonrel
b − E(0),nonrel

0

= ⟨ΨSS
0 ∣i[A, B]∣ΨSS

0 ⟩.

(81)

This equation is derived in Appendix B. Inserting Eq. (48) into
Eq. (79) and applying Eq. (81) lead to

APSO/SOC
kl ≈

α2γ
2R3∑

m
(

3RkRm

R2 − δkm)gorb/SOC
ml

−
1
S
γ⟨ΨSS

0 ∣i[∑
iA
ξA
(riA)lliAsz

i ,∑
i

f k
(ri)]∣ΨSS

0 ⟩. (82)

Using Eq. (55), the long-distance limit of Eq. (78) is given by

Agauge
kl ≈

α2γ
2R3∑

m
(

3RkRm

R2 − δkm)ggauge
ml

+
1
S
γ⟨ΨSS

0 ∣i[∑
iA
ξA
(riA)lliAsz

i ,∑
i

f k
(ri)]∣ΨSS

0 ⟩. (83)

The two “nonphysical” commutator terms scaling like R−2 can-
cel when adding Eqs. (82) and (83), which concludes the proof of
Eq. (69) at the level of DPT2. Note that only the gauge-invariant sum
of the gauge correction term and the SOS term fulfills Eq. (69). In
contrast to that, the SOS term alone, Eq. (82), has an unphysical R−2

long-distance contribution.
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B. Approximate methods: Kohn–Sham density
functional theory and Hartree–Fock

In practice, one has no access to exact eigenstates of
the Hamiltonian and has to resort to approximate methods
instead. In our previous work,31 we observed that for unrestricted
Kohn–Sham (UKS) density functional theory (DFT) with the BP86
exchange–correlation functional, Eq. (69) was only fulfilled for very
large basis sets. In order to understand this behavior, we now discuss
the PDA for UKS and unrestricted HF (UHF). In this section, we
use Greek letters μν . . . for atomic orbitals (AOs), ij . . . for occupied
molecular orbitals (MOs), ab . . . for virtual/unoccupied MOs, and
pq . . . for general MOs. In UKS and UHF, the expressions for the
SOC45,46 and gauge contributions to the g tensor and the A tensor
corresponding to Eqs. (73), (74), (78), and (79) are given by

ggauge
kl =

1
2⟨Sz⟩

∑
μν
⟨μ∣∑

A
ξA
(rA)[δkl(rA ⋅ rO) − rk

Arl
O]∣ν⟩P

α−β
νμ

=
1

2⟨Sz⟩
∑
σ∈α,β
(−1)δσβ∑

iσ
⟨iσ ∣∑

A
ξA
(rA)[δkl(rA ⋅ rO) − rk

Arl
O]∣i

σ
⟩,

(84)

gorb/SOC
kl =

1
⟨Sz⟩
∑
μν

∂Pα−βμν

∂Bk zl
νμ

=
1
⟨Sz⟩

∑
σ∈α,β
(−1)δσβ[∑

aσ iσ
⟨iσ ∣zl

∣aσ⟩
∂Uσ

ai

∂Bk + c.c.], (85)

Agauge
kl =

α2γ
2⟨Sz⟩

∑
μν
⟨μ∣∑

A
ξA
(rA)

1
r3

K
[δkl(rA ⋅ rK) − rk

Arl
K]∣ν⟩P

α−β
νμ

=
α2γ

2⟨Sz⟩
∑
σ∈α,β
(−1)δσβ∑

iσ
⟨iσ ∣∑

A
ξA
(rA)

1
r3

K
[δkl(rA ⋅ rK)−rk

Arl
K]∣i

σ
⟩,

(86)

APSO/SOC
kl =

γ
2⟨Sz⟩

∑
μν

∂Pα−βμν

∂Mk
K

zl
νμ

=
γ

2⟨Sz⟩
∑
σ∈α,β
(−1)δσβ[∑

aσ iσ
⟨iσ ∣zl

∣aσ⟩
∂Uσ

ai

∂Mk
K
+ c.c.], (87)

with the spatial part of the SOC operator being, for convenience,
defined as

zl
=∑

A
ξA
(rA)llA. (88)

Pα−βμν is the spin density matrix, given in terms of orbital
coefficients by

Pα−βμν = Pαμν − Pβμν =∑
iα

Cα
μiC

α∗
νi −∑

iβ
Cβ
μiC

β∗
νi

= ∑
σ∈α,β
(−1)δσβ∑

iσ
Cσ
μiC

σ∗
νi . (89)

The perturbed spin density matrices in Eqs. (85) and (87) are defined
with respect to the orbital Zeeman and the PSO part of the Hamil-
tonian, respectively. Note that we assume the use of a standard
(field-independent) AO basis set. In this case, the g tensor depends
on the chosen gauge origin. For a single local paramagnetic center,
it has been demonstrated that choosing a gauge origin close to the
paramagnetic center usually yields good results.47 The gauge ori-
gin dependence can be removed by employing gauge-including AOs
(GIAOs).48,49 However, this makes the theory significantly more
complicated at not much added conceptual insight. For simplicity,
we therefore employ field-independent basis sets with the center
of electronic charge as the gauge origin in our calculations. The
assumption of a field-independent basis set is made throughout the
derivations in this section.

The first-order perturbed orbital coefficients ∂Uσ
ai/∂μ can be

obtained by solving the coupled-perturbed self-consistent field (CP-
SCF) equations, which for purely imaginary perturbations (using the
“magnetic Hessian”45) read

(ϵσa − ϵ
σ
i )

∂Uσ
ai

∂μ
+ cHF∑

bσ j σ

∂Uσ
bj

∂μ
[(aσ j σ ∣iσbσ) − (aσbσ ∣iσ j σ)]

= −⟨aσ ∣(
∂h
∂μ
)

(0)

∣iσ⟩, (90)

where cHF is the amount of HF exchange. Note that the perturbed
orbital coefficients are linear in the perturbation operator such that
one can consider different additive contributions to the perturba-
tion operator separately. Here and in the following, we use the
notation

(g∣h) =∬
g(r1)h(r2)

∣r1 − r2∣
dr1dr2 (91)

for Coulomb repulsion integrals. For pure functionals (cHF = 0), the
magnetic Hessian is diagonal45 and the CP-SCF equations are com-
pletely decoupled. This means that one can directly write down the
solutions to Eq. (90),

∂Uσ
ai

∂μ
= −

⟨aσ ∣(∂h
∂μ)

(0)
∣iσ⟩

ϵσa − ϵσi
. (92)

For the present discussion, the relevant perturbation oper-
ators in Eqs. (90) and (92) are (∂h/∂Bk

)
(0)
= lkO/2 and

(∂h/∂Mk
K)
(0)
= α2lkK/r

3
K .

The field-free Kohn–Sham (or Fock) operator hKS,σ , which in
the chosen one-electron AO basis has the orbitals ∣pσ⟩ and orbital
energies ϵσp as eigenfunctions and eigenvalues, is given by45

hKS,σ
= −

p2

2
−∑

A

ZA

rA
+ ∑
λ∈α,β
∑
iλ

Jiλ − cHF∑
iσ

Kiσ + cDFv
σ
xc. (93)

The terms are (from left to right) the kinetic energy, the external
(nuclear) potential, the Coulomb operators, the exchange opera-
tors, and the exchange–correlation potential. For pure functionals,
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cHF = 0, while for HF, cDF = 0 and cHF = 1. For hybrid DFT function-
als, both cHF and cDF are non-zero. The only operators in Eq. (93)
that are non-local (i.e., that can contribute to the commutator with
a local operator) are the kinetic energy and the exchange operators.
This means that for arbitrary local operators f , i.e., operators that
multiply a wavefunction with the function f (r), one has in analogy
to Eq. (35),

i
⎡
⎢
⎢
⎢
⎢
⎣

hKS,σ
+ cHF∑

j σ
Kj σ , f

⎤
⎥
⎥
⎥
⎥
⎦

=
1
2
(p ⋅ ∇ f +∇ f ⋅ p). (94)

Therefore, in the long-distance limit, one can write the perturbation
operator relevant for the A tensor as

α2 lkK
r3

K
≈ α2
∑
m

3RkRm
− R2δkm

R5
lmO
2
+ i
⎡
⎢
⎢
⎢
⎢
⎣

hKS,σ
+ cHF∑

j σ
Kj σ , f k

(r)
⎤
⎥
⎥
⎥
⎥
⎦

, (95)

which is analogous to Eq. (48). The commutator term in Eq. (95) can
be dealt with in a similar way as in Eq. (81) for exact states.

From Eq. (92), one immediately sees that, for pure function-
als, such a commutator term gives a contribution to the perturbed
orbital coefficients of the form

∂Uσ
ai

∂μ
← −
⟨aσ ∣i[hKS,σ , f ]∣iσ⟩

ϵσa − ϵσi
= −i⟨aσ ∣ f ∣iσ⟩. (96)

We will now show that the same expression also holds for HF and
hybrid functionals. One can write a one-electron matrix element of
the commutator with an exchange operator as

⟨aσ ∣[Kj σ , f ]∣iσ⟩ = (iσ f j σ ∣ j σaσ) − (aσ f j σ ∣ j σ iσ). (97)

Assuming that it is possible to write

f ∣ j σ⟩ =∑
pσ
∣pσ⟩⟨ pσ ∣ f ∣ j σ⟩, (98)

(for which completeness of the one-particle basis is a sufficient but
not necessary condition), it follows that

∑
j σ
⟨aσ ∣[Kj σ , f ]∣iσ⟩ = ∑

pσ j σ
⟨pσ ∣ f ∣ j σ⟩[(aσ j σ ∣iσpσ) − (aσpσ ∣iσ j σ)]

= ∑
bσ j σ
⟨bσ ∣ f ∣ j σ⟩[(aσ j σ ∣iσbσ) − (aσbσ ∣iσ j σ)]. (99)

In the second step, pσ were restricted to virtual orbitals since
there is an exact cancellation of terms for occupied orbitals. A
matrix element of the commutator with the Kohn–Sham operator is
given by

⟨aσ ∣[hKS,σ , f ]∣iσ⟩ = (ϵσa − ϵ
σ
i )⟨a

σ
∣ f ∣iσ⟩. (100)

Combining Eqs. (99) and (100) gives

(ϵσa − ϵ
σ
i )(−i⟨aσ ∣ f ∣iσ⟩) + cHF∑

bσ j σ
(−i⟨bσ ∣ f ∣j σ⟩)

× [(aσ j σ ∣iσbσ) − (aσbσ ∣iσ j σ)]

= −⟨aσ ∣i
⎡
⎢
⎢
⎢
⎢
⎣

hKS,σ
+ cHF∑

j σ
Kj σ , f

⎤
⎥
⎥
⎥
⎥
⎦

∣iσ⟩. (101)

Comparing this with the CP-CSF equations, Eq. (90), shows that
the contribution of a commutator term i[hKS,σ

+ cHF∑
j σ

Kj σ , f ] to the

perturbation operator (∂h/∂μ)(0) leads to a contribution to the
first-order orbital coefficients of the form

∂Uσ
ai

∂μ
← −i⟨aσ ∣ f ∣iσ⟩, (102)

which is the same result we also obtained for pure functionals
[Eq. (96)]. If Eq. (98) is fulfilled, the corresponding contribution to
the contraction of the perturbed orbital coefficients with the SOC
operator can be written as

∑
aσ iσ
⟨iσ ∣zl

∣aσ⟩
∂Uσ

ai

∂μ
+ c.c.← −i∑

aσ iσ
⟨iσ ∣zl

∣aσ⟩⟨aσ ∣ f ∣iσ⟩ + c.c.

= −∑
iσ
⟨iσ ∣i[zl, f ]∣iσ⟩. (103)

In this step, Eq. (98) is necessary not only in the presence of HF
exchange but also for pure functionals. In our specific case, with
the local operator being defined through the function f(r) given in
Eq. (33), the commutator term in Eq. (95) leads to a contribution

∂Uσ
ai

∂Mk
K
← −i⟨aσ ∣ f k

∣iσ⟩. (104)

Combining Eqs. (95), (103), and (104) leads to

∑
aσ iσ
⟨iσ ∣zl

∣aσ⟩
∂Uσ

ai

∂Mk
K
+ c.c. ≈ α2

∑
m

3RkRm
− R2δkm

R5

× (∑
aσ iσ
⟨iσ ∣zl

∣aσ⟩
∂Uσ

ai

∂Bm + c.c.)

−∑
iσ
⟨iσ ∣i[zl, f k

]∣iσ⟩. (105)

Inserting this into Eq. (87) gives

APSO/SOC
kl ≈

α2γ
2R3∑

m
(

3RkRm

R2 − δkm)gorb/SOC
ml

−
γ

2⟨Sz⟩
∑
σ∈α,β
(−1)δσβ∑

iσ
⟨iσ ∣i[zl, f k

]∣iσ⟩. (106)

In comparison, inserting Eq. (55) into Eq. (86) for the gauge
contribution to the A tensor at the DFT and HF level gives
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FIG. 3. Relative difference between the
exact sum of PSO/SOC and gauge con-
tributions to the A tensor and a long-
distance approximation using the sum of
orbital and gauge contributions to the g
tensor.

Agauge
kl ≈

α2γ
2R3∑

m
(

3RkRm

R2 − δkm)ggauge
ml

+
γ

2⟨Sz⟩
∑
σ∈α,β
(−1)δσβ∑

iσ
⟨iσ ∣i[zl, f k

]∣iσ⟩. (107)

Adding Eqs. (106) and (107) leads again to a cancellation of the
unphysical terms. This shows that Eq. (69) is also fulfilled at the level
of DFT and HF, but only if the condition Eq. (98) is fulfilled. This
condition will, in general, not be true for commonly used finite basis
sets.

To summarize our findings, the derivation of the physically cor-
rect long-distance behavior of the A tensor at the level of UKS or
UHF requires the validity of Eq. (98). For pure functionals, where
Eq. (96) is always true, this condition enters only once in the deriva-
tion [for Eq. (103)]. In contrast, the presence of HF exchange also
requires the condition in the derivation of Eq. (102). Therefore,
one could expect that problems associated with the incompleteness
of the one-electron basis will be more pronounced in the pres-
ence of HF exchange. In order to test this hypothesis, we present
results for a bare proton at different distances from a CO+ radical
at the UHF level. The computational details were chosen identical
to the ones in our previous paper31 except that we used extremescf
convergence and lowered the CP-SCF convergence threshold to
10−9 in ORCA.50,51 The results are shown in Fig. 3, where we
plot the “relative difference”31 between the exact and approximate
APSO/SOC

+Agauge,

ΔSOC+gauge
rel =

∥APSO/SOC
+Agauge

−A(gorb/SOC
+ ggauge

)∥

∥APSO/SOC +Agauge∥
. (108)

Here, ∥ ⋅ ∥ is the Frobenius norm and A(g) denotes the long-distance
functional relationship between the A tensor and the g tensor given
in Eq. (69). One can observe that the basis set convergence is not
slower than for the pure BP86 functional that we used in our pre-
vious study.31 Actually, the results of both methods are extremely

similar. This demonstrates that, other than expected, the additional
approximation that is present when using HF exchange together
with incomplete basis sets apparently does not lead to an addi-
tional deviation from the correct behavior. In both cases (BP8631 and
UHF), one can observe only for the largest decontracted cc-pV6Z
basis set the physically expected behavior that the error associated
with the PDA tends toward zero for sufficiently large distances. We
note that the slower basis set convergence at larger distances might
be related to the fact that the commutator terms (which must cancel
in order for the PDA to hold) scale as R−2 and therefore increase
in importance relative to the “physical” contributions. Therefore,
the cancellation must be more accurate at larger distances in order
to obtain the same accuracy for the total A tensor, explaining the
heavier basis set demands.

IV. GENERALIZATION TO OTHER HAMILTONIANS
A. The Dirac Hamiltonian

In this section, we will generalize the results obtained with
the approximate effective nuclear charge Hamiltonian (Sec. II) to
the fully relativistic Dirac Hamiltonian. We will restrict the discus-
sion to the one-electron Dirac Hamiltonian. The generalization to
many electrons (Dirac–Coulomb Hamiltonian) is straightforward.
The one-electron Dirac Hamiltonian in the presence of magnetic
fields has the form

hD
=
⎛
⎜
⎝

V cσ ⋅ (p +A)

cσ ⋅ (p +A) V − 2c2

⎞
⎟
⎠

. (109)

Note that the speed of light occurring in this equation is equal to the
inverse fine-structure constant in the atomic units used throughout
this work, c = 1/α. However, we will explicitly leave it in the expres-
sions as is common in the literature. Also note that in this section, σ
denotes the vector of Pauli matrices and not the chemical shielding
tensor.
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In the absence of fields, the Dirac Hamiltonian takes the form

hD,(0)
=
⎛
⎜
⎝

V cσ ⋅ p

cσ ⋅ p V − 2c2

⎞
⎟
⎠

. (110)

The derivatives of the Dirac Hamiltonian, using the vector potential
of Eq. (13), are given by

(
∂hD

∂Bk )

(0)

=
⎛
⎜
⎝

0 −
c
2
(σ × rO)

k

−
c
2
(σ × rO)

k 0

⎞
⎟
⎠

, (111)

(
∂hD

∂Mk
K
)

(0)

=

⎛
⎜
⎜
⎜
⎝

0 −cα2 1
r3

K
(σ × rK)

k

−cα2 1
r3

K
(σ × rK)

k 0

⎞
⎟
⎟
⎟
⎠

. (112)

All second derivatives vanish, i.e., the second term of the Van
den Heuvel–Soncini equation [Eq. (25)] is zero in contrast to the
nonrelativistic and effective nuclear charge Hamiltonians. We will
now investigate whether the long-distance limit of Eq. (112) fulfills
the same equation as the corresponding derivative of the effective
nuclear charge Hamiltonian, Eq. (31). Inserting Eq. (29) into the
off-diagonal term of Eq. (112), one obtains

−cα2 1
r3

K
(σ × rK)

k

≈ −cα2
[
(σ × rO)

k

R3 +
(σ × R)k

R3 − 3
(rO ⋅ R)(σ × R)k

R5 ]. (113)

In the following, we will make use of the expression for the
commutator of the field-free Dirac Hamiltonian with a local
operator,

i[hD,(0), f ] =
⎛
⎜
⎝

0 cσ ⋅ ∇ f (r)

cσ ⋅ ∇ f (r) 0

⎞
⎟
⎠

. (114)

Using this equation, we obtain

iα2

R3 [h
D,(0), (R × rO)

l
] = cα2 (R × σ)l

R3

⎛
⎜
⎝

02×2 12×2

12×2 02×2

⎞
⎟
⎠

, (115)

−
3iα2

2R5 [h
D,(0), (R ⋅ rO)(R × rO)

l
]

= −
3cα2

2R5 [(R ⋅ σ)(R × rO)
l
+ (R ⋅ rO)(R × σ)l

]
⎛
⎜
⎝

02×2 12×2

12×2 02×2

⎞
⎟
⎠

.

(116)

Equations (115) and (116) are the two contributions to the commu-
tator between hD,(0) and the local operator f l defined in Eq. (33).
Furthermore,

α2
∑
m
(
∂hD

∂Bm )

(0)
3RmRl

− R2δml

R5

= [−
cα2

2
3Rl
[(σ × rO) ⋅ R]

R5 +
cα2

2
(σ × rO)

l

R3 ]
⎛
⎜
⎝

02×2 12×2

12×2 02×2

⎞
⎟
⎠

.

(117)

Adding these three contributions [Eqs. (115)–(117)] and noting that

−[(σ × rO) ⋅ R]R + (σ × rO)R2
− (σ ⋅ R)(R × rO)

+ (R ⋅ rO)(R × σ) = 0 (118)

[a special case of the equation

det(a, b, c)d = (a × b)(c ⋅ d) + (b × c)(a ⋅ d) + (c × a)(b ⋅ d),
(119)

which is valid for arbitrary vectors a,b,c,d], after comparison with
Eqs. (112) and (113), we obtain

(
∂hD

∂Ml
K
)

(0)

= −cα2 1
r3

K
(σ × rK)

l
⎛
⎜
⎝

02×2 12×2

12×2 02×2

⎞
⎟
⎠

≈ α2
∑
m
(
∂hD

∂Bm )

(0)
3RmRl

− R2δml

R5 + i[hD,(0), f l
], (120)

which is identical to the equation one obtains in the case of the effec-
tive nuclear charge approximation [Eq. (31)]. Since the commutator
of the derivative (∂hD

/∂Bk
)
(0) defined in Eq. (111) with the local

operator f l [occurring on the right-hand side of Eq. (58)] is zero, the
commutator term in Eq. (120) does not contribute to the chemical
shielding tensor. This concludes the proof of the long-distance limit
of the chemical shielding tensor using the Dirac Hamiltonian, which
again confirms the KM equation.

B. Arbitrary Hamiltonians that respect gauge
invariance

The fact that the same long-distance expression for the deriva-
tive of the Hamiltonian with respect to the magnetic moment
is obtained for both the effective nuclear charge Hamiltonian
[Eq. (31)] and the Dirac Hamiltonian [Eq. (120)] suggests that
there must be a general principle that is independent of the
choice of a specific Hamiltonian. In particular, the same func-
tion f l

(r) is present in the commutators. Therefore, the equa-
tion for this function [Eq. (33)], which is independent of the
chosen Hamiltonian, needs to be explained. The observed can-
cellation of commutator terms for the chemical shielding ten-
sor is reminiscent of the cancellation of terms when applying a
gauge transformation to a gauge-invariant property.34 Therefore,
in the following, we will focus on Hamiltonians that respect gauge
invariance.

Under changes of the gauge of the vector potential,
A(r)→ A′(r) = A(r) +∇χ(r), we assume that the Hamiltonian
will transform according to52
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H′ = e−iχHeiχ , (121)

where χ is a local operator that multiplies the many-electron wave-
function with ∑

i
χ(ri). Equation (121) is fulfilled for the nonrela-

tivistic, effective nuclear charge, and Dirac Hamiltonians considered
in this article. If HΨ = EΨ, it follows that H′e−iχΨ = Ee−iχΨ, i.e.,
eigenenergies stay unchanged, while the eigenfunctions acquire a
(position-dependent) phase factor under the gauge transformation.
We note that it is possible that the Hamiltonian and wavefunction
are transformed under the change of gauge via a more complicated
unitary transformation than that assumed in Eq. (121).53 It should
be straightforward to extend the following argument to such cases
as well. Using the Baker–Campbell–Hausdorff (BCH) expansion,
Eq. (121) can be written as

H′ = e−iχHeiχ
= H + i[H, χ] −

1
2
[[H, χ], χ] + ⋅ ⋅ ⋅ . (122)

Alternatively, one can consider the Hamiltonian as a functional of
the magnetic vector potential A and write the gauge-transformed
Hamiltonian as a Taylor series around the reference vector potential
(see Appendix C),

H′ = H[A +∇χ] = H[A] + ∫
δH[A]
δA(r)

⋅ ∇χ(r)dr

+
1
2∑mn
∬

δ2H[A]
δAm(r)δAn(r′)

(∂mχ(r))(∂nχ(r′))drdr′ + ⋅ ⋅ ⋅ .

(123)

Comparing Eqs. (122) and (123) and equating terms that involve
equal powers of the gauge function χ, we obtain

i[H[A], χ] = ∫
δH[A]
δA(r)

⋅ ∇χ(r)dr, (124)

−
1
2
[[H[A], χ], χ] =

1
2∑mn
∬

δ2H[A]
δAm(r)δAn(r′)

× (∂mχ(r))(∂nχ(r′))drdr′, (125)

and similar for higher orders. Equation (124) means that a con-
traction of δH/δA(r) with the gradient of some scalar field can

be written in terms of a commutator with the Hamiltonian. This
is a quite remarkable result. When considering the reference point
A = 0, it means that the form of (δH/δA(r))(0), which describes how
the terms of the Hamiltonian linear in A look like, is constrained
by the field-free Hamiltonian H(0). The first functional derivative of
the Hamiltonian appearing in Eq. (124) can be identified with the
particle number current density operator;54 see also Appendix D.
As an illustration, the first and second functional derivatives of the
Hamiltonians considered in this work are presented in Table II.
It is illustrative to use the functional derivative from Table II
to show that Eq. (35) that we used earlier is a special case
of Eq. (124).

We will now consider the derivatives of the Hamiltonian with
respect to the external magnetic field and the nuclear magnetic
moment. Without specifying the Hamiltonian, we cannot write
down these derivatives explicitly. However, we do know the depen-
dence of the vector potential on these parameters [Eq. (13)]. Using
the chain rule, one can write

∂H
∂Bl = ∫

δH
δA(r)

⋅
∂A(r)
∂Bl dr, (126)

∂H
∂Ml

K
= ∫

δH
δA(r)

⋅
∂A(r)
∂Ml

K
dr. (127)

Note that we consider the derivatives in Eqs. (126) and (127) at finite
field as opposed to before. In order to obtain the long-distance limit,
it is convenient to transform the vector potential of the nuclear mag-
netic moment to the multipolar gauge.55–58 This gauge expresses the
magnetic vector potential in terms of the magnetic field. Expanding
the fields in Taylor series around the origin RO leads to the vector
potential in the multipolar gauge given by

Anuc′
(r) = Anuc

(r) +∇χ(r), (128)

where the gauge function is defined as58

χ(r) = −
∞

∑
n=0

1
(n + 1)!

3

∑
i1...in=1

ri1
O . . . rin

O rO ⋅ (
∂nAnuc

(r)
∂ri1 . . . ∂rin

)

r=RO

. (129)

More explicitly, the vector potential in the multipolar gauge is
given by58

TABLE II. One-electron integrals over the first and second functional derivatives with respect to the vector potential for
the Hamiltonians considered in this work. For the nonrelativistic and effective nuclear charge Hamiltonian, the one-electron
functions are two-component spinors (spin orbitals), whereas for the Dirac Hamiltonian, they are four-component spinors.

Hamiltonian ⟨ψp∣
δH

δA(r) ∣ψq⟩ ⟨ψp∣
δ2H

δAm(r)δAn(r′) ∣ψq⟩

Hnonrel

1
2
[(pψp(r))†ψq(r) + ψ†

p(r)(pψq(r))]

+ψ†
p(r)A(r)ψq(r) +

ge

2
∇× [ψ†

p(r)sψq(r)]
δmnδ3

(r − r′)ψ†
p(r)ψq(r)

HZeff ⟨ψp∣
δHnonrel

δA(r) ∣ψq⟩ −∑
A
ξA
(rA)rA × [ψ†

p(r)sψq(r)] ⟨ψp∣
δ2Hnonrel

δAm(r)δAn(r′) ∣ψq⟩

HD cψ†
p(r)αψq(r) 0
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Anuc′
(r) = −

∞

∑
n=0

n + 1
(n + 2)!

3

∑
i1...in=1

ri1
O . . . rin

O rO

× (
∂nBnuc

(r)
∂ri1 . . . ∂rin

)

r=RO

, (130)

i.e., it is defined in terms of the magnetic field and its spatial
derivatives at the chosen origin.

Equation (128) can be inverted to obtain

Anuc
(r) = Anuc′

(r) −∇χ(r). (131)

If the series expansions in Eq. (129) and Eq. (130) are truncated,
approximations to Anuc

(r) are obtained from Eq. (131) that are most
accurate in the vicinity of the origin RO and become increasingly
worse with increasing distance from RO. When doing this, the gauge
function should be truncated, for consistency, at an order that is
higher by one than that at which the vector potential in the mul-
tipolar gauge is truncated. This is because the gradient operator in
Eq. (131) reduces the order in rO by one.

The exact dipolar magnetic field created by the nucleus is
given by59

Bnuc
(r) = curl Anuc

(r)

= α2
[

3(MK ⋅ rK)rK −MK r2
K

r5
K

+
8π
3

MKδ3
(rK)]. (132)

The fields Anuc and Bnuc and the gradient of Anuc at the origin RO are
given by

Anuc
(RO) = α2 MK × R

R3 , (133)

(
∂Anuc,j

(r)
∂ri )

r=RO

=
α2

R5 [∑
k
ϵjkiM

k
K R2
− 3Ri

(MK × R)j
], (134)

Bnuc
(RO) =

α2

R5 [3(MK ⋅ R)R −MK R2
]. (135)

Inserting these expressions into Eqs. (129) and (130) and using
Eq. (131), one obtains for the vector potential up to order O(rO),

Anuc
(r) ≈ −

1
2

rO × Bnuc
(RO) +∇(MK ⋅ f(r))

=∑
m

∂Ahom
(r)

∂Bm Bnuc,m
(RO) +∇(MK ⋅ f(r)), (136)

where f(r) is the same function we have already obtained earlier in
a different way [Eq. (33)]. We now recognize that this function is
a long-distance approximation to the derivative of the gauge func-
tion that transforms between the Coulomb and the multipolar gauge
[Eq. (129)],

f l
(r) ≈ −

∂χ(r)
∂Ml

K
. (137)

Of course, Eq. (136) could also have been obtained by a direct calcu-
lation of the long-distance limit of the nuclear vector potential [using
Eq. (29)], but the use of the multipolar gauge [Eqs. (129)–(131)] is
more straightforward.

From Eq. (136), one can calculate the derivative of the vector
potential with respect to the nuclear magnetic moment,

∂A(r)
∂Ml

K
≈∑

m

∂A(r)
∂Bm

∂Bnuc,m
(RO)

∂Ml
K

+∇ f l
(r)

= α2
∑
m

∂A(r)
∂Bm

3RmRl
− δmlR2

R5 +∇ f l
(r). (138)

Inserting this into Eq. (127) and using Eq. (126) give

∂H
∂Ml

K
≈ α2
∑
m

∂H
∂Bm

3RmRl
− δmlR2

R5 + ∫
δH

δA(r)
⋅ ∇ f l

(r)dr. (139)

Using Eq. (124), which is valid for Hamiltonians that respect gauge
invariance, Eq. (139) becomes

∂H
∂Ml

K
≈ α2
∑
m

∂H
∂Bm

3RmRl
− δmlR2

R5 + i[H, f l
]. (140)

Taking the derivative of this expression with respect to a component
of the homogeneous magnetic field gives

∂2H
∂Bk∂Ml

K
≈ α2
∑
m

∂2H
∂Bk∂Bm

3RmRl
− δmlR2

R5 + i[
∂H
∂Bk , f l

]. (141)

Evaluation of Eqs. (140) and (141) at zero field (B = 0, MK = 0)
immediately yields Eqs. (31) and (32). The remainder of the deriva-
tion of the long-distance limit of the chemical shielding (cancellation
of commutator terms, etc.) proceeds exactly as before, once again
confirming the KM equation, Eq. (3). The preceding derivation
demonstrates that the long-distance KM equation is valid for arbi-
trary Hamiltonians that fulfill the gauge invariance property of
Eq. (121), which encompasses the cases of the effective nuclear
charge and Dirac Hamiltonians that we treated explicitly in Secs. II
and IV A.

V. DISCUSSION AND CONCLUSIONS
In the present work, we discussed in detail the rigorous

quantum-mechanical proofs of the KM equation, Eq. (3), and the
(in the SH approximation) equivalent long-distance expression for
the A tensor, Eq. (7).31 We also extended the proof of Eq. (7) to
the case of the approximate DFT and HF methods, which showed
that the equation is only valid in a sufficiently complete basis.
This explains the computational results that we reported previously,
where extremely large Gaussian basis sets were needed for the suffi-
cient cancellation of the unphysical terms that scale like R−2 with
the distance between the magnetic nucleus and the paramagnetic
center.31

The major drawback of our previous QC proof of the KM
equation was the reliance on an approximate effective nuclear charge
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SOC Hamiltonian.31 However, we have shown here that a proof for
the fully relativistic Dirac Hamiltonian is possible along very sim-
ilar lines. This led to the question whether it is possible to derive
the KM equation without reference to any specific Hamiltonian.
This is, indeed, the case, and we were able to show that it can be
derived solely based on the assumption of gauge invariance. This is
the most generally valid proof of the expression that exists to date.
Our new derivation also provides an interpretation of the function
f(r) that arose naturally in the derivation for the effective nuclear
charge Hamiltonian: it defines the gauge transformation of the vec-
tor potential of the nuclear magnetic moment from the Coulomb
to the multipolar gauge. The latter is parameterized by the mag-
netic field and its derivatives at a chosen expansion point. This
leads to the following alternative viewpoint of our results: if the
Hamiltonian transforms properly under gauge transformations, it
does not matter which gauge is chosen. Therefore, one could use
the multipolar gauge from the very beginning instead of Eq. (13)
to define the Hamiltonian. Then, the unphysical R−2 terms would
never arise and no cancellation between commutator terms would
be necessary. Therefore, the KM equation arises very naturally from
the use of the multipolar gauge. This choice of gauge also has the
advantage that the long-distance expansion is already “built in” in
the form of the series expansion [Eq. (130)]. The PDA can sim-
ply be derived by truncating this series expansion after the first
term.

Our general derivation based on gauge invariance also sheds
new light on the DFT and HF results. The commutator terms
arise because of a gauge transformation from the multipolar to the
Coulomb gauge. The fact that these terms do not exactly cancel is
then a simple consequence of the fact that approximate methods
using finite basis sets are not gauge invariant. For other mag-
netic properties, such as magnetizabilities and chemical shieldings
of closed-shell molecules, this problem has been effectively solved
by introducing GIAOs as basis functions.48,49 However, in the way
GIAOs are commonly implemented, they can alleviate the gauge
problem only for changes in the gauge origin for a homogeneous
magnetic field. In our case, the problems arise because of more gen-
eral gauge transformations in a non-homogeneous magnetic field due
to the magnetic nucleus. Therefore, GIAOs will not be able solve the
slow basis set convergence observed in Sec. III B and our previous
work.31

The developed theoretical framework based on the multipolar
gauge also seems promising for extending the KM theory beyond
the PDA. The physical picture behind Eq. (3) is that the exter-
nal magnetic field induces currents in the paramagnetic center that
create a pure dipole field, which is then probed by the magnetic
nuclei in the molecule. By truncating the expression for the vec-
tor potential in the multipolar gauge at higher order, one could
include the effect of the induced quadrupole moment and even
higher magnetic moments. This would lead to a more accurate
description of the induced magnetic field and, therefore, to more
accurate chemical shifts. We assume that the inclusion of higher
induced magnetic multipole moments could be especially beneficial
for systems where the paramagnetic center cannot easily be asso-
ciated with a single atom, e.g., in oligonuclear metal complexes.
In such molecules, there is no “natural” location in space for the
induced dipole moment. However, even in mononuclear metal com-
plexes, contributions beyond the PDA can become significant, in

particular for nuclei close to the metal center. In contrast to the
direct computational evaluation of Eq. (25),9 a formulation in terms
of induced magnetic multipole moments could yield accurate results
while retaining the philosophy of the KM equation, meaning that
the chemical shieldings of different nuclei are not independent, but
are probes for the same quantity: the magnetic field due to currents
induced in the paramagnetic center. Such an approach also has the
advantage that quantities such as the susceptibility can be calcu-
lated using truncated molecular models that possibly do not even
include the nuclei for which the PCSs are required.25 This could
make it possible to target systems such as proteins that would oth-
erwise be intractable. Furthermore, the direct evaluation of Eq. (25)
with the nuclear vector potential in the usual gauge [Eq. (13)]9 has
potentially the same demanding basis set requirements for large
distances as we observed for the A tensor. In contrast, the suscepti-
bility tensor usually converges quickly when increasing the basis set
size.

We conclude with a final note on the topic of gauge invariance.
Hamiltonians that are not exactly gauge invariant are widespread.
For example, the gauge-invariant expression for the A tensor in
the framework of the relativistic second order Douglas–Kroll–Hess
theory (DKH2) following from an fπFW transformation turns out
to be divergent.43 Therefore, only the expression resulting from
the so-called fpFW transformation can be practically used. How-
ever, this expression is not gauge invariant. For the spin–orbit
mean field (SOMF) approximation to the SOC operator that is
widely used in ORCA,60 there has also not been developed a gauge
correction to date. However, we expect that it should be possi-
ble to formulate a gauge correction for the SOMF operator from
the full Breit–Pauli Hamiltonian. One can also probably expect
approximate gauge invariance when combining the SOMF operator
with the effective nuclear charge gauge correction. The derivations
presented in this paper demonstrate that the use of expressions
that are not gauge invariant can in the worst case lead to com-
pletely unphysical results, in our case the presence of terms that
scale as R−2 with the distance between the magnetic nucleus and
the paramagnetic center. Therefore, when a Hamiltonian is used
that violates gauge invariance, the results should be thoroughly
checked.

SUPPLEMENTARY MATERIAL

See the supplementary material for raw data for all calculated
contributions to the SH parameters.
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APPENDIX A: DERIVATION OF THE CHEMICAL
SHIELDING TENSOR

The basic assumption often used to arrive at practical equa-
tions for the chemical shielding tensor is that transitions between
electronic states are much faster than the nuclear spin dynamics.
Then, the nuclei sense the average effect of the ensemble of elec-
tronic states in thermodynamic equilibrium. The chemical shielding
tensor σ in the weak-field approximation is defined via the following
relation between the average hyperfine magnetic field (i.e., the aver-
age field generated by the orbital and spin magnetic moments of the
electrons at the position of the nucleus) and the applied magnetic
field:

⟨BHF
(RK)⟩ = −σTB +O(B2

). (A1)

This can be rewritten as

σkl = −(
∂⟨BHF,l

(RK)⟩

∂Bk )

(0)

. (A2)

This equation was already used in the past as a starting point to cal-
culate the chemical shielding tensor.6 The Boltzmann average of the
magnetic hyperfine field can be written as

⟨BHF,l
(RK)⟩ = −

1
Z

tr(
∂H
∂Ml

K
e−βH
), (A3)

where we used the operator representing the hyperfine field given
by −∂H/∂Ml

K . Using Wilcox’s equation for the derivative of an
exponential operator,61

∂e−βH

∂λ
= −∫

β

0
e−(β−ω)H

∂H
∂λ

e−ωHdω, (A4)

one can write

(
∂e−βH

∂Bk )

(0)

= −∫

β

0
e−(β−ω)H

(0)

(
∂H
∂Bk )

(0)
e−ωH(0)

dω. (A5)

Furthermore, since the zeroth order states are time-even and
(∂H/∂Bk

)
(0) is time-odd, ⟨Ψ(0)nν ∣(

∂H
∂Bk )

(0)
∣Ψ(0)nν ⟩ = 0,7 which leads to

(
∂Z−1

∂Bk )

(0)

= −
1

Z(0)2 tr(
∂e−βH

∂Bk )

(0)

= 0. (A6)

Using the product rule to calculate the derivative and employing
Eqs. (A5) and (A6), Eq. (A2) can be written as

σkl = (
∂Z−1

∂Bk )

(0)

tr
⎡
⎢
⎢
⎢
⎢
⎣

(
∂H
∂Ml

K
)

(0)

e−βH(0)
⎤
⎥
⎥
⎥
⎥
⎦

+
1

Z(0)
tr
⎡
⎢
⎢
⎢
⎢
⎣

(
∂2H

∂Bk∂Ml
K
)

(0)

e−βH(0)
⎤
⎥
⎥
⎥
⎥
⎦

+
1

Z(0)
tr
⎡
⎢
⎢
⎢
⎢
⎣

(
∂H
∂Ml

K
)

(0)

(
∂e−βH

∂Bk )

(0)⎤
⎥
⎥
⎥
⎥
⎦

=
1

Z(0)
tr
⎡
⎢
⎢
⎢
⎢
⎣

(
∂2H

∂Bk∂Ml
K
)

(0)

e−βH(0)
⎤
⎥
⎥
⎥
⎥
⎦

−
1

Z(0)∫
β

0
tr
⎡
⎢
⎢
⎢
⎢
⎣

(
∂H
∂Ml

K
)

(0)

e−(β−ω)H
(0)

(
∂H
∂Bk )

(0)
e−ωH(0)

⎤
⎥
⎥
⎥
⎥
⎦

dω⋅ (A7)

This equation is identical to Eq. (8) of Van den Heuvel and
Soncini.7 The remainder of the derivation proceeds exactly as in
their case. The traces in Eq. (A7) are evaluated in the eigenbasis of
H(0) together with the insertion of a resolution of the identity in the
second term. This gives

σkl =
1

Z(0)∑nν
e−βE(0)

n ⟨Ψ(0)nν

RRRRRRRRRRRR

(
∂2H

∂Bk∂Ml
K
)

(0)RRRRRRRRRRRR

Ψ(0)nν ⟩

−
1

Z(0) ∑nmνμ
⟨Ψ(0)mμ

RRRRRRRRRRRR

(
∂H
∂Ml

K
)

(0)RRRRRRRRRRRR

Ψ(0)nν ⟩⟨Ψ
(0)
nν ∣(

∂H
∂Bk )

(0)
∣Ψ(0)mμ ⟩

× ∫

β

0
e−(β−ω)E

(0)
n e−ωE(0)

m dω⋅ (A8)

The integral over ω can now be evaluated as

e−βE(0)
n
∫

β

0
eω(E

(0)
n −E(0)

m )dω =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

e−βE(0)
m − e−βE(0)

n

E(0)n − E(0)m
for En ≠ Em,

e−βE(0)
n β for En = Em.

(A9)
After swapping the summation indices in one of the terms, one
immediately obtains Eq. (25). The connection of our derivation to
Van den Heuvel and Soncini’s definition of the chemical shielding
tensor as a second derivative of the free energy becomes clear by rec-
ognizing that the average hyperfine field as defined in Eq. (A3) can
also be written as

⟨BHF,l
(RK)⟩ = −

∂F
∂Ml

K
, (A10)

an equation that can be straightforwardly derived using Eq. (A4).
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APPENDIX B: DERIVATION OF EQS. (58) AND (81)

While Eqs. (58) and (81) look very similar at first sight, they dif-
fer in important details, which makes separate derivations necessary:
in Eq. (58), there is an additional summation over the degener-
ate manifold belonging to energy level n, which is not present in
Eq. (81). In the latter, the sum is only over those excited states
having the same spin as the ground state and only involves the prin-
cipal component (M = S). Furthermore, the operator B is restricted
to be a singlet operator, which is not necessary for the derivation
of Eq. (58).

We start with the derivation of Eq. (58). We first let H(0) in the
numerator act on the eigenfunctions and cancel the resulting energy
differences with the denominator to obtain

∑
m≠n
∑
νμ

⟨Ψ(0)nν ∣i[H(0), B]∣Ψ(0)mμ ⟩⟨Ψ
(0)
mμ ∣A∣Ψ

(0)
nν ⟩ + c.c.

E(0)n − E(0)m

= i∑
ν
⟨Ψ(0)nν ∣B∑

m≠n
∑
μ
∣Ψ(0)mμ ⟩⟨Ψ

(0)
mμ ∣A∣Ψ

(0)
nν ⟩ + c.c. (B1)

Using completeness of the set of eigenfunctions, one can write

∑
m≠n
∑
μ
∣Ψ(0)mμ ⟩⟨Ψ

(0)
mμ ∣ = 1 −∑

ν′
∣Ψ(0)nν′ ⟩⟨Ψ

(0)
nν′ ∣. (B2)

After inserting this into Eq. (B1), it can be seen that one term in
the first part of the equation cancels another term in the complex
conjugate, leading to Eq. (58).

Equation (81) can be derived as follows: By acting with the
zeroth order Hamiltonian in the commutator on the zeroth order
eigenfunctions, one obtains

∑
b,Sb=S

⟨ΨSS
0 ∣i[H

nonrel,(0), B]∣ΨSS
b ⟩⟨Ψ

SS
b ∣A∣Ψ

SS
0 ⟩

E(0),nonrel
b − E(0),nonrel

0

= −i⟨ΨSS
0 ∣B ∑

b,Sb=S
∣ΨSS

b ⟩⟨Ψ
SS
b ∣A∣Ψ

SS
0 ⟩. (B3)

The sum over excited-state projectors can be written as

∑
b,Sb=S
∣ΨSS

b ⟩⟨Ψ
SS
b ∣ = PSS − ∣ΨSS

0 ⟩⟨Ψ
SS
0 ∣, (B4)

where PSS is the orthogonal projector on the subspace of states with
total spin S and magnetic sublevel M = S. Since B is a singlet operator
by assumption, it does not change the spin quantum numbers of the
bra state on which it acts from the right, i.e.,

⟨ΨSS
0 ∣BPSS = ⟨ΨSS

0 ∣B. (B5)

This means that

∑
b,Sb=S

⟨ΨSS
0 ∣i[H0, B]∣ΨSS

b ⟩⟨Ψ
SS
b ∣A∣Ψ

SS
0 ⟩

E(0),nonrel
b − E(0),nonrel

0

= −i⟨ΨSS
0 ∣BA∣ΨSS

0 ⟩ + i⟨ΨSS
0 ∣B∣Ψ

SS
0 ⟩⟨Ψ

SS
0 ∣A∣Ψ

SS
0 ⟩. (B6)

Taking the complex conjugate of Eq. (B6) and adding both
expressions lead again to a cancellation of two terms and give
Eq. (81).

APPENDIX C: FUNCTIONAL DERIVATIVES
AND TAYLOR SERIES EXPANSION
OF THE HAMILTONIAN

One can write the Hamiltonian in terms of its matrix elements
in a complete basis {∣I⟩},

H =∑
IJ
∣I⟩⟨I∣H∣J⟩⟨J∣. (C1)

The matrix elements are simple numbers, i.e., their functional
dependence on the vector potential can be written in terms of a usual
(functional) Taylor expansion around some reference potential,

⟨I∣H∣J⟩[A + ΔA] = ⟨I∣H∣J⟩[A] + ∫
δ⟨I∣H∣J⟩
δA(r)

⋅ ΔA(r)dr

+
1
2∑mn
∬

δ2
⟨I∣H∣J⟩

δAm(r)δAn(r′)

× ΔAm
(r)ΔAn

(r′)drdr′ + ⋅ ⋅ ⋅ . (C2)

This expansion allows us to define the functional derivatives of the
Hamiltonian itself,

δH[A]
δA(r)

=∑
IJ
∣I⟩
δ⟨I∣H∣J⟩
δA(r)

⟨J∣, (C3)

δ2H[A]
δAm(r)δAn(r′)

=∑
IJ
∣I⟩

δ2
⟨I∣H∣J⟩

δAm(r)δAn(r′)
⟨J∣, (C4)

etc., which leads to a Taylor series expansion for the Hamiltonian

H[A + ΔA] = H[A] + ∫
δH[A]
δA(r)

ΔA(r)dr

+
1
2∑mn
∬

δ2H[A]
δAm(r)δAn(r′)

× ΔAm
(r)ΔAn

(r′)drdr′ + ⋅ ⋅ ⋅ . (C5)

APPENDIX D: IDENTIFICATION OF THE FUNCTIONAL
DERIVATIVE OF THE HAMILTONIAN
WITH THE PARTICLE NUMBER CURRENT
DENSITY OPERATOR

In the following, we generalize an argument given by Epstein
for the nonrelativistic Hamiltonian.62 We assume that the expecta-
tion value of a local operator f can be expressed as an integral over
the electron density,

⟨ f ⟩ = ⟨Ψ∣ f ∣Ψ⟩ = ∫ ρ(r) f (r)dr. (D1)

For the Hamiltonians considered in this work (nonrelativistic, effec-
tive nuclear charge, Dirac), this implies that the electron density for
a single electron is given by ρ(r) = ψ†

(r)ψ(r).
If both the wavefunction and the operator are time-

dependent, the time derivative of the expectation value ⟨ f ⟩(t)
= ⟨Ψ(t)∣ f (t)∣Ψ(t)⟩ is obtained from Eq. (D1) as
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d⟨ f ⟩(t)
dt

=
d
dt ∫

ρ(r, t) f (r, t)dr = ∫
∂ρ(r, t)

∂t
f (r, t)dr

+ ∫ ρ(r, t)
∂ f (r, t)

∂t
dr = ∫

∂ρ(r, t)
∂t

f (r, t)dr + ⟨
∂ f
∂t
⟩.

(D2)

One can also express the time derivative of the expectation value via
the generalized Ehrenfest theorem,

d⟨ f ⟩(t)
dt

= ⟨i[H, f (t)]⟩ + ⟨
∂ f
∂t
⟩

= ∫ ⟨
δH[A]
δA(r)

⟩.∇ f (r, t)dr + ⟨
∂ f
∂t
⟩

= −∫ (∇ ⋅ ⟨
δH[A]
δA(r)

⟩) f (r, t)dr + ⟨
∂ f
∂t
⟩. (D3)

Here, we used Eq. (124), which is valid if the Hamiltonian respects
gauge invariance, and performed integration by parts. A comparison
of Eqs. (D2) and (D3) shows that

−∫ (∇ ⋅ ⟨
δH[A]
δA(r)

⟩) f (r, t)dr = ∫
∂ρ(r, t)

∂t
f (r, t)dr, (D4)

which is true for arbitrary functions f (r, t). This means that

∂ρ(r, t)
∂t

+∇ ⋅ ⟨
δH[A]
δA(r)

⟩ = 0, (D5)

which is simply the continuity equation if we identify

j(r) = ⟨
δH[A]
δA(r)

⟩ (D6)

as the particle number current density. Hence, we can identify the
first functional derivative of the Hamiltonian with respect to the
magnetic vector potential with the particle number current density
operator.
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