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Abstract 1 

Under current global change, the driving force of evolution of drought has 2 

gradually transitioned from a single natural factor to a combination of natural and 3 

anthropogenic factors. Therefore, widely used standardised drought indices based on 4 

assumption of stationarity are challenged and may not accurately assess characteristics 5 

of drought processes. In this study, a nonstationary standardised streamflow index 6 

(NSSI) that incorporates climate and reservoir indices as external covariates was 7 

developed to access nonstationary hydrological drought. The first step of the proposed 8 

approach is to apply methods of trend and change point analysis to assess the 9 

nonstationarity of streamflow series to determine type of streamflow regime, that is, the 10 
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natural and altered regime. Then, different nonstationary models were constructed to 11 

calculate the NSSI by selecting climate indices as covariates for streamflow series with 12 

natural regime, and climate and reservoir indices as covariate for streamflow series with 13 

altered regime. Four stations in the upper reaches of the Huaihe River basin, China, 14 

were selected to examine the performance of the proposed NSSI. The results indicated 15 

that Dapoling (DPL), Changtaiguan (CTG), and Xixian (XX) stations had natural 16 

streamflow regimes, while the Nanwan (NW) station had an altered regime. The global 17 

deviances of the optimal nonstationary models were 17 (2.2%), 18 (2.9%), 26 (4.0%), 18 

and 22 (3.5%) less than those of stationary models for DPL, CTG, NW, and XX stations, 19 

respectively. Especially, for the NW station influenced by reservoir regulations, the 20 

frequency of slight drought and moderate drought of NSSI was 12.8% lower than and 21 

13.1% greater than those of SSI, respectively. Overall, the NSSI that incorporates the 22 

influence of climate variability and reservoir regulations provided more reliable 23 

assessment of hydrological drought than the traditional SSI. 24 

25 

Keywords: Hydrological drought; Nonstationary standardised streamflow index; 26 

Climate variability; Reservoir regulation 27 

28 

1. Introduction29 

Droughts are regarded as complex and multidimensional phenomena that pose a 30 

threat to water security worldwide (Araghinejad 2011; Ali et al. 2021; Wang et al. 2021). 31 

Traditionally, droughts are classified into four categories, including meteorological, 32 

agricultural, hydrological, and socioeconomic drought (David and Davidová 2017; 33 

AghaKouchak et al. 2021). As an important form of drought, hydrological drought can 34 

cover extensive areas and can last for months to years (Van Loon 2015). For example, 35 
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in 2014, the state of California in the USA faced one of the most severe multiyear 36 

droughts on record, resulting in extremely low reservoir and groundwater levels 37 

(Aghakouchak et al. 2014). Therefore, accurate understanding and quantification of 38 

hydrological droughts are essential for water management and policy making. 39 

Several hydrological drought indices have been proposed over the past few 40 

decades and they are generally divided into two groups—standardised indices and 41 

threshold-based indices. The most widely used standardised indices are the 42 

standardised runoff index (SRI; Shukla and Wood 2008) and the standardised 43 

streamflow index (SSI; Vicente-Serrano et al. 2012). Both indices have a calculation 44 

procedure similar to standardised precipitation index (SPI), which involves fitting a 45 

probability distribution to a hydrological variable and transforming the distribution to 46 

a normal distribution. Another method for deriving hydrological drought events is the 47 

threshold level method (Van loon and Van Lanen 2013). This approach sets a pre-48 

defined threshold level, and when the target variable (e.g., streamflow) is below this 49 

level, the site is considered to be in a state of drought. 50 

Traditionally, drought indices are calculated based on the fundamental assumption 51 

of statistical stationarity and assumed that the probabilistic characteristics of the hydro-52 

meteorological process do not change over time. However, Milly et al (2008) argued 53 

that the effects of climate change and anthropogenic activities challenge the 54 

fundamental assumption of stationarity. Thus, in a changing environment, alternative 55 

approaches should be developed to consider nonstationarity and allow probabilistic 56 

parameters to change over time (Salas and Obeysekera 2014). In this way, statistical 57 

distribution parameters are expressed as functions of covariates to model 58 

nonstationarity generated by climatic and anthropogenic impacts. 59 

Several studies have attempted to consider the impact of nonstationarity on the 60 
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evaluation of hydrological droughts. Zou et al (2018) used the generalised additive 61 

model for location, scale, and shape (GAMLSS) to construct a time-dependent SRI 62 

(SRIvar), with its parameters linked with time to fit a long-term streamflow time series, 63 

to assess the impacts of climate change and human activities on hydrological drought. 64 

However, many studies have indicated that nonstationary models in which the 65 

parameters vary only with time cannot adequately capture the variability of hydro-66 

meteorological variables (Wang et al. 2021c). In recent years, many researchers have 67 

emphasised that choosing large-scale climate indices as covariates of streamflow in 68 

nonstationary models would better characterise the nonstationarity caused by climate 69 

variability (Forootan et al. 2019). In addition to climate variability, human activity is 70 

another driver of nonstationarity (Jiang et al. 2019). Among diverse anthropogenic 71 

activities (e.g., irrigation, dams and reservoirs, and inter-basin water transfer), reservoir 72 

construction and regulation usually cause the greatest shifts in flow regimes (Slater et 73 

al. 2021). Some recent studies have attempted to parameterise the influence of reservoir 74 

construction and regulation to investigate the resulting nonstationary impacts on 75 

streamflow processes. For example, López and Francés (2013) carried out 76 

nonstationary flood frequency analysis for continental Spanish rivers using climate and 77 

reservoir indices (RI) as external covariates. Jiang et al. (2015) selected time and RI as 78 

covariates to explore how reservoirs altered low-flows. However, research on 79 

nonstationary hydrological drought assessment with the incorporation of climate 80 

variability and anthropogenic reservoir regulations remains limited. 81 

Here, we develop a nonstationary standardised streamflow index (NSSI) using the 82 

GAMLSS, with its parameters vary nonlinearly with climate indices and RI. The 83 

specific objectives of the study were to (1) use trend and change point analysis methods 84 

to reveal the nonstationarity of streamflow series under the impacts of climate 85 
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variability and reservoir regulations; (2) select the most significant climate indices and 86 

calculate the RI for use as covariates to construct the NSSI based on the GAMLSS 87 

model; and (3) compare the NSSI with the traditional SSI in the evaluation of 88 

hydrological drought to assess the efficiency of the NSSI. The Xixian basin, located in 89 

the upper reaches of the Huaihe River Basin, China, was chosen as a case study to 90 

evaluate the developed NSSI. The NSSI is expected to provide a useful tool for the 91 

evaluation of nonstationary hydrological drought in a changing environment. 92 

93 

2. Study area and data94 

2.1 Study area 95 

The Xixian basin, located in the upper reaches of the Huaihe River Basin in eastern 96 

China (31.5°N–32.75°N, 113.25°E–115°E), covers an area of 10,191 km2 (Fig. 1). The 97 

basin is situated in the transition zone of mid-latitude humid and semi-arid climates 98 

(Jiang et al. 2020), and both flood and hydrological drought events occur frequently. 99 

We selected Dapoling, (DPL), Changtaiguan (CTG), Nanwan (NW), and Xixian (XX) 100 

stations as the case study areas. Several studies have indicated that three large reservoirs 101 

(i.e., Nanwan, Feishahe, and Huashan reservoirs in Fig. 1) have impacts on hydrological 102 

extremes (e.g., hydrological drought) in the study area (Shi et al. 2011). 103 

104 

2.2 Data 105 

The observed monthly precipitation of the 35 rain-gauge stations and streamflow 106 

of the four hydrological stations during 1955–2016, and information of three large 107 

reservoirs in the upper reaches of NW station were obtained from the Hydrological 108 

Bureau of the Ministry of Water Resources of China. Capacity and completion date of 109 

the Nanwan, Feishahe, and Huashan reservoirs were 1630, 82, 173 million m3 and 1955, 110 
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1961, 1967, respectively. According to previous studies (Ouyang et al. 2014), six large-111 

scale climate indices with proven influence on the streamflow of Xixian basin, i.e., AO, 112 

AMO, NAO, PDO, NPO, and ENSO were selected as candidate covariates. They were 113 

obtained from the National Oceanic and Atmospheric Administration (NOAA) 114 

Physical Sciences Laboratory website (https://psl.noaa.gov/data/climateindices/). 115 

116 

3. Methods117 

The framework of the proposed NSSI consisted of three steps as shown in Fig. 2. 118 

(1) Nonstationary analysis of hydro-meteorological variables; (2) Construction of the 119 

NSSI; and (3) Validation of the NSSI. The methods used in this study are described in 120 

detail in following sections. 121 

122 

3.1 Nonstationary analysis methods 123 

The robustness of the traditional Mann-Kendall (MK) trend test is usually 124 

influenced by the persistence of the hydro-meteorological series. To improve the MK 125 

test method, Hamed and Rao (1998) used lag-i autocorrelation to remove persistence 126 

and make the test more robust, known as the modified Mann-Kendall (MMK) trend test. 127 

In this study, we used the MMK method to identify trends of the hydro-meteorological 128 

series. 129 

Conventional statistical test methods for identification of change points such as 130 

Mann-Kendell test and sliding T test are usually based on the assumption that the time 131 

series should be linear and stationary. However, it is difficult for them to accurately 132 

capture the change points in the nonlinear or nonstationary time series. To make up this 133 

shortcoming, this study applied the heuristic segmentation method, proposed by 134 

Bernaola-Galvan et al. (2001), to identify change points in nonlinear and nonstationary 135 
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series. In addition, the precipitation-streamflow double cumulative curve (DCC) 136 

method was also applied to identify change points. Generally, a change in the gradient 137 

of the curve implies that the characteristics of precipitation or streamflow may have 138 

changed, and the inflection point of the curve is generally regarded as a change point 139 

(Wang et al. 2020b). 140 

141 

3.2 Calculation of the NSSI 142 

A 3-month SSI (SSI-3) will not cause the SSI value to change too fast or too slowly. 143 

Therefore, SSI-3 (Vicente-Serrano et al. 2012) was considered more suitable for the 144 

identification of continuous drought events in the Xixian basin. In this study, the 145 

drought grades can be divided into five classes based on the SRI values: non-drought 146 

when SRI > ‒0.5, slight drought (D1) when ‒1.0 < SRI ≤ ‒0.5, moderate drought (D2) 147 

when ‒1.5 < SRI ≤ ‒1.0, severe drought (D3) when ‒2.0 < SRI ≤ ‒1.5, and extreme 148 

drought (D4) when SRI ≤ ‒2.0. Besides, a stationary model (M1) and a nonstationary 149 

model (M2) were developed to calculate SSI and NSSI, respectively. In M1, a 150 

streamflow series was fitted to a stationary model with constant distribution parameters 151 

to construct a stationary SSI series. In M2, a streamflow series was fitted to a 152 

nonstationary model based on the GAMLSS model with distribution parameters 153 

varying with climate indices and/or the RI to construct a NSSI series. The main steps 154 

to construct the NSSI includes: (1) selection of significant climate indices and 155 

calculation of RI; and (2) non-stationary probability fitting of streamflow based on 156 

GAMLSS model and calculation of the NSSI. 157 

158 

3.2.1 Selection of significant climate indices 159 

To reduce the monthly random variability (Wang et al. 2020c) and maintain 160 
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consistency with NSSI-3 (or SSI-3), each climate index was processed using a 3-month 161 

moving average. With regard to the streamflow series in a specified month, the 162 

reconstructed time series considering lead times of 1-, 2-, ..., 12-months were prepared 163 

for the correlation analysis. Kendall’s rank correlation test was performed at the 95% 164 

confidence level to identify significant climate indices that can be considered covariates 165 

to fit the streamflow records in the nonstationary model. 166 

167 

3.2.2 Calculation of the RI 168 

The dimensionless RI proposed by López and Francés (2013) is an effective 169 

indicator to reflect the impact of reservoir construction on flow regimes. It is calculated 170 

as follows: 171 

1

N
i i

i T T

A C
RI

A C

   
    

   
  (1) 172 

where N is the number of reservoirs upstream of the gauge station, Ai is the catchment 173 

area of each reservoir, AT is the catchment area of the gauge station, Ci is the total 174 

capacity of each reservoir, and CT is the mean annual streamflow at the gauge station. 175 

The RI threshold value between low and high alteration was found to be 0.25, and the 176 

higher the RI value, the greater the reservoir influence. 177 

178 

3.2.3 GAMLSS 179 

The GAMLSS proposed by Rigby and Stasinopoulos (2005) assumed that 180 

independent observations xi for i =1, 2, 3, ..., n have the distribution function ( | )i

if x 181 

where 1 2( , ,..., )   i i i i

p is a vector of p distribution parameters accounting for the 182 

location, scale, and shape random variable characteristics. The distribution parameters 183 

are related to covariates by the monotonic link functions gk (·) for k = 1, 2, ..., p, where 184 
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the parameters are modelled through proper link functions: 185 

 
1

kJ

k k k k k jk jk

j

g X Z x  


   (2) 186 

where ηk and θk are vectors of length n, for example  1 2, , ,T n

k k k k    ; Xk is a matrix187 

of explanatory variables (i.e., covariates) of order n × Jk;  1 2, , ,   
k

T

k k k J k is a 188 

parameter vector of length Jk; Zjk is a fixed known n × qjk design matrix; and xjk is a qjk-189 

dimensional random variable. 190 

In this study, we selected six widely used two-parameter continuous distributions 191 

to fit the streamflow data, including the Weibull, Gumbel, Gamma, Logistic, Normal, 192 

and Lognormal distributions (Vicente-Serrano et al. 2012; Wang et al. 2020a). The 193 

model that achieved the minimum Global deviance (GD), Akaike information criterion 194 

(AIC), and Schwarz Bayesian information criterion (BIC) values was selected as the 195 

optimal nonstationary model. A visual inspection of the diagnostic plots of the residuals 196 

(i.e., worm plot) was also used to ensure that the selected model adequately described 197 

the systematic part of each time series. All calculations were performed using the R 198 

platform and the freely available ‘gamlss’ package. Mathematically, the calculation of 199 

the NSSI is similar to that of the SSI but is based on the selected optimal nonstationary 200 

models. The classification of drought grades for the NSSI is the same as that of the SSI. 201 

202 

3.3 Copula and joint return period 203 

In this study, we selected the “and (∩)” joint return period (Salvadori and De 204 

Michele 2004) to calculate the joint probability (PDS) and joint return period (TDS) of 205 

drought duration and severity: 206 

( , ) 1 ( ) ( ) ( ( ), ( ))      DS D S D SP P D d S s F d F s C F d F s  (3) 207 
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( ) ( )

( ) 1 ( ) ( ) ( ( ), ( ))
 

     
DS

D S D S

E L E L
T

P D d S s F d F s C F d F s
(4) 208 

where C(FD(d), FS(s)) is the joint distribution of drought duration and severity, and E(L) 209 

represents the average time interval of drought events. 210 

The six continuous distributions in section 3.2.3 were selected to determine the 211 

optimal marginal distribution of the drought severity series. Two widely used discrete 212 

distributions namely the Negative Binomial and Poisson distributions were applied to 213 

fit the drought duration series. The distribution that showed the smallest d value, as 214 

calculated by the Kolmogorov-Smirnov (K-S) test, was selected as the optimal marginal 215 

distribution. Then, the optimal copula function was selected from five commonly used 216 

theoretical copula functions, namely the Gaussian-copula, T-copula, Clayton-copula, 217 

Frank-copula, and Gumbel-copula functions (Wang et al. 2020a). 218 

219 

4. Results220 

4.1 Nonstationary analysis of hydro-meteorological series 221 

Figs. 3(a)-(b) show that the seasonal distributions of precipitation of the four 222 

stations are consistent, with most of the precipitation falling between May and 223 

September. Streamflow of the NW station peaks in and concentrated around June, while 224 

that of the other stations peak in and concentrated around July. DCCs of the Figs. 3(c)-225 

(f) illustrate that precipitation and streamflow of the DPL, CTG, and XX stations 226 

remained consistent, whereas this relationship of the NW station had been disturbed 227 

since 1956. Table 1 shows that streamflow of the NW station showed a significant 228 

download trend (α < 0.05). Heuristic segmentation test identified two significant change 229 

points (α < 0.05) of the NW station in 1956 and 1967, respectively. According to these 230 

results, the DPL, CTG, and XX stations can be considered as stations with a ‘natural’ 231 

streamflow regime and the NW station can be selected as a station with a ‘altered’ 232 
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streamflow regime. 233 

234 

4.2 Construction of the NSSI 235 

Table 2 shows the identification results of significant climate indices in CTG 236 

station. The results indicated that ENSO was selected as the significant index in January 237 

to February and August to December; NPO was regarded as a crucial impact factor for 238 

streamflow in March, April, June, and October to December; PDO dominantly affected 239 

streamflow in August to November; AMO was selected as the significant climate index 240 

in all the months. Besides, the maximum RI values (i.e., nowadays) were 0.0014, 241 

0.0012, 0.3203, and 0.0049 for DPL, CTG, NW, and XX stations, respectively. The RI 242 

value of the NW station was larger than the threshold (i.e., 0.25), while that of the other 243 

stations was far less than 0.25. Figs. 3 (g), (h), and (j) show that for stations with a low 244 

RI, reservoir construction had less impact on the streamflow regime. However, for the 245 

NW station with a high RI value (Fig. 3 (i)), the streamflow regime has been strongly 246 

altered since 1967. Therefore, for stations with natural regimes, significant climatic 247 

indices should be considered when building nonstationary models. For the NW station, 248 

alongside climatic indices, the RI will also be considered as an external covariate. 249 

Table 3 shows that the all the GD, AIC, and BIC values of M2 were smaller than 250 

those of M1 in all the 12 months at NW station. The GD of M2 was reduced by 9 (1.2% 251 

in July) to 28 (4.4% in April) compared with M1. Table 4 shows that the Lognormal 252 

distribution (LOGNO) gave the best fits for the three natural stations, and the Logistic 253 

distribution (LO) gave the best fit for the altered NW station. The average GDs of M2 254 

model were 17 (2.2%), 18 (2.9%), 26 (4.0%), and 22 (3.5%) less than those of M1 255 

model for DPL, CTG, NW, and XX stations, respectively. 256 

Fig. 4 shows that M2 performed better than M1 when describing the variability of 257 
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the streamflow series in normal (March), wet (June), and dry (December) months. For 258 

example, in normal month (Fig. 4(a)), the area spanned by the 5th and 95th quantiles 259 

of M1 covered 94%, 90%, 89% and 94% of the observed points at the four stations. 260 

Whereas that of M2 covered 98%, 98%, 94% and 97% of the observed points, 261 

respectively. Fig. 5 shows that all residual points of M1 and M2 for the three natural 262 

stations fell within the 95% confidence intervals. However, the residual values of the 263 

NW station for M1 (Fig. 5 (c)) shows deviations from normality, while those of M2 264 

(Fig. 5 (g)) do not show a departure from normality. Therefore, the nonstationary M2 265 

that incorporated climate indices and RI as covariates can evidently provide a better fit 266 

for streamflow series. Then, the optimal M2 models were used to fit the streamflow 267 

data and to calculated the NSSI series. 268 

269 

4.3 Validation of the NSSI 270 

According to the historical records (Chinese Office of State Flood Control and 271 

Drought Relief Headquarters, OSFCDRH 1997), two historical drought events that 272 

occurred in 1978–1979 and 1993 at the NW station were chosen to examine the 273 

performance of the NSSI and SSI. The extreme droughts 1978–1979 (the first gray 274 

shadow bars in Fig. 6(a)) caused a serious reduction in crop production in the Xixian 275 

basin. The NSSI captured an extreme hydrological drought event from August 1978 to 276 

April 1980, which reached the most (i.e., –2.65) in September 1979. Whereas, the SSI 277 

values during this period were all below the level of severe drought (i.e., SSI > –2). In 278 

1993, a hydrological drought event occurred from spring to autumn in NW station (the 279 

second gray shadow bars in Fig. 6(a)), among which drought in autumn had the greatest 280 

impact (Zhu et al. 2016). NSSI index captured the gradual aggravation trend of this 281 

hydrological drought event from spring to autumn, while the drought process captured 282 
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by SSI had been maintained at the level of moderate drought (i.e., SSI > –1.5). 283 

Fig. 6(d) shows that the frequency of slight (D1) and moderate (D2) drought of 284 

NSSI of the NW station were 12.8% lower and 13.1% greater than that of SSI, 285 

indicating that reservoir regulations in the upper reach of the NW station caused more 286 

slight droughts developed into moderate droughts. Besides, Negative Binomial (NB) 287 

and LOGNO distributions were the optimal marginal distribution functions for drought 288 

duration and severity of the four stations, respectively. Frank-copula function was the 289 

optimal copula functions for the joint distribution of drought duration and severity of 290 

these stations. Figs. 6(f)-(m) show that joint contour plots of the NSSI (M2) were 291 

moving forward in comparison with those calculated from the SSI (M1), indicating that 292 

the drought risk identified by the NSSI series is increased compared with that of SSI 293 

series. 294 

295 

5. Discussion296 

The traditional SSI is widely used for hydrological drought assessment and it is 297 

generated by fitting streamflow series to a distribution with constant parameters based 298 

on stationary assumption (Wang et al., 2020c). However, effects of climate variability 299 

and anthropogenic activities challenge the fundamental assumption of stationarity, and 300 

statistical distribution parameters may change with these forcing factors (Jiang et al. 301 

2015). In this study, the proposed NSSI were generated from probability models that 302 

distribution parameters varying with significant climate indices and RI, thus providing 303 

an effective tool for nonstationary hydrological drought assessment. On the one hand, 304 

comparisons of criteria values, i.e., the GD, AIC, and BIC between M1 and M2 (Tables 305 

3 and 4) showed that nonstationary models had smaller fitting residuals. Centile curves 306 

and worm plots (Figs.4 and 5) showed that model M2 provided a better description of 307 
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streamflow processes than M1. On the other hand, the verification results (Fig. 6) 308 

showed that the NSSI that incorporate the climate variability and reservoir regulations 309 

will give a more reliable description of drought condition and process. 310 

Climate variability is widely recognised as one of the most important multi-years 311 

to multi-decadal drivers of changes in hydro-climatic extremes (Slater et al. 2021). As 312 

shown in Fig. 4, the nonstationary models considering different lead times when 313 

selecting the climate indices were better at describing streamflow and drought 314 

conditions. Such attempts will contribute to a deeper understanding of historical 315 

hydrological drought events at catchment and regional scales (Van Loon 2015). More 316 

importantly, the advantage of employing climate variability is that climate model 317 

predictions can be employed as covariates to estimate future changes in drought 318 

processes (Slater et al. 2021). In addition, with the increase in global population and 319 

the growing demand for water, anthropogenic impacts on surface hydrological 320 

processes have greatly increased (AghaKouchak et al. 2014, 2021). Among diverse 321 

anthropogenic water use activities, reservoir regulations usually have a more direct 322 

influence on flow regimes (Slater et al. 2021). The Figs. 4-6 revealed that for the NW 323 

station, the nonstationary models considering the RI as a covariate provided a more 324 

accurate fit of the streamflow data, especially changes occurring before and after 325 

streamflow change points related to reservoir construction. Such attempts provide an 326 

idea for parameterizing the human influence and then applying it as covariates to 327 

construct a nonstationary standard streamflow index. 328 

Finally, some limitations should be emphasized is that the proposed NSSI in this 329 

study only considered the nonstationarity caused by climate variability and reservoir 330 

regulation. When the NSSI is applied to other regions, other nonstationary forcing 331 

factors should be considered, such as land use and cover change, irrigation, and 332 
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abstraction (AghaKouchak et al. 2021; Slater et al. 2021). The future work could focus 333 

on developing some parameterisation schemes that can account for human activities 334 

and then applying them to the NSSI construction framework. 335 

336 

6. Conclusions337 

In this study, we developed a NSSI that incorporates large-scale climate indices 338 

and the RI as external covariates based on the GAMLSS model. The large-scale climate 339 

indices were selected based on correlation analysis to represent impacts of climate 340 

variability, and the RI was calculated to represent influence of anthropogenic reservoir 341 

regulation. As such, our comprehensive consideration of the nonstationary impacts of 342 

these factors on hydrological drought assessment is the innovative part of this research. 343 

We demonstrated the application of the developed NSSI to the Xixian basin 344 

located in the upper reaches of the Huaihe River Basin, China. For this basin, the 345 

average GDs of M2 model were 17 (2.2%), 18 (2.9%), 26 (4.0%), and 22 (3.5%) less 346 

than those of M1 model for DPL, CTG, NW, and XX stations, respectively, indicating 347 

that the nonstationary models performed better than stationary model in describing the 348 

nonstationary streamflow processes. Especially, for the NW station, the frequency of 349 

slight drought and moderate drought of NSSI was 12.8% lower than and 13.1% greater 350 

than those of SSI, respectively. These revealed that the NSSI can correctly capture the 351 

variations of hydrological drought due to influence of reservoir regulations. 352 

Overall, the developed NSSI in this study provides an appropriate method for 353 

assessing nonstationary hydrological droughts in a changing environment. Such 354 

attempts are expected to provide a valuable reference for nonstationary drought 355 

research in other regions as well as the development of new drought assessment 356 

methods. 357 
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Fig. 1. Location of the study area and the distribution of hydrological and rain gauge 

stations and reservoirs. 
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Fig. 2. Framework for the construction and validation of the nonstationary standardised 

streamflow index (NSSI) proposed in this study. 
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Fig. 3. Monthly (a) precipitation and (b) streamflow series; (c)-(f) Double cumulative 

curves of annual precipitation and streamflow for the four stations; (g)-(j) Temporal 

evolution of the reservoir index (RI) and 3-month cumulative streamflow series in June 

for the four stations (‘*’ indicates a highly altered streamflow regime). 
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Fig. 4. Centile curves plots for modelling 3-month cumulative streamflow at the four 

stations with a stationary model (M1) and nonstationary model (M2) during (a) normal 

month (March), (b) wet month (June), and (c) dry month (December). ‘*’ indicates a 

highly altered flow regime. The red points are the observed streamflow series; the blank 

line is the median (50% centile curve); the dark-grey region represents the area between 

the 25% and 75% centile curves; and the light-grey region represents the area between 

the 5% and 95% centile curves. 
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Fig. 5. Worm plots of residuals of the optimal M1 and M2 models for observed 

streamflow (3-month cumulative streamflow series in March) at the four stations. ‘*’ 

indicates a highly altered flow regime. The two black dotted lines correspond to the 95% 

confidence limits. For a good fit, the data points should be aligned preferably along the 

red solid line but within the two dashed black lines. 
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Fig. 6. (a) Temporal series of the standardised streamflow index (SSI) and the 

nonstationary standardised streamflow index (NSSI) over a 3-month scale at the NW 

station (the gray shadow bars indicate the hydrological drought events of 1978–1979 

and 1993, respectively); (b)-(e) Frequencies of different drought grades (D1–D4) 

obtained from SSI-3 and NSSI-3 of the four stations; (f)-(m) Joint return periods of 

hydrological drought duration and severity obtained from the SSI-3 (i.e., M1) and the 

NSSI-3 (i.e., M2) for the four stations. ‘*’ indicates a highly altered flow regime and 

red dots indicate the observed hydrological drought events. 
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Table 1. Results of the trend and change point test of annual precipitation and 

streamflow for the four stations in the Xixian Basin. 

Station MMK trend test 

(Z values) 

Heuristic segmentation test 

for change point 

Precipitation Streamflow Precipitation Streamflow 

DPL –0.92↓ –1.58↓ — — 

CTG –0.69↓ –1.63↓ — — 

NW –0.26↓ –2.16*↓ — 1956*, 1967* 

XX –0.54↓ –1.48↓ — — 

Notes: ‘*’ with bold values denotes significance at the 95% confidence level. ‘↑’ and ‘↓’ 

indicate upward and downward trends, respectively. 

Jo
urn

al 
Pre-

pro
ofs



 26 / 28

Table 2. Summary of the significant climate indices for each month of a year at the 

CTG station. 

Month Climate index Month Climate index 

Jan ENSO11 NAO6 AO6 NPO1 PDO11 AMO1 Jul ENSO6 NAO11 AO5 NPO5 PDO5 AMO7 

0.18 –0.12 –0.14 –0.09 0.13 –0.28 0.13 0.18 –0.21 0.16 0.12 –0.23

Feb ENSO12 NAO7 AO12 NPO5 PDO12 AMO2 Aug ENSO7 NAO8 AO6 NPO6 PDO6 AMO8 

0.18 –0.12 –0.12 –0.10 0.13 –0.29 0.19 0.14 –0.14 0.14 0.18 –0.24

Mar ENSO3 NAO8 AO1 NPO7 PDO11 AMO4 Sep ENSO8 NAO6 AO7 NPO7 PDO7 AMO9 

–0.14 –0.10 0.10 –0.18 –0.11 –0.29 0.20 0.16 –0.11 0.11 0.23 –0.25

Apr ENSO4 NAO8 AO9 NPO7 PDO0 AMO5 Oct ENSO8 NAO10 AO0 NPO4 PDO8 AMO10 

–0.11 –0.14 –0.09 –0.22 –0.14 –0.28 0.20 0.10 0.20 0.21 0.24 –0.27

May ENSO5 NAO2 AO1 NPO5 PDO1 AMO6 Nov ENSO9 NAO12 AO4 NPO9 PDO9 AMO11 

–0.10 0.13 0.09 –0.14 –0.16 –0.23 0.18 –0.10 –0.10 0.17 0.19 –0.24

Jun ENSO12 NAO9 AO4 NPO6 PDO0 AMO6 Dec ENSO10 NAO3 AO5 NPO0 PDO10 AMO0 

–0.11 0.13 –0.18 –0.18 –0.14 –0.21 0.19 –0.12 –0.09 –0.18 0.13 –0.24

Notes: Subscript numbers represent the lead times between each climate index and the 

corresponding month’s streamflow. The numbers listed below each climate index are 

the Kendall correlation coefficients. The climate index with correlation coefficient 

greater than 95% confidence level is expressed in bold and italics. 
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Table 3. Summary of the assessment criteria values (GD, AIC, and BIC) for the optimal 

M1 and M2 models at the NW station and its selected covariate for μ and σ in the 

optimal M2 model. RI refers to reservoir index and ct refers to a parameter that is 

independent of the covariates (i.e., constant). 

Month GD AIC BIC The optimal M2 model 

M1 M2 M1 M2 M1 M2 μ σ 

Jan 619 609 623 617 627 606 RI RI 

Feb 596 585 600 595 604 486 RI RI, PDO11 

Mar 622 604 626 614 630 604 RI RI, AMO4 

Apr 649 622 653 636 658 631 RI, AMO5 RI, AMO5, NPO8 

May 703 678 707 688 712 688 AMO6 RI, AMO6 

Jun 729 720 733 728 738 717 RI RI 

Jul 750 741 754 749 758 727 RI RI 

Aug 742 732 746 740 750 729 RI RI 

Sep 739 716 743 724 747 722 ct RI, AMO10 

Oct 719 698 723 708 727 698 ct RI, AO0, AMO11 

Nov 699 680 703 690 707 681 ct RI, NPO0, AMO12 

Dec 658 646 662 656 666 636 RI RI, NPO0 
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Table 4. Summary of the optimal M1 and M2 models for the four hydrological stations. 

Station Distribution GD AIC BIC 

M1 M2 M1 M2 M1 M2 M1 M2 

DPL LOGNO LOGNO 641 627 645 623 650 629 

CTG LOGNO LOGNO 637 619 641 626 645 623 

NW LO LO 685 659 689 669 694 669 

XX LOGNO LOGNO 636 614 640 619 644 624 

Notes: LOGNO and LO represent the Lognormal and Logistic distributions, 

respectively. 
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