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Abstract

Uncertainty of best management practices (BMP) effectiveness is an important factor

in the development of watershed management plans. This study explored the

uncertainty of BMP effectiveness in reducing total nitrogen (TN) load owing to the

uncertainty in hydrological parameters, thereby improving their reliability. A

watershed model, annualized agricultural non-point source pollution (AnnAGNPS),

was employed to evaluate the effectiveness of the four potentially feasible BMPs (i.e.,

riparian buffer, fertilization reduction, no-tillage, and parallel terraces) in the Shanmei

Reservoir watershed, located in the southeastern coastal region of China. Annual and

seasonal uncertainty variations in BMP effectiveness were evaluated based on ten

parameter sets selected from 1000 parameter groups using Latin hypercube sampling.

The results showed that the uncertainty of the BMP effectiveness in reducing the TN
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load was larger than the uncertainty of TN load simulation at annual and seasonal

time scales. The BMP effectiveness tended to be higher during summer than during

the other seasons. The uncertainty of BMP effectiveness varied seasonally, and it was

always lower during summer for most BMPs. This indicated that the impact of BMPs

on reducing TN load was more effective, with a higher reduction rate and lower

uncertainty in summer. Among the BMPs, the parallel terrace was the most effective

measure for reducing TN load since it had the highest reduction efficiency and

relatively low uncertainty. Although this study is a case study, it can provide a

scientific reference for decision-making in uncertain situations when AnnAGNPS is

applied for water quality simulations.

Keywords Best management practice (BMP) · Watershed modeling · Non-point

source pollution · Uncertainty · AnnAGNPS

1 Introduction

Non-point source pollutants, such as nitrogen (N) and phosphorus (P), sediments, and

agricultural chemicals, have become a major cause of water quality degradation in

rivers and streams worldwide. Large amounts of phosphorus and nitrogen loading loss

may result in the eutrophication of freshwater, severely restricting water use (Schürz

et al. 2019; Zhang et al., 2021). Thus, reduction or alleviation of nutrient load is a key

issue for water quality improvement and aquatic ecosystem restoration (Schuwirth et

al. 2019).



4

Environmental Conservation actions in agricultural districts, often referred to as

Best management practices (BMPs), are recognized as effective measures to reduce

the nutrient loads in reservoir watersheds (USEPA, 2008; Ni et al. 2020; Rodrigues e

al. 2021). For example, these include the structural measures a) riparian buffer (RB)

and b) parallel terraces (PT), and n-structural measures c) fertilization reduction (FR)

and d) no-tillage (NT). Watershed modeling has commonly been used to evaluate the

BMP effectiveness in watersheds because of the high cost of continuous water quality

monitoring, complex physio-graphic nature of the watershed, and countless possible

implementation scenarios (Schuwirth et al. 2019).

Conventionally, the modeling approach entails the

calibration-validation-prediction process (Arabi et al. 2007; Bai et al. 2020;

Casallas-Ojeda et al. 2021). In most cases, a single set of optimum parameter settings

was obtained by model calibration and considered as the “true” solution. The

calibrated model was then used to evaluate the BMP effectiveness by comparing the

simulated results with and without BMPs. This BMP effectiveness evaluation was

subject to the uncertainty problem of equifinality (i.e., different parameter sets

reproduce acceptable model outputs; Beven, 2006). Equifinality makes it difficult to

accurately recognize real parameters. The uncertainty problem of equifinality can

propagate into simulation processes and affect BMP effectiveness evaluation,

resulting in unrealistic and biased decisions. Therefore, the analysis of model

parameter uncertainty in BMP effectiveness is of great significance (Engebretsen et al.

2019).
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Previous studies have discussed the impact of parameter equifinality (i.e.,

parameter uncertainty) on the BMP effectiveness. However, there were no universal

results for the impact of parameter uncertainty on BMP effectiveness. Arabi et al.

(2007) and Karamouz et al. (2015) concluded that BMP effectiveness evaluation

could be ascertained with high confidence using the soil and water assessment tool

(SWAT) model. Lee et al. (2020) observed that the uncertainty associated with the

estimated BMP effectiveness was relatively large, and the BMP effectiveness should

be quantified using multiple parameter sets. Similar studies (Tzyy-woei et al. 2013;

Woznicki et al. 2014; Taylor et al. 2016; Tasdighi et al. 2018) also identified that there

was a relatively large degree of uncertainty associated with nutrient loss simulations

or BMP effectiveness.

Furthermore, existing studies have mainly focused on the uncertainty in the annual

total nutrient loads, rather than in their temporal distribution. However, temporal

analysis of uncertainty on a monthly or seasonal bias can give insight into the risk and

reliability of the BMP (Woznicki et al. 2003; Schuwirth et al. 2019). Meanwhile,

SWAT was is the most common used model for the uncertainty evaluation of BMP

effectiveness. Annualized agricultural non-point source pollution (AnnAGNPS;

USDA ARS, 2006) is a semi-distributed and physically-based water quality model,

and it has been commonly used to evaluate BMP effectiveness (e.g., Qi and Altinakar,

2011; Zhang et al. 2020). Therefore, this study aims to 1) evaluate the parameter

uncertainty in BMP effectiveness, 2) examine the temporal variation of the parameter

uncertainty in BMP effectiveness, and 3) test AnnAGNPS for the uncertainty
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evaluation of BMP effectiveness. The findings of this study can improve the

reliability of BMP effectiveness and also can be used as a reference for alleviating

non-point sources pollution in reservoir watersheds.

2 Study Area and Methodology

2.1 Study area and dataset

This study was conducted in the Shanmei Reservoir watershed, which was located in

the upper region of the Jinjiang watershed in southeastern China (Fig. 1a). It covers an

area of approximately 1,023 km2. This study area is dominated by a subtropical

monsoon climate, with an average annual temperature and precipitation of 20°C and

1600 mm, respectively. The dry and wet seasons are very distinct, with 80% of the

annual precipitation occurring during the wet season (from March to September). The

major land use types are forest (accounting for 68.34% of the area), followed by

agricultural land (including orchards and farmlands, 22.64%), and urban areas (4.89%,

Fig. 1b). The most common grown crops are ponkan, tea trees, paddy rice, sweet

potatoes, and vegetables. The dominant hydrologic soil group (USDA, 1972) which

refers to the classification of soils based on their runoff, producing characteristics and

their infiltration rate, is D, followed by groups C and B (Fig. 1c).

The Shanmei Reservoir is the most important potable water resource for Quanzhou

city, Fujian province, China. It supplies water for more than 6,000,000 residents in

downstream areas. However, rapid population growth and agricultural development

have resulted in high TN concentrations in the Shanmei Reservoir, thereby leading to
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eutrophication and deterioration of the reservoir water quality in recent years.

Therefore, the implementation of BMPs in the upland watershed of the Shanmei

Reservoir is urgently required to reduce or alleviate TN load and risk of

eutrophication.

The input data for AnnAGNPS includes the digital elevation model (DEM), land

use, soil, agricultural management schedule, and meteorological and hydrological data.

Table 1 summarizes the input data and sources.

Table 1 Input data and sources of the AnnAGNPS model in Shanmei Reservoir
watershed
Data Description Sources

DEM A digital elevation model with 30 m × 30 m

International Scientific Data Platform

of the Chinese Academy of Sciences

(http://datamiffor.csdb.cn/admin/

datademMain/jsp)

Soil map The digital soil map at 1:500,000 scale
Soil Fertilizer Laboratory of Fujian

Province

Land use
Land use data in 1995 for the Taoxi sub-basin and the land use data in

2006 for the Shanmei Reservoir watershed

Landsat Thematic Mapper data by

unsupervised classification and visual

interpretation

Climate

Daily air temperature (maximum and minimum), relative humidity,

wind speed, and cloud cover during 2000–2010 at Yongchun and

Dehua stations

Meteorology Agency of Fujian

Province

Precipitation Daily precipitation from 16 precipitation stations during 2000–2010
Water Conservation Agency of

Fujian Province

Runoff
Daily runoff data during 1995–1997 at Yongchun Station; Daily

runoff during 2000-2010 at Shanmei Reservoir Station

Water Conservation Agency of

Fujian Province

Sediment
Daily sediment form April 1995 to October 1995 and from April

1996 to October 1996 at Yongchun Station

Water Conservation Agency of

Fujian Province

Water quality
Quarterly TN concentration data at the inlet of Shanmei Reservoir

during 2002–2010

Environmental Protection Agency of

Fujian Province

Point sources Waste water discharge, TN concentrations
Environmental Protection Agency of

Quanzhou Municipality

Agricultural

management
Fertilizer application rates, livestock production (2000–2010)

Annual census published by local

statistical bureau, and interviews

with local farmers
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2.2 AnnAGNPS model

AnnAGNPS represents the spatial heterogeneities of watershed properties by dividing

the watershed into drainage areas (called cells) with homogenous land use, soil, etc.

The cells are connected to each other by the network of channels and reaches, where

runoff, sediment, and nutrients are transported. AnnAGNPS is built as a series of

interconnected modules by integrating both empirical and quasi-physical models that

simulate watershed processes (Villamizar and Brown, 2016). The Soil Conservation

Service curve number (SCS-CN) is used to estimate the surface runoff (USDA, 1986).

The Revised Universal Soil Loss Equation (RULSE) is used to estimate the daily

sheet and rill erosion (Renard et al. 1997), whereas the Bagnold equation and a

modified Einstein equation are used to express sediment transport into the stream

system (Bingner et al. 2011). For the N simulation, bias mass conservation

equilibrium is employed to determine nutrient generation for rainfall events. Nutrient

dynamics include the fate of N, P, and organic carbons are determined by the Erosion

Productivity Impact Calculator (Williams, 1995) and the Groundwater Loading

Effects of Agricultural Management Systems (Leonard et al. 1995) algorithms.

2.3 Parameter sensitive analysis method

A sensitivity analysis (SA) method is required to select sensitive parameters for

calibration. AnnAGNPS requires over 400 input parameters distributed across 34

modules (Bingner et al. 2011). In this study, the Morris screening method (Morris,
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1991) and the Differential Sensitivity Analysis (DSA) method (Lenhart et al. 2002)

were applied to identify the most important hydrological parameters that control the

variability of runoff and sediment, and TN simulations, respectively.

Morris relies on a "one-factor-at-a-time" design of experiments. It perturbs one

parameter at a time and measures the change in the model output. The Morris method

evaluates a graphical representation of μ* vs. σ to determine the most important

parameters. The μ* estimates the overall effect of each input on the output, while σ

estimates the higher-order effects, such as nonlinearity and interactions between

inputs.

DSA was selected for its simplicity and low computational time compared to other

SA methods. DSA is calculated at one point in the parameter space by adjusting the

parameter with a value or percentage (∆x) while the other parameters remain

constant. In this study, the TN parameter sensitivity analyses were conducted by

varying the initial parameter by a fixed percentage of ∆x =± 10% . The sensitivity

index (I) (Lenhart et al. 2002) was computed to classify inputs parameters according

to their sensitivity. The details of DSA can be found in Lenhart et al. (2002).

In this study, 16 parameters (Table 2) were selected to identify the sensitive

parameters of AnnAGNPS in predicting runoff, sediment load and TN load. They

have been identified as sensitive in previous studies (e.g., Chahor et al. 2014;

Bisantino et al. 2015; Luo et al. 2015; Abdelwahab et al. 2016).
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Table 2 Information of AnnAGNPS parameters

Category

Parameter

Symbol (in

this paper)

Description

Initial range

TYPE
Min. Max.

Hydrology

Parameters

CN* Runoff curve number －0.3 0.30 a

RMN Riverway Manning coefficient 0.01 0.05 b

FC Field moisture capacity －0.3 0.30 a

WP Wilting coefficient －0.3 0.30 a

K Soil erodibility factor K －0.3 0.30 a

RC Remaining residue cover －0.3 0.30 a

RB Root biomass －0.3 0.30 a

LS LS factor －0.3 0.30 a

P Water soil conservation factor －0.3 0.30 a

CC Canopy cover －0.3 0.15 a

RCT
Remaining residue cover after

tillage
－0.3 0.15 a

RR Random roughness －0.3 0.15 a

Water

quality

parameters

FR Fertilizing amount - - a

FD Fertilizing depth - - a

NHL Nitrogen half-life - - a

SBV soil background value - - a

Note: a indicates parameters whose baseline values are adjusted during the calibration by the multiplier sampled

from the bound. b indicates parameters whose baseline values are replaced during the calibration by the value

sampled from the bound.

Sediment observations were only available at the upstream Yongchun hydrological

station, which was located at the outlet of the Taoxi sub-basin. The sensitive

parameters of the runoff and sediment were identified based on daily runoff and

sediment data at the Yongchun Station (Fig. 1). In addition, the sensitive parameters

of TN were identified based on the observed TN data at the Shanmei Reservoir.

2.4 AnnAGNPS calibration and validation
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In this study, AnnAGNPS was initiated with the calibration of runoff, followed by

calibration of the sediment load, and finally, the TN load. Based on the identified

sensitive parameters, calibration was performed using the dynamically dimensioned

search (DDS) algorithm (Tolson and Shoemaker, 2007).

Multiple statistical values, including the Nash–Sutcliffe efficiency coefficient (NSE)

(Nash and Sutcliffe, 1970), coefficient of determination (R2), and percent bias (PBIAS)

(Gupta et al. 1999), were selected to evaluate the monthly and daily model

performances. Table 3 lists the calibration and validation periods. Because TN data

were only available at the quarterly time scale from 2001 to 2010, the data were not

split into calibration and validation periods.

2.5 BMP representation in the AnnAGNPS model

Based on the local socioeconomic conditions and pollution characteristics, four

potential BMPs were considered to evaluate their effectiveness in reducing TN load

under the current climate conditions including RB, FR, NT and PT. Under each

scenario, BMP were applied to agricultural land in the Shanmei Reservoir watershed.

RB is a vegetated band set up between the agricultural land and the riverway to trap

sediments and nutrients from the drained area to the channel segment. Based on the

results of Haycock and Pinay (1993) and Lee et al. (2003), a grassland buffer width

was set to 6m.

FR is mainly intended to reduce available N quantities on the ground for

transporting to water to limit N loss. This BMP was directly implemented in
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AnnAGNPS by reducing 30% of the total fertilization of N (Xing and Zhu, 2002).

Tillage practices influence the physical and biological properties of soil. The goal

of NT is to reduce erosion caused by soil-disturbing activities. Under the NT scenario,

the management operations for the agricultural land cells were modified to no till,

and the value of RUSLE P factor was reduced by 10% (Abdelwahab et al. 2016).

PT is an earth embankment, or a combination ridge and channel constructed across

the slope. It serves to decrease surface runoff volume, peak runoff rate, sheet and rill

erosion, and erosive power of runoff, and also reduces the development of rills and

gullies. Under the PT scenario, CN was reduced by six, and RUSLE_P and slope

length were changed depending on the slope class according to Arabi et al. (2008).

2.6 Uncertainty analysis of BMPs effectiveness

Firstly, uncertainty analysis was accomplished based on the selection of behavioral

parameter groups, which could cause equifinality in the model results. The calibrated

parameter values were considered as the initial conditions. 1000 parameter groups

within ±30 % of the parameter values were generated using the Latin hypercube

sampling (LHS) method (Iman and Conover, 1980), and the related objective

functions (i.e., NSE, R2, and PBIAS) were calculated. Then, the behavioral parameter

groups were selected with the following criteria: NSE > 0.70 and PBIAS < 10% for

daily discharge, NSE > 0.4 and PBAIS < 30% for TN load. The threshold values for

the objective functions were determined based on the results of the best set of

calibrated parameter groups (Pfannerstill et al. 2014; Haas et al. 2016). In total, ten



13

behavioral parameter groups were identified.

Secondly, for the ten parameter groups, AnnAGNPS were run for four BMPs and

the baseline scenario using the current meteorological data (2000–2010), totaling up

to 50 simulations. The TN reduction rate was quantified using Equation (1) to

evaluate BMP effectiveness. Then, the degree of data discretization was evaluated

among the ten parameter groups based on the coefficient of variation (CV) to evaluate

the impact of parameter uncertainty on BMP effectiveness. Equation (1) can be

expressed as follows:

�� =
��,����−���−��,��−���

��,��−���
（1)

Where �� is reduction rate for TN load for the parameter set �，��,−no��� and

��,����−��� are the simulated TN loads for parameter set � , before and after

application of the BMP, respectively.

Additionally, the uncertainty of the seasonal BMP effectiveness. was completed

using the following month groups: December–January–February (DJF),

March–April–May (MAM), June–July–August (JJA), and

September–October–November (SON). Seasonal CV was applied to understand the

uncertainty of the BMP effectiveness varying at the seasonal scale.

3 Results and Discussion

3.1 SA and model performance

The SA results of the runoff , sediment and TN simulations are shown in Fig. 2. Based

on the Morris results, the most sensitive flow parameter was CN with a μ* value of
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0.0113, followed by RMN with a μ* value of 0.0034, while CN and RMN also had

strong interactive effects with other parameters (Fig. 2a). In addition, RCT, LS, P, K,

RMN, and K showed an important effect on the sediment simulations (Fig. 2b). Fig.

2c shows the results of DSA for the TN parameters. The sensitivity indices of FR, FD,

NHL, and SBV parameters were 0.07, 0.001, 0.0014, and 0.45, respectively.

Parameters with sensitivity index I less than 0.05 were classified as small to negligible

sensitive parameters (Lenhart et al. 2002). Thus, the sensitive parameters of the

Shanmei Reservoir watershed were CN, RMN, RCT, LS, P, K, FR, and SBV.

Table 3 Results of the AnnAGNPS model in calibration (Cal) and validation (Val) for
runoff, sediment, and TN loads

Gauge Variable Cali period Vali period Time-step
NSE R2 PBIAS %

Cali Vali Cali Vali Cali Vali

Yongcun

Streamflow 1995-1996 1997
Daily 0.73 0.77 0.79 0.77 -3.77 -4.31

Monthly 0.94 0.93 0.95 0.94 -7.33 -4.31

Sediment 1995.4.1-19

95.10.31

1996.4.1-19

96.10.31

Daily 0.73 0.68 0.74 0.69 -11.62 -9.65

Monthly 0.9 0.96 0.95 0.97 -11.62 -9.65

Shanmei
Streamflow 2001-2005 2006-2010

Daily 0.74 0.83 0.83 0.87 -2.9 -2.7

Monthly 0.91 0.97 -0.05 -0.02 -5.32 -9.37

TN 2001-2010 Daily 0.4 0.47 23.4

Table 3 shows the performances of AnnAGNPS with regard to runoff and sediment

load in the Taoxi sub-basin, as well as runoff and TN load in the Shanmei Reservoir

watershed. For the simulated runoff at the Shanmei Reservoir watershed and Taoxi

sub-basin, NSE and R2were more than 0.70, and PBIAS was less than 5% at the daily

scale, while NSE and R2were greater than 0.90, and PBIAS was less than 10% at the

monthly scale for the calibration and validation periods. As for simulated sediment at

the Taxi sub-basin, NSE and R2were higher than 0.60, and PBIAS was less than 15%
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at the daily scale, while NSE and R2were greater than 0.90, and PBIAS was less than

15% at the monthly scale for both the calibration and validation periods. For TN in

the Shanmei Reservoir watershed, NSE, R2, and PBIAS were 0.42, 0.47, and 23.4%,

respectively. According to Moriasi et al. (2007), model simulation evaluated at a

monthly time step can be satisfactory if NSE > 0.50, and if PBIAS is within ±25% for

streamflow, within ± 25% for sediment, and within ± 70% for N. AnnAGNPS

produced satisfactory results for runoff and sediment simulations, while for TN

simulations the result is less good partly because the number of observations for TN is

limited (Table 3). However, the criteria set out by Moriasi et al. (2007) were on a

monthly time scale. Generally, a relaxation of performance criteria is warranted when

the evaluation time step decreases (Engebretsen et al. 2019). Moreover, a visual

inspection of Fig. 3 reveals that the model could perform reasonably well in the

simulation of temporal variation and average magnitude of TN, except for some pairs

of simulated-measured TN loads (i.e., March 2, 2004; May 9, 2005), in which the

AnnAGNPS simulated TN loads greatly deviated from the observed values.

Additionally, the objective of this study was to evaluate the long-term average impact

of different BMPs. Therefore, the model performed adequately in simulating TN load.

The weak performance of TN simulation may be attributed to the quality and

relevance of its input factors, such as 1) inadequate frequency of TN monitoring data

(i.e., the quarterly TN data) to calibrate and evaluate model performance, and 2)

simplified management practices (i.e., the time of planting and fertilizer application

rates). In the study, the time of planting and fertilizer application rates were regarded
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as spatially uniform in the watershed, and were determined using an average value

based on the recorded data of actual practices during the study period. Witing and

Volk (2013) identified that nutrient simulations were highly sensitive to input data on

crop rotations based on SWAT modeling. Sahu and Gu (2009) and Motsinger et al.

(2016) observed that the actual non-uniformity of fertilizer application rate and timing

could have a greater impact than can be represented in the model. This may also be

because of the model structure. The nutrient load is based on mass conservation in

AnnAGNPS, and any missing input or output information of nutrients in the

watershed will considerably affect the results (Shamshad et al. 2008). According to

Bingner et al. (2011), the model assumed that there was no tracking of nutrients from

one day to the next, implying that there would definitely be loss. That is, R2=1 for

nutrient loading is not possible (Shamshad et al. 2008).

3.2 Impact of parameter uncertainty on BMP effectiveness

Ten parameter groups with equifinality were identified based on the threshold of the

objective functions. It was observed that the sensitive parameters were all evenly

distributed within the sample range, except for CN (0 % – 10 %). It indicated that

these sensitive parameters were highly uncertain. However, ten simulations were

identified to have a similar model performance with the best parameter set identified

in the model calibration. Compared to the best model performance in the model

calibration, the differences in the values of NSE and R2 of the ten simulations were

both within 0.02, for runoff and TN load simulations, and the differences in the
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absolute values of PBIAS were within 3 % and 7 % for runoff and TN load simulation,

respectively. In addition, ten parameter groups were run for the uncertainty analysis to

evaluate the uncertainty associated with both model simulations and BMP

effectiveness.

Table 4 Annual TN load and reduction efficiency for each BMP

BMPs
TN load（kg/ha/year） Reduction rate of TN load（%）

Mean range CV Mean range CV

Baseline 33.58 [25.16, 42.14] 18 - - -

RB 32.61 [24.59, 40.93] 17 2.82 [1.38, 4.20] 35

FR 30.11 [22.57, 36.59] 17 10.24 [6.17, 13.17] 20

NT 29.45 [22.36, 36.77] 16 11.96 [5.23, 18.63] 39

PT 26.23 [20.48, 32.56] 15 21.41 [14.53, 31.93] 25

3.2.1 Impact of parameter uncertainty on BMP effectiveness at annual scale

Table 4 lists the results of the average annual TN load and reduction rate under the

baseline and the four BMP scenarios (RB, FR, NT, and PT). The results showed that

simulated uncertainty bounds associated with the mean annual TN load were

relatively large. For example, the mean annual TN loss ranged from 25.16 to 42.14 kg

ha-1 yr-1 with an average of 33.58 kg ha-1 yr-1 under the baseline scenario. Similar

results were observed for the four BMPs. It indicated that the uncertainty in the

simulations of TN load cannot be ignored, even if the differences between the

objective functions for each parameter group were small. This was similar to the

results obtained by Arabi et al. (2007), Shen et al. (2008), and Woznicki and

Nejadhashemi (2014). Among the four BMPs, the CVs of annual TN load varied from

15 % to 18 %. It implied that the impacts of parameter uncertainty on the TN load



18

were similar among the four BMPs. Additionally, there were no obvious differences

between the CV of annual TN load for each BMP scenario and that of the baseline

scenario. However, according to Karamouz et al. (2015), BMP implementation

effectively reduced the uncertainty in the prediction of watershed phosphorous load.

Relative to the baseline scenario, the RB, FR, NT, and PT scenarios can reduce the

mean annual TN load by 2.82%, 10.24%, 11.96%, and 21.41%, respectively. The

corresponding gaps in the reduction rate between the maximum and minimum values

for the RB, FT, NT, and PT scenarios were 2.82%, 7%, 13.4%, and 17.4%,

respectively. This suggested that the ranges of the reduction rates of the four BMPs

derived from ten parameter groups were relatively wide. Moreover, the CV of the

reduction rate of TN varied significantly (25 % to 35 %) among the four BMPs. The

CV associated with the reduction rate of TN load was larger than that corresponding

to the absolute prediction. For example, the CV of the mean annual TN loss was 16%,

while the CV of the reduction rate increased to 39% under the NT scenario. This

implied that BMP effectiveness did not translate into low variability. The uncertainty

of the annual reduction rate of the TN load was larger than that of the TN load

predictions. Lee et al. (2020) also identified that the effectiveness of riparian buffers

in reducing annual total organic nitrogen differed by up to 30% based on the selection

of acceptable parameter sets. However, Arabi et al. (2006) identified that the

uncertainty associated with the estimated reduction rate of the TN load for BMPs was

substantially smaller than the uncertainty associated with absolute predictions based

on the SWATmodel.
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3.2.2 Impact of parameter uncertainty on BMP effectiveness at seasonal scale

The seasonal average TN load and reduction rate for each BMP scenario are shown in

Fig. 5. The highest average TN load was observed in summer, while the lowest TN

load was observed in winter. Summer was the period of frequent rainstorm events and

continuous precipitation during agricultural management activities accounted for

49.5% of total rainfall, which was more likely to cause eutrophication in aquatic

ecosystems. Similarly, the highest reduction rate of TN load was also observed in

summer, while the lowest reduction rate was observed in winter, except for the FR

scenario. This was because the reduction rate of the TN load was always high during

the months when the TN load was large. This suggested that the implementation of

BMP can improve the watershed’s ability to reduce nutrient loads during summer,

lowering the risk of eutrophic pollution in rivers. Similar results were obtained by

Jiang et al. (2019), who observed that the implementation of riparian forest buffers

achieved the highest reduction rate of TN during the wet and transition periods.

However, for the FR scenario, the highest TN load was observed in summer, and the

highest reduction rate occurred in spring in the current study. In spring, major crops

(i.e., ponkan, tea trees, paddy rice, and vegetables) were in the sowing period in the

study area, and relatively larger quantities of fertilizers are applied during this period.

Under the FR scenario, a 30% reduction in fertilizer amount was adopted. Therefore,

a greater reduction in fertilization causes a higher reduction rate of the TN load in

spring.
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Fig. 5b shows that the CVs of the reduction rate of TN load vary among seasons,

and the variation in CVs differs among BMPs. Under the RB and NT scenarios, the

CVs were the largest in spring and lowest in summer. Under the FR scenario, the CVs

were the largest in summer and lowest in winter. Under the PT scenario, the CVs were

the largest in winter and lowest in summer. However, for the majority of BMPs, the

uncertainty of BMP effectiveness in reducing the TN load was the lowest in summer.

This implied that the impact of BMPs on reducing TN load during summer would be

considerably effective with a higher reduction rate and lower uncertainty. Moreover,

similar to the results at the annual scale, the CVs associated with reduction rates of

TN load were larger than those corresponding to the absolute predictions for each

season.

In addition, there were large differences in the reducing efficiency of the TN load

and the related uncertainty among the four BMPs. PT was identified to be the most

effective management practice for the study area in terms of the highest reduction

efficiency and relatively low uncertainty. This was consistent with the results at the

annual scale. NT, which did not alter the landscape in a significant manner, had the

highest uncertainty in the reduction efficiency of TN load. This suggested that the

parameters pertaining to NT show higher sensitivity when quantifying the reduction

efficiency. Under the NT scenario, the related parameters, including RCT, RR, and

USLE_P, changed. The higher uncertainty of the BMP effectiveness in NT may be

linked to the higher level of RCT sensitivity in sediment modeling (Fig. 2).

However, these BMP scenarios reflected the subjective assumptions of the modeler
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(Schürz et al. 2019). Technical aspects, such as how to represent the BMPs in the

model, involve highly subjective assumptions and thus introduce a new additional

uncertainty (Tasdighi et al. 2018; Schürz et al. 2019). These assumptions can

influence the simulation of BMP effectiveness. The potential uncertainties in the

scenario development are essential for evaluating the BMP effectiveness.

4 Conclusions

This study evaluated the uncertainty of the BMP effectiveness in reducing TN load

owing to hydrological parameter uncertainty at the annual and seasonal time scales by

using AnnAGNPS. Four potentially feasible BMPs and ten behavioral parameter

groups were adopted in uncertainty analysis. The following conclusions were drawn

from this study.

(1) The uncertainty of the BMP effectiveness evaluation in reducing the TN load

was larger than the uncertainty associated with absolute predictions for both the

annual and seasonal time scales. This suggested that BMP effectiveness cannot be

ascertained with high confidence using a modeling approach because of the model

parameter uncertainty, and BMP effectiveness should be quantified based on the use

of similar parameter sets to improve confidence in model predictions.

(2) The reduction efficiency was high in summer when frequent rainstorm events

and continuous precipitation cause large quantities of surface runoff to carry

considerable TN loads. The uncertainty of BMP effectiveness varied seasonally, and

was always lower in summer for most BMPs. This indicates that the impact of BMPs
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on reducing TN loads in summer would be considerably more effective with a higher

reduction rate and lower uncertainty.

(3) There were significant differences in the reducing efficiency of the TN load and

the related uncertainty among the four BMPs. PT was identified to be the most

effective management practice for the study area in terms of the highest reduction

efficiency and lower uncertainty.

This work is a new attempt on exploring the uncertainty of BMP effectiveness for

reducing TN load at annual and seasonal scale using AnnAGNPS. The results of the

BMP effectiveness for reducing TN load and the uncertainty bounds provided in the

present study can fill the gap in BMP effectiveness with respect to the Shanmei

Reservoir watershed. Extended studies should be undertaken to further evaluate the

uncertainty of BMP effectiveness driven by different climatic conditions as well as

other distributed hydrological models.
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