
Sedimentary Geology 429 (2022) 106077

Contents lists available at ScienceDirect

Sedimentary Geology

j ourna l homepage: www.e lsev ie r .com/ locate /sedgeo
Sharp-based, mixed carbonate–siliciclastic shallow-marine deposits
(upper Miocene, Betic Cordillera, Spain): The record of ancient
transgressive shelf ridges?
M. Poyatos-Moré a,b,⁎, F. García-García c, F.J. Rodríguez-Tovar c, J. Soria d, C. Viseras c,
F. Pérez-Valera c, I. Midtkandal b

a Departament de Geologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
b Department of Geosciences, University of Oslo, Sem Sælands vei 1, 0371 Oslo, Norway
c Departamento de Estratigrafía y Paleontología, Universidad de Granada, Avenida de la Fuente Nueva S/N, 18071 Granada, Spain
d Departamento de Ciencias de la Tierra y del Medio Ambiente, Universidad de Alicante, 03690 Sant Vicent del Raspeig, Spain
⁎ Corresponding author at: Departament de Geolog
Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain.

E-mail address: miquel.poyatos@uab.cat (M. Poyatos-M

https://doi.org/10.1016/j.sedgeo.2021.106077
0037-0738/© 2022 The Author(s). Published by Elsevier B
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 18 October 2021
Received in revised form 28 December 2021
Accepted 28 December 2021
Available online 6 January 2022

Editor: Dr. Jasper Knight
Isolated sharp-based sedimentary bodies in shelf settings can develop via the reworking of regressive deposits dur-
ing transgressions. An example of these are shelf ridges, formedunder awide range of processes, andwidely studied
due to their high reservoir potential. However, there is still a lack of examples inmixed (carbonate–siliciclastic) suc-
cessions. This study presents an outcrop example from the Upper Miocene of the Betic Cordillera (Spain), with the
aim to propose a model for the development of transgressive sharp-based mixed carbonate–siliciclastic deposits,
and to provide criteria to differentiate these from their regressive counterparts. The studied succession is ca. 300
m-thick, and shows a cyclic alternation of coarse and fine-grained mixed deposits. Depositional cycles start with
siliciclastic-dominated offshore to offshore transition deposits, progressively replaced by lower shoreface deposits.
These are abruptly truncated by sharp erosive contacts bioturbated by passively-infilled large burrows; their
ichnological features allowassignation to theGlossifungites ichnofacies. These contacts are interpreted as ravinement
surfaces. They are overlain by mixed carbonate–siliciclastic barforms, rich in skeletal fragments and extraclasts, and
displaying large-scale cross bedding. These form several m-thick and hundreds of m-long depositional elements
interpreted asmixed shelf ridges. These ridges formed in a fine-grained, shallow-water shelf, which occasionally re-
ceived coarse siliciclastic sediment supply via gravity flows, but had a coeval offshore carbonate factory, which pro-
vided the skeletal fragments. The sharp-based, coarser-grained nature and lithological break at the base of these
mixed carbonate–clastic deposits could lead to their misinterpretation as forced-regressive wedges. However, the
nature of their lower contact, combined with the reworked offshore skeletal fragments, and their stacking pattern
are consistent with these mixed units forming during transgression. Other studies in relatively time-equivalent de-
posits have demonstrated the existence of coeval regressive, coarser siliciclastic-dominated shoreline systems in rel-
atively close localities. These evidence a complex basin configuration in the area during the upperMiocene, with the
development of local depocentres and relatively narrow corridors or seaways in the Mediterranean–Atlantic con-
nection,which could have favoured shelf reworking processes, but also promoted the development of diverse stack-
ing patterns, reflecting the differential interaction between active tectonics and sedimentation across the region.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The origin of sharp-based coarse-grained sedimentary bodies iso-
lated in fine-grained dominated offshore/shelf settings has been a mat-
ter of debate for the sedimentary community (see Snedden and
Bergman, 1999; Suter and Clifton, 1999). Some studies originally
ia, Universitat Autònoma de

oré).
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interpreted them as incised valley fills or regressive shallow-marine de-
posits, transported onto and across the shelf during periods of abrupt
lowering of relative sea level (e.g., Plint, 1988; Van Wagoner, 1991;
Posamentier and Chamberlain, 1993; Bergman and Walker, 1995,
1999; Burton andWalker, 1999;MacEachern et al., 1999). Alternatively,
another mechanism involves the reworking of regressive deposits by
shelf processes during transgressions. This can result in the develop-
ment of shelf ridges, which are relatively large-scale (several m-high,
hundreds of m-wide, few km long) elongate geomorphic elements ob-
served in a wide range of either tide-, wave- or storm-dominated
er the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Location map of the study area within the Iberian Peninsula (A) and in the Betic Cordillera (B), in southern Spain. (C) Geological map (and legend) of the study area, ca. 5 kmNE of
Alicún de Ortega.
Modified from Soria (1993).
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modern (e.g., Houbolt, 1968; Swift, 1975; Kenyon et al., 1981; Swift and
Field, 1981; Stride, 1982; McBride and Moslow, 1991; Johnson and
Baldwin, 1996; van de Meene et al., 1996; Berné et al., 1998; Snedden
and Dalrymple, 1999; Dyer and Huntley, 1999; Jin and Chough, 2002;
Snedden et al., 2011) and ancient shelves (e.g. Posamentier, 2002;
Olariu et al., 2012; Schwarz, 2012; Messina et al., 2014; Leva-López
et al., 2016; Longhitano et al., 2021). Shelf ridge deposits are commonly
well sorted, relatively texturally and mineralogically mature, and with
extensive and well-preserved overlying and interstratified fine-
grained successions, which give them potential to form good reservoirs
(e.g., Posamentier, 2002; Cattaneo and Steel, 2003; Chiarella et al.,
2020).

In the past few years, there has been a renewed interest in shelf
ridges, with several studies that have refined previous depositional
models (e.g., Snedden et al., 2011; Desjardins et al., 2012; Olariu et al.,
2012; Schwarz, 2012; Messina et al., 2014; Leva-López et al., 2016;
Michaud and Dalrymple, 2016; Leszczynski and Nemec, 2019;
Chiarella et al., 2020). However, most of these studies are from
siliciclastic-dominated systems, and there is a relative lack of studies
in mixed (carbonate–siliciclastic) successions, with a few exceptions
of similar deposits described in ancient straits or seaways
(e.g., Longhitano et al., 2012, 2014, 2021; Rossi et al., 2017). In addition,
inmixed shallow-marine settings, the carbonate factory is not necessar-
ily located close to the coeval shoreline systems supplying the silicic-
lastic fraction (see Schwarz et al., 2018), which can make the correct
identification of isolated shelf sedimentary bodies and their interpreta-
tion in terms of sequence stratigraphic concepts more complex.

In this study, an outcrop example from the Upper Miocene of north-
ern Guadix Basin (Spain) is presented, with the aim to (i) characterize
and discuss the origin of sharp-based mixed carbonate–siliciclastic de-
posits in a shallow-marine succession, (ii) propose a depositional and
sequence stratigraphic model for their development in an active tec-
tonic setting, and (iii) provide criteria to adequately differentiate them
from their regressive counterparts.

2. Geological setting

The Betic Cordillera represents the northern branch of the arcuate
Betic-Rif Alpine orogen that closes the westernmost Mediterranean
Basin (Alboran Basin) across the Gibraltar Arc (Fig. 1). At the beginning
of theNeogene, threemajor tectono-palaeogeographic domains formed
and delimited the Betic Cordillera: (1) a fold-and-thrust belt (External
Zones or South Iberian Palaeomargin), (2) a thrust stack of metamor-
phic nappe complexes (Internal Zones or Alboran Domain), and (3)
allochthonous deposits (Flysch or Gibraltar Units) (Balanyá and
García-Dueñas, 1987). Westward displacement of the Internal Zones
configured twomajor N–S arcuate thrust systems (Gibraltar and Cazorla
Arcs) connected by E–W transfer fault zones (Pérez-Valera et al., 2017).
This structural configuration controlled the creation of high-subsidence
depocentres during the Atlantic–Mediterranean connection through
the Betic corridor (Martín et al., 2009; Hüsing et al., 2010; Reolid et al.,
2012). One of these depocentres is found in the Guadix Basin, at the cen-
tral sector of the Betic Cordillera, which preserves a few hundred-m
thick Tortonian marine succession (Fernández et al., 1996; Soria et al.,
1999).

The study area is located in the northern part of the Guadix Basin
(Fig. 1). Here the sedimentary infill covers the period from the
Tortonian to the Quaternary and is composed of six depositional se-
quences (referred to as Units I–VI, after Fernández et al., 1996,
Fig. 1C), separated by regional unconformities or correlative conformi-
ties representing major tectonic and/or eustatic events (Fernández
et al., 1996; Soria et al., 1999; García-García et al., 2009). This study is fo-
cused on the lowermost part of the succession, with more than 1 km-
thick Tortonianmarine deposits forming the first three depositional se-
quences, which are (from base to top): Unit I, the objective of this study,
formed by offshore to nearshore silty marlstones, sandstones,
3

calcarenites and conglomerates, and defined by Neogloboquadrina
acostaensis to N. humerosa planktonic foraminifera subzones (Soria,
1993); Unit II, dominated by offshore marine marlstones interbedded
with occasional dm-thick sandstones, and defined by Globorotalia
suterae planktonic foraminifera subzone; and Unit III, represented by
nearshore cross-stratified mixed siliciclastic–carbonate deposits and
large-scale cross-bedded conglomerates (Soria, 1993; Soria et al.,
2003; Reolid et al., 2012).

The succession crops out in a regional monoclinal structure with
strata consistently dipping to the S–SW (Fig. 1). This overall disposition
is altered by local syn- and post-depositional faults and associated inter-
nal angular unconformities, although these are not necessarily associ-
ated with major facies changes. The strata also show an abrupt onlap
termination against a highly-tilted lower Miocene algal limestone unit
on top of the basement, formed by Mesozoic rocks from the External
Zone (Soria, 1993; Pérez-Valera et al., 2017) (Fig. 2).

3. Dataset and methods

This study is based on the detailed analysis of a 304m-thick outcrop
stratigraphic section (Fig. 3), which was measured at cm-scale. Field
data were obtained using conventional methodology of logging and de-
scribing sedimentary rocks, collecting information about lithology (tex-
ture and composition), sedimentary structures, ichnological features
and composition, bioturbation index (BI of Taylor and Goldring, 1993),
orientation of palaeocurrent indicators, scale and geometry of both
stratification and sedimentary bodies, types of contacts and sample col-
lection (n = 7) for thin section and hand-specimen analysis for each
type of deposit. Oncemeasured, the successionwas characterized byde-
fining sedimentary facies associations and vertical stratigraphic trends.

4. Results

4.1. Facies analysis

The succession shows a recurrent alternation of coarse and fine-
grained mixed carbonate/siliciclastic deposits (Fig. 3), with dominantly
silty marlstones and marly sandstones alternating with m-scale, sharp-
based and laterally-continuousmixed siliciclastic–carbonatemedium to
coarse-grained packages. A detailed facies analysis has allowed the def-
inition of 7 facies associations (FA 1–7), which are described below and
summarized in Table 1.

4.2. Grey structureless marlstones (FA1-offshore)

This facies association is composed of whitish grey, structureless to
faintly laminated marlstones (Fig. 4A, B). Despite the lack of structures,
subtle grain-size changes occur within mm-scale beds, and bedding
contacts are roughly parallel where visible. Thin section analysis reveals
that these deposits are dominated by quartz grains and planktonic fora-
minifera, floating inside themuddymatrix that occupies more than 15%
of the rock (Fig. 5A). Other studies have also described sponge spicules
and radiolarian in the same deposits (Soria, 1993). Beds are mm to cm-
thick, but packages can reach several metres in thickness (Fig. 6). Large
accumulations of well-preserved bivalves are locally observed in these
deposits in the lower part of the section. Bioturbation is absent to low
(BI 0–2). Regional mapping reveals that they form laterally extensive
units, which can be followed for several km (Figs. 2, 3). Scattered thin-
bedded (up to 10 cm-thick), normally-graded muddy sandstone beds
are observed within the mudstone successions, some with erosive
bases and rippled tops, and up to moderately bioturbated (BI 0–3).

4.2.1. Interpretation
The dominant fine-grained nature of these deposits, combined with

the microfossil content (mainly planktonic foraminifera) and relatively
low bioturbation index, suggests that they accumulated in a relatively
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Fig. 4. Field photos of the different facies recognized in the study area. (A) Thick (several m-thick), light grey structureless or faintly laminatedmudstones (FA1, offshore). (B) Detail of the
subtle lamination inmudstones (FA1, offshore). (C) Example of hummocky-cross stratified sandstone (FA2, offshore transition). (D) Alternating sand/mud heterolithic packageswith cm-
thick muddy sandstones (FA2, offshore transition). (E) Example of soft-sediment deformation commonly observed in hummocky-cross stratified sandstone (FA2, offshore transition).
(F) Coarsening-up heterolithic to muddy sandstone package (FA3, lower shoreface). (G) Wavy-laminated muddy sandstones (FA3, lower shoreface). Field photos of the different facies
recognized in the study area. (H) Sharp-based, bioclastic mixed carbonate–clastic bed (FA4, transgressive deposits). (I) Large-scale cross-stratified mixed clastic-carbonate deposits
(FA5, mixed bars). (J) Highly bioturbated, cross-stratified mixed clastic-carbonate deposits (FA5, mixed bars). (K) Inset view of (J) showing the coarse-grained and highly bioclastic
nature of mixed bar deposits (FA5), with intrabasinal skeletal fragments, extraclasts, and coal fragments. (L) Oxidized, thin-bedded, bioclastic and glauconitic sandstone (FA6,
condensed deposits). (M) Detail view of the top surface of a highly bioturbated, bioclastic and glauconitic sandstone (FA6, condensed deposits). (N) Erosive-based, channelized
bioclastic medium to coarse grained sandstone deposits (FA7, channel-fill). (O) Inset view of (N) showing the major grain size break across the erosive base of channel-fill deposits
(FA7), cutting into lower shoreface muddy sandstones (FA3).
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Fig. 4 (continued).
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Fig. 5. Representative thin section (A–E) and close-up (F) photos of the studied deposits. (A) Mudstone-prone facies (FA1, offshore); quartz grains (Qz) and planktonic foraminifera (PF)
floating inside the muddy matrix (Mx), that occupies more than 15% of the rock whole. (B) Sandstone levels of heterolithic facies (FA2, offshore transition); densely packed framework
formed dominantly by quartz (Qz) with minor metamorphic rocks clasts (MR) and planktonic (PF) and benthic (BF) foraminifera. (C, D, E) Mixed carbonate–siliciclastic unit facies (FA5,
mixed bars); quartz grains (Qz) and carbonate rocks fragments (CR), with skeletal fragments including bryozoans (Bz) and bivalves (Bv), with minor planktonic (PF) and benthic (BF)
foraminifera, as well as glauconitic grains (Gt). (F) Detail of a hand specimen of carbonate–siliciclastic units facies (FA5, mixed bars), showing the relative abundance of bryozoans (Bz).
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distal depositional setting, below stormwave base, with dominant low-
energy processes such as hemipelagic suspension settling (Birgenheier
et al., 2017). Minor presence of normally-graded sandstone thin beds
suggests that this offshore setting received occasional coarse-grained si-
liciclastic supply via low-density turbidity currents (e.g., hyperpycnal
flows) (Bhattacharya and MacEachern, 2009; Harazim and McIlroy,
2015).

4.3. Heterolithic sandstone/marlstone packages (FA2 - offshore transition)

This facies association is composed of grey laminated sandy marl-
stones and sandstone/marlstone heterolithic packages, interbedded
with 5 to 40 cm-thick isolated fine to coarse-grained sandstone beds
(Fig. 4D). These beds are tabular or lens shaped, with erosive and/or de-
formed bases (e.g., load casts), normal grading and rippled tops,
hummocky-cross stratification and common soft-sediment deforma-
tion (Fig. 4C, E). Naked-eye analysis of sandstone beds reveals abundant
extraclasts (mainly quartz), organic matter and bioclasts. Thin section
analysis confirms that they are dominated by quartz grains, with
minormetamorphic rock fragments and planktonic and benthic forami-
nifera (Fig. 5B). Tool marks (mainly flutes) and foresets show
palaeocurrents ranging to the SW–NW (Fig. 6). Sandstone beds can be
up tomoderately bioturbated (BI 0–3), with vertical or horizontal traces
at the top surface (Fig. 8A). Packages range from 8 to 40 m in thickness
(Fig. 6). The tops of these packages can be gradational to overlying
lower shoreface deposits (FA3) or be abruptly truncated by transgres-
sive deposits (FA4) (Fig. 6).
8

4.3.1. Interpretation
The heterolithic and coarser-grained character of these facies, to-

gether with the fossil content (planktonic and benthic foraminifera)
and the common appearance of combined-flow structures suggests
that these facies accumulated in an offshore transition setting, above
storm-wave base (Dott and Bourgois, 1982; Duke, 1985; Duke et al.,
1991; Dumas et al., 2005). Coarse-grained sands were transported by
seaward low to high-density turbidity currents (e.g., hyperpycnal
flows), and were partly reworked by storms (e.g., Myrow et al., 2002;
Pattison et al., 2007; Lamb et al., 2008; Steel et al., 2018; Jelby et al.,
2020).

4.4.Wavy-laminated sandymudstones to muddy sandstones (FA-3 - lower
shoreface)

This facies association is composed of grey laminated sandymud-
stones to muddy sandstones, with wavy bedding and symmetrical
ripple cross-lamination (Fig. 4F, G), and isolated cm-thick beds
with low-angle, hummocky and tangential/sigmoidal cross stratifi-
cation and soft sediment deformation. Palaeocurrents from cross-
stratification foresets, where observed, point dominantly towards
the S–SE. Packages are 3 to 19 m-thick, and tend to stack forming
coarsening-up successions (Fig. 6). They generally display a grada-
tional lower contact from underlying offshore transition deposits
(FA2), and are conformably overlain by condensed deposits (FA7)
or abruptly truncated by transgressive (FA4) or channel-fill (FA7)
deposits (Fig. 6).
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4.4.1. Interpretation
The sandy but fine-grained and thin-bedded nature of the deposits,

common presence of wavy bedding and symmetrical ripples, and occa-
sional appearance of thick sandstone beds with larger-scale combined-
flow structures suggest that these deposits accumulated in a domi-
nantly low-energy lower shoreface setting (Walker and Plint, 1992;
Yang et al., 2005; Dumas and Arnott, 2006).

4.5. Structureless bioclastic calcarenites (FA4 - transgressive deposits)

This facies association is composed by yellow medium to very
coarse-grained, structureless bioclastic calcarenites (Fig. 4H). Beds are
60 to 250 cm-thick and moderately to highly bioturbated (BI 3–5)
(Fig. 6). They have a prominent sharp, erosive highly bioturbated base,
with vertical, sub-vertical and oblique J-shaped burrows and shallow
cylindrical rounded structures, as well as circular sections and horizon-
tal, branched, forms. Most traces can be assigned to Thalassinoides, but
with local presence of Rhizocorallium, Skolithos and Bergaueria. Burrows
are undeformed and characterized by sharp contacts, showing, in some
cases a penetration depth up to around 20 cm into the underlying
C
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deposits (FA-4)

Ravinement surface

Fig. C

Sh
el

f r
id

ge
 in

 B

D

Equivalent section in A(ca. 40 m)

Fig. 7. Example of the mixed clastic–carbonate units analysed in this study and interpreted a
common stratigraphic arrangement of mixed units, abruptly truncating offshore transition
formed by sharp-based skeletal-rich bioclastic calcarenites (FA4), overlain by large-scale sig
highlighting the sharp-based, sharp-topped nature of the mixed clastic-carbonate units, as we

10
deposits, and are passively infilled bymixed carbonate–clastic sediment
(Fig. 8B, C). This includes abundant skeletal fragments (dominantly
from bivalves and bryozoans, and minor red algae and echinoids), or-
ganic matter, coal fragments and extraclasts (quartz and volcanic-rock
fragments), in a relatively poorly-sorted organization. Normally-
graded bed tops occur. These deposits can be laterally discontinuous,
but they are commonly found abruptly truncating offshore transition
(FA2) or lower shoreface (FA3) deposits, and overlain by mixed bar
(FA5) or condensed (FA6) deposits (Figs. 6, 7).

4.5.1. Interpretation
The ichnological features found at the base of these deposits allow

assignation to the Glossifungites ichnofacies, developed into compacted,
semi-lithified substrates (Seilacher, 1967). This firmground ichnofacies
has been used extensively in the identification of omission surfaces and
the identification and interpretation of transgressive surfaces
(MacEachern et al., 1992, 1999; Bann et al., 2004; Rodríguez-Tovar
et al., 2007). The contacts are therefore interpreted as transgressive sur-
faces, although evidence is not conclusive to associate them to either
wave or tidal ravinement processes (see Cattaneo and Steel, 2003).
osits (FA-2)

Post-depositonal 
fault

Fig. C

ca
. 8

 m

s mixed carbonate–clastic shelf ridges. (A) Fragment of the studied section showing the
(sometimes also lower shoreface) deposits. (B, C) Field example of one of these units,
moidal cross-bedded calcarenites, forming accreting barforms (FA5). (D) Outcrop photo
ll as their significant lateral extension (outcrop length = ca. 1 km).
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The poorly-sorted and bioclastic-rich deposits immediately overlying
these surfaces are consequently interpreted as transgressive deposits
(Zecchin et al., 2019), resulting from the remobilization of a coeval car-
bonate factory, mixedwith the erosion of underlying offshore transition
(FA2) and lower shoreface (FA3) deposits. However, the transgressive
reworking of coarser-grained, forced-regressive sandstone wedges lo-
cated farther seaward cannot be ruled out.

4.6. Sigmoidal cross-bedded bioclastic calcarenites (FA5 - mixed bars)

This facies association is composed of yellow fine to coarse-grained,
cross-bedded bioclastic calcarenites (Fig. 4I, J). Beds commonly have
soft-sediment deformed bases, and are arranged in stacked dominantly
single (locally multiple) sets of large-scale sigmoidal cross-bedding,
forming up to 8 m-thick barforms (Figs. 6, 7), with relatively sharp
tops, occasionally highly cemented and concretionary. They have abun-
dant skeletal fragments (dominantly from bivalves and bryozoans, and
A

D

GF

C

Fig. 8. Examples of trace fossils found in the studied section. (A) Horizontal Ophiomorpha at t
(offshore transition, FA2). (B–C) Vertical, and oblique burrows, as well as circular sections, p
penetrating a few cm into the light sandy siltstone deposits below (lower shoreface, FA3). (
dominant Planolites and well-developed Thalassinoides structures. (E) Vertical shaft of p
(F) Bichordites/Scolicia traces showing cross-cutting relationships and similar infilling materia
Scolicia showing cross-cutting relationships in the upper surface of a bioclastic sandstone bed
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minor red algae and echinoids), benthic and planktonic foraminifera,
glauconitic grains, organic matter, coal fragment debris and extraclasts
(Fig. 4K). Thin section and hand-specimen analysis reveals the average
grain composition is 70% clastic grains (30% quartz, 40% lithic frag-
ments: metamorphic, volcanic and limestone-rock fragments), 10%
bioclasts and 20% siliciclasticmatrix (Fig. 5C–F). Bars show bidirectional
accretion directions ranging towards the S and N, although southward
accretion dominates (Figs. 6, 7). Beds are moderately to highly biotur-
bated (BI 3–5), with traces including dominant Planolites, well-
developed Thalassinoides structures, vertical Ophiomorpha shafts, and
local Bichordites/Scolicia (Fig. 8D–F).

4.6.1. Interpretation
These deposits are interpreted as mixed siliciclastic–carbonate

barforms, resulting from the reworking of a coeval carbonate factory, to-
gether with the underlying offshore transition (FA2) and lower
shoreface (FA3), but also transgressive deposits (FA4), accumulated
E

B

he upper surface of a storm bed, showing T-shaped branching and pellets along the wall
assively infilled by mixed carbonate–clastic sediments (transgressive deposits, FA4), and
D) Frequent bioturbation in mixed carbonate–clastic cross beds (mixed bars, FA5), with
robable Ophiomorpha (pellets along the wall can be envisaged) (mixed bars, FA5).
l than the host mixed carbonate–clastic sediment (mixed bars, FA5). (G) Several traces of
(condensed section, FA6).
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preferentially in some areas of the seabed (as suggested by their lateral
discontinuity), favouring a higher reworking by shelf currents.

4.7. Highly bioturbated, concretionary sandstones (FA6 - condensed deposits)

This facies association is composed by grey–yellow, intensely biotur-
bated sandstones (BI 5–6; Fig. 8G), with bioclasts accumulations
(mainly bivalve fragments), occasional glauconitic grains, and often
highly cemented or forming concretionary horizons (Fig. 4N, O). Traces
include Scolicia showing cross-cutting relationships to bed top surfaces
(Fig. 8G). Beds are generally thin (up to 20 cm), but packages reach up
to 1.5 m in thickness. They are often found conformably overlying
lower shoreface deposits (FA3) ormixed bars (FA5), and overlain by off-
shore (FA1) or offshore transition (FA2) fine-grained deposits (Fig. 6).

4.7.1. Interpretation
The high bioturbation index of these deposits, with multiple gener-

ation of traces, together with the presence of bioclast accumulations
and glauconitic grains and their concretionary/cemented nature is con-
sistent with condensed deposits; these represent a considerable span of
time recorded by only relatively thin layers, and formunder low energy,
low sedimentation rate conditions, associated with increased water
depth during regional flooding events (Loutit et al., 1988).

4.8. Erosive-based, bioclastic pebbly sandstones (FA7 - channel-fill)

This facies association is composed of bioclastic, cross-bedded peb-
bly sandstones, contained in a concave-up erosive base, cutting several
cm into the underlying deposits, and forming a 5 m-thick package
(Fig. 4L). The package is slightly fining-up, and contains amix of skeletal
fragments (dominantly bivalves, but also bryozoans and red algae), or-
ganic matter and large (up to several cm-long) angular extraclasts
(quartz and volcanic fragments), more concentrated towards the base
(Fig. 4M). This facies association is only recognized in the upper part
of the studied section, abruptly truncating lower shoreface deposits
(FA3), and overlain by mixed bars (FA5) (Fig. 6).

4.8.1. Interpretation
The highly erosive, concave-up basal surface, together with the

coarser nature and larger presence of landward material, mixed with
reworked skeletal fragments, is consistent with these deposits being
interpreted as subaqueous channel fills (Fig. 6).

5. Stratigraphic arrangement

The studied succession is summarized in Fig. 6. The succession
shows an alternation of coarse and fine-grained mixed carbonate–silic-
iclastic deposits, which can be subdivided in at least 8 progradational–
retrogradational cycles (C1–C8), each of them 23 to 45 m-thick
(Figs. 3, 5). Cycles start with either dominantly structureless to faintly
laminated marlstones, with occasional thin-bedded sandstones, some
with erosive bases and rippled tops (FA1 – offshore, Table 1, Fig. 4A),
or with an alternation of laminated sandy marlstones and medium-
bedded sandstones, with hummocky-cross stratification and common
soft-sediment deformation (FA2 – offshore transition, Table 1, Fig. 4C,
D). In some cycles (C1–3 and C7–8, Fig. 6), these are progressively re-
placed by coarsening-up packages of sandymudstones to muddy sand-
stones, with wavy bedding and symmetrical ripple cross-lamination
(FA3 – lower shoreface, Table 1, Fig. 4E). This progradational stacking
culminates in some cycles (C1–2, Fig. 6)with thin, intensely bioturbated
sandstones (FA6 – condensed deposits, Table 1, Fig. 4N). In other cycles
(C3–8, Fig. 6), it is abruptly truncated by erosive contacts bioturbated by
large, sharp-walled burrows, passively infilled by overlying mixed car-
bonate–clastic sediments (FA4 – transgressive deposits, Table 1,
Fig. 4H), or in just one occasion by concave-up erosive surfaces, filled
with bioclastic cross-bedded pebbly sandstones (FA6 – channel fill,
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Table 1, Fig. 4L, M) (Fig. 6). These deposits are overlain by poorly-
to moderately-sorted mixed carbonate–clastic units, rich in skeletal
fragments and extraclasts (mainly quartz and volcanic fragments),
and displaying large-scale sigmoidal cross bedding (FA5 – mixed
bars, Table 1, Fig. 4I–K). They show a fining- and thinning-up ar-
rangement, often capped by highly-cemented and concretionary
bioturbated sandstones, with high ichnodiversity (FA6 – condensed
deposits, Table 1, Fig. 4N), interpreted as containing maximum
flooding surfaces.

6. Depositional model

The studied succession is interpreted to have deposited in a rela-
tively shallow-water shelf (Fig. 9), around the storm-wave base, as sug-
gested by the relative dominance of offshore transition deposits (FA2)
with combined-flow structures (i.e., hummocky cross stratification)
(Fig. 6). The fine-grained nature of the coarsening and thickening up
successions of offshore (FA1), offshore transition (FA2) to lower
shoreface (FA3) deposits (Fig. 6) suggests that therewas a relatively dis-
tal coeval west- to north-westward prograding shoreline system
(Fig. 10a). This shelf was only receiving occasional coarse-grained silic-
iclastic sediment supply (and organic debris) via forced regressions
and/or seaward gravity flows (e.g. hyperpycnal flows), which under-
went storm reworking during or shortly after deposition, and resulted
in discrete cm-thick sandstone beds within offshore transition deposits
(Fig. 10b). After enough time to create a firm or compacted substrate,
offshore transition to lower shoreface deposits were partially eroded
during transgression, with the development of erosive and highly bio-
turbated ravinement surfaces (Fig. 10c), as suggested by the unde-
formed and sharp nature of the burrows (Fig. 8B, C) and their
association to Glossifungites ichnofacies. These ravinement surfaces
were followed by deposition of a relatively poorly-sorted assemblage
of mixed deposits (FA4), dominated by skeletal fragments resulting
from the remobilization of a coeval carbonate factory (Fig. 10d). The un-
even accumulation of these mixed deposits on the seabed possibly re-
sulted in areas that favoured higher reworking via shelf (most likely
storm-wave) processes and nucleation of laterally extensive shelf
ridges, with the development of sigmoidal cross-bedded barforms
(FA5) (Fig. 10e). These show bidirectional accretion orientations (N–
S), but dominantly pointing southward, at a high angle with respect to
the dominantly west- to north-westward orientation of unidirectional
palaeocurrents recorded from offshore-transition deposits (Fig. 9B).
Continued transgression resulted in regional flooding, increased water
depth and a decrease of reworking processes and deposition, leading
to lower sedimentation rates and the development of highly
biortubated, condensed deposits (FA7), containing maximum flooding
surfaces (Fig. 10f). Finally, the next phase of advancement of the regres-
sive shoreline system led to progressive deposition of fine-grained sed-
iments in offshore and offshore-transition settings, resulting in the
burial and effective preservation of the underlyingmixed carbonate–si-
liciclastic shelf ridges (Fig. 10g).

7. Discussion

7.1. A fine-grained siliciclastic shelf and the origin of the remobilized
carbonate factory

In the studied succession, the fine-grained, siliciclastic dominated
offshore to lower shoreface deposits (FA1–FA3, Table 1) are abruptly
truncated by mixed carbonate–siliciclastic units, through sharp, highly
bioturbated transgressive ravinement surfaces. These mixed deposits
are remarkably different from the underlying shelf deposits, with
coarse-grained, bioclastic calcarenites (FA4, FA5, Table 1) with skeletal
fragments. Because these skeletal fragments are only recognized in the
mixed clastic–carbonate units (see Fig. 5), this implies the presence of
a coeval carbonate factory, located in either (i) a more distal position
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or (ii) a lateral position within the shelf. The occurrence of a bryomol-
type skeletal association in the mixed deposits (mainly bryozoans
and bivalves, and minor red algae and echinoids), would indicate
non-tropical, temperate-type shallow-water conditions (Betzler
et al., 1997). Because of the relative dominance of siliciclastic mate-
rial of the studied mixed deposits it is not possible to reconstruct a
biofacies belt model as described in other shallow-marine examples
richer in carbonate skeletal-grains (e.g., late Miocene ramp of
Menorca, Spain, Pomar et al., 2012). However, bryozoan–mollusc–
echinoid associations have been reported as dominant in
carbonate factories located at the proximal sector of the outer ramp
(Brandano and Corda, 2002). This biota association is therefore char-
acteristic of deeper depositional environments (i.e., aphotic zone in
outer-middle ramp, Brandano and Corda, 2002) compared to
other skeletal associations, like branching red algae-dominant
(i.e., oligophotic zone - middle ramp) identified in other time-
equivalent successions in the nearby Tabernas Basin (García-García
et al., 2006b). This is therefore considered to favour the interpreta-
tion that the coeval carbonate factory supplying the skeletal frag-
ments was located farther offshore, and remobilized during
transgressions. The scenario where the carbonate factory is located
in more distal positions relative to the equivalent shoreline supply-
ing the siliciclastic fraction can occur quite commonly in mixed car-
bonate–siliciclastic shallow-marine systems (Schwarz et al., 2018;
see also Reijmer, 2021).

7.2. Poorly-sorted versus well-sorted shelf ridges

Several of the mixed carbonate–siliciclastic deposits in the studied
section are relatively poorly sorted and contain abundant extraclasts
(mainly quartz and lithic fragments) and terrestrial organicmatter frag-
ments (Fig. 5). This contrasts with conventional transgressive shelf
ridges, mostly composed of well-sorted sandstones (Cattaneo and
Steel, 2003), particularly those undergoing long-term reworking/
remoulding during their migration along the shelf (Snedden and
Dalrymple, 1999). The absence of an efficient segregation of heterolithic
grains in the studied mixed shelf ridges is consistent with high-energy
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conditions induced by persistent storm-wave action. This is more char-
acteristic around the shoreface zone than in more distal offshore set-
tings (van Heteren et al., 2011; Rossi et al., 2017), where tidally-
modulated segregation commonly occurs (Chiarella et al., 2012). The
textural nature of the studied shelf ridges, more poorly-sorted and
coarser-grained than conventional tidal-dominated offshore ridges,
would therefore suggest that they developed around the shoreface
zone, where sediment reworking by storm waves was common. The
abundant extrabasinal detrital material derived from the high-energy
storm reworking of (i) forced-regressive coarse-grained sandstones
and (ii) sediment gravity-flowdeposits, as extraclasts and terrestrial or-
ganic debris is commonly observed in sandstone beds within lower
shoreface and offshore transition deposits (Fig. 5B). Additionally, well-
developed burrowed ravinement basal surfaces and relatively short
ridges (with single cross-bedding sets, and not forming compound
bars) are more characteristic of gentle slopes and shallower-water set-
tings (i.e., shoreface) (Nnafie et al., 2014).

Simulations of sand ridges with morphodynamic models conclude
that the morphology and activity of sand ridges are controlled by the
rate of sea-level rise, depth and coastal-shelf slope (Nnafie et al.,
2014). Following those models, the shelf ridges studied here, with
more common examples of single than compound barforms, would
have been enhanced during low rates of sea-level rise on gentle coastal
to inner shelf slopes. Marine transgressions represent common scenar-
ios for the development of mixed carbonate–siliciclastic shelves
(García-García et al., 2006b; Fontana et al., 2015; Salocchi et al., 2017),
where the interplay of high-energy currents removing carbonate facto-
ries and coming from detrital input drowning emerged areas encour-
ages the mixing of carbonate and siliciclastic grains (Longhitano et al.,
2014).

7.3. Implications for other studies of sharp-based shallow-marine deposits

The sharp bases of themixed carbonate–siliciclastic deposits studied
here, assigned to the Glossifungites ichnofacies, have been associated
with compacted, semi-lithified substrates, and interpreted as transgres-
sive surfaces in other studies (Seilacher, 1967; MacEachern et al., 1992,
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1999; Bann et al., 2004; Rodríguez-Tovar et al., 2007). This, combined
with the presence of skeletal fragments from an offshore carbonate fac-
tory, significantly different from the underlying offshore transition to
lower shoreface siliciclastic deposits, and the fining, thinning-up stack-
ing of the deposits is consistent with these mixed units being
interpreted as transgressive deposits (Fig. 9C). Several studies have pro-
posed the sharp-based coarser-grained nature of some isolated
shallow-marine deposits as criteria to interpret them as incised-valley
fills or forced-regression sandstone wedges, associated with abrupt
lowerings of relative sea-level (e.g. Hunt and Tucker, 1992; Ainsworth
et al., 2000; Fitzsimmons and Johnson, 2000; Posamentier and Morris,
2000; García-García et al., 2011). These studies document significant
grain-size breaks across sharp boundaries, but do not focus on signifi-
cant compositional changes across major contacts. Therefore, our
study emphasizes the importance of a careful analysis of the geometry
and ichnology of sharp basal contacts in shallow-marine deposits, but
also potential differential composition across their boundaries, and
their stacking pattern, as key criteria to differentiate transgressive
sharp-based mixed carbonate–siliciclastic deposits from their regres-
sive counterparts. Adequately determining the correct depositional
model for the development of sharp-based, shallow-marine deposits
detached from their coeval coastline and encased in marine mudstones
is critical as different interpretations may imply significant differences
in their predicted reservoir performance (Snedden and Bergman,
1999; Cattaneo and Steel, 2003).
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7.4. The influence of basin configuration in the upper Tortonian of the Betic
Corridor

One of the most characteristic features of the studied succession is
the repetition of offshore/shoreface siliciclastic- and shelf mixed-
lithofacies into 8 cycles (C1–8, see Fig. 6). The consistency of the oscilla-
tion between similar depositional environments throughout the section
suggests similar water depths and hydrodynamic regime persisted
through time. A balanced accommodation/sediment supply ratio, with
constant sediment supply and tectonic subsidence creating continuous
accommodation space, would explain the preservation of such a thick,
aggradational succession. However, other studies in relatively time-
equivalent deposits in the southern margin of the Guadix Basin and in
the northern margin of the Guadalquivir Foreland Basin have demon-
strated the existence of coeval net regressive, siliciclastic-dominated
shoreline systems (García-García et al., 2006a, 2021). These studies ev-
idence the existence of a complex and dynamic basin configuration in
the upper Tortonian, with the development of local depocentres and
relatively narrow corridors or seaways during the connection between
the Mediterranean and Atlantic (Martín et al., 2009; Reolid et al.,
2012). This configuration resulted in intensification of bottom currents
and favoured shelf reworking processes, as seen in this study and also
in younger deposits (Betzler et al., 2006; García-García et al., 2009),
and in the nearby Rifian corridor (Capella et al., 2017; de Weger et al.,
2020; Beelen et al., 2021; Miguez-Salas et al., 2021). But it also pro-
moted the development of local sediment entry points and variable
stacking patterns, reflecting a differential interaction between active
tectonics and sedimentation across the region (e.g., Andrić et al., 2018).

8. Conclusions

This study analyses and discusses the origin and development of
sharp-based, mixed carbonate–siliciclastic shallow-marine deposits,
with anoutcrop example from theUpperMioceneof the Betic Cordillera
(Spain). These mixed deposits abruptly truncate siliciclastic-dominated
offshore to lower shoreface facies, via sharp, highly bioturbated contacts
interpreted as transgressive ravinement surfaces, and form several m-
thick and hundreds of m-long depositional elements, interpreted as
mixed carbonate–clastic shelf ridges. These ridges formed in a fine-
grained shelf which received occasional coarse siliciclastic supply via
sediment gravity flows, but with a coeval offshore carbonate factory,
eroded and remobilized during transgressions. Similar sharp-based
shallow-marine deposits could be tentatively misinterpreted as
forced-regressivewedges in other studies. However, this work provides
criteria to distinguish them, including the nature of their lower contact,
presence of reworked offshore skeletal fragments and their stacking
pattern, which are consistent with their interpretation as transgressive
deposits. When put in context with other studies in relatively time-
equivalent regressive and more siliciclastic-dominated successions
nearby, this evidences a complex configuration of the Mediterranean–
Atlantic connection during the upper Miocene, with sea corridors in-
creasing currents and shelf reworking processes, and local sediment
supplies and depocentres resulting in laterally variable stacking
patterns, and reflecting differential and complex tectono-sedimentary
interactions.
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