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Short Note 

Does the analysed size fraction of benthic foraminifera influence the 
ecological quality status and the interpretation of environmental 
conditions? Indications from two northern Norwegian fjords 
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A B S T R A C T   

The introduction of the European Water Framework Directive has increased the interest in benthic foraminifera 
as a biomonitoring tool. This prompted the need to standardise the methods used to analyse benthic foraminifera, 
including which sediment fraction to analyse. In some regions benthic foraminifera produce small (< 125 µm) 
adult tests, and the current study assessed the effect of analysing the > 63 µm or > 125 µm fraction on deter
mining the Ecological Quality Status (EcoQS) in two fjords in northern Norway. The diversity indices Shannon- 
Wiener index (H’log2) and Hurlbert’s rarefaction index (ES100), and the multi-metric Norwegian Quality Index 
(NQI), from both the > 63 µm and > 125 µm fraction resulted in the same or similar EcoQS, reflecting good 
environmental conditions in both fjords. The same applied to the AZTI’s Marine Biological Index (AMBI), except 
at one location which had moderate EcoQS. At this location especially, more foraminifera with a tolerant or 
opportunistic response to organic matter enrichment occurred in the > 63 µm fraction than in the > 125 µm 
fraction. Hence, the higher H’log2 and ES100 of the > 63 µm fraction can be somewhat misleading as it indicates 
better environmental conditions, whereas the AMBI indicates more organic matter input. The Stainforthia group 
and Epistominella vitrea, indicating organic matter enrichment and increased primary productivity were, how
ever, mostly absent in the > 125 µm fraction. Their absence in this fraction could have consequences for 
monitoring potential anthropogenic pressure factors and identifying long-term changes in environmental con
ditions when using this fraction. This study suggests the > 125 µm would be mostly sufficient for determining the 
EcoQS in northern Norway.   

1. Introduction 

The European Water Framework Directive (Water Framework 
Directive, 2000/60/EC) is a tool to protect coastal water bodies that uses 
predominantly benthic invertebrates to determine the Ecological Qual
ity Status (EcoQS) of a waterbody defined as High, Good, Moderate, 
Poor, or Bad. Benthic foraminifera are known to rapidly respond to 
changes in environmental conditions (e.g. Sen Gupta, 1999), and after 
the WFD was introduced the interest in benthic foraminifera as a bio
monitoring tool increased (Alve, 2003; Mojtahid et al., 2006). This 
prompted the need for a standardisation of the methods used to analyse 
benthic foraminiferal assemblages (see Schönfeld et al., 2012), which 
suggests samples should be washed over a 63 and 125 µm mesh but that 
only the foraminifera of the > 125 µm fraction are to be analysed unless 
research questions justify otherwise. The Norwegian guidelines (Vei
leder, 02:2018; based on the WFD) advises to follow the Dolven et al. 
(2013) method, which analysed the foraminiferal assemblages from the 
> 63 µm fraction. 

Until this day a variety of different sediment fractions (e.g. > 63, 

> 100, > 125 or > 500 µm) have been and still are being used for benthic 
foraminiferal analyses (e.g. Dijkstra et al., 2017; Husum and Hald, 2004; 
Klootwijk et al., 2020; Schröder et al., 1987). It is not fully understood 
how environmental factors influence foraminiferal test sizes, however, 
small tests could indicate early reproduction stages (Diz et al., 2006), or 
reflect environmental conditions like heavy metal pollution and oxygen 
depleted environments (e.g. Alve, 2003, 1995; Bergamin and Romano, 
2016; Mojtahid et al., 2006; Schönfeld et al., 2012). In the last scenario, 
it may be necessary to analyse the > 63 µm fraction. Benthic forami
niferal assemblage compositions can substantially vary depending on 
the analysed size fraction (e.g. Lo Giudice Cappelli and Austin, 2019), 
where even the difference between the > 125 µm and > 150 µm fraction 
can be significant (Weinkauf and Milker, 2018). 

Analysing the > 63 µm fraction is regarded as substantially more 
labour intensive with an increased uncertainty in taxonomic identifi
cation (Schröder et al., 1987), but many scientific studies use this frac
tion as it is considered to contain the majority of environmental quality 
indicator species (e.g. Dolven et al., 2013; Duffield et al., 2017; Mojtahid 
et al., 2006). A study from the Norwegian Skagerrak found that the 
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foraminiferal assemblages of the > 63 µm and > 125 µm fraction 
correlated suggesting a highly similar EcoQS, which indicates that the 
> 125 µm fraction may be good enough to establish the EcoQS (Bouchet 
et al., 2012). Another study from Nova Scotia, Canada showed that 
benthic foraminifera can produce small (< 125 µm), yet relatively easy 
to identify adult tests and that analysing only the > 125 µm fraction 
could create artificially barren zones (Schröder et al., 1987). Intensive 
fish farming is a major industry in Norway, which is most rapidly 
expanding in northern Norway (Fiskeridirektoratet, 2021). It is there
fore important that the influence of the analysed size fraction on benthic 
foraminiferal biomonitoring in northern Norway is investigated. 

This study is the first to investigate the effect of analysing the 
> 63 µm or > 125 µm fraction to establish the EcoQS using the Shannon 
Wiener (H’log2), Hurlbert’s rarefaction (ES100), and the multi-metric 
Norwegian Quality Index (NQI; Alve et al., 2019), in addition to the 
AZTI’s Marine Biological Index (AMBI; Alve et al., 2016) in northern 
Norway. To assess the potential loss of ecological information, forami
niferal distributions amongst Ecological Groups (EGs) representing the 
sensitivity of species to organic matter enrichment (sensu Alve et al., 
2016) were investigated for both size fractions. The loss of species with 
ecological information was also assessed. This study provides new in
sights into benthic foraminiferal index functioning in an important fish 
farming region of Norway. 

2. Anthropogenic influences in Kaldfjorden and Øksfjorden 

In Kaldfjorden, northern Norway, a sewage wastewater outlet dis
charges mechanically treated wastewater of ~ 500 households 
at ~ 3.5 km distance from the nearest sampling location. The inner part 
of Øksfjorden (from here on referred to as Øksfjorden), is one of the most 

intensely fish farmed fjords in northern Norway. There are no large 
settlements, heavy industry or agricultural activities along both fjords. 
During sampling in 2017, the bottom waters of both fjords were well 
oxygenated, with a salinity of ~ 34–35 and temperatures between 5 and 
6 ◦C (Klootwijk et al., 2020, 2021). 

3. Methodology 

In September 2017, both fjords were sampled for living rose Bengal 
stained foraminiferal analyses. In Kaldfjorden samples were collected 
using a box-corer (KC Denmark, 34.5 × 29 cm) collecting four different 
box-cores at three locations (Inner, Middle, Outer; Fig. 1) and from each 
box-core one sub-core (inner diameter 4.7 cm) was collected. In 
Øksfjorden samples were obtained using a modified Niemistö (1974) 
twin-barrelled Gemini gravity corer (inner diameter 8 cm), collecting 
three different cores from two basins (sub- and main basin; Fig. 1). From 
the collected cores, the upper 0–1 cm was sectioned off on deck and 
stored in a 70 % ethanol 2 g L-1 rose Bengal mixture (Schönfeld et al., 
2012). The 0–1 cm sediment slices were washed over a 63 µm and 
500 µm mesh after which the 63–500 µm fraction was split using a 
modified Elmgren wet splitter (Elmgren, 1973). These splits were 
further washed over a 63 µm and 125 µm mesh after which both frac
tions were completely picked until > 200 individuals could be identified 
and mounted. The > 500 µm sample could not be accurately wet-split 
due to large particles of organic material. Additionally, specimens in 
the > 500 µm fraction from the total sample comprised < 6 % of the 
picked assemblage. This fraction was, therefore, not included in the 
analyses. Some samples contained up to 1450 specimens of small 
(< 125 µm), difficult to tell apart Stainforthia fusiformis and S. feylingi. 
Hence, these two species were grouped into a Stainforthia group. Soft- 

Fig. 1. left; Map of Kaldfjorden showing the Inner (I), Middle (M), and Outer (O) location (based on Norwegian Mapping Authority data; http://www.kartverket.no, 
2020), right; Map of the inner and outer region of Øksfjorden showing the sampling locations in the main basin (MB) and sub-basin (SB), map from Statens kart
verk (2007). 
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shelled non-fossilisable foraminifera were excluded from the assem
blages (sensu Bouchet et al., 2012). 

Due to finding < 100 individuals in the > 125 µm fraction in 
Kaldfjorden, the replicates from each location for both size fractions 
were pooled in both fjords before calculating the indices. The H’log2 
(Shannon and Weaver, 1963) and ES100 (Hurlbert, 1971) were calcu
lated using the Vegan package in the R-data software program (Oksanen 
et al., 2010). The AMBI was calculated according to Alve et al. (2016), 
where only species or groups of species assigned to Ecological Groups 
(EG) were used. Foraminiferal distributions amongst EGs were calcu
lated by adding the relative abundances of species or groups of species 
for each EG. The NQI was calculated using the AMBI and ES100 following 
Alve et al. (2019). In this study, EcoQS class limits for the H’log2, ES100 
and NQI according to Alve et al. (2019) were used (Table 1). For the 
AMBI no EcoQS class limits for foraminifera have been defined, 

therefore the class limits for macrofauna according to Borja et al. (2003; 
Table 1) were used. Species that appeared in the pooled > 63 µm fraction 
with a relative abundance ≥ 10 % at least one location were considered 
abundant, and species with relative abundances between 5 and 10 % 
were considered common (Lo Giudice Cappelli and Austin, 2019; 
Schröder et al., 1987). Species that appeared with abundances < 5 % 
were considered uncommon and will not be discussed. When calculating 
species relative abundances only the assemblage assigned to EGs was 
used. The foraminiferal densities (individuals per cm2) were calculated 
as the number of foraminifera picked divided by the area that was 
picked for each replicate sample. 

4. Results 

In Kaldfjorden, the > 63 µm and > 125 µm fraction contained on 

Table 1 
Ecological Quality Status (EcoQS) class limits for the H’log2, ES100 and NQI after (Alve et al., 2019). The AMBI EcoQS is after Borja et al. (2003).  

Table 2 
The H’log2, ES100, AMBI and NQI for both the > 63 µm and > 125 µm fraction in both Kaldfjorden and Øksfjorden. Ecological Quality Status (EcoQS) for the H’log2, ES100 
and NQI is after Alve et al. (2019). The AMBI EcoQS is after Borja et al. (2003).  

Fig. 2. Benthic foraminiferal densities (individuals per cm2) from Kaldfjorden and Inner Øksfjorden where the dark bars represents the > 63 µm size faction and the 
light bars represent the > 125 µm fraction. Error bars denote the standard error (n = 4 for Kaldfjorden, and n = 3 for Øksfjorden). 
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average 65 and 32 species, respectively, and in Øksfjorden 67 and 36 
species, respectively. The size fractions had a similar H’log2 and ES100 
EcoQS reflecting a Good (green) and High (blue) EcoQS (Table 2). For 
the samples from both fjords, 86–95 % of the foraminiferal assemblage 
could be assigned to one of the five EGs defined in the AMBI, and in both 
fjords the AMBI of the > 63 µm fraction was approximately twice as high 
as the AMBI of the > 125 µm fraction (Table 2). The AMBI-based EcoQS 
only differed between the size fractions at the two outermost locations in 
Kaldfjorden and the sub-basin of Øksfjorden, where it changed from 
Good (green) to High (blue) and from Good (green) to Moderate (yel
low) when only the > 125 µm fraction was analysed, respectively 
(Table 2). The foraminiferal densities were 5- to 9-fold higher in the 
> 63 µm fraction compared to the > 125 µm fraction (Fig. 2). 

In Kaldfjorden and the sub-basin of Øksfjorden, relative abundances 
of species in EG I were 22 – 38 % higher in the > 125 µm fraction 
compared to the > 63 µm fraction (Fig. 3). In EG II species relative 
abundances were on average 9 % lower when only the > 125 µm was 
analysed (Fig. 3). In Kaldfjorden relative abundances of species in EG III 
were on average 5 % lower and in Øksfjorden on average 21 

% higher when only the > 125 µm fraction was analysed (Fig. 3). The 
Stainforthia group, the only member of EG V, was mostly absent in the 
> 125 µm fraction (Tables 3 and 4). Epistominella vitrea (EG II), Pullenia 
osloensis (EG III), and Textularia earlandi (EG III), were fully to mostly 
absent in the > 125 µm (Tables 3 and 4). In Kaldfjorden, the relative 
abundances of Nonionella iridea (EG III) were lower in the > 125 µm 
fraction (Table 3), and the species was absent in the > 125 µm fraction in 
Øksfjorden (Table 4). Relative abundances of Cassidulina leavigata, Cri
bostomoides cf. kosterensis, and Tritaxis conica, all members of EG I, were 
up to 5-fold higher when only the > 125 µm fraction was analysed 
(Tables 3 and 4). Relative abundances of Brizalina skagerrakensis (EG III), 
Eggerelloides medius (EG III), and Nonionella turgida (EG II), were 2 to 3- 
fold higher when using only the > 125 µm fraction (Tables 3 and 4). 

5. Discussion 

The > 125 µm fraction generally contains fewer species than the 
> 63 µm fraction (e.g. Lo Giudice Cappelli and Austin, 2019; Schröder 
et al., 1987), which is in line with the results from the current study. 
Former studies investigating different size fractions showed that the 
Shannon-Wiener index from both fractions reflected the environmental 
conditions (e.g. Lo Giudice Cappelli and Austin, 2019; Weinkauf and 
Milker, 2018). Studies did, however, find stronger correlations between 
environmental conditions and the Shannon-Wiener index from smaller 
fractions compared to larger fractions (Bergamin and Romano, 2016; 
Bouchet et al., 2012). Both Kaldfjorden and the basins in Øksfjorden are 
considered relatively unpolluted (Klootwijk et al., 2020; Vågen, 2018), 
and the current study suggests that in relatively unpolluted fjords in 
northern Norway the H’log2 and ES100 from both size fractions should 
accurately reflect the EcoQS. Analysing the > 125 µm fraction is 
considered substantially less time consuming, but the results from this 
study may not be representative of other fjords. Some of the observed 
differences in H’log2 and ES100 between the size fractions were, however, 
equal to the range that sets the limits of the classes good and moderate 
(Tables 1 and 2). This suggests that differences between size fractions 
could potentially lead to misclassifications in fjords under more 
anthropogenic pressure depending on the analysed size fraction, but this 
should be further explored. 

In both coastal and shelf settings, 2 to 21-fold higher foraminiferal 
densities were found in the > 63 µm fraction compared to the > 125 µm 
fraction in both polluted and unpolluted environments (Bergamin and 
Romano, 2016; Jennings and Helgadottir, 1994).The differences in both 
studied fjords are within the previously observed range (Fig. 1). The 
Bergamin and Romano (2016) study found that of the investigated 
indices (Fisher α, H’(ln), Simpson index), the H’(ln) index was the least 
affected by differences in foraminiferal densities. Another study estab
lished that both the H’(ln) and ES50, comparable to the ES100, were 
relatively unaffected by differences in foraminiferal densities (Barras 
et al., 2014). The current study also found no indication that forami
niferal densities greatly affected the H’log2, ES100 as the differences be
tween size fractions were small (Table 2), which indicates that 
differences in densities had little influence on the H’log2 and ES100 based 
EcoQS in this study. This is despite the relatively low foraminiferal 
densities in the > 125 µm fraction at the two outer locations of Kaldf
jorden (Fig. 2). As Kaldfjorden appeared practically unpolluted (Vågen, 
2018) the low densities are most likely natural indicating that low 
densities are not necessarily a sign of anthropogenic pressure factors. 
Previously, foraminiferal densities have been successfully used studying 
a clear pollution gradient for biomonitoring purposes (e.g. Mojtahid 
et al., 2006). The current study, however, indicates that the use of 

Fig. 3. Species distributions amongst the Ecological Groups (EGs) plotted for 
the > 63 µm and > 125 µm fraction for each sampling location. 
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foraminiferal densities for biomonitoring in naturally transitional zones 
like fjords should probably be limited to long-term sediment core re
cords (see Klootwijk et al., 2020). 

Compared to larger size fractions, smaller size fractions more often 
contain opportunistic species with a strong response to eutrophication 
and these species also occur in greater abundances in these fractions 
(Alve, 2003; Lo Giudice Cappelli and Austin, 2019). In the current study 
fewer foraminifera considered sensitive to organic matter enrichment 
(EG I; Alve et al., 2016), and more foraminifera with a tolerant or 
opportunistic response to excess organic matter enrichment (EG III and 
V; Alve et al., 2016) were found in the > 63 µm fraction compared to the 
> 125 µm fraction (Fig. 3). Differences in AMBI scores and EcoQS be
tween the fractions were relatively large compared to the other indices 
(Table 2), indicating that the analysed size fraction had the strongest 
effect on the AMBI. This could be partially related to the mostly absent 
P. osloensis, N. iridea, and T. earlandi, members of EG III, in the > 125 µm 
fraction (Tables 3 and 4). These three species were also mostly absent in 
living foraminiferal assemblages in the 100 – 1000 µm fraction in the 
Hammerfest harbour, northern Norway (Dijkstra et al., 2017.; supple
mentary data), and N. iridea was absent in the 100–1000 µm fraction in 
Malangen, northern Norway (Husum and Hald, 2004; Katerine Husum 
pers. com.). It should be noted, however, that these studies did not 
investigate the 63 – 100 µm fraction and that these species could be 
absent due to other reasons. Though the > 63 µm fraction in this study 
contained more foraminifera indicating an increase in organic matter 
input (EG III and V), the H’log2 and ES100 of this fraction was in most 
cases higher compared to the > 125 µm fraction. A higher H’log2 and 
ES100 would suggest better environmental conditions but could also be 
related to a greater chance of finding more species due to higher 
numbers of foraminifera in the > 63 µm fraction. 

The NQI for macrofauna combines the AMBI with a modified species 
richness index (SN), which are both normalized to their highest 
obtainable value and equally weighted (Rygg, 2006). The NQI for 
foraminifera is based on the same principles using the foraminiferal 
AMBI and ES100 (Alve et al., 2019). Previous studies found that the NQI 
reflected anthropogenic pressure gradients in coastal waters and did not 
respond to differences in macrofaunal densities (Borja et al., 2011, 2012; 
Josefson et al., 2009). In the present study, the NQI scores showed no 
major differences and the NQI based EcoQS did not differ between the 
size fractions (Table 2). At the Inner and Outer location in Kaldfjorden 
and the main-basin in Øksfjorden, however, the ES100 and AMBI seem to 
mitigate each other’s environmental signal. More species with a tolerant 
or opportunistic response to organic matter enrichment (EG III and V; 
Alve et al., 2016) in the > 63 µm fraction of the sub-basin in Øksfjorden 
seems to be reflected in the lower NQI of this fraction compared to the 
> 125 µm fraction. If results from this study are applicable to other fjords 
in northern Norway, the latter suggest that the NQI of the > 63 µm 
fraction should reflect potential anthropogenic pressure factors better 
than the > 125 µm fraction in this region. 

Previous studies found that a number of species present in smaller 
size fractions were absent in larger size fractions (e.g. Lo Giudice Cap
pelli and Austin, 2019; Weinkauf and Milker, 2018). In the current study 
both E. vitrea and the Stainforthia group were mostly absent in the 
> 125 µm fraction (Tables 3 and 4). Epistominella species were also 
mostly absent in the 100 – 1000 µm fraction of the Hammerfest harbour 
(Dijkstra et al., 2017; supplementary data), and E. vitrea was absent in 
the living assemblages of the 100–1000 µm fraction in Malangen 
(Husum and Hald, 2004; Katrine Husum pers. com.). E. vitrea has been 
positively associated with phytodetritus (Duffield et al., 2015; Klootwijk 
et al., 2021), and has been shown useful for interpreting changes in 
primary productivity in sediment cores (Klootwijk et al., 2020). 
S. fusiformis, a prominent member of the Stainforthia group, occurred in 
the living assemblages of the 100 – 1000 µm fraction of Malangen with 
relative abundances predominantly < 2 % but with 9 % at one location 
(Husum and Hald, 2004; Katrine Husum pers. com.). This is lower than 
in the current study (Tables 3 and 4). S. fusiformis has a strong seasonal 
acme (Gustafsson and Nordberg, 2001) and a previous study indicated 
that high relative abundances of the Stainforthia group in the living as
semblages of the sub-basin in Øksfjorden could be a bloom event 
(Klootwijk et al., 2020). Sampling during blooming events should be 
avoided according to the Schönfeld et al. (2012) protocol. The current 
study suggests that analysing the > 125 µm may avoid potential prob
lems with the strong seasonal acme of the Stainforthia group. Analysing 
the larger fraction would, however, mostly exclude E. vitrea from the 
assemblages which would affect interpreting paleo-environmental con
ditions in sediment cores. 

Table 3 
Species’ relative abundances (%) calculated using only species or groups assigned to Ecological Groups (EG) of species considered abundant or common in the > 63 µm 
fraction from Kaldfjorden for each fraction (> 63 µm and > 125 µm). For the taxonomic list see Supplementary Appendix A.    

Kaldfjorden   

Inner Middle Outer 
Species EG > 63 µm > 125 µm > 63 µm > 125 µm > 63 µm > 125 µm 

Bulimina marginata 3 11 15 1 2 1 1 
Cassidulina laevigata 1 7 15 8 19 27 51 
Cassidulina reniforme 1 2 3 4 5 5 3 
Cribrostomoides cf. kosterensis 1 6 12 1 3 1 5 
Eggerelloides medius 3 5 4 5 5 2 6 
Epistominella vitrea 2 8 0 20 0 20 0 
Nonionella iridea 3 9 1 9 5 12 6 
Nonionella turgida 2 8 19 3 9 1 3 
Pullenia osloensis 3 2 0 14 0 10 2 
Reophax cf. micaceus 1 6 7 11 12 8 5 
Stainforthia group 5 18 0 12 0 5 1  

Table 4 
Species’ relative abundances (%) calculated using only species or groups 
assigned to Ecological Groups (EG) of species considered abundant or common 
in the > 63 µm fraction from Øksfjorden for each fraction (> 63 µm and 
> 125 µm). For the taxonomic list see Supplementary Appendix A.    

Øksfjorden   

sub-basin main basin 
Species EG > 63 µm > 125 µm > 63 µm > 125 µm 

Adercotryma glomeratum 1 2 3 7 7 
Brizalina skagerrakensis 3 0 0 13 32 
Bulimina marginata 3 5 5 12 16 
Eggerelloides medius 3 5 11 6 13 
Epistominella vitrea 2 11 0 3 0 
Nonionella iridea 3 2 0 6 0 
Stainforthia group 5 45 0 22 0 
Textularia earlandi 3 2 0 9 0 
Tritaxis conica 1 12 41 0 0  
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6. Conclusions 

The H’log2, ES100 and NQI from the > 63 µm and > 125 µm fraction in 
this study resulted in the same or highly similar Ecological Quality 
Status (EcoQS), reflecting good environmental conditions in both fjords. 
The same applied to the AMBI at all locations except one, which had 
moderate EcoQS. Analysing the > 125 µm fraction is considered sub
stantially less time consuming, but the results from this study may not be 
representative of other fjords. At this location, substantially more fora
minifera with a tolerant or opportunistic response to organic matter 
enrichment occurred in the > 63 µm fraction compared to the > 125 µm 
fraction, which was also reflected in the lower NQI of the smaller frac
tion. The observed differences in H’log2 and ES100 between the size 
fractions were, however, equal to the range that sets the limits of the 
classes Good and Moderate, which could potentially lead to mis
classifications in fjords under more anthropogenic pressure depending 
on the analysed size fraction. The large differences in foraminiferal 
densities between the size fractions did not seem to affect the EcoQS 
derived from the investigated indices. The mostly absent E. vitrea in the 
> 125 µm fraction could affect the interpretation of environmental 
changes in sediment core records. The absence of the Stainforthia group 
in the > 125 µm fraction would circumvent potential problems with its 
seasonal acme when using this size fraction. Overall, analysing the 
> 125 µm appeared mostly sufficient for determining the EcoQS in 
relatively unpolluted fjords in northern Norway, but potential anthro
pogenic pressure or long-term environmental changes would be better 
reflected by the assemblages from the > 63 µm fraction. 
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