Design-Reality Gaps in Open Source Information Systems Development:
An Action Research Study of Education and Healthcare Systems in Tanzania

by

Juma Hemed Lungo

Thesis Submitted in Partial Fulfilment of the Requirements
of the Degree of Doctor of Philosophy
at the Faculty of Mathematics
and Natural Sciences
University of Oslo
NORWAY

11t June 2008

© Juma Hemed Lungo, 2008

Series of dissertations submitted to the
Faculty of Mathematics and Natural Sciences, University of Oslo
Nr. 808

ISSN 1501-7710

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without permission.

Cover: Inger Sandved Anfinsen.
Printed in Norway: AiT e-dit AS, Oslo, 2008.

Produced in co-operation with Unipub AS.

The thesis is produced by Unipub AS merely in connection with the

thesis defence. Kindly direct all inquiries regarding the thesis to the copyright
holder or the unit which grants the doctorate.

Unipub AS is owned by
The University Foundation for Student Life (SiO)

Jo my wife, Masala, my son, Madende, and my daughter, Msule,
whe bring meaning to everwything J do

ACKNOWLEDGEMENTS

I am indebted to all who provided their support to my study in various ways. First and
foremost I would like to sincerely thank my supervisors Prof. Jens Kaasbell and Prof. Jorn
Braa for their invaluable input, in the form of very useful guidance, advice, comments and
constructive criticisms that helped shape my work. To them I say Ahsanteni Sana!

I owe a great deal of thanks to the HISP and Zalongwa projects for providing me with such
conducive fieldwork case studies in Tanzania. Specifically I would like to show my
appreciation to Prof. Jorn Braa as the overall project coordinator for HISP and to other
HISP members in Zanzibar: Abubakar Diwani, Yahya El Hamad, Masudi Mahundi, Patrick
Burassa, Dr Suleiman Omary and Dr Boudewijn Peters for insightful discussion,
implementation and training workshops. Zalongwa Project members have given
invaluable support to my work and I would like to thank the manager, Jillahoma Mussa,
and all other members at the University of Dar es Salaam; Simphorosa Mchallo, Tatu Issike,
Yusta Mutalemwa, Dr Ibrahimu Juma, Dr Abdallah Chungu, Bakari Rashidi, Dr Frank
Tilya, Stanley John, Jonas Tiboroha, Mustafa Mgera, Sophia Kivina, Jamillah Isalwa,
Mariamu Miraji. Bernada Ernest, Ally Said Masomaso and Luba Pascoe.

I extend my appreciation to my employer, the University of Dar es Salaam, for granting me
study leave. I would like to mention especially Dr Hashimu Twaakyondo, the Head of the
Department of Computer Science, and Prof. Rogarth Kivaisi, the then Dean of the Faculty
of Science, for granting me initial release.

I would like to convey my gratitude to my fellow doctoral students Faraja Igira Mukama
and Gertrudes Macueve for providing a tranquil academic and social atmosphere for the
whole duration of my study. I appreciate their friendship over the years we have been
together. I would also like to thank Rinda for English proofreading of this thesis.

I wish to express my deepest and most sincere gratitude to my family. Very special thanks
and credit goes to my parents; father Hemed Mkulago, and mother Khadija Zuberi, who
inspired me to have a mind of my own. Moreover my gratitude goes to my sister Salma
Mkulago and brothers Shabani Lungo, Abdallah Lungo and Sadiki Lungo for the
exuberant support they have shown.

I would like to convey my gratitude to my loving wife, Masala-Tatu, for her enormous
support and encouragement all through the years of this study. Thanks to my son,
Madende-Hemed and daughter Msule-Fatuma, who at their toddler age, displayed a high
degree of patience for the nights and days I was away wrestling with this intense research
undertaking. I deeply appreciate the support of my sisters, Maria Kigola, Sakina Abdul and
Upendo Kigoda, who took care of the children when my wife joined me in Norway.

Last but not least, I am particularly grateful to the Norwegian State Education Loan Fund
Lanekassen for providing financial assistance to undertake my studies in Norway. I thank
the academic and administrative staff at the Institute for Informatics (IFI), University of
Oslo, for providing me with necessary facilities that aided my study and for providing
courses that were enlightening in respect to my doctoral thesis.

Thank you again to you all and to those that I have here forgotten to mention.

Juma Femed Lunge

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ...ttt seseste s s s seseesessssesesensasanns i
PREFACE ...ttt ettt ettt sttt nen vii
ABSTRACT ...ttt et ettt n e ix
CHAPTER 1: INTRODUCTIONccooiiiriiiiiiiiiinininieieieeiineeiereeettsisseseesseesssssaesesesesssssenes 1
1.1 The Research Motivation and CONCEIMN..........ccccccviviriiiiuiinininiiiiiccie s 1
1.2 Statement of the ProDIEm.......c.ccccevuiiriicucieieiiiniiictceeereee e seesesesenene 2
1.3 Objectives of the Thesis........cccccciiiiiiiiiiiiiniii e 3
1.4 Theoretical Perspectives OVeIVIEWccociuiieieiiiiiniiccceee e 4
1.5 Research CONtIIDULIONSccourueurueueuiuerinirinietereietrtnirtete ettt se s sesessene 6
1.6 The Study Context: Tanzania and Ujumaa Policy........cccccovvviiinniiiiicciiiicinn, 7
1.7 Organisation of the Thesiscc.cccovriiiiiiiiiiiic e 10
CHAPTER 2: UNDERSTANDING FREE OPEN SOURCE SOFTWARE..........ccccccevuu. 11
2.1 Definition and PhiloSOphy ..o 11
2.1.1 Proprietary SOftWarecccoviiiieiniiiiiiiiicc s 11
2.1.2 Free Software Definition.......c.coveueueiinnineienienieineneeeeieseeneestesessseeeneeseenes 12
2.1.3 Open Source Definition ... 13
2.1.4 Philosophy and Values ... 14

2.2 Intellectual Property Rights.........cccooviiiiiiiiiiiiiccccces 15
2.2.1 COPYTIGIES o 15
222 PatentS ..ot 16
2.2.3 LICEIISES ...ttt 17

2.3 TranSfOrmMatiON........couvieeuiueueieiiiniicctieete ettt 18
2.3.1 BAZAAT ...t 18
2.32 MOAUIATIEY «...vucvviiiici e 20
2.3.3 TOOIS ittt ettt ettt bbbt 22
2.3.4 COMIMUIIEIES ...ttt ettt et 22

2.4 BCOTIOIMUICS ...ttt ettt s e 23
2.4.1 Private INVeStMENtSc.cooiiiiiiiiiciccce e 24
2.4.2 Collective INVESTMENLES......c.cccoerrerierereeiririeicreientereeteie ettt eenes 25
2.4.3 Private-Collective INVEStMENt.......c.ccccervirurreuiieiirierierciiireeeeteeene s 26

244 BUSITIESS.....uiiiiiieiiieeieeite et eteerite et e e teesebe e beeebaessseesssesbaaasseessseesssasssaessseenssasnseannne 27

2.5 MOtIVATIONS .ottt bbb s 29
2.6 StAKENOLAETS.......cucviiiiiiicce et s 30
2.7 FOSS in Developing COUNLTIESccouiuiiiiniiiiiiiiiiii s 32
2.7.1 MOtVAIONS.coiiiiiiiiiciiiic e 32
2.7.2 CONSLTAINES......ocviviiiiiic s 34
2.7.3 SErAt@EZI@Seeeeee s 35
2.8 CONCIUSION ...vvviieviiciiici ittt 37
CHAPTER 3: INFORMATION SYSTEMS IN DEVELOPING COUNTRIES................... 39
3.1 The Design — Reality Gaps.........cccovviviiiiiiriiiiiniiiiiiicccesssssenes 39
3.2 Diffusion of INNOVAtON.........ccoviueiicieiiciccec s 41
3.3 Actor-NetWork TheoTY........cccciiiiiiiiiiiiiiii s 42
3.3.1 Power and Translation..........cceeueuieieiieiiiieiicicie s 43
3.3.2 Network ANQALySiS.......ccocvruruiiiiiiiiiiiicicic s 44
3.3.3 Criticisms of Actor-Network Theoryccooviiiiiiiininiccccne 44
3.3.4 ANT in Information SYStemSccceuvuimiuiiiiiiiniiiiiiii s 45
3.4 Technology Translation..............cceeveiiiriinecee s 46
3.5 Conceptual Framework of the Thesis ..o 48
3.5.1 Sponsor — Developer Gap........cccovreeieieieieiiiicccice s 49
3.5.2 Global Developer — Local Developer Gap........cc.cccoueuimeieicuninieiniicisinieninnn. 50
3.5.3 Local Developer — Local USer Gapcccccveueurieriiineinicieisiciscescsessciesnennes 52
CHAPTER 4: CASE DESCRIPTION AND RESEARCH METHODOLOGY 55
4.1 Personal Motivation............ccceiueiniieinicici s 55
4.2 Research Design and Description of the Case Studiesccccccevvivnicicnnnnne 56
4.2.1 FOSS in Organisations Case Studyc.cccocvvviviivniniiiiiscinccceeenes 59
4.2.2 SARIS Case StUAYccceuiimimimiiiiniiiiiie s 59
4.2.3 DHIS Case StUAYccouvimimimimiiiiiiiiiiiiiiciscscsn s 62
4.3 Research AppProach.........cccciiiiinininiiiii s 64
4.3.1 Interpretive Research Approach............cccoovueeiiiiininiiiiniicccce 64
4.3.2 Participatory Action Researchcccocoveiiiiniiiiiiiiiiccccceees 66
4.4 The Action Research Cycles ... 70

iv

4.4.1 DHIS Prototyping ACtiVities ..o, 71

4.4.2 SARIS Prototyping ActiVities........ccocoereieriiiiniiiccee s 72
4.5 Data Collection Methodscccovuiiiiicicieiiriiicciceieeeeecieieee e 75
4.4.1 Semi-structured Interviews and Observations............ccoceeeeeieueuereueinnncscneenen 75
4.4.2 Group DiSCUSSIONS.......cucueveiiiiiicicicictete e 77
4.3.3 Documents ANalysis.........ccoeviruiiininiiiiiii e 77
4.6 Data Analysis and Use of TREOTIYcccocouriiiniiiiniiiice s 78
CHAPTER 5: RESEARCH FINDINGSccooiiiiiiiiieiniieiice it 81
5.1 Introducing the Papers.........cccccciiiiiiniiiiiiii s 81
5.2 Summary of the Individual Papers ..o 82
52T PaAPer L. s 82
522 Paper IL..coiiiiiic s 83
5.2.3 Paper Il ..o 84
524 Paper IV .o 85
525 PAPEI Viueiiiiiitit e 86
5.3 Synthesis of the FINAINGSccccoiuviiiiiiiiiiiiic s 87
5.3.1 Performance and Support of FOSS Applications..........cccccevriviiiniviniiinicininnnns 88
5.3.2 Motivating and Constraining Issues in FOSS Transformationc........ 89
5.3.3 The Transformation Process: Organisation and Support Proximity 91
5.3.4 Translation as the Process for Building Communities...........cccccoeevviirriinnnnen. 91
CHAPTER 6: IMPLICATIONS AND CONTRIBUTIONS..........coooiiririiniicrcninieciein, 93
6.1 Theoretical Implications: Re-conceptualising FOSS Development...........cc.cceeuue 93
6.1.1 The Importance of Qualifying FOSS Applicationscccccoeveuvvecuerricrnricnnnnnnn. 94
6.1.2 The Benefits of FOSS Development in Developing Countries.............cccccc..... 95
6.1.3 Directed Co-located FOSS Development as a Coping Strategyc....... 97
6.1.4 Technology Translation as the Process of Building Community..................... 99
6.1.5 The Role of Political Negotiations in FOSS Development and Use............... 102
6.2 Practical contributions: Decoding the FOSS Liberationccccocoevvviiiiinicnnnnes 102
6.2.1 Bridging Developer — Sponsor Gap ... 103
6.2.2 Bridging Global Developer — Local Developer Gapcccccocouvvvuvueverennnnennnes 107
6.2.3 Bridging Local Developer — Local User Gapcccocevvemeuererernrininiccncncnnen 108

CHAPTER 7: CONCLUSIONS......ccooviiiiiiininiiiiciiieeeecisesse et esssssssaenes 111

REFERENCES ..ottt s 113

LIST OF TABLES
Table 2.1: Motivations for FOSS...........cccooiiinceccee e 29
Table 2.2: FOSS Stakeholder GIoups.........ccccvuuiiiniiiiiiiininiic s 31
Table 2.3: Core FOSS Concepts Informing the Thesis.........cccccoooevviiniiiincniiinnn 37
Table 4.1: Overview of the Research Design.........cccccovviiiiniiiiiiiiniicccs 57
Table 4.2: Translation in the SARIS PTOJeCtcccocvviiiiiiiiiniiiieicc s 61
Table 4.3: Translation in the DHIS Project........cccococvviiniiniinicecccceeccecns 63
Table 4.4: DHIS Prototyping Activities in HIS Case Study in Zanzibar 71
Table 4.5: Activities in the SARIS Projectcccccoviiiiiiiiniiiniiicccccecccncccnas 72
Table 4.6: Trajectory of SARIS PTOJectcccouiuiuiiiiniiiniiiiiicicciecccceeaes 73
Table 4.7: Interviews of the use of FOSS in Organisation Surveyccccocvvvciunnnne 76
Table 4.8: List of Informants in the DHIS Case Studyccccovvvvvivniinniiciinnne 76
Table 5.1: Links between the Papers ... 87
Table 6.1: Strategies for Bridging the Design — Reality Gaps..........cccocovvuruririiiinincnnnns 103

LIST OF FIGURES

vi

Figure 3.1: Proposed Design-Reality Gaps in FOSS in IS in Developing Countries... 49
Figure 4.1 Map of Zanzibar and Pemba...........cccceceuvviiiiiiiiiiiiiiicccnes 58

Figure 5.1: The Relationship between the Research Objectives and the Papers 81

PREFACE

This thesis, Design-Reality Gaps in Open Source Information Systems Development: An
Action Research Study of Education and Healthcare Systems in Tanzania, is submitted in
partial fulfilment of the requirement of degree of Doctor of Philosophy at the Faculty of
Mathematics and Natural Sciences, University of Oslo, Norway. The research was
funded by the Norwegian State Education Loan Fund Lanekassen. This thesis comprises of
seven introductory chapters and five scientific papers. The papers, as listed below, are

included at the end of the introductory chapters.

i. Lungo, J. H., & Kaasbell, J. (2007). The Use of Open Source Software in the Public
Sector: Cases from Tanzania and Norway. Submitted to: Information and
Organization Journal (previous version has been published In Silva, L., Westrup,
C. & Reinhard, N (Eds.), Proceedings of the Ninth International Working Conference
of IFIP WG 9.4: Social Implications of Computers in Developing Countries, (pp.1-14),
Sao Paulo, Brazil.

ii. Lungo, J. H., & Igira, F. (2008). Development of Health Information System in
Zanzibar: Practical Implications. Journal of Health Informatics in Developing
Countries, 2(1), 24-32.

iii. Lungo, J. H. (2008). The Reliability and Usability of District Health Information
Software: Case Studies from Tanzania. Tanzania Journal of Health Research 10(1),
39-45.

iv. Lungo, J. H. (2005). Re-inventing Higher Learning Institutions Communication
Media: The Case of University of Dar es Salaam Student Information System. In
A.O. Bada & A Okunoye (Eds.), Proceedings of the Eight International Working
Conference of IFIP WG 9.4: Social Implications of Computers in Developing Countries,
(pp.194-208), Abuja, Nigeria.

v. Lungo, J. H. (2006). Critical Issues Associated with Adoption and Use of Open
Source Software in Public Sector: Insights from Tanzania. In J. Ljunberg & M.
Andersson (Eds), Proceedings of the Fourteenth European Conference on Information
Systems, (pp.732-744), Goteborg, Sweden.

vii

ABSTRACT

This thesis, Design-Reality Gaps in Open Source Information Systems Development: An
Action Research Study of Education and Healthcare Systems in Tanzania, presents a theoretical
and empirical informed analysis of Free Open Source Software (FOSS) development in the
domain of health and education information systems in Tanzania. Historically, FOSS
development has been driven by user-developer communities who are also the users of FOSS
applications. The use of FOSS applications in information systems (IS) characterised by
distinctive users and developer communities as separate groups has received limited attention
in FOSS literature. The FOSS development approach, as well as the justifications for using FOSS
in the infrastructure domain where users are developers, are inherently problematic when
applied in the IS domain in developing countries. There is an urgent need to identify alternative
conceptualisations of the FOSS phenomenon suitable to the goals and context of information
systems in developing countries. The thesis focuses on the interplay between the sociotechnical
conditions of IS in developing countries and the FOSS development approach. The thesis
objectives are: (i) to develop an alternative explanation of the Free Open Source Software
phenomenon in the context of information systems in developing countries and (ii) to analyse
and address the challenges shaping FOSS development in order to enable Tanzania in particular
and developing countries in general to benefit from adopting FOSS.

The thesis is informed by power, translation, and network analysis perspectives of the Actor
Network Theory, with additional concepts from networks of action and the design-reality gaps
analysis. These concepts are used to build a framework for the design-reality gaps in the context
of FOSS development in developing countries. The framework identifies three archetypal
situations: developer — sponsor, global developer — local developer, and local developer — local user gaps.

The thesis draws its empirical material from two case studies of implementing open source
information systems in the health and education sectors in Tanzania from 2005 to 2007. The
research design is based on participatory action research in specific information systems: the
District Health Information Software (DHIS) in the health information system and the Student
Academic Register Information Software (SARIS) in the education information system.

FOSS development in developing countries centres on the formation of sustainable
collaborative networks through sharing of software and knowledge. These networks are
important in helping a developing country to support the day to day customisation and
managing of FOSS products. Implementing FOSS in IS requires substantial investment on
localising the software, training users, and developing support networks. An alternative
conceptualisation of FOSS development which emphasises co-located project organisations as a
coping strategy to meet the challenges of social-technical influences is advisable. This is a
different approach from working on virtual teams. Furthermore, the thesis identifies the role of
political negotiations in supporting FOSS development in IS.

Proposed strategies for bridging the developer-sponsor gap are to facilitate understanding of
FOSS philosophy among global and local networks, to facilitate political negotiations, and to
promote the private sector. The global developer—local developer gap can be addressed through
focusing on capacity building, mutual learning between global and local developers (through
how-to and hands-on support), and implementing FOSS technologies curriculum in the
education system. The last gap, local developer—local user, can be addressed through organising
FOSS projects in the form of participatory actions between users and developers and by creating
focused user training.

ix

CHAPTER 1: INTRODUCTION

1.1 The Research Motivation and Concern

There is increasing consensus that FOSS is a good opportunity for developing countries
to catch-up with the increased widening of the digital divide.! Currently, the case for a
developing country like Tanzania to adopt FOSS driven Information and
Communication Technologies (ICT) implementation strategies is a compelling one.
Many justifications for developing countries to adopt FOSS have been cited, including
the notion that FOSS reduces software licensing costs, helps developing countries
avoid being locked-in to proprietary software, advances knowledge through access to
the source codes, and it is a means for setting up an information economy (Camara &
Fonseca, 2007; May, 2006; Meystre & Miiller, 2005; Weber, 2003; Weerawarana &

Weeratunga, 2004).

Most attempts for implementing ICTs have ended up on the shelves (Bhatnagar, 2000;
Bhatnagar & Bjern-Andersen, 1990; Heeks, 2002). Even in government-backed ICT
projects, there is a huge gulf between the hype about the role of Information
Technology (IT) and reality (Heeks, 2006). Like any other process of introducing
technology, FOSS implementation in developing countries is subject to the same

challenges other technologies face due to the nature of the context.

Using examples of ICT initiatives in government supportive systems, Heeks (2003)
argues that central to e-government success and failure is the amount of change

between 'where we are now' and 'where the e-government project wants to get us'.

‘Where we are now' means the current realities of the situation. 'Where the e-
government project wants to get us' means the model or conceptions and assumptions
built into the project's design. E-government success and failure therefore depend on
the size gap that exists between 'current realities' and 'design of the e-government
project'. The larger this design-reality gap, the greater the risk of e-government failure.
Equally, the smaller the gap, the greater the chance of success. (Heeks, 2003, p.3)

According to Heeks (2003), the design-reality gap exists around seven dimensions
abbreviated as ITPOSMO: Information, Technology, Processes, Objectives and values,

Staffing and skills, Management systems and structures, and other resources such as

" the gap between those able to benefit by digital technologies and those who are not
(www.digitaldivide.org)

time and money. The design-reality gap analysis indicates that FOSS, like other ICT
initiatives in developing countries, would face many common constraints from
hardware, training, and basic infrastructures such as electricity, Internet, and

telecommunications lines (Musa, Mbarika, & Meso, 2005).

Moreover, the freedoms envisioned in FOSS are by themselves a threat to its adoption
in developing countries. For example, as FOSS advocates low cost software
procurement, it may be seen as a threat to corrupt politicians who assume that FOSS
would reduce their potential kick-backs from the procurement of software packages.
Thus, in addition to technical skills and infrastructure, politics is another major
problem for FOSS development. A thorough explanation of the FOSS phenomenon
through detailed empirical study would enlighten the politicians and businessmen in

developing countries.
1.2 Statement of the Problem

Weber (2004) points out that combining FOSS tools with the technical workforce
available in developing countries can enable technology transfer. Weber (2004) argues
that ‘the essence of open source is not the software; it is the process by which software
is created’ (p.56). FOSS should have far-reaching effects, as Weber (2004) says, ‘of
course information technology and open source in particular is not a silver bullet for
longstanding development issues; nothing is. But the transformative potential of
computing does create new opportunities to make progress on development problems

that have been intransigent’ (p. 254).

However, FOSS as technology is context sensitive in terms of practical implementation
in different organisations and in different geographical areas, with various levels of
income and IT infrastructures. Fitzgerald (2006) agrees that FOSS offers a real
paradigm shift in how organisations adopt ICT, but he points to many challenges in
making FOSS work effectively in developing countries. The issues are limited
institutional mechanisms to support, business models that support FOSS ideology,
licensing arrangements, technical capacity to deal with FOSS development, capacity of
universities to offer relevant training, and knowledge of FOSS and language barriers

(Fitzgerald, 2006). This implies that there is much potential for FOSS in developing

2

countries, but many challenges with its implementation.

Currently, there is an increasing rate of FOSS uptake in developing countries (FOSSFA,
2004). However, many are based on the infrastructure side, adopting the Linux
operating system and server side programs (web server, mail server, database, and file
sharing utilities). The use of FOSS in specific software applications such as human
resource databases, payroll, accounting, education systems, and health information
systems is still emerging and few studies have been conducted. The use of FOSS
applications in information systems domain characterised by distinctive users and
developer communities as separate groups has received limited attention in the FOSS
literature. The FOSS development approach, as well as the justifications for using FOSS
in the infrastructure domain where users are developers, are inherently problematic
when applied in the IS domain in developing countries. There is an urgent need to
identify alternative conceptualisations of the FOSS phenomenon suitable to the goals

and context of information systems in developing countries.

Tanzania, one of the least developing countries, would benefit from FOSS if accepted
and practiced. This thesis was an attempt to decode the FOSS liberation (Chopra &
Dexter, 2008). The result was rich insights into FOSS and better strategies for the

adoption of FOSS in developing countries.
1.3 Objectives of the Thesis

My thesis was informed by the following objectives.

e To develop an alternative explanation of the Free Open Source Software phenomenon
in the context of information systems in developing countries.

e To analyse and address the challenges shaping FOSS development in order to enable
Tanzania in particular and developing countries in general to benefit from adopting
FOSS.

In this thesis, I studied the conceptualisation of FOSS and the way the FOSS
community was organised and practiced software development, source code sharing,

and economic incentives. This exploration of the FOSS phenomenon served as

background information for my case studies and was useful for introducing FOSS to
those unfamiliar with this phenomenon. The current FOSS literature is focusing on the
use of FOSS in infrastructure where users are developers. Little is said on the context
where users are not computer professionals. The first objective is concerned with

identifying ways to present FOSS in the IS domain of a developing country.

The FOSS phenomenon is treated as a viable alternative strategy for ICT adoption in
developing countries. The main justification is that FOSS enables countries to save
money from software licensing costs; it promotes indigenous technological
development and facilitates technology translation (Weerawarana & Weeratunga,
2004). However, there is a need to determine how to increase participation of

Tanzanians in FOSS development projects.

To meet these objectives, first, I conducted an explorative case study in eight
organisations from Tanzania and Norway. Exploration of the use of FOSS in a
developed country (Norway) and a developing country (Tanzania) provided insight
with which to discuss the FOSS phenomenon. Action research is the second route I
took in this study. I was emphatically engaged in the actual implementation of two
large-scale Open Source Information Systems (OSIS). The first case study was the
implementation of the Health Information System (HIS) in Zanzibar. The second case
study was the Student Academic Register Information System (SARIS) at the
University of Dar-es-Salaam. The experience gained from my participation in the two
projects allowed me to share my personal and scientific insights on FOSS development

in Tanzania.
1.4 Theoretical Perspectives Overview

Lessons from the design-reality gaps (Heeks, 2003), which explain the failure of most
ICT initiatives, indicate that the gaps are widening as developers ignore social
conditions (people, culture, and politics) in which technological change process occurs.
This technological deterministic approach, which takes for granted that there is no
influence from the social conditions embedded in the context of ICT implementation, is
a major reason for project failures (Dada, 2006, Heeks, 2003). An alternative outlook of

ICT implementation is to take the social systems approach. Social systems perspectives

4

basically take account of the social conditions while implementing technological
change. I draw on Actor-Network Theory (ANT) notions of translation (Callon, 1986)
and network analysis (Law & Callon, 1992) as my analytical framework for studying the
implementation of FOSS in Tanzania. The ANT reveals that technological changes in
information systems imply not only technical re-design, but re-design of an entire

socio-technical network and translating and aligning different actors” interests.

In ANT perspective, the interests of heterogeneous actors (human and non-human) are
inscribed in artefacts and interact in order to be translated. As a result, actors form
alliances of networks in order to mobilise support for a particular solution of their
interest (Bijiker, Hughes & Pinch, 1987; Latour, 1987). Thus, ANT makes roles of the
social conditions as important as technology artefacts. Furthermore, the ANT notion of
network analysis model introduces the concept that, in a technological change
innovation project, there are two networks: local network and global network (Law &
Callon, 1992). The global network represents the outside of the project’s local settings
and context, built up to enable the project to take place with the resources it provides
(Law & Callon, 1992). Project resources include money, expertise, and political support
(Law & Callon, 1992). In many projects in developing countries, the global network
represents the donor community, who funds and provides technical expertise to the
projects. On the other hand, the usually local people work inside of a project to
produce a successful working tool using the funds and expertise provided by the

global network (Law & Callon, 1992).

As FOSS development is driven by geographically distributed developers located
globally, analysis of global and local networks is important. It helps to analyse the
proximity of the local development team to global support, e.g.,, how the software
development team of the District Health Information Software (DHIS) in Zanzibar gets
support from the global Health Information System Programme (HISP) in terms of
funds and technical support. Learning the organisational arrangement of the project
and the way local development overcomes the challenges imposed by limited
infrastructure and communication lines would help to advise working strategies for

adopting FOSS in a developing country like Tanzania.

In addition to ANT perspectives, I drew on other two perspectives: technology
translation (Nhampossa, 2006) and networks of action (Braa et al.,, 2004). Although the
technology translation perspective is based on ANT’s translation notion, it carries
additional concepts that influence the transfer of technology from one developing
country to another. Nhampossa (2006) argues that, ‘technology needs to be sustainable,
at the same time needs to remain flexible enough to accommodate changes occurring
over time and space’ (p.57). This implies that not only the process of transferring
technology, but also the characteristic of the technology itself has a role in its diffusion

in the destination context.

A more flexible technology like FOSS, which ships with its trade secrets, has the
potential to be localised and hence appropriated locally while maintaining its
international flavour (Nhampossa, 2006). Furthermore, Braa et al. (2004) argue that
localised individual initiatives should be connected as large networks of action
through sharing experiences and mutual learning to ensure long-term scalability and
sustainability. However, the networks of action proposal on sharing knowledge could
better be implemented under technology free of intellectual property laws; otherwise,

intellectual property rights would become barriers.

Drawing from the theoretical discussion, the thesis’s analytical framework on the
development of health and education open source information systems in Tanzania is
framed as being influenced by politics, development process, infrastructure, and relevant
skills. These four social conditions influence FOSS development process in developing

countries.
1.5 Research Contributions

The study contributions were two-fold: theoretical and practical. The theoretical
contribution was the following:
¥l Re-conceptualisation of the FOSS phenomenon perceived as an ongoing learning process on

the way FOSS was interpreted and its development was practiced in the context of
information systems in the developing countries.

The practical contribution was the following:

W Practical implications as guidelines for ICT professionals and managers in the health and

6

education sectors working on implementing Open Source Information Systems

1.6 The Study Context: Tanzania and Ujumaa Policy

In this study, I adopted multiple case studies, but the main audience of the study
findings was Tanzania, where the main research settings were located. Situated in East
Africa, mainland Tanzania became independent from British rule in 1961 and was
united with Zanzibar in 1964, when it became the United Republic of Tanzania. In
2002, Zanzibar had a population of 984,625 and the mainland had a population of
33,584,607. By the year 2007, Tanzania was estimated to have a population of over 35

million people.

As a Tanzanian, I have had personal contact with the FOSS philosophy. Tanzania is a
country that has embraced socialism for years. Though currently the government of
Tanzania does not practise socialism, its legacy is very much alive. Although FOSS
developers deny having a political agenda, sociologists believe that this denial is
enacted through a particular cultural exercise of free speech facilitating the broad
mobility of FOSS as artefacts and metaphors, laying the groundwork for its informal
political scope, which is ‘its key role as a catalyst by which to rethink the assumptions
of intellectual property rights through its use and inversion” (Coleman, 2004a, p. 508).
Kelty (2000) adds that this makes FOSS ‘the most powerful political movement on the
Internet, even though most of its proponents spend all their extra energy denying that

it is political’ (p.6).

The core concept of FOSS is that full access to software source codes must be granted
(Stallman, 2002). FOSS can be used on any computer and in any situation (Perens,
2005). Users can improve FOSS by fixing bugs and augmenting functionality; they can
then redistribute it normally as FOSS (Rosen, 2005). This vision is clearly stipulated in
two key documents that guide the choice and creation of a Free Open Source Software
Licence: the Free Software Definition (Stallman, 2002) and the Open Source Definition
(Perens, 2005). FOSS underscores the freedom of an individual’s right to create, use,
and distribute software in a manner that allows the same for others. FOSS emphasises
the logic of non-discrimination to create conditions for free action and thought. The

software source code is treated as a form of speech (Raymond, 2001).

FOSS as a new paradigm shift of software development and ownership (Fitzgerald,
2006) is reminiscent of the old ujamaa policy of Tanzania. The ideas of ujamaa were
developed by Nyerere, the first President of Tanzania. To the outside world, ujamaa is a
form of African socialism, advocated across the continent immediately after its
independence. African socialism in Tanzania, however, is unique and outstanding in
that it was a deliberate attempt to redefine the Western idea of socialism in an African
context, expressing it in an indigenous language, Kiswahili (Tsuruta, 2006). Nyerere
(1962) argues that ‘Socialism — like democracy — is an attitude of mind. In a socialist
society, it is the socialist attitude of mind, and not the rigid adherence to a standard
political pattern, which is needed to ensure that the people care for each other’s

welfare” (Nyerere, 1962, p. 162).

First formulated in an essay by Nyerere published in 1962 (Nyerere, 1962), ujamaa was
adopted as state policy when the landmark Arusha Declaration was issued in 1967
(Nyerere, 1968). Ujamaa derives from jamaa (relative or companion), a very familiar
word to Kiswahili speakers; thus ujamaa can be translated as familyhood. Therefore,
the term wujamaa does not escape the connotations and associations of kinship, tribal
hospitality, and the welfare obligations of the extended family, even when it is used
simply to mean modern socialism (Tsuruta, 2006). It is important to note that, in the
case of the wujamaa policy, there was no socialist ideology copied from the East or the

West; rather, an African Socialism was developed.

Nyerere describes the basic principles of this socialism as a society in which all
members have equal rights and equal opportunities; in which all people can live at
peace with their neighbours without suffering or imposing injustice, being exploited,
or exploiting; and in which all people have a gradually increasing basic level of
material welfare before any individual lives in luxury (Neyerere, 1968). African
socialism did not have the ‘benefit’ of the Agrarian Revolution or the Industrial
Revolution. It did not start from the existence of conflicting ‘classes’ in society. Nyerere
insists that the foundation, and the objective, of African socialism is the extended
family. The true African socialist does not look on one class of men as his brethren and

another as his natural enemies. He does not form an alliance with the ‘brethren’ for the

extermination of the non-brethren (Nyerere, 1962).

The Ujamaa ideology represents two basic principles of moral economy which are ‘the
right to subsistence and the norm of reciprocity” (Scott, 1976, p. 167). Nyerere (1968)
argues that ‘ujamaa is essentially an attitude of mind, or ethic, based on three key
elements: mutual respect, sharing of property, and work’ (p. 107). The most important
implementation of ujamaa in Tanzania was during the years after 1967, with the Ujamaa
transformation of the rural areas into socialist communities so that all political and
economic activities were collectively organised (Boesen, Madsen, & Moody, 1977;
Nyerere, 1968). From 1968 until 1973, the mobilisation of peasants to set up such

communities was a high priority of the government.

Today, Tanzania no longer embraces Ujamaa; the policy was formally abandoned in the
mid-1980s and some authors argues that Ujamaa ideology is now considered by today’s
Tanzanians as a nostalgic relic of a bygone age, or an outmoded ideology (Tsuruta,
2006). Ujamaa failed mainly because of several contradictions. For example, the ujamaa
village policy was supposed to be based on the initiatives of the farmers themselves
because self help and mutual co-operation were the keywords. The role of the
government was to merely support such initiatives. However, Scheigman (2003)
criticises that the initiatives were taken by the government and hence turned into a top-
down implementation process. The top-down approach ended with little or no
participation of the people themselves. The policy also failed because equality, respect
for human dignity, and the desire to prevent exploitation of man by man are of moral
and normative nature (Ngotyana, 1973). There was no incentive to work together, to
invest more in agricultural practices, or to increase agricultural production; such

changes should be based on social or economic incentives (Ngotyana, 1973).

Despite the failure of the ujamaa policy, it was a serious attempt to seek an alternative
based on African experience and perceptions, which is not very dissimilar from the
community-based development approach of today. When working in the public sector
(government-owned establishments), most individuals, including managers, are well

aware of ujamaa; many still believe it was a correct policy, but its implementation was

problematic. FOSS can be considered another form of ujamaa being practiced in the

Information and Communication Technologies (ICT).

As discussed in the upcoming sections, FOSS, like ujamaa, also advocates sharing, but
of software, and makes it a publicly owned good. Software differs from physical goods
because copying software to your neighbour (helping your neighbour) is not the same
as giving physical goods, where the donor’s resources are depleted. Ghosh (1998) uses
the economic term ‘cooking-pot markets’ arguing that it works well in software
because software can be copied without losing the original and hence taking out of the
pot will not adversely affect other participants. For example, if you own a cow, giving
the cow to your neighbour will simply mean you no longer own a cow; by dividing the
cow into two pieces, you both end up with no cow. With software, copying software to

your neighbour means that now you both have the same resource, the software.
1.7 Organisation of the Thesis

The thesis is organised as follows. Chapter 1 introduces the research domain,
objectives, and provides an overview of the adopted theory. Chapter 2 is an overview
of the FOSS phenomenon, and Chapter 3 is a presentation of the theoretical
perspectives adopted as analytical framework of the empirical material. The
framework identifies three gaps sponsor-developer, global developer-local developer
and local developer-local user gaps. Chapter 4 is the research approach, which is
interpretive approach to participatory action research. Chapter 5 provides a summary
of the papers, and a synthesis of the findings in a preliminary analysis. Chapter 6
presents the implications and contributions of the thesis. This presents strategies for
bridging the three gaps identified in Chapter 3. Lastly, in Chapter 7, are the concluding

remarks.

10

CHAPTER 2: UNDERSTANDING FREE OPEN SOURCE SOFTWARE

This chapter presents the underlying philosophy of the Free Open Source Software
(FOSS) phenomenon and its perspective on intellectual property rights in Sections 2.1
and 2.2, respectively. Section 2.3 provides a detailed description of the FOSS
development approach, also referred to as “transformation.” Section 2.4 presents
economic perspectives that explain the motivations for software developers to freely
reveal their innovative software and the source code. Section 2.5 presents more use-
focused motivations that lead individuals and organisations to use FOSS products. An
idea on stakeholders who develop, fund, and use FOSS products is presented in
Section 2.6. Section 2.7 relates the advantages, constraints, and case studies of the FOSS
in developing countries. A summary of all sections of this chapter is presented in

Section 2.8.

2.1 Definition and Philosophy
2.1.1 Proprietary Software

May (2006) notes that computer software is expensive because it is subject to
intellectual property rights. Fortunately there is a cheap alternative — Free/Libre Open
Source Software (FOSS). Weber (2003, p. 2) illustrates the difference between

proprietary and open source software as follows:

...when a person purchases a proprietary software he buys a right-to-use license. You
can use proprietary software on a computer but only under very specific terms: you
cannot reproduce it, modify it, improve it, or redistribute your own version of the
software to others. Copyright, licenses, patents, and other legal structures provide a
layer of legal protection to this regime, but there is an even more fundamental
mechanism that stops you from doing any of these things: proprietary software makers
do not release their source code.

While in proprietary software, the source code is the touchstone of the conventional
intellectual property regime for computer software, the FOSS process simply inverts
this logic; the source code is released along with the software to anyone and everyone
who chooses to use it (Weber, 2004). There are two movements that guide the FOSS
phenomenon: Free Software Foundation (FSF), formed in 1985, and the Open Source

Initiative (OSI), formed in 1998. The FSF argues that the word “free” was intended to

11

mean free as in “free speech,” an intangible right and not a physical good, emphasizing
the freedom to distribute software, rather than a freedom from cost (FSF, 2008). Due to
its availability, free software has become associated with zero cost, making it seem
anti-commercial. In contrast, the OSI use the term open source to eliminate ambiguity,
particularly for individuals who perceive free software as anti-commercial (OSI, 2007).
Although the two movements disagree on ideological issues, they share a philosophy
and a common enemy - the proprietary software. Thus, any software that is qualified
by one movement as a FOSS product is done so by the other as well. There are two
main terms used to define FOSS: Free Software Definition (FSD) and Open Source

Definition (OSD). These definitions are discussed in subsequent sections.
2.1.2 Free Software Definition

The FSD maintains that free software is a matter of liberty, not price. It is a matter of
the users’ freedom to run, copy, distribute, study, change, and improve the software
(Stallman, 2002). As stipulated in the FSD, software users have the right to four kinds

of freedom (Stallman, 2002, p.41):

Freedom 1: The freedom to run the program, for any purpose. Freedom 2: The freedom
to study how the program works, and adapt it to your needs (access to the source code
is a condition for this). Freedom 3: The freedom to redistribute copies so you can help
your neighbour. Freedom 4: The freedom to improve the program, and release your
improvements to the public, so that the whole community benefits. (Access to the
source code is a condition for this.)

Stallman (2002) gives further explanations of the four kinds of freedom, stating that a
program is free software if users have all of these freedoms. Thus, you should be free
to redistribute copies, with or without modifications, either gratis or for a fee, to
anyone. Being free to do these things means (among other things) that you do not have
to ask or pay for permission. You should also have the freedom to make modifications
and use them privately in your own work or play. If you do publish your changes, you
should not be required to notify anyone. The freedom to use a program means the
freedom for any person or organization to use it on any kind of computer system, for
any kind of overall job, without being required to communicate subsequently with the

developer or any other specific entity.

12

2.1.3 Open Source Definition

An alternative definition of FOSS is the Open Source Definition (OSD), which takes
into account the distribution of FOSS as well as access to source codes. The OSD
defines terms of rights (Perens, 2005) to which a software licence must conform in

order to be certified as a FOSS product.

1. Free Redistribution: The license shall not restrict any party from selling or giving
away the software as a component of an aggregate software distribution containing
programs from several different sources. The license shall not require a royalty or other
fee for such sale.

2. Source Code: The program must include source code and must allow distribution in
source code as well as compiled form.

3. Derived Works: The license must allow modifications and derived works, and must
allow them to be distributed under the same terms as the license of the original
software.

4. Integrity of The Author’s Source Code: The license may restrict source code from
being distributed in modified form only if the license allows the distribution of “patch
files” with the source code for the purpose of modifying the program at build time.

5. No Discrimination against Persons or Groups: The license must not discriminate
against any person or group of persons.

6. No Discrimination against Fields of Endeavour: The license must not restrict anyone
from making use of the program in a specific field of endeavour.

7. Distribution of License: The rights attached to the program must apply to all to
whom the program is redistributed without the need for execution of an additional
license by those parties.

8. License Must Not be Specific to a Product: The rights attached to the program must
not depend on the program’s being part of a particular software distribution.

9. The License Must Not Restrict Other Software: The license must not place restrictions
on software distributed along with the licensed software.

10. No provision of the license may be predicated on any individual technology or style
of interface.

Feller and Fitzgerald (2002) underline that for software to qualify as a FOSS product,
first, the conformance of a software product’s terms of distribution to all criteria of the
OSD is necessary. Second, conformance of a software product’s terms of distribution to
all criteria of the OSD, even without actual OSI certification, is sufficient for all intents
and purposes. Thus, the definition of FOSS helps to qualify software on its conformity

as a FOSS product.

13

The differences between FSF and OSD are explicitly explained in the article “why free
software is better than open source.” Stallman (2002, p.55) unpacks the differences as

follows:

The fundamental difference between the two movements is in their values, their ways
of looking at the world. For the Open Source movement, the issue of whether software
should be open source is a practical question, not an ethical one. As one person put it,
“Open source is a development methodology; free software is a social movement.” For
the Open Source movement, non-free software is a suboptimal solution. For the Free
Software movement, non-free software is a social problem and free software is the
solution.

Despite these fundamental differences, the Free Software and Open Source movements
are treated the same in this thesis; focus is on the issues common and useful to both

movements.
2.1.4 Philosophy and Values

The definitions of FOSS indicate an understanding that software is an important
building block in the information society and that the control of this infrastructure
needs to remain accessible to all (Klang, 2005). Stallman (2002, p. 57) argues that
‘talking about freedom, about ethical issues, about responsibilities as well as
convenience, is asking people to think about things they might rather ignore. This can
trigger discomfort and some people may reject the idea for that.” Stallman’s stance
gives hints that there are ethical values embedded in the FOSS phenomenon. One such
ethic is the ‘hacker” ethic. In the FOSS community, those who identify themselves as
hackers enjoy exploring the details of programmable systems, enjoy programming, and

are good at programming quickly (Raymond, 2003).

Raymond (2003) underscores that hacking is characterised by an appropriate
application of ingenuity. As presented in the Hackers’ Jargon File,? ethics common to
all hackers maintain that information sharing is a powerful positive good, and that it is
an ethical duty of hackers to share their expertise by writing open source codes
whenever possible. Also, hackers believe that system-cracking and exploration are
ethically fine, provided the cracker commits no theft, vandalism, or breach of

confidentiality (Raymond, 2003). Williams (2002) notes that when Richard Stallman

% The Jargon File is a Hacker's Dictionary file maintained by Eric Raymond - http://catb.org/jargon/
14

was working at the MIT, his stance to oppose security measures that required the use
of passwords in the computer room was ethically driven in that the entire art of
hacking relied on intellectual openness and trust. The use of passwords would have

imposed barriers on intellectual openness.

Ideological issues in society have been long recognised. For example, when writing
about open society and its enemies, Popper (1945) established that openness has three
aspects: ideological, political, and legal. The FOSS phenomenon has a substantial
ideological stance. Stallman (2002) criticises copyright laws, saying that they fit well
with the printing system industry because it restricts only the mass producers of
copies; it does not take freedom away from readers of books (Stallman, 2002, p.45).
Stadler (2003) claims that no software is perfect; hence, the notion of free revealing
software source code is a way of fixing bugs. Generally, the FSF movement maintains
the ideology that society needs freedom to encourage voluntary cooperation in its

citizens.

Physical goods and software differ in that while taking a physical good from someone
may leave the owner’s resources depleted and thus harm the owner, copying software
hurts no one. This leads to the argument that software should not have an owner
(Stallman, 2002) because the ideas and institutions concerning the property of material
objects are about whether it is right to take an object away from someone else. Such
ideas do not apply to making a copy of something because copying has no direct effect
on the owner (Stallman, 2002). This implies that the general philosophy behind the
FOSS phenomenon is to build a society where software is freely copied and modified

without any restrictions.

2.2 Intellectual Property Rights
2.2.1 Copyrights

Any intellectual property can be freely revealed even if protected by intellectual
property legal mechanisms such as patents, copyrights, or trade secrets, as long as the
owners of the protected property decide to reveal it (von Hippel & von Krogh, 2003).

Stallman (2002) advises that the simple way to make a software program free is to put

15

it in the public domain, un-copyrighted. Putting software in the public domain may
fall into the hands of someone who can make changes and distribute the results as
proprietary software. The solution: whenever software is placed in the public domain,
it should be copyrighted. Since copyrights in FOSS products permit all things that are
restricted by traditional copyrights, the term “copyleft” is used to denote that the
copyright allows anyone who redistributes the software, with or without changes,
must pass along the freedom to further copy and change it (Stallman, 2002, p.89).
Lerner and Tyrole (2001, p.821) state that ‘open source software should not be confused
with shareware (which is freely distributed, but whose source code remains
proprietary) and public domain software (which is not licensed and is thus usable by
everyone without constraint).” These arguments insist on the importance of licensing

software which is a way of applying copyrights to a software application.

2.2.2 Patents

May (2006) argues that the choice between proprietary software and free or open
source software is a policy problem that requires urgent attention. The emphasis on
continual innovation in FOSS puts it into direct conflict with the ideologies of
patenting (Chopra & Dexter, 2008). Stallman (2002) claims that intellectual property
laws are a big threat to software development. Copyrights cover the details of
expression of a work, but not ideas; patents only cover ideas and the use of ideas. Thus,
copyrights cover copying only, while a patent is the absolute monopoly of using an
idea (Stallman, 2002). A patent in software is the function of the software that is
protected, even if the actual code has been modified sufficiently to avoid copyright
infringement (May, 2006, p. 131). Since writing software involves a collection of ideas,
patenting ideas would simply make it impossible to write software without
committing a violation. Stallman (2002) elaborates further by saying that a product is
the result of one idea; hence, a patent on a product is applicable to one idea. However,
patenting software obstructs the progress of software development because software is
a collection of many ideas; hence, there is the likely chance of infringing upon many

patents (Stallman, 2002).

16

2.2.3 Licenses

For software to be qualified as FOSS, only its license is important (von Hippel & von
Krogh, 2002). License is fundamental to the definition of FOSS as a significant marker
and required characteristic of Open Source software (Feller & Fitzgerald, 2002).
Bonnaccorsci and Rossi (2003, p.1248) insist that ‘licenses are the most important
institution in the governance structure of Open Source projects.” The FOSS
phenomenon ‘must not be confused with public domain software, which is
unconditionally free and not copyrighted because even users of public domain
software may have access to the program source code’ (Krishnamurthy, 2003, p.47).
Thus, licenses are the key differentiating feature between FOSS and Public Domain
Software (Hansen, Kohntopp, & Pfitzmann, 2002; Krishnamurthy, 2003; Lerner &
Tirole, 2001).

Lerner and Tirole (2005, p.22) categorise FOSS-based licenses into ‘three classes:
unrestrictive, restrictive, and highly restrictive licenses.” An unrestrictive allows
licensees to do anything with their software. Under unrestrictive license, such as a
Berkely Software Definition (BSD) license, taking a FOSS product and turning it into
proprietary software is allowed. A restrictive license requires that when a modified
version of the software is distributed, the source code must be made generally
available (Lerner & Tirole, 2005). An example of a restrictive license is the Lesser
General Public License (LGPL). A highly restrictive license restricts licensees from
mingling their source codes with software that does not employ such a license. Lerner
and Tirole (2005) argue that highly restrictive licenses are sometimes termed
“reciprocal” or “viral” provisions because they require even their respective derivative
software to be licensed under the same license. A good example of such a license is the
General Public License (GPL). The basic concept of the GPL is that software under this
license cannot be taken from the public through proprietary modifications
(Ackermann, 2003). Three key points in the GPL are (1) software object code
distribution must provide access to the source code at no charge; (2) software
derivative works fall under GPL; and (3) subsequent licensors cannot change license

terms (FSF, 2007; Stallman, 2002).

17

In any FOSS-based license, Rosen (2005) argues that the following principles should be
fulfilled: (a) licensees are free to use FOSS for any purpose. This indicates that an open
source licence may not interfere in any way with the use of the software by licensees.
(b) Licensees are free to make copies of FOSS and to distribute them without payment
of royalties to a licensor. However, this principle does not mean that a licensor cannot
sell open source software. It merely says that a licensee need not pay the licensor for
additional copies he makes himself, even if those copies are distributed to others. (c)
Licensees are free to create derivative works of open source software and to distribute
them without payment of royalties to a licensor. This is based on the notion that
quality software is built upon earlier software and promotes the progress of science
and useful arts. (d) Licensees are free to access and use the source code of open source
software. This requires the licensor to make source codes available to licensees upon
request at no cost, not necessarily to distribute the code to everyone. Lastly, (e)
Licensees are free to combine open source and other software. Open source licenses
may not impose conditions or restrictions on other software with which the licensed

software is merely combined or distributed.

Perens (2005) insists that the freedom envisioned in FOSS products provides users with
the option of providing their own support or the economy of a number of competing
support providers. Furthermore, the strength of the FOSS phenomenon is that any
programmer can tailor an open source program to specific markets in order to reach
new customers (Perens, 2005). This is because people who customise and sell FOSS
products are not compelled to pay royalties or licence fees to the original author of the

software (Rosen, 2005).

2.3 Transformation

2.3.1 Bazaar

In explaining the software development process (transformation) in FOSS, Weber
(2003) argues that the standard way of organising the production of proprietary
software has been much like the standard way of building a complex industrial

product; there is a formal division of labour that uses proprietary knowledge, guarded

18

by restrictive intellectual property rights, enclosed within a corporate hierarchy, to
guide and govern the process. However, FOSS is organised differently in that ‘a large
and complex system of code can be built, maintained, developed, and extended in a
non-proprietary setting where many developers work in a highly parallel, relatively
unstructured way and without direct monetary compensation” (Weber, 2003, p. 1). The
generic FOSS development process is characterised as follows (Feller & Fitzgerald,

2002, p. 84):

[It] is parallel, rather than linear; involves large communities of globally distributed
developers; utilizes truly independent peer review; provides prompt feedback to users
and developers contributions; includes the participation of highly talented, highly
motivated developers; includes increased levels of user involvement; and makes use of
extremely rapid release schedules.

This view on the way FOSS development is organised is also shared by other scholars
(Cook & Horobin, 2006; Raymond, 2001; Scacchi, Feller, Fitzgerald, Hissam, & Lakhani,
2006). Raymond (2001) uses the Cathedral and the Bazaar metaphor to represent the
transformation of FOSS, arguing that proprietary software production is like the
carefully planned building of a cathedral, while FOSS production is a chaotic
interaction of participants analogous to an oriental bazaar. This hints at a major
difference between the two types of software development: strong powerful
management on one side (i.e., proprietary) and loosely related developers and users
organised in several thousand seemingly interdependent projects on the other side (i.e.,
open source). The central assumption in the bazaar model is that several talented
developers can successfully work on the same piece of code in parallel without much
coordination, and eventually they will fix a software bug. Raymond (2001) simplifies

the process of resolving software bugs: given enough eyeballs, all bugs are shallow.

In addition to the parallel development approach of FOSS, there is much redundancy
and parallel development. That is, more than one developer works on the same
module of software. Theoretically, this characteristic of FOSS development improves
the quality of products by allowing multiple solutions to the same problem to compete
with each other (Weerawarana & Weeratunga, 2004). The parallel and redundancy
development feature in FOSS is peculiar since it appears to have side-stepped Brooks’

Law, which states that adding manpower to a delayed software project delays it

19

further (Brooks, 1995). That is, FOSS projects leverage the advantages of large numbers

of software developers (Weber, 2004).

The FOSS life cycle differs from the traditional one of planning, analysis, design, and
implementation. Studies indicate that the FOSS development life cycle is located in the
implementation phase, which features submission of source codes; review of source
codes; pre-commit testing of contributed codes; development release; parallel
debugging; and production release (Feller & Fitzgerald, 2002; Weerawarana &
Weeratunga, 2004; Wichmann, 2002). In FOSS, planning, analysis, and design phases
are largely undertaken by the project initiator and therefore may not be part of the
FOSS development cycle. In the other words, all FOSS projects start from the cathedral

phase before they become a bazaar.
2.3.2 Modularity

The specific characteristics of FOSS revolve around the programming languages used,
paradigms favoured by the FOSS development community, the strong modularity
characteristic of FOSS products, and the relative complexity of FOSS products (Feller &
Fitzgerald, 2002). In their study of several open source projects, Feller and Fitzgerald
(2002) conclude that the most common programming language used is C, which is
favoured for most low-level systems programming, but there is an increasing trend of
using Object-Oriented programming languages such as C++ and JAVA, which support
component-based reuse. Other scholars have noted that ‘the object-orientation (OO)
paradigm has increasingly been integrated in computer science education as well as in
a variety of professional practices’ (Kaasboll, Fjuk, Karahasanoc & Groven, 2006, p.
205). Apart from low-level languages and OO, FOSS developers are also making use of
a bootstrapping approach (Ciborra, 2000). Bootstrapping in FOSS is the tendency of
using FOSS products, especially scripting languages and source code management
tools, to develop more FOSS products. Today, Internet applications are on the lead and
scripting languages like PHP, JAVA, and Perl are widely used to develop those

Internet applications.

Weerawarana and Weeratunga (2004) observe that parallel development is a key aspect

20

of the FOSS process and is the result of the highly modular nature of many FOSS
products. Individuals or small groups of developers in a FOSS project work on one
aspect of a large system while others work on another aspect of the system. Thus, each
member of a FOSS project does not need to know everything about the project; instead,
each concentrates on a particular part of the project (Feller & Fitzgerald, 2002). Thus,
modular development is essential for production of this type of software to be
sustained (Camara & Fonseca, 2007). Lack of modularity prevents a large community
of developers from engaging in the project (Sharman & Yassine, 2004). The modularity
in FOSS products also supports re-use of the software source code. An investigation of
many FOSS products reveals that most of the lines of source codes in the majority of
open source projects are taken from the commons of other open source software

projects (von Krogh et al., 2005).

According to Camara and Fonseca (2007), the essential properties of FOSS are the
degree of shared conceptualisation and the degree of modularity. Because of geographical
distance between FOSS developers who work on the same piece of software, a shared
conceptual view of the design of software is of particular importance. Two conditions
are necessary for shared conceptualisation (Camara & Fonseca, 2007, p.124): the post-
mature perspective and the standards-led perspective. In the post-mature perspective,
a private company develops a software product, for which it holds the intellectual
property rights. As the product becomes popular, its functionality and conceptual
model becomes well-established and part of the “public commons.” The popularity
and usability of the software motivates other institutions to develop a public domain
equivalent, as in the Open Office suite. In the standards-led perspective, standards
consolidate a technology and allow compatible solutions from different producers to
compete in the marketplace. Camara and Fonseca (2007) presented an example of the
Portable Operating System Interface for UNIX (POSIX), the popular multitasking,

multiuser operating system standard for operating systems, which has guided Linux.

This view of shared conceptualisation in FOSS is also noted by other authors, who note
that the bulk of FOSS products belong to software engineering domains, where the

general requirements and the architectural reference models are well-known and

21

accepted (Feller & Fitzgerald, 2002). Since many FOSS projects, especially the
infrastructure-based applications (operating system, database management systems,
and server side applications), are implementations of complex but well-understood
specifications, modularity facilitates the distributed, parallel process, and the
software’s complexity represents an attractive challenge for the FOSS programmer
(Feller & Fitzgerald, 2002). This is to say, because of modular architectures and
decentralised parallel development in FOSS projects, geographically distributed

developers find it easier to contribute to these projects.

2.3.3 Tools

One more compelling feature of the FOSS development process is the tools used. Since
FOSS development is described as an oriental bazaar (Raymond, 2001), no one knows
the source of feedback and/or contributors. In this case, configuration management
tools are very important. According to Fogel (2006), Concurrent Versions Systems
(CVS) is the most common tool used for configuration management. CVS simplifies the
process of incorporating changes to the repository and gives anonymous read-only
access to a project’s source code repository (Fogel, 2006). According to Feller and
Fitzgerald (2002), developers are working in parallel with no formal division of labour,
and the use of CVS enables them to download the source codes with a single

command.

2.3.4 Communities

The structure of FOSS communities could be analysed along the dimensions of division
of labour, co-ordination mechanisms, distribution of decision-making authority, and
decision-making boundaries (Nohria, 1995). The norm is modesty and self-deprecation
on the part of developers because contributions from others drive the entire FOSS
model (Wichmann, 2002). Most FOSS activities take place online and thus ‘the Internet
is the primary enabler of the FOSS development and distribution process, making it
possible for widely distributed groups to share ideas and software extremely quickly at

negligible cost’ (Feller & Fitzgerald, 2002, p. 126). E-mail, mailing lists, discussion

22

forums, and collaborative websites are among the tools used. Thus, FOSS development

discussions are conducted on e-mail, mailing/forums, and websites.

Feller and Fitzgerald (2002) recognise that FOSS development can take place ‘offline,’
arguing that ‘in many ways, face-to-face community is re-emerging, and although
much FOSS activity occurs in virtual spaces, there is an increasing amount of “real”
world activity as well” (p. 129). They argue that there is an increasing number of co-
located teams for FOSS development, especially in large companies such as Red Hat
and IBM (Feller & Fitzgerald, 2002). For them, while online communities are bounded
by interest, offline communities are often geographically bounded and are the result of
seeking closed-look control of the development process (Feller & Fitzgerald, 2002). This

implies that co-located development of FOSS is not due to a lack of resource and skills.

Again, although FOSS development is represented as the chaotic activity in an Oriental
bazaar (Raymond, 2001), several studies show that many FOSS projects somehow have
strict controlling and coordinating mechanisms. The study by Bonaccorsi and Rossi
(2003) concludes that in a FOSS project there is a well-respected leader or core
development group where 10% of developers write more than 70% of the software
source code. A study of the Apache project reveals that 15 developers contribute
almost 90% of the code (Mockus, Fielding, & Herbsleb, 2000). Another study concludes
that 10% of 2,784 developers make up almost three-quarters of the software source
code of a specific FOSS project (Ghosh et al., 2002). This suggests that in most FOSS
projects, the decision maker with the final say about project development relies on a
small number of developers who are team members with technical skills, sometimes

referred to as ‘benevolent dictators” (Bezroukov, 1999).
2.4 Economics

Lerner and Tirole (2000) asked why a person would take the time to write complicated
software programs for free given economic theories. They suggest that FOSS brings
developers specific, tangible, and favourable economic benefits that are sensible and
quite lucrative. Sauer (2007) study offers similar conclusion, though it suggest more
data are need to explore the issue. There are both immediate and delayed benefits.

Immediate benefits include monetary compensation and the opportunity to fix bugs

23

and customise a program for the developer’s own use. The delayed benefits include a
signalling incentive (which promises future jobs) and ego gratification (peer

recognition) (Lerner & Tirole, 2000).

FOSS is a peculiar way of realising software products because the software source
codes (the core innovation of the software) are freely revealed so that others may use
them, learn them, and perhaps improve them (von Hippel & von Krogh, 2006).
Through the discussion on copyrights and patents, it is clearly demonstrated that FOSS
goes against the traditional ideas of intellectual property rights on software. The
tendency to spend countless hours developing valuable software, only to give both it

and software codes away, can be better conceptualised through economic perspectives.

2.4.1 Private Investments

Traditionally, there are two types of investment models of innovation: private and
collective (von Hippel & von Krogh, 2006). In the private investment model of
innovation, individuals or organisations invest in the development innovation if they
foresee private rewards. In this model of innovation, ‘manufacturers rather than
product users have traditionally been considered the most logical private developers of
innovative products and services because private financial incentives to innovate seem
to be higher for manufacturers. This is because a manufacturer has the opportunity to
sell to an entire market place of users’ (von Hippel & von Krogh, 2003, p.214). Since
innovation requires a significant investment, manufacturers want to protect their
innovations through the intellectual property rights structures such as copyrights and
patents. Now, when private innovators reveal their development without
compensation, this action simply represents a loss of potential returns, something
which should be avoided. In most cases, FOSS initiatives are funded by individuals
and organisations and are thus compatible with the private investment mode of
innovation. However, the FOSS phenomenon deviates from the private investment
model of innovation by going against intellectual property rights. Furthermore, the
software developers, who are also the main users, are the pioneers of the innovation

process, a situation which is the opposite of the traditional manufacturer and user

24

relationship. In addition, although innovations are funded by individuals, the resulting

products are revealed freely.

2.4.2 Collective Investments

The FOSS phenomenon is conceptualised as a novelty technology for producing
software which represents a new model of production in the form of commons based
peer production and is a critique of existing laws, contracts, and business practices
(Kelty, 2001). This model assumes that ‘innovators relinquish control of knowledge or
other assets they have developed to a project and so make them a public good in order
to avoid social loss associated with the restricted access to knowledge of the private
investment model” (von Hippel & von Krogh, 2006, p.302). FOSS as a public good has
the features which are core characteristics associated with classical physical public
goods (Marwell & Oliver, 1993): (a) software can be copied and used by many people
simultaneously; use by one individual does not limit usage by another. (b) Each user
has his or her individual copy with the right to modify and distribute. (c) Most FOSS
licences, e.g., the GPL, do not allow any single user to take away usage rights from
other users. (d) Like any public good, FOSS has the free rider phenomena, meaning
that many individuals acquire and use the software without contributing to the
respective software project. Furthermore, FOSS is developed through collective action

by numerous individuals

Fulk and others (1996) put forward that communality and connectivity are additional
characteristics of public goods with interactive communication systems nurture;
software applications are an interactive communication system. FOSS projects use
webpages, frequently asked questions, and bug tracks to share knowledge about the
project. Since these documents are freely available online, they fulfil the communal
requirements for an interactive public good. Connectivity refers to the ability for a
member to communicate with any other member (Fulk et al., 1996). E-mail lists and
discussion forums fulfil this capability; as a result, there is very little cost to

communicate directly to any member of a FOSS project.

Since public goods exhibit free rider characteristics, where a member of society can use

25

a public good without contributing back, this model of innovation suffers from the
problem of recruiting and motivating contributors. To address the recruitment
problem, selective punishment or incentives are necessary. However, selective
punishments and reward mechanisms work well in smaller groups of society
(Friedmann & McAdam, 1992). An alternative solution is to state the goal of the project
clearly so that it attracts potential contributors (Taylor & Singleton, 1993). Thus, the
collective investment model of innovation recommends a small group of society
members who lead innovation practices. However, the FOSS phenomenon is
characterised by many geographically distributed developers (Feller & Fitzgerald,
2002). Benkler and Nissenbaum (2006) add that FOSS is a good example of common-
based peer production. This again disputes the notion that a small sect of society is the
best way of organising a collective investment model of innovation. The goals for
developing software are very diverse; some are based on technology, some on
ideology. For example, Stallman (1999, p.64) argues that GNU software was developed
in order to have a complete free open system. This is contrary to other proponents of
FOSS, who claim that good software starts by scratching a developer’s personal itch
(Raymond, 2001), suggesting that FOSS products are the result of impulses. Thus,
although FOSS products fit well as interactive public goods, the process of developing
them deviates from the collective investment because of the large number of
developers involved and the diversity of various goals and motivations for

participating in FOSS projects.

2.4.3 Private-Collective Investment

Free revealing has been practiced in many cases. One attempt to study why innovators
decide to reveal their innovation freely is the study of von Hippel and von Krogh
(2006), which concludes that free revealing is the best practical option available when
others know something close to their secret, when profits from patenting are low, and
when incentives for free revealing are positive. These insights lead to a hybrid
investment model of innovation labelled the “private-collective investment model of
innovation” (von Hippel & von Krogh, 2003; 2006). The model gives explanations for

the free revealing practice in FOSS. Although there is a higher rate of private

26

investment, resulting software is freely revealed because an individual’s benefits in
FOSS have been tied to participation in communities surrounding the project, which to
a large extent outweighs individual rewards from the collective good being jointly

developed (von Hippel & von Krogh, 2006).

2.4.4 Business

The FOSS-oriented business models rely on shifting the commercial value away from
the actual products to services such as systems integration, user support, tutorials, and
software documentation (Riehle, 2007). There are two varieties of FOSS business
models: (a) distribution and retail of FOSS products and (b) offering of FOSS-related
services (Ghosh et al., 2002; Riehle, 2007; Schmitz, 2001; Weerawarana & Weeratunga,
2004; Wichmann, 2002). Individuals and companies who develop FOSS could give
away their software products and concentrate on making profits with related services
and supports. That is, their business is based on the knowledge gained in developing
the software and their popularity as the original author. With this model of not
focusing on the selling price of the software but on its related products, known revenue
related activities include: Software Distribution — even if users can download a particular
software, distributors make life easy for users who are willing to pay a small amount
for comfortable access to the software. User Support — users can subscribe to support
services such as disaster recovery, backups, training, and bug fixing. Information — there
is a business for publishing books, magazines, news tutorials, and software manuals on

respective FOSS products.

On the consumer side, the total cost of ownership of software may cover not only the
selling price of the software, but also any cost that is incurred by the decision to install
the software in the organisation (Evers, 2000; Samuelson, 2006). While in the
proprietary software market nothing is free, in FOSS it is possible to purchase and
update software free of charge. The total cost of ownership (TCO) in FOSS is in most
cases less than that of proprietary software. However, users of FOSS products are
likely to pay for the following activities: purchase - the selling price of the software;

system setup — a budget for additional hardware and software may be required to

27

facilitate smooth running of the software; user training - training users in additional
skills is costly; user support - in the event the training does not deliver all required skills
to users, additional support costs are required; updates - after a system is put into use,
software updates might be required to fix bugs and introduce new features, and the

users may be charged.

Riehle (2007) argues that the price of proprietary software does not directly depend on
the actual cost incurred to develop, maintain, and provide the software. This is because
while the cost of developing a FOSS product is the same as in proprietary software, in
FOSS, the total cost of software development is a result of shared costs from different
contributing developers (Riehle, 2007). Since different developers have different
development costs depending on their contribution, those with low investments sell
the resulting FOSS product at a low cost. In a FOSS product, usually there are no fees
associated with using the system, and there is competition between service providers
to provide the best and most cost-effective support. Service providers are more readily
available because the source code enables those with knowledge on how the software
was built to identify exactly what processing is performed by the system (Weber, 2004;

Weerawarana & Weeratunga, 2004).

There are many critiques of this novelty claims about FOSS (Fitzgerald, 2005; Glass,
2005). Some authors suspect that trade secrets can actually be hidden and used to
generate large amounts of income as if royalty payments were allowed (Chiao, 2003).
Original developers can hide trade secrets by providing partial software
documentation, making slow software downloads, and lengthening the time needed to
publish links where the software can be downloaded (Chiao, 2003). Whether deliberate
or unintentional, FOSS products are not readily available to average users.
Weerawarana and Weeratunga (2004, p. 24) state why: ‘due to the focus on system
function and code quality rather than ease-of-use, classic FOSS is typically not suitable
for use by average developers and most certainly not by average users. Distributors
address this gap by packaging quality FOSS in a manner that is much more widely

accessible to the user community.’

28

2.5 Motivations

Although the private-collective investment model of innovation offers good
explanations for why FOSS practices enable new knowledge to be created by private
funding and then offered freely to the public (von Hippel & von Krogh, 2003), some
scholars have attempted to find the motivation behind why thousands of software
developers contribute freely to the public good (see e.g., Lerner & Tirole, 2000).
Dedrick and West (2003), who conducted a study on the adoption of Linux in firms,
state that major motivations for firms to adopt FOSS products include low total cost of
ownership, compatibility with current technologies and skills, and the availability of
external technological resources. Other authors cite creativity and reputation as
incentives for individuals to participate in FOSS development (Bezroukov, 1999;
Raymond, 2001). Wichmann (2002) identifies four motivations for firms to participate
in FOSS related activities: standardisation to overcome the ghost of the Unix wars;
reduction of costs through low-cost open source components; compatibility; and
strategic consideration, for example, to release software as open source to weaken a
competitor. Furthermore, a growing number of programmers develop FOSS as part of
their primary, paying jobs (Feller & Fitzgerald, 2002). In a survey on the use of FOSS in
Europe, it was found that most FOSS developers receive some monetary reward for
their work (Ghosh et al.,, 2002). The study by Ghosh and colleagues (2002) put the
numbers as follows: 71% of FOSS developers seek to increase their skills, while 43% of
the developers want to gain a reputation or increase their job opportunities. Feller and
Fitzgerald (2002) propose three broad motivational areas behind participation in FOSS:
technological, economic, and socio-political. The motivation factors in each category

are summarised in Table 2.1.

Table 2.1: Motivations for FOSS

Micro Level (Individual) Macro Level (Organisation)
Technological To meet a personal To address the software crisis —
Motivations technological need particularly poor quality
To exploit the efficiency of | To share tedious development tasks
peer review, etc. (testing, documentation) with users
To work with ‘leading- To leverage FOSS community for research
edge’ technology and development

To promote innovation

29

Micro Level (Individual) Macro Level (Organisation)
To ensure transparency of the application

To gain future career To exploit investors’ infatuation with
benefits FOSS

To embrace the paradigm shift from
To improve coding skills software as a commodity industry to a

consumer-driven service model

To “strike it rich’ through

Economic .
stock options, etc.

Motivations

To raise mind share and strengthen brand

To exploit indirect revenues from selling
related products and services

Low opportunity cost — To make software affordable in

nothing to lose developing countries

To cut costs — cheaper platform than
proprietary alternative

Ego gratification and Social movements require an enemy —
signalling incentives e.g., Microsoft

Intrinsic motivation of

Socio-political Overcomes “digital divide’

e . coding
Motivations :
Sense of community Ideology — software must be free
. Model for wider domain — future model
Altruism

for work

Table adopted from Feller & Fitzgerald (2002, p. 139)

Similar findings were identified in Rossi (2006). Lakhani and Wolf (2005, p. 18) contend
that “developers feel a high degree of personal sense of creativity with regard to their
FOSS projects. That sense of creativity in projects is underscored by three main drivers:
(1) enjoyment-related intrinsic motivations, (2) extrinsic motivations in the form of
payment, and (3) obligation/community-related intrinsic motivations.” According to
this study, use of the created output is one of the three most important incentives
inducing developers to innovate. Von Hippel (2005) insists that many innovators have
a use-incentive for innovating in FOSS projects. For example, contributors of source
codes to open source projects agree that facilitating their own work is a motivating

factor (Hertel, Niedner, & Herrmann, 2003).

2.6 Stakeholders

Four major groups of stakeholders were identified to be ‘developer communities, user
communities, commercial, and non commercial organizations’ (Feller & Fitzgerald,
2002, p. 107). However, these groups are far from mutually exclusive, in that many

FOSS users are also developers and many developers are users. Also, commercial and

30

non-commercial organisations both develop and use FOSS products. Feller and
Fitzgerald (2002) nevertheless identify distinguishing characteristics of each group and
the way each group acts at different times as clients (beneficiaries), actors (agents of

change), and owners (decision makers).

Table 2.2: FOSS Stakeholder Groups

as CLIENT as ACTOR as OWNER
Act as the main Exhibit prime concern for
Regularly use FOSS | implementers of the systems direction, but
Developers products to support | changes in systems, do not necessarily possess
development both in proactive and | the power to terminate the
reactive mode system
Can use FOSS as a
Boihdhisaiy and black box, or actually | Have as Tnuch claim to
e make changes. Can ownership (not
Users indirectly use FOSS k
also effect change authorship) as the creator
products
through bug of the software
reporting, etc.
Have been the most
enthusiastic Assert control over
Act as both direction of branded
. adopters of FOSS, . o
Companies . implementers and distributions, but not
and in many cases .
. patrons of change necessarily over actual
showcase their use roduct
of FOSS products p
Non-profit .Use FOSS products Organise efforts of Often assert hlgh-est lgvel
.. in the same way as of control over direction
organisations . developers .
companies and future of projects

(adopted from Feller & Fitzgerald, 2002, p. 124) The shaded cells indicate the primary
role(s) played by the stakeholder group.

The structuration analysis of stakeholder groups sheds light on the sustainability
strategies of FOSS initiatives. For example, companies play roles both as ‘Client” and as
‘Actor,” which means there is a need to strengthen companies (especially private
companies) in order to produce and support FOSS products. Underperformance of the
private sector hampers the development and support of FOSS. Non-profit
organisations are mostly the owners of FOSS products. This group of stakeholders

includes universities and non-government organisations (NGOs).

31

2.7 FOSS in Developing Countries

2.7.1 Motivations

The European information society reports that, open software in many cases are
equivalent to - or better than - commercial products. Therefore, procurement of
software shall evaluate open software as well as commercial solutions, to provide
better competition in the market (Europa, 2003). Developing countries and their donor
partners are urged to review policies for procurement of computer software to ensure
that options for using low-cost FOSS products are properly considered and their costs
and benefits carefully evaluated (Barton et al., 2002). Three factors stand out when
asking why developing countries should choose FOSS: cost, the anti-piracy campaign,
and security concerns (Camara & Fonseca, 2007; May, 2006; Noronha, 2003; Weber,
2003; Weerawarana & Weeratunga, 2004). The dominant factor is the lower cost. It is
true that a large number of users in developing countries do not, and, more
importantly, cannot really pay for software because of the high price of proprietary
software compared with the average incomes (May, 2006). For example, it is estimated
that sub-Saharan African countries spend US$ 24 billion each year on proprietary
software (FOSSFA, 2004). Not only does FOSS reduce software licensing costs but it
also fosters indigenous technological development by giving access to the source code
of software products (Camara & Fonseca, 2007; UN, 2004; Weber, 2003; Weerawarana
& Weeratunga, 2004).

Other reasons for the adoption of FOSS in developing countries include avoiding being
locked in to proprietary software (UN, 2004), advancing knowledge more quickly, and
helping to set up an information economy (Weerawarana & Weeratunga, 2004). In the
case of education in computer sciences, FOSS provides unrestricted access to the source
code, an environment of unlimited experimentation and collaboration, and interaction
with a community of programmers, coders, and users around the world (Noronha,

2003).

A UK based Commission on Intellectual Property Rights advises that developing

countries criticise and boycott proprietary software licences. The commission argues

32

that

The Internet users in the developing nations should be entitled to “fair use” rights such
as making and distributing printed copies from electronic sources in reasonable
numbers for educational and research purposes, and using reasonable excerpts in
commentary and criticism. Where suppliers of digital information or software attempt
to restrict “fair use” rights by contract provisions associated with the distribution of
digital material, the relevant contract provision may be treated as void. Where the same
restriction is attempted through technological means, measures to defeat the
technological means of protection in such circumstances should not be regarded as
illegal. (Barton, 2002, p.109)

In particular, says the commission, developing countries should allow their citizens to
circumvent copyright protection mechanisms and should not follow the example of the
US and the EU by enacting laws that ban such practices (Loney, 2002). In arguing why
Peru should consider FOSS over proprietary software, a member of Congress in Peru
said
To guarantee free access by citizens to public information, it is indispensable that the
encoding of data not be tied to a single provider; the use of standard and open formats
guarantees free access; to guarantee the permanence of public data, the usability and
maintenance of the software should not depend on the goodwill of suppliers or on
monopoly conditions imposed by them; and to guarantee national security, the state
must be able to rely on systems without elements controlled from a distance. Systems

with open-source codes allow the state and citizens to inspect the codes themselves and
check for back doors and spyware. (Villanueva, 2002)

This demonstrates that countries have been keen to disengage from their reliance on a
single IT supplier, who may not be interested in the country’s ICT strategy, and to
avoid a supplier lock-in situation. Weerawarana and Weeratunga (2004, p. 28)
conclude that ‘with the use of FOSS, support and maintenance can be freely contracted
out to a range of suppliers competing on quality and low cost for installation, enabling,
support, and maintenance. Maintenance is further replicable without incurring large
costs, since modifications to the source code are also free.” As Berry and Moss (2006)
argue, the discourse and practice of non-proprietary software contribute to opening-up
and democratising e-government by protecting and extending transparency and
accountability in e-governments and by allowing technology to be shaped by citizens

and associations, as well as by administrators and private interests.

33

2.7.2 Constraints

There are many challenging issues regarding the implementation of FOSS in
developing countries. Fitzgerald (2006) presents a long list of constraining issues and
argues, essentially, that FOSS as an ideology needs to be supported by alternative
organisational forms and business models that would allow effective implementation,
and policies need to be established to enforce FOSS-based licences. There is limited
technical capacity to deal with FOSS development and support (Fitzgerald, 2006); the
situation is much worse when dealing with applications for health and education
information systems. Furthermore, the capacity of universities and technical
institutions in developing countries needs to be strengthened in order to improve the
ability of IT professionals to deal with FOSS technologies (Fitzgerald, 2006). Kshetri
(2004) studied the macro and micro economics on choosing Linux in developing
countries and found that the microeconomics factors include ownership, effective use,
learning/switching, and compatibility. The macroeconomics factors are national
security and enforcement of intellectual property laws. However, the negative effects
of choosing Linux in developing countries include ‘lack of supports to deal with
security vulnerabilities, costs of supporting custom changes can escalate dramatically
over time, higher learning and switching costs, and incompatibility between business

partners’ technologies’ (Kshetri, 2004, p. 76).

Weerawarana and Weeratunga (2004, p.35) propose that in order for FOSS initiatives to
proceed, certain IT infrastructural and skills conditions need to be met. These
requirements include: intellectual property law framework and enforcement, low cost
and widely available Internet access, educational infrastructure, freedom of
information, skilled English speaking developers, and a trained developer pool
(Weerawarana & Weeratunga, 2004). Their argument is that without working
intellectual property laws, the high rate of pirating proprietary software would reduce
its price and devalue FOSS products. The concept of low cost would not be seen as a
significant motivation for going FOSS. As FOSS development occurs primarily via the
Internet, lack of high-bandwidth would severely limit the ability of individuals and

companies to participate in FOSS projects (Weerawarana & Weeratunga, 2004).

34

In Tanzania the most economical internet connection for home user and small business
is 512kbps uplink and 2048kbps downlink (Sheriff, 2007), which is basically not
sufficient for downloading large files. At the time of writing, the list price for this
cheapest internet connection for home and small offices in Tanzania is TZS 95 per
megabyte (TTCL, 2007). This implies that to download one CD of 600MB it costs TZS
57,000/= (~USD 48). However, the average net pay salary for IT professionals (at the
time of writing) is TZS 250,000 (~USD 210) and thus the cost for downloading a CD is
at 22.8% of their salary scale. It is obvious that internet access is expensive for
individuals to invest on their own in order to develop a public good, the FOSS

products.

In arguing for education infrastructure, Weerawarana and Weeratunga (2004)
highlight that IT education infrastructure must be widely disseminated if FOSS
adoption should take place. Furthermore, higher level institutions that teach software
development are also critical. A culture of learning and further development of the
workforce would help with faster and wider FOSS adoption (Weerawarana &
Weeratunga, 2004). In terms of a trained developer pool and English-skilled
developers, the authors note that success in FOSS development comes from having
skilled developers and that English undoubtedly remains the lingua franca of
computing. These arguments clearly unpack the challenges developing countries face
in making FOSS implementation possible. However, there are some proposed

strategies for approaching FOSS in developing countries.

2.7.3 Strategies

Weber (2003, p.13) argues that ‘the vast majority of open source projects involve a
small number of developers. These projects typically depend on intensive
communications and the persuasiveness of the “de facto” project leader to coordinate
the work of the group.” According to Weerawarana and Weeratunga (2004), this is
because ‘what matters is not size (in terms of the number of software engineers);
instead, what matters is that there is a dedicated, highly skilled and fully committed

team of developers to contribute to and lead key open source projects” (p. 95).

35

However, research on FOSS in developing countries suggests that the view of FOSS as
a product of a team of committed individuals is not realistic (Camara & Fonseca, 2007).
Large, collaborative, networked teams are responsible for a small number of FOSS
products. Camara and Fonseca (2007) conclude that FOSS in developing countries
needs strong and wise government policies to be successful. It requires a combination
of institutional vision, qualified personnel, strong links to the user community, and
government-funding to be viable. The high level of expertise required to develop and
maintain FOSS projects requires that policy makers provide for significant investments

in human resources (Camara & Fonseca, 2007).

Camara and Fonseca (2007, p.125) delineate four types of FOSS development: (a) high
shared conceptualisation, high modularity (the high-high case), which represents
community FOSS products such as Linux; (b) high shared conceptualisation, low
modularity (the high-low case), which represents corporate-led products such as
databases, web servers, and office automation tools; (c) low shared conceptualisation,
high modularity (the low-high case), which represents the academic-led projects; and
(d) low shared conceptualisation, low modularity (the low-low case), which is the case
for innovation-led projects. They argue that developing countries could handle the
high-high case, for these systems have a sustainable community. In the high-high case,
such as Linux operating systems, developing countries need to invest in capacity
building, documentation, and user training in order to increase the chances of

successful adoption (Camara & Fonseca, 2007).

However, FOSS products in the high-low case are associated with private companies;
hence, the users may become dependent on the private company. However, the
authors propose that governments or government agencies should actively take part as
stakeholders of such projects. When dealing with the low-high case, the authors argue,
governments of developing countries would need to invest significantly in human
resources; and when dealing with the low-low case, governments should ensure that
locally developed FOSS products have enough support to become more sustainable

(Camara & Fonseca, 2007).

36

2.8 Conclusion

This chapter delineated the FOSS phenomenon. FOSS is different from proprietary
software in terms of its “copyleft” approach to intellectual property rights, its bazaar
model of software development, and its free revealing economic practice. Specifically,
this thesis highlighted the concepts discussed here to reflect the reality in Tanzanian

context, as indicated in Table 2.3.

One of the Ujamaa policy assertions is in order to develop; we need four things in
place: people, land, right politics, and right leadership (Nyerere, 1968). In this Ujamaa’s
economic equation, we have few options to manoeuvre on people and land. However,
we can improve this equation dramatically by having the right politics and the right
leadership. In the FOSS phenomenon, project organisation and leadership are
important elements that could foster the realisation of FOSS-based projects. The more
we implement the right project organisation according to the context of a developing
country, the more we can increase participation of various relevant stakeholders and

overcome constraining issues in FOSS development.

Table 2.3: Core FOSS Concepts Informing the Thesis

FOSS Concept Description and proposed extensions

M In order for a software to qualify as a FOSS product, it must be
flagged a license which fulfils the requirements stipulated in the
Open Source Definition or the Free Software Definition.

A FOSS license requires that in order for users to acquire the kinds

of freedom envisioned, software must be distributed with its source

code.

M Selling a FOSS product is acceptable as long as the software is
distributed with its source codes.

i Proposal: license for software as a service delivery. In information
systems, users are non-programmers and they are interested in their
data in the information systems. A kind of freedom that argues for
the data is more important than having access to the source codes.

N

Licenses

i FOSS fall under the private-collective investment model of
innovation in that individuals fund the development privately but
release their innovations in the public domain.

M Like the Ujamaa policy, which advocates equal rights, equal
opportunities, and the economy of reciprocity, a FOSS license argues
no discrimination against persons and can be used in any human
endeavour.

i Proposal: In a context where there is compatible political history,
like the Ujamaa policy, the FOSS phenomenon could have
immediate positive reception.

Economics

37

FOSS Concept

Description and proposed extensions

Transformation

%]
%]

|

i}

FOSS development takes place online (internet is the enabler)

FOSS development takes place off-line when there is a need to
control the process of development, as in large organisations.

CVS and Object-Oriented technologies (which support modularity)
are the appropriate technologies in FOS development.

Proposal: co-located development. In a developing country like
Tanzania, internet is a limited and expensive resource. Moreover,
competence with object-oriented is hard to find, and most
developers do not own their own working tools such as computers.

Stakeholders

&l

Identified stakeholders are users, developers, companies, and non-
profit organisations.

Proposal: donors and governments. In a developing country like
Tanzania, donors and governments are the main source of funds and
the most likely customers of FOSS.

As my study focuses on the use of FOSS applications in information systems,

“transformation” and “stakeholders” are relevant key concepts. Transformation related

perspectives focus on how to approach open source as a product as well as a process of

realising products. Likewise, the stakeholders’ discussion informs relevant participants

and their roles in open source development. In order to make FOSS development work

in the information systems context of a developing country like Tanzania, focus should

be on both improving the process of developing FOSS and increasing participation

from various stakeholders. In other words, we need to re-organise the FOSS

development in order to encourage people to participate.

38

CHAPTER 3: INFORMATION SYSTEMS IN DEVELOPING COUNTRIES

This chapter consists of five sections. The first section presents the ‘design-reality’
archetypal situations attributed to the cause of failure of ICT initiatives in developing
countries. In the second section is a technological determinist perspective, which
assumes that technology is passed on in a neutral society. This technological
deterministic perspective fails to account for the influence of society while introducing
technological change. The third section introduces ANT, which helps to inform
progressive and degenerative networks formed by human and non-human actors. In
contrast to the technological deterministic perspective, ANT recognises the roles that
can be played by both human and non-human actors. The fourth section, technology
translation, presents a more refined perspective: the introduction of technological
change is affected by both the technology characteristics and the process of introducing
change. The last section is an attempt to synthesise the discussed theoretical

perspectives as a proposal for the theoretical framework of the thesis.
3.1 The Design — Reality Gaps

The importance of ICTs in developing countries has been emphasised. Castells (1998)
argues for using ICT to foster knowledge and information society. "The ultimate
objective is a knowledge and information society, one with the ability, capacity, and
skills to generate and capture new knowledge and to effectively access, absorb, and use
information, data, and knowledge with the support of ICTs” (Castells, 1998, p.92). The
argument is that ICT can allow developing countries to leapfrog traditional problems
of development like poverty, illiteracy, disease, unemployment, hunger, corruption,
and social inequality (Keniston, 2002; Musa et al., 2005). Generally, ICT is seen as an
enabler for knowledge revolution because ICT is an effective tool for creating,

disseminating, storing, and managing information.

However, there are many challenges faced by developing countries in implementing
ICTs in information systems. The evident picture of large failure cases of ICT initiatives
(Bhatnagar, 2000; Bhatnagar & Bjern-Andersen, 1990; Heeks, 2002; 2003) demonstrates

how challenging it is to implement ICTs in the context of developing countries. The

39

Ciborra and Nevarra (2005) study on e-government implementation in Jordan
concludes that it is difficult to implement ICTs in developing countries because of the
characteristics of the local administration, the socio-economic context, and the
dynamics of the technological infrastructure. To explain the underlying causes, Heeks
(2003) argues that there are gaps between information systems design and its reality of
use known as ‘design — reality gaps’. Thus, even if developing countries turn to FOSS
products, the design reality gaps make sense because FOSS implementation in
information systems is nothing but a technological change initiative riddled by socio-
technical issues. However, the design-reality gaps vary from technology to technology

due to technological characteristics and its implementation strategies.

Heeks (2003) refers to three archetypal situations in which failures are likely to occur.
Those situations are hard — soft gaps, private — public gaps, and country context gaps.
Although Heeks’ study focuses on e-government initiatives, the design-reality gaps
apply to these case studies, which took place in the public sector and involved the

implementation of ICTs in information systems of a developing country, Tanzania.

The hard-soft gaps address the difference between the notion on ICT in terms of
machinery and engineering, rationality and objectivity (the ‘hard” factors) and the ‘soft’
factors such as people, politics, emotions, and culture (Heeks, 2003). The hard-soft
archetypal situation illustrates that information systems fail when individuals ignore
the “soft’ (human issues) during the design of an information system project (Heeks,
2003). Madon (2004) underscores that ignoring available resources, skill-levels, values,
beliefs, and motivations of those involved in the project lead to project failures. Dada
(2006) insists that lack of training, skills, and change management efforts in ICT
initiatives escalate the failure rates because they create a wide gap between the

technology itself and the context within which it exists.

The private — public gaps are concerned with the difference between private and public
sectors in that an information system designed for the private sector cannot work out
of the box in the public sector context (Heeks, 2003). The private — public gap problem
is associated with the public sector’s non-competitive rate of pay as compared to the

private sector (Dada, 2006). In the public sector, the recruitment of high quality IT

40

professionals is low (Ciborra & Nevarra, 2005; Nfuka, 2007), a situation which leads to
the need for outsourcing IT solutions from the private sector. However, when a system
developed for the private sector is adopted in the public sector, there is always a clash

of culture and values (Heeks, 2003).

The last archetypal situation, country context gaps, exists when an information system
developed for a developed country is implemented in a developing country (Heeks,
2003). Dimensions of this archetypal deal with the situation of technology transfer
(Avgerou & Walsham, 2000), when a solution developed for a developed country is
used as it is in a developing country context. Gaps arise due to differences in working
cultures, skill sets, access to technology, and relevant technological infrastructure

(Heeks, 2003).

The discussion on design — reality gaps reveals that technology transfer (Avgerou &
Walsham, 2000) initiatives in developing countries do not account for the influence of
the local context. However, the characteristics of the technology itself may exacerbate
the tendency to ignore the local context. For example, if a technology ships with laws
that restrict others from touching it, or if some secrets that would support participation
of the indigenous are hidden, it distances itself from the local context. In ICT initiatives,
proprietary software has many restrictions. In contrast, FOSS promises much freedom
that would encourage higher participation of local developers and addressing the ‘soft’
issues. However, the question now is, as Chopra and Dexter (2008) have put it, how to
decode the FOSS liberation in the context of information systems in developing

countries.
3.2 Diffusion of Innovation

A dominant perspective for analysing technology transfer is the Diffusion of
Innovation (Rogers, 2003). It is a technological deterministic perspective, which maintains
that the spread of technology and routines from developed to developing countries or
within the developing countries have a predefined effect on an organisation or
community (Avgerou & Walsham, 2000). This dominant perspective conceptualises
technology transfer as a process by which an innovation is communicated through

certain channels over time among the members of a social system (Nhampossa, 2006).

41

However, the technological deterministic perspective has been criticised because it fails
to account for heterogeneous technological innovations like ICTs, since it considers
technology as a material object lacking the social element (Lyytinen & Damasgaard,
2001). This perspective ignores social problems like politics, power, skills competence,
culture, and lack of capital among the potential adopters of the innovations

(Nhampossa, 2006), which are fundamental issues widening the design-reality gaps.

Daly (2002) points to the special problems developing countries face in adopting ICTs:
‘most...hardware, software, and applications are for developed country markets, but
are frequently used with little adaptation, and sometimes carry unexpected cultural
baggage’ (p.236). Furthermore, the sectoral context, where ICT is adopted, is important,
because some sectoral components, such as the financial services sector, lead in the
application of ICTs (Avgerou & Walsham, 2000). In developing countries, the health
and education sectors lag behind (Asangansi et al., 2008). Implementing ICTs in
education and health sectors is difficult because of strong links to and dependencies on
other sectors. As Ciborra and Nevarra (2005) note, there is a scarcity of IT professionals
in government dependent sectors; thus, successful implementation of ICTs depends on
outsourcing IT professionals. The technological deterministic perspective falls short in
addressing the importance of creating alliances between human and material objects as
networks around technological change. Actor-network theory (ANT) suggests that
technologies do not pass through a neutral social medium (Latour, 1987). Technologies
are in the hands of people who can appropriate it in the society (Latour, 1986).
Technologies are continuously shaped and reshaped by the interplay of a range of

heterogeneous forces within the networks (Bijker, Hughes, & Pinch, 1987).
3.3 Actor-Network Theory

In this study, ANT is an appropriate framework because it has a dense literature of
work explaining, critiquing, developing, and applying the theory, and it covers
important limitations of the technological deterministic perspective. In the next
sections are the two fundamental concepts of ANT that were useful in this study. These

are the translation process and network analysis model.

42

3.3.1 Power and Translation

While power is always assumed with authority, in ANT, power is understood as a
consequence and not as cause of collective action (Stanforth, 2006). Callon (1986)
presents the translation model of power as a successful command resulting from the
actions of a chain of agents, each of which translates it according to their objectives.
Those who are powerful are not those who hold power in principle, but those who
practically define or redefine what holds everyone together in a group (Sanforth, 2006).
In each group, “you have to have spokespersons which speak for the group existence ...
defining who they are, what they should be, what they have been’ (Latour, 2005, p.31).
Thus, power is not a cause of people’s behaviour, but a consequence of an intense

activity of enrolling, convincing, and enlisting actors (Stanforth, 2006).

In ANT, actor network is configured and built over time through the enrolment of
allies (both human and non-human) by means of the process called translation (Callon,
1986). During the creation of the networks, innovators attempt to create a forum, a
central network that all actors agree is worth building and defending. Latour (1987,
p-132) explains the translation process: ‘it occurs as actors enrol allies in the actor
network and align their interests in a continuous process of renegotiation, where
claims become well-established facts and prototypes are turned into routinely used

pieces of equipment.’

Callon (1986) describes translation as consisting of four moments: problematisation,
interessement, enrolment, and mobilisation. Problematisation is the first moment of
translation during which one or more influential or powerful actor(s) identify a real-
world issue(s) and establish an obligatory passage point (OPP). An OPP is a situation
that has to occur for all of the actors to be able to achieve their interests, as defined by
the principal actor. Interessement, the second moment of translation, describes a
process of convincing actors experiencing the problem to accept the definition of the
focal actor. In the third moment, enrolment, , actors accept interests defined for them
by the focal actor. Mobilisation, the last moment of translation, occurs as the proposed

solution gains wider acceptance and an even larger network is created through those

43

acting as spokespersons for others.

The ANT power perspective reveals who has the power to hold all actors together. The
translation perspective focuses on following actors to learn how they problematise,
enrol, and mobilise others to support their preferred solution. While translation focuses
on single networks, another ANT concept reveals that in a technological change
project, there are both global and local networks. The next section presents the network

analysis model.
3.3.2 Network Analysis

Law and Callon (1992) developed a network analysis framework for analysing the
mobilisation of local and global networks of a technological innovation project. Global
networks contain a set of relations outside of the project’s local settings and context,
built up, deliberately or otherwise, enabling the project to take place with the resources
it provides, including money, expertise, and political support (Law & Callon, 1992).
The local network is that set of relations that can be seen as the inside of the project;
this set is necessary for the successful production of the working tool (Law & Callon,
1992). Callon (1991) explains that the interactions of the actors within and between the
networks are achieved through items such as project deliverables, physical artefacts,

and project reports.

The changing strength of each network over time can be plotted on x and y axes. The
network analysis framework helps to determine the nature of a network in terms of
progressive or degenerating towards achieving its intended goals (Law & Callon,
1992). If a network’s trajectory turns down along the y-axis, global actors begin to lose
their attachment; if it heads backwards along the x-axis, local actors cannot be properly
mobilised. Law and Callon (1992) point out that a position in the bottom-left quadrant
represents a weak, disaggregating project; a position in the top-right quadrant

represents a solid, indispensable project.
3.3.3 Criticisms of Actor-Network Theory

Walsham (2001, p.46) argues that ANT ‘is not a stable body of knowledge that can be

44

drawn on by researchers in an unproblematic way, since its developers themselves
have frequently revised or extended elements of it The first criticism of ANT as a
theory is that it does not typically attempt to explain why a network exists; it is more
interested in the infrastructure of actor-networks, how they are formed, and how they
can fall apart. However, this makes ANT more useful in this study because it does not
bring in a ‘how to’ recipe; rather, it follows the actors to analyse the stability of the
network formed, which helps to draw lessons from the ongoing project. ANT also
incorporates what is known as a principle of generalised symmetry; that is, what are
the human and non-human factors such as artefacts and organization structures
integrated into the same conceptual framework and assigned equal amounts of agency
(Goguen, 1998). Furthermore, ANT is criticised for its absurdity of assigning agency to

nonhuman actors and for its amoral stance (McLean & Hassard, 2004; LTK, 2008).

Despite the many criticisms, ANT is valuable for conducting detailed empirical studies
of the functions and dysfunctions of organisational processes. As a methodology, ANT
has two major approaches: to follow the actor via interviews and ethnographic
research, and to examine inscriptions, which includes texts (including journal articles,
conference papers and presentations, grant proposals, and patents), but also images of
many sorts and databases as central to knowledge work (House, 2003). ANT is a call
for the close empirical study of associations. Latour (2005) says, ‘if I were you, I would
abstain from frameworks altogether. Just describe the state of affairs at hand” (p.144).
In the next section are useful case studies on the application of ANT in IS in the context

of developing countries.
3.3.4 ANT in Information Systems

Walsham (1997) acknowledges ANT as a promising theoretical vehicle for IS research.
ANT is seen as a useful theory in information systems literature due to its explicit way
of conceptualising technology as one of the ‘actors’ in any actor-network analysis

(Walsham & Sahay, 2006).

ANT has been used to theorise both ICT and non-ICT based Information systems (IS)

in various case studies (Lee & Oh, 2006; Ramiller, 2005; Stanforth, 2006; Walsham &

45

Sahay, 1999). Walsham and Sahay (1999) apply ANT to analyse a longitudinal case
study of implementing GIS for District-Level administration in India. One of the
implications drawn from the GIS study is that GIS is a non-human actor with inscribed
interests (Walsham & Sahay, 1999, p. 58). Madon et al. (2004) apply the translation
model of power to analyse non-computer based information system implementation of
property tax reforms in Bangalore, India. In the question of technology transfer, ANT
has been used to analyse technology transfer between countries (e.g., Akrich, 1992).
More recently, Nhampossa (2006) has used the notion of translation to argue for
technology transfer as technology translation in a case study from Mozambique.
Stanforth (2006) uses ANT to explore the implementation of e-government information
systems in Bangladesh, with a focus on demonstrating the usefulness of ANT to

address the question of the diffusion and adoption of ICTs in developing countries.

The common theme in these studies is the effort to address the design-reality gaps
through theorising the interplay between the social and the technical issues.
Specifically, they demonstrate that most ICT projects degenerate when the social
aspects of the technological change, which are tied to the local context, are ignored. The
studies use ANT to analyse the mutually constitutive nature of society and technology
to demonstrate the strategies key actors employ to enlist and mobilise support for their
ICTs initiatives. Thus, the cited studies provide solutions for addressing the design-
reality gaps by appealing for higher attention to the social aspects of any technological

change.
3.4 Technology Translation

To understand the implementation of ICTs in developing countries, different
perspectives, such as diffusion of innovation (Rogers, 2003), information technology
transfer lifecycle (Baark & Heeks, 1998), and technology translation (Nhampossa, 2006),
have been employed. The diffusion of innovation has been criticised for not taking
account of the social issues of the context where the technology is implemented. The
technology transfer lifecycles perspective (Baark & Heeks, 1998) conceptualises the
process of technology transfer as a repetitive cyclical process starting from choosing

technology, purchasing and installing, assimilation and use, adaptation and innovation

46

(i.e., transferring the technology to similar organisations). Recently, the technology
transfer life cycle perspective has been criticised for taking technology as a whole; i.e.,

its specific characteristics do not influence its transfer (Nhampossa, 2006).

The drawbacks of diffusion of innovation (Rogers, 2003) and technology transfer life
cycle perspectives (Baark & Heeks, 1998) suggest the rethinking of technology transfer
as technology translation (Nhampossa, 2006). Nhampossa (2006) argues that the
technology transfer life cycle perspective disregards political negotiations, which are
essential for persuading bureaucratic governments in developing countries. For
example, Wood-Harper and Bell (1990) suggest to donor agencies that while planning
technology transfer efforts, crucial questions on available local support and the degree
of necessary training must be addressed. Local support and training are issues that
cannot be executed without political negotiations. They require re-directing human
efforts to work with the new technology; furthermore, political brokering is a way to
sensitise individuals who join the project. Technologies or systems become sustainable
if they are institutionalised (Braa et al., 2004; Kimaro, 2006b). Sustainability implies that
a technology is integrated into the routine of user organisations. However, while
‘technology needs to be sustainable, at the same [users] need to remain flexible enough
to accommodate changes occurring over time and space’ (Nhampossa, 2006, p.57). The
technology translation perspective then is different from the technology transfer life
cycle in that it takes into account both the technology characteristics and the process of

transferring the technology (Nhampossa, 2006).

There are four key factors that influence the technology translation process
(Nhampossa, 2006): (a) legacy information systems, (b) customisation process, (c) user
participation, and (d) balance of tensions between internationalization and localisation.
Outdated systems designed with old technology exact inertia toward technological
change in organisations. In the customisation process, changes in the software’s
configuration and/or source codes may be necessary when it is introduced into a
different context. The technology translation perspective is also influenced by the
participation of the systems’ clients, who are local users and local developers.

Participation is necessary for building human capacity development and ensures local

47

support of the system (Kimaro, 2006a; Wood-Harper & Bell, 1990).

Furthermore, the influence of international culture on local culture is not negligible.
There is a need to balance between localisation and internationalisation in order for the
technology to address local issues. Internationalisation refers to the process of isolating
the culturally specific elements of the software, and localisation refers to the process of
infusing cultural or business specific elements into already internationalised software
(Nhampossa, 2006). This concept of balancing internationalisation and localisation is
important because there is a higher order of using international software packages
locally. By using FOSS products, it is possible to connect small local initiatives in
building local, culturally embedded sustainable systems with international

components.

Aanestad (2003) recognises the potential of small scale projects in implementing large
scale information systems. She argues that if established projects were connected as
dots, they could be rendered useful by virtue of a critical bootstrapping phase. This
highlights the importance of re-using existing knowledge and resources — a major focus
in the FOSS phenomenon. However, while there is a potential for connecting small
dots (Aanestad, 2003), those small dots need to open up their ideas, software source
codes, and strategies to be connected. This approach can better be executed with FOSS
products. Aanestad’s (2003) proposal is to consider established small scale initiatives
within organisations. However, at the international level, the same concept of
connecting small projects as “networks of action” is proposed (Braa et al., 2004). Those
localised individual initiatives should be connected as a large network of actions
through sharing experiences and mutual learning in order to ensure long term

scalability and sustainability (Braa et al., 2004).

Having discussed some useful theoretical perspectives in addressing the design reality

gaps, in the next section is theoretical framework of the thesis.
3.5 Conceptual Framework of the Thesis

The FOSS literature discussed in Chapter 2 reveals that the Free/Libre Open Source

Software (FOSS) phenomenon is useful in developing countries because it lowers the

48

total cost of ownership of software (Weber, 2003); it facilitates technological
development (Camara & Fonsesca, 2007); it helps developing countries escape
intellectual property rights that lead to vendor locking situations (May, 2006); it is a
means of acquiring knowledge; and it establishes an information economy
(Weerawarana &Weeratunga, 2004). Furthermore, the FOSS phenomenon uses globally
distributed software developers, and users are also the developers of the software

(Feller & Fitzgerald, 2002).

Sponsor — Developer N

FOSS

~l ISin DC

Global developer — Local developer

Local developer — Local user .

Figure 3.1: Proposed Design-Reality Gaps in FOSS in IS in Developing Countries

Drawing from the design-reality gap analysis; social systems perspective on
information systems and the FOSS perspectives, I develop three archetypal situations
likely to hamper the development of Open Source Information Systems in developing
countries. Those situations are: sponsor-developer, global developer-local developer,
and local developer-local user gaps (Figure 3.1). Slicing the design — reality gaps into
these small segments is useful in order to isolate, illuminate, and develop rich insights

on the bottlenecks of FOSS implementation in developing countries.
3.5.1 Sponsor — Developer Gap

The FOSS literature identifies major stakeholder groups as ‘developers, users,
companies and non-profit organisations’ (Feller & Fitzgerald, 2002, p.124). However, in
developing countries, governments and donors are major clients and users of ICTs.
Smith and others (2008) study of the integration of HIS in Tanzania argue that, ‘donor
agencies play a significant role in shaping the outcomes of health reform agenda in
Tanzania’ (Smith et al., 2008, p.8). Given that few high quality IT professionals are
recruited in government-owned establishments (Ciborra & Nevarra, 2005); developers

of government-based information systems are likely to be outsourced from private

49

sectors. As the developers come from a different context, they need to learn specific
issues common in public sectors, especially politics and bureaucracy; otherwise, the
public-private archetypal situation escalates (Heeks, 2003). Thus, there is a need to
address the gap between sponsors (governments and donors as clients) and
developers, i.e., the sponsor — developer gap. At organisation level, this gap is analogue

to the gap between general management and technicians (Bakari et al., 2007).

The ANT’s power, translation, and network analysis perspectives (Latour, 1986; 2005;
Law & Callon, 1992) are useful tools for extracting rich insights from the case studies
on addressing the sponsor-developer gap. These perspectives focus on power
relationships, network formation, and analysis, which could reveal the progressive
relationship between sponsors (governments and donors) and developers (mostly local
developers) commissioned to realise a working tool (the software). FOSS-based
concepts, especially project organisation and stakeholders’ analysis (Feller &
Fitzgerald, 2002), are useful tools to compare, contrast, and draw lessons from FOSS

development projects on the way the sponsor-developer gap was addressed.
3.5.2 Global Developer — Local Developer Gap

When FOSS is used to develop education and health information systems, the
developers are not the users of the resulting systems. Generally, global developers,
when supporting local developers, help to create the software for local users. This is
because local developers have access to the local systems and would know local user
requirements. The inputs of global developers are needed to overcome several
problems, such as limited access to technology (Heeks, 2003), lack of training and
skills-levels (Dada, 2006, Madon et al., 2004), and poor skills of IT professionals
(Ciborra & Nevarra, 2005). Because of the differences in terms of infrastructure, culture,
and IT competence, there is a gap between global developers and local developers; this

is the global developer — local developer gap.

The networks of action perspective (Braa et al., 2004) reveals the importance of mutual
learning through sharing of experiences in different countries as a way of scaling and

sustaining systems. In this learning process, Nhampossa (2006) adds that there is a

50

need to balance internationalisation and local issues. This approach is compatible with
the bazaar development model (Raymond, 2001), which encourages geographically

distributed developers to participate in local software development.

The main issues in this archetypal situation are clash of cultures and the different skills
of global developers and local developers. Hofstede (2001) argues that it is critical to
understand other cultures you may be doing business with. This argument is useful
even for information systems especially in developing countries. Previous studies have
indicated that, understanding culture will assist system analysts in understanding their
clients’ work practices and understanding certain behaviour, which are shared
between people in a particular society (Thanasankit & Corbitt, 2000). There is a need to
negotiate with various stakeholders in order to enrol them in the networks. Heeks
(2003) argues that the hard-soft gap tend to get wide as IT designers ignore the local
culture of the context where technology is implemented. Madon et al. (2004) adds that
values and beliefs of the local society are issues that need to be considered in

addressing the design-reality gaps.

One of the cultural dimensions for understanding contextual culture is the
‘individualism’ which refers to the degree to which individuals are integrated into
groups (Hofstede, 2001). Societies on the individualist side, the ties between
individuals are loose; everyone is expected to look after him/herself and his/her
immediate family (Hofstede, 2001). On the collectivist side, people from birth onwards
are integrated into strong, cohesive in-groups, often extended families which continue
protecting them in exchange for unquestioning loyalty (Hofstede, 2001). To me, a
means that can help to tell the individualism scale of a society is through political
legacy, values and beliefs. Drawing from the legacy of Ujamaa policy in Tanzania, I
argue that the Tanzanian culture falls under the collective side of individualism
cultural dimension (Hofstede, 2001). That is because Ujamaa, a political policy practiced
for years, is emphasising collective investment mode of innovation. The Ujamaa ethics

are mutual respect, sharing of property and work (Nyerere, 1968).

Cultural influences in technology adoption have been studied in various case studies.

In Thailand, a county which its cultural individualism dimensions falls under the

51

collectivism category (see Hofsted, 2001); it has been argued that relationships and
connections play critical roles in business negotiations (Laosethakul & Boulton, 2007).
The implication here is that political negotiations to cultivate establishment of
relationships and connections is necessary in order to enrol various stakeholders. Braa
et al. (2004) argue that ‘the health sector in developing countries is intrinsically
political” (p.357). That is why the key processes of HISP project in every country
involve three aspects: gaining political support, HIS development and training (Braa et

al., 2004).

Ujamaa connects well with the concepts of FOSS as a result it fosters justifications for
adopting FOSS development. Under Ujamaa policy, all members have equal rights and
equal opportunities and no importing injustice or exploitation (Nyerere, 1968).
Similarly, FOSS licenses ensure that software can be used in any endeavours and no
discrimination against others (Perens, 2005). Furthermore, as FOSS encourages private-
collective investment mode of innovation (von Hippel & von Krogh, 2003; 2006), the
economic moral rights in Ujamaa are right to subsistence and norm of reciprocity
(Nyerere, 1968) which is the practice of exchanging things with others for mutual
benefits. Through using common vocabularies well known in the context would make
the society to grasp the main ideas of the FOSS technology. As users become more

informed about the technology, resistance to change would diminish.
3.5.3 Local Developer — Local User Gap

In the context of health and education public sectors, the local developers are not
familiar with the working practices of the users, especially in the case of health
information systems. The users of these systems have a higher rate of computer
illiteracy. Most have never touched a computer. Local developers need to learn the
working practices of the users, functional requirements, non-functional requirements,
and motivating strategies in order for users to participate in the development process.

This analysis leads to the need for addressing a local developer — local user gap.

As argued in the technology translation perspective, software customisation and

capacity building issues influence the adoption of ICTs in developing countries

52

(Nhampossa, 2006). Capacity building has been recommended by various authors. For
example, Madon et al. (2004) argue that lack of training could lead to system failure.
Similarly, Kimaro (2006b) argues that the tendency of donor-funded projects to ignore
capacity building leads to unsustainable systems. FOSS’s economic concepts shed light
on clients’ and developers’ relationships. For example, the service offering business
models in FOSS (Weerawarana & Weeratunga, 2004) could sustain continuity of FOSS
projects. The relationship between users and developers could be maintained in
demand/supply form. FOSS development concepts (Feller & Fitzgerald, 2002)
encourage re-evaluation of user contributions, as users cannot contribute a software

source code.

In summary, the theoretical perspectives demonstrate that ICTs initiatives are
influenced by socio-technical conditions within the context where they are being
implemented. Specifically, the design-reality gaps are exacerbated by the tendency to
ignore the local context issues such as politics and technological infrastructure (such as
Internet, computers, and software tools). Drawing from theoretical perspectives, I
propose that implementing FOSS in Information Systems is influenced by the
following factors: competence on relevant skills; technical infrastructure; development

process; and political support.

53

CHAPTER 4: CASE DESCRIPTION AND RESEARCH METHODOLOGY

The research was conducted in Tanzania from 2005 to 2007. This chapter presents the
research approach, data collection methods, and the use of theory in data analysis. The
first section, 4.1, presents the personal motivation for carrying out a study on the
development of Open Source Information Systems in Tanzania. This is followed by a
presentation of the details of the research settings and fieldwork in Section 4.2. Section
4.3, which presents the research approach, is organised into two subsections:
Interpretive approach and Participatory Action Research. Section 4.4 provides details
of the data collection methods. In the last section is a presentation of the data analysis

and use of theory in analysing data.
4.1 Personal Motivation

When working on my Master’s degree, I became involved in health information
systems as the subject of my research thesis. I studied computer database
implementations in the Ministries of Health in Mozambique and Tanzania when
involved in the Health Information System Programme (HISP).?> There I learned that
deploying software to the public sector without its source code leads to system failures
and instability. Health systems change frequently, with new diseases and drugs being
registered; to adopt those changes in the software requires access to the original
authors, who retain the source code of their software as trade secrets. In cases where
the original author is not reachable, the systems become outdated legacy systems in a
short period of time. I fully support the use of District Health Information System
(DHIS) in Zanzibar because the DHIS is Free/Libre Open Source Software (FOSS). This
is because of the potential advantages that FOSS promises due to its attributed

freedoms.

After completing my Master’s in 2003, I secured a faculty post at the University of Dar
es Salaam. That same year, I was appointed to head the examination office of the
Computer Science department. At that time, exams were processed manually. It was an

extremely tedious task to search student examination results. The department was in

* The Health Information Systems Programme (HISP) is a collaborative research and development
network comprising universities, ministries, and not-for-profit companies in countries like South Africa,
Mozambique, Malawi, Tanzania, Ethiopia, India, Vietnam, Norway, Nigeria, and Sweden.

55

need of an information system in order to automate the processes. While there is
existing software to manage examination results, that software was not suitable in our
case because the examination regulations were different than ours. Engaging private
consultants to develop the software was not a promising option. I organised a team of
developers to create an original system. A prototype of the Student Academic Register

Information System (SARIS) was successfully developed and named ZALONGWA..4

The software was released under an open source licence, and many institutions
adopted the software. Because each university has its own examination regulations,
for example, the number of tests students should take in each subject, customisation of
the software is essential at the universities. Thus, the open source licence is especially
important because each university acquires the software with its source code. At the

time of writing, six universities in Tanzania had adopted the software.

Although FOSS sounds like a break-through technology suitable in developing
countries, its implementation is at its infant stages. Few studies have been conducted to
address the challenges developers face in realising open source information systems in
developing countries. Thus I propose a strategy for adopting FOSS products in
developing countries. Developing countries are peculiar in that their technical
infrastructure, FOSS relevant competences, and supportive policies are hard to find.

However, they must be examined in order to better understand FOSS development.
4.2 Research Design and Description of the Case Studies

The case studies of the thesis are threefold: first, the study starts with conceptualisation
of the FOSS phenomenon and its performance in organisations. This was done through
literature review and fieldwork visits to organisations using mature FOSS products.
Next was engagement in two FOSS development projects through participatory actions
on software prototyping and documentation of FOSS related motivating and
constraining development issues. Finally, trajectories of the projects with respect to
politics involved, technical infrastructure, organisation of the development teams,
means of acquiring external supports, user participation, and user contributions were

analysed.

* ZALONGWA is a name, not an acronym.
56

Table 4.1: Overview of the Research Design

2005 2005-2006
conceptualisation of the engagement in two FOSS
FOSS phenomenon and its development projects
performance in through participatory
organisations through actions on software
literature review and prototyping and
fieldwork site visits documentation of FOSS

related motivating and
constraining issues

This study followed the implementation of the HIS in Zanzibar and SARIS project at
the University of Dar es Salaam. Thus, HIS and SARIS are the main case studies of this
research. However, in order to gather information and understand the performance of
FOSS products, I conducted an explorative study on the use of FOSS in organisations.
Being a Tanzanian studying in Norway gave me an opportunity to survey the use of
FOSS in both Tanzanian and Norwegian organisations. This survey was useful to learn
and contrast the use of FOSS in mature infrastructure-related domains, such as in
operating and database management systems, with the use of FOSS in end user
applications software in information systems. The survey also highlighted the
differences seen when FOSS developers are also users (as in infrastructure based
software) and when FOSS users are not the developers (as in the information systems

of health and education sectors).

The research settings can be classified into three groups: (a) Explorative Study on the
Use of FOSS in Organisations; (b) SARIS at the University of Dar es Salaam; and (c)

DHIS implementation in Zanzibar.

57

—0 My Fieldwork Foot Prints =

Fig—ufe 4.1 Map of Zanzibar and Pemba

58

4.2.1 FOSS in Organisations Case Study

In the period of October 2005 to December 2005, I conducted an explorative study on
the use of FOSS in Norwegian organisations. In Norway, the settings were Hurum
Municipal, Sarpsborg Municipal, University of Oslo, and the Agder University College.
This was followed by a similar explorative study in Tanzania in March — May 2006 in
the following settings: Tanzania Commission for Universities, University of Dar es
Salaam, National Council of Technical Education, and the National Examination
Council of Tanzania. These settings were selected because they run information
systems with large amounts of data and they were using or intended to use FOSS
products in their systems. The main agenda of the study was to learn the performance
of FOSS products in terms of reliability, usability, availability of support services, and

total cost of ownership (TCO).
4.2.2 SARIS Case Study

The rationale for implementing SARIS at the University of Dar es Salaam was to
address three major problems in examination records processing: nominal roll
manipulation, arithmetic errors, and transcribing errors. In nominal roll manipulation,
student names and registration numbers are written differently in various documents;

hence, it becomes difficult to track student records in various documents.

The arithmetic errors problem is categorised as either grading errors or summation
errors. With grading errors, a lecturer can sum up the total marks correctly, but may
fail to assign the correct grade. For example, if a B+ is equivalent to 60.5<=Marks<=69.4
and B is within the range of 50<=Marks<=60, a student who receives a 67 may
mistakenly be given a grade of B. On the other hand, a summation error occurs when a
lecturer fails to sum up coursework and final exam marks correctly. For those lecturers
using Excel spreadsheets, there are different formulas for grading student examination
results. For example, some lecturers use the formula presented in Box 1, while others
use that in Box 2. With respect to Box 1, a candidate with 69.1 gets an ‘A" grade, while

the same score in Box 2, merits a ‘B+.

59

Box 1:

| <IF(G14>69," A" IF(G14>59,"B+", IF(G14>49,"B",IF(G14>39,"C" IF(G14>34,"D","E")))))

Box 2:

| “IF(G14 >= 70, A" TF(G14 >= 60,"B+", IF(G14 >= 50, "B, IF(G14 >= 40, "C", F(G14 >= 35, "D", "E")))))

Transcribing errors occur when copying records from one source of data to another. The
errors happen when examination results are transcribed from the course result sheet to

a master file; they are due to manual typing errors.

The SARIS project started in 2003. The idea was that if all lecturers used the same
system, they would also use the same formula for grading student records. Also, the
system would be able to aggregate student records automatically, eliminating
transcribing errors. However, the software was working as a departmental system. In
the period of January 2005 to July 2005, I worked in the project as a case study; by that

time, some faculties saw its potential as a university wide system.

During this period (January to July 2005), I was a programmer improving system
functionalities for use at the faculty level. The second phase of my data collection in
this case study occurred from March 2006 to July 2006, when the software was
programmed to work at the university level. However, in this second phase, I
participated more in political negotiations than in hardcore programming. I was a
member of a special committee that designed a new university examination transcript
and new student registration numbering format and proposed new working practices

through the re-engineering processes of issuing examination transcripts.

Empirical material used in this study was collected when the project was implemented
at the Faculty of Science, Faculty of Law, Faculty of Education, Faculty of Arts and
Social Sciences, and at the University Examination Offices. Useful data collected from
these settings include motivations for users to change from a paper based manual
system to a computerised system. Following the actors revealed how they formed

alliances in order to translate and defend their interested technical solutions.

60

Table 4.2: Translation in the SARIS Project

enTes ZALONGWA ygpp Bxéminaion Admission Fslly pepariments Lecturers Students 100 DVG.PFA DVGARC DRM DSS
| | |
T i i 1 i 1
' ' I ' I '
i ' ' I ' I '
I I ' ' I ' I '
I I ' ' I ' I '
. . ' ' . ' . '
' ' ' I I I ' ' I ' I '
' ' ' | I I ' ' I | | '
Obstacle: Obstacle: Obstacle: Obstacle: Obstacle Obstacle: Obstacle: Obstacle: Obstacle: Obstacle: ~ Obstacle: ~ Obstacle:
cannot slow access difficult to nominalroll paper-based unavailable the use of tedious difficulty in automatic slow paper
remember to exam identify manipulation; manual course notice keying of sorting room matching unreliable based
Obligatory room records, students arithmetic course registration boards to paper- applicants between access to DARUSO
Pas capacity course units; registered errors and registration, listand e- publish based based on nominal roll room voting
Poi (s%gpep and manual GPA for course transcribing multiple leamning exam manual established and utilization, system;
int (OPF) allocated calculation; exams in errors Spreadsheet tool results. No course room allocation examination room incomplete
students no photo the current Exam personalized registration criteria records allocation student
integrator semester templates information manually lists, and nominal
tool defaulters roll
. H i i i i i i i i i i
- . i 1 1 | 1 | 1
} : —_— | | i | i
| |) . . |
Impfoving Eradicate Timelyand Updated Fast Course Class Privacy Capture all Implementation Report maximize Adopt
dysfunction double accurate nominal roll processing, registration roster, protected student of USAB room accurate rentsand e-voting to
manual room issuing of reflecting accurate, rosters to automatic and speedy course allocation nominal roll caution minimize
processes allocation transcripts current and prepare marks access to registration criteria and fee papers,
GOALS with flexible problem with coloured students presentation exams and grading, personalized for the accurate collection invigilation
and cheap photos and their of exam uniform exam and records teaching number of from and vote
webbased status reports with grading publishing (evenon timetable graduating student counting
system remarks across all lecturer their mobile) database candidates hostels costs
courses notes

61

4.2.3 DHIS Case Study

The HIS project in Zanzibar started in January 2005. January to July 2005 involved
project planning, recruitment of software developers, situational analysis, and
formation of a special task force that represented the Ministry of Health in Zanzibar.
The second phase of my participation in the HISP project in Zanzibar lasted from
March to July 2006. The third phase took place in May — June 2007. Zanzibar has two
main Islands: Unguja and Pemba. In Unguja, I worked at the Ministry of Health
headquarters in Unguja, North A and North B districts. In Pemba, I was in the Mkoani,
Chackechake, Wete, and Micheweni districts. First, I participated in the HISP team to
conduct situational analysis of the availability of computers and their specifications. I
again visited when testing newly designed health data collection tools
(forms/registers). The third phase involved implementation of the DHIS in these

districts.

Although the main setting was Zanzibar, I participated in other settings while
implementing the DHIS. Specifically, I was involved in the HISP team when it was
working in Tanzania mainland districts, including the Ministry of Health
headquarters, Bagamoyo, Kibaha, Ilala, Temeke, and Kinondoni districts. In this thesis
I used the experience gained from these other settings as well; for example, I critically
evaluated the reliability and usability of the DHIS conducted in the Tanzania mainland
districts. Moreover, in the time after I left the fieldwork sites, I was in contact with the
subjects in the fields, especially the HISP and SARIS software developers. The post-
fieldwork data collected through personal communications were invaluable to this

study.

62

Table 4.3: Translation in the DHIS Project

ENTITIES DHIS Ministry of Health Donors ° Ver’;'r"’fr:‘es Health Officers Health Workers WHO
\ | !
T] i i
| i i i i
= : : : : : :
Obstacle: no health Obstacle: lack Obstacle: un Obstacle: tedious Obstacle: chaotic data Obstacle: mullliple sources
Obligatory Passage data analysis tool and of appropriate available integrated management of collection through the and conflicting definitions
Point (OPP) fragmented HIS ICT tool register health data in paper use of multiple tools of health data
registers
i | i i
. ! ! !
i I I
] } j]]
implement streamlined Improved HIS Full access to health Report accurate Unified data collection Implementation of
Advance knowledge health data collection through the use data health data reflecting tools for all standardised health data
GOALS and streamlined health and analysis tool of ICT the current health stakeholders (HIS and elements definitions
data collection and status Vertical programmes)
analysis

63

4.3 Research Approach

Interpretive approach and action research were the main components of this research
approach. The following sections present both interpretive and action research

approaches.
4.3.1 Interpretive Research Approach

Guba and Lincoln (1994) define paradigm as the basic beliefs or worldview that guide
the investigator, not only in choices of method, but in ontologically and
epistemologically fundamental ways. According to Bryman (2004), an epistemological
issue concerns the question of what is (or should be) regarded as acceptable knowledge
in a discipline. There are three underlying epistemologies that guide qualitative
researches in information systems: positivist, interpretive, and critical (Myers, 1997;

Myers & Avison, 2002).

Positivism is “an epistemological position that advocates the application of the methods
of the natural sciences to the study of social reality and beyond’ (Bryman, 2004, p.11).
Positivism entails the following principles (Bryman, 2004): phenomenalism — only
phenomena and hence knowledge confirmed by the senses can be considered
knowledge; deductivism — the purpose of theory is to generate hypotheses that can be
tested and allow explanations of laws to be assessed; inductivism — knowledge is
arrived at through the gathering of facts that provide the basis for laws; objectivity —
science must be conducted in a way that is value-free; and lastly, there is a clear
distinction between scientific statements and normative statements and a belief that the
former are the true domain of the scientist. Myers (1997) adds that positivists assume
that reality is objectively given and can be described by measurable properties
independent of the researcher and his or her instruments. In the positivistic approach,
researchers establish propositions, quantify measures of variables, test hypotheses, and
draw inferences from samples where the phenomenon is studied (Orlikowski &

Baroudi, 1991).

Interpretivism is an epistemology not like positivism because there is a shared view

that the subject matter of the social sciences, people and their institutions is

64

fundamentally different from that of the natural sciences (Bryman, 2004). An
interpretive approach to information systems research assumes that reality is socially
constructed (Orlikowski & Baroudi, 1991). Klein and Myers (1999, p. 69) argue that ‘it
is assumed that our knowledge of reality is gained only through social constructions
such as language, consciousness, shared meanings, documents, tools, and other
artefacts.” Walsham (1995a) contends that in an interpretive perspective, value-free or
objective data cannot be obtained, since the research process itself relies on the
researchers’ preconceptions. It is through the interaction between researcher and
subjects that the initial preconceptions of both parties are changed (Walsham, 1995a).
Thus, the interpretive approach to information systems seeks an understanding of the
context of the information system, as well as mutual influence between the system and

its context (Walsham, 1993).

The main concerns for the critical research approach concern issues of historical and
cultural contingency (Orlikowski & Baroudi, 1991) and power relations that are
produced and reproduced by people (Klein & Myers, 1999; McGrath, 2005; Myers,
1997). The critical research approach focuses on the oppositions, conflicts, and
contradictions in contemporary society, and seeks to be emancipator (Myers & Avison,
2002). Critical researchers have ‘a cause... they may see a particular conflict and focus
on that, downplaying other potential interpretations” (McGrath, 2005, p.86). A
distinguishing feature of critical research is to engage with questions of an overtly
political or moral nature, for example, a form of marginalisation relating to technology
mediated knowledge manifested in the ‘digital divide’ discourse (Avgerou, 2005, p.
106).

This study used the interpretive approach. Although the study had the political agenda
of liberating health workers from time-consuming processing and reporting of health
data and improving a dysfunctional student records information system, the study
focused on how to make FOSS implementation work in developing countries. Thus, it
sought to create new knowledge on technological change using FOSS technologies.
This deviates from purely critical research; critical research would be achieved by

producing new knowledge on the role that ICTs plays, as Avgerou (2005, p.107)

65

argues, ‘in contemporary society ... to form streams of sustained research and debate

on ICT and social change.’

The interpretive approach was used in this study to delineate the socio-technical
processes involved in the implementation of FOSS products, ZALONGWA, and DHIS,
from the perspective of various heterogeneous actors. The introduction of the software
in the health information system (HIS) in Zanzibar, for example, was a challenging,
politically contested process requiring political brokering to align various vertical
programmes, health managers, and health workers in the health facilities. Also

required were higher level technical innovations to customise the DHIS software.

The interpretive approach was also useful for explaining the social and organisational
context of FOSS developers. They embrace FOSS development, facing the reality of
their context in terms of infrastructure, skills competence, and working tools such as
computers and relevant software. This fits well with interpretive research, which aims
‘at producing an understanding of the context of the information systems, and the

process whereby the information system is influenced by the context’ (Walsham, 1993,

p. 14).
4.3.2 Participatory Action Research

Action Research employs methods from both experimental and naturalistic
(interpretive) traditions, but it is more reliant on naturalistic inquiry in that all research
occurs within its natural context (Walsham, 1993). The ethos of action research is
interpretive, incorporating social inquiry based on the views and interpretations of the
participants (De-Villiers, 2005). Dick (2002) explains action research as a research
approach, which has the dual aims of action and research: (a) action to bring about
change in some community or organisation or programme, and (b) research to increase

understanding on the part of the researcher, the client, or both.

The important distinction between Action Research and other kinds of research is the
researcher’s involvement in the whole action process as a change agent. Action
Research aims not only to discover facts, but also to help alter certain conditions

experienced by the community as unsatisfactory with intention to help the participants

66

to control their own destines more effectively (Greenwood & Levin, 1998; Nielsen &
Svensson, 2006). Action Research is distinguished from consultancy work because it is
practical and useful; research-based; participatory; democratic; and involves dialogue

between insiders and outsiders (Rolfsen & Knutstad, 2007, p. 348).

Selener (1997) describes four types of action research: diagnostic, empirical,
experimental, and participatory. In the diagnostic approach, a consultant collects data
on a problem identified by the client and then provides a recommendation. Changes
may or may not be implemented. In empirical research, a consultant tests a hypothesis
about the impact of actions taken by either researcher or client, while in experimental
research, control groups are used to test the relative effectiveness of the changes
implemented (Selener, 1997). These three approaches have similar characteristics; they
are not participatory, in that there is a clear division in terms of the roles of the
researcher/consultant and the client, and they are researched on actions. In contrast,
participatory action research involves participants in both the research and change
process and it integrates research and action in an on-going participatory process

(Selener, 1997).

Whyte (1993) argues that participatory action research has three main features: co-
learning, participation, and organisational transformation. The emphasis here is that
‘learning (or co-learning) takes place in a local context where one has the possibility to
start together, researcher and personnel, in searching for the specific problem, and
together decide upon how they shall be interpreted, and which ways would be most
appropriate in order to solve them’ (Whyte, 1993, p. 56). The participatory process
should also include searching for relevant concepts and recruiting candidates from the

organisation who would enhance the implementation of the solution (Whyte, 1993).

The two case studies of the thesis are about transforming dysfunctional public
information systems. Thus, the study is about implementing computerised information
systems to liberate workers of lower cadres in an organisation from tedious, repetitive,
error-prone, paper-based information systems. It fits in the frame of the participatory
action research approach. Hence, the definition that I adopt is ‘action research is a

participatory, democratic process concerned with developing practical knowing in the

67

pursuit of worthwhile human purposes, grounded in a participatory worldview’
(Reason & Bradbury, 2001, p. 1). A practical definition is ‘social research carried out by
a team encompassing a professional action researcher and members of an organization
or community seeking to improve their situation” (Whyte, Greenwood, & Lazes, 1991,
p-3).

Participatory action research features co-learning, participation, and organisational
transformation (Whyte, 1993); it is practical and useful, research-based, participatory,
democratic, and creates dialogue (Rolfsen & Knutstad, 2007). The projects studied,
DHIS and SARIS, aimed to improve management information systems. This research
study was different from a pure observation study because the researcher’s purpose
was to introduce streamlined data collection, reporting tools, and computerised
information systems for the purpose of change. In addition, these projects were very
useful to the respective organisations because they addressed real-life problems, where

the insiders themselves thought something should be done.

The way in which the two projects were executed differed from mere consultancy work
because the approaches for their implementation were based on experiences gained
from previous projects (for example, in the DHIS case, experiences from other HISP
nodes such as mainland Tanzania, Mozambique, South Africa, and India) and on
literature on FOSS; the approaches also involved both outsiders and insiders in a
participatory way. Co-learning happened in various ways. While the insiders were not
computer professionals, the outsiders had no detailed knowledge of the working
practices and local problems of the clients. A good example is the design of health data
collection tools at the island of Pemba, where the outsiders proposed to keep a health
data element called ‘road accidents,” while the local people proposed that there were
more ‘clove accidents’ (falls while picking cloves from the clove trees) than road
accidents; therefore, the road accident data element should be dropped. This simply
means that the outsiders learned the local problems instead of imposing global health
data elements. During training on the computerised health information system in the
HISP project, health workers learned to ‘click,” but the outsiders learned that to prepare

training handouts for computer literacy courses is more than a cut-and-paste of

68

computer screens. I participated in the two projects to understand fully the working
practices. It was in this HISP project that my ‘medical related vocabulary’ increased
dramatically. If not for my total engagement in action research, I could not have
learned these terminologies. Learning the medical language helped me to

communicate better and perform comprehensive interpretive analysis of HIS reports.

As an employee of the institution where the SARIS project took place, I had better
access to information than if I were a mere outsider. I learned and practised many
things, from politics, organisational tensions, and examination regulations, to technical
issues like programming styles, server settings, and FOSS in general. This experience
went beyond research conducted through the use of traditional methods like
questionnaires and interviews. The SARIS software provided a lesson to the university
community that platform independent software that is accessible to all heterogonous

computers (Windows, Linux, Mac OS) is possible.

The SARIS project spanned from the computer professionals at the Computer Science
department to non-computer professionals in other faculties. Thus, I was an insider
when the project was at the initial stages, but I became outsider when I had to learn the
examination regulations of the other faculties, e.g., the Faculty of Law. HISP involved
many outsiders, including myself. In both projects, the dialogue between the outsiders
and insiders was facilitated by many deliverables and workshops. In this thesis, those
dialogues are presented thoroughly using both translation and the network analysis

model of the Actor Network Theory (Latour, 2005; Law & Callon, 1992).

In action research, the main repetitive research processes undertaken include planning,
action, observation, and reflection. These processes comprise a series of cycles that feed
into each other, with action research more an ongoing process than an event.
Baskerville and Wood-Harper (2002) present the action research cycle as having five
phases: diagnostic, action planning, action taking, evaluation, and specifying learning, all of
which occur within the client-system infrastructure. During the diagnosis phase,
identification or definition of a problem takes place. Once the problem is identified,
alternative courses of action are considered in the action planning phase. Action taking

is where a course of action is implemented. After implementing a course of action, the

69

outcome of the action is evaluated. A circle of action ends up with the identification of
general findings. The client system infrastructure is the specification and agreement
that constitutes the research environment (Baskerville & Wood-Harper, 2002). It
provides the authority, or sanctions, under which the researchers and host
practitioners may specify actions. The client-system also legitimates those actions with
the express expectation that it will eventually prove beneficial to the client

organisation.

There were binding contracts for implementing the studied projects that served as
agreements between both parties. While in the HIS project, the Ministry of Health
selected a committee of six people to participate in the project implementation, in the
SARIS project, a team of three people was formed to scrutinise the suggestions made
by the technical implementers. Those suggestions included overhaul of student
registration numbers, discontinued use of examination identity cards, and redesign of

the transcript examination templates.
4.4 The Action Research Cycles

In the software engineering field, software prototyping is a component of
“evolutionary” approach to software development (Sommerville, 2001). Software
prototype is an initial version of a software system used to demonstrate concepts, try
out different design options, and to find out more about the problem and its possible

solution (Sommerville, 2001).

The fieldwork of this research was dominated by software development, design of data
collection tools, and formatting reports to be used to input and output data on the
respective software. In the two main cases of the research, HIS and SARIS, prototyping
was very useful in facilitating user participation/involvement. The prototyping
activities were executed as action research cycles (Baskerville & Wood-Harper, 2002),
although there was significant overlap between the cycles. That is, after the first cycle,
the subsequent cycles were overlapping and it was not easy to differentiate between

the start and end of the research cycles.

70

4.4.1 DHIS Prototyping Activities

The software implemented in the HIS project in Zanzibar is the District Health
Information Software (DHIS). The DHIS was not developed from scratch in Zanzibar;
instead, the software was obtained from South Africa. Our work was to customise it by
making the paper forms like the computerised forms and to format reports. In the
beginning, the software did not have a license, but was acknowledged as Free Open
Source Software (FOSS). Currently, the DHIS is deployed with a license tag which
meets the requirements of FOSS products. At the time of writing, the DHIS licenses

reads:

DISTRICT HEALTH INFORMATION SYSTEM MODULES-END USER LICENSE
AGREEMENT

... You may make and distribute unlimited copies of the Software, including copies
bundled with commercial products, as long as each copy that you make and distribute
contains this Agreement and is distributed for free. ... You are free to modify, translate, or
create derivative works based on the DHIS software, again provided that this End User
License Agreement is attached to the DHIS parts of these works and that such parts are
provided for free...

Major activities executed in the HIS implementation were the design of data collection
tools, testing of data collection tools, software customisation, software installation, user
training, and software evaluation (Table 4.4). The DHIS was the axis of all activities in
the HIS project. In ANT’s terminology, the DHIS was the ‘obligatory passage point’ of
the various actors in the project, because it was used to accomplish goals of various

stakeholders of the project (see Table 4.3).

Table 4.4: DHIS Prototyping Activities in HIS Case Study in Zanzibar

Phase Specific Activities

e Semi-structured interviews with health staff in South Africa

e Observations on health data collection and analysis

Diagnosing e Use of checklists by inspecting data registers, analysis tools, and|
health workers staffing levels

e Assessing available computers and computer programs

o A kick-off workshop between HISP team and MoH Taskforce

e Acquiring DHIS Software from HISP network

Action planning e Developing strategies for importing baseline data to DHIS

e Acquiring sample health indicators

71

Phase Specific Activities
e Mapping of data elements to indicators
e Reviewing health data collection forms
Action taking e DHIS database setup and data importation
e Designing new health data collection forms
e Training health workers in computer literacy
e Training health workers in health data analysis
e Group discussions with health workers
e DHIS demonstrations
Evaluation o Testing newly designed data collection forms
e Calculating indicators
e Comparative with baseline data
e Retrospective testing
Specifying e Presentations and Fieldwork reports
learning e Publications: Scientific peer reviewed papers

4.4.2 SARIS Prototyping Activities

The SARIS software, code name of ZALONGWA, was developed through FOSS-based

technologies, namely PHP scripting language and the MySQL database management

system. ZALONGWA software is licensed under the General Public License (FSF,

2007). At the time of writing, the SARIS license agreement read:

ZALONGWA Student Academic Register Information System (SARIS)

Copyright (C) 2006 Zalongwa Technologies Ltd.

This program is free software: you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation, either
version 2 of the License, or (at your option) any later version...

Table 4.5: Activities in the SARIS Project

Phase Specific Activities

e Analysis of the manual student records system

e Sensitisation workshop to brainstorm a course of action
Diagnosing o Evaluating the correctness of old examination reports

Action planning

e Review of possible open source technologies

e Recruiting project members

e Mobilising resources including Linux server configuration

e Acquiring sample student records (nominal roll and exam results)

72

Phase Specific Activities

Action taking

Design and programming of SARIS

Testing the system

Integrating the system with other systems

Training students how to use the system

Training staff, especially lecturers and admissions officers

Evaluation

Group discussions with health workers

SARIS demonstration

Evaluating report outputs

Conducting think-aloud usability testing sessions

Specifying
learning

Presentations and Fieldwork reports
Publications of papers

The implementation of SARIS software at the University of Dar es Salaam is

conceptualised here in terms of the global and local networks involved in the process.

As proposed in Law and Callon (1992), the global and local networks are distinguished

by who implements the tool and who funds or supplies resources necessary for the

process of implementation.

In the SARIS project, the local network was comprised of the technical team, which

included individual programmers and system administrators. In the later stages of the

project, an IT private company was involved in supporting users and updating the

system. The global networks were the faculties and directorates, sources of the

implementation and vital decisions.

Table 4.6: Trajectory of SARIS Project

SARIS Solution Enrolled Network Actors Network Inter-relation
Trajectory
Phase 1: Departmental SARIS | Local Network e Zalongwa Software
e SARIS e Examination Officer accepted as
Implementation at (as both developer Obligatory Passage
the Computer Science and user) Point (OPP)
Department

73

SARIS
Trajectory

Solution

Enrolled Network Actors

Network Inter-relation

Phase 2: Faculty Level SARIS

¢ Implementation of
Faculty level Exam
Reports

e Implementation of
online Gradebook
(Exam Record Sheets)

e Database setup:
keying course,
programmes, and
Department and
faculty information

e Faculty-level
implementation of
the SARIS software

o Testing of software

Local Networks
e Programmers
e Respective Faculty
System
Administrators
Global Networks
e Faculty Deans
e Faculty Examination
Officers

Negotiation of
Support and
Services contract
Collection of
baseline data such
as information on
courses,
programmes, and
student lists
Training
Workshops for both
lecturers and
students

Review of the
implemented
examination
regulations and
reports
Development of
online suggestion
box

Phase 3: University level
SARIS
e Implementation of
the SARIS software at
the Examination
Office
e Implementation of
Accommodation
Module for the
University Student
Accommodation
Bureau
e Extraction and
loading of old
student records from
various legacy
systems

Local Networks
e Central
Administration
System
Administrators
e Zalongwa
Technologies Ltd.
Global Networks
e University
Examination Office
e University
Admission Office
e Directorate of
Student Services
e University Student
Accommodation
Bureau

Design of online
transcript reports
Negotiation of
registering of
candidate photos
Development and
implementation of
student
accommodation
criteria
Negotiation of
student hostel
information and
naming schemes of
rooms and blocks

74

SARIS
Trajectory

Solution

Enrolled Network Actors

Network Inter-relation

Phase 4: Consolidation and
orientation
e Continuous training
of new students and
lecturers
e Development of data
import tools
e Implementation of
data mining reports

Local Networks
e Zalongwa
Technologies Ltd
Global Networks
e Directorate of Income
Generating Units
e Directorate of
Undergraduate
Students

Long-term user
supports, especially
recovering
passwords, running
room allocation,
and importing
examination
records
Implementation of

ad hoc reports

4.5 Data Collection Methods

Throughout the study, four main data collection methods were applied: semi-
structured interviews, group discussions, software prototyping, and documents
analysis. The methods were used in a triangulation form; i.e.,, one or more data
collection methods were used to gather data from one setting. The discussion of the

data collection methods follows:

4.4.1 Semi-structured Interviews and Observations

An interview is a data collection technique that involves verbal interactions between
interviewer and interviewee (Cohen, Manion, & Morrison, 2000). It is an interchange of
views between two or more people with a mutual interest. Patton (2002) argues that
observation helps a researcher to obtain some additional information about the topic
being studied. Also, observation avoids report bias from someone else by overcoming

language barriers and observing naturalistic behaviour.

This study relied upon face to face interviews with informants, including programme
managers, software developers, system administrators, heads of departments, and
various end users of FOSS products. The interview guides used were semi-structured
and open-ended in nature, but with the interviewer in control so as to direct the

interview and obtain as much information as possible from the respondents.

In the FOSS in Organisation Fieldwork, interviews were the main data collection method;

75

analysis observation and group discussion methods were used as well. Thirty-eight
interviews were conducted. In each organisation, the informants were from lower to
upper cadres and were selected strategically in order to interview those involved in
FOSS implementation and use. Table 4.7 presents the occupation and number of

interviewees involved in the survey of the use of FOSS in organisations.

Table 4.7: Interviews of the use of FOSS in Organisation Survey

Position Country Informants Interview Sessions
T .

Senior Administrators anzania 5 5
Norway 2 2
T i 2)

Junior Administrators anzania
Norway 6 6

Technical Staff Tanzania 5 5
Norway 8 3

End users Tanzania 6 o
Norway 4 1

Total 38 =

In the DHIS Settings, I conducted interviews and group discussions with health
workers and project managers of vertical programmes in various periods. Some of the
interviewees were interviewed twice or more at different points in time. During the
initial phase of the project, the focus was to negotiate and harmonise a minimum list of
health data elements to be collected and reported in the health facilities. However, in
the later stages of the project, the interviews focused on strategies to ensure user
participation in the projects. A summary of the list of informants and their

organisations is presented in Table 4.8.

Table 4.8: List of Informants in the DHIS Case Study

Orgamsatlon itz Informants Numb.er of
Units Interviews
Health Facilities Health Centres 14 14
Hospitals 8 16
N . . Unguja 7 17
District Medical Off
istrict Medica ices Permba 4 7
Ministry of Health National HMIS Office 4 9
Donor Agency DANIDA Zanzibar 2 6
Malaria Programme 3 3
. HIV/AIDS Programme 2 4
Vertical programme
Expanded Programme 5 5
for Immunisation (EPI)
Total 49 76

76

4.4.2 Group Discussions

This method was similar to the interview method in that it involved face to face
discussions. However, group discussion allows the researcher to discover ideas
concerning people’s attitudes, perceptions, and experiences about the phenomena
being discussed through the use of a group of people to clarify attitudes or beliefs in
words that are probably not easy to articulate (Hoyle, Harris, & Charles, 2002).
Normally, group versus individual interviews are conducted. Because of the nature of
the projects followed, group works were a common routine. I met with users,
developers, and other stakeholders during workshops, project progress briefing
meetings, and lunch time, and I used those opportunities to introduce questions and

take notes.

During the implementation of the SARIS at the university, I was a member of a special
committee commissioned to re-design the university examination transcripts template
and to analyse the university format of student registration numbers. The goal of this
committee was to give feedback to the development process of the computerisation of
the student information system. Also, we proposed changing the university student
registration numbers format to have a pattern that could be programmed and
validated through the computer system. We designed the university examination

transcript, which was then implemented in the SARIS system.
4.3.3 Documents Analysis

Documents analysis refers to the process of reading relevant personal, official, or
public documents, which may be valuable sources of information to the research. There
are various sources of information that can be used in document reviews, such as
educational reports, meeting reports, conference reports, educational policies, circulars,
pamphlets, journals, dissertations, and text books (Cohen, Manion, & Morrison, 2000).
Document analysis provides a good source of general background of the problem and
an opportunity for studying trends over time. Documents analysed included
organisational ICT policies, ICT project documentation, and ICT project proposals;

other useful documents were server specifications, ICT policy documents, and working

77

regulations such as examination regulations and statistics reports. Health data
collection tools and respective reports were additional useful documents for analysis.
Also collected were resolutions of meetings that approved installation and use of FOSS

products.
4.6 Data Analysis and Use of Theory

In qualitative research, data analysis starts in the field and is part and parcel of data
collection (Orlikowski, 1993). In the course of data gathering, ideas about possible
analysis occur. It is a continuous process involving the collection and analysis of data
in the field. The process involves making sense of the raw data, with the aim of
transforming raw data by integrating and organising comments in connection to real
experiences into major patterns and themes (Silverman, 2006). As this study is framed
in the interpretive approach to action research, keeping a journal of field notes was a
major starting point for analysing the data. Bryman (2004) argues that field notes
should be fairly detailed summaries of events and behaviour and the researcher’s

initial reflections on observations.

Throughout this research, I was inspired by Actor-Network Theory (ANT) (Latour,
1987; 2005). In the interpretive research approach, a theory cannot predict particular
outcomes of the research because the relationship between technology and
organisations are dynamic. However, a theory is a sensitising device for analysing and
collecting data from the field. Walsham (1995a) informs researchers that a theory can
have the following roles: as an initial guide to research design and data collection; as
part of an interactive process of data collection and analysis; and as a final product of
the research. In this study, ANT was used to guide the process of data collection and

analysis.

In ICT implementation studies, ANT is useful in following the interplay of
heterogeneous actors as their interests and intentions are inscribed in artefacts; the way
actors interact;, and the way actors form alliances in order to mobilise support for a
particular solution (Bijiker, Hughes & Pinch, 1987; Latour, 1987). These perspectives
were useful, especially in software prototyping processes, because following actors

revealed their strategies used to implement the systems. In this case, ANT’s concepts

78

highlighted the importance of paying attention to actors’ politics, disagreements, and
conflict resolutions. For example, I was particularly interested in following the
problematisation and interessement processes to learn how focal actors in the HIS and

SARIS projects maintained their open source information systems.

Throughout this study, I had the opportunity to interact with the research community
and discuss my research findings. I carried the data analysis process iteratively by
reading literature and through discussion with various professionals and researchers,
especially my supervisors, colleagues, and conference participants. When writing my
research papers, I had the opportunity to address reviewers’ constructive criticisms,
which helped me to reflect on my research data. The review comments from journals
and conferences directed me to read more relevant literature, refine my analysis, and
refine my research approach. This helped to link my research with existing body of

knowledge.

Specific findings, such as feedback to the DHIS developers on the importance of
mimicking the paper forms into the software, the importance of flagging FOSS-based
licenses in the software, and implications of using socially embedded leaders in
information systems development, were presented in my various papers. In this thesis,
I pursued combined analysis of all the papers to extract a generalisation of the study.
An interpretive approach can be generalised in various ways (Walsham, 1995b): by
developing concepts, by generating a theory, by drawing specific implications, and by
contributing to the insight of the studied phenomenon. My goal was not to “refute”
any theory; rather, I sought to increase our understanding of the challenges faced by
developing countries in implementing FOSS products in information systems. This was
done by contributing insights on the development of FOSS in developing countries and
by drawing specific conclusions about what can be done in practical terms to facilitate

an implementation of FOSS applications in developing countries.

79

CHAPTER 5: RESEARCH FINDINGS

5.1 Introducing the papers

At different stages of my doctoral study, I drew upon five papers. These papers are
attached as appendices to the thesis. Their titles and abstracts are presented in the next
section, followed by a concrete synthesis of the findings addressing the research
objectives. The papers are listed based on the case studies. The first paper draws its
empirical material from the explorative study on the use of FOSS products in
organisations. The next two papers are based on the health information system case
study, and the last two papers are based on the education information system case
study. The relationship between the papers and the research objectives are presented in

Figure 5.1.

Objective I: To develop alternative
explanation of the Free Open Source
Software phenomenon in the context of
information systems in developing

Objective II: To analyse and address the
challenges shaping Free Open Source
Software development in order to enable
Tanzania in particular and developing

countries. countries in general to benefit from
adopting it.
\‘ 4
_________________ !._._.—-—-—-—-—-—--‘
1
!
N S Y -}
1 | 1
‘ Paper I ’ Paper II ’ ‘ Paper I1I ’ ‘ Paper IV ’ ‘ Paper V ’

Figure 5.1: The Relationship between the Research Objectives and the Papers

81

5.2 Summary of the Individual Papers

5.2.1 Paper 1

Reference:

Lungo, J. H., & Kaasbell, J. (2007). The Use of Open Source Software in the Public
Sector: Cases from Tanzania and Norway. Submitted to: Information and
Organization Journal (previous version has been published In Silva, L., Westrup,
C. & Reinhard, N (Eds.), Proceedings of the Ninth International Working Conference
of IFIP WG 9.4: Social Implications of Computers in Developing Countries, (pp.1-14),
Sao Paulo, Brazil.

The paper presented the performance and advantages of open source software in
publicly-owned establishments. Cases were drawn from public organisations in
Tanzania and Norway in order to compare and contrast the perceptions of users with
the performance of free open source products (FOSS). Respondents were primarily
asked about their motivation to use FOSS products. The results indicated that lower
cost, security, reliability, open-standards, and vendor independence are prime
motivations for organisations to use FOSS products. It was argued that FOSS is more
secure because of the availability of source codes, which enable developers and users
to discover and fix vulnerabilities before a flaw can be exploited. Availability of source
codes also facilitates reverse-engineering in order to make FOSS products comply with

open standards.

Users were motivated to use FOSS products like web browsers, office suites, and mail
clients because of the implementation of open standards, which enabled them to share
documents. Furthermore, most FOSS products are security focused because they have
been developed during the Internet era. Users argued that some FOSS products are too
security sensitive at the expense of user friendliness. System administrators observed
that Linux-based servers do not crash more frequently than their Windows
counterparts; hence, they are more reliable. The study indicated that FOSS products
lower IT expenditures in three different ways: they are cheap in terms of licence costs;
the products run on cheap hardware, which eventually lowers hardware expenditure;
and support contracts are cheaper when compared with support for proprietary

software products.

82

There were, however, several shortcomings associated with the use of FOSS in
organisations. Respondents of the study mentioned compatibility between open source
software and proprietary software systems, switching costs, and few IT professionals
to support open source products. Also, the cost of leaving a well-established network
of supporting proprietary software such as Windows for open source software like

Linux was not negligible.

5.2.2 Paper 11

Reference:

Lungo, J. H.,, & Igira, F. (2008). Development of Health Information System in
Zanzibar: Practical Implications. Journal of Health Informatics in Developing
Countries, 2(1), 24-32.

The paper grounded its theoretical perspective on network analysis of ANT on
implementation strategies of information systems. The paper made use of empirical
materials from the DHIS in Zanzibar, with a focus of trying to understand the interplay
between the social and technical issues. The goal was to streamline the design and
implementation processes of Open Source Information Systems such as the health
information system in Zanzibar. Concepts from the ANT moments of translation
framework (Latour, 1987) and network analysis model (Law & Callon, 1992) were

employed as lenses to zoom in and out of the implementation issues.

The findings indicated that the use of FOSS in implementing health information system
facilitates the technology translation process. Specifically, FOSS is useful because of the
availability of the software and knowledge surrounding that software. Primary actors
can demonstrate their solution of their interest with practical data, which helps to
entice and enrol other actors. As a result, it is easier to obtain the support of a higher
authority. Generally, the paper’s findings indicated that ICT projects get strengthened
through carefully planned leadership of a project, clearly stated goals, and the
participation of local networks and global networks. More important is the use of
culturally-immersed leaders to spearhead the project. That is, local people should lead
the project because culturally-immersed leaders know the context and can manoeuvre

the formation of strong networks better than foreigners.

83

5.2.3 Paper 111

Reference:

Lungo, J. H. (2008). The Reliability and Usability of District Health Information
Software: Case Studies from Tanzania. Tanzania Journal of Health Research 10(1),
39-45.

This paper drew upon the customisation process of the District Health Information
Software (DHIS). The focus was on evaluating the extent to which the DHIS has been
adapted to meet the local requirements of the users in terms of its reliability and
usability factors. In the usability factor, two measurement scales were used: accuracy
and failure rate. In the usability factor, three measurement scales were used: training
and support, format, and content. The goal was to develop constructive feedback to the

developers in order to improve the software.

The software evaluation tests revealed that, at that time, although it had higher
reliability, the DHIS was rated poor in terms of usability. DHIS fared poorly in terms of
usability because it did not accommodate all health data. Users expected the DHIS to
be a single point of contact for all kinds of health data, from routine health delivery
services to vertical programmes data such as HIV/AIDS programmes. Second, the
DHIS data entry forms did not match currently used data collection forms in terms of
layout of the health data elements. For example, the first health data element in the
paper form was the sixth health data element in the DHIS computer screen form. The
same mismatch issue was noted for the manual reports when compared to the DHIS
computer output. Third, the user training workshops did not equip users with the

knowledge required to work with the DHIS.

The results of the DHIS evaluation demonstrated that software must be adapted to the
local requirements. In the process of software adaptation, access to the source code is
necessary in order to customise the user interface, business logic, and reports of the
software. In other words, the customisation process goes beyond data entry and data
editing. Developers need to pay attention to the local requirements, including
functional requirements in terms of what the software should do, as well as non-

functional requirements, such as layout of the fields in the data entry forms.

84

5.2.4 Paper IV

Reference:

Lungo, J. H. (2005). Re-inventing Higher Learning Institutions Communication Media:
The Case of University of Dar es Salaam Student Information System. In A.O.
Bada & A Okunoye (Eds.), Proceedings of the Eight International Working
Conference of IFIP WG 9.4: Social Implications of Computers in Developing Countries,
(pp.194-208), Abuja, Nigeria.

Despite the advancement of Information and Communication Technology (ICT), the
information systems in most public institutions in developing countries are still in
chaos. In this particular case, privacy-sensitive records, such as examination results,
were published on notice boards and became open secrets to everyone, including the
paparazzi. Generating transcripts involved seven steps: drafting, grading, typing,
proofreading, verifying, signing, and photocopying. The university was only able to
produce three transcripts per week, while the university graduates over 3,000
candidates annually. A student transcript request took at least three months. There was
also a serious double allocation problem during the room allocation process for the
student halls of residence. The university hostels can accommodate more than 7,000
students, and the hostels were designed in such a way that a single room was to be
shared by three or four students (four beds in a room). No single student was to be
allocated to more than one bed in a room, and no room was to be allocated more
students than the number of beds therein. After the room allocation process, another
problem followed: advertising the room allocation reports. Seven thousand names
were printed on more than 300 pages, but no single notice board could display those
pages. The reports were distributed on several notice boards, including on trees
around the campus. A student then had to walk around the whole campus in order to

find out if he or she had secured a room.

However, these problems of the manual system were mostly felt by the students and
lower cadre officers of the university such as secretaries and examination officers. It
was not an obvious problem for the managers. The lower cadre officers were
desperately seeking an electronic system; however, an IT project is expensive. Thus, the

SARIS was initiated. Here, the power of FOSS technologies, such as MySQL and PHP,

85

was revealed. The tools and source codes were free of charge. The project members
then needed to assemble various pieces of the codes. The Zalongwa project members
understood that it was a FOSS; hence, they focused on elimination of the problem,
rather than on monetary gains. This approach enabled the Zalongwa project to take off,
without depending much on senior administrators. From this case, we learn that the
key to starting an open source software project in institutions is to get enthusiasm from
volunteers in the organisation. The key project leader oversees and coordinates

contributions from different members.

5.2.5 Paper V

Reference:

Lungo, J. H. (2006). Critical Issues Associated with Adoption and Use of Open Source
Software in Public Sector: Insights from Tanzania. In J. Ljunberg & M.
Andersson (Eds), Proceedings of the Fourteenth European Conference on Information
Systems, (pp.732-744), Goteborg, Sweden.

The paper focused on tensions in qualification and transformation of FOSS in
developing countries. The empirical materials in this paper were based on interpretive
analysis of two software products studied: District Health Information Software
(DHIS) in Zanzibar, and Student Academic Register Information System (SARIS) at the
University of Dar es Salaam. The analysis was informed by two FOSS concepts,
qualification and transformation, in order to shed light on the issues related to the

implementation of FOSS in information systems of a developing country.

The development of FOSS in developing countries in Tanzania has been hampered by
limited resources, both human and technical. This has resulted in the development
taking a different approach than the promoted development models, especially the
bazaar model. For example, while the most important vehicle of knowledge sharing in
open source development is mailing lists (Sowe, Stamelos, & Angelis, 2007), these two
projects did not have a mailing list because developers did not have access to the
Internet all the time. Communication with international developers was conducted
through personal e-mail address, mobile phone short messages, and telephone calls.
All developers were co-located, and discussions were conducted face-to-face. The
findings also indicated less competence on FOSS knowledge. Crucial issues on any

86

FOSS development were not given high priority at the beginning of the projects. On
comparing the software products from these projects and the open source definitions
some attributes of the open source definition were found to be missing, although the
owners, both developers and the clients, claimed that their products are fully open

source software.

The paper claimed that the freedom to use the software for any purpose and for any
number of computers is the major distinctive advantage of FOSS over proprietary
products. Additionally, rather than the bazaar model of FOSS (Raymond, 2001), a
directed co-located development approach was used. The paper also revealed that
while FOSS is not free of charge, administrators are more willing to pay contracted
software developers than to purchase a software product. The paper concluded that
open source development in the public sector of a developing country is hindered by
limited ICT infrastructure, limited human resources, misunderstanding of FOSS
licensing issues and FOSS business models, and preference for a formal, face-to-face

negotiation culture over virtual teams and electronic communications.
5.3 Synthesis of the Findings

This section presents the links between the papers of the thesis. The research findings
drew upon theoretical concepts and the analysis of empirical data. The findings are

grouped into four themes:
The performance and support of FOSS products in organisations

The transformation process: project organisation and support proximity

¥

¥l The motivating and constraining issues in FOSS transformation

i

1 The translation as the process for building community around the FOSS products

The next sub-sections discuss these categories in detail; they are first summarised in

Table 5.1.

Table 5.1: Links between the Papers

Key Themes Papers Key Empirical Findings

- reliable FOSS products (do not reboot frequently)
- support contract from external vendors
- some FOSS products managed by internal staff

Performance and Support | Paper I,
of FOSS applications Paper IV

87

Key Themes Papers Key Empirical Findings

- freedom to make any number of copies
Paper [, - lower entry cost

Paper IV | - political integration

Paper V, | - misconception of the FOSS philosophy

- technical infrastructure riddles the process
- skills competence in FOSS technologies

Motivating and
Constraining issues in
FOSS transformation

The transformation Paper II - hired developers instead of volunteers
process: project p - directed co-located development

P 111, . .
organisation and support Pzpz v bottom-up venture driven by champions
proximity P " | - hands-on support

Paper V

- how-to support
- use of culturally-immersed leadership
Translation as the process Paper II, - political negotlatlons' .
1 " Paper IIl, | - software demonstration with real data
for building communities ..
Paper IV | - user training

- consultative workshops

5.3.1 Performance and Support of FOSS Applications

The empirical findings indicated that matured FOSS products such as operating
systems, database management systems, and web servers have acceptable
performance. For example, Linux servers do not reboot frequently when compared to
windows servers. In addition to reliability, computer virus problems are less common
in FOSS products. These findings confirmed the claims made in the FOSS literature
arguing that FOSS development produces high quality software (see Raymond, 2001;
Wong & Sayo, 2004). However, not all FOSS products perform better. This is especially
true for those applications that fail to attract a significant number of developers.
Informants cited lack of interoperability with other applications as a major problem
with FOSS. For example, FOSS applications do not support the copying of application
to another. Second, there was inconsistency with commands implementation. That is,
for one application, the same command is named and located under a different menu
in another application. As a result, this inconsistency lengthens the learning curve for

users because they cannot use previous experience to learn a new application.

The concept of the private-collective investment model of innovation (von Hippel &
von Krogh, 2006) implies that FOSS is a public good; thus, users have to depend on
their own teams to support their applications in terms of software updates,

customisation, and failure recovery. Interviews with users of FOSS applications in

88

organisations and experiences from the two case studies of the thesis revealed that
FOSS products are supported by external contracted vendors. Private companies are
contracted to deliver support services such as software maintenance and
customisation. An example would be the case of Redhats support contract in Linux
operating system in the universities, as presented in Paper I. Also, the municipals
visited in this study had support contracts with a private company to support their
thin-clients systems. However, there was internal support of FOSS products, as with
the SARIS case study, which was initiated by internal staff. Furthermore, systems

administrators in organisations supported the day to day running of the applications.

Generally, FOSS products receive both internal and external support of dealers. In
objective two of the thesis, the aim was to find out how social conditions influence the
development process of FOSS products in information systems. The findings indicated
that FOSS is supported internally and externally. The internal support of FOSS

products requires internal staff to be competent in FOSS technologies.
5.3.2 Motivating and Constraining Issues in FOSS Transformation

In this theme, two categories of the findings emerged: the motivations for users,
developers and stakeholders to adopt FOSS, and the challenges developers face in
adopting FOSS development (the bazaar model). In terms of motivations, the initial
decision for proposing FOSS products was driven by the focal actors, or “champions of
change”. In the health information system case, the focal actors were the Ministry of
Health information system officers, who proposed the health information system
process. When the HISP team joined the reform process, a reproblematisation took
place, and HISP became a focal actor (see detailed presentation in Paper II). The HISP
project then proposed the DHIS software based on its experience working with this
software. In the SARIS case, the focal actors proposed to use FOSS technologies to
develop SARIS from scratch. However, two things found to be consistent motivating
factors within the two projects led to acceptance of the software as “obligatory passage
points”: (1) the freedom to make and install the software to any number of computers

and (2) low initial cost of the project (lower entry cost level) (see Paper I, Paper IV, and

89

Paper V). The health information system found that the DHIS could be acquired at no
cost, customised by local developers (even if paid developers), and then installed in
any number of computers in the country to be appealing. In the SARIS case, the
software was developed without any contract. The university later had to pay for data
migration and user support (see Paper IV). Thus, the freedom to use the software for
any purpose in any number of computers (Presens, 2005) and lower entry cost level

were major motivations for stakeholders to be enrolled in the contested FOSS solutions.

Despite the motivations revealed here, the transformation process was riddled with
many challenges. Specifically, the constraints of the development process were
threefold: (1) misunderstanding of the FOSS philosophy, (2) limited technical
infrastructure, and (3) limited competence of FOSS technologies. At the beginning of
the two projects, there were few efforts made to ensure that the FOSS products were
open source software. A thorough qualification of the two projects was presented in
Paper V. This demonstrates misunderstanding of the FOSS philosophy. Developers
and users in the two projects treated their software as FOSS products. However, later
on, slowly the two applications improved; for example, there were attached FOSS

compatible licenses, and that then qualified them as FOSS products.

Technical infrastructures, which include availability of computers, computer
accessories, and Internet, are serious issues influencing FOSS development in
developing countries. Internet access is expensive; even if you have full connectivity,
for example at the university, the network fluctuates (it is on and off). Developers do
not own computers. As result, developers need to work at one place, a situation which

limits their flexibility to work in their convenient time as the FOSS literature suggests.

Furthermore, there is an issue in managing the FOSS technologies. Despite the high
profile of the developers (university graduates), managing FOSS technologies such as
working in Linux environments, CVS configurations, and general programming, are
big challenges. Most of the technical forces from the universities are not introduced to
FOSS technologies. These findings demonstrate that the curriculum in higher learning

institutions in Tanzania does not emphasise FOSS technologies.

90

5.3.3 The Transformation Process: Organisation and Support Proximity

This theme emerged during analysis of project organization and software
development. The findings indicated that the actual processes of project
implementation were organised as follows: paid developers were used in place of
volunteers; there was directed co-located development instead of community virtual
team development; and to large extent, project organisation was bottom-up. The SARIS
project was a bottom-up process in the sense that the peripheral organs of the
university (departments and faculties) adopted and used the system before being
approved by a university authority. In the health system case study, although the
political negotiations started at the ministry level, the implementation started at the

peripherals (at district levels).

Furthermore, contributions from external developers were received in the form of
“hands-on” and “how-to” forms. “Hands-on” occurred when external developers
visited the local development team and demonstrated how to program a function. This
was the case with the DHIS, where developers from the HISP network visited the
development site in Zanzibar in order to support the local team. In the “how-to”
model, local developers received external support through guidelines. The how-to
support was received through telephone calls, SMS, and e-mails. In contrast, in the

FOSS literature, developers contributed source codes.
5.3.4 Translation as the Process for Building Communities

The translation process theme is as follows: locate findings of the study that informs
how actors (both human and artefacts) were recruited in the two projects. First, the two
projects were organised in such a way that a culturally-immersed leader coordinated
the respective projects (see Paper II and Paper IV). Culturally-immersed leaders are
project leaders who come from the same organisation. For example, in the SARIS case
study, the project leader was an internal staff member who held a post for examination
regulations. In the health information system case, the development team was under
the sixth health information system section of the Ministry of Health in Zanzibar. In

addition, in the two projects, there was substantial involvement of political

91

negotiations between the local networks and the global networks. The political
negotiations were needed to guarantee agreement on fundamental issues, for example,
formulating a minimum list of health data elements and health indicators. Notable
political negotiation outputs from the SARIS project included the design of new
examination templates and a new format for student registration numbers. The net
effect of using socially culturally-immersed and political negotiations was to build a
community around the FOSS products. Political negotiations were featured even in

selecting and contracting FOSS developers in the studied projects.

One of the key elements of the interessement phase of the translation process was
software demonstration. The two projects used a similar strategy of extracting data
from legacy systems and loading them to the software in order to demonstrate to users
and stakeholders. Software demonstration and consultative workshops helped to
convince actors that the contested tools promoted by the focal actors were fully
functional. As presented in the case studies, a series of user training was organised as
offsite training and onsite training. Thus, the communities around these projects were
built through political negotiations, software demonstration, user training, and

contracting developers.

92

CHAPTER 6: IMPLICATIONS AND CONTRIBUTIONS

...we have a past error to correct, and a present danger to avoid.

Mwalimu. J.K. Nyerere

This chapter contains the implications and contributions of the thesis. Section 6.1
presents implications of the findings with respect to the Free Open Source Software
(FOSS) development in the context of Information Systems (IS) in developing
countries. Section 6.2 presents practical contributions as strategies for making FOSS
work in developing countries. The practical remarks, addressed to Tanzania in

particular, are strategies for benefiting from FOSS development.
6.1 Theoretical Implications: Re-conceptualising FOSS Development

In this thesis, the term “re-conceptualisation” is used because the FOSS phenomenon is
revisited in a different context: the Information Systems (IS) domain in developing
countries. Unlike the infrastructure domain where FOSS developers are also the user,
in the information systems domain, users are not developers. Also, while there is a
significant amount of FOSS literature on infrastructure products and in the resource
rich context, this thesis examines the FOSS phenomenon in a resource poor context,
where FOSS development is less studied. This thesis examines the characteristics and
the development processes of the DHIS and SARIS in order to compare and contrast
with them the way the literature presents FOSS characteristics and development

process.

In Chapter 2 of this thesis, the FOSS phenomenon was explored to better understand
its philosophy, intellectual property rights, transformation, economics, motivations,
and stakeholders. Based on the findings presented in Chapter 5, this thesis contributes
the following key theoretical implications to the FOSS development in the domain of IS
in developing countries:

The importance of qualifying FOSS applications

The benefit of FOSS products in developing countries

Directed co-located development instead of bazaar model

Technology translation as the process for building community
The role of political negotiations in FOSS development and use

BERERE

93

In the following subsections, each implication is discussed.
6.1.1 The Importance of Qualifying FOSS Applications

The discussion of the FOSS phenomenon in Section 2.2.3 of this thesis highlights the
fact that license is the only institution in the governance structure of FOSS projects
(Bonnaccorsci & Rossi, 2003) that distinguishes FOSS from other types of software.
License is the significant marker and required characteristic of any FOSS product
(Feller & Fitzgerald, 2002). Users in developing countries should carefully watch
software license rights from the onset of their projects. The findings of this study
revealed an ad-hoc way of qualifying FOSS products when a tentative qualification of
the products was conducted (see Paper V). However, the two applications studied
(DHIS and SARIS) were treated as FOSS products by their respective users, developers,

and stakeholders from the beginning.

The study revealed that users relied on the way in which the software was advertised.
The two applications have been referred to as FOSS products in various sources. The
DHIS, for example, has been presented as flexible open source software in various
works (e.g., Braa & Hedberg, 2002; Braa et al., 2004; Gjerull, 2006; Lungo, 2003;
Nhampossa, 2006). In addition, organisations that support the DHIS in various
countries advertise it as FOSS products, e.g., project websites in India (HISPINDIA,
2008), Nigeria (HISPNIGERIA, 2008), Tanzania (BEANISH, 2007), and South Africa
(HISP, 2007).

The SARIS software is advertised as a platform independent FOSS product. The
founders of SARIS have used this argument to impress universities that the software
can be accessed from any computer platform at the university (e.g.,, Windows, Linux,
or Mac). Today, the company that supports SARIS development supports other
established FOSS products such as vTiger CRM, webERP accounting software, FOSS
based Content Management Systems (Joomla!, Mambo, and Typo3) and it advertises
various open source courses (ZALONGWA, 2007). Furthermore, the company
supporting SARIS is listed as a country office, FreeCode Tanzania, of an international

company that deals with FOSS products exclusively (FREECODE, 2008).

94

It is important to qualify FOSS products through their applied licenses. Additionally,
this qualification process should take place right from the beginning of a project in
order to avoid confusion with public domain software. Users are ensured the kinds of
freedom envisioned in FOSS through licenses. Despite early findings on the way the
software deviates from FOSS qualifications, at the time of writing, the developers of
the DHIS and SARIS had made efforts to ensure that their applications qualified as
FOSS products. SARIS software uses the GNU General public license (Stallman, 2002),
a highly restrictive FOSS license (von Hippel & von Krogh, 2006). The DHIS license

reads as follows:

...You may make and distribute unlimited copies of the DHIS Software, including
copies bundled with commercial products ... You are free to modify, translate, or create
derivative works based on the DHIS software...

The DHIS license gives four envisioned freedoms: the freedom to run the program, to
study how the program works (as access to the source code is allowed), the freedom to

distribute copies, and the freedom to improve the program (Stallman, 2002).
6.1.2 The Benefits of FOSS Development in Developing Countries

Drawing form the technology translation (Nhampossa, 2006) and the networks of
action (Braa et al., 2004), the thesis indicates that use of FOSS products facilitates
sustainable networks. As with the DHIS in Zanzibar, the software application was
shared from a different country, and local developers in Zanzibar were supported by
experienced developers from the HISP network. The formation of networks of action is
important in sharing knowledge in order to facilitate the translation of software in
order to accommodate local requirements. Given the low rate of IT professional
recruitment in the public sector (Ciborra & Nevarra, 2005), developing countries would
benefit if they could form networks around software applications, the knowledge of
which should be public domain. Thus, the benefit of using FOSS products in
developing countries is the facilitation of networks, collaboration, and sharing of

software applications.

Specifically, this thesis recommends adoption of FOSS products in developing

countries for the following reasons: FOSS is a means of acquiring knowledge; it avoids

95

locking into a situation, it allows culturally-immersed leaders (champions) to
demonstrate their ideas live; and it fosters political integration in contested areas such
as vertical health programmes (as discussed in paper II and Paper IV). In the case
studies of this thesis, local software developers learned how to customise DHIS by
working with the DHIS source codes and experienced developers. The DHIS license, a
FOSS compatible license, gives the Ministry of Health the flexibility to choose anyone,
and not just the original developers, to support the DHIS. Furthermore, FOSS products
(DHIS and SARIS) help local socially embedded champions to demonstrate their ideas.
In the DHIS case, the circle formed by introducing the idea of demo software was
short-lived because the software was not developed from scratch. In the SARIS case,
the tools for developing the software (PHP and MySQL) came pre-packaged in a
server, a situation which allowed purchasing initial platforms for developing the
software without discussion. A pre-working version of the system (as in the DHIS case)
and pre-installed software that could be re-used to develop a new system (as in the
SARIS case) expedited the development process and helped the primary actors of the

project to demonstrate their ideas with a live system in a short period of time.

It is expensive to adopt FOSS products suitable for computerising information systems.
Information systems are context sensitive; thus, software cannot be transferred from
one context to another, but must be transferred and translated (Nhampossa, 2006).
Translation means that the software needs to be adapted to local needs. The process of
adaptation of software (customisation) leads to expenses that exceed the buying cost
(license cost). Expenses related to FOSS products in information systems are due to
personnel costs, hardware requirements, opportunity costs, and training costs, which

together make up the Total Cost of Ownership (TCO) of software.

The findings of this thesis indicate that in the health information system project, there
were contracted developers who earned monthly salaries. Also there were frequent
visits of experts from different countries to Zanzibar in an effort to support the local
development team. In addition to direct costs for sustaining the developers, there were
additional costs for training users, piloting the software, and facilitating workshops

between stakeholders. In the SARIS case, there were costs for migrating data from

96

legacy systems to the software plus user support services. This implied that FOSS is
not free of charge. Rather, there are associated costs, of which FOSS adopters need to
be aware. Other costs for adopting FOSS are associated with Internet dependence.
With FOSS, developers need to be connected online, but the Internet is expensive. The

case of downloading early versions of the DHIS in an expensive hotel attests to this.

One additional justification for proposing FOSS in developing countries is low
expenditure on ICTs. It is taken for granted that because of the private-collective
investment model of innovation practices (von Hippel & von Krogh, 2006), FOSS is
cheaper than proprietary software. This is due to FOSS development being financed by
individuals but being revealed freely in the public domain. Proponents of FOSS argue
that the freedom envisioned in the FOSS philosophy does not mean that FOSS
applications are not for sale. Stallman (2002) argues that the word “free” in FOSS does
not imply FOSS products are free of charge. However, most FOSS products in
infrastructure platforms, such as operating systems, database management systems,

and many more, can be obtained for free (download and install).

In this study, the findings revealed that the use of FOSS development lowers ICT
expenditure due to (a) free of charge software, (b) software running on old hardware,
(c) software running on generic mass produced hardware, and (d) low support
contracts (see Paper I). Paper I of the thesis, which presented a comparison of the
license costs between proprietary software and open source software, revealed that
FOSS products costs are low. Similar conclusions were reached in a comparison
between proprietary software and FOSS software, which was almost always cheaper
than proprietary software (Wong & Sayo, 2004). However, the comparisons were on
direct license costs. This implied that in the event on-shelf FOSS products fulfil users’

requirements, they also lower ICT expenditure in organisations.
6.1.3 Directed Co-located FOSS Development as a Coping Strategy

The thesis indicated that developers do not own the means of production, such as
computers. The Internet was too expensive for developers to have constant access. In

addition, the developers were not familiar with the working practices and user

97

requirements of the computerised information systems. Developers met in a single
working office, where they were equipped with the tools needed to develop the
software. This implied that co-located development was adopted due to limited access

to technological infrastructure.

The concept that FOSS developers are scratching an “itch” (Raymond, 2001) does not
work in information systems because the developers are not the users of the software.
This research revealed that software developers have little experience with economic
and technological challenges in the developing countries. As a result, developers need
to learn the working practices of the information systems. In order for developers to
configure the DHIS, for instance, they needed to learn health data reporting channels,
aggregation levels, and calculation of health indicators. However, since the users were
not IT professionals and more important users were computer illiterate, they could not
contribute to source codes and user requirements online as the FOSS literature
suggests. The findings of this thesis revealed a series of user training workshops which
covered computer literacy courses and advanced courses on database applications. The
DHIS users were trained to switch on/off computers, use operating systems, word
processing, and spreadsheets; then they were trained to use the DHIS software. In
contrast, the FOSS literature revealed that users contributed source codes,
documentation, or translation. In other words, they were computer literate. The
implication drawn here is that FOSS development process in this context takes a

different route in order to accommodate these un-intended issues.

It has been argued that because of module based architecture, FOSS products enable
shared and concurrent software development (Camara & Fonseca, 2007; Feller &
Fitzgerald, 2002; Raymond, 2001). Modularity is implemented through the object-
oriented software development approach. However, as presented in this thesis, the two
applications studied did not adopt an object-oriented approach. Lack of modularity led
to challenges in adopting FOSS development principles. Developers were not able to
divide the applications into small segments that could be checked out by individual
developers over the Internet because of not using object-oriented development (see

Paper IV and Paper V). Furthermore, in the two projects, there were no version control

98

tools such as CVS that enable distributed developers to check out source codes. This
led to re-invention of the software development, where the development team was
supported in different ways other than as told by the FOSS development principles.
Instead of receiving source code contributions, the development team received a “how-
to” support from distant developers. In most cases, the local development team was
told how to implement a functionality instead of receiving a piece of source code to

integrate with the software.

In addition to a how-to support through e-mails, SMS, and telephones, the local
development team received hands-on support. Experienced global developers visited
the site in Zanzibar and worked together with a local development team. Although this
approach made the development process more expensive, it gave the developers
greater access to technical support and generally fostered the development process.
These workaround approaches contributed to our understanding of FOSS
development. In addition to globally distributed developers who contribute software
source codes, how-to and hands-on contributions are necessary for coping with
technological and social challenges similar to the domain of the two case studies

presented here.

In these case studies, technological challenges influenced the re-invention of the FOSS
development process. First, developers did not own the necessary technological tools,
including computers and Internet connections. Second, Internet access is limited and
expensive. This resulted in re-invention of FOSS development, where developers had
to use shared means of productions (computers and Internet), a situation that forced

them to work together at special offices having the necessary facilities.
6.1.4 Technology Translation as the Process of Building Community

The findings indicated a delay in the decision in the two projects on which licenses to
use for their respective software (see Paper V). Similar observation on delayed
decisions was noted in DHIS2 project, a project which aimed to implement the DHIS
software using Java technologies. It is presented that, ‘during the first one and a half

years of the project, there were several attempts to start a debate around the proper

99

license for DHIS2. None of these attempts took off, and no decision on this matter was
made” (Nordal, 2006, p.61). This is exactly the opposite of the practical advice
suggested in the literature, which argues that a FOSS project should start with the
decision of license from the first days (Fogel, 2006). In the established FOSS
development context, licensing is one of the driving factors contributors use to decide
whether or not to participate in a project (von Hippel & von Krogh, 2006). FOSS’s novel
legal arrangements, such as “copyleft,” provide an important point of engagement

(Coleman, 2004b).

Use incentive is a motivation factor for developers to contribute in a FOSS project
(Hertel et al., 2003; von Hippel, 2005). Other authors attribute the tendency of free
revealing of FOSS developers to enjoyment, payments, and obligation motivations
(Feller & Fitzgerald, 2002; Ghosh et al, 2002; Lakhani & Wolf, 2005). FOSS licenses
define the restrictions and flexibility for a particular FOSS application (Lerner & Tirole,
2005). This implies that in order for developers to decide on joining and contributing
on a project, they first examine the license of a particular project carefully. However, in
the case studies of this thesis, the developers were not the intended users of the system,
and they joined the projects without evaluating licences. As presented in Table 5.1,
developers were recruited. Coleman (2004b) argued that the most common challenge
in presenting FOSS in developing countries is not misconceptions on the part of
stakeholders, but no conceptions. There is inadequate understanding of the technical,
social, and legal intricacies of FOSS (Coleman, 2004b). In addition, FOSS technologies
and its development arrangements to reflect the Bazaar model (Raymond, 2001) were
not well tolerated by the social conditions of the context of my studies. This was
demonstrated in my case studies during the initial days of the studied projects (Paper

V).

The fact that these projects did not yet have licenses demonstrated that different
strategies were used for recruiting developers. Specifically, the role of licenses at the
beginning of the projects was perceived to be less important as compared to the
principles of FOSS development. The justification that licensing attracts contributors

then is pragmatic. In the information systems domain, the importance of FOSS licenses

100

is undermined because developers have no use incentive. They have payment
incentive; thus they are recruited just like other developers in proprietary software.
This implication confirms the findings of other authors, who argue that developers

have extrinsic motivations in the form of payment (Lakhani & Wolf, 2005).

Although the decision for adopting licenses for the two applications was delayed, the
two applications use highly restrictive licenses (Lerner & Tirole, 2005). As presented in
Chapter 4 (Section 4.4.1 and 4.4.2), SARIS uses the General Public License (GPL). The
DHIS license restricts users from using the software for commercial purposes (that is,
making the software proprietary). This confirmed the observations of earlier studies
that applications in user oriented domains are likely to adopt highly restrictive licenses
(Lerner & Tirole, 2005) in order to prevent competitors from taking the software out of
the public domain. However, the users in this context were much more concerned with
their data in the system than the system’s source codes. Given that the users were not
developers, the value of the software increased as they inputted more data. Hence, a
license justification that addresses their concerns with the protection of their data was

more appealing than arguing that the license gives the software with its source codes.

The General Public License (GPL) is the most frequently used. Approximately 70% of
FOSS projects use GPL (Freshmeat, 2008), the most commonly used version of which
was released in 1991. Since its release (also referred to as GPL v2), much has changed;
hence, it requires updating. One of the limitations of the GPL v2 is that it does not
explicitly address the contributions of individuals in the form of Software as a Service
(SaaS). SaaS is a software application delivery model in which a software vendor
develops a web-native software application and hosts and operates (either
independently or through a third-party) the application for use by its customers over
the Internet (Shakermover, 2008). In the SaaS model, customers do not pay for the
software itself but rather for access. This business model is more suitable in
information systems, where users are charged for using the software, just as they
would be charged for other services such as electricity. For example, in the SARIS, it is
logical to host the system in special facilities instead of asking each small university to

run an expensive computer server for hosting just one small database. This is not

101

covered by the GPL v2 because the licence says you need to give away the software

with its source code. However, what if customers receive it as a service?
6.1.5 The Role of Political Negotiations in FOSS Development and Use

The case studies of the thesis featured two networks: local and global networks (see
Section 4.4 in Chapter 4). While the local networks were featured by a technical
development team and local users, the global network was featured by the donors,
vertical programmes, and managers of the two information systems (see Paper II).
Specifically, in the DHIS case, involvement of the Ministry of Health officers in
Zanzibar and international organisations (WHO and DANIDA) was high. The Ministry
of Health provided a taskforce of six highly ranked health officers to represent the
government in the development process of the information system. DANIDA funded
the project and WHO provided guidelines such as health data dictionary and
indicators. In the SARIS case (as presented in Paper IV, Paper V and Table 4.6 of
Chapter 4), the university authority appointed a team that developed a template for
examination transcripts and reformed university student registration numbers.
Furthermore, the university funded and authorised the process of migrating students’
records from legacy systems (paper reports, word processor, and spreadsheet files) to
the software. The university authority also approved the use of the SARIS software to

issue transcripts of examination results.

The substantial involvement of information system officers and international agencies
suggests that FOSS in information systems requires political support. This is because
an information system is of organisational interest. This confirmed the findings of
Camara and Fonseca (2007), who argued that FOSS development needs to be funded to
be viable. Furthermore, even if an individual can fund FOSS development privately, its

use needs to be approved by the organisation in question.
6.2 Practical contributions: Decoding the FOSS Liberation

The practical contributions of the thesis are strategies to make FOSS development work
in information systems, specifically in the Tanzanian context, and generally in

developing countries. In Chapter 3 of this thesis is a conceptual analysis of archetypal

102

situations that can lead to FOSS development failures in the context of information
systems in developing countries. Those situations include (a) developers — sponsors
gap; (b) global developer — local developer; and (c) local developer — local user gap, as

summarised in Table 6.1.

Table 6.1: Strategies for Bridging the Design — Reality Gaps

Archetypal Situation Bridging Strategy
e Understanding FOSS philosophy
Developer — Sponsor e Political negotiations

e Promoting the private sector

e Capacity building

e Mutual learning

Global developer — Local developer | ¢ How-to and hands-on support

e Understanding culture

e FOSS technologies in higher institution curriculum

e Participatory actions
Local developer — Local user e Collaborations
e Training

The practical contributions of the thesis were strategies to bridge the identified gaps
arising from mismatches between the FOSS development and the nature of the

information systems in the developing countries.
6.2.1 Bridging Developer — Sponsor Gap

Although the FOSS literature does not list governments and donors as stakeholders, in
developing countries, the two are the main sponsors of ICT initiatives. FOSS
development as well has no exceptions; it needs to be government funded in order to
be viable (Camara & Fonseca, 2007). Law and Callon (1992) argued that global
networks of a project are a set of relations that can be seen as being outside of the
project’s local settings and context, built up, deliberately or otherwise, and enabling the
project to take place with the resources it provides, including money, expertise, and
political support. In contrast, the developer of a FOSS project consists of the local
networks (Law & Callon, 1992), a set of relations inside the project and necessary for
the successful production of the working tool. In this thesis, however, the sponsor of

FOSS development project comprises the global networks of a project (Law & Callon,

103

1992).

The developer-sponsor gap concept goes beyond the adoption of software designed
for the private sector in the public sector (Heeks, 2003). In the empirical findings in
Table 5.1, there were misconceptions concerning the FOSS philosophy, political
negotiations, and support contracts from external vendors. In any kind of sponsors and
developers relationship, understanding the FOSS philosophy, political brokering, and
promoting the private sector are important steps towards bridging the developer-
sponsor gap. Specifically, in order for FOSS development to be successful in the
information systems context of a developing country, there is a need to promote the
FOSS philosophy. The participants of a project need to understand the FOSS
philosophy.

Strategies to Facilitate Understanding of the FOSS philosophy

In bridging the gap between developers and sponsors, first both parties need to
understand the FOSS philosophy. For example, in Paper V of the thesis, the two
applications did not pass the FOSS qualification analysis, although the two
applications were treated as FOSS products. While the developers understood the
FOSS philosophy, the phenomenon was little known by sponsors. As Coleman (2004b)
argued, the public sectors lack adequate understanding of the technical, social, and
legal intricacies of FOSS. FOSS developers need to develop simple vocabularies
connected to the goals of the clients of the information systems. For example, in the
SARIS case study, although the developers were interested in FOSS products, their
main justifications were to address the identified drawbacks of the manual student
information system. The argument was that FOSS fosters user involvement and equips

focal actors with tools not requiring significant initial investment.

With the DHIS case study, the agenda was also health information system reforms.
Once the discussion between sponsors and developers became serious, in presenting
the technology, FOSS terminologies were carefully chosen to ensure that those
vocabularies meshed with the goals of the client systems. For example, the
egalitarianism principles of access and dissemination mandated in the FOSS licenses

were very attractive to the health sectors. The Ministry of Health officers and their

104

donors understood that with FOSS products, there are no license fees for installing the
same software in unlimited number of computers in each district medical office in the
country. This could be expensive if proprietary software were used because the license

cost would be multiplied by the number of computers having the software.

In practical terms, distributing FOSS related issues among respective global and local
networks is a good exercise for each party in understanding FOSS. This thesis
contributes a strategy of mapping those motivating and constraining issues to project

networks (Figure 6.1).

Local Network Global Network

- Switching costs
- Intellectual Property
- National Security

- Conceptualisation
- Development Process
- Barriers to Participation

FOSS
Philosophy

- Market Forces
- Ownership

- Infrastructure
- Effective Use

- Appropriate Localisation

- Developers Expectations

- Compatibility & Integration

- Organizational Arrangement

Figure 6.1: Mapping of FOSS Issues Motivating and Constraining to Project Networks

The first and most important issue is to make sure that the two networks have an
understanding and are aware that their project falls under the definition of Free Open
Source Software (FOSS). Hence, FOSS philosophy is at the centre of the two extremes.
The constraining and motivating issues are then mapped (Figure 6.1) in order to
redirect appropriately issues arising during the implementation of the project. For
example, while local networks address issues like ensuring compatibility, integration,
development process, and developers’ expectations, issues like financing switching
costs, infrastructure, and ownership could be handled by the global network. The goal

is to ensure that sponsors find connections between their organisational goal and FOSS

105

development.

Strategies for Political Negotiations

The second strategy for bridging the developer-sponsor gap is gaining political
support. Berg (2001) observed that the process of implementing patient care
information system can only get off the ground when properly supported by both
central management and future users. Working in the context of information systems in
developing countries requires political strategies that mobilise stakeholders to accept
the contested solution (Braa et al., 2004). A good example is the approach of HISP in
Zanzibar and other countries. HISP enters fully into politics through two main
approaches: setting up local facilities in a bottom-up fashion and engaging in
negotiations with health officers (Braa et al., 2004). This implies that in order to gain
political support from authorities, local presence and vivid examples of the solution are
necessary. For example, when working in Zanzibar, HISP created a local development
team equipped with an office and a residence house. Local politicians and health
managers were convinced that the development team had a local presence with a
telephone number to call in case immediate user support was required (as discussed in

Paper II).

This strategy of having a local branch in a country is necessary. In proprietary
software, organisations believe that the proprietary company is backing the software.
In case of any problem, the supplier of proprietary software is responsible. In contrast,
FOSS products are considered unsupported. In an “ideal” FOSS scenario, organisations
need to depend on their own technicians to support their software. This is a challenge
in non-IT intensive contexts like the health and education sectors. Thus, setting up local
facilities is necessary to create a sense of security for users of the FOSS products in
information systems. This strategy was also adopted in the SARIS project, where a
private company was registered to ensure the clients that there was an entity

supporting the development of SARIS software and hence its continuity.

This approach implies that the private sector is indispensable to providing local

106

technical support and competition in services that can put FOSS applications on level
terrain with aggressively expanding commercial players (Coleman, 2004b). Thus,
Tanzania in particular and developing countries in general should develop the private
sector that focuses on FOSS development; its contribution in building technical support

around FOSS product is invaluable.
6.2.2 Bridging Global Developer — Local Developer Gap

FOSS development encourages geographically distributed developers to participate in
a project. As presented earlier, local developers benefit from the support of global
developers. However, due to contextual social conditions, the two camps (global
developers and local developers) may practise FOSS development principles
differently. In Tanzania with its “collective culture” (see Section 3.5.2 in Chapter 3),
software developers are unmotivated to engage in serious discussions with strangers.
This generally affects their online communication behaviour. As Fitzgerald (2006)
argued, language is another barrier. Although English is taught in Tanzania and is a
medium of instruction at secondary schools and higher learning institutions, several
studies attest to the difficulties teachers and students face in mastering the English
language (Brock-Utne, 2007; Vuzo, 2007). Participating in the global community
requires mastery of English in order to frame questions to be understood by a distant
person. All of these factors contribute to widen the gap between global developers and

local developers.

Considering the different culture and experiences between global developers and local
developers, this thesis encourages “mutual learning”. Global and local developers
should come together as jamaa. That is sharing their software and knowledge for
mutual benefit as in Ujamaa policy (Nyerere, 1968). As indicated in Table 5.1, global
developers who provided hands-on support to the local team learned the local user
requirements and challenges. That is, in the course of collaboration, global developers
learned the local culture and other infrastructural issues, and the local developers
learned technical skills. If a project is organised in such a way that global developers

and local developers can meet, especially in the client system, global developers would

107

better understand the challenges faced by local developers in implementing FOSS
principles. In the course of collaboration between global developers and local
developers, learning occurs especially through sharing source codes and programming

techniques.

Knowledge is translated through FOSS development when local developers obtain
access to source codes of established software such as the DHIS. Access to source codes
plus access to support enables local developers to advance their software development

skills.

For Tanzania to benefit from and contribute to FOSS development, it needs to equip
software developers with skills related to FOSS development. Higher learning
institutions should be encouraged to update their IT curriculum. Currently, higher
learning institutions in Tanzania offer computer science programmes. However, in
order for these universities to equip computer science graduates with FOSS
development knowledge, their curriculum should be focused. Specifically, object-
oriented programming should be emphasised. In addition, FOSS native operating
systems (e.g., Linux operating system) and office production suites (word processing

and spreadsheet) need to be introduced to higher learning students.

My opinion is that FOSS Technologies curriculum should be introduced in all levels of
the education system in Tanzania in the following order: at primary schools, introduce
concepts on the difference between proprietary and open source technologies. At
secondary schools, a more comprehensive curriculum on FOSS technologies should be
introduced. For those schools equipped with computers, open source desktop
applications should be used in the computer rooms. At tertiary colleges and at higher
learning institutions, students who are majoring in computer science should be

introduced to be able to master FOSS programming technologies in detail.
6.2.3 Bridging Local Developer — Local User Gap

This design-reality archetypal situation occurs primarily because developers are not
familiar with the context of information systems. The adoption of FOSS is a special case

because users have inadequate understanding of the phenomenon and FOSS

108

developers have little experience with the challenges users face in managing ICTs in
this context. Specific strategies for bridging these gaps are important. In the HISP
project, this issue has been explored in detail under various headings such as user
participation (Nhampossa, 2006), human capacity building (Kimaro, 2006a),
participatory action research (Lungo, 2003; Gjerull, 2007), and user training (Braa et al.,

2004).

On the question of user participation, Nhampossa (2006) proposed mediation strategy.
Nhampossa argued that to facilitate communication between with the strong
bureaucratic and hierarchical environment of the health sector, mediation strategy
would facilitate communication between local developers and users. In addition to
mediation strategy, adoption of short- and long-term visions for dealing with the skills
or capacity development of health staff is needed (Nhampossa, 2006). Nhampossa did
not argue how to achieve mediation and capacity building, but rather provided

necessary approaches for facilitating user participation.

The contribution of this thesis is a detailed insight on organising participatory action
research and user training. The participatory processes in the two case studies were
organised around the software products (see Paper II and Paper III). Stakeholders
collaborated to design tools for collecting data to be entered in the software and
printed out as reports. For example, in the DHIS case, a minimum list of health data
elements was developed, health indicators were defined based on the minimum data
set of health data elements, a health data element dictionary was developed, and data
collection forms and reports were designed. In the SARIS case, users were involved in
the design of university transcripts templates and student registration numbers. Both
projects involved specially appointed committees of users dedicated to work with the

technical development team.

This approach of appointing special committees to work with the technical team is a
different re-organisation of user participation. This arrangement facilitates better
dialogue between users and developers because both teams plan and execute activities
of the project. This approach is much more sustainable than working with a single user

because of the high turn-over of workers in the education and health sectors.

109

Moreover, special teams ensure reliable communications between the technical team
and the higher authority, as they become mediators between the sponsors and

developers networks.

In the DHIS project, users were trained in computer literacy (how to switch on
computers, operate systems, and use word processing and spreadsheets applications);
then they were trained on real issues involving the database information system. In the
SARIS project, users were trained on the Internet course first, then the database
information system. The developers recognised that users must be given general
knowledge before being given complex training of database systems. In cases where
computer illiteracy is high, first we need to introduce users to computer applications
before providing them advanced knowledge on managing computer database systems.
Database systems are advanced knowledge because they assume that a user knows
how to switch on a computer, open an application system, and master a keyboard and

a mouse.

110

CHAPTER 7: CONCLUSIONS

This thesis presented the Interpretive Participatory Action Research study of the
adoption of Free Open Source Software (FOSS) in the domain of information systems
in Tanzania. The case studies of the thesis were the implementation of the Health
Information System (HIS) in Zanzibar and the implementation of the Student
Academic Register Information System (SARIS) at the University of Dar-es-Salaam.
The thesis focused on exploring the FOSS philosophy, principles, and development
practices in order to compare and contrast the way the literature conceptualises FOSS

and the way in which FOSS is practiced in the context of the study.

Two objectives were set to define the contributions of this thesis to the FOSS literature.
Those objectives were (1) to develop an alternative explanation of the Free Open
Source Software phenomenon in the context of information systems in developing
countries.; and (2) to analyse and address the challenges shaping FOSS development in
order to enable Tanzania in particular and developing countries in general to benefit
from adopting FOSS. The thesis drew on the social systems perspective, which argues
that technological changes are inherently affected by social-technical conditions of the
society. Ignoring those conditions leads to widened design-reality gaps (Heeks, 2003)

linked to the failure of many ICT initiatives in developing countries.

A thorough structuring of the FOSS literature under six headings (philosophy,
intellectual property rights, transformation, economics, motivations, and stakeholders)
was presented. This structural analysis of the literature allowed detailed exploration of
the FOSS phenomenon. However, despite the various concepts presented, this thesis
focused on issues related to FOSS development (transformation aspect). The thesis
concluded that while FOSS proponents have been using various justifications for
proposing FOSS in developing countries, some are pragmatic and thus hard to connect
with the reality of the immediate and long-term goals of the information systems in
developing countries. Some examples of the problematic justifications are: (a) FOSS
license as a tool for attracting source code contributors and (b) the notion that FOSS
products are cheaper. The thesis argued that there is a terrible misunderstanding of

software licenses in this context; thus, the argument that developers would just join a

111

project due to license conditions is just not credible. In addition, implementing open
source information systems involves substantial engagement of developers, who are
not the users of the system. These developers would need to learn user requirements,
communicate with and train users, and involve external experts, all of which would

increase the total cost of owning the software.

The second objective was fulfilled through identifying and proposing strategies for
bridging the design-reality gaps. Three archetypal situations that hamper FOSS
development in information systems, especially in a developing country like Tanzania,
were identified. Those situations were developer — sponsor gap, global developer—local
developer gap, and local developer—local user gap. Strategies for closing these gaps were
the practical contributions of the thesis. To bridge the developer-sponsor gap, the
thesis argued that focusing on understanding FOSS philosophy, political negotiations,
and strengthening the private sector are crucial. As FOSS development promotes
participation of globally distributed developers, this thesis asserted that the effort to
understand culture and capacity building through proximity to technical support and
facilitating mutual learning if practiced would help to bridge the global-local
developer gap. Mutual sharing concept of Ujamaa policy was recommended.
Furthermore, the need to promote FOSS technologies curriculum in general and object—
oriented software development in particular in higher learning institutions was
emphasised. The last gap, the local developer — local user gap, could be addressed

through participatory actions and user training, including computer literacy courses.

Summing up, the contributions of the thesis included re-conceptualisation of the FOSS
phenomenon through the argument that contextual social-technical conditions
influence the transformation of FOSS in developing countries. Re-conceptualisation
implies that due to social and technical challenges, FOSS development does not take
place in the same way in which the development is presented in the literature. In order
for developing countries to benefit from FOSS development, this thesis argues to be
aware of the influence of social-technical conditions on the development of open
source information systems, and call for the development of specific strategies to

address the design-reality gaps associated with the FOSS development process.

112

REFERENCES

Aanestad, M. (2002). Cultivating networks: implementing surgical telemedicine.
Unpublished Ph.D Dissertation, University of Oslo, Oslo.

Ackermann, J. (2003). Open source: theory and practice. Dayton, Ohio: NCR.

Akrich, M. (1992). The description of technical objects. In W. E. Bijker & J. Law (Eds.),
Shaping Technology/Building Society: ~Studies in Social Technical Change.
Cambridge, MA: MIT Press.

Asangansi, I. E., Adejoro, O. O., Farri, O., & Makinde, O. (2008). Computer use among
doctors in Africa: Survey of trainees in a Nigerian teaching hospital. Journal of
Health Informatics in Developing Countries, 2(1), 10-14.

Avgerou, C. (2005). Doing critical research in information systems: some further
thoughts. Info Systems J, 15, 103-109.

Avgerou, C., & Walsham, G. (Eds.). (2000). Information Technology in context: studies from
the perspective of developing countries. Aldershot, UK: Ashgate Publishing
Company.

Avison, D., Lau, F., Myers, M., & Nielsen, P. (1999). Action Research. Communications of
the ACM, 42(1), 94-97.

Baark, E., & Heeks, R. (1999). Donor-funded information technology transfer projects:
evaluating the life-cycle. Information Technology for Development, 8, 185-197.

Bakari, J. K., Tarimo, C. N., Yngstrom, L., Magnusson, C., & Kowalski, S. (2007).
Bridging the gap between general management and technicians — a case study
on ICT security in a developing country. Computers & Security, 26(2007), 44-55.

Barton, J., Alexander, D., Correa, C., Mashelkar, R., Samuels, G., & Thomas, S. (2002).
Integrating intellectual property rights and development policy. London: UK
Department for International Development Commission on Intellectual
Property Rights.

Baskerville, R. L., & Wood-Harper, A. T. (2002). A critical perspective on action
research as a method for information systems research. In D. Avison & M. D.
Myers (Eds.), Qualitative research in information systems (pp. 129-145). London:
Sage.

BEANISH. (2007). Building European- Africa collaborative Network for applying IST
in Health care sector. Retrieved 15 August 2007, from
http://www hisptanzania.com

Benkler, Y., & Nissenbaum, H. (2006). Commons-based Peer Production and Virtue.
The Journal of Political Philosophy, 14(4), 394-419.

113

Berg, M. (2001). Implementing information systems in health care organizations: myths
and challenges. International Journal of Medical Informatics, 64(2-3), 143-156.

Berry, D. M., & Moss, G. (2006). Free and open-source software: opening and
democratising e-government's black box. Information Polity, 11(1), 21-34.

Bezroukov, N. (1999). A Second Look at the Cathedral and the Bazaar. First Monday,
4(12), from http://firstmonday.org/issues/issue4_12/bezroukov/index.html.

Bhatnagar, S. (2000). Social implications of information and communication technology
in developing countries: Lessons from Asian success stories. The Electronic
Journal for Information Systems in Developing Countries, 1(4), 1-9.

Bhatnagar, S., & Bjern-Andersen, N. (1990). Information technology in developing
countries. Amsterdam: North-Holland.

Bijker, W. E., Hughes, T. P., & Pinch, T. (1987). The social construction of technological
systems: New directions. In W. E. Bijker, T. P. Hughes & T.]J. Pinch (Eds.), The
Sociology and History of Technology. Cambridge, Mass.: MIT Press.

Boesen, J., Madsen, B. S., & Moody, T. (1977). Ujamaa - Socialism from Above. Uppsala,
Sweden: Scandinavian Institute of African Studies.

Bonaccorsi, A., & Rossi, C. (2003). Why open source software can succeed. Research
Policy, 32, 1243-1258.

Braa, J., & Hedberg, C. (2002). The struggle for District-based Health Information
Systems in South Africa. The Information Society, 18(2), 113-127.

Braa, J., Macome, E., Costa, J., Mavimbe, J.,, Nhampossa, J., José, B., et al. (2001). A
study of actual and potential usage of information and communication
technologies at district and provincial levels in Mozambique with a focus on the
health sector. Electronic Journal of Information System in Developing Countries, 5(2),
1-29.

Braa, J., Monteiro, E., & Sahay, S. (2004). Networks of action: Sustainability of Health
Information Systems across developing countries. MIS Quarterly, 28(3), 337-362.

Brock-Utne, B. (2007). Learning through a familiar language versus learning through a
foreign language: A look into some secondary school classrooms in Tanzania.
International Journal of Educational development, 27(5), 487-498.

Brooks, F. P. (1995). The Mythical Man-Month: Essays on Software Engineering. Reading,
Mass: Addison-Wesley.

Bryman, A. (2004). Social Research Methods (2° ed.). New York: Oxford University
Press.

Callon, M. (1986). Some elements of a sociology of translation: Domestication of the

114

scallops and the fishermen of St Brieuc Bay. In J. Law (Ed.), Power, Action and
Belief: A new sociology of knowledge? (pp. 196-223). London: Routledge & Kegan
Paul.

Camara, G., & Fonseca, F. (2007). Information policies and Open Source Software in
developing countries. Journal of the American Society for Information Science and
Technology, 58(1), 121-132.

Castells, M. (1998). End of Millennium, the information age: Economy Society and Culture.
Oxford: Blackwell.

Chiao, B. H. F. (2003). An economic theory of free and open source software: a tour
from lighthouse to chinese-style socialism. Paper presented at the International
Conference on Open Source, 26 July 2003, Academia Sinica, Taipei.

Chopra, S., & Dexter, S. D. (2008). Decoding liberation: the promise of free and open source
software. New York: Taylor & Francis Group.

Ciborra, C. U. (2005). Interpreting e-Government and development efficiency,
transparency or governance at a distance? Information Technology & People, 18(3),
260-279.

Ciborra, C. U., & Navarra, D. (2005). Good governance, development theory, and aid
policy: risks and challenges of e-Government in Jordan. Information Technology
for Development, 11(2), 141-159.

Ciborra, C. U., Braa, K., Cordella, A., Dahlbom, B., Failla, A., Hanseth, O., et al. (2000).
From Control to Drift: The Dynamics of Corporate Information Infrastructure.
Oxford: Oxford University Press.

Cohen, A., Manion, L., & Morrison, K. (2000). Research methods in education (5% ed.).
New York: Routledge Farmer.

Coleman, G. (2004a). The political agnosticism of Free and Open Source Software and
the inadvertent politics of contrast. Anthropological Quarterly 77(3), 507-519.

Coleman, G. (2004b). The politics of open Source Adoption, NGO's in the Developing
World. Retrieved 9 May, 2008, from http://www.tacticaltech.org/SSRC_Report

Cook, I, & Horobin, G. (2006). Implementing eGovernment without promoting
dependence: Open Source Software in developing countries in Southeast Asia.
Public Administration and Development, 24(4), 279-289.

Dada, D. (2006). The failure of e-Government in developing countries: a literature
review. The Journal of on Information Systems in Developing Countries, 26(1), 1-10.

Daly, J. A. (2002). Book review: information technology in context: studies from the
perspective of developing countries. Progress in Development Studies, 2(3), 235—

115

268.

De-Villiers, M. R. (2005). Three approaches as pillars for interpretive information
systems research: development research, action research and grounded theory.
In J. Bishop (Ed.), Proceedings of the 2005 annual research conference of the South
African institute of computer scientists and information technologists on IT research in
developing countries (pp. 142 - 151). White River, South Africa: South African
Institute for Computer Scientists and Information Technologists.

Dedrick, J., & West, J. (2003). Why firms adopt platform standards: a grounded theory of open
Source platforms. Paper presented at the MISQ Special Issue Workshop on
Standard Making: A Critical Research Frontier for Information Systems, Seattle,
WA - 13 December 2003.

Dick, B. (2002). Thesis resource paper: you want to do an action research thesis? Retrieved 11
November, 2005, from http://www.scu.edu.au/schools/gcm/ar/art/arthesis.html.

Europa. (2003). Cases of official recognition/adoption of FOSS. Retrieved 18 February 2008,
from
http://europa.eu.int/information_society/activities/opensource/cases/index_en.h
tm

Evers, S. (2000). Development environments for open source software development.
Unpublished Diploma Thesis, Technische Universtit Berlin, Berlin.

Feller,]J., & Fitzgerald, B. (2000). A framework analysis of the open source software
development paradigm. In W. J. Orlikowski, P. Weill, S. Ang & H. C. Krcmar
(Eds.), Proceedings of the Twenty First International Conference on Information
Systems (pp. 58 - 69). Atlanta, GA, USA: Association for Information Systems.

Feller, J., & Fitzgerald, B. (2002). Understanding Open Source Software Development.
London: Addison-Wesley.

Fitzgerald, B. (2005). Has Open Source Software a future? In J. Feller, B. Fitzgerald, S.
A. Hissam & K. R. Lakhani (Eds.), Perspectives on Free and Open Source Software
(pp. xxxi, 538). London: The MIT Press.

Fitzgerald, B. (2006). The transformation of Open Source Software. MIS Quarterly, 30(3),
587-598.

Fogel, K. (2006). Producing Open Source Software: How to run a successful free software
project. Beijing Sebastopol, Calif.: O'Reilly.

FOSSFA. (2004). Free and Open Source Software for Africa (FOSSFA) Action Plan 2004 -
2006. Nairobi: FOSSFA.

FREECODE. (2008). FreeCode International. Retrieved 17 May 2008, from
http://www freecodeint.com/art.html?catid=3

116

Freshmeat. (2008). Project License Breakdown. Retrieved 3 March 2008, from
http://freshmeat.net/stats/#license

Friedmann, D., & McAdam, D. (1992). Collective identity and activism: networks,
choices and the life of a social movement. In A. D. Morris & C. McClurg (Eds.),
Frontiers in Social Movements (pp. 156-173). New Haven: Yale University Press.

FSF. (2006). Free software is a matter of liberty not price. You should think of "free" as
in "free speech.” Retrieved 10" November 2006, from http://www fsf.org/

FSF. (2007). GNU General Public License. Retrieved 23 December 2007, from
http://www.gnu.org/copyleft/gpl.html

Fulk, J., Flanagin, A. J., Kalman, M. E., Monge, P. R., & Ryan, T. (1996). Connective and
Communal Public Goods in Interactive Communication Systems.
Communication Theory, 6, 60 - 87.

Ghosh, R. A. (1998). Cooking pot markets: An economic model for the trade in free
goods and services on the Internet. First Monday, 3(3). Retrieved 28 March 2008,
from http://www firstmonday.org/issues/issue3_3/ghosh/.

Ghosh, R. A, Krieger, B., Glott, R., & Robles, G. (2002). Open Source Software in the
Public Sector: Policy within the European Union. International Institute of
Infonomics, University of Maastricht, Netherlands.

Gjerull, N. F. (2006). Open Source Software Development in Developing Countries: The HISP
Case in Ethiopia. Unpublished Master Thesis, University of Oslo, Oslo.

Glass, R. (2005). Standing in front of the Open Source steamroller. In J. Feller, B.
Fitzgerald, S. Hissam & K. Lakhani (Eds.), Perspectives on Free and Open Source
Software (pp. 81-92). Cambridge: MIT Press.

Goguen, J. (1998). Actor-Network Theory. Retrieved 17 March 2008, from http://www-
cse.ucsd.edu/~goguen/courses/268D/6.html

Greenwood, D., & Levin, M. (1998). Introduction to Action Research: Social research for
social change. Thousand Oaks, CA: Sage.

Guba, E. G., & Lincoln, Y. S. (1994). Competing paradigms in qualitative research. In N.
K. Denzin & Y. Lincoln (Eds.), Handbook of Qualitative Research (pp. 105-117).
Thousand Oaks, CA: SAGE.

Hansen, M., Kéhntopp, K., & Pfitzmann, A. (2002). The Open Source approach —
opportunities and limitations with respect to security and privacy. Computers &
Security, 21(5), 461 - 471.

Heeks, R. (2002). Information systems and developing countries: Failure, success and
local improvisations. The Information Society, 18(2), 101-112.

117

Heeks, R. (2003). Most eGovernment-for-Development Projects Fail: How Can Risks be
Reduced? In iGovernment Working Paper Series, Paper No. 14 (pp. 1-17).
Manchester, UK: Institute for Development Policy and Management, University
of Manchester.

Heeks, R. (2006). Implementing and managing e-Government: An international text.
London: Sage.

Heeks, R., & Stanforth, C. (2007). Understanding e-Government project trajectories
from an Actor-Network perspective. European Journal of Information Systems,
16(2), 165-177.

Hertel, G., Niedner, S., & Herrmann, S. (2003). Motivation of software developers in
Open Source projects: An Internet-based survey of contributors to the Linux
kernel. Research Policy, 32, 1159-1177.

HISP. (2007). Health Information System Programme. Retrieved 17 May 2008, from
http://www.hisp.org/

HISPINDIA. (2008). HISP India Website. Retrieved 17 May 2008, from
http://www hispindia.org/

HISPNIGERIA. (2008). The official website for HISP Nigeria. Retrieved 17 May 2008,
from http://hips.ifi.uio.no:8080/display/HISP/Nigeria+Implementation

Hofstede, G. (2001). Culture’s consequences, comparing values, behaviours, institutions, and
organizations across nations. Thousand Oaks, CA: Sage Publications.

Hoyle, R. H., Harris, M. J., & Charles, M. J. (2002). Research methods in social relations.
London: Thomson Learning.

Hughes, J. A. (1990). The philosophy of social research (24 ed.). Harlow: Longman.

ITU. (2006). Statistics, International Telecommunication Union. Retrieved 5 May 2008,
from http://www.itu.int/ITU-d/ict/statistics/

Kaasbell, J., Fjuk, A. Karahasanoc, A., & Groven, A.-K. (2006). Improvements of
teaching and tools for learning object-orientation. In A. Fjuk, A. Karahasanoc &
J. Kaasbell (Eds.) (pp. 205-220). California: Informing Science Press.

Kelty, C. M. (2000). Anthropology monsters, faces of gift. Paper presented at the
American Anthropological Association Conference, 15- 19 November.

Kelty, C. M. (2001). Free Software/Free Science. First Monday, 6(12), from
http://www.firstmonday.org/issues/issue6_12/kelty/

Keniston, K. (2002). Grassroots ICT Projects in India: Some Preliminary Hypotheses.
ASCI Journal of Management, 31(1&2), 1-9.

118

Kimaro, H. (2006a). Decentralization and sustainability of ICT based health information
systems in developing countries: A case study from Tanzania. Unpublished Ph.D
Thesis, University of Oslo.

Kimaro, H. (2006b). Decentralization and Sustainability of ICT based Health Information
Systems in Developing Countries: A Case Study from Tanzania. Unpublished Ph.D
Dissertation, University of Oslo, Oslo.

Klang, M. (2005). Free software and open source: The freedom debate and its
consequences. First Monday, 10(3), 1-15, from
http://firstmonday.org/issues/issuel0_3/klang/index.html.

Klein, H. K., & Myers, M. D. (1999). A set of principles for conducting and evaluating
interpretive field studies in Information Systems. MIS Quarterly, 23(1), 67-93.

Krishnamurthy, S. (2003). A managerial overview of open source software. Business
Horizons, September-October 2003 Retrieved 27 December 2007, from
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=649903

Kshetri, N. (2004). Economics of Linux adoption in Developing Countries. IEEE
Software, 21(1), 74-81.

Lakhani, K. R., & Wolf, R. G. (2005). Why hackers do what they do: Understanding
motivation effort in Free/Open Source Software projects. In J. Feller, B.
Fitzgerald, S. Hissam & K. Lakhani (Eds.), Perspectives on Free and Open Source
Software (Vol. 2007). London: MIT Press.

Latour, B. (1986). The Power of Association. In J. Law (Ed.), Power, Action and Belief.
London: Routledge and Kegan Paul.

Latour, B. (1987). Science in Action. Milton Keynes: Open University Press.

Latour, B. (2005). Reassembling the social: an introduction to Actor-Network-Theory. Oxford:
Oxford University Press.

Law, J., & Callon, M. (1992). The life and death of an aircraft: A network analysis of
technical change. In W. E. Bijker & J. Law (Eds.), Shaping Technology/Building
Society: Studies in Social Technical Change. Cambridge, MA: MIT Press.

Lee, H, & Oh, S. (2006). A standards war waged by a developing country:
Understanding international standard setting from the actor-network
perspective. Journal of Strategic Information Systems, 15, 177-195

Laosethakul, K., & Boulton, W. (2007). Critical Success Factors for E-commerce in
Thailand: Cultural and Infrastructural Influences. The Electronic Journal on
Information Systems in Developing Countries, 30(2), 1-22.

Lerner, J., & Tirole, J. (2000). The simple economics of open source. Retrieved 12 May

119

2008, from http://www .nber.org/papers/w7600

Lerner, J., & Tirole, J. (2001). The open source movement: key research questions.
European Economic Review, 45, 819 - 826.

Lerner, J., & Tirole, J. (2005). The scope of open source licensing. The Journal of Law,
Economics, & Organization, 21(1), 20-56.

LTK. (2008). Actor-Network Theory (ANT) at Learning-Theories.com. Retrieved 30
March, 2008, from http://www.learning-theories.com/actor-network-theory-
ant.html

Loney, M. (2002). Government body says developing countries need open source.
Retrieved 3 May 2008, from
http://news.zdnet.co.uk/itmanagement/0,1000000308,2122219,00.htm

Lungo, J. H. (2003). Data Flows in Health Information Systems: An Action Research Study of
Reporting Routine Health Delivery Services and Implementation of Computer
Databases in Health Information Systems. Unpublished Master Thesis, University
of Oslo, Oslo.

Lyytinen, K., & Damsgaard, J. (2001). What's wrong with the Diffusion of Innovation
Theory. The case of a complex and networked technology. Paper presented at the
Proceedings of the IFIP 8.6. Conference, Banf 8-10 April 2001, Canada.

Madon, S. (2004). Evaluating the developmental impact of e-Governance initiatives: An
Exploratory Framework. The Electronic Journal on Information Systems in
Developing Countries, 20(5), 1-13.

Madon, S., Sahay, S., & Sahay,]. (2004). Implementing property tax reforms in
Bangalore: an actor-network perspective. Information and Organization, 14(2004),
269-295.

Marwell, G., & Oliver, P. (1993). The Critical Mass in Collective Action: A Micro-Social
Theory. Cambridge, UK: Cambridge University Press.

May, C. (2006). Escaping the TRIPs' trap: The political economy of Free and Open
Source Software in Africa. Political Studies, 54, 123-146.

McGrath, K. (2005). Doing critical research in information systems: a case of theory and
practice not informing each other. Info Systems |, 15, 85-101.

McLean, C., & Hassard,]J. (2004). Symmetrical absence/symmetrical absurdity: Critical
notes on the production of actor-network accounts. Journal of Management
Studies 41(3), 493-519.

Meystre, S., & Miiller, H. (2005). Open source software in the biomedical domain:
Electronic health records and other useful applications. Swiss Medical

120

Informatics, 55, 3-15.

Mockus, A., Fielding, R., & Herbsleb, J. (2000). A case study of open source software
development: the apache server. Paper presented at the Proceedings of the 22nd
International Conference on Software Engineering, Limerick, Ireland.

Myers, M., & Avison, D. (2002). An introduction to qualitative research in information
systems. In M. D. Myers & D. E. Avison (Eds.), Qualitative Research in
Information Systems: A Reader. London: Sage.

Myers, M. D. (1997). Qualitative research in information systems. MIS Discovery
Retrieved 1 February, 2007, from MISQ Discovery,
http://www.misq.org/discovery/MISQD_isworld/

Musa, P. F., Mbarika, V. W., & Meso, P. (2005). Calling for programmed technology
transfer and adoption strategies for sustainable LDC Growth. Communications of
the ACM, 48(12), 111-116.

Nfuka, E., & Rusu, L. (2007). Management of IT-enabled change in a public
organisation in Tanzania. International Journal Information Systems and Change
Management, 2(4), 334-349.

Ngotyana, B. (1973). The strategy of rural development. In L. Cliffe, P. Lawrence, W.
Lutrel, A. Migot & J. S. Saul (Eds.), Rural Cooperation in Tanzania. Dar es Salaam:
Tanzania Publishing House.

Nhampossa, J. (2006). Re-Thinking technology transfer as technology translation: A case
study of health information systems in Mozambique. Unpublished Ph.D Thesis,
University of Oslo, Oslo.

Nielsen, K. A., & Svensson, L. (Eds.) (2006). Action research and interactive research:
beyond practice and theory. Netherlands: Shaker Publishing BV.

Nohria, N. (1995). Note on organization structure. Harvard Business Review, May - June
1995.

Nordal, K. (2006). The challenge of being open - building an open source development network.
Unpublished Master Thesis, University of Oslo, Oslo.

Noronha, F. (2003). Developing countries gain from Free/Open-Source Software. Retrieved
16 February 2008, from http://www linuxjournal.com/article/6884.

Nyerere, J. K. (1962). Ujamaa - The Basis of African Socialism. In J. K. Nyerere (Ed.),
Ujamaa - Essay on Socialism (pp. 162-171). Dar es Salaam: Oxford University
Press.

Nyerere, J. K. (1968). Freedom and Socialism / Uhuru na Ujamaa - A Selection from the
Writings and Speeches 1965-1967. Dar es Salaam: Oxford University Press.

121

Orlikowski, W. (1993). CASE tools as organizational change: Investigating incremental
and radical changes in system development. MIS Quarterly, 17(3), 309-339.

Orlikowski, W. & Baroudi, J. (1991). Studying information technology in
organizations: research approaches and assumptions. Information Systems
Research, 2(19), 1-28.

OSI. (2007). Open Source Licenses. Retrieved 24 November 2007, from
http://www.opensource.org/docs/definition.php.

Patton, M. Q. (2002). Qualitative evaluation and research methods (3" ed.). Thousand Oaks,
CA: Sage Publications.

Perens, B. (2005). The Open Source Definition. Retrieved 1 November 2005, from
http://perens.com/Articles/OSD.html

Popper, K. R. (1945). The Open Society and its enemies. London: Routledge.

Ramiller, N. C. (2005). Applying the sociology of translation to a system project in a
lagging enterprise. Journal of Information Technology Theory and Application, 7(1),
51-76.

Raymond, E. (2001). The Cathedral and the Bazaar: Musings on Linux and Open Source by
an Accidental Revolution (Rev. ed.). Beijing: O'Reilly & Associates Inc.

Raymond, E. (2003). The Jargon File, version 4.4.7. Retrieved 2 March 2008, from
http://www.catb.org/jargon/

Reason, P., & Bradbury, H. (2001). Handbook of Action Research. London: Sage.

Riehle, D. (2007). The economic motivation of Open Source Software: Stakeholder
perspective. IEEE Computer Society (April), 25-32.

Rogers, E. M. (2003). Diffusion of Innovations (5* ed.). New York: The free press.

Rolfsen, M., & Knutstad, G. (2007). Transforming management fashions into praxis:
Action Research Project in AutoParts. Action Research, 5(4), 341-357.

Rosen, L. (2005). Open Source Licensing: Software freedom and Intellectual Property Law.
Upper Saddle River, NJ: Prentice Hall.

Rossi, C. (2006). Comparing motivations of individual programmers and firms to take
part in the Open Source Movement: From community to business. Knowledge,
Technology, and Policy, 8(4), 40-64.

Samuelson, P. (2006). IBM's pragmatic embrace of Open Source. Communication of the
ACM, 49(10), 21-25.

Scacchi, W., Feller, J., Fitzgerald, B., Hissam, S., & Lakhani, K. (2006). Understanding
Free/Open Source Software Development Processes. Software Process

122

Improvement and Practice 11(2), 95 -105.

Schmitz, P.-E. (2001). A study into the use of open source software in the public sector.
Brussels: European Commission, Information and Documentation Centre.

Scott, J. C. (1976). The moral economy of the peasant. New Haven, CT and London: Yale
University Press.

Selener, D. (1997). Participatory action research and social change. Ithaca, NY: Cornell
University.

Shakermover. (2008). Software as a Service. Retrieved 3 March 2008, from
http://en.wikipedia.org/wiki/Software_as_a_service

Sharman, D., & Yassine, A. (2004). Characterizing complex product architectures.
Systems Engineering Journal, 7(1), 1-35.

Sheriff, S. (2007). Rural access: Options and challenges for connectivity and energy in
Tanzania. Dar es Salaam: International Institute for Communication and
Development (IICD).

Silverman, D. (2006). Interpreting Qualitative Data (3rd ed.). London: Sage Publications.

Smith, M., Madon, S., Anifalaje, A., Lazarro-Malecela, M., & Michael, E. (2008).
Integrated health information systems in Tanzania: Experience and Challenge.
The Electronic Journal on Information Systems in Developing Countries, 33(1), 1-21.

Sommerville, I. (2001). Software Engineering (6th ed.). Essex: Pearson Education.

Sowe, S. K., Stamelos, I, & Angelis, L. (2007). Understanding knowledge sharing
activities in Free/Open Source Software projects: an empirical study. The Journal
of Systems and Software, 81(3), 431-446.

Stalder, F. (2003). Open Source as Social Principle. Retrieved 2 February 2008, from
http://felix.openflows.org.

Stallman, R. (2002). Free software, free society: Selected essays of Richard M. Stallman.
Boston: Free Software Foundation.

Stanforth, C. (2006). Using Actor-Network theory to analyse e-government
implementation in developing countries. Information Technology and International
Development, 3(3), 35-60.

Taylor, M., & Singleton, S. (1993). The communal resource: transaction costs and the
solution of collective action problem. Politics and Society, 21(2), 195-215.

Thanasankit, T., & Corbit, B. (2000). Cultural Context and its Impact on Requirements
Elicitation in Thailand. The Electronic Journal on Information Systems in Developing
Countries, 1(2), 1-19.

123

Tsuruta, T. (2006). African imaginations of moral economy: Notes on indigenous
economic concepts and practices in Tanzania. The Online Journal for African
Studies, Il & 2). Retrieved 28 March 2008, from
http://web.africa.ufl.edu/asq/v9/v9ila8.htm.

TTCL. (2007). Tanzania Telecommunication Company Limited Broadband Packages
and Pricing. Retrieved 23 November 2007, from
http://www.ttcl.co.tz/Broadband_Pricing.asp

UN. (2004). Road Maps towards an Information Society in Latin America and Caribbean (No.
LC/G.2195/Rev.1-P). Santiago: United Nations Economic Commission for Latin
America and the Caribbean.

Villanueva, E. (2002). Edgar Villanueva, Letter to Microsoft. Retrieved 16 February 2008,
from http://everything2.com/index.pl?node=Peruvian Congressman’s Open
Letter to Microsoft.

von Hippel, E. (2005). Open source software projects as user innovation networks. In J.
Feller, B. Fitzgerald, S. Hissam & K. Lakham (Eds.), Perspectives on Free and Open
Source Software. Cambridge: Massachusetts Institute of Technology.

von Hippel, E., & von Krogh, G. (2003). Open Source Software and the “Private-
Collective” Innovation Model: Issues for Organization Science. Organisation
Science, 14(2), 209-223.

von Hippel, E., & von Krogh, G. (2006). Free revealing and the private collective model
for innovation incentives. R&D Management, 36(3), 295-306.

Vuzo, M. S. (2007). Revisiting the Language Policy in Tanzania: A Comparative Study of
Geography Classes Taught in Kiswahili and English. University of Oslo, Oslo.

Walsham, G. (1993). Interpreting Information Systems in organizations. Chichester: John
Wiley & Sons.

Walsham, G. (1995a). The emergence of interpretivism in IS research. Information
Systems Research, 6(4), 376-394.

Walsham, G. (1995b). Interpretive case studies in IS research: Nature and method.
European Journal of Information Systems, 4(3), 74-81.

Walsham, G., & Avgerou, C. (2000). Information Technology in context: Studies from the
perspective of developing countries. Aldershot: Ashgate.

Walsham, G., & Sahay, S. (2006). Research on Information Systems in Developing
Countries: Current Landscape and Future Prospects. Information Technology for
Development, 12(1), 7-24.

Weber, S. (2003). Open Source Software in developing economies. Retrieved 24 April
2007, from

124

http://programs.ssrc.org/itic/publications/ITST_materials/webernote2.pdf.
Weber, S. (2004). The Success of Open Source. Cambridge, MA: Harvard University Press.

Weerawarana, S., & Weeratunga, J. (2004). Open Source in developing countries.
Stockholm: Edita Sverige AB.

WHO. (2004). Developing Health Management Information Systems: A Practical Guide for
Developing Countries. Geneva: World Health Organization.

Whyte, W. F. (1993). Participatory Action Research. Newbury Park, CA: Sage.

Whyte, W. F., Greenwood, D. J., & Lazes, P. (1991). Participatory Action Research:
Through practice to science in social research. In W. F. Whyte (Ed.), Participatory
Action Research (pp. 19-55). Newbury Park, CA: Sage.

Wichmann, T. (2002). Use of Open Source Software in firms and public institutions: Evidence
from Germany, Sweden, and UK. Berlin: International Institute of Infonomics.

Williams, S. (2002). Free as in freedom: Richard Stallman’s crusade for free software.
Cambridge: O'Reilly.

Wong, K., & Sayo, P. (2004). Free/Open Source Software: A General Introduction. Kuala
Lumpur, Malaysia: UNDP-APDIP.

Wood-Harper, T., & Bell, S. (1990). Information systems development for developing
countries. In S. C. Bhatnagar & N. Bjern-Andersen (Eds.), Information Technology
in developing countries (pp. 23-39). North-Holland: Elsevier Science Publishers.

ZALONGWA. (2007). Current Customers of Zalongwa Student Academic Register
Information ~ System. Retrieved 27 September 2007, from
http://www.zalongwa.com/customers/

125

