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ABSTRACT

Quantifying the uncertainty of non-stationary flood frequency analysis is very crucial and beneficial for planning and design of water

engineering projects, which is fundamentally challenging especially in the presence of high climate variability and reservoir regulation.

This study proposed an integrated approach that combined the Generalized Additive Model for Location, Scale and Shape parameters

(GAMLSS) method, the Copula function and the Bayesian Uncertainty Processor (BUP) technique to make reliable probabilistic interval esti-

mations of design floods. The reliability and applicability of the proposed approach were assessed by flood datasets collected from two

hydrological monitoring stations located in the Hanjiang River of China. The precipitation and the reservoir index were selected as the expla-

natory variables for modeling the time-varying parameters of marginal and joint distributions using long-term (1954–2018) observed datasets.

First, the GAMLSS method was employed to model and fit the time-varying characteristics of parameters in marginal and joint distributions.

Second, the Copula function was employed to execute the point estimations of non-stationary design floods. Finally, the BUP technique was

employed to perform the interval estimations of design floods based on the point estimations obtained from the Copula function. The results

demonstrated that the proposed approach can provide reliable probabilistic interval estimations of design floods meanwhile reducing the

uncertainty of non-stationary flood frequency analysis. Consequently, the integrated approach is a promising way to offer an indication

on how design values can be estimated in a high-dimensional problem.
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HIGHLIGHTS

• This study proposes an integrated approach to reduce uncertainties of flood frequency analysis.

• The GAMLSS method models time-varying characteristics in marginal and joint distributions.

• The Copula function makes point estimations of non-stationary design floods.

• The BUP creates reliable interval estimations of non-stationary design floods.
1. INTRODUCTION

Floods are among the world’s costliest natural disasters, and changing environments have made catastrophic floods more
likely. Numerous lessons have been learnt about the failure of hydraulic structures related to changing environments or chan-
ging characteristics of annual maximum streamflow series (Hui et al. 2018; Ragno et al. 2019). The flood frequency analysis

results have been widely applied in the planning and design of a dam/reservoir and other civil engineering applications (Li
et al. 2020). Conventional flood frequency analysis methods are based on the assumption of temporal stationarity that the
return period (or occurrence probability) of extreme floods will not alter significantly with time. In the presence of climate

and anthropogenic changes, the stationary assumption of hydrological extreme series has been challenged (Cheng &
AghaKouchak 2015; Yan et al. 2017a, 2021). If flood non-stationarity was not adequately considered, flood risks based on
the stationarity assumption would be miscalculated (under-/overestimated) in practice (Li et al. 2015; Serago & Vogel 2018).
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Therefore, non-stationary frequency analysis has been an important research topic for the ultimate purpose of supporting the

planning and design of hydraulic engineering projects.
The statistical characteristics of hydrological series are commonly altered by climate change and/or human activities

(Song et al. 2020). Such changing characteristics include the changes in statistical parameters and/or the type of probability

distributions (Xiong et al. 2017; Liu et al. 2019; Sun et al. 2020; Zhou 2020). In recent years, several methods were used to
describe the variation of parameters and weighting coefficients in distributions of hydrological series, such as single-type
distributions (Gilroy & McCuen 2012), two-component mixture distributions (Bayazit 2015; Yan et al. 2017b) and time-
varying moments (Xiong et al. 2015a; Yu et al. 2018). Additionally, the change point and trend change detection methods

such as the Pettitt test (Pettitt 1979; Reeves et al. 2007; Ngongondo et al. 2020), the Mann–Kendall test (Chebana et al.
2013) and the trend-free pre-whitening method (Yue et al. 2002) were applied to detect the variability of hydrological
series (Villarini & Smith 2010; Şen 2011; Rougé et al. 2013). Although the change point and trend change detection

methods can be used to detect the hydrological non-stationarity, they cannot quantify the effects of possible physical factors
on the non-stationarity of hydrological series (López & Francés 2013; Villarini & Strong 2014; Zhang et al. 2015; Wu et al.
2017; Liang et al. 2018; Su & Chen 2019; Bian et al. 2020). The Generalized Additive Model for Location, Scale and Shape

parameters (GAMLSS) (Stasinopoulos & Rigby 2007) method provides a higher flexible choice in modeling the time-vary-
ing characteristics of distribution parameters, as compared with classical generalized additive models, generalized linear
models, generalized linear mixed models and generalized additive mixed models (Villarini et al. 2009). Hence, in this

study, the GAMLSS method is adopted to model the impacts of possible physical factors on the annual maximum stream-
flow series.

The joint probability distribution of multiple hydrological variables is very important in the hydraulic planning and
design of a river basin (Parent et al. 2014; Li et al. 2018). The implementation of hydrological frequency analysis is funda-

mentally challenging for multivariate design variables. As compared with the multivariate functions, such as Gaussian,
Student’s t and Gamma (Chen & Guo 2018; Zhang & Singh 2019), Copula functions have the flexibility in choosing mar-
ginal distribution and modeling a non-linear dependence of variables when fitting hydrological data (Kwon & Lall 2016;

Sarhadi et al. 2016; Chen & Guo 2018; Wei & Song 2018; Tan et al. 2021). For instance, Jiang et al. (2015) applied Copula
functions to make bivariate frequency analysis of low-streamflow series. Fan et al. (2016) fused Gaussian mixtures into a
Copula function to implement the flood frequency analysis for estimating hydrological risks. Liu et al. (2017) integrated
the maximum entropy and Copula functions to model the non-linear dependence of multiple hydro-meteorological
events. Vinnarasi & Dhanya (2019) adopted a dynamic Copula function to model the non-stationarity in extreme rainfall
series. Consequently, in this study, the Copula function is employed to derive the joint distribution of multiple annual maxi-
mum streamflow series.

One of the effective techniques to quantify uncertainties in flood frequency analysis is to create probabilistic interval esti-
mations of design floods (Read & Vogel 2015; Yan et al. 2019). The combination of point estimation method and probabilistic
post-processing technique has been a promising integrated approach for quantifying the impacts of the uncertainties of dis-

tribution types and parameters on flood frequency analysis. Probabilistic interval estimation was commonly used to
supplement the information provided by point estimations (Bracken et al. 2018). The Bayesian Uncertainty Processor
(BUP) technique proposed by Krzysztofowicz (1999) is able to quantify the uncertainty associated with flood frequency analy-

sis, owing to its ability to facilitate the development of the interval estimation (e.g. Thorarinsdottir et al. 2018; Xu et al. 2018;
Li & Krafty 2019; Uranchimeg et al. 2020). Therefore, it is interesting and important to conduct an in-depth research on the
exploration of the BUP post-processing technique for reducing the uncertainty encountered in non-stationary flood frequency

analysis.
This study is aimed at acquiring reliable probabilistic interval estimations of non-stationary design floods. The novelty of

this study lies in proposing an integrated frequency analysis approach by combining the GAMLSS method, the Copula func-
tion and the BUP post-processing technique to reduce the uncertainty associated with flood frequency analysis for the first

time. First, the GAMLSS method is employed to model and fit the time-varying characteristics of the parameters both in mar-
ginal and joint distributions of annual maximum streamflow series. Then, the Copula function is employed to conduct the
point estimations of non-stationary design floods. Finally, the BUP technique is employed to make the interval estimations

of design floods based on the point estimations obtained from the Copula function. To verify the applicability of the proposed
approach in probabilistic interval estimations of design floods, this study utilizes annual maximum streamflow series of two
hydrological monitoring stations in the Hanjiang River of China as a case study.
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2. STUDY AREA AND MATERIALS

2.1. Study area

The Hanjiang River catchment with an area of 159,000 km2 is located in central southern China (Figure 1). It has 1,567 km

river length and 49.3 billion m3 average annual runoff. The Hanjiang River catchment has a subtropical monsoon climate
and spatial heterogeneity of water resources. Most of precipitation (70–80%) occurs in the flood season (May–September),
and the annual value varies from 700 m to 1,100 mm. In the past decades, several reservoirs have been constructed in the

river basin. The characteristics of 10 cascade reservoirs are listed in Table 1. The operation purposes of the 10 reservoirs include
flood control, water supply (or water transfer) and hydro-power generation. The total flood control storage and regulatory sto-
rage of 10 reservoirs reach 15.4 and 21.5 billion m3, respectively. The Danjiangkou Reservoir is the largest reservoir in the river

basin and has been used as the water source of the middle route of the South-to-North Water Transfer Project since 2014 (Zhou
et al. 2017), which has an annual water transfer demand of 9.5 billion m3. The Danjiangkou Reservoir that is located in the
middle-stream controls .58% runoff of the catchment. Besides, the Ankang monitoring station controls a catchment area of

38,600 km2 and is located at 30 km downstream of the Ankang Reservoir, while the Huangzhuang monitoring station controls
a catchment area of 142,000 km2 and is located at 240 km downstream of the Danjiangkou Reservoir. The Shiquan Reservoir
and Ankang Reservoir, which are located in the upstream of the Hanjiang River, control ,7% runoff of the catchment. The
reservoirs that are located in the tributaries of the Hanjiang River control .12% runoff of the catchment.

2.2. Material collection

The meteorological network monitoring daily rainfall over the Hanjiang River basin contains.100 stations in 2019, about 38

of which also gauge hourly rainfall. Significant variation of the number of monitoring stations appeared over the years, lead-
ing to relatively few long precipitation observations for a long-term (.60 years) variability detection. Consequently, 12
meteorological monitoring stations are used in this study by considering the data availability and representativeness: (1) the

length of the rainfall dataset at each meteorological monitoring station is .60 years spanning from 1954 to 2018 and (2) the
stations are evenly distributed in the Hanjiang River basin (Figure 1). To reveal the impacts of precipitation change and reservoir
regulation on annual maximum streamflow series, this study collected the monitoring records of hydro-meteorological factors

occurring from 1954 to 2018, including the accumulated annual precipitation series of 12 meteorological monitoring stations,
and the annual maximum streamflow series and flood control capacity corresponding to two hydrological monitoring stations
Figure 1 | Map of the Hanjiang River basin. The Ankang and Huangzhuang hydrological stations located at the upstream and downstream of
the river basin, respectively.
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Table 1 | Characteristics of 10 reservoirs in the Hanjiang River basin

Parameter

Reservoir

Shiquan Ankang Eping Songshuling Pankou Huanglongtan Danjiangkou Sanliping Siping Yahekou

Main function beside flood
control

Hydro-
power

Hydro-
power

Hydro-
power

Hydro-
power

Hydro-
power

Hydro-
power

Water supply, hydro-
power

Hydro-
power

Hydro-
power

Hydro-
power

Top of conservation pool
(m)

410 330 550 394 355 247 170 416 315 180

Top of buffer pool in
Summer (m)

405 325 548 394 355 247 160 403 315 175

Top of buffer pool in
Autumn (m)

405 325 548 394 355 247 164 412 315 175

Total storage (million m3) 440 2,925 302 57 2,353 1,162 2,9050 499 269 1,316

Regulatory storage
(million m3)

180 1,670 153 32 1,120 598 1,6360 211 162 1,040

Flood storage (million m3) 180 360 153 0 0 0 1,4100 121 0 521

Installed capacity (MW) 225 850 114 50 500 510 900 70 60 13

Put into operation (year) 2002 1992 2005 2006 2011 1976 1968 2013 2006 1960
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(Ankang and Huangzhuang) in the Hanjiang River basin. The annual maximum streamflow series of Ankang and Huangzhuang

stations are selected from the observed daily river discharge datasets. The Ankang and Huangzhuang monitoring stations are
selected as the pair of design sites in this study due to the following reasons: (1) the two stations are important for flood control
in the Hanjiang River and (2) modeling the degree of dependence between two stations can adequately quantify the effects of

precipitation change and reservoir regulation on basin-scale flood variability. The hydrological monitoring datasets and reser-
voir characteristic values related to the reservoir index (RI) can be downloaded from the Changjiang Hydrology website (http://
www.cjh.com.cn/, Chinese), and the rainfall monitoring datasets can be downloaded from the China National Meteorological
Information Center website (http://data.cma.cn/site/index.html, Chinese).

2.3. Pre-analysis of materials

The Kendall’s τ correlation analysis was performed to determine what precipitation metrics were the most important in
explaining the variability of annual maximum streamflow series. The monthly precipitation is transformed into the accumu-
lated annual precipitation, which displays a higher Kendall’s τ correlation with streamflow series as compared with the

precipitation in monthly and seasonal scales. Consequently, the accumulated annual precipitation is taken as the covariate
of flood non-stationarity in this study.

Figure 2 presents the time series of annual maximum streamflow, areal mean annual precipitation and flood control

capacity corresponding to the two hydrological stations (Ankang and Huangzhuang) from 1954 to 2018. The Pettitt test
Figure 2 | Change point in the time series (mean or variance) of annual maximum streamflow, areal mean annual precipitation and flood
control capacity corresponding to the Ankang and Huangzhuang hydrological stations. The precipitation is the mean accumulated annual
precipitation of sub-catchment above the hydrological station. The symbol of þ(þþ) or�(��) indicates an increasing or decreasing change in
mean or variance at 5% (10%) level, while the symbol of the circle (square) denotes mean (variance). The flood capacity of the Ankang station
corresponds to the Shiquan and Ankang reservoirs, while the flood capacity of the Huangzhuang station contains 10 reservoirs (Figure 1).
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Figure 3 | Trend change in the time series of annual maximum streamflow, areal mean annual precipitation and flood control capacity
corresponding to the Ankang and Huangzhuang hydrological stations. The test is significant at 5 or 10% level marked in the bracket.
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(Villarini et al. 2009) and the Lombard Mood test (James &Matteson 2015) were used to detect change points corresponding

to mean and variance, while the Mann–Kendall test (Villarini & Smith 2010) was used to detect trend change of these time
series. In this study, we conducted the change point test for both mean and variance. The information from the change point
test was considered to separate the time series into two subseries (before and after change point) on which the trend change

analysis would be then implemented separately.
The results of Figure 2 reveal that both stations exhibit one or two change points in the mean or variance of all time series at

5 or 10% significance level. Figure 3 shows the trend change in the time series of annual maximum streamflow, areal mean

annual precipitation and flood control capacity corresponding to the Ankang and Huangzhuang hydrological stations. The
flood and precipitation series in two stations manifest a statistically significant decreasing trend at 5 or 10% level. Therefore,
it is essential to conduct non-stationary flood frequency analysis to further quantify the impacts of precipitation change and
reservoir regulation on design flood values in the Hanjiang River basin.

3. METHODS

The architecture of the integrated approach is illustrated in Figure 4, where Figure 4(a) presents the GAMLSS method,
Figure 4(b) presents the Copula function and Figure 4(c) presents the BUP technique, respectively. The time-varying charac-

teristics both in marginal and joint distribution parameters are modeled and fitted by the GAMLSS method. The point
estimations of non-stationary design floods are conducted using the Copula function. The interval estimations of design
floods are produced by the BUP post-processing technique. The methods used in this study are briefly introduced as follows.
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Figure 4 | Architecture of the integrated approach. (a) GAMLSS method for modeling time-varying characteristics of distribution parameters.
(b) Copula function for performing point estimations of non-stationary design floods. (c) BUP technique for creating interval estimations of
design floods.
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3.1. GAMLSS method

The GAMLSS method is adopted to model a parametric distribution of annual maximum streamflow series with time-varying
characteristics by considering the distribution parameter as a function of explanatory variables xti (i ¼ 1, 2, …, m) with time t.

The time-varying characteristics in the two marginal distributions can be classified into two kinds, i.e. both are stationary
and at least one is non-stationary (Figure 4(a). Because the response variable relaxes a distribution followed the exponential
family in the GAMLSS method, this method allows for a general distribution function even highly skewed. More commonly
when using the GAMLSS method, two-parameter distributions are used to develop non-stationary models. The two-par-

ameter distributions are less complicated and if the parameters of the distribution are best modeled by physical covariates,
it is less likely that higher-order distributions are needed to explain the variability of annual maximum streamflow series
(Villarini et al. 2009, 2012; Jiang et al. 2015; Xiong et al. 2015b). Therefore, this study assumes time-varying characteristics

resided in the location and scale parameters, whereas the shape parameter is assumed to be constant with time in all distri-
butions.

g1(a1
i ) ¼ a10 þ

Xm
i¼1

a1ixti (1)

g2(a2
i ) ¼ a20 þ

Xm
i¼1

a2ixti (2)

where xti is the i-th (i ¼ 0, 1, 2, …, m) explanatory variable at t time. m is the number of covariates (i.e. explanatory variables).

g( � ) is the log link function recognizing that the annual maximum streamflow series may be skewed. a ¼ (a1
i , a

2
i ) (i ¼ 0, 1, 2,

…, m) is the vector of distribution parameters accounting for location and scale, where a1
i ¼ [a10, a1i]

T and a2
i ¼ [a20, a2i]

T .
This study concentrates on modeling the impacts of climate variability and reservoir regulation on flood non-stationarity in

a river basin. Considering the precipitation as the proxy for flood-generating mechanism as well as the RI as the proxy for
anthropogenic regulation (Jiang et al. 2015; Agilan & Umamahesh 2017), these drivers are taken as the explanatory variables
of the marginal distribution parameters in this study. The RI is described as follows:

RI ¼
XN
i¼1

Ai

AT

� �
� Vi

VT

� �
(3)

where Ai and AT are the drainage area regulated by the ith reservoir and the total drainage area monitored by the river
streamflow gauge station, respectively. Vi and VT are the flood capacity of the ith reservoir and the total reservoir flood
capacity in the river streamflow gauge station, respectively. N is the number of reservoirs.

For comparative purpose, we considered several three-parameter distributions and two-parameter distributions to model
the distribution of annual maximum streamflow series in this study (Table 2).

All the aforementioned computations are conducted in R (https://www.r-project.org/) using the freely available GAMLSS
package (Stasinopoulos et al. 2008).

3.2. Copula functions for point estimations of design floods

After modeling the time-varying characteristics of two marginal distributions, the Copula functions are used to compute the
joint probability (or joint design floods) under the four scenarios of the parameters in the marginal and joint distributions
(Figure 4(b).

Three widely used Archimedean Copula functions (Table 3) are employed as the candidates for fitting joint probability dis-

tributions (Xiong et al. 2014; Yu et al. 2014; Li et al. 2019). The time-varying parameter (uc) of the Copula function can be
modeled as a function of covariates xti (i¼ 1, 2, …, m) and described as follows:

gc(utc) ¼ b0 þ
Xm
i¼1

bix
t
i (4)

C(ut
1, u

t
2jutc) ¼ C[F1(yt1jut1), F2(yt2jut2)jutc] (5)
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Table 2 | Univariate distribution functions for fitting marginal distributions

Distribution Probability distribution function (pdf) Range Parameter

Gaussian f(x) ¼ 1ffiffiffiffiffiffiffiffiffi
2ps

p exp � (x� m)2

2s2

" #
�1 , x , þ1 m, s

Gamma f(x) ¼ ba

G(a)
xa�1exp(�bx) x . 0 a, b

Gumbel f(x) ¼ a exp[�a(x� m)� e�a(x�m)] �1 , x , þ1 a, m

GEV f(x) ¼ 1
s

1þ n
x� m

s

� �h i(�1=n)�1
�exp � 1þ n

x� m

s

� �h i�1=n
� �

�1 , x , þ1 m, s, n

Person type III f(x) ¼ ba

G(a)
(x� m)a�1exp[�b(x� m)] x . m a, b, m

Log-Weibull f(x) ¼ 1
a(x� mþ 1)

ln(x� mþ 1)
a

	 
b�1

�exp � ln(x� mþ 1)
a

	 
b( )
x . m a, b, m

Table 3 | Bivariate Archimedean Copula functions for fitting joint distribution

Copula function Joint distribution function Parameter

Gumbel–Hougaard (GH) C(u1, u2ju) ¼ exp{�[(�lnu1)
u þ (�lnu2)

u]
1=u

} at ¼ 1� 1
u
u � 1

Frank C(u1, u2ju) ¼ �1
u
ln 1þ [exp(�uu1)� 1][exp(�uu2)� 1]

exp(�u)� 1

	 

t ¼ 1þ 4

u

1
u

ðu
0

t
exp(t)

dt � 1
	 


�1 , u , þ1

Clayton C(u1, u2ju) ¼ (u�u
1 þ u�u

2 � 1)�1=u t ¼ u

2þ u
u . 0

aτ is the Kendall’s coefficient.
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where gc( � ) and C( � ) are the link function and the Copula function, respectively. [bi]
T (i¼0, 1, 2, …, m) is the parameter

vector of covariates. The link function gc( � ) relies on the value of parameters in Copula functions, i.e. for Frank Copula func-
tion (uc [ R), gc(uc) ¼ uc, whereas for Gumbel–Hougaard and Clayton Copula functions (uc . 0), gc(uc) ¼ ln(uc). ut

1 and ut
2 are

the two marginal probabilities of the Copula function at t time, respectively, which should be both uniformly distributed on

[0, 1]. F( � ) is the cumulative distribution function with non-exceedance probability. yt1 and yt2 are the annual maximum
streamflow series of two marginal distributions at t time, respectively. utc is the time-varying parameter of the Copula function
at t time. ut1 and ut2 are the time-varying parameters of two marginal distributions at t time, respectively.

In this study, the Inference Function for Margins method (Joe 1997) is used to estimate the parameters of the time-varying
joint distribution. In addition, the evaluation of marginal distributions and joint distribution is conducted by comparing the
values of Kolmogorov–Smirnov (K–S) test, Akaike Information Criterion (AIC, Akaike 1974) and diagnostic plots (e.g. worm

plots). Owing to the higher complexity of a joint distribution (e.g. Copula functions), the selection of a particular joint distri-
bution can be further examined by computing the first four moments of the residuals and their Filliben correlation coefficient
(Villarini et al. 2012). The particular distribution with the minimum K–S indicator, the minimum AIC value and rather flat
worm plots, as well as the statistical properties of the residuals close to the standard normal distribution, is selected. For more

details about distribution selection and fitting, the interested reader is pointed to the references (Stasinopoulos et al. 2008;
Villarini et al. 2012).

And then, the time-varying Copula function with time-varying marginal distributions is employed to calculate joint prob-

ability and the return period of two annual maximum streamflow series (i.e. flood pairs). The joint probability and the
return period of flood pairs are defined as follows:

Pmax ¼ P(Y1 � y1 > Y2 � y2) ¼ 1� F1(y1jut1)� F2(y2jut2)þ C[F1(y1jut1), F2(y2jut2)jutc] (6a)

T ¼ 1
1� P(Y1 � y1 > Y2 � y2)

(6b)
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where Pmax and T are the joint probability and the return period corresponding to flood pairs. P( � ) is the joint probability

function. Y1 and Y2 are the two marginal distributions, respectively. y1 and y2 are the observations of two annual maximum
streamflow series, respectively.

3.3. BUP for the probabilistic interval estimation of design floods

In this study, the BUP proposed by Krzysztofowicz (1999) is applied to model the non-linear dependence between observed
and estimated data (i.e. design flood values) at each joint probability p (e.g. p starts from 0.01 up to 99.99% with time step

0.01%) step by step. The implementation procedures of the BUP (Figure 4(c)) for estimating the probabilistic interval of
design flood values consist of the following four steps (Krzysztofowicz 1999):

• Step 1: Implement data transformation for converting observed (Hp) and estimated (Sp) flood pairs from the real space to the
Gaussian space.

• Step 2: Compute the prior density and likelihood functions of flood pairs.

• Step 3: Calculate the posterior density function of flood pairs.

• Step 4: Conduct data transformation for converting datasets from the Gaussian space to the real space and then execute the
Monte Carlo simulation to produce the probabilistic interval estimation of design flood values.

4. RESULTS AND DISCUSSION

The results and findings were presented in the order of the time-varying characteristics in distribution parameters (Section

4.1), flood frequency analysis using the Copula function (Section 4.2) and probabilistic interval estimations of design
floods using the BUP technique and summarization (Section 4.3), and were detailed as follows.

4.1. Time-varying characteristics in distribution parameters

Table 4 summarizes the results of the two time-varying marginal distributions with the precipitation and the RI as the covari-

ates corresponding to the flood-generating mechanism and reservoir regulation in the distribution parameters based on the
GAMLSS method. The results point out that the Gumbel (GU) distribution and generalized extreme value (GEV) distribution
can be considered as the best-fitted distributions for Qa and Qh, respectively, owing to the minimum values of K–S and AIC
indicators. We also tested each covariate in the case separately, in which these experiment schemes created larger values of

K–S and AIC indicators as compared with the results of Table 4. Therefore, when time-varying marginal distribution con-
siders precipitation and RI simultaneously as covariates, the GU and GEV distributions have a good quality in fitting the
two annual maximum streamflow series (Qa and Qh), respectively.
Table 4 | Results of the two time-varying marginal distributions with the precipitation and the RI as the covariates of flood-generating mech-
anism and reservoir regulation in the distribution parameters under non-stationary assumption

Series Distribution

Distribution parameters

K–S statistic indicatora AIC valuem s n

Qa Gaussian 11,595 exp(�721þ1.08Pa�14.59RIa) – 0.132 459
Gamma 11,418 exp(�522þ0.94Pa�10.33RIa) – 0.134 448
Gumbel 10,107 exp(�339þ1.11Pa�15.23RIa) – 0.111 355
GEV 9,817 exp(�283þ0.76Pa�16.05RIa) 0.22 0.130 460
Person type III 11,507 exp(�610þ1.25Pa�16.58RIa) 0.35 0.146 502
Log-Weibull 183 exp(�138þ2.09Pa�10.24RIa) 0.30 0.195 531

Qh Gaussian exp(�303þ0.75Ph�10.01RIh) 0.35 – 0.148 743
Gamma exp(�219þ1.02Ph�8.40RIh) 0.33 – 0.153 807
Gumbel exp(�412þ0.91Ph�9.05RIh) exp(�650þ1.19Pa�16.61RIa) – 0.131 726
GEV exp(�406þ1.09Ph�15.84RIh) 0.38 0.27 0.115 618
Person type III exp(�452þ0.78Ph�11.10RIh) 0.32 0.48 0.144 765
Log-Weibull exp(�229þ0.84Ph�14.23RIh) 3.11 0.35 0.173 794

aThe K–S test is performed at a significance level of 0.05. The null hypothesis states that the empirical distribution fits the theoretical distribution. If the value of the K–S test indicator

is smaller than the value of D(65, 0.05) ( ¼ 1:36=
ffiffiffiffiffiffi
65

p ¼ 0:168), the null hypothesis would not be rejected. The variables Pa, Ph, RIa and RIh are the precipitation and the RI

corresponding to the Ankang and Huangzhuang stations, respectively.
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The change point and trend change tests (Figures 2 and 3) also demonstrate that the physical reason for non-stationary

streamflow series would be attributed to precipitation change and reservoir regulation. From the perspective of flood-gener-
ating mechanism, near-record flood peaks are closely related to the subtropical monsoon climate, where such weather feature
dominates the variability of precipitation in the Hanjiang River. From the perspective of reservoir regulation, Shiquan and

Ankang reservoirs control 6.8% runoff of the catchment, while the rest reservoirs control .70% runoff.
In Figure 5, if all points fall within the 95% confidence interval (between two dashed semicircles), the marginal distribution

has a good fitting quality. The results of worm plots (Figure 5) and the K–S statistic test (Table 4) indicate that the selected
marginal distributions have a good fitting quality. Therefore, the factors of precipitation and RI can be selected as the covari-

ates to fit the distributions of annual maximum streamflow series of Ankang and Huangzhuang stations.
Table 5 presents the results of three Copula functions with constant parameter (A3) and time-varying parameter (A4) for

modeling the dependence between two streamflow series (Qa and Qh) at Ankang and Huangzhuang stations. The results

reveal that under the time-varying dependence (scenario A4), the GH Copula function has the smallest values of K–S and
AIC indicators, while the values of K–S and AIC indicators under the scenario A4 are smaller than those of the scenario
A3. The comparison between two scenarios (A3 and A4) demonstrates that the GH Copula function with the climate and
Figure 5 | Worm plots in the goodness-of-fit test for the two time-varying marginal distributions with the precipitation and RI as the climate
and anthropogenic covariates of the distribution parameters.

Table 5 | Results of three Copula functions with the constant (A3) parameters and the time-varying (A4) parameters for modeling the
dependence between two annual maximum streamflow series

Scenario Copula Parameter uc

K–S statistic indicatora AIC value

Variable X1 Variable X2 Variable X1 Variable X2

A3 GH 2.70 0.127 0.131 43 55
Frank 7.85 0.144 0.157 57 67
Clayton 3.46 0.172 0.175 71 80

A4 GH exp(�414þ0.56Ph�0.73RIh) 0.119 0.122 33 39
Frank exp(�320þ0.18Ph�1.45RIh) 0.149 0.154 35 49
Clayton exp(�257þ0.47Ph�0.69RIh) 0.173 0.171 53 67

aThe K–S test is performed at a significance level of 0.05. The null hypothesis states that the empirical distribution fits the theoretical distribution. If the value of the K–S test indicator

is smaller than the value of D(65, 0.05) ( ¼ 1:36=
ffiffiffiffiffiffi
65

p ¼ 0:168), the null hypothesis would not be rejected. The variables X1 and X2 are the probability integral transformations for

streamflow series Qa and Qh at Ankang and Huangzhuang stations, respectively.
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anthropogenic covariates can effectively model the non-stationarity in parameters of the joint distribution of two streamflow

series.
The first four moments of the residuals (i.e. mean, variance, skewness and kurtosis) and their Filliben correlation coeffi-

cients (Table 6) and the worm plots (Figure 6) further point out that the selected GH Copula function with the time-

varying parameter (scenario A4) has a satisfactory fitting quality to model the dependence structure between Qa and Qh.
Table 6 | Summarization of the first four moments of the residuals and their Filliben correlation coefficients for modeling the dependence
between two annual maximum streamflow series

Scenario Copula

Variable X1

Mean Variance Skewness Kurtosis Filliben

A3 GH 0.01 1.02 0.05 2.11 0.985
Frank 0.02 1.03 0.08 2.34 0.977
Clayton �0.02 1.05 0.11 2.68 0.968

A4 GH 0.01 1.03 0.01 2.08 0.995
Frank 0.01 1.02 0.05 2.17 0.980
Clayton �0.02 1.07 0.05 2.52 0.971

Variable X2

Scenario Copula Mean Variance Skewness Kurtosis Filliben

A3 GH �0.01 1.02 0.03 2.18 0.976
Frank �0.02 1.03 0.05 2.40 0.971
Clayton 0.02 1.04 0.08 2.75 0.962

A4 GH 0.00 1.00 0.01 2.12 0.989
Frank �0.01 1.02 0.03 2.23 0.979
Clayton 0.03 1.05 0.07 2.58 0.971

Figure 6 | Worm plots in the goodness-of-fit test for the GH Copula function with the precipitation and the RI as the climate and anthro-
pogenic covariates of the time-varying dependence parameter (scenario A4). If all points fall within the 95% confidence interval, the two
probability integral transformations (X1 and X2) are both uniformly distributed on [0, 1].
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4.2. Point estimation of design floods using the Copula function

After determining the marginal distributions and the Copula function, the time-varying joint distribution of two annual maxi-
mum streamflow series (Qa and Qh) can be formulated as follows:

CY1,Y2 (Q
t
a, Q

t
h) ¼ CGH[FGU(Qt

ajuta), FGEV(Qt
hjuth)jutc] (7)

where FGU( � ) and FGEV( � ) are the GU and GEV distributions of two streamflow series (Qa and Qh), respectively. CGH( � ) is
the GH Copula function. The two marginal distribution parameters are expressed as follows:

uta ¼ (10,107, exp(�339þ 1:11Pt
a � 15:23RIta))

T (8)

uth ¼ (exp(�406þ 1:09Pt
a � 15:84RIta), 0:38, 0:27)T (9)

The dependence parameter of utc of the GH Copula function is expressed as follows:

utc ¼ exp(�414þ 0:56Pt
h � 0:73RIth) (10)

Figure 7 shows the results of flood frequency analysis under the two scenarios (A3 and A4). It is interesting to find that the
difference in joint return periods of two scenarios is significant (TA3 , TA4) after 1967, especially for medium–high flood mag-
nitudes. Being incorporated with climate and anthropogenic covariates, the time-varying property of the Copula function not

only can model the dependence between variables, but also mitigate the under-estimation of joint return periods. Despite the
fact that flood non-stationarity of the Hanjiang River can be attributed to both climate change and reservoir regulation, the
Figure 7 | Joint return period (JRP) and observed annual maximum streamflow series. (a) JRP of observed flood pair (Qa and Qh) under the two
scenarios (A3 and A4). (b) Observed streamflow series at the Ankang and Huangzhuang stations.
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significant variation after 1967 is mainly due to the regulation of the largest reservoir (i.e. Danjiangkou Reservoir). The Dan-

jiangkou Reservoir is able to control .58% runoff of the Hanjiang River catchment, since it was put into operation in 1967.
Considering climate change and reservoir regulation, the time-varying characteristics in marginal distributions and Copula
function have significant impacts on joint return periods of flood pairs (Qa and Qh).

Consider that the parameters in Equations (8)–(10) have time-varying characteristics, 1,000 simulations of design flood
pairs corresponding to a given joint return period under the scenario A4 were performed to further investigate the impacts
of precipitation change and reservoir regulation on the joint return period of annual maximum streamflow series (Qa and Qh).
The median values of design flood pairs corresponding to a given joint return period (100 years) were computed in accord-

ance with the joint distribution of each time segment.
Figure 8 displays the isolines of the design flood pairs corresponding to the joint return period (100 years) at three-time

segments under the scenarios A3 and A4. The results indicate that (1) from the first time segment (1954–1967) to the

second time segment (1968–1991), the isolines of the joint return period under two scenarios (A3 and A4) move to the
left, owing to the decreasing mean value of annual maximum streamflow series Qh (Huangzhuang station); (2) and then,
from the second time segment (1968–1991) to the third time segment (1992–2018), the isolines of the joint return period

under two scenarios (A3 and A4) drastically move downward, owing to the decreasing coefficient of variation in both
annual maximum streamflow series Qa (Ankang station) and Qh (Huangzhuang station). The coefficient of variation denotes
the extent of variability in relation to the mean of the population. For the scenario A3, it is easy for the Copula function with a

constant parameter to over-estimate the coefficient of variation without modeling the time-varying characteristics. For the
scenario A4, both marginal and joint distributions have been modeled with the time-varying parameters to adequately quan-
tify the coefficient of variation. The decreasing coefficient of variation in two streamflow series can be in a large measure
attributed to the impact of climate change and reservoir regulation.

There are both lateral translations (reduction in flow magnitudes) and vertical decreases in flow magnitudes. The reasons
for inducing both lateral and vertical translations consist of (1) the largest Danjiangkou Reservoir in the Hanjiang river has
been put into operation since 1967 and largely reduces the mean value of annual maximum streamflow series Qh
Figure 8 | Isolines of the design flood pairs with the given joint return period (100 years) corresponding to three-time segments of 1954–1967
(14 years), 1968–1991 (24 years) and 1992–2018 (27 years) under the scenarios A3 and A4.
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(Huangzhuang station) and (2) due to the completion of the rest of nine reservoirs during 1991–2018 and the decreasing trend

of precipitation after 1991, the variances of streamflow series both in two stations decrease significantly. The changing cov-
ariates of climate and reservoir regulation (Figures 3 and 4) would adequately explain the physical meaning of the
combination of lateral and vertical translations.

4.3. Probabilistic interval estimations of design floods using the BUP technique

We further assessed the impacts of time-varying Copula function on the uncertainty of the joint probability between two

annual maximum streamflow series (Qa and Qh) based on Quantile–Quantile (QQ) plots. Figure 9 presents the QQ plots
of probabilistic flood frequency analysis corresponding to three-time segments (1954–1967, 1968–1991 and 1992–2018)
using the BUP approach under two scenarios (A3 and A4).

It can be seen from Figure 9 that (1) from the first time segment (1954–1967) to the second time segment (1968–1991) and
the third time segment (1992–2018), the differences between the two QQ plotlines under two scenarios (A3 and A4) become
more and more significant and (2) for all three-time segments, the QQ plots corresponding to scenario A4 are closer to the
theoretical 1:1 line, in comparison to those of the scenario A3. That is to say, the non-stationary Copula function (scenario

A4) produces the smaller biases of the joint probability than the stationary Copula function (scenario A3). The results demon-
strate that the BUP approach can effectively quantify the uncertainty of flood frequency analysis owing to its better agreement
to the theoretical 1:1 line.

Figure 10 presents the probabilistic interval estimations of design floods for the given joint return period (100 years) cor-
responding to the three-time segments (1954–1967, 1968–1991 and 1992–2018) using the BUP approach under the two
scenarios (A3 and A4). The results reveal that (1) for the first time segment (1954–1967), the probabilistic interval of

design floods created by the BUP approach under the scenario A4 (non-stationary Copula) approximates to that under the
scenario A3 (stationary Copula), because the impacts of climate change and reservoir regulation on flood non-stationarity
are not significant in the first time segment (Figures 3 and 4) and (2) from the first time segment (1954–1967) to the next

two time segments (1968–1991 and 1992–2018), the probabilistic interval of design floods created by the BUP approach
under the scenario A4 is smaller than that of the scenario A3, because the impacts of climate change and reservoir regulation
on flood non-stationarity are becoming more and more significant in the next two time segments (Figures 3 and 4). The results
demonstrate that the BUP post-processing technique can effectively quantify the uncertainty of probabilistic interval esti-

mation of non-stationary design floods by decreasing the probabilistic distribution to a small range.

5. DISCUSSION

Because the one-on-one relationship between the return period and the return level that exists in the univariate case does not

exist in the non-stationary and the multivariate case, it is important to provide an indication on how design values (i.e. flood
pairs) can be inferred in such a high-dimensional problem. Take the lines A–C under the scenario A4 in Figure 10, for example,
the probabilistic interval estimations can provide the maximal and minimal design values to increase the reliability in the plan-

ning and design of hydraulic engineering projects. Furthermore, there is no doubt that the hydro-meteorological environment is
experiencing variability due to a changing world. Accordingly, the proposed methodology and the pre-experience maps (e.g.
point estimation, isolines of design flood pairs and interval estimation) of hydrological uncertainty presented in this study

are useful tools to improve the operation process, in which the predictive hydrological design is essential because the hydrolo-
gical frequency and the return period will be closely associated with the variability of hydro-meteorological conditions.

The results of this study may be affected by the combined methods. For instance, the GAMLSS method needs to consider

the uncertainty of model parameters containing various possible options and combinations with respect to explanatory vari-
ables and link functions. In addition, the curse of dimensionality cannot be avoided: Copula function fitting and parameter
estimation are more demanding and computationally intensive in higher dimensions. Finally, the BUP application needs
transform point estimations from the original space to the Gaussian space before producing interval estimations. Such

data space transformation is bound to induce information loss. Therefore, more modular design, parameter estimation and
hybridization are imminent to quantify and reduce the uncertainty encountered in the interval estimation of design floods.

The proposed methodology is scalable and transferable, with capacity to address problems ranging from non-stationary

hydrological frequency analysis to uncertainty assessment for local and global regions of concerns. There are quite many
physical attributions of hydro-meteorological non-stationarity. This study is only a case that utilizes the integrated approach
to quantify the impacts of precipitation and reservoir regulation on flood non-stationarity. Notwithstanding these promising
://iwaponline.com/hr/article-pdf/doi/10.2166/nh.2021.007/999353/nh2021007.pdf
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Figure 9 | QQ plots for the probabilistic estimation of the joint probability between two annual maximum streamflow series (Qa and Qh) using
the GH Copula function corresponding to three-time segments of (a) 1954–1967, (b) 1968–1991 and (c) 1992–2018 under the scenarios A3 and A4.
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Figure 10 | Probabilistic interval estimations of design flood pairs with the given joint return period (100 years) corresponding to the three-time
segments ((a) 1954–1967, (b) 1968–1991 and (c) 1992–2018) under the GH Copula function with the constant dependence parameter (scenario
A3) and the time-varying dependence parameter (scenario A4). The number of simulations for estimating probabilistic interval is 1,000.
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achievements, future research can be executed to investigate the far-reaching effects of climate change on future flood design

values using climate model outputs.

6. CONCLUSIONS

This study proposes an integrated approach that combines the GAMLSS method, the Copula function and the BUP post-pro-
cessing technique to bring about the probabilistic interval estimation of design floods. The capability of the proposed
approach is verified at the Ankang and Huangzhuang hydrological stations in the Hanjiang River basin of China based on

long-term (1954–2018) observed daily hydrological datasets. The results reveal that the proposed approach not only ade-
quately model the time-varying characteristics of parameters in both marginal and joint distributions of annual maximum
streamflow series, but also effectively increase the reliability of probabilistic interval estimation of design floods encountered
in high climate variability and reservoir regulation conditions. The findings of this study are summarized as follows:

1. At a significance level of 0.05 or 0.1, the years 1968 and 1992 are identified as change points with significant and moderate
decreasing trends (mean or variance), respectively. The annual maximum streamflow series of the Ankang station have

significantly changed in 1992, due to the regulation of the Ankang Reservoir meanwhile decreasing precipitation. The
annual maximum streamflow series of the Huangzhuang station have significantly changed in 1968, because the Danjiang-
kou Reservoir has been put into operation. Moreover, the annual maximum streamflow series of the Huangzhuang station

have moderately changed in 1992 because of the decreasing precipitation.
2. The determination of time-varying characteristics concentrates on the location and scale parameters, whereas the shape

parameter is assumed to be constant with time in all distributions. The GAMLSS method can adequately model the

time-varying characteristics in the location and scale parameters of all marginal and joint distributions of two annual maxi-
mum streamflow series at Ankang and Huangzhuang stations, while the Copula function can effectively accomplish the
point estimations of non-stationary design floods. From the first time segment (1954–1967) to the next two time segments

(1968–1991 and 1992–2018), the design flood values of the Ankang and Huangzhuang stations dramatically decrease
under the non-stationary condition as compared with the stationary condition.

3. The BUP post-processing technique not only can effectively quantify the uncertainty of probabilistic interval estimation of
non-stationary design floods, but also can reduce the probabilistic distribution to a small range. The results of this study

highlight the benefits of non-stationary hydrological frequency analysis to planning and design of hydraulic engineering
projects meanwhile water resources management.

We believe that improving the reliability and generalizability of flood frequency analysis and decreasing the uncertainty of
probabilistic interval estimation of design floods would enhance the trust in non-stationary frequency analysis approaches
and promote more practices in hydrological sciences.
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