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Abstract 1 

Making accurate and reliable probability density forecasts of flood processes is 2 

fundamentally challenging for machine learning techniques, especially when prediction 3 

targets are outside the range of training data. Conceptual hydrological models can reduce 4 

rainfall-runoff modelling errors with efficient quasi-physical mechanisms. The Monotone 5 

Composite Quantile Regression Neural Network (MCQRNN) is used for the first time to 6 

make probability density forecasts of flood processes and serves as a benchmark model, 7 

whereas it confronts the drawbacks of overfitting and biased-prediction. Here we propose 8 

an integrated model (i.e. XAJ-MCQRNN) that incorporates Xinanjiang conceptual model 9 

(XAJ) and MCQRNN to overcome the phenomena of error propagation and accumulation 10 

encountered in multi-step-ahead flood probability density forecasts. We consider flood 11 

forecasts as a function of rainfall factors and runoff data. The models are evaluated by long-12 

term (2009-2015) 3-hour streamflow series of the Jianxi River catchment in China and 13 

rainfall products of the European Centre for Medium-Range Weather Forecasts. Results 14 

demonstrated that the proposed XAJ-MCQRNN model can not only outperform the 15 

MCQRNN model but also prominently enhance the accuracy and reliability of multi-step-16 

ahead probability density forecasts of flood process. Regarding short-term forecasts in 17 

testing stages at four horizons, the XAJ-MCQRNN model achieved higher Nash-Sutcliffe 18 

Efficiency but lower Root Mean Square Error values, while improving Coverage Ratio and 19 

Relative Bandwidth values in comparison to the MCQRNN model. Consequently, the 20 

improvement can benefit the mitigation of the impacts associated with uncertainties of 21 

extreme flood and rainfall events as well as promote the accuracy and reliability of flood 22 

forecasting and early warning. 23 
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 26 

1 Introduction 27 

Floods are among the world’s costliest disasters, and climate and anthropogenic 28 

changes have made catastrophic floods much more likely happen. Over the past century, 29 

floods accounted for about 30% of natural disasters, claiming more than 19% of the 30 

total fatalities and more than 48% of the total number of people affected (Adikari and 31 

Yoshitani, 2009; Takeuchi et al., 2018). Flood forecasting and early warning play a 32 

pivotal role in geohazard mitigation, floodplain management, design and management 33 

of infrastructure projects, agricultural cultivation, and human daily life (Liu et al., 2018; 34 

Giuliani et al., 2019). Therefore, accurate and reliable forecasting of flood processes 35 

during rainstorm events is extremely crucial and beneficial for a country or catchment, 36 

whose prosperity is largely dependent on the optimum use of water resources and flood 37 

level control.  38 

To date, a wide variety of modelling frameworks have been introduced to model 39 

the complicated nonlinear rainfall-runoff process (Sood and Smakhtin, 2015; Shen, 40 

2018; Kan et al., 2020). In general, these modelling frameworks can be categorized into 41 

three groups: conceptual, physically-based and machine learning models. A conceptual 42 

hydrological model typically includes prior-knowledge as a necessary part of 43 

conceptual components, possessing quasi-physical mechanisms (Li et al., 2020; Tarek 44 

et al., 2020). There are all sorts of spatially lumped and distributed conceptual models 45 

available with deterministic and stochastic parameter values for a given point or region. 46 

A physically-based model usually establishes a simplified catchment system and 47 
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expresses the internal hydrological processes through several mathematical equations 48 

considering the spatial variability of rainfall and parameters (Li et al., 2019; Li and 49 

Willems, 2020). However, physically-based models encounter a much higher challenge 50 

when trying to achieve the required prediction accuracy due to limited watershed 51 

information. An alternative, the machine learning model, constructs a direct mapping 52 

between rainfall and runoff variables and extracts their relationship according to the 53 

historical observations by machine learning algorithms, without a piece of prior 54 

knowledge in relation to internal hydrological processes (Feng et al., 2020; Kao et al., 55 

2020; Li et al., 2020; Lin et al., 2020; Nearing et al., 2020; Xiang et al., 2020).  56 

To the best of our knowledge, the growth in machine learning for hydrological 57 

sciences is tied to advances in computing power as well as the vast increase of 58 

hydrological observations. However, machine learning models are purely data-driven 59 

and do not have any physical mechanisms, which easily lead to overfitting and biased-60 

predictions, especially when prediction targets are unobserved and outside the range of 61 

rainfall-runoff data adopted for model training (Hunter et al., 2018; Xie et al., 2021). 62 

Typically, at longer forecast horizons, the non-availability of antecedent streamflow 63 

data makes it fundamentally challenging to maintain the forecast accuracy of data-64 

driven models. Such weakness imposes limitations on the applicability of data-driven 65 

models in rainfall-runoff studies (Schmidt et al., 2020; Zahura et al., 2020). In 66 

comparison to physically-based models, conceptual models have been widely applied 67 

in rainfall-runoff modelling owing to the practical and simple manner. Formulation of 68 

conceptual models signifies only a partial set of the real hydrological cycle processes. 69 
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This triggers several constraints like model calibration and parameter transferability 70 

difficulties (Humphrey et al., 2016; Kumanlioglu and Fistikoglu, 2019), in cases where 71 

forecasters and decision-makers usually require prior knowledge for calibrating and 72 

running conceptual models to achieve reasonable accuracy of flood forecasts (Bandai 73 

and Ghezzehei, 2020; Gu et al., 2020). Although conceptual and data-driven models 74 

are derived from different philosophies, they can help remedy and enhance each other 75 

with regard to their inherent limitations and strengths (Tian et al., 2018; Sun et al., 2019; 76 

Chadalawada et al., 2020). Hence, a hybridization of both models is an attractive and 77 

effective approach for rainfall-runoff modelling (Yong et al., 2017; Kurian et al., 2019; 78 

Ghaseminejad and Uddameri, 2020). For instance, Yang et al. (2019) evaluated the 79 

integration of machine learning and conceptual models for flood simulation at 1032 80 

streamflow gauging stations worldwide. Farfan et al. (2020) adopted streamflow series 81 

forecasts made by a conceptual model as input data of back-propagation neural 82 

networks to forecast streamflow data. Hitokoto and Sakuraba (2020) integrated a 83 

rainfall-runoff model and a feed-forward artificial neural network to predict real-time 84 

water level processes. Hosseiny et al. (2020) integrated a two-dimensional hydraulic 85 

model, a random forest classification and a multilayer perceptron for modeling flood 86 

depth of the river segment of the Flaming Gorge Dam in the northeast corner of Utah 87 

in the US. Konapala et al. (2020) verified hybrid models constructed by combining a 88 

conceptual model with a long short-term memory neural network on their capability to 89 

simulate streamflow series in hundreds of catchments across the US. The above-90 

mentioned studies explored hybrid models for flood prediction in watersheds with 91 
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diverse climate conditions by means of point forecasts. This study is the first to apply 92 

conceptual models with artificial neural networks incorporating flood probability 93 

density (FPD) forecasting for a humid subtropical climate. Exploration of conceptual 94 

and machine learning models for FPD forecasting in this study is owing to the following 95 

reasons: first, conceptual models possess superior operability while machine learning 96 

models possess efficient computation power; and second, physically-based models 97 

usually have bottlenecks of low prediction accuracy and time-consuming due to the 98 

limitation of available data or quality on the physical properties of watersheds (Liu et 99 

al., 2018; Li et al., 2020; Cui et al., 2021; Kao et al., 2021). 100 

Previous research regarding hybrid models mainly concentrated on point forecasts 101 

or interval predictions of flood processes by integrating conceptual models with single-102 

output artificial neural networks, whereas to date no study has involved FPD forecasting. 103 

Point forecasting, the most frequently used approach, can provide a point estimate of 104 

the future flood as precisely as possible for each forecast horizon. Rather than offering 105 

single-valued forecasts, interval prediction approaches attempt to create well-calibrated 106 

lower and upper bounds of each future prediction subject, to a prescribed confidence 107 

level. Furthermore, FPD forecasting can provide flood forecasts in the form of quantile 108 

point forecasts, confidence interval forecasts and probability density functions. 109 

Although it needs extra efforts to calculate the probability for each possible prediction, 110 

additional information gained is highly helpful to promote the full understanding of 111 

flood predictability. FPD forecasting not only effectively quantifies the uncertainties in 112 

input datasets but also has the ability to construct the complete conditional probability 113 
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density curves of future flood processes. Consequently, there is a noticeable migration 114 

from point forecasts and interval predictions towards FPD forecasts where modelers 115 

seek to characterize the full probability distribution of flood events. Among machine 116 

learning techniques, the Monotone Composite Quantile Regression Neural Network 117 

(MCQRNN) is a special type of multi-output artificial neural networks (ANN) that can 118 

effectively estimate multiple non-crossing and nonlinear quantile functions 119 

simultaneously. It is a novel and appealing approach for probability density forecasting, 120 

as compared with other multi-output ANNs like support vector machine and long short-121 

term memory (Cannon, 2018). Since MCQRNN applications do not exist in FPD 122 

forecasts, it would be important and interesting to explore in-depth conceptual 123 

hydrological models to decrease the uncertainty of multi-output ANN (e.g. MCQRNN) 124 

for FPD forecasting.  125 

The novelty of this study relies on the integration of the Xinanjiang (XAJ) 126 

conceptual model and the innovative MCQRNN with a multi-output task. Meanwhile, 127 

this is the first application of the integrated XAJ-MCQRNN model for FPD forecasting. 128 

There are three main steps in this approach. First, the conceptual hydrological model 129 

for rainfall-runoff simulation was constructed to create point forecasts of flood 130 

processes and the outputs were used as inputs of the machine learning model. Second, 131 

the multi-output machine learning model for FPD forecasting was built to further create 132 

interval forecasts of flood processes after being supplied with point forecasts by the 133 

conceptual model. Third, the training process of the hybrid model was optimized by an 134 

evolutionary optimization algorithm, and the predictability of the hybrid model was 135 



8 

tested by using medium-range numeric rainfall forecast products. The Jianxi River 136 

catchment of China constituted the case study.  137 

 138 

2 Methods 139 

This study aims to integrate the XAJ and MCQRNN models for raising the accuracy 140 

and reliability of short-term FPD forecasts. Fig. 1 presents the main architectures 141 

utilized in this study: the MCQRNN (Fig. 1(a)); and the proposed XAJ-MCQRNN 142 

model that combines XAJ with MCQRNN models (Fig. 1(b)).  143 

2.1 Monotone Composite Quantile Regression Neural Network (MCQRNN) 144 

The MCQRNN has been developed to effectively estimate multiple quantile functions 145 

for making probabilistic density forecasts of time series (Cannon, 2018). In comparison 146 

to the Quantile Regression Neural Network (QRNN) (Taylor, 2000), the monotone 147 

QRNN (Cannon, 2011) and the composite QRNN (Xu et al., 2017), the merit of the 148 

MCQRNN model is that it can estimate multiple non-crossing, non-linear conditional 149 

quantile functions, can allow for the constraints of optional monotonicity, 150 

positivity/non-negativity and generalized additive model, and can be applied to 151 

estimating standard least-squares regression (Cannon, 2018).  152 

The structure of the MCQRNN model is composed of input, hidden, and output 153 

layers (Fig. 1(a)). Regarding the kth quantile𝜏𝑘, the outputs of hidden and output layers 154 

in association with multi-input variables at horizon T are described below.  155 

  ℎ𝑗(𝑡 + T) = 𝑓 (∑ P̂(𝑡 + 𝑠) ∙ exp(𝑤𝑠𝑗
(h)

)T
𝑠=0 + ∑ P(𝑡 − 𝑚) ∙ exp(𝑤𝑚𝑗

(h)
)

p
𝑚=0 +156 

∑ Q(𝑡 − 𝑛) ∙ 𝑤𝑛𝑗
(h)q

𝑛=0 + 𝑏𝑗
(h)

)                          (1a) 157 
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Q̂MCQRNN
𝜏𝑘 (𝑡 + T) = g [∑ ℎ𝑗(𝑡 + T) ∙ exp(𝑤𝑗𝑘

(o)
)J

𝑗=1 + 𝑏𝑘
(o)

]           (1b) 158 

 159 

 160 

Fig. 1 Main architectures adopted in this study. a. Monotone composite QRNN model 161 

(MCQRNN). b. Proposed XAJ-MCQRNN model. w𝑖𝑗
(h)

, b𝑗
(h)

, w𝑗𝑘
(o)

 and b𝑘
(o)

 are the 162 

parameters in hidden and output layers of MCQRNN model. Q̂MCQRNN(𝑡 + T) is the 163 

forecast streamflow of MCQRNN model at horizon t+T. Q̂XAJ(𝑡 + 1),…,Q̂XAJ(𝑡 + T) 164 

are the forecast streamflows of XAJ model during horizons t+1 up to t+T. 165 

Q̂XAJ−MCQRNN
𝜏𝑘 (𝑡 + T) is the forecast streamflow of XAJ-MCQRNN model with 𝜏𝑘 166 

quantile at horizon t+T. t and T are the current time and forecast horizon, respectively. 167 
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 168 

where ℎ𝑗(𝑡 + T) and Q̂MCQRNN
𝜏𝑘 (𝑡 + T) are the jth node’s output transformed from 169 

input variables in the hidden layer and the model output with the 𝜏𝑘 quantile (1≤k≤K) 170 

in the output layer at horizon T, respectively. P̂(𝑡 + 𝑠) is the forecast rainfall at 171 

horizon s (1≤s≤T). P(𝑡 − 𝑚) and Q(𝑡 − 𝑛) are the mth antecedent rainfall and the 172 

nth antecedent streamflow, respectively. f(∙) is the hyperbolic tangent function in the 173 

hidden layer. g(∙) is the sigmoid transfer function in the output layer. k and j are the 174 

indexes of quantile and node, respectively. p and q are the numbers of antecedent 175 

rainfall and antecedent streamflow variables at horizon T, respectively. 𝑤𝑠𝑗
(h)

 is the 176 

weight parameter which connects the sth forecast rainfall and the jth node in the 177 

hidden layer, where the superscript (h) represents the hidden layer. 𝑤𝑚𝑗
(h)

 and 𝑤𝑛𝑗
(h)

 178 

are the weight parameters which connects the mth (nth) antecedent rainfall 179 

(streamflow) input variable and the jth node in the hidden layer, respectively. 𝑏𝑗
(h)

 is 180 

the intercept parameter of the jth node in the hidden layer. 𝑤𝑗𝑘
(o)

 and 𝑏𝑘
(o)

 are the jth 181 

weight and the intercept parameter of the kth quantile in the output layer, respectively, 182 

where the superscript (o) represents the output layer. J is the number of nodes. 183 

To enhance the stability of model training, regularization terms are integrated into 184 

the error function to penalize the magnitude of the weight parameters within hidden and 185 

output layers, as described below.  186 

𝜌𝜏𝑘
(𝜀) = {

𝜏𝑘 ∙ 𝜑(𝜀)                   𝜀 ≥ 0
(𝜏𝑘 − 1) ∙ 𝜑(𝜀)        𝜀 ≥ 0

                          (2a) 187 

𝜑(𝜀)  = {

 𝜀2

2𝛼
                     0 ≤ | 𝜀| ≤ 𝛼

| 𝜀| −
𝛼

2
                    | 𝜀| > 𝛼

                      (2b) 188 

E = ∑ 𝜔𝜏𝑘
∙K

𝑘=1 ∑ 𝜌𝜏𝑘
(Q(𝑡 + T) − Q̂MCQRNN

𝜏𝑘 (𝑡 + T))D
𝑡=1               (2c) 189 
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Ẽ = E + 𝜆(h) ∙
1

(T+p+q)∙J
∑ ∑ (𝑤𝑖𝑗

(h)
)

2

+ 𝜆(o) ∙
1

J
∑ (𝑤𝑗𝑘

(o)
)

2
J
𝑗=1

J
𝑗=1

(T+p+q)
𝑖=1    (2d) 190 

where 𝜌𝜏𝑘
(𝜀) and 𝜑(𝜀) are the Huber-norm function (Chen, 2007) with the 𝜏𝑘 191 

quantile and the Huber function (Huber, 1964) with the variable 𝜀, respectively. |𝜀| 192 

and 𝛼 are the absolute error and the given positive value, respectively. The Huber 193 

function transforms smoothly from the squared error, which is applied around the 194 

origin (𝛼) to accomplish differentiability, and the absolute error. 𝜔𝜏𝑘
 is the weight 195 

that represents the contribution of the forecast streamflow with the 𝜏𝑘 quantile to the 196 

total error. Q(𝑡 + T) is the observed streamflow. K is the number of quantiles. 𝜆(h) 197 

and 𝜆(o)  are the coefficients (i.e., regularization items) that denote the penalties 198 

applied to the weight parameters in hidden and output layers, respectively. i is the 199 

index of input variable. 𝑤𝑖𝑗
(h)

 is the weight parameter for connecting the ith input 200 

variable and the jth node in the hidden layer. D is the number of input data. E and 201 

Ẽ are the error functions without (the former) and with (the latter) regularization items 202 

considering the Huber-norm approximation, respectively.  203 

 In the case of the specified model architecture (i.e. three layers, shown in Fig. 1(a)) 204 

with the numbers of input variables (V), hidden nodes (J), and output variables (O), 205 

the total number of weight and intercept parameters in the MCQRNN model is the 206 

sum of (V×J+ J×O) weight parameters and (J+ O) intercept parameters.  207 

2.2 Xinanjiang (XAJ) conceptual hydrological model 208 

The XAJ model is a conceptual rainfall-runoff model suitable for flood forecasts of 209 

humid and semi-humid catchments (Zhao, 1992). From the viewpoint of model 210 

architecture, the XAJ model has four implementation phases (Fig. 1(b)). Part Ⅰ is to 211 
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compute evapotranspiration by three representative soil layers. Part Ⅱ is to calculate 212 

runoff production under runoff formation on repletion of storage. Part Ⅲ is to separate 213 

total runoff into the components of surface runoff, interflow and groundwater. Part Ⅳ 214 

is to compute flow concentrations by means of the Nash Unit Hydrograph and 215 

Muskingum routing. The advantage of the XAJ model is that the model has not only 216 

the explicit physical meaning of rainfall-runoff processes but also a simple manner for 217 

flood forecasting. The mathematical equation of the rainfall-runoff process in the XAJ 218 

model during horizons t+1 up to t+T is depicted as follows.  219 

𝐐̂𝐗𝐀𝐉
𝐓 = ϕ[P̂(𝑡 + 1), P̂(𝑡 + 2), ⋯ , P̂(𝑡 + T)]                (3a) 220 

𝐐̂𝐗𝐀𝐉
𝐓 = [Q̂XAJ(𝑡 + 1), Q̂XAJ(𝑡 + 2), ⋯ , Q̂XAJ(𝑡 + T)]         (3b) 221 

where 𝐐̂𝐗𝐀𝐉
𝐓  is the vector of the XAJ model output with lead time T. P̂(𝑡 + T) and 222 

Q̂XAJ(𝑡 + T) are the forecast rainfall (i.e., mode input) and flow (i.e., model output) at 223 

horizon t+T, respectively. ϕ[∙]  is the transformation function of rainfall-runoff 224 

processes including four parts (Fig. 1(b)).  225 

The XAJ model has 15 parameters, including 4 evapotranspiration parameters, 3 226 

runoff production parameters, 4 runoff separation parameters, and 4 flow concentration 227 

parameters. Owing to the effectiveness and practicality, the Shuffled Complex 228 

Evolution method developed at The University of Arizona (SCE-UA) (Duan et al., 1994) 229 

was adopted to optimize the XAJ model parameters in this study. More details on the 230 

XAJ model can be found in Zhao (1992).  231 

2.3 Hybridization of the XAJ and MCQRNN (XAJ-MCQRNN) 232 

The comparison between MCQRNN (Fig. 1(a)) and XAJ-MCQRNN (Fig. 1(b)) models 233 



13 

established in this study is summarized as follows: when making FPD forecasts, the 234 

former adopts the forecast rainfall data (P̂(𝑡 + 1), P̂(𝑡 + 2), ⋯ , P̂(𝑡 + T)) provided by 235 

available numerical forecast products as input variables to test the model during 236 

horizons t+1 up to t+T, while the latter adopts the forecast streamflow data 237 

Q̂XAJ(𝑡 + 1), Q̂XAJ(𝑡 + 2), ⋯ , Q̂XAJ(𝑡 + T) made by the XAJ model during horizons 238 

t+1 up to t+T as input variables to test the model.  239 

From the perspective of model complementarity, the XAJ model can produce stable 240 

point forecasts of flood hydrographs so that the MCQRNN model can create more 241 

accurate and reliable FPD forecasts after being supplied with point forecasts by the XAJ 242 

model. The general equation of the proposed hybrid model for the quantile 𝜏𝑘  is 243 

described below.  244 

Q̂XAJ−MCQRNN
𝜏𝑘 (𝑡 + T) = 𝜓[Q̂XAJ(𝑡 + T), ⋯ , Q̂XAJ(𝑡 + 2), Q̂XAJ(𝑡 + 1), Q(𝑡),245 

Q(𝑡 − 1), ⋯ , Q(𝑡 − q), P(𝑡), P(𝑡 − 1), ⋯ , P(𝑡 − p) ]             (4) 246 

where Q̂XAJ−MCQRNN
𝜏𝑘 (𝑡 + T) is the forecast streamflow of the XAJ-MCQRNN model 247 

with the quantile 𝜏𝑘 at horizon t+T. 𝜓[∙] is the quantile regression function that is the 248 

combination of the hyperbolic tangent function f(∙) in the hidden layer and the sigmoid 249 

transfer function g(∙) in the output layer. 250 

2.4 Training process of the MCQRNN model 251 

The gradient-based nonlinear optimization algorithm (Kingma and Ba, 2015; Cannon, 252 

2018) was used to optimize the weight (𝑤𝑠𝑗
(h)

, 𝑤𝑚𝑗
(h)

, 𝑤𝑛𝑗
(h)

 and 𝑤𝑗𝑘
(o)

 in Eqs. 1(a) and 253 

1(b)) and intercept (𝑏𝑗
(h)

 and 𝑏𝑘
(o)

 in Eqs. 1(a) and 1(b)) parameters of the MCQRNN 254 

while the training process of the XAJ-MCQRNN was performed after being supplied 255 
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with point forecasts by the XAJ at the same time. Furthermore, the Genetic Algorithm 256 

(GA) (Goldberg and Deb, 1991; Zhou et al., 2019) was used to optimize the 257 

hyperparameters (the maximal iteration Imax, the number of nodes J, the regulation 258 

coefficients 𝜆(h) and 𝜆(o), and the learning rate η). Fig. 2 illustrates the flow chart of 259 

the XAJ-MCQRNN training process. The implementation procedure is described as 260 

follows.  261 

Step 1: Randomly generate an initial population X0 of size Ipop with respect to the 262 

hyperparameters. Integer-coded and real-coded solutions are adopted for 263 

hyperparameters Imax and J as well as for hyperparameters 𝜆(h) , 𝜆(o)  and η , 264 

respectively. The search spaces of Imax, J, 𝜆(h), 𝜆(o) and α are set to be [200, 265 

500], [1, 30], [0.001, 0.01], [0.001, 0.01] and [0.001, 0.05], respectively.  266 

Step 2: Perform the gradient-based nonlinear optimization algorithm for optimizing 267 

weight and intercept parameters of the MCQRNN model, and execute the 268 

tournament selection, the crossover operator with probability (Pc) and the mutation 269 

operator with probability (Pm) to create an offspring population Y0 of size Ipop.  270 

Step 3: Evaluate the fitness values of Yu for the uth generation, combine Yu-1 and Yu 271 

into an intermediate population Xu of size 2 ∗ Ipop, partition this combined 272 

population into different ranks according to fitness values, and store the best 273 

solution using the elitism strategy.  274 

Step 4: Implement the tournament selection to select a new parent population Xu+1 of 275 

size Ipop from Xu, create an offspring population Yu+1 using crossover and mutation 276 

operators, and evaluate their fitness values.  277 
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Step 5: Repeat Steps 3 and 4 when the generation number u is smaller than the maximal 278 

generation (Gmax). Otherwise, output the optimal results after stopping iteration.  279 

 280 

Fig. 2 Flow diagram of the XAJ-MCQRNN model trained simultaneously by: a. the 281 

Genetic Algorithm applied to the optimization of hyperparameters; b. the gradient-282 

based nonlinear optimization algorithm applied to the optimization of weight and 283 

intercept parameters.  284 

 285 

In this study, the population size (Ipop), the maximal generation (Gmax), the 286 

crossover probability (Pc) and the mutation probability (Pm) of GA were set to be 200, 287 

100, 0.85 and 0.1, respectively. The aforementioned computations regarding the GA, 288 

(Initialization of hyperparameters)

Population generation

(Calculation of error function Eq. 2(d))

Fitness evaluation

(Optimization of weight and intercept)

Implementation of gradient-based algorithm

Execution of elitism strategy for

storing best solution 

Selection, 

Crossover & Mutation

Stop

criterion

Optimal solution

(hyperparameters, weight and intercept)

a.

b.
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XAJ model and MCQRNN model are conducted in R software (https://www.r-289 

project.org/), where the computation of the MCQRNN is based on the freely available 290 

QRNN package (https://CRAN.R-project.org/package=qrnn).  291 

As river streamflow data are time series, this study applied the Root Mean Square 292 

Error (RMSE), the Nash-Sutcliffe Efficiency (NSE) and the Mutual Information (MI) 293 

to evaluate the point forecast results of the two MCQRNN models. The RMSE value 294 

indicates the error between forecasts and observations, and its value ranges from 0 to 295 

infinity (Legates and McCabe, 1999). The NSE is commonly employed to evaluate the 296 

forecast accuracy of hydrological models and its value ranges from negative infinity to 297 

1 (Nash and Sutcliffe, 1970). Considering that the upper bound (=1) of the NSE doesn't 298 

leave much room for improvement, a logarithm conversion for the NSE (LNSE) is used 299 

instead of an unbounded quality indicator to evaluate model accuracy. The MI value 300 

suggests the goodness-of-fit between forecasts and observations, and its value ranges 301 

from 0 to infinity (Shannon, 1948). A model with low RMSE and high LNSE and MI 302 

values suggests it can produce high forecast accuracy. The computations of RMSE, 303 

LNSE and MI values are described below.  304 

RMSE = √1

D
∑ (Q(𝑡 + T) − Q̂Model

𝜏𝑘 (𝑡 + T))D
𝑡=1

2

                         (5) 305 

LNSE = − ln(1 − NSE) = −ln (
∑ (Q(𝑡+T)−Q̂

Model

𝜏𝑘 (𝑡+T))
2

D
𝑡=1

∑ (Q(𝑡+T)−Q̅T)2D
𝑡=1

)                 (6) 306 

MI = ∑ ∑ 𝑝 (Q(𝑡 + T), Q̂Model
𝜏𝑘 (𝑡 + T)) 𝑙𝑜𝑔2 (

𝑝(Q(𝑡+T),Q̂
Model

𝜏𝑘 (𝑡+T))

𝑝(Q(𝑡+T))𝑓(Q̂
Model

𝜏𝑘 (𝑡+T))
)D

𝑡=1
D
𝑡=1    (7) 307 

where Q̂Model
𝜏𝑘 (𝑡 + T) is the forecast value of a model (MCQRNN or XAJ-MCQRNN) 308 

with the 𝜏𝑘 quantile at horizon T. Q̅T is the average of observed values at horizon T. 309 

https://www.r-project.org/
https://www.r-project.org/
https://cran.r-project.org/package=qrnn
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𝑝(∙,∙) is the joint probability density function of observations and forecasts. 𝑝(∙) is the 310 

probability density function of observations or forecasts. The median (i.e., 𝜏𝑘=0.5) 311 

forecasts of a model are commonly employed to evaluate the prediction accuracy of 312 

point forecast results (Zhou et al., 2020). 313 

The Coverage Ratio (CR) of the forecast interval relative to observations and the 314 

Relative Bandwidth (RB) of the forecast interval (Xiong and O’Connor, 2008) were 315 

used to evaluate the accuracy of the forecast interval results in this study. The CR 316 

represents the coverage interval of the forecasts and its value ranges from 0 to 100%. 317 

The RB represents the width of the forecast interval and its value ranges from 0 to 318 

infinity. A model with its CR value closer to 100% and its RB closer to 0 implies it can 319 

forecast more accurately. The computations of CR and RB values are depicted as 320 

follows.  321 

CR =
1

D
× ∑ θ𝑡

D
𝑡=1 × 100% ,   θ𝑡 = {

1,    Q(𝑡 + T) ∈ [Q̂
L
(𝑡 + T), Q̂

U
(𝑡 + T)]

0,    Q(𝑡 + T) ∉ [Q̂
L
(𝑡 + T), Q̂

U
(𝑡 + T)]

  (8) 322 

RB =
1

D
× ∑ (

Q̂U
(𝑡+T)−Q̂L

(𝑡+T)

Q(𝑡+T)
)D

𝑡=1 × 100%                            (9) 323 

where Q̂L(𝑡 + T)  and Q̂U(𝑡 + T)  are the lower and upper boundaries of forecast 324 

interval results at horizon T with respect to a given confidence level (e.g. 90%), 325 

respectively (e.g. L=5%, U=95%). The θ𝑡 values are either one or zero, in which one 326 

implies the observed data fall within its forecast intervals while zero implies the 327 

observed data fall outside of its forecast intervals at t time.  328 

 329 

3 Study area and materials 330 

3.1 Study area 331 
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The Jianxi River catchment with an area of 14787 km2 is located in southern China (Fig. 332 

3). The catchment climate is affected by the southwest Indian Ocean and southeast 333 

Pacific Ocean subtropical monsoons and regional landforms (Lin et al., 2020). The 334 

annual rainfall ranges from 1800 mm to 2200 mm and the annual runoff ranges from 335 

950 to 1700 mm, the highest amount (74%) of which occurs within six months 336 

(AprilSeptember). Due to the moist and rainy features as well as red, yellow, and 337 

paddy soils, runoff production of this catchment is dominated by the runoff generation 338 

on repletion of storage, which is in line with the typical rainfall-runoff characteristics 339 

in southern China.  340 

 341 

Fig. 3 Locations of the Jianxi River catchment and hydro-meteorological (rainfall, 342 

evaporation and runoff) gauge stations.  343 

 344 

3.2 Materials 345 

This study collected the data associated with flood events during the flood season 346 

(April 1stSeptember 30th), including the 3-hour (time step) rainfall data of 16 gauge 347 

stations, the 3-hour evaporation of 3 gauge stations and the 3-hour streamflow data of 348 
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the Qilijie hydrological station from 2009 to 2015, and the 3-hour forecast rainfall of 349 

ERA-Interim datasets of the European Centre for Medium-Range Weather Forecasts 350 

(ECMWF) from 2014 to 2015. The spatial resolution of each grid in ERA-Interim is 351 

0.125°E×0.125°N, while 32 grid points are required to fully cover the Jianxi River 352 

catchment (Fig. 3). More details on the ERA-Interim datasets of the ECMWF can be 353 

found in Berrisford et al. (2011). The areal mean value of observed rainfall data was 354 

calculated by using the datasets of 16 gauge stations colored in green (Fig. 3), the areal 355 

mean value of observed evaporation data was calculated by using the datasets of 3 356 

gauge stations colored in purple (Fig. 3), and the areal mean value of forecast rainfall 357 

data was calculated by using the datasets of 32 grid points through the Thiessen polygon 358 

method (Thiessen, 1911). 359 

A total of 20448 (=8 time step × 365 days × 6 non-leap years + 8 time step × 366 360 

days × 1 leap year) time series values were divided into three datasets for model training 361 

(8760 from 2009-2011), validation (5848 from 2012-2013), and testing (5840 from 362 

2014-2015). The training dataset was applied to adjusting the parameters (weights and 363 

intercepts) of the XAJ model (the MCQRNN model). The validation dataset was 364 

applied to checking whether a prediction model is overfitted or undertrained. The test 365 

dataset was applied to evaluating the model prediction accuracy.  366 

3.3 Model construction 367 

A 12-hour forecast horizon has been considered in this study since the longest transform 368 

time in the rainfall-runoff processes is 12 hours in this catchment. Besides, the current 369 

forecast horizon at the Qilijie station is only 6 hours, inducing the demand for 370 
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improving the lead time and forecast accuracy. In the light of the observed 3-hour 371 

rainfall-runoff datasets of the Jianxi River catchment, the model output was set to be 372 

t+1 (Horizon=3 hours) up to t+4 (Horizon=12 hours) time-step-ahead streamflow, 373 

where t is the current time.  374 

As aforementioned, the GA was performed to determine the optimal 375 

hyperparameters in association with MCQRNN models at four horizons. The optimal 376 

values of the maximal iteration (Imax), the number of nodes (J), the regulation 377 

coefficients (𝜆(h) and 𝜆(o)) and the learning rate (η) were 300, 12, 0.006, 0.004 and 378 

0.009, respectively, while the weight and intercept parameters optimized by the 379 

gradient-based nonlinear optimization algorithm within the QRNN package were 380 

adopted in this study. 381 

This study adopted the Partial Mutual Information and Partial Weights (PMI-PW) 382 

method (Sharma et al., 2016) to quantify the contribution of input combination to model 383 

performance (Table 1). To estimate the input variables weights for constructing the 384 

MCQRNN and XAJ-MCQRNN models, the following framework was adopted. Apart 385 

from the observed streamflow and rainfall data (traced back to the previous 12 hours), 386 

the rainfall of the ERA-Interim during horizon t+1 up to t+4 was used to train, validate 387 

and test the former, while the forecast streamflow of the XAJ model during horizon t+1 388 

up to t+4 was used to train, validate and test the latter.  389 

 390 

Table 1 Weights of input variables for constructing models by the Partial Mutual 391 

Information and Partial Weights (PMI-PW) method 392 

Variable 
Input 

combination 

Contribution 

Horizon t+1 Horizon t+2 Horizon t+3 Horizon t+4 
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MCQRNN 
XAJ- 

MCQRNN 
MCQRNN 

XAJ- 

MCQRNN 
MCQRNN 

XAJ- 

MCQRNN 
MCQRNN 

XAJ-

MCQRNN 

Rainfall P(t+4)       0.03  

P(t+3)     0.04  0.06  

P(t+2)   0.05  0.06  0.08  

P(t+1) 0.05  0.06  0.09  0.10  

P(t) 0.07 0.07 0.09 0.08 0.11 0.09 0.17 0.15 

P(t-1) 0.09 0.09 0.11 0.11 0.15 0.14 0.09 0.10 

P(t-2) 0.12 0.10 0.17 0.13 0.08 0.09 0.06 0.06 

P(t-3) 0.18 0.14 0.08 0.09 0.04 0.04 0.02 0.05 

Forecast 

streamflow  

of XAJ model 

Q̂XAJ(𝑡 + 4)        0.25 

Q̂XAJ(𝑡 + 3)      0.23  0.19 

Q̂XAJ(𝑡 + 2)    0.22  0.17  0.10 

Q̂XAJ(𝑡 + 1)  0.20  0.14  0.11  0.06 

Observed 

streamflow 

Q(t) 0.20 0.18 0.21 0.11 0.24 0.09 0.25 0.04 

Q(t-1) 0.15 0.09 0.13 0.08 0.12 0.04 0.09  

Q(t-2) 0.09 0.07 0.07 0.04 0.05  0.04  

Q(t-3) 0.05 0.06 0.03  0.02  0.01  

Sum 1 1 1 1 1 1 1 1 

 393 

4 Results 394 

To improve the predictability and reliability of FPD forecasts, this study intends to 395 

explore and evaluate the accuracy of the XAJ model coupled with the MCQRNN on 396 

short-term (12 hours) flood forecasts at different horizons. The results, findings and 397 

discussion were as follows.  398 

4.1 Reliability of XAJ and MCQRNN models on point forecasts of flood processes 399 

The point forecasts of floods under the circumstance of the quantile 𝜏𝑘=0.5 (i.e. median 400 

forecasts) were specified to test the reliability of the constructed models. Table 2 401 

summarizes the RMSE, LNSE and MI values of the XAJ, MCQRNN and XAJ-402 

MCQRNN models in training, validation and testing stages at four horizons. It is 403 

apparent from this table that the XAJ-MCQRNN model performs better than the XAJ 404 

and MCQRNN models in the three stages at four horizons. Take the testing stage for 405 
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example, the LNSE and MI values of the XAJ-MCQRNN model exceed 0.90 and 22 406 

respectively while the RMSE values are less than 140 m3/s.  407 

Two main results are acquired from the Table 2. Firstly, the comparison of the XAJ-408 

MCQRNN and XAJ models in the testing stage reveals that there are significant 409 

differences in the improvement rates of RMSE and NSE values at four horizons. The 410 

improvement rates of RMSE (LNSE & MI) for median flood forecasting reach 4.7% 411 

(9.0% & 4.3%) and 5.2% (17.0% & 6.1%) at horizons t+1 and t+2, respectively, while 412 

they increased to 6.6% (22.2% & 8.8%) and 8.1% (28.4% & 11.2%) at horizons t+3 413 

and t+4, respectively. Secondly, the comparison of the XAJ-MCQRNN and MCQRNN 414 

models in the testing stage points out that the former can provide stable forecast results 415 

after being supplied with point forecasts by the XAJ model either at shorter horizons 416 

(t+1 and t+2) or at longer horizons (t+3 and t+4). That is to say, the XAJ-MCQRNN 417 

model can effectively extract the dependence between rainfall and runoff processes 418 

even in the case of the12-hour forecast horizon. The fluctuations of forecast rainfalls 419 

are stronger at long horizons (t+3 and t+4) than at short horizons (t+1 and t+2). Higher 420 

fluctuations of forecast rainfall data are easy to induce overfitting problems, which 421 

would demand more complex models to mimic the relationship between rainfall and 422 

runoff. This is considered as a driver to improve the forecast of the XAJ-MCQRNN 423 

model.  424 

 425 

 426 

Table 2 Results of Root Mean Square Error (RMSE), Nash-Sutcliffe Efficiency (NSE) 427 

and Mutual Information (MI) values acquired from the XAJ, MCQRNN and XAJ-428 

MCQRNN models in training, validation and testing stages 429 

Stage Horizon RMSE (m3/s) LNSE MI 
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XAJ MCQRNN 
XAJ-

MCQRNN 
XAJ MCQRNN 

XAJ-

MCQRNN 
XAJ MCQRNN 

XAJ-

MCQRNN 

Training t+1 

91 

71 68 

3.22 

3.91 3.91 

1.75 

1.87 1.94 

t+2 89 84 3.51 3.51 1.79 1.90 

t+3 115 106 3.00 3.22 1.68 1.85 

t+4 137 124 2.53 2.81 1.54 1.78 

Validation t+1 

102 

77 73 

3.00 

3.51 3.51 

1.72 

1.85 1.93 

t+2 94 88 3.22 3.51 1.78 1.91 

t+3 121 111 2.66 3.00 1.69 1.84 

t+4 146 130 2.41 2.81 1.60 1.77 

Testing t+1 84 90 80 (4.7) 3.22 3.22 3.51 (9.0) 1.85 1.85 1.93 (4.3) 

t+2 96 103 91 (5.2) 3.00 3.00 3.51 (17.0) 1.79 1.74 1.90 (6.1) 

t+3 122 131 114 (6.6) 2.41 2.30 2.81 (22.2) 1.70 1.67 1.85 (8.8) 

t+4 149 168 137 (8.1) 2.12 1.97 2.53 (28.4) 1.61 1.56 1.79 (11.2) 

 The number in the bracket is the improvement rate of the XAJ-MCQRNN model over the XAJ 430 

model. 431 

 432 

To further evaluate the forecast accuracy of MCQRNN models for making median 433 

forecasts of floods, the regression analysis of the observed and forecast streamflow data 434 

is presented in Fig. 4. It is too hard to judge the difference in model quality when the 435 

correlation between observations and forecasts is high. However, this is different for 436 

the case of low correlation, where the gap between the regression and 45-degree lines 437 

is large. A large gap denotes a significant biased-prediction. From the standpoint of 438 

correlation (Fig. 4), the XAJ-MCQRNN model can more adequately alleviate the 439 

biased-prediction phenomenon (under-prediction in our case) because of the larger 440 

values of the coefficient of determination R2 as well as the smaller gaps between the 441 

regression and 45-degree lines, compared to the MCQRNN model. As expected, there 442 

are higher correlations between observations and forecasts at horizons t+1 and t+2, 443 

whereas larger improvements of the correlation between observations and forecasts 444 

occur at horizons t+3 and t+4.  445 

The hybrid model still consistently underestimates most flood processes (Fig. 4). 446 
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The back-fitting algorithm with the autoregressive strategy (Zhang et al., 2018) was 447 

performed to correct the systematic bias of point forecasts of the hybrid model. After 448 

implementing bias-correction, Table 3 summarizes the Kolmogorov-Smirnov (KS) test 449 

results from the standpoint of density distribution. Due to the high variation of flood 450 

datasets (streamflow value≥1000 m3/s), the observations at each horizon are divided 451 

into three parts (Part I: 1000 m3/s ≤ value < 3000 m3/s; Part II: 3000 m3/s ≤ value < 452 

9000 m3/s; and Part III: value≥9000 m3/s) to effectively examine the predictability of 453 

the proposed model at various flood magnitudes. The larger KS test indicator values 454 

suggest smaller difference between observed and forecast distributions and better 455 

model performance. Interestingly, the XAJ-MCQRNN model creates a pretty good 456 

similarity between observed and forecast distributions of the three parts at all horizons 457 

whereas the MCQRNN model only performs well when flood magnitudes are small 458 

(Part I). From the table, we can see that the probability density distribution of the 459 

forecasts acquired from the XAJ-MCQRNN model is more similar in shape to that of 460 

observations at each horizon. In other words, the values of the forecasts obtained from 461 

the XAJ-MCQRNN model in three parts are closer to those of observations, in 462 

comparison to the forecasts obtained from the MCQRNN model. The results 463 

demonstrate that the XAJ-MCQRNN model can not only sufficiently forecast the 464 

probability density distribution of flood data but also accurately forecast different flood 465 

magnitudes at four horizons.  466 
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 467 
Fig. 4 Regression analysis between the observed streamflow data and the median 468 

forecasts of streamflow data in the testing stage at four horizons.  469 
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 470 

Table 3 Kolmogorov Smirnov (KS) test results of the two distributions of observations 471 

and forecasts in three parts for each given horizon at the testing stage 472 

Model Horizon 

KS test indicator* 

Part I:  

1000 m3/s≤value<3000 m3/s 

Part II:  

3000 m3/s ≤ value<9000 

m3/s 

Part III: 

value≥9000 m3/s 

MCQRNN 

t+1 0.03 0.06 0.08 

t+2 0.03 0.07 0.10 

t+3 0.04 0.10 0.13 

t+4 0.05 0.13 0.15 

XAJ-

MCQRNN 

t+1 0.01 0.03 0.06 

t+2 0.01 0.04 0.06 

t+3 0.02 0.06 0.08 

t+4 0.03 0.07 0.09 

*The KS test is performed at a significance level of 0.05. The null hypothesis states that the 473 

probability density distribution of forecasts is similar in shape to that of observations. If the value 474 

of the KS test indicator is smaller than the value of D(n, 0.05) (=0.05, 0.09 and 0.11 for the Part I, 475 

II and III, respectively), the null hypothesis would not be rejected. 476 

In brief, the point (i.e., median) forecasts of floods made by the XAJ-MCQRNN 477 

model offered solid evidence of good model performance and favorable stability in 478 

multi-step-ahead flood forecasting. The next subsection is concerned with the 479 

comparison of the MCQRNN and XAJ-MCQRNN models for making interval 480 

forecasts of floods.  481 

4.2 Reliability of MCQRNN models on interval forecasts of flood processes 482 

The interval forecasts of floods for the case of the quantiles (0.01≤𝜏𝑘≤0.99, with 483 

an increment of 0.01) were employed to test the reliability of the two models 484 

(MCQRNN and XAJ-MCQRNN). The back-fitting algorithm with the autoregressive 485 

strategy (Zhang et al., 2018) was also executed to correct the systematic bias of interval 486 

forecasts of the hybrid model. Table 4 provides the RB and CR values of the MCQRNN 487 

and XAJ-MCQRNN models in three stages at four horizons. The results indicate that 488 
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the XAJ-MCQRNN model acquires pretty good forecast accuracy at all the horizons 489 

whereas the MCQRNN model only performs well at shorter horizons of t+1 and t+2 490 

(CR is higher than 92%, but RB is lower than 12%). For 12-hour forecasts, the XAJ-491 

MCQRNN model can enhance the CR value by 1.5% up to 5.9% and decrease the RB 492 

values by 8.8% up to 25.7% in the testing stages, as compared with the MCQRNN 493 

model. This means the XAJ-MCQRNN model can not only significantly improve 494 

probabilistic forecast accuracy in terms of a narrow prediction interval (as represented 495 

by CR values) but also adequately eliminate the impacts of flood magnitudes on the 496 

bandwidth of the prediction intervals (as represented by RB values). The 12-hour 497 

forecast accuracy of the XAJ-MCQRNN model is superior to that of the MCQRNN 498 

model since the XAJ-MCQRNN model utilizes the streamflow forecasts made by the 499 

XAJ model to reduce the uncertainties of the rainfall forecasts from the ECMWF, 500 

whereas the MCQRNN model adopts the rainfall forecasts of the ECMWF to make 501 

multi-step-ahead flood forecasts in testing stages.  502 

 503 

Table 4 Results of Coverage Ratio (CR) and Relative Bandwidth (RB) values acquired 504 

from the MCQRNN and XAJ-MCQRNN models in training, validation and testing 505 

stages at four horizons 506 

Stage  Horizon 
RB (%) CR (%) 

MCQRNN XAJ-MCQRNN MCQRNN XAJ-MCQRNN 

Training 

t+1 4.91 4.49 (8.5) 95.17 96.98 (1.9) 

t+2 8.62 7.77 (9.9) 93.83 95.99 (2.3) 

t+3 12.56 11.20 (10.8) 90.60 94.04 (3.8) 

t+4 17.24 15.05 (12.7) 87.72 91.67 (4.5) 

Validation  

t+1 6.55 6.02 (8.1) 94.93 96.45 (1.6) 

t+2 10.10 9.15 (9.4) 93.26 95.31 (2.2) 

t+3 14.81 13.34 (9.9) 90.09 93.33 (3.6) 

t+4 19.37 16.62 (14.2) 86.36 90.07 (4.3) 

Testing 
t+1 8.16 7.44 (8.8) 94.32 95.73 (1.5) 

t+2 11.65 10.01 (14.1) 92.79 94.74 (2.1) 
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t+3 16.00 13.07 (18.3) 89.56 92.87 (3.7) 

t+4 23.33 17.33 (25.7) 84.43 89.41 (5.9) 

 The number in the bracket is the improvement rate of the XAJ-MCQRNN model over the 507 

MCQRNN model. 508 

 509 

Moreover, to clearly determine the predictabilities of the MCQRNN and XAJ-510 

MCQRNN models, the three flood events: (a) high flood magnitude with total 511 

precipitation of 134 mm and maximal streamflow of 14400 m3/s (maximum streamflow 512 

with a return period of 45a); (b) medium flood magnitude with total rainfall of 60 mm 513 

and maximal streamflow of 10100 m3/s (the return period of this peak is 20a); and (c) 514 

low flood magnitude with total rainfall of 26 mm and maximal streamflow of 5200 m3/s 515 

(the return period of this peak is 10a), were selected to examine both models by 516 

assessing whether the observed streamflow data fall within the 90% prediction interval, 517 

i.e. [5% quantile, 95% quantile], at horizon t+4 in testing stages, as illustrated in Fig. 5. 518 

Three interesting results are acquired. First, the 90% prediction intervals made by the 519 

XAJ-MCQRNN model can cover the majority of the observed streamflow data, in 520 

comparison to those of the MCQRNN model. Second, the XAJ-MCQRNN model can 521 

create a predictive distribution narrower than that of the MCQRNN model in each flood 522 

event. Third, the XAJ-MCQRNN model can largely mitigate the biased-prediction 523 

phenomenon (under-prediction in our case). The prediction interval aims to promote 524 

the sharpness of the predictive distributions as much as possible, where sharpness is 525 

used to represent the concentration of the predictive distributions. Concerning short-526 

term forecasts, the XAJ-MCQRNN model can raise the concentration of the predictive 527 

distributions while obtaining high coverage of the observed streamflow data in all cases.  528 
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 529 

Fig. 5 Interval forecast results of three flood events at horizon t+4 in the testing stages, 530 

given a 90% prediction interval of [5% quantile, 95% quantile]. The rainfall forecasts 531 

during horizons t+1 up to t+4 were collected from the ERA-Interim datasets of the 532 

ECMWF. Left panel for MCQRNN, and right for XAJ-MCQRNN.  533 
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The density distribution (i.e., violin plot) is also adopted to evaluate the reliability 534 

of interval forecasts. Fig. 6 illustrates the predictive violin-plots of the flood peaks of 535 

the above-specified flood events at horizon t+4 in testing stages. In each violin plot, the 536 

probability density distribution of the forecasts made by the MCQRNN (XAJ-537 

MCQRNN) model is located at the left (right) part, while the statistical boxplot of all 538 

forecasts is located at the central part. The violin plots point out that the difference 539 

between the forecasts acquired from MCQRNN and XAJ-MCQRNN models displays 540 

a trend climbing from the low, the medium to the high values of flood peaks at horizon 541 

t+4. The bandwidths of the prediction intervals are notably larger in the medium-high 542 

flood peaks than in the low flood peak due to the larger fluctuations of flood magnitudes 543 

in the former. Interestingly, the range of kernel density functions corresponding to the 544 

XAJ-MCQRNN model is significantly narrower than that of the MCQRNN model 545 

while the central locations (orange dashed lines) of kernel density functions related to 546 

the XAJ-MCQRNN model are closer to the observed flood peaks (purple points) in all 547 

cases. That means the XAJ-MCQRNN model produces higher sharpness and 548 

predictions with smaller bias than the MCQRNN model. Briefly, the XAJ-MCQRNN 549 

model not only can produce more accurate and reliable probability density forecasts but 550 

also can alleviate the biased-prediction phenomenon associated with the extreme flood 551 

events through integrating the data-driven and conceptual-based mechanisms for 552 

rainfall-runoff modelling.  553 
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 554 

Fig. 6 Violin plots for evaluating the uncertainty of MCQRNN and XAJ-MCQRNN 555 

model forecasts on flood peaks of high, medium and low flood magnitudes at horizon 556 

t+4 in the testing stages.  557 

 558 

5 Conclusions and discussion 559 

The demand for the hybridization of machine learning and conceptual models is 560 

motivated by real-world applications in the best interests of enhancing the accuracy and 561 

reliability of short-term FPD forecasting. This study proposed a hybrid rainfall-runoff 562 

model (i.e., XAJ-MCQRNN) that integrated the Xinanjiang (XAJ) conceptual model 563 
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and the MCQRNN to make short-term FPD forecasts. Its capability of efficient learning 564 

and accurate forecasting is tested and verified with the long-term (2009-2015) flood 565 

events at the Jianxi River catchment in China. The MCQRNN model is constructed and 566 

used for comparison purpose.  567 

The results of median point forecasts on flood processes reveal that the proposed 568 

XAJ-MCQRNN model performs distinguishably better than the MCQRNN model in 569 

short-term (12 hours) flood forecasting with higher NSE and lower RMSE values as 570 

well as a better goodness-of-fit to observed flood processes. The results of interval 571 

forecasts of flood processes further demonstrate that the XAJ-MCQRNN model is 572 

superior to the MCQRNN model at four horizons. The XAJ-MCQRNN model has 573 

smaller RB, larger CR values, and higher sharpness of the predictive distribution. These 574 

achievements provide solid evidence that the XAJ-MCQRNN model can make 575 

considerably more reliable and accurate point and interval forecasts of flood processes 576 

at long forecast horizons and can more effectively overcome the phenomena of 577 

overfitting and time-shift than the MCQRNN model. Moreover, the reason that the 578 

XAJ-MCQRNN model is successful in obtaining superb probability density forecast 579 

results is attributed to the pivotal strategy that the XAJ conceptual model supplements 580 

the point forecasts of flood processes through training the MCQRNN model to alleviate 581 

predictive uncertainty.  582 

Therefore, the XAJ-MCQRNN by virtue of data-driven and conceptual-based 583 

hydrological models can provide forecasting and early warning of flood processes, thus 584 

reducing flood risks associated with the extreme rainstorm phenomenon. This study is 585 
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a good demonstration of the hybrid approach which unites two different groups of 586 

scientists including data scientists and disciplinary scientists (e.g., hydrologists). To use 587 

the strength of various point forecasts meanwhile alleviating their weaknesses, model 588 

combinations in the form of hybridization (e.g., Zhang et al., 2018; Lin et al., 2020; 589 

Hosseiny et al. 2020; Konapala et al., 2020; Kao et al., 2021) have been applied to 590 

making short-term flood point forecasts for basins with humid subtropical climate. This 591 

is the first study to apply conceptual models with artificial neural networks for flood 592 

probability density (FDP) forecasting for such basins. Notwithstanding these promising 593 

achievements, further research can be conducted to investigate the far-reaching effects 594 

of short-term and even long-term flood probability forecasting and warning on flood 595 

prevention and water resources management in humid, semi-humid and arid areas by 596 

combining more hybrid modelling techniques with medium-long term weather forecast 597 

products.  598 
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Abstract 

Making accurate and reliable probability density forecasts of flood processes is 

fundamentally challenging for machine learning techniques, especially when prediction 

targets are outside the range of training data. Conceptual hydrological models can 

reduce rainfall-runoff modelling errors with efficient quasi-physical mechanisms. The 

Monotone Composite Quantile Regression Neural Network (MCQRNN) is used for the 

first time to make probability density forecasts of flood processes and serves as a 

benchmark model, whereas it confronts the drawbacks of overfitting and biased-

prediction. Here we propose an integrated model (i.e. XAJ-MCQRNN) that 

incorporates Xinanjiang conceptual model (XAJ) and MCQRNN to overcome the 

phenomena of error propagation and accumulation encountered in multi-step-ahead 

flood probability density forecasts. We consider flood forecasts as a function of rainfall 

factors and runoff data. The models are evaluated by long-term (2009-2015) 3-hour 

streamflow series of the Jianxi River catchment in China and rainfall products of the 

European Centre for Medium-Range Weather Forecasts. Results demonstrated that the 

proposed XAJ-MCQRNN model can not only outperform the MCQRNN model but 

also prominently enhance the accuracy and reliability of multi-step-ahead probability 

density forecasts of flood process. Regarding short-term forecasts in testing stages at 

four horizons, the XAJ-MCQRNN model achieved higher Nash-Sutcliffe Efficiency 

but lower Root Mean Square Error values, while improving Coverage Ratio and 

Relative Bandwidth values in comparison to the MCQRNN model. Consequently, the 

improvement can benefit the mitigation of the impacts associated with uncertainties of 

extreme flood and rainfall events as well as promote the accuracy and reliability of 

flood forecasting and early warning. 
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• Machine learning assists hybrid model to promote flood forecasting and early warning 

• Hybridizing MCQRNN with XAJ model for flood probability density forecasting 

• XAJ-MCQRNN conquers overfitting and biased-prediction bottlenecks 

• XAJ-MCQRNN improves accuracy and reliability of flood probability density forecasts 
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