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ABSTRACT

Parameter regionalization of hydrological models is one of the most commonly used methods for hydrological prediction over ungauged

catchments. Although there were many regional studies, there is no clear conclusion on the best-performed regionalization method for

global hydrological modelling. The objective of this study is to determine an appropriate global-scale regionalization scheme (GSRS) for

global hydrological modelling. To this end, the performance of five regionalization methods with two different average options, two weighting

approaches, and seven efficiency thresholds (i.e. Kling-Gupta efficiency (KGE) values to measure hydrological model performances) was com-

pared over thousands of catchments based on four conceptual hydrological models. Results of nine global models from the Global Earth

Observation for Integrated Water Resource Assessment (EartH2Observe) project were selected to validate the accuracy of GSRS in estimating

global runoff. The results show that: (1) Spatial proximity method with the Inverse Distance Weighting method and the output average option

offers the best regionalization result when using the KGE� 0.5 as an efficiency threshold for all four hydrological models, (2) the regionaliza-

tion-based global hydrological simulation schemes (RGHSs), i.e. the proposed GSRS combining with four hydrological models, consistently

performs better than the nine global models from EartH2Observe project in the estimation of runoff for most catchments, with varying

degrees of improvement in the median, upper and lower quartiles, and whiskers of each performance metric, and (3) the global long-

term annual water resources estimated by RGHSs range between 42,592 and 46,810 km3/yr.

Key words: global hydrological modelling, global water resources estimates, regionalization

HIGHLIGHTS

• The performance of regionalization methods is evaluated with multiple hydrological models globally.

• A global-scale regionalization scheme (GSRS) is proposed for global hydrological modelling.

• The robust regionalization-based global hydrological simulation schemes (RGHSs), i.e. the proposed GSRS combining with four hydrological

models, can produce reliable simulations of global water resources.
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GRAPHICAL ABSTRACT
1. INTRODUCTION

Water resource is one of the most important natural resources that significantly influences the social and economic develop-
ment of a region or globe (Parajka et al. 2007; Petelet-Giraud et al. 2018; Grill et al. 2019; Behboudian et al. 2021; Naghdi
et al. 2021). With the development of society and economy, the conflict of water resources supply and demand has been inten-
sified (Müller Schmied et al. 2016; Vargas Godoy et al. 2021). In addition, the changing climate and increasing water demand

due to the growing population lead to a series of environmental and social problems, e.g. frequent floods and droughts, food
crisis, and soil salinization (Zhang et al. 2020; Li et al. 2021; Ridolfi et al. 2021; Roushangar et al. 2021; Zhou et al. 2022).
Efficient water resource allocation could help to address water shortage problems around the world, which should be based

on a full understanding of the spatial and temporal variation of global water resources (Shrestha et al. 2017; Zhang et al.
2020). However, due to the lack of observational data around the world, especially in poorly instrumented regions (e.g.
the Middle East and West Africa), it is difficult to directly obtain global water information. In addition, problems caused

by water conflicts in multinational catchments and virtual water trade both reflect the requirements of continental and
global-scale hydrological simulations (Döll et al. 2003; Oki & Kanae 2006; Widén-Nilsson et al. 2007, 2009).

Global water resources are commonly approximated by using runoff coefficient (Liang & Greene 2020), gauge-based obser-

vations (Harris et al. 2014; Ghiggi et al. 2019), precipitation minus evaporation (Syed et al. 2010; Chandanpurkar et al. 2017)
and water balance modelling, among which water balance modelling is one of the most popular solutions for global water
resource estimations (Döll et al. 2003; Oki & Kanae 2006; Widén-Nilsson et al. 2007, 2009; Beck et al. 2016, 2020).
Models developed to simulate continental or global water resources can be roughly classified into dynamic global vegetation

models (DGVMs), land surface models (LSMs), and global hydrological models (GHMs). Most DGVMs do not include lat-
eral water flows or surface water bodies and can therefore only be used to assess runoff generation but not streamflow
discharge (Döll et al. 2015). The LSM is commonly used as a component of climate models in simulating the energy and

water balance at soil, atmosphere, and vegetation interfaces (Haddeland et al. 2011; Bierkens 2015). However, global climate
models are considerably biased in global runoff simulations (Sellers et al. 1986; Xu et al. 2005; Sood & Smakhtin 2015).
Hence, GHMs focusing on the simulation of water resources have been developed to simulate (sub-) surface water fluxes
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and storages. Some of the widely used GHMs include Variable Infiltration Capacity model (VIC, Liang et al. 1994), Water

Balance Model–Water Transport Model (WBM-WTM, Vörösmarty et al. 1989), PCRaster GLOBal Water Balance model
(PCR-GLOBWB, Van Beek & Bierkens 2008; Van Beek et al. 2012), and Water And Snow balance MODeling system
(WASMOD-M, Widén-Nilsson et al. 2007, 2009).

Although great progresses have been made in global hydrological modelling during the past decades, several studies high-
lighted the considerable discrepancies among these simulation results, which is partly due to the difficulty of parameter
estimation for hydrological models (Widén-Nilsson et al. 2007; Schellekens et al. 2016). The lack of observational data in
many regions of the world (especially in poorly instrumented regions) and the low quality or ‘disinformative’ data make it

difficult to directly calibrate global hydrological model parameters (Kauffeldt et al. 2013; Schellekens et al. 2016). Therefore,
the majority of macroscale models (e.g. GHMs) were inclined to get attached to prior parameterizations, which may result in
insufficient streamflow simulations (Beck et al. 2016). For example, the parameter values of the WBM-WTMwere tuned by an

adjustment factor, rather than optimization (Vörösmarty et al. 1989). Thus, the parameter values of WGHM were globally
uniform or related to land cover and its associate properties, except the runoff coefficient which was tuned against the
time series of measured annual discharges (Döll et al. 2003). The parameter values of Macro-PDM were set based on litera-

ture review or previous model applications, and 6 out of 13 parameters were globally uniform (Arnell 1999, 2003).
Considering the restriction of the observational data, parameter regionalization, the most common method to solve the Pre-

dictions in Ungauged Basins (PUB) problem, has been used in global hydrological modelling. For example, the WASMOD-M

transferred the calibrated parameter sets from catchment scale to grid cells by searching for the most commonly occurring
parameter set within a rectangular window and found that regionalized parameters produced better streamflow estimates
than spatially uniform parameters (Widén-Nilsson et al. 2007). Beck et al. (2016) transferred the calibrated parameter sets
of the HBV model from the selected donor catchments to 0.5° grid cell with the most similar climatic and physiographic

characteristics and found that HBV with regionalized parameters outperformed nine state-of-the-art macroscale models.
Liang & Greene (2020) employed the regression method to transfer the runoff coefficient and estimated global runoffs.
The above studies concluded that regionalization methods have a great potential to be used for global hydrological modelling.

Various regionalization methods were proposed and numerous studies have compared these methods over different regions
during the past decades (Abdulla & Lettenmaier 1997; Hundecha & Bárdossy 2004; Oudin et al. 2008; Pokhrel et al. 2008;
Jin et al. 2009; Samaniego et al. 2010; He et al. 2011; Razavi & Coulibaly 2013; Li & Zhang 2017; Yang et al. 2019; Yang
et al. 2020). However, there is still no clear conclusion on the best-performed regionalization method for use in ungauged
catchments. In particular, there is a lack of detailed information regarding the performance of regionalization methods on
the global scale and the guidance for the use of regionalization methods for global hydrological modelling. Therefore, the
objectives of this study are to (1) evaluate the performance of the most widely used regionalization methods over thousands

of catchments in the world to determine an appropriate global-scale regionalization scheme (GSRS) for global hydrological
modelling and (2) propose a robust regionalization-based global hydrological simulation scheme (RGHS) to estimate global
runoff.
2. DATA AND METHODS

2.1. Observed streamflow data

The observed daily streamflow data used in this study were obtained from three sources, i.e. the Global Runoff Data Centre
(GRDC; http://www.bafg.de/GRDC/, Lehner 2012), the Canadian model parameter experiment (CANOPEX) database
(Arsenault et al. 2016, 2020), and some catchments of China (Gu et al. 2018). The GRDC dataset comprises river discharge
data for more than 9,500 stations from 161 countries. Basin boundaries and flow paths were taken from HYDRO1 K (Gong

et al. 2009). Continent boundaries were taken from STN-30p (Vörösmarty et al. 2000).
There are some uncertainties that may impact the results of global hydrological modelling. For example, small catchments

might result in less reliable simulations since the model resolution is low (i.e. 0.5°). Therefore, the following three criteria were

used to choose catchments for our analysis:

(1) The streamflow record length was not shorter than 5 years (not necessarily consecutive) during the 1982–2015 period.

(2) The catchment size is over 2,500 km2 to ensure that each catchment covers at least one 0.5° grid cells.
(3) The upper limit of catchment size was set as 50,000 km2 to minimize the effects of river regulation and channel routing

effects (Gericke & Smithers 2014; Beck et al. 2016, 2020).
://iwaponline.com/hr/article-pdf/doi/10.2166/nh.2022.118/1005660/nh2022118.pdf
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Based on the above criteria, 2,277 catchments were selected in total for the comparison of regionalization methods and

GSRS. Figure 1 shows the distribution of these catchments and climate classification extracted from the World Map of
Köppen-Geiger climate classification (Kottek et al. 2006). The majority of those catchments are located in North America,
Europe, Southeast Asia, and central South America. However, catchments located in the Middle East, North Africa, the cen-

tral Australian, and the Russian Far East and Siberia regions are much fewer.

2.2. Meteorological data

The meteorological data used in this study are daily precipitation, air temperature, and potential evaporation. The potential
evaporation data at the global scale were obtained from the Global Land Evaporation Amsterdam Model (GLEAM V3)
potential evaporation dataset (1980–2015) at the 0.5° resolution, which is calculated by using the Priestley and Taylor

equation based on observations of surface net radiation and near-surface air temperature (Miralles et al. 2010; Martens
et al. 2017). The daily temperature data were obtained from the European Centre for Medium range Weather Forecasts
(ECMWF)–Interim Reanalysis (ERA-Interim) at the 0.5° resolution for the 1979–2019 period (Dee et al. 2011). The precipi-

tation data were obtained from the Global Precipitation Climatology Centre (GPCC) V.2018 precipitation dataset at the 0.5°
resolution for the 1982–2016 period (Fuchs et al. 2009), which was interpolated using gauged precipitation data provided by
national meteorological and hydrological services, regional and global data collections, as well as the World Meteorological
Organization (WMO) GTS-data (GPCC, http://gpcc.dwd.de).

In addition, comprehensive reviews of regionalization methods were made by He et al. (2011) and Razavi & Coulibaly
(2013), in which the number of times that catchment descriptors used in other studies were counted after reviewing the regio-
nalization methods. Based on this information, 13 catchment descriptors, classified as climate index, terrain characteristics,

land use, and soil characteristics, were selected for regionalization (Table 1). Those datasets with spatial resolutions ,0.5°
were resampled to 0.5° using bilinear averaging.

2.3. Hydrological models

Four conceptual hydrological models, i.e. Génie Rural à 4 paramètres Journalier model (GR4 J), simple lumped conceptual
daily rainfall-runoff model (SIMHYD), Xinanjiang model (XAJ), and Hydrological Model of École de technologie supérieure

(HMETS), were used to simulate runoff at the daily time step. They were chosen because of their proven effectiveness around
the world and successful application in regionalization studies (Perrin et al. 2003; Oudin et al. 2008; Zhang & Chiew 2009; Li
Figure 1 | Location of the catchments used in this study (each point represents the outlet of the catchment).
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Table 1 | The statistical information of catchment descriptors used in regionalization methods

Indices Mean Median Minimum Maximum

Climate index

Aridity index 0.85 0.8 0.04 3.33

Mean annual potential evaporation (mm) 1,169 1,089 301 3,060

Terrain characteristics

Mean slope (°) 2.49 1.78 0.01 20.95

Mean elevation (m) 645 545 1.94 4,719

Area (km2) 12,016 7,486 2,500 50,000

Land use

Forest (%) 41.67 41.01 0 98.79

Water body (%) 2.6 0.07 0 69.73

Built-up land (%) 1.49 0.31 0 62.35

Total cultivated land (%) 16.98 6.41 0 96.2

Soil index

Topsoil Clay Fraction (% wt.) 16.83 15.97 0 73.26

Subsoil Clay Fraction (% wt.) 18.38 17.35 0 78.22

Soil thickness (m) 11.82 3.74 0 50

Water holding capacity (mm/m) 42.36 43.83 0 100

Data from Harmonized World Soil Database (version 1.1); GlobCover Land Cover Maps, http://due.esrin.esa.int/page_globcover.php; and Global Aridity and PET Database, http://www.

cgiar-csi.org.
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et al. 2014; Zhang et al. 2014, 2016; Li & Zhang 2017; Chen et al. 2018; Shen et al. 2018; Yang et al. 2020; Qi et al. 2021b). In
addition, the four hydrological models used in this study have different numbers of parameters and vary in the generalization
of the natural hydrological processes and physical mechanisms (Zhao 1980, 1992; Chiew et al. 2002; Perrin et al. 2003;
Chiew 2010; Boumenni et al. 2017; Martel et al. 2017; Shen et al. 2018). For example, the model structure for representing

the hydrological process is more complicated and detailed in SIMHYD, XAJ, and HMETS than the most parsimonious
GR4 J. For the simulation of evaporation, SIMHYD and HMETS use a one-layer evaporation model, while a three-layer
model is used in XAJ. As for the streamflow generation, XAJ and HMETS use the saturation excess runoff generation mech-

anism based on the soil moisture content of the aeration zone reaching its field capacity, while SIMHYD considers both
infiltration-excess and saturation-excess runoffs by using an interception store and a soil moisture store. In addition, GR4 J
and HMETS take into account the groundwater exchange based on surface water–groundwater interaction functions,

while this is not the case for SIMHYD and XAJ. Since there is no snow module in GR4 J, SIMHYD, and XAJ, the snow
module-CemaNeige (Valéry 2010) was incorporated into the original models in this study. CemaNeige allows estimating
the snowmelt and simulating the snowpack evolution by using two parameters, and the coupling of these models and Cema-

Neige has been tested in some other studies (e.g. Valéry 2010; Coron et al. 2014; Hublart et al. 2015; Guo et al. 2020; Wang
et al. 2020; Yang et al. 2020). Table 2 shows the main structures of the four hydrological models. More detailed information
about model parameters can be found in Supplementary Appendix Table A1.
2.4. Hydrological model calibration and evaluation methods

For each catchment, the record of observed streamflow data was split into a calibration period (consisting of the first 70% of

the record) and a validation period (consisting of the remaining 30% of the record). The shuffled complex evolution method
optimization algorithm (SCE-UA, Duan et al. 1992, 1993) was used to optimize the hydrological model parameters using
KGE (Gupta et al. 2009) as the objective function. KGE has been introduced as an improvement of the widely used

Nash–Sutcliffe efficiency (NSE), which considers different types of model errors, namely the error in the mean, the variability,
and the dynamics (Vis et al. 2015). In addition, the accuracy of volume estimate (AVE), which is defined here as one minus
volume error, and the commonly used NSE were also used to evaluate the performance of hydrological simulations. Different
://iwaponline.com/hr/article-pdf/doi/10.2166/nh.2022.118/1005660/nh2022118.pdf
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Table 2 | Overview of the four hydrological models

Model Parameters Snow module Characteristics of the model

GR4 J 6 CemaNeige The effective rainfall is divided into direct runoff and delayed runoff according to the ratio of 90:10
A nonlinear production reservoir with two-unit hydrographs
A routing reservoir

SIMHYD 11 CemaNeige Precipitation loss calculation
Two linear reservoirs for the calculation of interflow and base flow
A nonlinear routing reservoir

XAJ 17 CemaNeige Three-layer evapotranspiration system
Linear reservoirs for surface flow routing
Two recession coefficients for interflow and groundwater flow routing

HMETS 21 HMETS A snowmelt module and an evapotranspiration module
Generation of surface and delayed runoff after evapotranspiration and infiltration
Generation of hypodermic flow and groundwater flow with two reservoirs
A routing module
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metrics emphasize different aspects of hydrological streamflow properties. For example, the KGE puts more emphasis on the
simulation of flow variability (Santos et al. 2018; Knoben et al. 2019; Qi et al. 2021b). The NSE gives more weights to high
flows (Mizukami et al. 2019; Wan et al. 2021), while the AVE emphasizes more on the total water balance (Vis et al. 2015).

KGE ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(R� 1)2 þ Qsim

Qobs

� 1

 !2

þ CVsim

CVobs
� 1

� �2

vuut (1)

NSE ¼ 1�
P

(Qsim �Qobs)
2P

(Qobs �Qobs)
2 (2)

AVE ¼ 1�VE ¼ 1�
P

(Qobs �Qsim)j jP
(Qobs)

(3)

where Qobs represents the observed runoff and Qsim represents the simulated runoff. Qobs is the mean of observed runoff and
Qsim is the mean of simulated runoff. R is the Pearson correlation coefficient between observed and simulated runoffs. CVsim

and CVobs represent variation coefficients of observed and simulated streamflows, respectively. KGE, NSE, and AVE values
range from �∞ to 1 and the closer the value to one, the better the simulation.

2.5. Regionalization methods

The regionalization methods used in this study are the most commonly used step-wise regionalization methods, i.e. the global
mean method, the regression-based methods, and the distance/attribute-based methods (Jin et al. 2009; He et al. 2011; Razavi
& Coulibaly 2013; Yang et al. 2018, 2019, 2020). Moreover, the great performance of these methods has been observed for the
ungauged runoff prediction in many studies (Merz & Blöschl 2004; Oudin et al. 2008; Yang et al. 2018, 2019).

The global mean method is a simple regionalization method. Generally, the arithmetic mean of the parameters of all

gauged catchments in the region is directly applied to the ungauged catchments.
The regression-based methods assume that a well-behaved relationship exists in the observable catchment characteristics

and model parameters (Burn & Boorman 1993). Parameters for an ungauged catchment are derived by using the relationship
between catchment descriptors and model parameters for the donor catchments (Xu 1999b, 2003; Muller-Wohlfeil et al.
2003; Arsenault & Brissette 2014; Yang et al. 2018, 2019). The multiple linear regression method was used in this study,
in which the relationships among model parameters and the selected 13 catchment descriptors were established using mul-
tiple linear regressions and these functions were then used to estimate model parameters for ungauged catchments.

The distance/attribute-based methods assume that the parameter sets of hydrological models on gauged catchments can be
transferred to nearby or physically similar ungauged catchments following various procedures. The key of these methods is to
find the closest or the most similar donor (gauged) catchments to the ungauged catchments. The distance/attribute-based
om http://iwaponline.com/hr/article-pdf/doi/10.2166/nh.2022.118/1005660/nh2022118.pdf
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methods usually include spatial proximity, physical similarity, and physical similarity considering distance (Yang et al. 2018,
2020). The spatial proximity method assumes that nearby catchments should have similar behaviour for climate and catch-
ment conditions (features) varying uniformly in space (Tobler 1970; Pool et al. 2017). The Haversine formula was used to
calculate the distanceDud between the donor and ungauged catchments’ outlets, the same as Qi et al. (2021a). The Haversine

formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes (Abebe et al.
2020). The Dud is calculated by Equation (4):

Dud ¼ 2� r � sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 fu � fd

2

� �
þ cos (fu)� cos (fd)� sin2 lu � ld

2

� �s !
(4)

where r is the average radius of the Earth (i.e. 6,378.137 km); t and d represent the target and donor catchments, respectively;
fu, fd and lu, ld are catchment outlet latitude and longitude values of the target and donor catchments (in radians).
The physical similarity method is based on the assumption that catchments with similar attributes show similar hydrologi-

cal behaviours. The core of the physical similarity method is the selection of the physical similarity metric (Yang et al. 2020).
Many studies have focused on the selection of proper similarity index between the donor and ungauged catchments and the
proper catchment attributes for similarity index calculation (Burn & Boorman 1993; Yang et al. 2018). The similarity index in

this study is calculated by Equation (5) (Burn & Boorman 1993):

SIud ¼
Xk
i¼1

jCDd,i � CDu,ij
DCDi

(5)

where CD is the catchment descriptor; u and d represent the ungauged and donor catchments, respectively; k is the total
number of catchment descriptors; and DCDi represents the range of ith catchment descriptor.

Considering the limitation of the two distance/attribute-based methods mentioned earlier, some studies (e.g. Samuel et al.
2011; Viviroli & Seibert 2015; Yang et al. 2018) integrated spatial proximity with physical similarity to improve the regiona-
lization ability. In the present study, the physical similarity method considering distance in which the distance was considered
as one of the catchment descriptors was used and then the similarity index was calculated.

For distance/attribute-based methods, there are two different averaging options to transfer the model parameter sets from
donor catchments: (1) parameter average option, which transfers the averaged model parameters from donor catchments to
ungauged catchments; and (2) output average option, which averages runoff simulations calculated by using individual par-

ameter sets from donor catchments to ungauged catchments (Oudin et al. 2008; Yang et al. 2018). In addition, there are two
different weighting approaches used to combine the model parameters or model outputs: (1) Arithmetic Mean (AM) method
and (2) Inverse Distance Weighted (IDW) method (Parajka et al. 2007; Yang et al. 2018). All regionalization methods used in

this study are summarized in Table 3.
To find suitable donor catchments and the optimal regionalization scheme (i.e. combination of different optional regionaliza-

tion methods), the performance of regionalizationmethods under different thresholds of model efficiency in terms of KGEwas
tested. Threshold values ofmodel efficiency (all,�0,�0.5,�0.6,�0.7,�0.8, or�0.9) were determined for the calibration period.

In other words, when the efficiencies of the catchments were belowa threshold, these catchments were not used as donor catch-
ments to simulate runoffs for ungauged catchments. The threshold named ‘all’ means that all catchments are used as donor
catchments regardless theirs performance in the calibration stage. What is more, all catchments, whether poorly or well mod-

elled, were all considered as pseudo-ungauged under different efficiency thresholds for cross-validation.
2.6. Global water resources estimation

The commonly used leave-one-out cross-validation strategy was used to evaluate the performance of the regionalization
methods. Specifically, the performance of five parameter regionalization methods with two different average options, two
weighting approaches (14 regionalization schemes, Table 3), and seven efficiency thresholds was compared over thousands

of catchments based on four conceptual hydrological models. The best-performed regionalization method (with the highest
KGE value) was then selected as the GSRS to regionalize parameters of four hydrological models to the spatial resolution of
0.5°�0.5° grid cell all over the world except for Antarctica. This procedure is based on an assumption that the parameters at
://iwaponline.com/hr/article-pdf/doi/10.2166/nh.2022.118/1005660/nh2022118.pdf



Table 3 | Summary of regionalization methods used in this study

Regionalization methods Averaging options Weighting approaches method Abbreviation

Global mean (GM) GM

Regression (RE) RE

Spatial Proximity (SP) Parameter Averaging Arithmetic Mean SPA-PAR
Inverse Distance Weighted SPI-PAR

Output Averaging Arithmetic Mean SPA-OUT
Inverse Distance Weighted SPI-OUT

Physical Similarity (PS) Parameter Averaging Arithmetic Mean PSA-PAR
Inverse Distance Weighted PSI-PAR

Output Averaging Arithmetic Mean PSA-OUT
Inverse Distance Weighted PSI-OUT

Physical Similarity considering distance (PSD) Parameter Averaging Arithmetic Mean PSDA-PAR
Inverse Distance Weighted PSDI-PAR

Output Averaging Arithmetic Mean PSDA-OUT
Inverse Distance Weighted PSDI-OUT
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the catchment scale can be transferred to the grid scale. In other words, the 0.5°�0.5° grid cell was treated as a catchment
(Widén-Nilsson et al. 2007; Beck et al. 2016).

In the RGHS, the gridded version of hydrological models driven by precipitation, air temperature, potential evaporation, and

the global gridded parameterswas used to estimate globalwater resources. For calculating catchment streamflow, runoff routing
algorithms are required to converge the grid runoff to catchment streamflow (Vörösmarty et al. 1989;Döll et al. 2003). There are
several large-scale runoff routing algorithms have been developed (Graham et al. 1999; Vörösmarty et al. 2000; Döll & Lehner
2002; Gong et al. 2009, 2011). The improved Network-response Routing Function (NRF) method was selected in this study,

since this method transfers high-resolution delay dynamics, instead of networks, to any lower spatial resolution where runoff
is generated (Gong et al. 2009; Li et al. 2020). The formula of this method is given by Equation (6):

vi ¼ v45�(tan ci)
b (6)

where vi is thewave velocity of the grid and ci is the slope of the grid. v45 is thewave velocity in the gridwith the slope of 45° and b
is a parameter that reflects how sensitive is the wave velocity to the slope.

The values of these parameters for calibration are [4,5,6,7,8,9,10] for v45 and [0.2,0.3,0.4,0.5,0.6] for b, respectively. They
were chosen based on computer capability limitations and the physical meaning of each parameter. Therefore, there are

35 routing parameter sets, composed of five b values and seven v45 values. In this study, the enumeration method was
used to calibrate these two routing parameters. The catchment streamflow was generated by converging grid runoff from
all grids in the catchment based on each routing parameter set. Since two routing parameters are calibrated rather than regio-

nalized, it is hard to obtain streamflow time series for real ungauged catchments. To overcome this problem, the commonly
used aggregation was used to obtain the simulation performance of ungauged catchments without calibration of routing par-
ameters (Widén-Nilsson et al. 2007; Beck et al. 2020).

2.7. Performance evaluation for RGHSs

The performance of the RGHSs was evaluated in four ways (Figure 2).

(1) The effectiveness of RGHSs was first evaluated by comparing the evaluation metrics of the 2,277 catchments obtained by

RGHSs (RGHS-NRF and RGHS-aggregation) with the results obtained by calibration and regionalization at the catch-
ment scale.

(2) The second evaluation was done by comparing the evaluation metrics of the 2,277 catchments obtained by RGHSs with

the results obtained from nine state-of-the-art macroscale models, coming from the EartH2Observe project (Schellekens
et al. 2016), which were driven by WATCH Forcing Data ERA-Interim (WFDEI) for the period 1979–2012 at the 0.5°
resolution. The catchments’ streamflow time series of these nine models were calculated by using the NRF method in
om http://iwaponline.com/hr/article-pdf/doi/10.2166/nh.2022.118/1005660/nh2022118.pdf
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Figure 2 | The schematic diagram of the main steps in this study.
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this study. For the comparison of RGHSs versus nine models from the EartH2Observe project, RGHSs were driven by
WFDEI (RGHS-WFDEI).

(3) In addition, 420 independent catchments with surface area ranging between 50,000 and 100,000 km2 and with stream-
flow records being longer than 5 years were used as validation catchments. The KGE, NSE, and AVE values of the
validation catchments obtained by RGHSs and the results obtained by nine models were further compared to assess
the value of RGHSs.

(4) The last way to evaluate the effectiveness of RGHSs was by comparing the long-term averaged annual total runoff (1983–
2015, 1982 is considered as the warm-up period) from global land and each continent obtained by RGHSs with the results
in literatures.
3. RESULTS

3.1. Hydrological model performance at the catchment scale

Figure 3 shows the cumulative density function curves of the percentage of catchments with KGE, NSE, and AVE values
exceeding the given value (the value of y-axis) for four hydrological models over the calibration and validation periods. Gen-
erally, the performances of the four hydrological models are close to each other. For all hydrological models, the KGE value is
higher than 0.7 for more than 60% catchments at the calibration period and 0.5 for the validation period. Specifically,

SIMHYD shows the best performance, followed by XAJ, GR4 J, and HMETS. It is the same when using NSE and AVE as
evaluation metrics. Figure 4 presents the spatial distribution of the model efficiency for the calibration period in terms of
KGE values. The results show that the KGE values are above 0.8 for most catchments in eastern Canada, the USA, southern

China, and along the Atlantic Coast of Europe. The catchments in the American tropics, the Andes (South America), and
northwest China show low KGE values, which might be because of the complex topography and insufficiency of precipitation
observations for the calibration of hydrological models (Demirel et al. 2015; Vetter et al. 2015; Beck et al. 2016). Among the
://iwaponline.com/hr/article-pdf/doi/10.2166/nh.2022.118/1005660/nh2022118.pdf



Figure 3 | The performance of hydrological models by split-sample test evaluated by the KGE, NSE, and AVE values. The solid and dash lines
show the performance for the calibration and validation periods, respectively.

Figure 4 | Spatial distribution of model efficiency (i.e. KGE).
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five different climate regions, the highest median KGE values are obtained for the cold regions, and the lowest for the arid

regions (Figure 5). The good performance in the cold regions may be because the hydrological processes are not that sensitive
to precipitation variability. The large different performance among four hydrological models in the equatorial and arid
regions is likely due to their different skills in simulating the highly nonlinear process from precipitation to runoff.

The median KGE values of these hydrological models are 0.748 for GR4 J, 0.774 for SIMHYD, 0.766 for XAJ, and 0.750 for

HMETS in the calibration period and 0.632 for GR4 J, 0.644 for SIMHYD, 0.641 for XAJ, and 0.617 for HMETS in the vali-
dation period. The performance of hydrological models used in this study is comparable to or higher than those from previous
studies. For example, Beck et al. (2020) calibrated the HBV model for 4,229 catchments globally and obtained median daily

KGE values of 0.770 and 0.690 for the calibration and validation periods, respectively. Alfieri et al. (2020) calibrated the LIS-
FLOOD model for 1,126 catchments and obtained median daily KGE values of 0.670 and 0.610 for the calibration and
validation periods, respectively.
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Figure 5 | Median values of KGE over all catchments for four hydrological models under different climate regions. A, B, C, D, and E represent
equatorial, arid, warm temperate, snow, and polar regions, respectively.

Hydrology Research Vol 00 No 0, 11

Uncorrected Proof

Downloaded from http
by guest
on 26 February 2022
3.2. Comparison of regionalization methods

3.2.1. The performance of different regionalization schemes

For illustrative purpose, the model performance (GR4 J) of distance/attribute-based methods using different numbers of

donor catchments with different weighting and averaging options under each KGE threshold is shown in Figure 6 (similar
results can be found for the other three models, which are shown in Supplementary Appendix Figure A1). Results show
that the IDW approach performs better than the AM approach for all distance/attribute-based regionalization methods
and all hydrological models. This is consistent with the results from other studies (e.g. Samuel et al. 2011; Arsenault & Bris-

sette 2014; Li et al. 2014). The worse performance of the AM approach is probably caused by the large difference of distance
or similarity among our studied catchments. However, the weighting scheme of IDW minimizes the negative impact caused
by the farthest distance or the least similar donors. Furthermore, the optimal number of donor catchments for the parameter
Figure 6 | The median KGE value for distance/attribute-based regionalization methods with an increasing number of donor catchments.
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averaging option always ranges between 1 and 5. For the output averaging option, it is between 4 and 6 (see Figure 6). In

general, the output averaging option outperforms the parameter averaging option globally in this study, which is also consist-
ent with previous regional studies (e.g. Samuel et al. 2011; Arsenault & Brissette 2014; Li et al. 2014; Yang et al. 2018, 2020)
at the regional scale. Therefore, to balance the effect and the amount of computation, five donor catchments are suggested to

use for the output averaging method.
Poorly modelled catchments may yield higher uncertain model parameter values, but they may add some diversities for

modelling ungauged catchments as well (Oudin et al. 2008). Therefore, it is worth evaluating the necessity to consider
poorly modelled catchments in regionalization. In this study, we compared the performance of regionalization methods

under different KGE thresholds for all regionalization methods (including regression method, not shown) and found that
the KGE threshold of 0.5 is the best (see Figure 6). Including catchments with KGE values below 0.5 as donors has little
effect on the performance of hydrological models for ungauged catchments. However, when using the efficiency threshold

of 0.9, the hydrological model performance remarkably drops for ungauged catchments. This indicated that there is a loss
of information between those thresholds, which is attributable to the loss of donor catchments. When using the threshold
of 0.9, only 170 (for GR4 J), 211 (for SIMHYD), 236 (for XAJ), and 193 (for HMETS) donor catchments out of 2,277

were available and most of them are located in the USA, southern China, and along the Atlantic Coast of Europe. This
result is consistent with those in Neri et al. (2020), as they concluded that the performance of regionalization methods
strongly depends on the informative content of the dataset of available donor catchments. Therefore, the threshold of 0.5

is taken as the best performance threshold, and the total number of donor catchments for the global regionalization
scheme ranges from 1902 (for GR4 J) to 1985 (for SIMHYD) for different hydrological models.

3.2.2. Comparison of regionalization methods

The performance differences among regionalization methods are observed in Figure 7. Generally, the SPI-OUT method out-
performs the others, followed by PSDI-OUT and PSI-OUT, and the GM method performs the worst. Overall, the

performances of different regionalization methods are consistent in each hydrological model. This indicates that the ranking
of regionalization methods is independent of model structures. As for hydrological models, the two parsimonious hydrologi-
cal models (i.e. GR4 J and SIMHYD) slightly outperform the other two more complex models (i.e. XAJ and HMETS) in most

situations. Figure 8 summarizes the median KGE values of all regionalization methods for five climate regions. The results
show that SPI-OUT outperforms other regionalization methods for all climate regions, followed by PSDI-OUT. GM and
RE perform worse than other regionalization methods for all climate regions. In general, the performance of SPI-OUT is rela-

tively stable (except for arid regions) for different climate regions. However, all regionalization methods perform much worse
for arid regions than for the other four climate regions.

Based on the comparison of regionalization methods, it can be concluded that the SPI-OUT outperforms others. However,
according to the principle of this method (i.e. the nearby catchments should have similar behaviours), the performance of the

SPI-OUT method may deteriorate with the increase of the mean distance between the donor and ungauged catchments.
Therefore, it is important to explore how the mean distance impacts the performance of regionalization methods. Figure 9
shows the percentage of the best-performed regionalization method under different mean distances (between the donor

and ungauged catchments) under the threshold of 0.5 (the SPI-OUT, PSI-OUT, and PSDI-OUT were selected for their out-
standing performance). For all hydrological models, when the mean distance between donors and ungauged catchments is
smaller than 700 km, the average proportion of catchments that the SPI-OUT method outperformed others is the largest.

It is hard to decide which method outperforms others when the mean distance is larger than 700 km for GR4 J and
HMETS, 900 km for SIMHYD, and 1,000 km for XAJ. The advantage of the SPI-OUT method is reduced with the increased
mean distance between donors and ungauged catchments. Overall, the greatest gains of the SPI-OUT method in performance

are achieved for ungauged catchments with mean distances no more than 700 km from the donors for most hydrological
models.

3.3. Regionalization-based global hydrological simulation schemes

3.3.1. Global-scale regionalization scheme

The GSRS was selected based on the best-performed catchment scale regionalization methods (Section 3.2). That is, only
catchments with KGE value being greater than 0.5 at the calibration period were used as donor catchments. For grid cells
with a mean distance less than 700 km to donors, the calibrated parameter sets of the 5 nearest donor catchments were
om http://iwaponline.com/hr/article-pdf/doi/10.2166/nh.2022.118/1005660/nh2022118.pdf
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Figure 7 | Comparison of model efficiencies on ungauged catchments using several regionalization schemes.
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transferred by using the SPI-OUT method. For grid cells with a mean distance larger than 700 km, the parameters were
extracted from the PSDI-OUT method. Figure 10 shows the mean distance to the 5 nearest donor catchments. The mean dis-
tances are generally �700 km for most parts of the world. However, there were still some regions where the mean distance is

.700 km, like Greenland, central Siberia, southern South America, Southeast Asia, and Northeast Africa.

3.3.2. RGHSs performance at the catchment scale

By using the GSRS, the runoff was first calculated for all global grid cells except for Antarctica. The NRF approach was then
used to converge gird runoff to catchment streamflows. The 2,277 catchments were used to evaluate the performance of the
RGHSs, since all of the grids were regionalized (Table 4). The median KGE value of SIMHYD-RGHS is the largest (0.385)

and that of HMETS-RGHS is the smallest (0.374). When using NSE, HMETS-RGHS has the largest value (0.283) and GR4 J-
RGHS has the smallest value (0.231). In terms of AVE, SIMHYD-RGHS performs the best (0.686) and XAJ-RGHS performs
the worst (0.672). All above-mentioned differences are considered not large.

Generally, RGHSs perform better than the catchment scale regression and global mean methods, but worse than other

regionalization methods. The differences between the median KGE values of RGHSs and that using the best-performed catch-
ment scale regionalization method (i.e. SPI-OUT) are 0.166 (for GR4 J), 0.173 (for SIMHYD), 0.166 (for XAJ), and 0.155 (for
HMETS). The differences between the median KGE value of RGHSs and that using the calibrated parameters are 0.372 (for

GR4 J), 0.389 (for SIMHYD), 0.386 (for XAJ), and 0.376 (for HMETS). The performance of RGHSs is about half of that
obtained using calibrated parameters in terms of the median value of KGE. Similar results are also observed when using
NSE. However, the differences between RGHSs and those using the calibrated parameters are small when using AVE. In
://iwaponline.com/hr/article-pdf/doi/10.2166/nh.2022.118/1005660/nh2022118.pdf



Figure 8 | Median KGE values of each regionalization method in different climate regions for both calibration period and validation period.

Figure 9 | The proportion of outperformed regionalization method over 2,277 catchments with increasing mean distances between the
donor and ungauged catchments.
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Figure 10 | Mean distance to the 5 nearest donor catchments.

Table 4 | The median of KGE, NSE, and AVE values of RGHSs over 2,277 catchments

Calibration Validation GM SPI-OUT RGHS RGHS-aggregation

KGE

GR4 J 0.748 0.632 0.141 0.542 0.376 0.342

SIMHYD 0.774 0.644 0.068 0.558 0.385 0.365

XAJ 0.766 0.641 �0.093 0.546 0.380 0.360

HMETS 0.750 0.617 0.019 0.529 0.374 0.356

NSE

GR4 J 0.533 0.450 �0.052 0.386 0.231 0.192

SIMHYD 0.566 0.448 �0.249 0.400 0.256 0.240

XAJ 0.568 0.471 �0.857 0.400 0.256 0.222

HMETS 0.528 0.407 �0.420 0.380 0.283 0.252

AVE

GR4 J 0.977 0.891 0.633 0.842 0.678 0.677

SIMHYD 0.985 0.875 0.516 0.840 0.686 0.686

XAJ 0.979 0.883 0.500 0.843 0.672 0.668

HMETS 0.982 0.875 0.618 0.833 0.680 0.678
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addition, the median KGE and NSE values of 2,277 catchments of RGHS-aggregation are smaller than that of RGHS-NRF.

However, when using AVE, the difference between these two methods becomes small. This result indicates that the aggrega-
tion method is proper to be used in the water balance analysis. However, effective estimation of streamflow time series and
extreme flows in ungauged catchments still needs to be further studied.
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Figure 11 shows the spatial distribution of KGE for RGHSs. For most of Europe and the east coast of North America, KGE

is generally above 0.5, and even above 0.7 over many catchments. In contrast, most catchments in southwestern Africa and
northwestern Australia perform much worse. To further evaluate the effectiveness of the RGHSs in various climate regimes,
Table 5 summarizes the median KGE values over 2,277 catchments for five Köppen-Geiger climate types. Generally, all

RGHSs perform much worse for arid climate regions than for the other four climate regions. Previous studies (e.g. Oki
et al. 2001; Döll et al. 2003; Beck et al. 2016) indicated that most of the existing GHMs overestimate runoff in arid
basins. This is because the high evaporative losses in arid regions, the highly nonlinear response of runoff to rainfall, and
the flashy nature of the streamflow time series make it difficult to simulate streamflow time series (Pilgrim et al. 1988;
Widén-Nilsson et al. 2007; Beck et al. 2016).

3.3.3. Comparison of RGHSs with models from EarthH2Observe project

To further evaluate the effectiveness of the RGHSs, the KGE, NSE, and AVE values obtained from four RGHSs are compared

to those obtained from nine macroscale hydrologic models from the EartH2Observe project. Figures 12 and 13 present evalu-
ation metrics over 2,277 catchments that participated in global-scale regionalizations and 402 independent validation
catchments, respectively. The overall performance of RGHS-GPCC is better than that of the nine models, with varying
Figure 11 | The distribution of KGE value for four RGHSs.

Table 5 | The median of KGE values of RGHSs for different climate regions

Climate Type GR4 J-RGHS SIMHYD-RGHS XAJ-RGHS HMETS-RGHS

All (n¼2,277) 0.376 0.385 0.380 0.374

A: equatorial (n¼293) 0.183 0.280 0.270 0.266

B: arid (n¼247) �0.347 �0.341 �0.313 �0.324

C: warm temperate (n¼717) 0.448 0.450 0.453 0.452

D: snow (n¼970) 0.470 0.466 0.467 0.468

E: polar (n¼50) 0.446 0.449 0.517 0.440
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Figure 12 | Comparison of RGHSs with nine models over 2,277 catchments. The red and black boxes represent RGHS driven by GPCC and
WFDEI, respectively. Please refer to the online version of this paper to see this figure in colour: https://doi.org/10.2166/nh.2022.118|0|0|2022.

Figure 13 | Comparison of RGHSs with nine models over validation catchments. The red and black boxes represent RGHS driven by GPCC
and WFDEI, respectively. Please refer to the online version of this paper to see this figure in colour: https://doi.org/10.2166/nh.2022.118|0|0|
2022.
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degrees of improvement in the median, upper and lower quartiles, and whiskers of each performance metric (except for the
HTESSEL model for the lower quartiles and whiskers). When comparing the models in terms of the median of each perform-
ance metric, the median KGE of RGHS-GPCC ranges between 0.374 (HMETS-RGHS) and 0.385 (SIMHYD-RGHS), while
that of nine models ranges between �0.061 (PCR-GLOBWB) and 0.124 (HBV-SIMREG) over 2,277 catchments. As for the

independent validation catchments, the median KGE of RGHSs is between 0.213 (HMETS-RGHS) and 0.231 (XAJ-RGHS),
while that of nine models is between �0.154 (ORCHIDEE) and 0.082 (PCR-GLOBWB). Similar results are observed when
using NSE and AVE as evaluation metrics.

Compared to RGHS-GPCC, the performance of RGHSs driven by WFDEI (RGHS-WFDEI) somewhat deteriorates. For
example, the median KGE of RGHS-WFDEI is between 0.209 (GR4 J-RGHS) and 0.260 (HMETS-RGHS) over 2,277 catch-
ments, and 0.056 (GR4 J-RGHS) and 0.143 (SIMHYD-RGHS) for the independent validation catchments, which is lower
://iwaponline.com/hr/article-pdf/doi/10.2166/nh.2022.118/1005660/nh2022118.pdf
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than that of RGHS-GPCC. However, RGHS-WFDEI still outperforms the other nine models from the EartH2Observe project

in most cases. For example, over 2,277 catchments, the 25% quantile and median evaluation metrics of RGHS-WFDEI are
always bigger than the other nine models and only the 75% quantile evaluation metrics of RGHS-WFDEI are lower than that
of the HTESSEL. As for the independent validation catchments, the 25% quantile and median KGE and NSE of RGHS-

WFDEI (GR4 J-RGHS) are only lower than that of the PCR-GLOBWB. The median AVE does not vary greatly among the
models and the median AVE of RGHS-WFDEI is only lower than that of the HTESSEL. However, the 75% quantile NSE
and AVE of RGHS-WFDEI have no advantages.
3.3.4. Global and continental water resources

The spatial variability of long-term (1983–2015) averaged annual runoff is presented in Figure 14, which shows a very high
spatial variability around the world. However, the spatial distributions of the long-term annual runoff from four RGHSs in
this study are consistent. High long-term annual runoffs are obtained for the Amazon, maritime Southeast Asia, central

Africa, and the southern section of the Andes in Patagonia. The long-term averaged annual runoffs in central Australia,
North Africa, the Middle East, and the northwest of North America are low. The global long-term annual runoffs estimated
by RGHSs are 46,810 km3/yr for GR4 J-RGHS, 42,733 km3/yr for SIMHYD-RGHS, 42,592 km3/yr for XAJ-RGHS, and

45,100 km3/yr for HMETS-RGHS. Overall, the simulated continental runoffs from the GR4 J-RGHS and HMETS-RGHS
are larger than those from the SIMHYD-RGHS and XAJ-RGHS, especially for Asia and South America.

The global and continental water resources are calculated using RGHSs and compared to those calculated using the other

five GHMs in literatures (Table 6). The six individual simulations (including the results of this study) of global long-term aver-
age water resources encompass a range between 29,485 and 46,810 km3/yr. The difference between these individual global
water resource simulations is 17,325 km3/yr, which is even much higher than the global consumptive water use estimated
using Global Water Use Model of WaterGAP 2 (1,250 km3/yr in 1995). A comparative study of seven models has shown

that the range of predicted global runoff from different models was about 45% of the mean simulated runoff, which
means that only limited agreement exists between GHMs (Haddeland et al. 2011). In fact, it is difficult to compare different
GHMs, for there are different periods, data quality, spatial and temporal resolution, and so on of the data used in the building

of the GHMs.
Figure 14 | Long-term averaged annual total runoff from land and open water fraction of cell (time period 1983–2015), in mm/yr.
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Table 6 | Global and continental runoff estimates in km3/yr

Long-term average annual runoff K78 O01 D03 GRDC W07 GR4 J-RGHS SIMHYD-RGHS XAJ-RGHS HMETS-RGHS

Global (except Antarctica) 44,560 29,485 36,687 40,533 38,605 46,810 42,733 42,592 45,100

Europe 2,970 2,191 2,763 3,083 3,669 3,396 3,219 3,278 3,377

Asia 14,100 9,385 11,234 13,848 13,611 16,146 14,210 13,864 15,369

Africa 4,600 3,616 3,529 3,690 3,738 5,383 4,732 4,938 4,668

North Americaa 8,180 3,824 5,540 6,294 7,009 6,927 6,256 6,429 6,877

South America 12,200 8,789 11,382 11,897 9,448 12,263 11,686 11,563 12,142

Oceaniab 2,510 1,680 2,239 1,722 1,129 2,695 2,630 2,521 2,668

The last four columns are from this study.

K78, Korzun et al. (1978), Table 157, time period not specified.

O01, Oki et al. (2001), Table 2, land surface models and TRIP routing model, time period 1987–1988.

D03, Döll et al. (2003), Table 1, model WGHM, time period 1961–1990.

GRDC (2004), time period 1961–1990.

W07, Widén-Nilsson et al. (2001), Table 2, model WASMOD-M, time period 1915–2000.
aIncludes Greenland, except W07 who only simulated a minor part of Greenland.
bOceania is defined as Australia, New Zealand, Papua New Guinea, and some small Islands.
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Therefore, we further compared the inter-annual variation of global runoff from RGHSs and the EartH2Observe project for
the same period (1983–2012, see Figure 15). The results show that inter-annual variability of global runoff is relatively con-
sistent. However, there is a large difference in magnitudes. In particular, large differences exist for nine global models from

the EartH2Observe project, even if they were all driven by the same precipitation dataset (i.e. WFDEI). However, the annual
global runoff from RGHSs driven by GPCC and WFDEI are similar and in the range of nine global models, probably due to
the fact that the same GSRS were used for global runoff simulations.
4. DISCUSSION

4.1. The impact of equifinality on regionalization

The regionalization methods used in this study are called step-wise regionalization, namely, the model parameters are cali-
brated, and then transferred to the ungauged regions (Samaniego et al. 2017). The equifinality problem of hydrological
models may be one of the problems when using this method (Bárdossy 2007; Götzinger & Bárdossy 2007), because only
Figure 15 | The inter-annual variation of global runoff from RGHSs and the EartH2Observe project. G represents RGHSs driven by GPCC and
W represents RGHSs driven by WFDEI.
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one parameter set is used for the regionalization, even though the hydrological model may have multiple sets of parameters

that lead to equally acceptable model performance (Beven & Freer 2001; Samaniego et al. 2010). To illustrate the influence of
equifinality on the regionalization performance, another nine calibration sets were generated during model calibration with
different initial random seeds. The difference of median KGE values between these sets is no more than 0.05. For each of

2,277 catchments, one of the nine calibrated parameter sets was then randomly selected for the catchment scale regionaliza-
tion. Figure 16 shows the performance of the randomly selected parameter set and the original parameter set under the
threshold of 0.5. The results show that the regionalization performance of the randomly selected parameter set is consistent
with the results of the original parameter set. This indicates that the equifinality does not contribute significantly to the overall

uncertainty in the applications of regionalization methods. A similar conclusion was also drawn by Arsenault & Brissette
(2014).
4.2. Uncertainties in global water resource estimations

The comparison of different models showed that great uncertainties exist in global water resources simulation. The uncertain-
ties are usually induced by meteorological input, hydrological model structures and parameters (Nijssen et al. 2001; Tuo et al.
2016; Sawunyama & Hughes 2018). This study preliminarily investigated the impacts of precipitation inputs on global water

resources by running RGHSs by using two different precipitation datasets (i.e. GPCC and WFDEI). The global long-term
Figure 16 | Comparison of model efficiencies on ungauged catchments using several regionalization schemes between original parameter
sets and randomly selected parameter sets.
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annual runoffs estimated by RGHS-GPCC range from 42,592 to 46,810 km3/yr and those estimated by RGHS-WFDEI range

from 48,132 to 53,365 km3/yr. This indicates that the precipitation input is one of the largest uncertainty sources for global
water resources estimation.

In addition, the difference of the global long-term average annual runoff is 4,218 km3/yr between RGHS-GR4 J and RGHS-

XAJ (driven by GPCC), indicating that the instability of hydrological models could also result in uncertainty in global water
resources estimation. Similar conclusions were also drawn in Schellekens et al. (2016). They simulated the global water
budget by using ten global models driven by the same precipitation data and found significant differences in global runoff
among these models. In fact, due to the complexity of water cycle and the lack of precise understanding of natural hydrolo-

gical rules, each hydrological model emphasizes different aspects and has its own conceptualization of hydrological
processes, which leads to uncertainty in water resources estimation. In addition, multiple objective functions and various
optimization algorithms in hydrological models would result in different parameter sets and may lead to a certain level of

uncertainty in water resource modelling (Kunnath-Poovakka et al. 2021). Therefore, the reduction of uncertainty for
global water resources estimation is an avenue for future studies.

Moreover, the observed discharge rather than natural discharge was used to calculate the parameter maps and global water

resources. Almost all large rivers are regulated (Vörösmarty et al. 2004; Nilsson et al. 2005), which may result in modified
high-flow and low-flow and affect the performance of nature catchment streamflow simulation and the performance of regio-
nalization of hydrological models (Widén-Nilsson et al. 2007; Lehner et al. 2011). Therefore, catchments larger than

50,000 km2 were discarded in this study, as regulation by dams exists in larger catchments with high probability (Vörösmarty
et al. 2004; Nilsson et al. 2005). In general, considering the impact caused by regulated catchments is a challenge in global
hydrological modelling due to the lack of global information to an adequate accuracy. Many GHMs, therefore, do not include
regulation effects. For example, Widén-Nilsson et al. (2009) assumed that regulation has less influence on average flow

volumes and used long-term average runoff instead of time series to minimize the effect of the regulation problem on
model calibration. Beck et al. (2016) used the Global Reservoir and Dam (GRanD) database (v1.1) (Lehner et al. 2011) to
exclude catchments influenced by reservoirs. Arheimer et al. (2020) concluded the potential and difficulty to improve the

global model by individual modelling river regulation. Therefore, further studies need to be carried out to consider the influ-
ence of human activities (e.g. regulation) to improve the performance of regionalization and GHMs.

5. CONCLUSION

This study first evaluated the performance of multiple regionalization methods over 2,277 catchments distributed around the
world based on four catchment hydrological models. A GSRS was then selected to regionalize hydrological parameters at 0.5°

grid cell, and four RGHSs (GR4 J-RGHS, SIMHYD-RGHS, XAJ-RGHS, and HMETS-RGHS) were presented for global water
resource estimation. Finally, nine global models from the EartH2Observe project were selected to further validate the per-
formance of RGHSs in global water resources estimation. The following conclusions can be drawn.

(1) The SPI-OUT method offered the best results with the highest KGE value when using the 0.5 efficiency threshold for
selecting donor catchments, and the optimal number of donor catchments ranges between 3 and 6 for the output aver-

aging option.
(2) Compared to the models from the Earth2Observe project, the presented RGHSs provide better simulation results. For

example, the median KGE values of RGHSs were from 0.374 (HMETS-RGHS) to 0.385 (SIMHYD-RGHS). However,

the median KGE values of EartH2Observe were �0.06 (PCR-GLOBWB) to 0.124 (HBV-SIMREG). Similar results
were also observed when using NSE and AVE as evaluation metrics. On the whole, RGHSs offered great performance
in the cold and temperate regions, while the poor performance of the RGHSs was observed in the arid climate regions.

(3) The RGHSs showed reasonable estimations of global water resources. The global long-term average annual runoff esti-

mated by RGHSs are 46,810 (for GR4 J-RGHS), 42,733 (for SIMHYD-RGHS), 42,592 (for XAJ-RGHS), and 45,100
(for HMETS-RGHS) km3/yr, which is in the good range of those estimated by other GHMs in literatures.
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