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A B S T R A C T   

Although various studies have investigated the impacts of climate variability and human activities on drought, 
researches specifically analysing the impact on ecological drought are still limited. A deep understanding of the 
climatic and anthropogenic effects on ecological drought processes is crucial for ecological regulation and 
management in the changing environments. In the present study, an integrated approach for comprehensive 
understanding and quantification of ecological drought in rivers was proposed which first applied the 
nonparametric kernel density estimation (KDE) method to calculate the most suitable ecological streamflow 
(MSES) for a river ecosystem. Then, the variable threshold level method based on the MSES for each month and 
the run theory method were applied to identify the ecological drought duration and deficit volumes. Finally, a 
quantification approach based on hydrological model simulation was proposed to attribute the impacts of 
climate variability and human activities on ecological drought. The proposed approach was applied on two 
catchments, Xianyang (XY) and Huaxian (HX) within the Weihe River Basin (WRB) in northern China. Com-
parison results obtained using the two empirical methods revealed that the MSES calculated using the KDE 
method was reasonable and can be used for ecological drought identification. The identification results showed 
that both the median and upper quartile values of the drought duration and deficit volumes during the disturbed 
period (1991–2017) were greater than those during the undisturbed period (1961–1990). Quantification results 
showed that human activities were the dominant factor aggravating ecological drought in the WRB after 1990. 
The contribution rates of climate variability and human activities toward ecological drought variations were 
25.6% and 74.4%, respectively, for the XY station and 42.7% and 57.3%, respectively, for the HX station. 
Although the WRB was selected as a case study, the proposed approach can also be applied to other regions to 
provide scientific guidance for regional ecological management.   

1. Introduction 

Drought is one of the most widespread and serious natural disasters 
around the world, which poses a serious threat to food security, water 
supply security and ecological security (Van Loon et al., 2016; Jiang 
et al., 2019, 2021a; Vicente-Serrano et al., 2020; Wang et al., 2020, 
2021a; Zhou and Zhou, 2021; Ma et al., 2022). Considering the difficulty 
of drought research and practical application, drought is usually divided 
into different types, namely meteorological drought, agricultural 
drought, hydrological drought, and socioeconomic drought (Eltahir and 

Yeh, 1999; Peters et al., 2003; Mishra and Singh, 2010; Apurv and Cai, 
2020). However, Crausbay et al. (2017) noted that the existing defini-
tions and classifications of drought describe meteorological drought 
impacts through a human-centric lens and ecosystem responses to 
drought tend to be ignored. Meanwhile, global climate change and 
various anthropogenic activities have increased the vulnerability of 
ecosystems to drought, which can considerably affect the service ca-
pacity of ecosystems to human society (Tonkin et al., 2019). Thus, it is 
imperative to recognise ecological drought processes to maintain eco-
systems and provide sustainable services to human communities 

* Corresponding authors at: State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China (Menghao 
Wang & Liliang Ren). 

E-mail addresses: mhwang@hhu.edu.cn (M. Wang), njrll9999@126.com (L. Ren).  

Contents lists available at ScienceDirect 

Ecological Indicators 

journal homepage: www.elsevier.com/locate/ecolind 

https://doi.org/10.1016/j.ecolind.2022.109410 
Received 11 July 2022; Received in revised form 29 August 2022; Accepted 31 August 2022   

mailto:mhwang@hhu.edu.cn
mailto:njrll9999@126.com
www.sciencedirect.com/science/journal/1470160X
https://www.elsevier.com/locate/ecolind
https://doi.org/10.1016/j.ecolind.2022.109410
https://doi.org/10.1016/j.ecolind.2022.109410
https://doi.org/10.1016/j.ecolind.2022.109410
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ecological Indicators 143 (2022) 109410

2

(Vicente-Serrano et al., 2020). 
Recently, there have been some studies focus on ecological drought 

from the perspective of terrestrial ecosystems (Hasanuzzaman et al., 
2019; Kim et al., 2019; Park et al., 2020; Jiang et al., 2021c; Bilen and 
Turan, 2022). Remote sensing technology plays a significant role in 
monitoring ecological droughts in terrestrial ecosystems. A vegetation 
index based on remote sensing can indirectly reflect the changes in 
terrestrial ecosystems under drought conditions and is a useful tool to 
characterise vegetation droughts (Carlson et al., 1994; Roodposhti et al., 
2017; Nanzad et al., 2019; Measho et al., 2019; Yan et al., 2019, 
Hasanuzzaman et al., 2019). In addition, the streamflow regime has long 
been known to be a key factor in the health of aquatic ecosystems, thus 
providing valuable information for monitoring ecological drought in 
aquatic ecosystems (McEvoy et al., 2018; Palmer and Ruhi, 2019; Park 
et al., 2020; Jiang et al., 2021b; McMillan, 2021). For example, McEvoy 
et al. (2018) utilised a new ecological drought framework based on 
ecological streamflow to analyse drought plans of southwestern Mon-
tana, USA. Park et al. (2020) analysed the ecological flow regimes of a 
river with double thresholds to develop an ecological drought index for 
fish habitats to assess ecological droughts processes during extremely 
low flow regimes. Thus, based on the definition of ecological drought 
proposed by Crausbay et al. (2017), this study adopted ecological 
streamflow as a threshold to determine whether a river ecosystem is in 
an ecological drought condition. 

To date, major efforts have been made to define or calculate 
ecological streamflow according to the eco-hydrological relationship 
(Richter et al., 2006; Jiang et al., 2021c). Currently, there are four types 
of method, including the hydrological, hydraulic rating, habitat simu-
lation, and holistic methods (Tharme 2003). However, the hydraulic 
rating, habitat simulation, and holistic methods require a lot of support 
data (McManamay et al., 2013; Pastor et al., 2014) or are time- 
consuming (Poff et al., 2010; Shafroth et al., 2010). The hydrological 
methods are proposed earlier than the above three methods and have 
been more developed so far. Meanwhile, hydrological analysis is a basic 
and effective method for the preliminary study of river ecological 
streamflow processes, when other ecological datasets are not available. 
The current hydrological methods for calculating ecological flow are 
typically based on grading standards and lack a unified definition and 
standard (Ma et al., 2019). For example, two widely used methods, the 
Tennant (Tennant, 1976) and Smakhtin (Smakhtin et al., 2004) 
methods, which primarily use a specific guarantee rate, usually have 
deviations due to the annual distribution inequality or some extreme 
events (Ma et al., 2019). Therefore, based on the bio-adaptability 
(Wilson and Franklin, 2002) and plasticity theory (Ow et al., 2010) of 
an ecosystem, this study introduced the concept of the most suitable 
ecological streamflow (MSES) proposed by Ma et al. (2019) to select the 
monthly river streamflow corresponding to the maximum probability 
density as the MSES for that month, and then combined the MSES of 
each month to compose a monthly variable threshold for the identifi-
cation of ecological drought in rivers. 

It is worth noting that under global change, the driving forces for the 
evolution of ecological drought have gradually transitioned from a 
single natural factor, i.e., climate variability to a combination of “nat-
ural-human” factors, i.e., climate variability and human activities“ (Van 
Loon et al., 2016; Akcura et al., 2019; Ghasempour et al., 2022). In 
addition to traditional climate variability, the hydraulic engineering 
regulations and anthropogenic water use behaviours may also alter 
natural river regimes, and then influence the propagation of ecological 
drought in rivers (Park et al., 2020; Gudmundsson et al., 2021; Tauqeer 
et al., 2022; Wang et al., 2022). However, there are limited studies on 
how to define and calculate the most suitable ecological streamflow, 
how to identify ecological drought in rivers, and how climate variability 
and anthropogenic activities alter ecological drought in rivers processes. 
A deep understanding of these problems is critical for ecological man-
agement and regulation in the Anthropocene era. 

To overcome the above-mentioned limitations, this study proposes 

an approach for identifying and quantifying ecological drought in rivers 
from the perspective of ecological streamflow. The approach includes 
four parts: (1) identifying a change point to divide the entire study 
period into two parts, i.e., undisturbed and disturbed periods before and 
after the change point; Using hydro-meteorological data in undisturbed 
period to calibrate a hydrological model, and then simulating the nat-
ural streamflow processes in the disturbed period; (2) using the 
nonparametric kernel density estimation (KDE) method (Bowman and 
Azzalini, 1997; Kim et al., 2019) to calculate the MSES based on the 
observed streamflow series during the undisturbed periods; (3) using the 
calculated monthly MSES series to compose a monthly variable 
threshold series and combining it with the run theory to identify 
ecological drought events and corresponding drought duration and 
deficit volumes; and (4) proposing a quantification approach to compare 
ecological drought characteristics of different series in different periods 
to quantify the influence of climate variability and human activities on 
ecological drought. In this study, we selected the Weihe River Basin 
(WRB) in northern China as the study area because the basin is highly 
affected by human beings. This study will enrich the discipline of 
ecological hydrology and provide scientific guidance for regional 
ecological management. 

2. Study area and data 

2.1. Study area 

The WRB, located in the northern China, is the largest tributary basin 
of the Yellow River Basin. In the present study, we focused on the WRB 
above the Huaxian station (Fig. 1), which covers a drainage area of 
106,000 km2 and extends from 104 ◦E to 110 ◦E and from 33 ◦N to 38 ◦N. 
The elevation within the study area ranges from 326 to 3733 m with a 
significant decrease from northwest to southeast. We selected the Xia-
nyang (XY) and Huaxian (HX) stations (as shown in Fig. 1) as case 
studies to analyse ecological drought. Because WRB is situated in a 
continental monsoon climate zone, the study area experiences rich 
precipitation and high temperature in summer but sparse precipitation 
and low temperature in winter (Huang et al., 2017). The average annual 
precipitation (1961–2017) of the study area is 584.4 mm and its pre-
cipitation has a noticeable seasonality, with more than 65 % of annual 
precipitation occurring in flood season (from June to September). The 
average annual temperature (1961–2017) of the study area reaches 7.7 
℃. The mean air temperature in the coldest month (January) ranges 
from –8.8 ℃ to –2.4 ℃, whereas that in the hottest month (July) varies 
from 18.9 ℃ to 23.2 ℃. The average annual streamflow for the XY and 
HX stations during 1961–2017 are 78.2 and 59.7 mm, respectively. 

The quality of WRB’s river ecology directly affects the quality of the 
ecology in the middle reaches of the Yellow River Basin. Several studies 
have pointed out that with rapid socio-economic development, human 
water abstraction activities, such as domestic and industrial water re-
quirements and agricultural irrigation, have a profound impact on the 
streamflow of the WRB (Xiong et al., 2014, Gai et al., 2019), resulting in 
increasingly serious ecological drought problems in rivers of the basin 
(Ren et al., 2016; Huang et al., 2017; Zou et al., 2018; Gai et al., 2019; 
Fang et al., 2020; Zhang et al., 2021). 

2.2. Data 

The observed daily precipitation data of 62 rain gauge stations and 
the streamflow data from the two hydrological stations between 1961 
and 2017 were obtained from the Hydrological Bureau of the Ministry of 
Water Resources of China. Meteorological data, including maximum and 
minimum temperatures and wind speeds from 26 meteorological sta-
tions, were provided by the China Meteorological Administration 
(CMA). The daily precipitation and meteorological data were converted 
into spatially distributed grid data (0.25◦ × 0.25◦) using the inverse 
distance weighting interpolation method to drive a distributed 
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Fig. 1. Location of the study area and distribution of the rain gauge, meteorological, and hydrological stations within the Weihe River Basin (WRB).  

Fig. 2. Flow chart of identification and quantification of the impacts of climate variability and human activities on ecological drought.  

S. Jiang et al.                                                                                                                                                                                                                                    



Ecological Indicators 143 (2022) 109410

4

hydrological model. 

3. Methods 

As shown in Fig. 2, the flow chart of the proposed an approach 
comprises four main steps. The first step is the reconstruction of natural 
streamflow. Regarding to the analysis results of the trend and change 
point of the streamflow series, the entire study period can be divided 
into two periods, the undisturbed period with weak interference from 
human activities, and the disturbed period with strong influence from 
human activities (Van Loon and Van Lanen, 2013). Next, the variable 
infiltration capacity (VIC) model was first calibrated using the observed 
meteorological and streamflow data from the undisturbed period, and 
then the calibrated model (with parameters remaining unchanged) was 
used to simulate the streamflow series during the disturbed period with 
the observed meteorological forcing data in the same period as the input 
data. In the second step, the nonparametric KDE probability method was 
adopted to calculate the MSES based on the observed streamflow series 
during the undisturbed period. Meanwhile, two widely used empirical 
methods, the Tennant (Tennant, 1976) and Smakhtin (Smakhtin et al., 
2004) methods, were selected to validate the rationality of the MSES 
calculated according to the KDE method. In the third step, the calculated 
monthly MSES series was used to compose a variable threshold series 
and combine it with the run theory to identify the ecological drought 
events and their characteristics, including the drought duration (Ddur) 
and deficit volumes (Ddef) of different series (i.e., simulated and 
observed series) during different periods (i.e., disturbed and undis-
turbed periods). In the final step, two comparisons were carried out to 
separate the impacts of climatic and anthropogenic influen-
ces—comparison I was performed to identify the total influence of 
climate variability and human activities using the ecological drought of 
the observed streamflow values during the undisturbed and disturbed 
periods, and the purpose of comparison II was to identify the impacts of 
only climate variability using the ecological drought of simulated 
streamflow during the undisturbed and disturbed periods. The total in-
fluence minus the impact of climate variability provided the anthropo-
genic influence. The detail information of methods and concepts used in 
this study are described as below. 

3.1. Trend and change point analysis methods 

3.1.1. Trend analysis methods 
The Modified Mann-Kendall (MMK) test method, proposed by 

Hamed and Rao (1998), uses the lag-i autocorrelation to remove the 
persistence of the hydrometeorological series to improve the original 
Mann-Kendall test method to make the results more reliable and robust. 
In this method, the value of the test statistic (Z-values) is used to 
determine the upward and downward trends. Z > 1.96 and Z < –1.96 
correspond to significant upward and downward trends, respectively, at 
the 5 % significance level. More detailed information of the MMK 
method can refer to Hamed and Rao (1998). 

3.1.2. Change point analysis methods 
Conventional statistical test methods for identification of change 

points such as Mann-Kendell test and sliding T test are usually based on 
the assumption that the time series should be linear and stationary. 
However, it is difficult for them to accurately capture the change points 
in the nonlinear or nonstationary time series. To make up this short-
coming, this study applied the heuristic segmentation method, proposed 
by Bernaola-Galvan et al. (2001), to identify change points in nonlinear 
and nonstationary series. Firstly, this method divides a time series into 
two subseries by a point, and the averages of the two subseries are 
calculated. Then, by moving the point along the given time series in a 
stepwise fashion, the t-statistic can be calculated to assess the differences 
between the averages of the two sub-series. The location resulting in the 
largest t-value (tmax) can then be considered as a change point. When the 

statistical significance of tmax (i.e., P(tmax)) is higher than the selected 
threshold (we selected the 95 % significance level in the present study), 
the corresponding point is defined as a change point, and then the time 
series is divided into two segments. 

In addition, the double cumulative curve (DCC) method is another 
widely used method for identifying the change points. Generally, the 
inflection point of a curve of precipitation and streamflow can be 
selected as a change point. 

3.2. VIC hydrological model 

The VIC model is a macroscale semi-distributed hydrological model 
based on Soil-Vegetation-Atmospheric Transfer Schemes (SVATS) and 
has a widely application worldwide (Liang et al., 1994). The VIC model 
divides the soil column of each grid cell into three layers (Gou et al., 
2020), and the surface flow generated from the upper two soil layers is 
simulated based on the variable soil moisture capacity curve, which is 
expressed as: 

W = Wmm(1 − (1 − A)1/B
) (1) 

where W and Wmm are the soil moisture capacity at a grid point and 
the maximum soil moisture capacity at that point, respectively; A is the 
fraction of area within the grid cell for which the soil moisture capacity 
is less than W; and B is the soil moisture capacity shape parameter. The 
surface flow, Qs, is calculated as: 

Qs =

⎧
⎪⎨

⎪⎩

PE − (Wm − W0), PE + W⩾Wmm

PE − (Wm − W0) + Wmm

(

1 −
PE + W

Wmm

)1+B

, PE + W < Wmm

(2) 

where PE is effective precipitation, which equals precipitation minus 
evapotranspiration; Wm is soil moisture capacity of the upper two soil 
layers; and W0 is initial soil moisture. 

The slow response runoff or baseflow, is only generated from the 
third layer. Using the nonlinear ARNO model, baseflow, Qb, is modeled 
as: 

Qb =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

DsDm

Wsθ3,s
θ3, 0⩽θ3⩽Wsθ3,s

DsDm

Wsθ3,s
θ3 +

(

Dm −
DsDm

Ws

)(
θ3 − Wsθ3,s

θ3,s − Wsθ3,s

)2

, θ3 > Wsθ3,s

(3) 

where Dm is the maximum velocity of baseflow, Ds and Ws are the 
fraction of Dm and maximum soil moisture content of the third soil layer 
(θ3,s), respectively; and θ3 is the current soil moisture of the third layer. 
The baseflow recession curve is linear below a threshold (Wsθ3, s) and 
nonlinear above that threshold. 

According to previous studies, the model parameters can be 

Table 1 
Physical meanings and numerical ranges of the seven parameters commonly 
calibrated in the VIC model and their optimized values in this study.  

Parameter Physical meaning/Unit Range Optimized values 

XY HX 

B Infiltration curve parameter 0–0.4  0.37  0.15 
d1 Thickness of top thin soil moisture 

layer (m) 
0.05–0.1  0.1  0.1 

d2 Thickness of middle soil moisture 
layer (m) 

0–2  0.6  0.7 

d3 Thickness of lower soil moisture 
layer (m) 

0–2  2.0  2.0 

Ds Fraction of Dsmax where nonlinear 
baseflow begins 

0–1  0.004  0.004 

Dsmax Maximum velocity of baseflow 
(mm/d) 

0–30  10.0  10.0 

Ws Fraction of maximum soil moisture 
where nonlinear baseflow occurs 

0–1  0.8  0.8  

S. Jiang et al.                                                                                                                                                                                                                                    



Ecological Indicators 143 (2022) 109410

5

classified into two groups (Liang et al., 2004). The first group consists of 
parameters that have clear physical meanings and can be determined 
directly from land use data and soil type data, such as the saturated soil 
potential ψ s (m), soil porosity θs (m3/m3), saturated hydraulic conduc-
tivity ks (m/s), and so on. The second group consists of seven conceptual 
parameters that need to be calibrated. The details of these user- 
calibrated parameters are listed in Table 1. 

3.3. Calibration and validation of VIC model 

In this study, the year 1961 (1 year) was selected as a warm-up 
period for the VIC model. Then the model was calibrated and vali-
dated at the two stations (XY and HX stations) during 1962–1980 (19 
years) and 1981–1990 (10 years), respectively. According to the previ-
ous studies (Jiang et al., 2011, Ren et al., 2016; Yuan et al., 2018), the 
Infiltration curve parameter (B) and thickness of middle soil moisture 
layer (d2) are the most sensitive two parameters among the seven pa-
rameters listed in Table 1. Then the parameter optimization of the VIC 
model was performed using SCE-UA algorithm (Duan et al., 1992) with 
the function (f) that combines the maximum sum value of the Nash- 
Sutcliffe efficiency (NSE) and the maximum value of log-transformed 
NSE (logNSE) as an objective function. 

f = max(0.5 × NSE+ 0.5 × logNSE) (4)  

NSE = 1 −
∑n

i=1(Qsim(i) − Qobs(i) )2

∑n
i=1

(
Qobs(i) − Q−

obs

)2 (5)  

logNSE = 1 −
∑n

i=1(logQsim(i) − logQobs(i) )2

∑n
i=1

(
logQobs(i) − logQ−

obs

)2 (6) 

where, Qobs(i) and Qsim(i) are the observed and simulated streamflow 
values (mm/month) at time step i, respectively; logQobs(i) and logQsim(i)
denote the log-transformed observed and simulated stream-
flow;Q−

obs,Q−
sim, and logQ−

obs are the mean values of observed, simulated, 
and log-transformed observed streamflow, respectively; n is the length 
of time series. 

It is worth noting that although NSE (logNSE) is a good metric for 
hydrological model optimization, it tends to provide high importance to 
high (low) flows (Oudin et al., 2006). To make sure that the model can 
capture both high- and low-flow processes, we used the maximum sum 
of NSE and logNSE (NSE and logNSE have the same weight, i.e., 0.5) as 
the objective function (f in Equation (4)). Because low-flow process is 
closely related to the onset and development stage of drought, and high- 
flow process is often related to termination stage of drought. 

Furthermore, the performance of the VIC model was evaluated using 
another two indicators, i.e., Kling-Gupta efficiency (KGE) and relative 
error (BIAS). 

KGE = 1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(1 − γ)2
+ (1 − α)2

+ (1 − β)2
√

, α = σs/σo, β

= μs/μo (7)  

BIAS =

∑n
i=1(Qsim(i) − Qobs(i) )

∑n
i=1Qobs(i)

(8) 

where, μs and σs are the mean and standard deviation of the simu-

lation series, respectively; μo and σo are the mean and standard deviation 
of the observation series, respectively; and γ is the correlation coefficient 

between observation and simulation series. The value of f and/or KGE 
ranges from negative infinity to 1. When f and/or KGE is equal to 1 and 
BIAS is equal to 0, it indicates perfect runoff simulations. 

3.4. Calculation of the most suitable ecological flow 

Two empirical methods proposed by Tennant (Tennant, 1976) and 
Smakhtin (Smakhtin et al., 2004) are widely used to determine the 
health conditions of river ecosystems. In the Tennant method, the op-
timum range of streamflow for a river ecosystem is 60–100 % of the 
mean annual or mean monthly streamflow. We selected 60 % of the 
mean monthly streamflow as the MSES for this method. In the Smakhtin 
method, the Q50 (where the streamflow exceeds 50 % of the period of 
record) is a measure for a natural river ecosystem; according to this 
method, to maintain an ecosystem in natural conditions, the monthly 
streamflow should not be less than Q50. Therefore, we selected Q50 as the 
MSES for the Smakhtin method. 

In addition, we applied the KDE function (Bowman and Azzalini, 
1997) to estimate the probability density of the monthly streamflow 
series. The streamflow value corresponding to the maximum KDE was 
selected as the MSES for a specific month (January to December). Then, 
the MSES calculated using the two empirical methods was used to 
validate the MSES calculated with the KDE method. 

KDE calculation steps are as follows: 
For the streamflow series x1, x2, …, xn, the KDE function can be 

defined as: 

fh(x)
∧

=
1
nh

∑n

i=1
K
(xi − x

h

)
, x ∈ R (9) 

where K(•) is the kernel function, and h is the bandwidth. K(•) sat-
isfies K(x) > 0 and the

∫+∞
− ∞ K(x)dx = 1. Common kernel functions 

include uniform (box), triangle, Epanechnikov, Triweight, and Gaussian 
functions. In this study, we adopted the Gaussian kernel function. When 
the Gaussian function is used, the optimal choice for the bandwidth (h) 
is expressed as: 

h =

(
4
3

)1
5

σn
1
5 ≈ 1.06σn

1
5 (10) 

where σ is the standard deviation of the sample, and n is the number 
of samples. 

3.5. Identification of ecological drought characteristics 

In this study, the MSES calculated in section 3.3 was selected to 
define a monthly variable threshold level (TL) to determine whether the 
river ecosystem is in ecological drought. Then, ecological drought 
duration and deficit volume can be identified from the observed and 
simulated monthly streamflow series using the run theory (Yevjevich, 
1967; Wanders and Wada, 2015). Here, the per-time-step drought state 
(Ds(t)) and deficit volume (Ddef(t)) are given as follows: 

Ds(t) = 1, for Q(t) < TL
= 0, for Q(t)⩾TL (11)   

where Ds(t) is a binary variable to reflect whether a drought occurs at 
a given time t, Ddef(t) and Q(t) are the drought deficit volume and the 

Ddef (t) = TL − Q(t), for Ds(t) = 1
= 0, for Ds(t) = 0 (12)   
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monthly streamflow at a given time t, and TL is the ecological threshold 
level that used to determine whether a drought event will occur. The 
drought duration (Ddur) and deficit volume (Ddef) of the drought event i 
were calculated as follows: 

Ddur(i) =
∑Li

t=Fi

Ds(t) (13)  

Ddef (i) =
∑Li

t=Fi

Ddef (t) (14) 

where Ddur(i), Ddef(i), and Fi and Li are the drought duration, total 
drought deficit volume, and the first- and last-time steps of the drought 
event i, respectively. 

3.6. Attribution of the impacts of climate variability and human activities 
on ecological drought 

The quantification approach was proposed according to the 
following two assumptions: (1) climate variability and human activities 
are the two main factors causing variations in ecological drought; (2) the 
effects of these two factors are independent of one another, i.e., the 
interaction between them is negligible. Ddef was selected as the variable 
to separate the impacts of climate variability and human activities on 
ecological drought during the disturbance period (Ren et al., 2016). The 
changes in the Ddef of the observed series during undisturbed and 
disturbed conditions (i.e., Comparison I in Fig. 2) are expressed as: 

ΔStotal = ΔScv +ΔSha = S2,obs − S1,obs (15) 

The changes in Ddef caused by climate variability (i.e., Comparison II 
in Fig. 2) can be expressed as follows: 

ΔScv = S2,sim − S1,sim (16) 

Furthermore, the changes in Ddef caused by human activities can be 
expressed as follows: 

ΔSha = ΔStotal − ΔScv = (S2,obs − S1,obs) − (S2,sim − S1,sim) (17) 

Together, the effects of climate variability and human activities on 
ecological Ddef can be calculated as follows: 

Icv =
ΔScv

|ΔStotal|
× 100% (18)  

Iha =
ΔSha

|ΔStotal|
× 100% (19) 

Where ΔStotal is the total change in an ecological drought charac-
teristic (e.g., Ddur(i) and Ddef(i)), and |ΔStotal| is the absolute value; ΔScv 
and ΔSha represent the changes of ecological drought characteristics due 
to climate variability and human activities, respectively; S1,obs, and S1,sim 
denote ecological drought characteristics for the observed and simulated 
series during the undisturbed period, respectively; S2,obs and S2,sim 
denote ecological drought characteristics for the observed and simulated 
series during disturbed period, respectively; and Iha and Icv are the 
relative impacts of human activities and climate variability on 

ecological drought, respectively. 

4. Results 

4.1. Reconstruction of natural streamflow 

Trend analysis results using MMK method (listed in Table 2) showed 
that annual precipitation of the XY and HX stations showed a downward 
trend but not reached a significant level (α > 0.05). However, the annual 
streamflow series of both stations showed a significant downward trend 
(α < 0.05). To further explore hydrological variations in the WRB, the 
heuristic segmentation method was applied to investigate the change 
points in precipitation and streamflow series. The results (Table 2) 
showed that, for XY and HX stations, annual precipitation series had no 
significant change point while the annual streamflow series had a sig-
nificant change point. The most significant change points (α < 0.05) for 
both the XY and HX stations occurred in 1990. 

In addition, Fig. 3 shows the DCCs of annual precipitation and 
streamflow for the XY and HX stations, indicating that the linear re-
lationships between cumulated precipitation and streamflow at the two 
stations changed around 1990. Together, these variation analyses indi-
cate that in addition to climate variability (e.g., precipitation), human 
activities may be another factor to cause the decrease of streamflow in 
the WRB. Based on the change point in 1990, we divided the entire study 
into two periods, i.e., undisturbed period (1961–1990) and disturbed 
period (1991–2017). 

According to the above-mentioned division results for the study 
period, the observed meteorological and streamflow data during the 
undisturbed period (1961–1990) were used for the calibration and 
validation of the VIC model (Fig. 4). The warm-up period was 1961, 
1962–1980 and 1981–1990 were the calibration and validation period, 
respectively. Thereafter, the observed meteorological data during the 
disturbed period (1991–2017) were used as input data to simulate the 
natural streamflow series of the XY and HX stations for the same period 
based on the calibrated VIC model. Table 3 shows that the evaluation 
criterion values, i.e., objective function (f), KGE, and BIAS were 0.66, 
0.80, –6.70 %, and 0.81, 0.84, 7.30 % for the XY station during the 
calibration and validation periods, respectively. These values for the HX 
station were 0.68, 0.81, and –0.90 % for the calibration period and 0.85, 
0.89, and 4.80 % for the validation period, respectively. This shows that 
simulation results of the VIC model in the undisturbed period are ac-
curate and reasonable to support the reconstruction of the natural 
streamflow series during the disturbed period. 

4.2. The most suitable ecological flow 

Fig. 5 shows the MSES identification process at the HX station using 
the nonparametric KDE function. The streamflow value corresponding 
to the maximum kernel density was selected as the MSES for each month 
to consider the seasonal patterns, and these values were then composed 
to a monthly variable threshold level. For the XY station, the maximum 
kernel density over 12 months ranged from 0.0014 to 0.0134, and the 
MSES values of different months ranged from 31.0 –212.7 m3/s. For the 
HX station, the maximum kernel density and the corresponding MSES 
over the 12 months ranged from 0.0003 to 0.0037 and 42.3–368.1 m3/s, 
respectively. 

Fig. 6 shows a comparison of the monthly MSES series calculated via 
KDE method with those calculated by the Tennant and Smakhtin 
methods. Firstly, the MSES series calculated by the KDE method had the 
highest correlation coefficient (CC) with those calculated by Smakhtin 
(Q50 of the streamflow series) method, with the CC reaching 0.984 and 
0.991 for XY and HX stations, respectively. While the KDE method and 
Tennant (60 % of the mean monthly streamflow) methods showed a 
correlation of 0.959 and 0.973 for XY and HX stations, respectively. 
Furthermore, twelve-month average values of the KDE, Tennant, and 
Smakhtin methods were 102.69, 92.04, 124,61 m3/s for XY station, and 

Table 2 
Trend and change point analysis results for the annual precipitation and 
streamflow series for the XY and HX stations in the WRB.  

Stations MMK trend test (Z values) Heuristic segmentation (year of change 
point) 

Precipitation Streamflow Precipitation Streamflow 

XY  –1.58↓  –5.09*↓ — 1990 
HX  –1.33↓  –5.22*↓ — 1990 

Note: * in bold denotes significance at the 95 % confidence level. ‘↑’ and ‘↓’ 
indicate upward and downward trends, respectively. 
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165.91, 149.89, 209.33 m3/s for HX station, respectively. The calculated 
values by the KDE method were mostly distributed between the values 
calculated by the Tennant and Smakhtin methods. Finally, the results of 
all the three methods showed consistent seasonal patterns, i.e., the 

largest monthly ecological streamflow occurs in September, and the 
smallest monthly ecological streamflow occurs in January, indicating 
that the MSES series calculated via KDE method is reasonable and can be 
used to determine whether a river ecosystem is under ecological drought 
conditions. 

4.3. Identification of ecological drought 

Fig. 7 shows the identified ecological drought events for the observed 
and simulated streamflow series at the XY and HX stations during the 
disturbed period (1991–2017). For the observed series (as shown in 
Fig. 7(a) and (d)) which is influenced by both climate variability and 
human activities, several long-term ecological drought events occurred, 
such as the multi-year drought events during 1995–1998 (35 months for 
the XY station and 34 months for the HX station), 1999–2003 (34 and 29 
months for the XY and HX stations, respectively), and 2015–2017 (23 
and 17 months for the XY and HX stations, respectively). For the 

Fig. 3. Double cumulative curves of annual precipitation and streamflow for the XY (a) and HX (b) stations in the WRB.  

Fig. 4. Observed and simulated monthly streamflow series at the XY (a) and HX (b) stations during the calibration (1962–1980), validation (1981–1990), and 
simulation (1991–2017) periods. 

Table 3 
Performance of streamflow simulation for the XY and HX stations using the VIC 
model.  

Station Periods Criterion values 

f = max (NSE + logNSE) KGE BIAS (%) 

XY Calibration 
(1962–1980)  

0.66  0.80  –6.70 

Validation (1981–1990)  0.81  0.84  7.30 
HX Calibration 

(1962–1980)  
0.68  0.81  –0.90 

Validation (1981–1990)  0.85  0.89  4.80  
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simulated series (Fig. 7(b) and (e)) which is influenced by only climate 
variability, some long-term drought events also occurred during the 
disturbed period, for example, the ecological drought in 1996–1998 (20 
and 15 months for the XY and HX stations, respectively), 2001–2003 (14 
and 16 months, respectively), and 2015–2017 (20 and 17 months, 
respectively). However, the drought durations of the long-term ecolog-
ical drought events identified in simulated series are shorter than those 

identified in observed series on average, revealing that human activities 
led to the aggravation of duration of ecological drought in the WRB. 

More intuitively, Fig. 7(c) and (f) compare the ecological drought 
deficit volumes of the simulated series with those of observed series. For 
the observed streamflow series at the XY station (Fig. 7(c)), the average 
deficit volumes for each ecological drought were 857.1 m3/s in the 1990 
s, 845.3 m3/s in the 2000 s, and 363.3 m3/s in the 2010 s, respectively. 

Fig. 5. Derivation of the monthly most suitable ecological streamflow from KDE curves of each month to compose the variable threshold level series for the 
HX station. 

Fig. 6. Comparison of the monthly MSES calculated via KDE with those calculated using the Tennant method (0.6*MMS means 60% of the mean monthly 
streamflow) and the Smakhtin method (Q50 means the streamflow exceeded 50% of the period of record) for the XY (a) and HX (b) stations. 
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These values for the HX station (Fig. 7(f)) were 659.2 m3/s, 724.0 m3/s, 
and 280.4 m3/s in the 1990 s, 2000 s, and 2010 s, respectively. This 
indicated that under jointed influences of climate and human activities, 
the ecological drought in the 2000 s was the most serious, followed by 
those of the 1990 s and 2010 s. For the simulated series, the average 
deficit volumes of each ecological drought during the 1990 s, 2000 s, 
and 2010 s were 270.8, 161.6, and 133.4 m3/s for the XY station and 
352.2, 248.4, and 161.2 m3/s for the HX station, respectively. These 
results revealed that under the impact of only climate variability, the 

severity of ecological drought gradually decreased from the 1990 s to the 
2010 s. However, the deficit volumes of the ecological drought events 
identified in simulated series are lower than those identified in observed 
series on average, revealing that human activities led to the aggravation 
of deficit volumes of ecological drought in the WRB. 

Fig. 8 shows a comparison of the ecological drought duration and 
deficit volumes of the observed streamflow series in the undisturbed and 
disturbed periods. For the XY station, the boxplots (Fig. 8(a)) show that 
both the median and upper quartile values of the drought duration (5.5 

Fig. 7. Identification of ecological drought events for the observed and simulated series at the XY and HX stations during the disturbed period (1991–2017), and their 
ecological drought deficit volumes. 

Fig. 8. Boxplots of ecological drought duration and deficit volumes of the observed streamflow series during the undisturbed (1961–1990) and disturbed 
(1991–2017) periods for the XY (a) and HX (b) stations. 
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and 18.5 months) and deficit volume (264.6 and 939.8 m3/s) during the 
disturbed period were greater than those during the undisturbed period 
(4 and 8.25 months, and 144.2 and 398.2 m3/s). Similarly, the median 
and upper quartile values of drought duration at the HX station (Fig. 8 
(b)) were, respectively, 4 and 8.75 months for the disturbed period and 3 
and 7.5 months for the undisturbed period; these values for drought 
deficit volume at the HX station were 381.8 and 739.6 m3/s for the 
disturbed period and 210.1 and 551.3 m3/s for the undisturbed period, 
respectively. Overall, ecological droughts in the disturbed period 
became more severe than those in the undisturbed period owing to the 
impacts of climate variability and human activities. 

4.4. Quantification of the impacts of climate variability and human 
activities on ecological drought 

Table 4 shows that the increases of ecological drought deficit vol-
umes for the XY and HX stations were 377.5 and 249.8 m3/s, respec-
tively. Furthermore, the quantitative results based on the attribution 
framework in section 3.6 showed that, for XY station, climate change 
and human activities caused ecological drought deficit volumes to in-
crease by 96.6 and 280.9 m3/s, respectively, and their contribution rates 
to the changes of ecological drought deficit volumes were 25.6 % and 
74.4 %, respectively. For HX station, the increase of ecological drought 
deficit volumes due to climate change and human activities were 106.6 
and 143.3 m3/s, respectively, and the contribution rates to the changes 
of ecological drought deficit volumes were 42.7 % and 57.3 %, respec-
tively. Overall, human activities were the dominant factor for the 
aggravation of ecological drought (e.g., increased ecological drought 
deficit volumes) during the disturbed period (1991–2017) in the WRB. 

5. Discussion 

5.1. Rationality analysis of the most suitable ecological streamflow 

In this study, we adopted the nonparametric KDE function to esti-
mate probability density of the monthly streamflow series and then 
selected the streamflow values corresponding to the maximum proba-
bility density as the MSES for each month. In addition to the comparison 
with the two empirical methods, i.e., the Tennant and Smakhtin 
methods, we further compared the MSES calculated in the present study 
with the suitable ecological streamflow, considering the major economic 
fish and benthic species in other studies. Xin and Zhao (2008) pointed 
out that to better protect the ecological environment of the WRB, the 
ecological streamflow of the XY and HX stations should be>41.0 and 
61.8 m3/s, respectively. Ma and Su (2013) applied the RVA method to 
calculate the suitable river ecological streamflow as 36.7 and 75.8 m3/s 
for XY and HX stations, respectively. The MSES values calculated using 
the KDE method were 31–66.4 m3/s and 42.3–126.8 m3/s during the 
low-flow periods (from November to April) at the XY and HX stations. 
This indicates that the MSES results calculated using the KDE in this 
study has a reasonable consideration of the living conditions of aquatic 
species. 

5.2. Impacts of climate variability and human activities on ecological 
drought 

The quantification results revealed that human activities are the 
dominant factor aggravating ecological drought in rivers in the WRB, 

with contribution rates of human influence to the increased ecological 
drought deficit volumes reaching 74.4 % and 57.3 % for XY and HX 
stations, respectively. These findings are similar with those of other 
studies over the WRB (Ren et al., 2016; Huang et al., 2017; Zou et al., 
2018). For example, Ren et al. (2016) quantitatively separated the 
contributions of climate change and human activities to the reduction of 
streamflow in the WRB. The results showed that the decrease of 
streamflow caused by human activities at Xianyang and Huaxian sta-
tions were 1.610 billion m3 and 2.310 billion m3, respectively, with 
contributions to total streamflow decline reaching 66.7 % and 71.0 %, 
respectively. Zou et al. (2018) found that on shorter time scales (i.e., 3- 
month), the impacts of human activities on the aggravation of hydro-
logical drought at Huaxian station were larger than those of climate 
change in spring, autumn, and winter, with the relative contribution 
rates reaching 59 %, 59 %, and 51 %, respectively. 

Specifically, the direct human water abstraction for agricultural 
irrigation and industrial uses has caused a reduction in river streamflow 
in the WRB, thus aggravating ecological drought. Since the reform and 
opening up of China, the irrigation area in the WRB has continued to 
increase and reached 9500 km2 in 2015 (Huang et al., 2016). The 
population of the basin increased from 22.04 million in 2000 to 24.62 
million in 2010 (Xiong et al., 2018). The gross domestic product of the 
basin increased from 40.6 billion in 1990 to 2189.8 billion in 2017 (Ren 
et al., 2016). The average annual water consumption of the national 
economy in the basin reached 4.262 billion m3 after the 1990 s, which 
was 52.6 % higher than that in the 1990 s (Huang et al., 2016). Overall, 
the increase in agricultural irrigation area and population, and the rapid 
economic development during the disturbed period of the WRB 
consumed more surface water resources, resulting in a sharp decrease in 
river streamflow and frequent ecological droughts, which had a serious 
impact on river ecosystems. 

In addition, other human activities, such as returning farmland to 
forests, and soil and water conservation projects indirectly led to the 
reduction of river streamflow and the aggravation of ecological drought. 
The soil water conservation area in the WRB has increased from 15624 
km2 in 1990 to 33344 km2 in 2006 (Zhang et al., 2021). After the 
implementation of the policy of returning farmland to forest in 1999, 
5000 km2 of farmland in Shaanxi Province was converted into forest 
land or grassland in 2003 (Zhao et al., 2017). Large-scale water and soil 
conservation projects in the WRB promoted precipitation interception 
and reduced land surface runoff, which eventually led to the reduction 
of river streamflow. 

Fig. 9 shows a comparison of streamflow variations in the XY and HX 
stations during the undisturbed and disturbed periods. Results showed 
that the percentage decrease in streamflow in winter (from December to 
February) for the XY station ranged from 40 to 50 %, while that for the 
HX station was<25 %, indicating that human influence on the stream-
flow series were greater for the XY station than for the HX station. This 
period (December–February) is also the most prone season for ecological 
drought, which explains why the human influence on the ecological 
drought of the XY station is greater than that of the HX station. 

Furthermore, climate variability also aggravates ecological drought 
in rivers through the hydrological cycle and then affects the river 
ecosystem in the WRB. For example, a decrease in precipitation reduces 
the recharge of river streamflow in the WRB (Xiong et al., 2018). An 
increase of temperature in WRB may cause an increase of evapotrans-
piration and in turn lead to a decrease of land surface runoff, thus re-
duces recharge to river streamflow (Liu et al., 2019). 

Overall, due to the combined climatic and anthroponotic influence, 
the shortage of water resources in the WRB is becoming increasingly 
serious, resulting in ecological imbalance and environmental degrada-
tion. Xu et al. (2018) investigated the river ecosystem in the WRB during 
2011–2013 and pointed out that the health of the river ecosystem in the 
WRB was poor. To solve these problems, the State Council of China 
approved the “key governance plan of the Weihe River Basin” and 
implemented a cross-basin water transfer project to extract the water of 

Table 4 
Separating the effects of climate variability and human activities on ecological 
drought.  

Station ΔStotal (m3/s) ΔScv (m3/s) ΔSha (m3/s) Icv (%) Iha (%) 

XY  377.5  96.6  280.9  25.6 %  74.4 % 
HX  249.8  106.6  143.3  42.7 %  57.3 %  
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Hanjiang River to supplement the WRB in 2014. This project can directly 
provide 330 million m3 water to the WRB annually. The proposed 
methods of the present study could provide reference methodology for 
similar studies in other regions of the world, and provide scientific 
guidance for the government’s water diversion projects, thus aiding in 
alleviating the ecological drought in rivers and improving the carrying 
capacity of the river ecosystem in the WRB. 

5.3. Uncertainty and limitations 

Although the MSES calculation using the KDE function and the 
quantification framework based on hydrological simulation are suitable 
tools for analysing the effects of climate variability and human activities 
on ecological drought in rivers, some uncertainties and limitations in 
this study are still worth emphasizing. 

When using the probability fitting method, the sample length affects 
the probability density estimation (Wang et al., 2021b). Therefore, when 
the KDE method is used in other regions, the length of the available 
sample data should be sufficient for probability fitting. In this study, a 
30-year streamflow dataset from the undisturbed period (1961–1990) 
was used for probability density estimation, which meets the criterion of 
sample size recommended by the WMO (i.e., ≥ 30 years) and can be used 
as a reference sample to study the impact of climate variability. In 
addition, the aquatic ecosystem in a river is complex and diverse. 
Therefore, the identification and analysis of ecological drought in rivers 
and the attribution of its driving factors are usually complex and diffi-
cult. Although this study selected MSES as the threshold for identifica-
tion of ecological drought, double- or multi-threshold methods can be 
considered in future research to better capture the ecological drought 
events (Park et al., 2020). Furthermore, because of the lack of data about 
ecosystem responses to streamflow alterations in the study area, we 
adopted the hydrological methods for MSES calculation. Therefore, 
future studies should focus on developing a consistent eco-hydrological 
monitoring and forecasting system that consider the response of the 
aquatic ecosystems to streamflow variations (Barnosky et al., 2012; 
Pastor et al., 2014). 

In addition, the use of hydrological models usually bring uncertainty 
(Van Loon et al., 2013; Wang et al., 2020; Mohammadi et al., 2021, 
2022; Rahman et al., 2022). Therefore, when carrying out ecological 
drought research based on hydrological models in other regions, one 
should carefully select the appropriate hydrological model and set 
appropriate objective functions to calibrate the models to ensure the 
accurate capture of the low-flow process as much as possible. This study 
selected 30 years of data in the undisturbed period (1961–1990) for 
model calibration and verification and then simulated 27 years of 
streamflow data in the disturbed period (1991–2017). The lengths of the 

two periods were similar with each other, and the objective function 
ensure the VIC model could capture both low and high flow processes 
well. 

6. Conclusion 

In this study, we adopted the KDE function to estimate the proba-
bility density of the monthly streamflow and selected streamflow values 
corresponding to the maximum density as the MSES to compose a var-
iable threshold series for the identification of ecological drought. Sub-
sequently, a quantification approach based on hydrological model 
simulation was proposed to separate the effects of climate variability 
and human activities on ecological drought. The basic requirements of 
the approach were the observed meteorological and streamflow data of 
the undisturbed period to calibrate/validate the hydrological model and 
the observed meteorological data of the disturbed period to simulate 
streamflow during the same period. 

It is concluded that the streamflow of the Xixian and Huaxian sta-
tions within the WRB had a significant downward trend (α < 0.05) and 
both change points of streamflow series of the two stations appeared in 
1990. Besides, simulation results revealed that VIC model can accurately 
simulate streamflow process of the two stations during disturbed period 
(1961–1990), so as to support the reconstruction of the natural 
streamflow series during disturbed period (1991–2017). More impor-
tantly, the attribution analysis showed that the impacts of climate 
variability and human activities on the aggravation of ecological 
drought were 25.6 % and 74.4 % for the XY station, and 42.7 % and 57.3 
% for the HX station, respectively, revealing that human activities were 
the dominant factor for the aggravation of ecological drought in the 
WRB after 1990. 

Overall, the proposed integrated approach for comprehensive un-
derstanding and quantification of ecological drought in rivers provides 
water managers with suitable tools to explore how climate variability 
and human activities alter ecological drought. However, in this study, 
changes of land use and vegetation conditions are not considered in the 
simulation of VIC model. In the future studies, the dynamic changes of 
the underlying vegetation should be considered in the model simulation 
processes. More importantly, it will be more meaningful to further study 
the impacts of different meteorological flux changes (i.e., precipitation 
changes and temperature changes) and different types of anthropogenic 
water use behaviours (i.e., reservoir regulations and direct water 
abstraction) on ecological drought. 
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