
 

Figure 1. the flowchart of this study 
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Figure 2. The time series of annual drought indices: SWDI derived from (a) 

ERA-Interim, (b) MERRA, (c) NCEP, (d) Noah soil moisture and (e) scPDSI. The 

slope () and p-value were denoted by Sen’s slope method. The slope and p-value of 

two time periods of 1950-2005 and 1980-2005 were calculated for SWDI from Noah 

dataset and scPDSI. The scatter diagram of scPDSI with SWDI derived from (f) 

ERA-Interim, (g) MERRA, (h) NCEP, (i) Noah datasets during 1980-2005 and (j) 

scPDSI with SWDI derived from the Noah dataset during 1950-2005. 

  



 
Figure 3. Global patterns and trends of annual (a) drought duration (DD), (b) drought 

magnitude (DM) and (c) drought extremum (DE) based on Noah soil moisture dataset 

during 1980-2005. The blue solid lines in the subgraph of the left panel also refer to 

the monsoon area, and the other line refers to the non-monsoon area. The bars with 

black solid rectangle line in the right panel refer to the monsoon area and the other 

bars refer to non-monsoon area. The gray color refers to where the trend is less than 

10-3 month/year in the drought duration trend. The gray dotted line refers to the 60 ºN 

latitude. 

 



 

Figure 4. The trend of annual drought durations (DD), drought magnitude (DM), and 

drought extremum (DE) during 1951-2005 based on SWDI from the Noah soil 

moisture and different forcings in CMIP5. The colors refer to the different study areas: 

whole the world, the monsoon regions, and the non-monsoon regions. The solid 

colored points denote that the trends reach the significance level of 0.05, and the 

hollow dots conversely. 

  



 

 

Figure 5. The scaling factor of annual (a) drought duration (DD), (b) drought 

magnitude (DM), and (c) drought extremum (DE) from a single-signal optimal 

fingerprint analysis. Different colors refer to three research areas: the whole world, 

monsoon regions and non-monsoon regions. The error bars indicate the 95% 

confidence intervals. 

  



 

Figure 6. The scaling factor of annual drought duration (DD) from two-signal optimal 

fingerprint analysis and the shadows indicate the joint 95% confidence intervals. 

Different colors refer to three research areas: the whole world, monsoon regions and 

non-monsoon regions. Different dimensions refer to the corresponding forcings. 

  



 
Figure 7. The scaling factor of annual drought magnitude (DM) from two-signal 

optimal fingerprint analysis and the shadows indicate the joint 95% confidence 

intervals. Different colors infer three research areas: the whole world, monsoon 

regions, and non-monsoon regions. Different dimensions refer to the corresponding 

forcings. 

 

 

 

 

 



 

 

Figure 8. The scaling factor of annual drought extremum (DE) from two-signal 

optimal fingerprint analysis and the shadows indicate the joint 95% confidence 

intervals. Different colors refer to three research areas: the whole world, monsoon 

regions, and non-monsoon regions. Different dimensions refer to the corresponding 

forcings. 
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Abstract: The spatio-temporal patterns of drought changes and relevant forcings are 22 

still open for debate, especially under global warming, even though agricultural drought 23 

has long been receiving increasing concern for food security and sustainable 24 

development. In this study, we depicted global spatiotemporal patterns of agricultural 25 

drought using the Soil Water Deficit Index (SWDI) and reflected on the underlying 26 

forcings using the optimal fingerprint method. Three aspects of droughts were analyzed, 27 

i.e. drought duration (DD), drought magnitude (DM) and drought extremum (DE) over 28 

three regions, i.e. global, monsoon and non-monsoon regions. We found distinct spatial 29 

heterogeneity of DD, DM and DE. However, DM (DE) had mainly a decreasing 30 

(increasing) tendency. Anthropogenic activities (anthropogenic forcing only: including 31 

greenhouse gas, anthropogenic aerosol, and ozone [ANT]) and greenhouse gas changes 32 

(greenhouse gas forcing only [GHG]) played a prominent role in driving drought 33 

changes and were followed by the combination of anthropogenic and natural forcing 34 

(ALL). Soil moisture drought (DD, DM and DE) responses to external forcing of ANT 35 

and GHG were detected more easily in the monsoon region than in the non-monsoon 36 

region. Specifically, DM changes due to ANT (2.58 per century) contributed 39.88% 37 

of the DM changes by ALL (6.47 per century) in the monsoon regions, comparatively, 38 

the GHG and ANT induced changes of DM in the non-monsoon regions were quite 39 

slight. This study further clarified the impacts of anthropogenic warming on agricultural 40 

drought over the globe.  41 

 42 

Key words: Soil moisture; SWDI; Forcings; Anthropogenic forcing; Attribution 43 
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analysis 44 

 45 

1. Introduction 46 

Drought, as an event of prolonged water deficit, is believed to be the costliest and least 47 

understood natural hazards with disastrous effects on agriculture, water supply, and 48 

economy (Mishra and Singh, 2010; Leng and Hall, 2019; Zhang et al., 2019a). Soil 49 

moisture (SM) is a pivotal linkage between land surface and atmosphere with respect 50 

to hydrothermal exchange (Zeng et al., 2015; Zhang et al., 2018a) and plays a critical 51 

role in the hydrological cycle (Zhang et al., 2018a). SM is also closely related to 52 

agricultural drought which is mainly characterized by SM deficit. Agricultural drought 53 

directly threatens food security and accentuates poverty (Pradhan et al., 2017; Yu et al., 54 

2019) and has therefore been receiving increasing attention (e.g. Zhang et al., 2018b; 55 

Yu et al., 2019; Gu et al., 2019b). On the other hand, due to climate change (Dai, 2013) 56 

based on the evidence from model-simulated SM regimes (Wang, 2005; Gu et al., 57 

2019b), drought indices (Yu et al., 2019), and precipitation-minus-evaporation (Seager 58 

et al., 2007), drought risk is expected to increase in the decades ahead. The Fifth 59 

Assessment Report of the Intergovernmental Panel on Climate Change pointed out low 60 

confidence since the middle of the 20th century in detecting the human impact on 61 

drought changes over global land areas due to internal climate variability (Yuan et al., 62 

2019). Data scarcity and drought index variety (Sheffield et al., 2012; Yu et al., 2019) 63 

potentially produce large uncertainty in future drought projection (Samaniego et al., 64 

2018; Yuan et al., 2019), and understanding the spatiotemporal patterns of SM drought 65 
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(SD) and relevant forcings are still a challenge in the backdrop of global warming (Gu 66 

et al., 2019b). 67 

There is now sufficient evidence that global warming is intensifying the 68 

hydrological cycle at regional and global scales (Zhang et al., 2013; Mitchell et al., 69 

2016; Ingram, 2016) and is therefore modifying water balances in both space and time, 70 

leading to the spatio-temporal redistribution of water resources and potentially 71 

threatening water resources security (Prudhomme et al., 2014). If global warming 72 

continues at the current rate, the difference between water supply and water demand 73 

will increase fivefold, and the current once-in-a-century drought will occur every 2 to 74 

5 years in many regions (Naumann et al., 2018). Meanwhile, global monsoon 75 

precipitation provides the majority of water to agriculture and ecosystems (Deng et al., 76 

2018), which have also led to the difference in climate between monsoon regions and 77 

non-monsoon regions. The increase of monsoon precipitation in the northern 78 

hemisphere promotes the occurrence of drought in the mid-latitudes by the monsoon-79 

desert-like mechanism (Deng et al., 2018). SM drives land-atmosphere interactions via 80 

partitioning of precipitation and radiation (Albergel et al., 2013; Wanders et al., 2014), 81 

alters the hydrological cycle (Wanders et al., 2014), hydro-climatic extreme events 82 

(Padron et al., 2019), and modifies vegetation species (Roux et al., 2013). SM drought 83 

or agricultural drought hinders vegetation growth and agricultural production, causing 84 

reduced crop yield and food shortage and hence regional and global food security 85 

(Wheeler and von Braun, 2013). Therefore, it is critical to properly monitor and 86 

evaluate agricultural drought, reflecting on the spatiotemporal patterns of SM and 87 
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relevant forcings in the monsoon and non-monsoon regions (Ochsner et al., 2013).  88 

Many factors drive droughts and previous studies mainly focused on the impact of 89 

climate factors on droughts (Dai, 2013; Trenberth et al., 2014; Zhang et al., 2019b). The 90 

differentiation between human activities and climate change is of significance in the 91 

understanding of drought changes in both space and time and the mitigation of droughts, 92 

but limited attention has been paid in this aspect, especially at the global scale. Gu et 93 

al. (2019b) attributed SM drying to anthropogenic forcing at the global scale. 94 

Diffenbaugh et al. (2015) advocated that anthropogenic warming was increasing the 95 

likelihood of simultaneous warm and dry conditions in California. Based on 96 

hydrological and land-surface models, Samaniego et al. (2018) stated that 97 

anthropogenic warming exacerbated SD in Europe and new challenges for adaptation 98 

would have to be faced throughout the continent.  99 

Currently, the research on exploring the effects of anthropogenic activities on 100 

drought is limited. First, the results based on different drought indices are quite different, 101 

and it is urgent to construct a reliable indicator that can accurately reflect agricultural 102 

drought. It should be noted that drought is multiscalar and can be described by duration, 103 

intensity or severity, inter-arrival time, and areal extent (Zhang & Zhou, 2015). The 104 

current research hardly focuses on the effect of different forcings on multiscalar 105 

characteristics of drought (including drought duration, drought degree, and extreme 106 

drought value). Moreover, these studies mainly focus on a single region, such as the 107 

whole world, and there is a lack of comparative studies in different regions. The 108 

monsoon region is greatly affected by the monsoon system, and monsoon precipitation 109 
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provides most of the water sources for agriculture and ecosystems (Deng et al., 2018). 110 

The increase in monsoon precipitation promotes the occurrence of drought in the mid-111 

latitude region through a monsoon-desert mechanism (Deng et al., 2018), which also 112 

leads to the difference in climate between monsoon and non-monsoon regions. In 113 

addition, there are still large differences in the intensity of anthropogenic activities in 114 

the monsoon and non-monsoon regions. It is therefore important to quantitatively 115 

analyze the impacts of different forcings (including natural forcing and anthropogenic 116 

forcing) on multiscalar characteristics of drought in the monsoon and non-monsoon 117 

regions. Therefore, the objectives of this study are: (1) to construct the Soil Water 118 

Deficit Index (SWDI) based on the Harmonized World Soil Dataset (HWSD) and the 119 

soil moisture reanalysis data that can best reflect the variation of drought; then depict 120 

the spatiotemporal patterns of multiscalar drought characteristics of drought duration 121 

(DD), drought magnitude (DM) and drought extreme (DE); and employ 282 ensembles 122 

from 31 CMIP5 models to explore the variation of DD, DM and DE under different 123 

historical forcing, including all forcing (ALL) , natural forcing (NAT), anthropogenic 124 

forcing (ANT), greenhouse gas forcing (GHG), and anthropogenic aerosol forcing ( AA) 125 

in the global, monsoon and non-monsoon regions; further use the optimal fingerprint 126 

method to conduct the single and two-signal detection; finally identify and quantify the 127 

effects of different forcings on multiscale characteristics of drought. 128 

 129 

2. Data 130 

2.1 SM datasets 131 



7 
 

The Global Land Data Assimilation System (GLDAS) has been developed to 132 

optimally estimate land surface states and fluxes by ingesting satellite- and ground-133 

based observed data products using advanced land surface models and data assimilation 134 

techniques (Rodell et al., 2004). GLDAS drives four models, including Noah, Mosaic, 135 

VIC and CLM, which are derived from the Goddard Earth Sciences Data and 136 

Information Services Center (http://disc.sci.gsfc.nasa.gov). The Noah model outputs 137 

global SM datasets of four layers (0~0.1 m, 0.2~0.4 m, 0.4~1 m and 1~2 m). The Noah 138 

V2.0 data products have a spatial resolution of 0.25℃ × 0.25℃ and the time interval of 139 

1948-2010, which has been used in many SM-related researches (Gu et al., 2019a; 140 

Zhang et al., 2019b). Meanwhile, ERA-Interim, MERRA (the Modern-Era 141 

Retrospective Analysis for Research and Application, Version 2) and NCEP-CFSR (the 142 

National Centers for Environmental Prediction-Climate Forecast System Reanalysis) 143 

were also used for the estimation of SM (Table S1). We resampled these SM data into 144 

the spatial scale of 0.25°×0.25° by bilinear interpolation method, and the study time 145 

range was 1980-2005, but 1950-2005 for Noah. The 0~1 m depth SM data were used 146 

for drought analysis from weighted average according to the depth of the upper three 147 

soil layers, which has been referred to as the root depth (Parajka et al., 2009; Santos et 148 

al., 2014; Yuan and Quiring, 2017). Due to the complex mechanism of frozen soil in 149 

high latitude areas, the SM content is generally high with higher uncertainty. In this 150 

study, we analyzed the SD changes and relevant forcings over the monsoon and non-151 

monsoon regions (Deng et al., 2018), respectively, and the study region was limited to 152 

60° S - 60° N, and the global spatial patterns were displayed. 153 
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 154 

2.2 SM datasets from Coupled Model Intercomparison Project 5 (CMIP5) 155 

The historical forcings considered in this study included anthropogenic and natural 156 

forcing (ALL), natural forcing (NAT), anthropogenic forcing (ANT, including 157 

greenhouse gas, anthropogenic aerosol, and ozone), greenhouse gas forcing (GHG) and 158 

anthropogenic aerosol forcing (AA; Gu et al., 2019b; Taylor et al., 2012). The monthly 159 

SM datasets (variable “mrlsl”) at the depth closest to 100 cm from CMIP5 were 160 

analyzed (Gu et al., 2019b), and the SM datasets from 31 models were used for ongoing 161 

analysis (Table S3). The SM datasets under different forcings are displayed in Tables 162 

S4-S8. 100 realizations of models and corresponding ensembles were used for the ALL 163 

forcing (Table S4), accordingly, 68 realizations for the NAT forcing (Table S5), 64 164 

realizations for the GHG forcing (Table S6), 22 realizations for the AA forcing (Table 165 

S7), and 28 realizations for the ANT forcing (Table S8). 166 

 167 

2.3 Harmonized World Soil Database (HWSD) 168 

The Harmonized World Soil Database v 1.2 was released in 2012 jointly by Food 169 

and Agriculture Organization of the United Nations (FAO) with International Institute 170 

for Applied Systems Analysis (IIASA), the International Soil Reference and 171 

Information Centre (ISRIC-World Soil Information), Institute of Soil Science - Chinese 172 

Academy of Science (ISSCAS) and the Joint Research Centre of the European 173 

Commission (JRC). It is a 30-arc-second raster database that contains more than 15000 174 

different soil mapping units and existing regional and national updates of soil 175 
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information worldwide, combining the 1:5000000 scale FAO-UNESCO (United 176 

Nations Educational, Scientific, and Cultural Organization) Soil Map of World (FAO, 177 

1971-1981). Although several new soil property datasets have been developed, HWSD 178 

V1.2 still have been widely used by researchers and are well validated and tested. The 179 

soil characteristics from HWSD are reliable for the research related to carbon capture, 180 

land use change, soil loss estimation, soil organic carbon stock, hydrological modelling, 181 

ecosystem services and so on (Ding et al., 2020; Nachtergaele et al., 2012; Othman et 182 

al., 2021; Rivas-Tabares et al., 2020; Shepherd et al., 2021; Suroso et al., 2021; Silatsa 183 

et al., 2020; Wenjie et al., 2020).  (Nachtergaele et al., 2012). Sand, clay, and organic 184 

carbon were used to calculate field capacity and wilting point by the weighted average 185 

of top layer (0-30 cm) and sublayer (30-100 cm). 186 

 187 

2.4 Self-calibrated Palmer Drought Severity Index (scPDSI) 188 

We monitored and verified droughts using the scPDSI (Self-calibrated Palmer 189 

Drought Severity Index; Wells et al., 2004) from CRU TS 4.03 (Climatic Research Unit 190 

gridded Time Series Version 4.03), which is derived from monthly climate anomalies 191 

based on the fourth release of the new interpolation algorithm and can be applied in 192 

agricultural drought monitoring (Harris et al., 2020). PDSI was one of the first 193 

procedures to quantify drought severity under different climatic conditions (Palmer, 194 

1965). Palmer's goal was to develop a general method for assessing drought based on 195 

an index capable of temporal and spatial comparisons of drought (Palmer, 1965). PDSI 196 

is based on the primitive water balance model (Wells et al., 2004), including a two-197 
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stage "bucket" model for soils. The top layer can hold an inch of moisture, while the 198 

amount of moisture the lower soil can hold is a location-dependent value that must be 199 

provided as an input parameter (Wells et al., 2004).  200 

The self-calibration characteristics of scPDSI are developed for each site and vary 201 

according to the climatic conditions. These constants are dynamically calculated based 202 

on the characteristics of each site location. The scPDSI is calculated from many gridded 203 

variables, such as temperature, precipitation, vapor pressure, and 10 m wind speed. 204 

Otherwise, potential evapotranspiration is calculated by a more physics-based Penman-205 

Monteith parameterization, using actual vegetation cover rather than reference crop. 206 

Meanwhile, seasonal snow dynamics is included in the embedded water balance model 207 

(Van der Schrier et al., 2013). The scPDSI data used in this study spans the period of 208 

1901-2018 at monthly scale and covers the global land surface except Antarctica with 209 

a 0.5° latitude and 0.5° longitude grid (Van der Schrier et al., 2013; Blunden and Arndt, 210 

2019). 211 

 212 

3. Methods 213 

3.1 Soil Water Deficit Index (SWDI) 214 

SWDI was proposed to monitor the agriculture drought based on basic soil water 215 

parameters and root zone SM (Martinez-Fernandez et al., 2015). The satisfactory 216 

drought monitoring performance of SWDI has been well corroborated (Martinez-217 

Fernandez et al., 2016; Zhu et al., 2019). SWDI was defined as: 218 

SWDI =
𝜃−𝜃𝐹𝐶

𝜃𝐴𝑊𝐶
× 10                                               (1) 219 
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𝜃𝐴𝑊𝐶 = 𝜃𝐹𝐶 −  𝜃𝑊𝑃                                               (2) 220 

where 𝜃 is the SM content in the root zone soil layer (m3/m3); 𝜃𝐹𝐶  denotes the field 221 

capacity (FC), 𝜃𝑊𝑃  represents the wilting point (WP), and 𝜃𝐴𝑊𝐶  denotes the 222 

available water content (AWC). The SWDI, multiplied by 10, is a range of values with 223 

agricultural implication in terms of available soil water (Martinez-Fernandez et al., 224 

2015) to be classified into different drought levels (Table S2). Here we assumed that 225 

the SM content was favorable for crop growth given certain field capacity. The positive 226 

SWDI values indicated too much water in the soil. When it was close to zero, the soil 227 

water reached field capacity (i.e. no water excess and deficit); when SWDI was negative, 228 

the agriculture drought occurred and the impact of drought depended on the crop type 229 

and the proportion of available soil water that could be used from the root zone before 230 

water stress occurred (Allen et al., 1998; Martinez-Fernandez et al., 2015 and 2016).  231 

 232 

3.2 Soil features 233 

There are three main ways to define 𝜃𝐹𝐶  and 𝜃𝑊𝑃: (1) the 5th and 95th percentiles 234 

of soil water contents represented by 𝜃𝑊𝑃 and 𝜃𝐹𝐶; (2) soil water contents at the water 235 

potential of -1500 kPa and -33 kPa denoted as 𝜃𝑊𝑃 and 𝜃𝐹𝐶; (3) 𝜃𝑊𝑃 and 𝜃𝐹𝐶  were 236 

obtained by basic physical characteristics of soil (i.e., the proportion of sand and clay, 237 

and the organic matter content) via pedo-transfer functions (Zhu et al., 2019; Parchami-238 

Araghi et al., 2013). Zhu et al. (2019) chose the 5th and 95th percentiles of SM during 239 

the growing season as the annual 𝜃𝑊𝑃  and 𝜃𝐹𝐶 . Martinez-Fernandez et al. (2016) 240 

employed several methods to obtain 𝜃𝑊𝑃  and 𝜃𝐹𝐶  and found that the temporal 241 
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variation and the range of the index derived by the first method were unrealistic. Results 242 

by the second way identified the drought dynamics better than the other ways 243 

(Martinez-Fernandez et al., 2016). Generally, the soil water contents at the water 244 

potential of -1500 kPa and -33 kPa were accepted as 𝜃𝑊𝑃 and 𝜃𝐹𝐶  (Parchami-Araghi 245 

et al., 2013; Martinez-Fernandez et al., 2015, 2016) and were computed as: 246 

𝜃1500 = 𝜃1500𝑓 + (0.14 × 𝜃1500𝑓 − 0.02)                              (3) 247 

where 𝜃1500𝑓 = −0.024𝑆 + 0.487𝐶 + 0.006𝑂𝑀 + 0.005(𝑆 × 𝑂𝑀) − 0.013(𝐶 ×248 

𝑂𝑀) + 0.068(𝑆 × 𝐶) + 0.031 249 

𝜃33 = 𝜃33𝑡 + [1.283(𝜃33𝑓)
2

− 0.374(𝜃33𝑓) − 0.015]                    (4) 250 

where 𝜃33𝑓 = −0.251𝑆 + 0.195𝐶 + 0.011𝑂𝑀 + 0.006(𝑆 × 𝑂𝑀) − 0.027(𝐶 ×251 

𝑂𝑀) + 0.452(𝑆 × 𝐶) + 0.299 252 

where 𝜃1500 denotes the -1500 kPa SM, i.e. 𝜃𝑊𝑃. 𝜃1500𝑓 denotes the -1500 kPa SM 253 

of the first solution. Similarly, 𝜃33 denotes the -33 kPa SM, i.e. 𝜃𝐹𝐶 . 𝜃33𝑓 denotes 254 

the -33 kPa SM of the first solution. 𝑆, 𝐶, and 𝑂𝑀 refer to the proportion of sand, the 255 

proportion of clay and the organic matter content, respectively. In general, the organic 256 

matter content was derived from the organic carbon (OC) divided by the van Bemmelen 257 

factor of 0.58 (Minasny & Mcbratney, 2018). OM was calculated as: 258 

𝑂𝑀 = 1.724 × 𝑂𝐶                                               (5) 259 

where 𝑂𝐶 denotes the organic carbon content. 𝑆, 𝐶 and 𝑂𝐶 were obtained from the 260 

HWSD.  261 

 262 

3.3 Verification of SWDI 263 
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SWDI was calculated based on four different monthly SM datasets: ERA-Interim, 264 

MERRA, NCEP, and Noah, respectively. Whether or not they could characterize the 265 

agriculture drought worldwide needed to be further evidenced. Here we chose the 266 

scPDSI as a reference drought index (Barichivich et al., 2019), and we evidenced 267 

drought monitoring performance of SWDI based on these four SM datasets against the 268 

scPDSI from a spatiotemporal viewpoint. 269 

 270 

3.4 Definition of drought 271 

Clarification of the definition of drought is the first step into drought risk evaluation. 272 

Drought was considered to occur when SWDI was less than or equal to 0. Drought 273 

duration (DD) was defined as the number of months when drought occurred within one 274 

year; drought magnitude (DM) was defined as the accumulation of the absolute value 275 

of SWDI during the occurrence of drought within one year; drought extremum (DE) 276 

was defined as the maximum of the absolute value of SWDI during the occurrence of 277 

drought within one year. Meanwhile, the grids with positive SWDI were removed from 278 

the analysis in that SWDI>0 meant no drought. 279 

 280 

3.5 Regularized optimal fingerprinting method (ROF) 281 

The optimal fingerprinting technique has been widely used for analyzing the 282 

detection and attribution of climate change (Zhang et al., 2007; Ribes et al., 2009). The 283 

regularized optimal fingerprinting method (ROF) was proposed by Ribes et al. (2013) 284 

and has been widely used for quantifying the anthropogenic contribution to climate and 285 

javascript:;
javascript:;
javascript:;
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hydrological changes (Zhang et al., 2007; Gudmundsson et al., 2017; Slangen et al., 286 

2014; Ribes & Terray, 2013; Gu et al., 2019b). Assuming a noiseless model-based 287 

response mode, the standard detection model is as follows (Allen & Tett, 1999; Hannart, 288 

2016; Gu et al., 2019b): 289 

Y = ∑ 𝑥𝑖𝛽𝑖 + 𝜀
𝑚

𝑖=1
= 𝑋𝛽 + 𝜀 290 

Where 𝑌  is the rank-n vector of observed values, 𝑋  is the climate model-291 

simulated values, 𝑚  is the number of climate fingerprint parrerns, and 𝜀  is the 292 

internal uncertainty of 𝑌. The total least squares approach was used to estimate the 293 

scale factor 𝜀 which adjusts the magnitude of the fingerprint regression to best match 294 

observations. The estimates of the scale factor (β) and corresponding confidence 295 

intervals rely on covariance matrices representing internal climate variability (i.e., 296 

climate "noise") and are estimated from independent subsamples in pre-industrial 297 

conditions (Gudmundsson et al., 2017; Slangen et al., 2014; Ribes & Terray, 2013; Gu 298 

et al., 2019b). 299 

 300 

4. Results 301 

4.1 Verification of SWDI 302 

Soil water characteristics can be used to further improve the performance of SWDI 303 

(Fig. S1). The global average of the AWC in this study was 0.109 m3/m3. Moreover, the 304 

spatial patterns of the estimated SM based on four SM datasets captured dry and wet 305 

conditions of the root zone SM across the globe (Fig. S2), indicating that the global 306 

mean SM was about 0.25 m3/m3. Reliable soil water characteristics and high-quality 307 
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SM datasets combined to result in the accurate evaluation of SWDI and were used to 308 

evaluate the drought conditions at the global scale (Dorigo et al., 2015).  309 

We found drought-affected areas of severe drought > moderate drought > extreme 310 

drought > mild drought, despite different spatial patterns of SWDI based on four 311 

datasets (Fig. S3). Drought monitoring results by SWDI indicated a drying tendency in 312 

the non-monsoon region except for the high-altitude area. The SWDI based on different 313 

datasets also showed consistent spatial patterns of droughts, such as severe droughts 314 

monitored in South America, Africa, and Central Asia (Sheffield et al., 2014), wherein 315 

the results by SWDI based on the Noah indicated that droughts occurred across 73.62% 316 

of the continents over the world.  Meanwhile, the SWDI based on the Noah identified 317 

the droughts in northern North America, northeastern Russia, and Australia (Naumann 318 

et al., 2018) as those monitored by scPDSI (Fig. S4). From the spatial patterns of annual 319 

mean and trends of scPDSI (Fig. S4), we observed similar changing patterns of drying 320 

and/or wetting tendency within the monsoon region when compared with the non-321 

monsoon region, while the drying tendency dominated in the monsoon region (58.32%). 322 

The regions close to the ocean were characterized by the wetting tendency and the 323 

regions with the drying tendency were far away from the sea in the monsoon region 324 

(Dai, 2013).   325 

The annual changes of drought indices, such as SWDI based on four SM datasets 326 

and scPDSI, were displayed in Fig. 2. scPDSI and SWDI based on the Noah SM dataset 327 

were decreasing during 1950-2005, indicating intensifying droughts with Sen’s Slope 328 

value of -0.49 every century (P < 0.05, Figs. 2d-e). Besides, persistently intensifying 329 
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droughts were observed during two periods of 1956-1970 and 1980-1995 (Figs. 2b-e). 330 

Droughts by scPDSI during 1980-2005 did not significantly change (Van der Schrier et 331 

al., 2013). The SWDI based on the MERRA SM dataset indicated enhanced droughts 332 

with a rate of about -0.02 every year (P < 0.05). Droughts by the SWDI based on the 333 

Noah SM dataset were subject to similar variations when compared to the droughts by 334 

the scPDSI. Even droughts by the SWDI based on the NCEP SM data followed a similar 335 

variation but the amplitude of drought was more severe than by the Noah-based SWDI 336 

and severe droughts occurred in 1987 (Figs. 2c-e). The period of 1990-1995 witnessed 337 

long lasting droughts with the drought indices less than 0 (Figs. 2b-e). Furthermore, 338 

droughts were underestimated by SWDI based on the ERA-Interim SM data when 339 

compared to scPDSI (Fig. 2f). Comparatively, droughts were overestimated by the 340 

SWDI based on the NCEP SM data (Fig. 2h). Meanwhile, Fig. 2g indicated that the 341 

SWDI based on the MERRA SM data did not capture the droughts well when compared 342 

to scPDSI. The SWDI values from Noah SM during 1980-2005 and 1950-2005 were in 343 

good relationship with scPDSI with the scatter points around the straight line (Figs. 2i 344 

and j). In general, results showed that SWDI values based on four SM datasets were in 345 

positive correlation with scPDSI within most areas (about 90% of the study region). 346 

The SWDI values based on ERA-Interim and MERRA had similar drought monitoring 347 

performance with more than half areas being evaluated well which was inferior to that 348 

from Noah (Fig. S5; Li et al., 2020). 349 

 350 

4.2 Drought changes evaluated based on Noah SM dataset 351 
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Fig. 3 demonstrates the spatial patterns and trends of historical drought conditions, 352 

including annual DD, DM and DE based on the Noah SM dataset. The DD in the non-353 

monsoon region was obviously longer than that in the monsoon region. Most areas of 354 

the non-monsoon region were dominated by the duration of more than 9 months, 355 

comparatively, the DD in the monsoon region was in the range of 0-12 months. 356 

Sheffield et al. (2012) considered the changes in the available energy, humidity and 357 

wind speed and found little changes in drought during the past 60 years. Most grids 358 

were dominated by invariant DD (Fig. 3b). The S-shape drought density line for multi-359 

year mean DM in the non-monsoon region indicated that a considerable number of grids 360 

were characterized by severe droughts. More grids displayed a decreasing trend of DM 361 

in both non-monsoon (50.13%) and monsoon (49.27%) regions, even though the grids 362 

for weakening and strengthening DM were near half of all the grids considered, wherein 363 

DM tended to increase in the monsoon region, such as Asia and South America, 364 

implying that these regions were dominated by intensifying droughts, while the African 365 

monsoon areas had a wetting tendency.  DE Unlike DM, there were more areas with 366 

extreme DE in the monsoon region than in the non-monsoon region. Meanwhile, the 367 

DE had an increasing trend in both non-monsoon (48.72% of area) and monsoon (48.04% 368 

of area) regions, indicating that DE slightly increased, which was also different from 369 

DM. The spatial patterns of  DE were similar to DM. Zhai et al. (2017) analyzed the 370 

intensity-area-duration of droughts and found significantly different trends among them 371 

which was consistent with the results in this study. 372 

 373 
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4.3 Drought changes under different forcings 374 

The temporal variations of drought features based on the Noah SM dataset, such as 375 

DD, DM, and DE, during 1951-2005 under different history forcings are shown in Figs. 376 

4 and S6-S8. The anomalies of DD had a significant increase by 0.4 month/century (P 377 

< 0.05) during 1951-2005, while these anomalies first increased during 1951-1991 and 378 

then decreased during 1992-2005, indicating the weakening drought condition in terms 379 

of duration (Fig. S6). No significant decrease was detected (P > 0.05) mainly under the 380 

NAT forcing even with decreasing DD (Fig. 4). Under the GHG forcing, only in the 381 

monsoon region, there was significant drying, which indicated that the increase of 382 

greenhouse gases induced by anthropogenic forcing significantly increased the DD in 383 

the monsoon region over the globe. Only under the AA forcing, the DD significantly 384 

decreased, indicating that aerosols greatly alleviated droughts by reflecting the 385 

downward short radiations and further retarding evapotranspiration (Mahowald, 2011; 386 

Liu et al., 2016). 387 

The DM in the monsoon region had a more significant increase than in the non-388 

monsoon region, especially under the ANT and GHG forcings. The ANT forcing caused 389 

an increasing trend in the DM by 3.36 per century, which was much greater than the 390 

increasing magnitude under the GHG forcing. Meanwhile, the DM decreased due to the 391 

AA forcing, indicating that anthropogenic forcing except GHG were potentially 392 

exacerbating the DM. The DM by SWDI based on the Noah SM dataset increased 393 

significantly by 1.86 per century over the globe and had insignificant trends over the 394 

monsoon and non-monsoon regions.  395 
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The DE by SWDI based on the Noah SM data had an insignificant increase across 396 

the monsoon region. Different forcings had different effects on droughts over the 397 

monsoon and non-monsoon regions, respectively. Otherwise, the AA forcing had 398 

similar effects on droughts when compared to other forcings, such as ALL, ANT and 399 

GHG, indicating that AA had a profound driving effect on the DE relative to the 400 

duration and the intensity. The impacts of ALL on droughts were akin to ANT and even 401 

NAT alleviated droughts. The drought changes in the non-monsoon region due to the 402 

above-mentioned forcings told different stories, indicating that anthropogenic forcing 403 

in the non-monsoon region were not so intense when compared to those in the monsoon 404 

region, while natural forcing still had a certain effect on drought changes. 405 

 406 

4.4 Results by single-signal optimal fingerprint method 407 

Fig. 4 shows the scaling factors of annual DD, DM and DE by a single-signal 408 

optimal fingerprint analysis. The significance values of most forcings were not larger 409 

than zero, indicating that the effects of most forcings on DD were not detectable. Except 410 

for DD, the values of most scaling factors were much larger than 1, indicating that the 411 

drought conditions under all forcings by CMIP5 were underestimated (Fig. 4; Yuan & 412 

Quiring, 2017). In general, the effects of ALL, ANT and GHG on droughts were 413 

detected for DM and DE. This was consistent with the findings that the global drying 414 

was mainly attributed to anthropogenic forcing under global warming (Dai et al., 2004; 415 

Gu et al., 2019b). The attribution analysis by the single-signal optimal fingerprint 416 

method for the NAT and AA forcings failed with the scaling factors less than zero (Fig. 417 
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5) for not only DD but also for DM and DE, indicating that the signals of NAT and AA 418 

in the global drought were not detectable (Chen & Sun, 2017). However, the ANT and 419 

GHG forcings for drought were still detected in the monsoon region with scaling factors 420 

of 2.65 and 2.46 for DM. The scaling factors in the monsoon region were within wider 421 

confidence ranges, indicating that the forcings had more uncertain effects on droughts 422 

in the monsoon region than in the non-monsoon region. 423 

The values of linear trends of the multi-model in different forcings multiplied by 424 

the calculated scaling factors were taken as the attribution of droughts to different 425 

forcings. Among these forcings, the ANT and GHG forcings have been investigated 426 

widely (Gu et al., 2019b). The ANT-induced change in DD was 0.12 months/century at 427 

the global scale, comparatively, the ANT-induced change in DD in the monsoon region 428 

was more intense, being 0.20 months/century, while the GHG-induced change in the 429 

DD was quite small and the linear trend was near zero. The ANT-induced change in the 430 

DM was 1.76 per century at the global scale, while the regional difference was quite 431 

remarkable, wherein the ANT-induced change of DM was 6.47 per century in the 432 

monsoon region and the GHG-induced change in DM was 2.58 per century which 433 

accounted for 39.88% of the ANT-induced changes of DM, comparatively, the GHG 434 

and ANT induced changes of DM in the non-monsoon region were quite slight. The 435 

ANT-induced change of DE was similar within these three regions, which was 0.32 per 436 

century over the globe, being 0.36 per century in the monsoon region, and 0.21 per 437 

century in the non-monsoon region. But the GHG-induced change of DE was greater 438 

in the non-monsoon region (0.53 per century) than in the monsoon region (0.34 per 439 
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century). 440 

 441 

4.5 Results by two-signal optimal fingerprint method 442 

Different drought metrics were affected by multiple different climate forcings, but 443 

the results by the single-signal optimal fingerprint method were obtained by only one 444 

signal when the trend value was much greater than the noise (Chen & Sun, 2017; Gu et 445 

al., 2019b). Therefore, the two-signal optimal fingerprint detection analysis was done 446 

to further explore whether one signal was separated from the other forcings for three 447 

drought metrics considered in this study (Zhang et al., 2013; Gu et al., 2019b). Figs. 6-448 

8 show detection results for pairwise groups of five different forcings. Each forcing of 449 

most pairwise groups was not detected from the other. Specifically, the detection results 450 

of different combinations in different regions were significantly different. 451 

For DD (Fig. 6), the scaling factors of ANT and GHG were greater than zero in the 452 

pair with NAT (Figs. 6e and 6f), which indicated that the forcings of ANT and GHG 453 

were detected from the NAT forcing in the monsoon region. Figs. 6a, 6b and 6c show 454 

that the NAT and ANT forcings in the non-monsoon region were detected, and GHG in 455 

the monsoon region was detected relative to the All forcing, which indicated that even 456 

the anthropogenic forcing impacted the DD, but the greenhouse gas was more 457 

significant for the DD variations in the monsoon region. For DM (Fig. 7), it was 458 

interesting that the forcings of GHG and All were detected from each other (Fig. 7c) 459 

and ANT was detected from the ALL forcing (Fig. 7b) in all three regions. To some 460 

extent, these results imply that the DM induced from the anthropogenic forcing 461 
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including the emission of GHG significantly impacted DM. Besides, the scaling factors 462 

of ANT with GHG over the globe and the monsoon region (Fig. 7h), and the scaling 463 

factor of GHG with AA in the monsoon region were larger than zero (Fig. 7j), which 464 

indicated that the impact of the anthropogenic forcing was detected, and the different 465 

components of anthropogenic forcing like GHG and AA had significantly different 466 

impacts on DM. 467 

For drought maximum (Fig. 8), the impact of anthropogenic forcing on the DE was 468 

more significant than the DD and DM. Generally, the scaling factors of ANT and GHG 469 

relative to ALL and NAT were greater than zero with the values in the second quadrant, 470 

implying that ALL and NAT were detected from ANT and GHG (Figs. 8b, 8c, 8e and 471 

8f; Gu et al., 2019b). Specifically, the ANT forcing was detected significantly with ALL 472 

in all three regions (Fig. 8b), while the GHG was not detected significantly with ALL 473 

in the monsoon region (Fig. 8c). Only ANT in the monsoon region was detected 474 

significantly from NAT (Fig. 8e). Besides, the scaling factors of GHG relative to ANT 475 

over the globe and monsoon region were greater than zero (Fig. 8h) which indicated 476 

that GHG can be detected from ANT forcing. The different detection results indicated 477 

that the complexity and uncertainty of drought mechanisms showed that GHG-induced 478 

warming caused land surface aridity, but some recent studies reported that increased 479 

CO2 led to the reduction of evaporation and hence mitigation of drought (Dai et al., 480 

2018). 481 

 482 

5. Conclusions 483 
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This study developed a drought index based on SM and soil water characteristics 484 

from HWSD, and then we conducted attribution analysis of anthropogenic forcing and 485 

natural forcing using the optimal fingerprint method. We obtained the following 486 

conclusions: 487 

 (1) More grids were dominated by decreasing DM in both non-monsoon and monsoon 488 

regions, even though the grids for weakening and strengthening DM were nearly 489 

half of all grids. Meanwhile, DE had an increasing trend in both non-monsoon 490 

and monsoon regions which was also different from DM.  491 

 (2) The effects of ANT and GHG on drought can be detected easier in the monsoon 492 

region than in the non-monsoon region, and the scaling factors with greater 493 

confidence range indicated the effects varied greatly due to spatial heterogeneity 494 

in the monsoon region. The ANT-induced change of DM was 1.76 per century 495 

over the globe, but the regional difference was quite remarkable. Meanwhile, the 496 

ANT-induced change of DM was 6.47 per century in the monsoon region and the 497 

GHG-induced change of DM was 2.58 per century which accounted for 39.88% 498 

of the ANT-induced change of DM. The ANT-induced change of DE was similar 499 

in the three regions, which was 0.32 per century over the globe, being 0.36 per 500 

century in the monsoon region, and 0.21 per century in the non-monsoon region. 501 

(3) The impact of anthropogenic forcing on DE was more significant relative to the DD 502 

and DM. For DD and DM, ANT and GHG were easily detected from ALL in the 503 

three regions and GHG also was detected from ANT in the monsoon region. But 504 

for DE, ANT and GHG were also detected from NAT. 505 
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Highlights 

1. We evaluated soil moisture droughts with duration, magnitude and extremum 

in monsoon and non-monsoon regions; 

2. We identified more evident impacts of anthropogenic forcing on soil moisture 

drought in monsoon region than in non-monsoon region; 

3. We found larger impacts of anthropogenic forcing on drought magnitude, 

relative to drought duration and drought extremum.  
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spaces per bullet point)




