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Abstract: Accurate and reliable multi-step-ahead flood forecasting is beneficial for 

reservoir operation and water resources management. The Encoder-Decoder (ED) that 

can tackle sequence-to-sequence problems is suitable for multi-step-ahead flood 

forecasting. This study proposes a novel ED with an exogenous input (EDE) structure 

for multi-step-ahead flood forecasting. The exogenous input can be the outputs of 

process-based hydrological models. This study constructs four multi-step-ahead flood 

forecasting approaches, including the Xinanjiang (XAJ) hydrological model, the single-

output long short-term memory (LSTM) neural network with recursive strategies, the 

recursive ED combined with the LSTM neural network (LSTM-RED), and the LSTM-

EDE models. The performance of these four models is evaluated and compared by the 

long-term 3h hydrologic data series of the Lushui and Jianxi basins in China. The results 

show that the LSTM-RED model that integrates recursive strategies into the training 

process of neural networks is more advantageous than the LSTM model. The proposed 

LSTM-EDE model can overcome the exposure bias problem, simplify its model 
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structure, increase the computational efficiency in the validation process, and improve 

the multi-step-ahead flood forecasting accuracy, as compared to the LSTM-RED model.

Keywords: Flood forecasting; Multi-step-ahead; Neural network; Deep learning; 

Encoder-Decoder; Exogenous input

1. Introduction

Reliable and accurate flood forecasts are essential for reservoir operations, 

especially for flood control, power generation, and navigation (Zhu et al., 2020; Lin et 

al., 2020; Chen et al., 2020; Gauch et al., 2021; Zhang et al., 2022; Zhou et al., 2022a). 

Many methods or models have been developed to simulate rainfall-runoff processes for 

flood forecasting, which are broadly classified into two categories: process-based 

models and data-driven models (Samaniego et al., 2010; Birkel and Soulsby, 2015; 

Eslamian et al., 2018b; Seibert et al., 2018; Chen et al., 2020; Fatahi Nafchi et al., 2021; 

Filipova et al., 2022; Ridolfi et al., 2021; Li et al., 2021a). Process-based models 

consider the causal mechanisms of rainfall-runoff transformation and generalize 

complex hydrological phenomena to a certain extent, and therefore play a dominant 

role in real-time flood forecasting (Zhao, 1992; Guo et al., 2004; Chen et al., 2020; 

Eslamian et al., 2018a; Beylich et al., 2021). However, the rainfall-runoff 

transformation process is accompanied by nonlinear and non-stationary characteristics, 

and it is difficult for process-based models to simulate the complex hydrologic process 

comprehensively. Data-driven models, the deep learning model based on the long short-

term memory (LSTM) neural network, benefit from their adeptness in extracting 
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intrinsic connections from big data to effectively simulate complex systems with 

nonlinear and non-stationary characteristics (Shortridge et al., 2016; Granata et al., 

2016; Ostad-Ali-Askari et al., 2017; Yan et al., 2018; Hu et al., 2018; Kratzert et al., 

2018; Zhou et al., 2019). 

Artificial neural networks (ANNs), one of the representative data-driven models, 

have been successfully applied to rainfall-runoff simulation for many years (Young et 

al., 2017; Ostad-Ali-Askari et al., 2021a). ANNs are able to extract useful information 

from observed data and have proved their effectiveness in dealing with nonlinear, non-

smooth series problems (Ha & Stenstrom, 2003; Chang et al., 2014 &2015; Chang & 

Tsai, 2016; Wang et al., 2021; Ostad-Ali-Askari et al., 2021b). With the maturity of 

computer technology and hardware facilities, the deep neural network (DNN) 

technology based on ANNs has gained broad attention (Tennant et al., 2020). Compared 

with the simple ANN, one of DNNs’ obvious advantages is that they can consider the 

correlation between input variables at adjacent moments in one, two, or even higher 

dimensions and capture the dependencies among variables (Zhou, 2020). This 

characteristic is beneficial for tackling time series prediction with first-order or higher-

order Markov-property (Kratzert et al., 2018). One of the most representative DNN 

techniques is the deep learning technique based on LSTM neural networks. 

The LSTM neural network proposed by Hochreiter & Schmidhuber (1997) is a 

special type of recurrent neural networks (RNNs), which overcomes the problems such 

as gradient explosion or disappearance occurring in RNN (Zhou, 2020). It not only 

effectively memorizes information from previous time steps, but also achieves 
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parameter sharing in neural networks of different time steps, which enables a reduction 

in the computational cost and is very advantageous to process time-correlated data 

series. Thus, deep learning models based on LSTM neural networks have been applied 

to hydrologic forecasting. Kratzert et al. (2018) used the Catchment Attributes and 

Meteorology for Large-Sample Studies (CAMELS) dataset to validate the effectiveness 

of LSTM in rainfall-runoff modeling and found the LSTM neural network could obtain 

better performance when used as the regional hydrological model. Hu et al. (2018) 

investigated the performance of LSTM in rainfall-runoff simulation and found that the 

LSTM outperformed the ANN with Nash-Sutcliffe Efficiency (NSE) exceeding 0.9. 

Gao et al. (2020) studied the effect of the time-step length on forecast accuracy and 

found that the LSTM neural network could improve forecast accuracy as the time step 

increases. However, an LSTM model depends on a large amount of data, easily leading 

to overfitting. In particular, flood forecast accuracy decreases as the forecast horizon 

increases due to insufficient input variables with long periods. Although there are some 

studies that take the output of the previous forecast horizon as the input of the following 

forecast horizon (i.e., recursive strategy), this measure tends to cause the transmission 

and accumulation of forecast errors (Young et al., 2017; Zhou et al., 2019; Kurian et 

al., 2020).

In order to improve the accuracy and applicability of the LSTM neural network in 

multi-step-ahead flood forecasting, some studies fused a process-based model with the 

LSTM neural network in an attempt to compensate each other's inherent limitations 

(Zhao et al., 2019; Zhou et al., 2022b). The fusion approach generally takes the output 
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of the process-based model as an additional feature input to the LSTM neural network. 

Some studies have conducted the runoff simulation to explore the effectiveness of this 

fusion approach. For instance, Yang et al. (2019) constructed a hybrid physics-machine 

learning model by taking temperature, precipitation, wind speed, and the simulated flow 

of the GHMs-CaMa-Flood model chain as inputs to the LSTM neural network for 

simulating global floods. They concluded that the hybrid model could significantly 

improve the accuracy of global flood simulations. Konapala et al. (2020) proposed a 

hybrid model using the simulated flows from the Sacramento soil moisture accounting 

(SAC) model as inputs of the LSTM neural network for simulating runoff of 531 

watersheds under different conditions. They concluded that the hybrid model could 

combine the advantages of SAC and LSTM models and improve the simulation 

accuracy. Cui et al. (2021) constructed a hybrid XAJ-LSTM model that integrated the 

Xinanjiang (XAJ) model into the LSTM neural network for multi-step-ahead flood 

forecasting. They found that the hybrid model could obtain more accurate long lead-

time forecasts than the XAJ and LSTM models, which promotes the transformation of 

this fusion approach from the theoretical simulation to multi-step-ahead flood 

forecasting in practice.

With the development of artificial intelligence technology, the Encoder-Decoder 

(ED) structure is developed to solve the sequence-to-sequence problem emerging in the 

natural language processing. The ED structure combined with a deep learning model 

enables multi-step output under the premise of considering the correlation of time series 

and achieves the best translation results (Sutskever et al., 2014; Cho et al., 2014). The 
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encoding process extracts critical information from the input features in multiple time 

steps and information compression (Kao et al., 2020; Yin et al., 2021). The medium 

vector connecting the encoder and decoder processes is the hidden layer output of the 

last time step in the encoding process, which contains the critical information extracted 

from the input features. The decoding process is to transform the medium vector into 

the target output. The ED structure is sensitive to the order of the input sequence and 

can consider the temporal association among sequences. Therefore, the ED structure is 

suitable for tackling sequence-to-sequence problems and can directly produce multiple 

outputs corresponding to multiple time steps (Ha et al., 2021). The streamflow 

sequences are continuously varying time series with strong autocorrelation, and 

therefore the ED structure is suitable for handling multi-step-ahead flood forecasting. 

The common ED structures in hydrological forecasting can be roughly divided into two 

types. The first type is the recursive Encoder-Decoder (RED) structure proposed by 

Cho et al. (2014), where the input of each time step in the decoding process consists of 

the medium vector and the output value of the previous time step. The second type is 

the static Encoder-Decoder (SED) structure, where only the medium vector is used as 

the input to each time step of the decoding process (Xiang et al., 2020a; Han et al., 

2021). 

Xiang et al. (2020b) applied the SED structure coupled with the LSTM neural 

network (LSTM-SED model) to hourly flood forecasting in the Clear Creek and Upper 

Wapsipinicon River watersheds in Iowa, USA, with a comparison of common machine 

learning models, such as linear regression, lasso regression, and ridge regression. The 
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observed and forecasted precipitation, previously observed flow, monthly 

evapotranspiration, and upstream forecast data were used as inputs to the ED structure. 

They confirmed that the proposed LSTM-SED model could improve the accuracy of 

short-term flood forecasts. Kao et al. (2020) used the RED structure combined with the 

LSTM neural network (LSTM-RED model) for 1~6 h flood forecasting in the Shimen 

Reservoir watershed. The inputs to the ED structure included the previously observed 

flow discharges and precipitation only. They demonstrated that the LSTM-RED model 

could obtain accurate multi-step-ahead flood forecasts and reduce the root-mean-square 

error (RMSE) by 3%~38% during the testing period, compared with an ED model based 

on feed forward neural network (FFNN-RED) model. Han et al. (2021) constructed an 

LSTM-SED model to forecast floods in the Russian River basin of northern California, 

USA. Observed flow data at the outlet point and four upstream stations were used as 

inputs to the ED structure. Their results show that the LSTM-SED model performs well 

with NSE values ranging from 0.97 to 0.99 and correlation coefficient (R) metrics 

ranging from 0.98 to 0.99 at 1~6 h forecast horizons. Ha et al. (2021) developed three 

DNN models (i.e., LSTM, Conv LSTM, and Gate recurrent unit (GRU) neural networks) 

based on the RED structure and applied them to the Yangtze River basin based on El 

Niño-Southern Oscillation and monthly flood data. They found that the Conv LSTM 

neural network could improve the stability of the ED structure and produce the best 

forecasting results with the R index exceeding 0.8 and the RMSE index below 8000 

m³/s. Meanwhile, the introduction of the oscillation factor could improve the forecast 

accuracy of flood peaks and flood occurrence times. Yin et al. (2021) improved the 
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SED structure and developed an LSTM-based multi-state-vector sequence-to-sequence 

rainfall-runoff model as well as compared it with the models proposed by Xiang et al. 

(2020b) and Kao et al. (2020). The model used multi-state vectors for multi-step-ahead 

runoff forecasting, where observed and forecasted meteorological materials (such as 

daily maximum and minimum temperature, precipitation, and vapor pressure) and 

previously observed runoff were employed as inputs to the ED structure. Their 

experiments in 673 watersheds showed that the proposed model could improve the 

forecast accuracy for 7d forecast horizon of the benchmark model, and therefore is 

suitable for multi-day-ahead runoff forecasting.

Although the above studies demonstrated that neural networks combining ED 

structures could achieve more accurate multi-step-ahead flood forecasts, the recursive 

process problems and limitations of the RED structure have not been discussed. The 

following research questions need to be answered, which motivated the current study 

and formed the research objectives. First, what is the difference between the LSTM-

RED model and the single-output LSTM model with a recursive process? Second, what 

are the advantages and disadvantages of the LSTM-RED model considering recursive 

processes for multi-step-ahead flood forecasting? Finally, can the disadvantages of the 

LSTM-RED model be solved by the above-mentioned fusion approach?

The following research work is carried out to achieve the objectives. (1) Explore 

the differences between the LSTM-RED model and the LSTM model with a recursive 

process, as well as analyze the impact of the recursive process within the LSTM-RED 

model on multi-step-ahead flood forecast accuracy from different perspectives. (2) Fuse 
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the flow forecasts from the XAJ model into the LSTM-ED model in an attempt to solve 

the disadvantages of the LSTM-RED model. To the best of the authors’ knowledge, this 

fusion approach, focusing on combining process-based models with the single-output 

LSTM neural network, has not been considered so far in the ED structure models. 

Therefore, the novelty of this study is that an innovative ED structure with an 

exogenous input (EDE) is proposed for the first time by considering the forecasted flow 

of the XAJ model as the exogenous input variable. The LSTM neural network is 

integrated into the EDE structure to build the LSTM-EDE model. The Lushui and Jianxi 

basins in China are selected as the case studies to conduct the multi-step-ahead flood 

forecasting and to demonstrate the improvement in the applicability of emerging 

artificial intelligence techniques.

The rest of the paper is organized as follows. Section 2 presents the proposed 

methods and approaches. Section 3 briefly introduces the case study and materials. 

Section 4 evaluates and analyzes the results of the models adopted for multi-step-ahead 

flood forecasting. Section 5 provides a discussion based on the forecast results. 

Conclusions are then given in Section 6.

2. Methods

This study proposes a novel LSTM-EDE model, which is compared with the XAJ, 

LSTM, and LSTM-RED models. The frameworks of the RED and EDE structures is 

presented in Fig.1.
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 Em is the encoder at the mth time step. m is interpreted as the forecast basis time.
 Dn is the decoder at the nth time step. n is interpreted as the longest leading time.
 On is the output value at the nth time step.
 Im is the observed flow corresponding to mth time step.

 Ik,m is the input variable of the kth input feature at the mth time step.
 Ix,i+n is the exogenous input at the (i+n)th time step.
 C is the medium vector.
 hm is the hidden layer output of Em.

Fig.1 The frameworks of the RED and EDE structures

2.1 Recursive Encoder-Decoder (RED) structure

The RED structure in Fig.1(a) was proposed by Cho et al. (2014), where the input 

of each time step of the decoding process consists of a medium vector and the output 

value of the previous moment, like the strategy of recursive feedback input. The 

highlighted arrow in the Fig.1(a) indicates the recursive feedback input process. 
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Through the recursive process, the decoding process in the RED structure can receive 

not only the important information extracted from the encoding process but also the 

changing information from the previous moment. 

During the training period, the decoding process of the RED structure does not 

employ a recursive input strategy, but employs the target output of the previous moment, 

i.e., the target output (observed flow) at t+1 moment is used as the input at t+2 moment 

(also known as the teacher forcing mechanism (Toomarian & Barhen, 1992)). During 

the validation period (also known as the inference process (Bengio et al., 2015)), the 

decoding process of the RED structure adopts the recursive input strategy because of 

the unavailability of the observed flows in the forecast horizon, i.e., the output 

(forecasted flow) at t+1 moment is used as the input at t+2 moment. This is the reason 

for the inconsistency between training and validation processes of the RED structure 

(the problem is called exposure bias in natural language processing (Zhang et al., 2019)). 

Meanwhile, it is found from Fig. 1(a) that the recursive input strategy complicates the 

inference process. We will analyze the characteristics of the RED structure from 

different perspectives in the subsequent sections.

2.2 Encoder-Decoder with an Exogenous input (EDE) structure 

We propose the Encoder-Decoder with an Exogenous input (EDE) structure and 

specify the exogenous input from the forecasted flow sequence of the process-based 

model. The EDE structure allows the decoding process to receive information 

associated with the target output and helps the decoder capture the connection between 

the input and the target output. The length of the exogenous input should be equal to 
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the maximum forecasting period. The EDE structure takes the medium vector and the 

exogenous input as the inputs for each time step of the decoding process, and the 

structure is shown in Fig.1(b). 

The input of the decoder in the EDE structure is always the forecasted flows of the 

process-based model and the medium vector during training and validation processes. 

Therefore, the training and validation processes remain consistent. The EDE structure 

has another advantage of simplifying the recursive process and is beneficial to the 

computational efficiency of the inference process. The most critical difference between 

RED and EDE structures is the input factor of the decoding process, i.e., the input in 

the decoding process of the EDE structure is changed to the exogenous input instead of 

the output value of the previous moment.

2.3 Long short-term memory (LSTM) neural network unit

The LSTM neural network consists of a forgetting gate, an input gate, and an 

output gate. Each gate of the LSTM neural network connects the information of the 

input layer and the output value (ht) of the hidden layer. The principle of the LSTM cell 

is shown in Equations (1) -(6).

                  (1)𝑓𝑡 = 𝜎(𝑊𝑥𝑓 ∙ 𝑥𝑡 + 𝑊ℎ𝑓 ∙ ℎ𝑡 ― 1 + 𝑏𝑓)

                   (2)𝑖𝑡 = 𝜎(𝑊𝑥𝑖 ∙ 𝑥𝑡 + 𝑊ℎ𝑖 ∙ ℎ𝑡 ― 1 + 𝑏𝑖)

                 (3)𝑐𝑡 = tanh(𝑊𝑥𝑐 ∙ 𝑥𝑡 + 𝑊ℎ𝑐 ∙ ℎ𝑡 ― 1 + 𝑏𝑐)

                  (4)𝑜𝑡 = 𝜎(𝑊𝑥𝑜 ∙ 𝑥𝑡 + 𝑊ℎ𝑜 ∙ ℎ𝑡 ― 1 + 𝑏𝑜)

                       (5)𝑐𝑡 = 𝑓𝑡𝑐𝑡 ― 1 + 𝑖𝑡𝑐𝑡

                        (6)ℎ𝑡 = 𝑜𝑡tanh (𝑐𝑡)
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where f denotes the output value of the forgetting gate, i denotes the output value of the 

input gate, h denotes the state value of the hidden layer, W denotes the weight, b denotes 

the bias value, c denotes the state of the memory unit in the hidden layer, o denotes the 

output value of the output gate, x denotes the input feature,  denotes the Sigmoid 𝜎( ∙ )

activation function,  denotes the tangent S-curve activation function,  tanh( ∙ ) 

denotes the Hadamard product.

The single-output LSTM model adopts a recursive input strategy (Zhou et al., 2019; 

Xu et al., 2021) to calculate the multi-step-ahead flood forecasts in training and 

validation periods, i.e., the forecast results of the previous forecast horizon are used as 

the input to the neural network of the following forecast horizon. The LSTM model 

trains the neural network structure by means of multiple inputs and single outputs. After 

acquiring an excellent network structure, the recursive input strategy is employed for 

the multi-step-ahead flood forecasting.

LSTM neural network units are integrated into RED and EDE structures to 

construct LSTM-RED and LSTM-EDE models, respectively. We employ a fault testing 

method to determine the relevant hyperparameters of the neural network models. One 

layer with 64 hidden units (neurons) of the LSTM neural network is adopted in both 

the encoder and the decoder. The single-output LSTM model adopts a two-layer 

structure, with 64 hidden units in each layer. The loss function is the mean square error. 

Meanwhile, the Adam optimization method in Tensorflow.keras.optimizers is applied 

to training the model, and its parameters are set to be default values 

(learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-07) (Li et al., 2021b). The 
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batch size and epochs are set to be 100 and 500, respectively. 

2.4 Evaluation of model performance

The Nash-Sutcliffe efficiency (NSE) (Nash & Sutcliffe, 1970), the relative error 

of total streamflow (RE) and the root mean square error (RMSE) are adopted to evaluate 

the model performance, as shown in Equations (7) -(9).
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where N is the number of sample,  and  denote the observed inflows and their 𝑄𝑜 𝑄𝑜

mean value, and  denote the simulated/forecasted inflows and their mean value.𝑄𝑓 𝑄𝑓

3. Case study and materials 

3.1 Lushui basin

The Lushui River, with a watershed area of about 3950 km², is a first-class 

tributary of the middle reaches of the Yangtze River, as shown in Fig.2(b). The 

topography of the basin is high in the southeast and low in the northwest. This basin 

belongs to the subtropical monsoon climate zone with a warm climate, and its annual 

average temperature, rainfall, and runoff volume are about 15.5°C, 1,550 mm, and 3.03 

billion m³, respectively. The rainy season generally concentrates in April-September, 
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accounting for 70% of the annual rainfall. The Lushui Reservoir is located at the outlet 

of the valley of the mainstream. The effective storage capacity of the Lushui Reservoir 

is about 408 million m3, with a flood prevention storage of only about 163 million m3. 

Since the small and medium-sized mountainous basins are often characterized by 

concentrated precipitation and fast runoff production, as well as easy to cause flood 

disasters, the accurate flood forecasts can provide the reservoir important guidance for 

controlling river water levels and preventing flood. Due to the limitation of a small 

flood prevention storage capacity, accurate multi-step-ahead inflow forecasts are 

crucial for flood control and water resources management of the Lushui Reservoir.

This study collected data series during the wet period spanning from May 1 to 

October 31 during 2012 and 2019, which included 3 h precipitation data from 17-

gauging stations, 3 h water surface evaporation, and inflow data of the Lushui Reservoir. 

All data are provided by the Hydrological Bureau of the Yangtze River Water 

Resources Commission. The areal mean precipitation was obtained by averaging the 

recorded data from 17 rainfall stations using the Thiessen polygon method. In this study, 

the dataset collected from 2012 to 2016 was used to train the model (training period), 

and the dataset collected from 2017 to 2019 was used to validate the model (validation 

period). 
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Fig.2 The Lushui basin network and rainfall gauge stations

3.2 Jianxi basin

The Jianxi River basin, with an area of 14,787 km2, a tributary of the Minjiang 

River in Fujian province, China, was also selected as the case study. The Jianxi basin 

belongs to the subtropical monsoon climate zone, and its topography is featured by low 

hills and mountains. The annual average temperature, rainfall, and runoff volume are 

about 18 °C, 2,000 mm, and 15.8 billion m ³ , respectively. Rainfall is mainly 
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concentrated from April to September, accounting for 75% up to 80% of the annual 

precipitation. Fig.2(c) shows the river network and rainfall gauge stations in the Jianxi 

basin, referring to Zhou et al. (2022b) for the specific description.

For the Jianxi basin, this study collected data series of the flood period spanning 

from April 1 to September 30 during 2009 and 2013, which included 3 h precipitation 

data from 16-gauge stations, 3 h evaporation data from 3-gauge stations, and 3 h flow 

data of the Qilijie hydrological station. The areal average precipitation and evaporation 

data are calculated using the Thiessen polygon method. The training and validation 

periods are 2009-2011 and 2012-2013, respectively.

3.3 Input variable selection

In this study, we choose rainfall and inflow data as the input features of the neural 

network. Our previous study used the cross-correlation coefficient (CCF) between the 

rainfall and runoff series to estimate the flow concentration time in the Lushui basin 

and found that the flow confluence time was about 12 hours (Cui et al., 2021). The 

correlation coefficients between basin mean precipitation and observed flow for 

different time lags in the Lushui and Jianxi basins were plotted in Fig.3, which shows 

the runoff generation and flow confluence times of the Lushui and Jianxi basins are 

about 12 h and 21 h, respectively.

According to the runoff generation and the flow confluence time of the Lushui and 

Jianxi basins, the observed flow and areal mean rainfall for the last 12 h (4 time-steps) 

and 21 h (7 time-steps) are adopted as the inputs of the LSTM model, respectively. All 

the encoder inputs are the same as those of the LSTM model. In the LSTM-RED model, 
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the encoder input is the input of the entire structure, and the decoder input comes from 

its internal output. The decoder input in the LSTM-EDE model is an exogenous input, 

and the target outputs for the Lushui and Jianxi basins are the observed flow 

corresponding to the 3~12 h forecast horizons.
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Fig.3 Correlation coefficients between basin mean rainfall and flow discharge at basin 
outlet for different time lags

Considering the stochastic uncertainty of some internal parameters in the neural 

network models, the LSTM, LSTM-RED, and LSTM-EDE models are run 30 times 

consecutively. The network structures with the best forecast performance are selected 

for analysis.

4. Results evaluation

Four models (the XAJ, LSTM, LSTM-RED, and LSTM-EDE models) were 

established. The structure, detailed calibration procedures, and methods of the XAJ 

model can be referred to in our previous studies (Cui et al., 2021; Zhou et al., 2022b).
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The evaluation metrics of the four models for flood forecasting during training 

periods regarding Lushui and Jianxi basins are listed in Table 1. It can be observed that 

the forecast accuracy decreases significantly with the increase of the forecast horizon. 

The LSTM-EDE model is superior to the other models in the RE metric. Taking the 12 

h forecast horizon in the Lushui basin as an example, the RE metrics of XAJ, LSTM, 

and LSTM-EDE models are -30.75%, -7.32%, and -4.17%, respectively, while the 

LSTM-EDE model has the lowest RE value of -0.75%.

Table 1 Evaluation metrics of four models for flood forecasting during training periods
Forecast horizonModel Basin Evaluation metric 3 h 6 h 9 h 12 h

NSE 0.89 0.85 0.78 0.67
RE (%) -8.95 -16.40 -23.85 -30.75Lushui

RMSE (m3/s) 78 88 110 134
NSE 0.92 0.92 0.92 0.90

RE (%) -0.32 -1.03 -2.39 -4.96

XAJ

Jianxi
RMSE (m3/s) 297 297 303 328

NSE 0.99 0.98 0.93 0.82
RE (%) 0.35 -0.27 -3.10 -7.32Lushui

RMSE (m3/s) 16 34 63 97 
NSE 0.99 0.99 0.98 0.97 

RE (%) -0.67 -1.71 -2.50 -4.06 

LSTM

Jianxi
RMSE (m3/s) 65 115 145 192 

NSE 0.98 0.98 0.95 0.89
RE (%) 0.68 -0.04 -1.59 -4.17Lushui

RMSE (m3/s) 15 33 61 83
NSE 0.99 0.99 0.99 0.98 

RE (%) 0.28 0.23 -0.81 -2.12 

LSTM-
RED

Jianxi
RMSE (m3/s) 66 98 111 118 

NSE 0.99 0.98 0.94 0.87
RE (%) -0.05 0.49 -0.31 -0.75Lushui

RMSE (m3/s) 19 35 58 84 
NSE 0.99 0.99 0.98 0.98 

RE (%) 1.42 2.05 2.10 2.09 

LSTM-
EDE

Jianxi
RMSE (m3/s) 89 123 133 142 

Table 2 summarizes the evaluation metrics of the four models for flood forecasting 

during validation periods regarding Lushui and Jianxi basins. It can be observed that 
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the XAJ model has the worst performance. At the 12 h forecast horizon, the NSE, RE, 

and RMSE metrics are 0.62, -28.06%, and 169 m3/s, respectively, for the Lushui basin 

and are 0.85, -12.20%, and 361 m³/s, respectively, for the Jianxi basin.

Table 2 Evaluation metrics of four models for flood forecasting during validation 
periods

Forecast horizonModel Basin Evaluation metric 3 h 6 h 9 h 12 h
NSE 0.87 0.83 0.73 0.62

RE (%) -5.54 -13.26 -20.97 -28.06Lushui
RMSE (m3/s) 97 114 141 169 

NSE 0.87 0.87 0.87 0.85
RE (%) -8.21 -8.86 -10.05 -12.20

XAJ

Jianxi
RMSE (m3/s) 330 332 339 361 

NSE 0.98 0.95 0.88 0.75
RE (%) -0.04 -0.35 -3.23 -7.81Lushui

RMSE (m3/s) 32 58 96 136 
NSE 0.97 0.93 0.91 0.88 

RE (%) -1.70 -4.18 -6.31 -8.66 

LSTM

Jianxi
RMSE (m3/s) 152 241 286 323 

NSE 0.97 0.95 0.89 0.77
RE (%) 0.40 -0.38 -2.61 -6.22Lushui

RMSE (m3/s) 33 58 93 132 
NSE 0.97 0.94 0.92 0.90 

RE (%) -1.45 -3.36 -5.48 -7.43 

LSTM-
RED

Jianxi
RMSE (m3/s) 156 235 270 293 

NSE 0.97 0.95 0.90 0.81
RE (%) -0.14 0.32 -0.40 -0.97Lushui

RMSE (m3/s) 39 55 85 119
NSE 0.98 0.95 0.94 0.93 

RE (%) 0.26 -0.15 -1.42 -2.10 

LSTM-
EDE

Jianxi
RMSE (m3/s) 136 199 232 254 

The LSTM, LSTM-RED, and LSTM-EDE models have no significant difference 

in 3 h forecast horizon. Starting from the 6 h forecast horizon, the evaluation metrics of 

the LSTM model decline significantly, especially for the RMSE metric. At the 12 h 

forecast horizon, the RMSE metrics of the LSTM and LSTM-RED models are equal to 

136 m³/s and 132 m³/s, respectively, in the Lushui basin and equal to 323 m³/s and 293 

m³/s, respectively, in the Jianxi basin. Therefore, the performance of the LSTM-RED 
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model is better than those of the LSTM and XAJ models.

Compared with LSTM and LSTM-RED models, the LSTM-EDE model has the 

least degradation in forecast performance. For 12 h forecast horizon, in the Lushui and 

Jianxi basins, the NSE metric reaches as high as 0.81 and 0.93, respectively, the RE 

metric is as low as -0.97% and -2.10%, respectively, and the RMSE metric is as small 

as 119 m³/s and 254 m³/s, respectively. It can be observed that the advantages of the 

LSTM-EDE model are obvious in the 12 h forecast horizon, especially in the evaluation 

metrics of water volume. Therefore, it is concluded that the LSTM-EDE model has the 

best forecast performance. 

Combining Tables 1 and 2, it is found that the LSTM-EDE model can significantly 

improve the forecast accuracy even though the forecast accuracy of the XAJ model is 

relatively poor. At the same time, the LSTM-EDE model can substantially improve the 

computational efficiency in the validation process, as compared with the LSTM-RED 

model. This is a significant improvement necessary for promoting the ED structure in 

real-time flood forecasting.

The scatter plots of the XAJ, LSTM, LSTM-RED, and LSTM-EDE models’ 

results for the Lushui and Jianxi basins are shown in Figs. 4 and 5, respectively. It can 

be visually observed that in the Lushui basin, the scattering points of all models under 

the high-flow conditions (>2500 m³/s) are significantly lower than the 1:1 ideal line 

during the validation period. The reason may be that the training data lack high flows, 

causing all models to underestimate high flows in the validation period. The scatters of 

all models for the Lushui and Jianxi basins gradually disperse as the forecast horizon 
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increases, which indicates a gradual decrease in forecast performance. The differences 

in the scatter plots of different models in the Lushui basin are relatively obvious. The 

XAJ model produces the most scattered points and severely underestimates the 

observed flows, as compared to the other models, especially in the 12 h forecast horizon, 

as shown in Fig4. (e). All the forecasts obtained from the LSTM, LSTM-RED, and 

LSTM-EDE models stay close to the 1:1 ideal line in the scatter plots on Figs.4 (b), (c), 

and (d) for the 6 h forecast horizon, whereas the scatter plots of the three models show 

different degrees of deterioration for the 12 h forecast horizon (Figs.4 (f), (g), and (h)). 

The scattered points of the LSTM-EDE model are the closest to the 1:1 ideal line in the 

12 h forecast horizon, especially under high flow conditions (Fig.4 (h)). The differences 

in the scatter plots of different models in the Jianxi basin are small. In the 12 h forecast 

horizon, the scattered points of the XAJ, LSTM, and LSTM-RED models are dispersed 

in general, and the scattered points are generally below the 1:1 ideal line under high-

flow conditions (>6000 m³/s) (Figs.5 (e), (f) and (g)). The scatter plot of the LSTM-

EDE model has the narrowest band, with the scattered points the closest to the 1:1 ideal 

line (Fig.5 (h)). Therefore, it can be concluded that the LSTM-EDE model has the best 

forecast accuracy and can effectively reduce the forecast error in the long forecast 

horizon, followed by the LSTM-RED and LSTM models, and the XAJ model has the 

worst performance.
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Fig. 4 Scatter plots of XAJ, LSTM, LSTM-RED, and LSTM-EDE models for the 6 h 
and 12 h forecast horizons in the Lushui basin, where Qo and Qf denote the 
observed and forecasted flow, respectively. The blue circles and the red 
triangles indicate the scattered points in the training and validation periods, 
respectively. 
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Fig. 5 Scatter plots of XAJ, LSTM, LSTM-RED, and LSTM-EDE models for the 6 h 
and 12 h lead-times in the Jianxi basin, where Qo and Qf denote the observed 
and forecasted flow, respectively. The blue circles and the red triangles indicate 
the scattered points in the training and validation periods, respectively.

We randomly selected three flood events in validation periods to further verify the 
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model performance in Lushui and Jianxi basins, respectively. A relative error of flood 

peak (PRE) metric is employed to evaluate the forecast performance, and it is calculated 

by

                     (10), ,

,

100%f peak o peak

o peak

Q Q
PRE

Q


 

where  and  are the forecasted and observed flood peak flow, 𝑄𝑓,𝑝𝑒𝑎𝑘 𝑄𝑜,𝑝𝑒𝑎𝑘

respectively.

The forecasted flood hydrographs of the Lushui basin are plotted in Figs.6, 7, and 

8, respectively. And those of the Jianxi basin are plotted in Figs.9, 10, and 11, 

respectively. Tables 3 and 4 summarize the evaluation metrics of the forecasted 

hydrographs during the 12 h forecast horizon in the Lushui and Jianxi basins, 

respectively.
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Fig. 6 Comparison of observed and forecasted flood hydrographs of the Lushui basin 
by four models (the flood event lasted from May 21 at 17:00 to May 25 at 23:00 
in 2017).

Fig. 6 shows the observed and forecasted hydrographs of the Lushui basin by the 
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four models for the flood event lasting from May 21 at 17:00 to May 25 at 23:00 in 

2017. The observed precipitation occurs in the rising limb and is nearly 0 mm in the 

recession limb. As the forecast horizon increases, the agreement between observed and 

forecasted data gradually worsens. The irregular fluctuations in the rising limbs of the 

flood hydrographs may be related to the presence of multiple rainfall peaks. The XAJ 

model forecasted an earlier occurrence of flood peaks for the 6 h forecast horizon and 

severely underestimated the peak volumes in the 12 h forecast horizon. The LSTM, 

LSTM-RED, and LSTM-EDE models have better performance than the XAJ model. 

Among them, the LSTM-EDE model has an advantage in forecasting the rising limb 

and the occurrence time of the flood peak.
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Fig. 7 Comparison of observed and forecasted flood hydrographs of the Lushui basin 
by four models (the flood event lasted from from May 25 at 17:00 to May 29 at 
8:00 in 2019).

Fig. 7 shows the observed and forecasted hydrographs of the Lushui basin by the 

four models for the flood event lasting from May 25 at 17:00 to May 29 at 8:00 in 2019. 

It can be seen that the observed flood hydrograph rises rapidly due to the relatively 
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concentrated precipitation. The XAJ model underestimated the flood peak, while the 

LSTM and LSTM-RED models overestimated the flood peak. The LSTM-EDE model 

outperforms other models in terms of occurrence timing and magnitude of flood peaks. 
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Fig. 8 Comparison of observed and forecasted flood hydrographs of the Lushui basin 
by four models (the flood event lasted from July 12 at 2:00 to July 15 at 14:00 
in 2019).

Fig.8 shows the observed and forecasted hydrographs by the four models for the 

flood event lasting from July 12 at 2:00 to July 15 at 14:00 in 2019. The XAJ model 

overestimated the rising limb and the flood peak for the 6 h forecast horizon but 

underestimated the rising limb and the flood peak in the 12 h forecast horizon. The 

LSTM-RED and LSTM-EDE models performed reasonably well with the lagged 

occurrence time of the flood peak. 

Table 3 reveals that the LSTM model has the lowest peak error (PRE=-1.55%), 

while the XAJ model has the largest flood peak error (PRE=-43.54%). According to 

the NSE, RE, RMSE, and PRE metrics, the LSTM-EDE model has the best forecast 

performance in these flood events, followed by the LSTM and LSTM-RED models, 

and the XAJ model has the lowest forecast accuracy.
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Table 3 Evaluation metrics of four models for three flood events in 12 h forecast 
horizon forecasting

Evaluation metric
Model Flood events

NSE RE (%) RMSE (m³/s) PRE (%)
2017/5/21-25 0.62 -17.58 143 -27.86
2019/5/25-29 0.22 -29.55 579 -43.54XAJ
2019/7/12-15 0.66 -6.98 148 -10.57
2017/5/21-25 0.72 -7.30 122 -1.55
2019/5/25-29 0.45 -20.69 453 10.81LSTM
2019/7/12-15 0.68 -5.95 144 14.26
2017/5/21-25 0.68 -8.69 132 -1.88
2019/5/25-29 0.61 -10.06 385 31.84LSTM-RED
2019/7/12-15 0.67 -5.19 146 23.76
2017/5/21-25 0.84 0.71 94 -3.92
2019/5/25-29 0.78 -2.72 290 14.14LSTM-EDE
2019/7/12-15 0.82 -0.21 109 16.68
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Fig. 9 Comparison of observed and forecasted flood hydrographs of the Jianxi basin by 
four models (the flood event lasted from May 9 at 0:00 to May 12 at 0:00 in 
2012).

As shown in Fig. 9, the XAJ model underestimated the peak volume for the 

forecast horizons of the 6 h and 12 h. The LSTM model showed irregular fluctuations 

at the flood peak and could not maintain the reasonable shape of the flooding process. 

The LSTM-RED and LSTM-EDE models performed reasonably well in both cases, and 
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the LSTM-EDE model has a smaller peak volume error and a more accurate occurrence 

time of the peak.
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Fig. 10 Comparison of observed and forecasted flood hydrographs of the Jianxi basin 
by four models (the flood event lasted from April 30 at 9:00 to May 3 at 6:00 in 
2012).

As shown in Fig. 10, the XAJ model underestimated the flood volume and had the 

largest volume error in both cases. In the 12 h forecast horizon, the LSTM, LSTM-

RED, and LSTM-EDE models underestimated the flood volume in the rising limb. 

Meanwhile, the LSTM-RED model significantly underestimated the peak volume. The 

LSTM and the LSTM-EDE models produced reasonable flood processes. And the 

LSTM-EDE model performs better in forecasting the occurrence time of the flood peak 

and the recession limb.

As shown in Fig. 11, the LSTM model showed large fluctuations and had the worst 

forecast performance. The XAJ, LSTM-RED, and LSTM-EDE models generated 

relatively small volume errors, where the XAJ and LSTM-EDE models had the best 

forecast performance.
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Fig. 11 Comparison of observed and forecasted flood hydrographs of the Jianxi basin 
by four models (the flood event lasted from May 8 at 15:00 to May 12 at 18:00 
in 2013).

Table 4 shows that the LSTM model has the largest PRE value of 56.31% in these 

flood events. And the XAJ model has the smallest PRE value of 0.25%. According to 

the comprehensive analysis of these three flood events using NSE, RE, RMSE, and 

PRE metrics, the LSTM-EDE model has the best forecast performance, followed by the 

LSTM-RED, LSTM, and XAJ models.

Table 4 Evaluation metrics of four models for three flood events in 12 h forecast 
horizon forecasting

Evaluation metric
Model Flood events

NSE RE (%) RMSE (m³/s) PRE (%)
2012/5/9-12 0.17 -20.76 430 -15.98

2012/4/30-5/3 -0.03 -35.30 1570 -35.07XAJ
2013/5/8-12 0.91 -6.60 165 0.25
2012/5/9-12 0.39 -9.59 368 0.28 

2012/4/30-5/3 0.56 -10.42 1030 -1.57 LSTM
2013/5/8-12 0.54 8.55 370 56.31 
2012/5/9-12 0.71 -4.51 255 6.62 

2012/4/30-5/3 0.35 -22.34 1250 -25.25 LSTM-RED
2013/5/8-12 0.82 1.98 233 25.44 
2012/5/9-12 0.82 -2.89 204 5.01 

2012/4/30-5/3 0.57 -14.96 1014 -4.34 LSTM-EDE
2013/5/8-12 0.90 4.43 169 15.99 
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5. Discussion

This study analyzes and compares the multi-step-ahead flood forecasting of the 

XAJ model, the single-output LSTM model, and the multi-output LSTM model based 

on the RED and EDE structures. 

The single-output LSTM model adopts a recursive input strategy to achieve multi-

step-ahead flood forecasting. Although it can rapidly produce flood forecasts at 

multiple time-steps and save the computational cost, the training process of the LSTM 

model excludes the recursive process. This would cause the parameters such as weights 

to be obtained only based on the input and output of the first forecast horizon. The 

LSTM model can easily convey the forecast error from the previous forecast horizon to 

the following forecast horizon through the recursive process, which is likely to cause a 

rapid accumulation of forecast errors (Tran et al., 2016; Kurian et al., 2020). As the 

forecast horizon increases, the LSTM model shows substantial deterioration in the NSE, 

RE, and RMSE metrics, as shown in Tables 1 and 2. The NSE values during the 

validation period decreased from 0.98 (3 h) to 0.75 (12 h) in the Lushui basin, while 

from 0.97 (3 h) to 0.88 (12 h) in the Jianxi basin (Table 2).

According to Tables 1 and 2, it can be observed that the evaluation metrics of the 

LSTM-RED model decreased less in the 12 h forecast horizon, as compared to those of 

the LSTM model. This may be attributed to the fact that the LSTM-RED model can 

complement the input within the forecast horizon through the internal recursive process. 

Differing from the single-output LSTM model, the LSTM-RED model can capture the 

special recurrence relationship in the decoder. During the training period, the LSTM-
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RED model is able to consider the total loss function of multiple forecast horizon 

outputs simultaneously in the single batch and iteratively updates the parameters of the 

neural network by error back propagation and gradient descent algorithms. In other 

words, the LSTM-RED model considers the influence of inputs and outputs of multiple 

forecast horizons on the network parameters simultaneously, which produces more 

extraordinary generalization performance than the LSTM model. This makes the model 

more reasonable and fairer when forecasting in different forecast horizons. Afterwards, 

the LSTM-RED model can adaptively resolve the relationship between the input and 

output during different forecast horizons. Therefore, the LSTM-RED model has more 

advantages than the LSTM model for multi-step-ahead flood forecasting.

The LSTM-RED model employs a recursive input strategy in the decoding process, 

which is suitable for classification issues, such as number recognition and text 

translation, because the output values only need to exist within the target output 

category, and we are not concerned with the true values of the output values. However, 

according to the evaluation metrics in Tables 1 and 2, the decrease in forecast 

performance of the LSTM-RED model is greater than that of the LSTM-EDE model. 

This proves that the exposure bias problem within the LSTM-RED model increases the 

instability of the model and has a degree of negative impact on multi-step-ahead flood 

forecasting. To better understand the hazards arising from the exposure bias problem, 

we assume that the observed and forecasted flows at t+1 moment are ‘true’ and 

‘true+error’, respectively. The input at t+2 moment is ‘true’ when the neural network 

is trained, but the input at t+2 moment becomes ‘true+error’ during the validation 
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period. The increases in the forecast horizon inevitably led to the accumulation of errors. 

In other words, the LSTM-RED model is unable to consider the relationship between 

input error and target output when training the neural network. This problem may 

become progressively more pronounced as the forecast horizon extends. It can be 

observed from Tables 1 and 2 that the flood error metrics (e.g., RE and RMSE) for the 

LSTM-RED model become rapidly large with the increase in the forecast horizon, 

which leads to poor forecast accuracy for long forecast horizons (e.g., 12 h).

As shown in the previous section, the LSTM-EDE model outperforms the XAJ, 

LSTM, and LSTM-RED models according to the evaluation metrics, especially for the 

flood volume error metrics. This may be because the LSTM-EDE model can consider 

the relationship between the forecast error of the XAJ model and the target output 

during the training period and is able to make a positive response in parameters such as 

the weights within the neural network. Furthermore, the LSTM-EDE model can rely on 

the forecasted flow of the XAJ model to construct the connection between the input and 

the target output. Therefore, it avoids the recursive process in the decoder of the LSTM-

RED model and overcomes the inconsistency between the training and validation 

processes, which can guarantee or even improve forecast accuracy. Meanwhile, the 

LSTM-EDE model simplifies the decoding process and improves the computational 

efficiency. In summary, the LSTM-EDE model is more suitable for long-horizon flood 

forecasting. 

Nevertheless, the LSTM-EDE model is influenced by the accuracy of the 

exogenous input. As shown in Tables 1 and 2, the forecast accuracy of the XAJ model 
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gradually decreases as the forecast horizon increases, and the forecast performance of 

the LSTM-EDE model gradually deteriorates. In this case, an attempt can be made to 

improve the forecast accuracy of the exogenous input series by considering the 

numerical precipitation forecast in the XAJ model. Meanwhile, due to the limited 

availability of hourly observation data, the applicability of the LSTM-EDE model is 

only discussed in two basins in China. We will consider the LSTM-EDE model's 

effectiveness at a large temporal-spatial scale in subsequent studies.

6. Conclusions

In this study, a novel Encoder-Decoder structure with an exogenous input (EDE) 

structure was proposed, and the framework for coupling forecasted flow discharge from 

the process-based model (e.g., the XAJ model) was also investigated. The proposed 

LSTM-EDE model was compared with XAJ, LSTM, and LSTM-RED models and 

verified in the Lushui and Jianxi basins. The main findings were summarized as follows.

(1) Through the evaluation of the forecast performance of the XAJ, LSTM, LSTM-

RED, and LSTM-EDE models, we conclude that the LSTM-EDE model has the best 

forecast performance, followed by the LSTM-RED, LSTM, and XAJ models. The 

difference between the single output LSTM model and the LSTM-RED model is that 

the LSTM-RED model can integrate a recursive strategy into the training process.

(2) The LSTM-RED model gradually deteriorates in the flood volume error 

metrics (RE and RMSE) as the forecast horizon increases. The exposure bias problem 

of the LSTM-RED model has a negative impact on forecasting with long forecast 

horizons and increases the computation time in the validation process. 
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(3) The LSTM-EDE model fuses the forecasted flow of the XAJ model in the 

decoder, which overcomes the exposure bias problem and simplifies the decoding 

process of the LSTM-RED model. As a result, it achieves better forecast results and 

effectively improves the computational efficiency in the validation process. Therefore, 

it is more suitable for multi-step-ahead flood forecasting.

Future research can be carried out to explore the far-reaching effects of medium-

and long-term numerical weather forecast products or other effective meteorological 

forcing factors on the performance of the proposed approach for improving reservoir 

operation and water resources management (Cao et al., 2017; Ha et al., 2021). And it 

calls for further evaluation of the applicability of the LSTM-EDE model in more basins 

(e.g., CAMELS dataset) in the globe. Furthermore, the advanced uncertainty analysis 

method can further enhance the reliability and accuracy of the proposed approach for 

multi-step-ahead flood forecasting. 
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Highlights

• A novel Encoder-Decoder with an Exogenous input (EDE) structure is proposed

• Four models are evaluated and compared from different perspectives

• The EDE structure is more suitable for long lead-time flood forecasting

• The LSTM-EDE model improves the multi-step-ahead flood forecasting accuracy


