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A B S T R A C T   

Recently, the petroleum industry has focused on deeply buried reservoir discoveries and exploring potential CO2 
storage sites close to existing infrastructure to increase the life span of already operating installations to save time 
and cost. It is therefore essential for the petroleum industry to find an innovative approach that exploits the 
existing core- and well log data to be successful in their endeavor of effectively characterizing and predicting 
reservoir quality. Continuous data sources (e.g. wireline logs) have a huge potential compared with expensive, 
time inefficient and sporadic data from cores in determining reservoir quality for use in a regional context. 
However, whereas core analysis offers in-depth knowledge about rock properties and diagenetic processes, 
continuous data sources can be difficult to interpret without a formation-specific framework. Here, we 
demonstrated how the pre-existing core data could be effectively used by integrating petrographic- and facies 
data with a pure predictive machine learning (ML) based porosity predictor. The inclusion of detailed core 
analysis is important for determining which reservoir parameter(s) that should be modeled and for the inter
pretation of model outputs. By applying this methodology, a framework for deducing lithological and diagenetic 
attributes can be established to aid reservoir quality delineation from wireline logs that can be used in frontier 
areas. With the ML porosity model, a Random Forest Regressor, the square of the correlation was 0.84 between 
predicted- and helium porosity test data over a large dataset consisting of 38 wells within the Stø Formation 
across the SW Barents Sea. By integrating the continuous ML porosity logs and core data, it was possible to 
differentiate three distinct bed types on wireline log responses within the Stø Formation. Particularly, the 
relationship between Gamma ray (GR) and porosity was effective in separating high porosity clean sand-, low 
porosity cemented clean sand and more clay and silt rich intervals. Additionally, in the P-wave velocity (VP) - 
density domain, separation of high porosity clean sand- and heavily cemented low porosity clean sand intervals 
were possible. The results also show that the ML derived porosity curves coincide with previously published and 
independent facies data from a selection of the wells included in the study. This demonstrates the applicability of 
the model in the region, because the Stø Formation has been described to exhibit similar lithological- and 
mineralogical properties over large parts of the Western Barents Sea area. Even though, continuous porosity data 
could be estimated from other sources like VP, neutron or density logs, this would generally require matrix and 
fluid information. This study demonstrated the effectiveness of the ML model in generating continuous porosity 
logs that are useful for characterizing and predicting reservoir properties in new wells. This methodology offers a 
workflow for exploiting already acquired core and well log data for frontier exploration that can be adapted to 
other formations and exploration scenarios worldwide.   

1. Introduction 

Reservoir quality characterization and prediction outside cored in
tervals remains a key challenge in offshore subsurface exploration 
because reservoir properties cannot be accurately determined from any 
remote sensing tools. This makes in particular reservoir property 

assessments on a regional scale demanding because core data are 
expensive and time consuming to acquire and these data are sporadic 
rather than continuous measurements along the well track. Hence, 
various predictive models and workflows are constantly being estab
lished and refined to increase the success rate of accurate reservoir 
quality delineation e.g., (Ajdukiewicz and Lander, 2010). More recently, 
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machine learning, a pure predictive workflow, has been employed for 
this purpose e.g. (Ahmadi and Chen, 2019; Urang et al., 2020). ML can 
effectively generate continuous porosity profiles that can be used for 
reservoir quality assessment in a regional context, but the lack of 
geological understanding can make predictions ambiguous, particularly 
moving away from wells or intervals without core material. 

Detailed core analysis is crucial for characterizing the depositional- 
and diagenetic history of a sedimentary unit, however, such a workflow 
is cumbersome and expensive for reservoir quality discrimination in a 
regional context. This approach can make it difficult to constrain the 
spatial and temporal distributions of intervals with varying reservoir 
quality. To address this problem, several studies have focused on the 
interpretation of lithological- and diagenetic facies-e.g. (Ozkan et al., 
2011; Cui et al., 2017), and electrofacies analysis e.g. (Kiaei et al., 2015), 
from wireline log data, while other studies have focused on pure pre
dictive workflows for estimating key reservoir parameters e.g., (Helle 
et al., 2001; Lim, 2005; Urang et al., 2020; Agbadze et al., 2022). Here 
we present a hybrid methodology, which integrates detailed core anal
ysis with a pure predictive workflow to aid effective reservoir quality 
discrimination. This study demonstrate the potential of using historical 
core data to estimate reservoir properties using ML and how these results 
can be integrated with detailed petrographic- and lithological knowl
edge to collectively aid regional reservoir quality delineation in intervals 
without cores. The integration of detailed petrographic knowledge aid 
the interpretation of model results and forms the basis for generating 
formation-specific templates that can deduce lithological- and diage
netic characteristics from well log responses. This approach differs from 
conventional electrofacies analysis in that it uses predetermined diage
netic- and lithological information and a predicted reservoir parameter, 
in this case porosity, to aid the discrimination of diagenetic and litho
logical attributes from well log data. It also differs from pure predictive 
workflows because detailed core analysis from a selection of wells are 
integrated and fundamental to several key steps in the methodology 
(Fig. 2). The availability of well log data and routine core analysis within 
the most important reservoir sandstone units from the Norwegian 
Continental Shelf (NCS), and likely for equivalent settings elsewhere in 
the world, makes this hybrid methodology adaptable to several explo
ration scenarios. Exploiting the existing infrastructure with nearby field 
development can for example significantly increase the life span of an 
installation and reduce operating costs. 

The Stø Formation was chosen to test this integrated methodology in 
predicting nonlinear heterogeneous reservoir properties because the 
sedimentary succession has proven to exhibit large porosity variations in 
otherwise similar sandstone intervals consisting of texturally- and 
mineralogical mature sedimentary units (Olaussen et al., 1984; Klausen 
et al., 2018) across larger parts of the SW Barents Sea. Moreover, a 
patchy illitic clay coating has been identified to be the most important 
factor controlling reservoir quality. The patchy nature of this clay 
coating ultimately dictates quartz cement volumes and thus porosity 
(Hansen et al., 2017; Løvstad et al., 2022). In the context of petroleum 
exploration, clay coated sandstone reservoirs have gained much atten
tion because for their ability to retain excellent reservoir properties even 
at great burial (Heald and Larese, 1974; Ehrenberg, 1993; Storvoll et al., 
2002; Berger et al., 2009; Taylor et al., 2010; Ajdukiewicz and Larese, 
2012; Dowey et al., 2012; Haile et al., 2018; Line et al., 2018; Porten 
et al., 2019; Worden et al., 2020). However, despite their huge potential 
in preserving reservoir quality at depth, no attempts have been made to 
characterize these units using wireline log data, to increase their pre
dictability. Up until now, reservoir quality assessment of the Stø For
mation has relied on core data, like helium porosity measurements and 
thin section analysis, and where the extent of the patchy illite coating 
has proven difficult to quantify (Løvstad et al., 2022). Therefore, it is of 
particular interest in this study to establish a framework for separating 
these units based on simpler means of data, which are continuous in its 
nature and applicable on a regional scale. Successful identification of 
clay-coated sandstone intervals may have huge implications for 

identifying hydrocarbon- and C02 storage reservoir sites in frontier 
areas, without the need of additional core material. 

This study intends to demonstrate the potential in using historical 
core data to aid effective reservoir quality delineation at a regional scale 
without the need of additional core data. This methodogly will be 
exemplified with the use of Stø Formation in the SW Barents Sea as a case 
study. The research objectives are to: (1) establish a ML based porosity 
predictor that can serve the purpose of effectively generating continuous 
porosity profiles outside cored intervals, (2) demonstrate how the 
integration of detailed core analysis can be used to strategically sub 
group data and aid the interpretation of the modelling results and (3) 
exemplify how this integrated methodology can be applicable to 
construct formation-specific templates from well log responses and 
facies data to aid reservoir quality determination in intervals without 
core data. 

2. Geological setting 

The study area lies within the SW Barents Sea, which is part of an 
epicontinental sea situated at the north western corner of the Eurasian 
continental plate. The study includes wells situated in the Hammerfest 
Basin, Bjarmeland Platform, Fingerdjupet sub-basin, Bjørnøyrenna Fault 
Complex, Polheim sub-platform and Ringvassøy Fault Complex (Fig. 1), 
all of which comprise the Stø Formation. The Stø Formation is part of the 
Realgrunnen Subgroup and is a Jurassic sandstone that was deposited 
between the Pliensbachian and Bajocian times (Dalland et al., 1988). 
The sandstones of the Stø Formation comprises shallow marine to 
offshore deposits. The most reservoir prone clean sandstone intervals 
were deposited in a shallow water coastal environment with fluctuating 
energy levels (Olaussen et al., 1984) and with relative influence of tidal- 
and wave action at certain locations depending on sea-level fluctuations 
and local basin topography (Klausen et al., 2018). The Stø Formation 
have been interpreted to be deposited in low-accommodation basins 
over large parts of the SW Barents Sea region in an overall transgressive 
regime (Olaussen et al., 1984; Klausen et al., 2018) that was interrupted 
by several regressive cycles. The highly condensed nature of this suc
cession testifies the co-acting of deposition, erosion and reworking over 
several million years, which resulted in the texturally - and mineralog
ical mature sandstones that is typical for this formation. The Stø For
mation is currently not buried to its maximum burial depth because of 
extensive uplift that influenced the entire southwestern Barents Sea 
region sometime during the Oligocene or Eocene (Baig et al., 2016). For 
example, within the Hammerfest Basin, where most of the wells in this 
study are located, results of Baig et al. (2016) show that this area is 
uplifted from 800 – to 1400 m and where there is an increase in the 
magnitude from west towards the east. The burial history of the Stø 
Formation is of particular importance in areas where the formation has 
been subjected to large maximum burial depths (>2.5 km). Several 
studies (Olaussen et al., 1984; Bergan and Knarud, 1993) have shown 
that the Stø Formation is feldspar poor and consist predominantly of 
mature quartz arenites which have important implications for diage
netic processes that occur upon burial. Quartz cementation has been 
identified as the key controlling factor on reservoir quality heteroge
neity in settings where the formation has been deeply buried (Olaussen 
et al., 1984). More detailed petrographic studies (Hansen et al., 2017; 
Løvstad et al., 2022) have revealed that a thin illitic clay coating is 
present in varying amounts within the Stø Formation, and those in
tervals with effective clay coats can limit the amount quartz cementation 
and thus preserve abnormally high porosities in certain units. 

3. Methods and data 

3.1. Detailed petrographic study – a prerequisite for a successful 
modelling process 

This methodology (Fig. 2) require an in-depth geological 
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understanding of processes (e.g., diagenetic processes and lithological 
characteristics) that affect reservoir quality heterogeneity within the 
formation under consideration. This is important for a couple of reasons: 
(1) detailed core analysis will aid the interpreter deciding which reser
voir quality parameters to model (e.g., porosity, permeability, water 
saturation, clay content) and (2) a comprehensive understanding of 
reservoir quality controlling factors is crucial for the interpretation of 
the model output and separating the modeled data into strategic subsets. 
The latter can aid the interpreter to successfully cluster data repre
senting key lithological and/or diagenetic attributes. 

In this study, porosity was chosen as the parameter to be modeled. 
This selection is based on detailed petrographic studies (Hansen et al., 
2017; Løvstad et al., 2022) that concluded that quartz cementation is the 
predominant factor controlling reservoir quality heterogeneity. As a 
consequence, porosity and permeability tend to exhibit a linear rela
tionship within these sandstones, which is further indicated by the study 
of Ogebule et al. (2020). Therefore, permeability was excluded from the 
modelling process to keep the model as simple as possible. However, 
permeability can be a crucial parameter to model in other scenarios and 
the parameter selection should be based on a solid understanding of 
reservoir quality controls. 

3.2. Data preprocessing 

The dataset consists of a collection of helium porosity- and wireline 
log data from 38 wells within the Stø Formation in the SW Barents Sea 
Area (Fig. 1 and Table 1). The included wireline logs were limited to the 
most basic well logs commonly available for all wells on the NCS, 
namely depth, GR, density, VP, neutron, medium- and deep resistivity 
(Table 2). This to ensure that the model can be relevant to most wells 

with basic well log data. The initial dataset consisted of 20899 data 
points and included all selected wireline log- and helium porosity data 
from within the Stø Formation in the 38 wells. Several preprocessing 
steps were carried out before training the ML algorithms on the dataset. 
The first step was to remove all feature instances that did not contain an 
accompanied helium porosity value, meaning that the initial data set 
was reduced to 5915 data instances (Table 2). Next, the dataset was split 
into training- and test sets where 80% of the data was used in training 
and 20% was used for testing. This subdivision was performed using a 
random split of data instances, but with a seed that ensures reproducible 
results. Following the train-test split, the training set was standardized 
by removing the mean and scaling to unit variance. 

3.3. The modelling process 

In this study, we compared the performance of two machine-learning 
algorithms over a compiled dataset that has shown the ability to solve 
complex non-linear problems; a fully connected feed forward Neural 
Network (NN) and a Random Forest Regressor (RFG). The modelling 
process was defined as a supervised regression problem, using the 
wireline log- and helium porosity data as features and labels, respec
tively. The RFG and NN hyperparameter optimization was carried out 
using an exhaustive grid search in conjunction with 3-fold cross vali
dation over the training set, where the exhaustive grid search was 
defined after some trial and error exploration. The chosen hyper
parameter settings for the two models were the parameter combination 
showing the highest mean test score after cross validation. After 
searching for the optimal parameter settings, the models were trained 
using the training set and tested on the test set. A final evaluation and 
comparison of the two models was performed by assessing the coeffi

Fig. 1. Map showing the location of wells included in 
the study. Each well have a unique well id: 1: 7324/ 
8–1, 2: 7324/7–2, 3: 7224/7–1, 4: 7220/8–1, 5: 
72220/5–1, 6: 7119/12–2, 7: 7125/1-1, 8: 7321/8–1, 
9: 7220/10–1, 10: 7120/10–1, 11: 7220/7–1, 12: 
7120/9–1, 13: 7121/7–1, 14: 7121/5–3, 15: 7121/ 
7–2, 16: 7120/12–2, 17: 7219/9–1, 18: 7321/7–1, 
19: 7122/6–1, 20: 7120/12–1, 21: 7120/8–2, 22: 
7120/8–1, 23: 7120/7–2, 24: 7120/12–3, 25: 7120/ 
8–3, 26: 7120/5–1, 27: 7121/4–1, 28: 7121/5–2, 29: 
7122/4–1, 30: 7121/5–1, 31: 7120/6–1, 32: 7120/ 
7–1, 33: 7019/1-1, 34: 7121/4–2, 35: 7119/9–1, 36: 
7120/7–3, 37: 7219/8–2, 38: 7119/12–3.   
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cient of determination (R^2), means squared error (MSE), mean absolute 
error (MAE) and root mean squared error (RMSE), which formed the 
basis for the final model selection: 

R2 = 1 −

∑n

i=1
(Yi − Ŷ i)

2

∑n

i=1
(Yi − Y)2  

MAE =
1
n

∑n

i=1
|Yi − Ŷ i|

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(Yi − Ŷ i)

2

n

√
√
√
√
√

where Y is the label, Ŷ is the predicted value, Ȳ is the mean value of all 
labels and n is the number of data points. 

Based on the RFG model’s hyperparameter settings, two specific 
porosity modelling approaches were tested and compared, (1) test the 
model’s ability to predict porosity in wells where a subset of the core 
plug data was involved in the training set (random split - RS) and (2) test 
model performance in wells excluded from training (Blind test split- BS). 
The only difference between the generations of the models resulting 
from the two approaches is the train-test split. The former approach 
randomly splits data instances from the entire dataset into a train- and a 
test set, whereas the latter approach picks 33 random wells for training 
and uses the remaining 5 wells for testing. For both approaches, 25 
unique iterations with varying random train-test splits were performed 
to assess the result, meaning that 25 models were generated in each case, 
all trained on a slightly different subset of the data. Additionally, the 
performances of the RS- and BS approaches were tested and compared 
for a fixed case based on data from three wells with good helium 
porosity coverage, namely 7121/5–1, 7120/6–1 and 7219/8–2. For the 
RS case, this meant simply using the RFG model to predict porosity in 
these wells, while a new model was established for the BS approach by 
excluding these three wells from the training process and only fitting the 
model based on the remaining 35 wells. The entire workflow from 
combing wireline log- and core plug data to cleaning- and plotting data 
and training the ML models was carried out using Python (Van Rossum 
and Drake Jr, 1995) and the third party libraries Pandas (McKinney, 
2010), Matplotlib (Hunter, 2007) and Scikit-learn (Pedregosa et al., 
2011), respectively. Specific details on how the NN and RFG models are 
trained and make predictions can be found in the literature (Gardner and 
Dorling, 1998; Breiman, 2001; Pedregosa et al., 2011). 

3.4. Linking ML model results with key geological information 

Continuous porosity logs were generated for all 38 wells within the 
Stø Formation based on the initial RFG model that was constructed 
based on the training set used to search for the optimal hyper
parameters. This enabled the inclusion of the entire dataset (20899 data 
points) with all wireline log measurements for further analysis. Shale 
volume (V-shale) was also estimated in all wells based on the GR log 
(Asquith and Krygowski, 2004) using the non-linear Larionov for older 
rocks correction (Larionov, 1969), where all data points with a V-shale 
> 20% were subsequently filtered out. Additionally, a secondary depth 
curve representing the maximum burial depth was generated on the 
basis of uplift estimates for the area presented by Baig et al. (2016). 
Based on previous detailed petrografic studies (Hansen et al., 2017; 
Løvstad et al., 2022), the Stø Formation exhibits highly varying- and 
wide porosity distributions in deeply buried intervals depending on the 
effectiveness of a patchy illltic clay coating, which ultimately controls 
quartz cement volumes. This makes the porosity distribution of clean 
sand intervals within the Stø Formation interesting to study in a regional 
context and, in particular, the high-and low porosity range. To target the 
upper- and lower most part of the porosity distribution, the entire 
dataset was divided into three subsets from here on referred to as the 
Q1-, IQR- and Q3 data. For every 100-m depth interval, all data in
stances associated with that depth interval wered labeled Q1 if the 
accompanying predicted porosity value was lower than the 25th 
percentile, IQR if the porosity value was within the interquartile range 
or Q3 if the predicted porosity value was above the 75th percentile (e.g., 
Fig. 6A). Finally, Q1, IQR and Q3 labeled data points were merged with 
other similarly labeled data points from all other 100-m depth intervals, 
forming the full Q1, IQR and Q3 datasets along the entire porosity-depth 
profile (e.g., Fig. 6B–D). These datasets are fundamental for the 

Fig. 2. Workflow diagram highlighting key steps of the methodology.  
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presented study. Additionally, facies data in four wells obtained from 
Klausen et al. (2018) offered the possibility to study four wells in more 
detail by relating the ML generated porosity and various wireline log 
parameters to facies and diagenetic fingerprints (Fig. 1, wells: 7219/8–2 
(37), 7219/9–1 (17), 7220/7–1 (11) and 7220/5–1 (5)). These wells are 
particularly suited for this purpose because their spatial distribution is 

limited and facies interpretations have been correlated between them. In 
addition, well 7219/8–2 (37) have been buried about 1000 m deeper 
compared to the other three wells, which is ideal for comparing the 
diagenetic effect with respect to the wireline log responses and across 
the various facies. Analysis where facies data are included were not 
filtered based on V-shale, rather all data points along the well track were 

Table 1 
Well data summary. Data retrieved from the Norwegian Petroleum Directorate.  

Well Latitude Longitude Stø FM top 
[MD] 

Stø FM base 
[MD] 

Uplift 
[m] 

Maxb. depth (Stø 
FM top) [*] 

WD 
[m] 

KB 
[m] 

No. core 
plugs 

Publication date 

7324/8-1 73.45373600 24.40383900 662.03 678.94 1900 2139.03 398 25 55 September 17, 
2015 

7324/7-2 73.49287900 24.23357000 712.01 735.94 1950 2204.01 418 40 64 July 06, 2016 
7224/7-1 72.28705600 24.30039700 894.03 918.87 1300 1901.53 269 23.5 67 December 02, 

2004 
7220/8-1 72.49332900 20.33481900 1276.09 1353.97 1250 2129.09 374 23 221 May 02, 2013 
7220/5-1 72.51881600 20.342294 1337.05 1414.93 1250 2159.05 388 40 285 March 24, 2014 
7119/12-2 71.01629300 19.97229500 1372.11 1516.89 950 2117.11 180 25 228 February 11, 

2005 
7125/1-1 71.89201600 25.18734500 1399.08 1520.85 1250 2373.38 252.2 23.5 83 January 11, 

2005 
7321/8-1 73.33866700 21.41496000 1437.03 1454.86 1850 2796.03 468 23 31 January 06, 

2005 
7220/10-1 72.01786800 20.05774100 1513.08 1644.90 1300 2438.08 341 34 230 January 13, 

2015 
7120/10-1 71.05364000 20.27483700 1568.09 1654.96 1100 2460.09 183 25 39 February 11, 

2005 
7220/7-1 72.46238700 20.15321600 1781.15 1856.89 1150 2526.15 365 40 284 April 11, 2014 
7120/9-1 71.49263900 20.94706700 1840.13 1895.90 1000 2497.13 320 23 171 February 11, 

2005 
7121/7-1 71.47436300 21.08756300 1849.12 1908.71 1100 2598.12 329 22 154 February 11, 

2005 
7121/5-3 71.51735100 21.66193700 1880.06 1927.91 1000 2511.06 345 24 127 April 11, 2003 
7121/7-2 71.44578700 21.05595800 1882.00 1938.00 1000 2535.00 325 22 138 February 11, 

2005 
7120/12-2 71.12699100 20.80524900 1892.09 1977.90 1000 2703.09 164 25 47 February 11, 

2005 
7219/9-1 72.40217600 19.95403900 1951.07 2061.87 1100 2672.07 356 23 373 December 03, 

2004 
7321/7-1 73.43410900 21.07447400 1999.08 2021.94 1900 3400.58 475 23.5 19 January 05, 

2005 
7122/6-1 71.64063100 22.81216800 2015.08 2037.94 1100 2691.08 401 23 72 May 18, 2004 
7120/12-1 71.11543700 20.75555500 2047.09 2151.94 1000 2855.09 167 25 16 February 11, 

2005 
7120/8-2 71.33961800 20.46592200 2081.07 2189.88 950 2761.07 245 25 278 February 11, 

2005 
7120/8-1 71.41148500 20.43497000 2092.04 2189.88 950 2747.04 270 25 74 February 11, 

2005 
7120/7-2 71.32177500 20.32887400 2150.11 2255.87 850 2737.11 241 22 218 February 11, 

2005 
7120/12-3 71.19727500 20.77877300 2158.03 2219.91 850 2800.03 185 23 55 February 11, 

2005 
7120/8-3 71.46547100 20.60257000 2192.02 2276.90 900 2789.52 280.5 22 100 June 29, 2004 
7120/5-1 71.58300200 20.43665200 2285.13 2426.87 1000 2967.13 296 22 368 May 18, 2004 
7121/4-1 71.60184200 21.15635500 2318.05 2395.93 900 2861.05 335 22 207 August 03, 2021 
7121/5-2 71.67437600 21.65688400 2323.00 2400.00 1100 3073.00 328 22 354 January 05, 

2005 
7122/4-1 71.74929000 22.08527600 2326.00 2386.00 1050 3008.00 344.5 23.5 195 May 18, 2004 
7121/5-1 71.600508 21.406112 2369.11 2444.85 1000 3011.11 336 22 209 January 04, 

2005 
7120/6-1 71.621865 20.933245 2386.02 2470.00 1100 3149.02 314 23 183 February 11, 

2005 
7120/7-1 71.31199700 20.18938000 2408.12 2521.96 950 3099.62 233.5 25 173 February 11, 

2005 
7019/1-1 70.91997900 19.07261500 2447.14 2609.90 800 3033.14 190 24 51 February 11, 

2003 
7121/4-2 71.65918100 21.06277600 2480.05 2556.86 900 3041.05 317 22 215 February 11, 

2005 
7119/9-1 71.41669600 19.82850500 2748.13 2867.91 850 3372.13 201 25 69 January 04, 

2005 
7120/7-3 71.46395400 20.17944200 2889.10 2968.95 850 3458.10 259 22 67 May 18, 2004 
7219/8-2 72.323499 19.589978 2898.04 2984.91 1100 3623.04 344 31 313 September 30, 

2015 
7119/12-3 71.24085100 19.74367800 3144.06 3298.90 750 3654.06 211 29 82 February 11, 

2005  
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included. 
Aided by the ML-derived porosity data, the study will focus on 

identifying distinct log responses related to lithological- and diagenetic 
character using the GR, VP, density and the P-impedance, which is a 
product of VP and density. 

4. Results 

4.1. Machine learning – an effective method for generating porosity data 

The data presented here show the efficiency of ML in generating 
accurate continuous porosity logs. The NN and RFG models show very 
similar performances in predicting porosity over the presented dataset 
(Table 3) and the porosity distributions obtained from both models seem 
consistent with the distribution of the helium porosity data (Fig. 3). 
However, the RFG model showed overall slightly better results for all 
reported metrics compared to the NN model (Table 3). However, the 
difference between the root mean squared error (RMSE) and mean ab
solute error (MAE), which can be used to diagnose the variance in in
dividual errors, are shown to be similar. Based on the superior 
performance, the RFG model was used to estimate continuous porosity 
logs in all wells included in the study. 

The results after 25 unique runs for the random split (RS)- and blind 
test (BT) approach indicate that the RFG model is capable of accurately 
predict porosity in the former approach (Fig. 4 A), while the RMSE- and 
MAE scores for the latter approach indicate that it is less accurately 
predicting porosity in blind wells (Fig. 4 B). Moreover, the results show 
that there is a noticeably higher variance in predictions from the BT- 
approach compared to the RS-approach. This can be exemplified by 
the e.g., the calculated 95% confidence intervals of RMSE, showing 2.66 
± 0.06 and 2.87 ± 0.11 for the RS and BT approach, respectively. For 
this study, additional wells without core plug data were not included in 
the study because the need for accurate porosity data is crucial to 
describe the porosity distribution in detail and link this property to 
wireline log responses. The results from the two different train-test split 
approaches in the fixed case (Table 3 and Fig. 5) shows that the random 
split approach outperforms the blind well test approach. Moreover, the 
two porosity curves deviate more from each other at certain intervals, 
while other intervals are similar. Both approaches show higher de
viations in intervals where the helium porosity data fluctuate 

considerably over short depth intervals (Fig. 5). 
The generation of continuous porosity logs within the Stø Formation 

in all 38 wells allow for detailed characterization of the porosity dis
tribution as a function of depth (Fig. 6). Firstly, even though there are 
few data points above 2270 m, there seems to be a marked change in the 
porosity - maximum burial depth trend at this interval, where the rate of 
porosity loss is increasing abruptly as a function of depth (Fig. 6 A and 
D). Further, this porosity-depth trend can be viewed in two different 
ways; (1) characterization of various parts of the porosity distribution 
for all depths (Fig. 6A–D) and (2) characterization of the entire porosity 
distribution within a specific depth interval (Fig. 6E–H). In the first case, 
the cross plots of porosity vs maximum burial depths colored coded with 
Q1, IQR and Q3 distributions show that the Q1 (Fig. 6 B) and IQR data 
(Fig. 6 C) contain the whole range of porosity values, whereas the Q3 
data (Fig. 6 D) are skewed toward higher porosities. Additionally, the Q3 
data have a minimum porosity around 10%, while the Q1-and IQR data 
show porosities close to 0%. In the latter case, the shallowest porosity 
data (Fig. 6 F) (<2500 m) are normally distributed with a mean porosity 
of about 25%. The intermediate depth (2500 m–2800 m) porosity data 
(Fig. 6 G) show a similar pattern, but where the entire distribution is 
shifted toward lower porosities (mean porosity around 20%). In 
contrast, the porosity data that lie below 2800 m show a clear bimodal 
distribution with a noticeable subpopulation of higher porosities (Fig. 6 
H). 

To characterize the maximum and minimum rates of porosity loss 
within the Stø Formation, data points shallower than 2270 m and the 
IQR data were excluded, the Q1-and Q3 porosity data were plotted as a 
function of maximum burial depth (Fig. 7). The results also show a 
tendency for the Q1 distribution to become narrower with an increase in 
the burial depth, while the Q3 distribution show an opposite trend and 

Table 2 
Summary of data used in porosity modelling.   

FEATURES LABEL  

Depth 
[MD] 

Gamma ray (GR) 
[API] 

Neutron [v/ 
v] 

Resistivity 
Deep [ohm m] 

Resistivity medium [ohm 
m] 

P-sonic (VP) [μs/ 
ft] 

Density [g/ 
cc] 

Helium porosity 
[%] 

Count 5915 5915 5915 5915 5915 5915 5915 5915 
Mean 2073.1 35.2 0.1 471.8 88.1 80.7 2.4 17.4 
Std. 500.0 18.2 0.1 5087.1 471.5 9.2 0.1 6.1 
Min 663.2 7.2 0.0 0.2 0.3 50.3 2.0 0.1 
25% 1829.6 20.7 0.1 1.2 1.6 75.5 2.3 13.7 
50% 2168.7 32.4 0.2 10.2 10.6 80.1 2.4 18.0 
75% 2387.2 46.1 0.2 50.0 32.7 85.9 2.4 21.8 
Max 3270.6 143.7 0.4 100000.0 12721.9 112.8 2.9 33.7  

Table 3 
Summary of the metrics of the Neural Network (NN)- and Random Forest Re
gressor (RFG). * RS = random split, BT = blind test. Reported metrics for the 
fixed test case. Reference to Fig. 5. See method section for more details.  

Metrics – Performance test set  

R^2 MSE RMSE MAE 

Neural Network (NN) 0.826 6.478 2.545 1.584 
Random Forest Regressor (RFG) 0.838 6.039 2.457 1.488 
RFG – RS* 0.829 4.416 2.101 1.421 
RFG – BT* 0.732 6.905 2.628 1.951  

Fig. 3. Kernel density estimation (KDE) of the porosity distribution obtained on 
the test set for the NN and RFG model. Their distribution is compared to the 
helium porosity data. 
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becomes wider as a function of depth (Fig. 7 A). There is a noticeable 
difference in the rate of porosity loss between the two distributions, 
where the fitted lines demonstrate a porosity loss of 8.1% and 6.4% per 
500 m for the Q1 and Q3 distributions, respectively (Fig. 7 A). However, 
data below 3300 m in the Q1 distribution deviate slightly from the linear 
trend line and shows somewhat lower rates of porosity loss compared to 

the shallower data. Fig. 7B illustrates a new case representing a modified 
version of the Q3 distribution that is filtered on based on porosity 
greater or equal to 12%. This result indicates that the average rate of 
porosity loss is 5.6% per 500 m for the modified Q3 distribution. 

Fig. 4. KDE plots comparing predicted- (red) vs. helium (black) porosity distributions across 25 different train test splits. A) Random split approach across the entire 
data set with 20% used for testing and 80% of the data used for training. B) Blind test, 5 random wells used for testing in each run, while the remaining 33 wells was 
used for training. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 5. Predicted porosity from RFG model compared to helium porosity measurement from the well 7120/-6-1, 7219/8–3 and 7121/5–1. Well 7219/8–2 is situated 
in the Bjørnøyrenna Fault complex, while the other two wells are located further south in the Hammerfest Basin. Log tracks are colorceded with fluid content and the 
depth represents the measured depth from the rotary table. Model metrics are listed in Table 3, referred to as RFG-RS and RFG-BT. 
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4.2. Generating formation-specific templates 

4.2.1. VP, density, P-impedance and ML porosity 
Fig. 8 shows cross plots of VP vs density (A and B) and P-Impedance 

and porosity (C and D) where each parameter combination is shown for 

the Q1 and Q3 distribution in each plot but with a depth constrain. Fig. 8 
A and C demonstrate the responses from VP - density and P-impedance- 
porosity in shallow buried intervals (<2700 m), respectively, whereas 
Fig. 8 B and C show the same parameter combinations for deeply buried 
units (>3300 m). The results show that the Q1 and Q3 distributions are 

Fig. 6. RFG porosity data from all 38 wells with shale volume <0.2. A) Porosity-depth trend colored with the Q1, IQR and Q3 data. Depth represents the maximum 
burial depth from the seafloor. B-D) Distribution of the Q1, IQR and Q3 data. E) Porosity-depth trend colored with maximum burial depth. F–H) Distribution of the 
porosity data as function of depth. 
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difficult to separate from the VP - density responses and with respect to 
P-impedance-porosity in shallow buried intervals. Even though it is 
possible to distinguish certain parts of the two distributions from each 
other, this is especially true for the P-impedance-porosity case, large 
part of the two distributions is clustered (Fig. 8 A and C). In contrast, 
data points from deeply buried intervals (>3300 m) indicate that the Q1 
and Q3 distributions are easily distinguished (Fig. 8 B and D). 

A more detailed characterization which include facies data show a 
similar pattern in four wells (Fig. 1, well id: 37, 17, 11, 5) as 

demonstrated in Fig. 9. The results show that the P-impedance-porosity- 
and Vp-density signatures from the three wells with maximum burial 
between about 2100 m and 2600 m have an unordered structure where 
most data points are clustered (Fig. 9 A, E, B, F, C and G). However, all 
these wells have a tail of data points deviating from the overall cluster, 
which mainly concerns the offshore-embayment facies that consist of 
finer grained- and silty material, and likely parts of the cleaner sand
stone intervals with abundant carbonate cement (see Table 1 in Klausen 
et al. (2018) for complete facies description). These deviating lithologies 

Fig. 7. Maximum burial depth vs porosity trends for the Q1 and Q3 distributions for data points with maximum burial greater than 2270 m and shale volume <0.2. 
The fitted lines illustrate the differences in rate of porosity loss for the Q1-and Q3 data for two cases: A) all data included. B) Porosity less than 12% excluded from the 
Q3 distribution. 

Fig. 8. Comparison of Vp, density and P-Impedance of the Q1 and Q3 distributions at shallow (<2700 m) and deep (>3300 m) maximum burial. A-B) Vp-density plot 
with shallow data (A) and deep data (B). C-D) P-impedance – porosity plots with shallow data (C) and deep data (D). 
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are characterized by an elevated Vp and density (and P-impedance) and 
corresponding decrease in porosity. For well 7219/8–2, the deeply 
buried well (Fig. 9 D and H), the results show that recorded facies are 
more easily separated both with respect to the P-impedance-porosity 
and Vp – density parameter combinations. The clean sand of the upper- 
and lower shoreface facies are clustered and exibit a wide range of 
values with respect to the various parameters. This elongated distribu
tion has been interpreted to represent the cement trend. The offshore 
transition/inner shelf facies follow a similar pattern but are character
ized by slightly elevated density readings compared to the shoreface 
facies in the Vp-density domain and slightly lower porosities in the 
porosity-P-impedance parameter space. 

4.2.2. GR log vs. ML porosity 
The four wells with available facies data were also characterized 

with the use of GR and porosity (Fig. 10A–D). The results show that this 
parameter combination can be useful for discriminating lithological 
characteristics in wells with shallow maximum burial (Fig. 10A–C), 
where the more clay rich inner shelf deposits are separated from 
shoreface facies associated with an increase in GR. Moreover, a clear 
negative correlation exits between the GR log and porosity where higher 
gamma coincides with a decrease in porosity (Fig. 10A–C). This trend is 
particularly dominant in well 7220/7–1 and 7220/8–1, where even a 
separation of the upper- and lower shoreface facies is evident based on 
the GR and porosity response. In the deeply buried well, 7219/8–2 
(Fig. 10 D), the shoreface facies span predominantly over a large range 
of porosities but with consistently low GR readings. However, some data 
points within the lower shoreface facies show elevated gamma readings, 
which contribute to an overall “L-shaped” trend within lower shoreface 
facies in deeply buried intervals. It should be mentioned that the 
elevated gamma signals are likely not caused by any variation in K- 
feldspars content because the sediment is feldspar depleted (Bergan and 
Knarud, 1993), which could be a cause for slightly elevated GR readings. 
On the contrary, the upper shoreface facies shows in general lower GR 
readings (Fig. 10D). The facies associated with lower depositional en
ergy, like the more distal inner shelf facies, show even higher gamma 
readings, consistent with the trend observed in wells with shallow 
burial. Based on this plot, three distinct endmember bed types can be 
differentiated: 1: clean sandstone with high porosity, 2: clean sandstone 
with low porosity, 3: low porosity fine-grained sandstone with silty- and 
clay rich material. The same parameter combination is plotted in two 
other deeply buried wells from the study area, well 7120/5–1 from the 
Hammerfest Basin and well 7119/9–1 from the Ringvassøy Fault Com
plex (Figs. 1 and 10 E). The results demonstrate a similar trend where 
the three distinct bed types can be distinguished from one another. 
Fig. 10 F, show four more examples from wells with different maximum 
burial depths but without facies data. The results show that the three bed 
types could be recognized and it demonstrates that the Stø Formation 
not necessarily contain all the endmember lithologies in each well. 

5. Discussion 

5.1. Machine learning – an effective porosity prediction method 

Being able to accurately predict reservoir quality from continuous 
data sources, like wireline logs, has a huge potential compared to 
expensive and sporadic data obtained from cores. Several studies have 
focused on the interpretation of diagenetic-and lithological character
istics (Avseth et al., 2001; Ozkan et al., 2011; Cui et al., 2017) from 
wireline log data to determine reservoir quality, while other studies 
have focused on using a pure predictive workflows for estimating 
reservoir parameters e.g., (Helle et al., 2001; Urang et al., 2020). A pure 
predictive workflow can effectively generate large amounts of porosity 
data for use in a regional exploration context, but the lack of a geological 
understanding, can make predictions away from wells or intervals 
without core material ambiguous. This study has employed an 

integrated methodology that combines core analysis with a ML based 
porosity predictor, to establish a framework that can deduce diagenetic 
and lithological characteristics from distinct well log responses to aid 
reservoir quality determination. In this way, historical data can be 
effectively used to aid detailed interpretations in blind wells. The 
consistent and good performance of the RFG-RS porosity model provide 
reliability in the model’s capability for generating accurate continuous 
porosity logs in wells where some of the helium porosity data were 
involved in training (Table 3, Fig. 4). The RFG-BT model (Table 3) is 
slightly less robust for making accurate porosity estimates, compared to 
the RFG-RS model (Fig. 4), but the results are still adequate to make 
porosity predictions in blind wells (Fig. 5). Consequently, the RFG-BT 
modelling approach can still be useful in the exploration of frontier 
areas. The findings in this study exemplify that once a predictive 
framework for determining lithological- and diagenetic characteristics 
from wireline log responses has been established; the inclusion of 
RFG-BT porosity estimator can complement these interpretations in new 
wells that lack core information (Fig. 5). However, in the process of 
establishing a formation-specific framework we propose using the 
RFG-RS modelling approach, where continuous porosity logs are pre
dicted in wells where helium porosity data were involved in training. 

5.2. Machine learning derived porosity profile is consistent with 
petrographic analysis 

It is essential to have a good understanding of diagenetic- and/or 
depositional processes that control reservoir quality variations when 
trying to deduce lithological characteristics from well log data within a 
specific formation. In the Stø Formation, the main reservoir intervals are 
found within shallow marine shoreface facies consisting mainly of 
texturally- and mineralogically mature sedimentary units (Olaussen 
et al., 1984; Klausen et al., 2018; Ogebule et al., 2020). In deeply buried 
parts of the Stø Formation (about >3000 m), quartz cement is the main 
factor controlling porosity, which has subsequently been interpreted to 
be controlled by the presence or absence of an illitic clay coating 
(Hansen et al., 2017; Løvstad et al., 2022). With the use of helium 
porosity data from 14 wells, mainly within the Hammerfest Basin, 
Løvstad et al. (2022) also found that the rate of porosity loss between 
coated- and negligible coated intervals becomes increasingly larger as a 
function of burial depth. 

In the Stø Formation case, it is therefore essential to evaluate the ML 
generated porosity profile’s ability to capture this trend, if present, in a 
regional context. The Q1 and Q3 datasets, which are meant to represent 
negligible coated and coated intervals, respectively, exhibit expected 
porosity distributions as a function of maximum burial depth (Fig. 6B 
and D). When all porosity data are included, the porosity distributions as 
a function of varying depth also exhibited expected patterns that reflect 
the gradual influence of diagenesis (Fig. 6F–H). Here, shallow and in
termediate buried intervals are normally distributed (Fig. 6F and G), 
whereas the deeply buried intervals show a bimodal distribution with a 
clear subpopulation of abnormally high porosity (Fig. 6H). This sub
population of higher porosities can be a clear sign of a porosity preser
ving mechanism (Bloch et al., 2002), in this case the clay-coated 
intervals of the Stø Formation. When examining the Q1 and Q3 data 
separately, it is evident that the Q1 porosity distribution becomes nar
rower- and the Q3 distribution becomes wider as a function of increasing 
burial depth (Fig. 7). This observation explains the tendency of negli
gible coated intervals to become increasingly more quartz cement with 
an increase in the time-temperature integral (TTI) (Walderhaug, 1994, 
1996), whereas the quartz cement volumes in the coated intervals are 
dictated by the clay coating coverage and thus exhibit a wider range of 
porosity (Ajdukiewicz and Larese, 2012). The presented results imply 
that the ML model is capable of representing the petrographic obser
vations and interpretations made from core data by Løvstad et al. 
(2022), which shows a greater difference in porosity loss as a function of 
burial depth between negligible coated- and coated intervals (Fig. 7). 
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Fig. 9. Characterization of elastic parameters in four wells colored with facies data from Klausen et al. (2018). A-D) P-impedance vs porosity and E-F) Vp-density 
plots. D and H plots are from the more deeply buried well 721978–2, while the other plots are from wells with maximum burial of 1000 m shallower or more. 

H.N. Hansen et al.                                                                                                                                                                                                                              



Journal of Petroleum Science and Engineering 220 (2023) 111149

12

However, the porosity data from the deepest part of the Q1 data deviate 
slightly from the fitted line. A similar trend was observed by Marcussen 
et al. (2010) in the Etive formation in the northern North Sea, where the 
porosity-depth gradient is steeper than for shallower buried intervals. 
The reason for this is that the surface area available for quartz nucleation 
is reduced as the pore volumes are filled with significant amounts of 
quartz cement (Walderhaug, 1996). The above results indicate that the 
petrographic observations of Løvstad et al. (2022) are applicable in a 
regional context within the Stø Formation. More importantly, the sep
aration of the Q1 and Q3 data exemplifies the potential for scaling up 
petrographic analysis and integrating with a pure predictive workflow 
to assess reservoir quality in frontier areas within the same formation. 
The successful characterization of these distinct diagenetic features 
within the Stø Formation via the ML based porosity data makes it 
possible to link these diagenetic attributes to typical well log responses. 

5.3. Machine learning porosity data can distinctly identify well log 
responses of lithological- and diagenetic characters 

As discussed above, petrographic results concerning reservoir quality 
controls were crucial for scaling up the diagenetic variation observed 
within the Stø Formation to the ML generated porosity data, which in 
this case resulted in the Q1 and Q3 data subdivision. These distinct 
diagenetic attributes can be characterized from well log responses aided 
by the ML porosity profile that are color coded by this diagenetic 
property, i.e. clay coated high porosity sand (Q3) and negligible coated 
heavily cemented sand (Q1). For other formations, diagenetic alter
ations that control reservoir quality may differ and should be adapted 
accordingly. For intermediate and shallow buried intervals, facies data 
could also be effective, if available, because clay and silt content tends to 
control reservoir quality more frequently than quartz cementation. In 
this way, formation-specific frameworks that can deduce lithological- 

Fig. 10. Gamma ray-porosity plots. A-D) The four wells with facies information obtained from Klausen et al. (2018). Note the three distinct lithologies that can be 
recognized in D: 1: Clean sand with high porosity, 2: clean sand with low porosity and 3: sility/shaley sand with low porosity. E) Well 7119/9–1 and 7120/5–1 with 
maximum burial of about 3300 m and 2900, respectively. F) Four wells form different parts of the study area with varying maximum burial depths and with only 
certain distinct lithologies present. Arrows in figures B, C, E and F indicate the relative amount of cement and clay content according to figures A and D. 
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and diagenetic characteristics related to primary reservoir controls can 
be established for use in frontier regions. 

VP and density are interesting parameters to investigate for several 
reasons. Firstly, they are usually recorded along most boreholes in their 
entirety, which makes them applicable to use for interpretations in wells 
on a regional scale. Secondly, they have seismic properties, which mean 
that they can be linked to seismic amplitude information e.g., (Avseth 
et al., 2001). Thirdly, VP and density are particularly sensitive to 
diagenetic alterations because of their strong correlation with the 
amount of quartz cement volume and hence porosity (Marcussen et al., 
2010). The clustering behavior of the Q1 and Q3 data for VP and density 
(Fig. 8A) indicates that intervals with intermediate maximum burial 
(<2700 m) have very similar acoustic impedances (Fig. 8C). This means 
that the reasoning for the Q1 and Q3 data labeling may not hold for 
intermediately buried intervals. According to Løvstad et al. (2022), the 
significant porosity variation across negligible- and coated intervals 
within the Stø Formation was solely investigated in deeply buried in
tervals. As mentioned in the previous section, the ML based porosity 
data show only a bimodal distribution with a subpopulation of higher 
porosity in deeply buried intervals, meaning that the differentiation 
between intervals affected by the presence or absence of clay coats 
seems only applicable to units with larger TTI’s. The successful sepa
ration of the Q1 and Q3 data with the use of VP and density at intervals 
with significant burial depths (>3300 m) agrees with this interpretation 
(Fig. 8B). However, the boundary between Q1 and Q3 labeled data could 
be challenging to depict from raw well log data, which emphasizes the 
potential in the scaling up interpretations of core analysis to the ML 
generated porosity profile. Additionally, note that Q1 and Q3 data are 
filtered on shale volume, which could be necessary to avoid overlap 
from more silt and clay rich intervals that are common in certain parts of 
the Stø Formation (Olaussen et al., 1984; Klausen et al., 2018). This can 
be particularly important for multi-well analysis because there will be a 
higher risk of masking small but important variations in VP and density 
response compared to single well analysis. The results from unfiltered 
data in single well analysis, that includes facies information, show the 
potential for separating distinct lithological characteristics, both in 
terms of cement- and matrix content variations, from the P-impedance- 
ML porosity and VP - density signatures (Fig. 9 D and H, respectively). 
Still, the separation seems ambiguous for intervals with intermediate 
burial depths (Fig. 9 A-C and 9 E-G). Consequently, the need for a 
parameter combination that can handle variations in cement- and ma
trix content irrespective of burial depth is needed for truly being able to 
delineate reservoir quality variations in blind wells on a regional scale. 

This study have shown that the GR - ML porosity combination can be 
well suited for this purpose (Fig. 10). This is also where the integration 
of a ML based porosity predictor will truly shows its potential. This is 
because, (A) the ML model enables porosity to be used directly, which 
means that we do not need to infer this key property via some other 
parameter. (B) It does not require any known fluid- or rock properties to 
predict porosity from well logs in blind wells (Helle et al., 2001) in 
appose to density- or the sonic derived porosity. (C) It is computationally 
time efficient to make continuous porosity profiles in new wells once a 
pipeline has been established. Alternatively, in contrast to P-wave- and 
density parameters discussed earlier, the GR nor porosity can be directly 
tied to seismic amplitude information, which could be a limiting factor if 
results are to be integrated with seismic data. The GR – porosity rela
tionship had earlier been investigated in one well from the Stø Forma
tion (Ramm, 1991). Ramm (1991) discovered an interesting relationship 
between these parameters, but the relationship was not studied in detail 
with the inclusion of facies data nor the applicability on a regional scale. 
This study have shown that the GR – ML porosity plots enable the sep
aration of three distinct bed types irrespective of burial depth; (1) high 
porosity clean shoreface sands with a varying degree of clay coating, (2) 
heavily cemented clean shoreface sands with negligible clay coating and 
(3) silt- and clay rich intervals (Fig. 10A–D). Furthermore, adding Q1 
and Q3 data labels to the cleaner shoreface facies in this parameter 

domain could further facilitate a simple way of mapping out these units 
in deeply buried intervals. This could for example be useful for linking 
clay-coated intervals between wells in regional studies within the Stø 
Formation. The test of the GR – porosity combination in wells without 
facies information at various locations in the SW Barents Sea (e.g., 
Hammerfest Basin and Bjørnøyrenna Fault Complex, see Fig. 10E and F 
and map in Fig. 1) shows the potential of this parameter domain for use 
in reservoir quality delineation on a regional scale within the Stø 
Formation. 

Additionally, we could speculate that the elongated and “L-shaped” 
trends observed within the upper- and lower shoreface facies for inter
mediate and deeply buried wells respectively, could reflect varying 
amount- and different modes of clay within the Stø Formation. From 
this, we could interpret the lower shoreface facies to have a higher total 
clay content compared to the upper shoreface facies. Moreover, the 
occurrences of clay in the lower shoreface facies is dominated as either 
clay coats or pore-filling, i.e. the low GR-high porosity- and slightly 
higher GR-lower porosity responses, respectively. The GR-ML porosity 
response for the upper shoreface facies reflect in general a cleaner 
sandstone, where also the extent of effective clay coats is lower, leading 
to more heavily quartz cemented units. Based on this result we can 
speculate that effective clay coats are most prone to develop in the lower 
shoreface facies. This interpretation is comparable with the findings of 
Hansen et al. (2017) and Løvstad et al. (2022), which linked the amount 
of post depositional reworking to clay coat coverage. The amount and 
modes of occurrences of clay have also been shown to vary significantly 
within juxtaposed coastal sub-environments in other studies, that ulti
mately can be a key factor controlling diagenetic signatures (Haile et al., 
2018). Moreover, as indicated by Wooldridge et al. (2017) there seems 
to be an optimum range of total clay content within the sediment that 
can aid the development of effective clay coats at depth. 

5.4. General implications 

The Stø Formation and time-equivalent formations have been stud
ied in the context of depositional environment and mineralogical 
composition from several locations in the greater Western Barents Sea 
area and include, but not limited to, rock and core data from the 
Hammerfest Basin, Ringvassøy-Loppa Fault Complex, Bjørnøyrenna 
Fault Complex, Wilhelmøya at Svalbard and the Bjarmeland Platform 
(Olaussen et al., 1984; Hansen et al., 2017; Klausen et al., 2018, 2019; 
Haile et al., 2019; Løvstad et al., 2022). These studies show that the Stø 
Formation is predominantly consisting of mineralogically- and textural 
mature quartz arenitic sandstone beds representing wave dominated 
shallow marine deposits that originated in an overall transgressive 
development. 

The results show the potential in effective use of historical core data 
and how the presented integrated methodology can be used to construct 
formation specific templates that can display lithological- and diage
netic attributes from distinct well log responses. Due to the widespread 
and consistent composition of the Stø Formation and its time- 
equivalents in the greater Barents Sea area, the presented results can 
have important implications for effective reservoir quality delineation in 
intervals or wells without core data in this region or in other similar 
settings worldwide. 

6. Conclusion 

The petroleum industry is increasingly seeking new reservoir dis
coveries and potential C02 storage sites close to existing infrastructure to 
increase the life span of already operating installations to save time and 
cost. After several tens of years of exploration on the NCS, an extensive 
database consisting of wireline log and core data is available. This 
valuable dataset has a huge potential for being exploited to establish 
formation-specific predictive frameworks for use in already mature 
provinces. ML has enabled an effective (both and time and cost) and 
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accurate method for estimating reservoir properties from existing core 
data. This study demonstrate that effective use of historical core data in 
conjunction with a pure predictive ML-based workflow can be used to 
establish formation-specific frameworks for deducing distinct litholog
ical- and diagenetic attributes from well log data. The study also 
emphasis the importance of conducting detailed core analysis prior to 
utilizing data-driven methods for predicting reservoir quality parame
ters, because: (1) detailed geological information can aid the geologist to 
decide on which reservoir quality parameters to model and (2) litho
logical and diagenetic information will assist the interpretation of data 
derived from the model. The latter can be crucial for making strategic 
data subsets that can be used to link key lithological and diagenetic 
attributes to well log responses. The results show that high porosity 
clean sand-, cemented clean sand- and clay/silt rich intervals can be 
distinguished within Stø Formation. These distinct bed types can be 
recognized from basic well log data in new wells without core material 
and thus serve as a framework for effectively delineate reservoir quality 
variations on a regional scale. Particularly, the relationship between GR 
and ML porosity shows promising results for reservoir quality delinea
tion because this domain can handle the effect of varying silt/clay- and 
quartz cement content. Moreover, the results from this parameter 
combination could indicate that effective clay coats are most prone to 
develop in lower shoreface facies within the Stø Formation. The distinct 
VP and density response for the high porosity clean sand- and cemented 
sand intervals show a potential for linking these parameters to seismic 
amplitude information, which could have huge implications for con
necting high porosity zones between wells. Integrating historical core 
data with a ML-based reservoir property predictor can aid reservoir 
quality determination in new un-cored wells or intervals. By using 
already acquired data in mature provinces, the presented methodology 
can be employed to establish similar formation-specific frameworks 
elsewhere. 
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