
Technical Report #321, ISBN 82-7368-274-9
Department of Informatics, University of Oslo
March 2005

NEMAN: A Network Emulator for
Mobile Ad-Hoc Networks

Matija Pužar, Thomas Plagemann
Department of Informatics, University of Oslo

{matija, plageman}@ifi.uio.no

Abstract – Development of applications and protocols for
wireless ad-hoc networks has always been a challenge. Spe-
cific characteristics such as frequent topology changes due
to nodes moving around, popping up or being turned off,
need to be considered from the earliest stages of develop-
ment. Since testing and evaluation using genuine wireless
devices is both expensive and highly impractical, other tools
need to be used in the development phase. Simulators give a
very detailed model of lower layers’ behaviors, but code
often needs to be completely rewritten in order to be used on
actual physical devices. Emulators present a trade-off be-
tween real test beds and simulators, providing a virtual
wireless network at the lowest layers, and yet allowing real
code to be run on the higher layers. In this paper, we pre-
sent such an emulation platform, called NEMAN, that al-
lows us to run a virtual wireless network of hundreds of
nodes on a single end-user machine. NEMAN has shown to
be an important and very useful tool during development of
different applications and protocols for our project, includ-
ing a key management protocol and a distributed event noti-
fication service.

Keywords – mobile ad-hoc network, network emulation, topol-
ogy

I. INTRODUCTION

Information sharing is a mission critical key element in
rescue and emergency operations. Mobile ad-hoc net-
works (MANETs) could provide a useful infrastructure to
support information sharing, but appropriate applications
are needed. In addition, middleware support has to be
present to facilitate efficient application development for
this type of infrastructure. In the Ad-Hoc InfoWare pro-
ject [9], we are addressing these needs by developing
middleware services for information sharing. The core
building blocks of these services are knowledge man-
agement, a local and a distributed event notification ser-
vice, resource management, and security and privacy
management. As part of the development process, it is
necessary to analyze and compare design and implemen-
tation alternatives for the building blocks, understand
qualitatively and quantitatively the design trade-offs, to
test whether the protocols and algorithms actually work,
and to evaluate their efficiency and compare them with
related solutions from others. Basically, there are three
kinds of development environments that support these

tasks: simulation, emulation, as well as implementation
and field tests.

The development environment that comes closest to
real live deployment are field tests of MANETs. How-
ever, field tests of wireless scenarios are expensive with
respect to number of devices and number of persons that
are needed to perform them as well as the time it takes to
prepare them. Furthermore, it is very hard to entirely
control all parameters in a field test and to perform re-
peatable experiments. Field tests are clearly not perfectly
suited to support the development of middleware proto-
cols, services and applications for MANETs. On the
other hand, both simulation and emulation provide con-
trolled environments which enable repeatable experi-
ments and are generally much cheaper than field tests.
To facilitate the development and testing of such applica-
tions and protocols, it is important to carefully choose a
suitable simulation or emulation tool.

Simulators, such as GloMoSim [14] and ns-2 [12],
have long been used in the ad-hoc field and make it pos-
sible to experience very diverse communication situations
and a large scale of deployment. One of the goals of
these simulators is to give a detailed representation of the
physical layer. A major drawback is that learning how to
use and program a simulator like ns-2 takes a substantial
amount of time. Furthermore, the code that has been de-
veloped for these simulators needs to be rewritten for
later deployment on real systems. By using an emulating
platform, however, real processes run in real time and one
can immediately start writing the very same code that will
be later used on wireless devices.

 In particular, we have the following requirements on a
simulation or emulation environment for the development
of protocols, middleware services and applications in the
Ad-Hoc InfoWare project:

• Minimal initial effort: installing and learning to
use a particular simulation or emulation environ-
ment should not consume too much time and ef-
fort such that it can also be efficiently used from
novices in shorter projects, like master theses.

• Costs: we need an affordable solution, including
hardware and software costs as well as human re-
sources. Thus, the environment should be is able
to run on a single standard PC.

• Scalability: the chosen platform should be able to
run a high number of nodes without severe per-
formance loss. This work has been funded by the Norwegian Research Council in the

IKT-2010 Program, Project Nr. 152929/431.

• Portability: the code developed for the applica-
tions and protocols should be portable to genuine
wireless devices with minor or no changes at all.

• Realistic network layer: our protocols are sup-
posed to utilize existing ad-hoc routing protocols,
therefore, a real routing protocol should run in the
simulation or emulation environment. During the
development process, our main concern is connec-
tivity and loss of connectivity between nodes.
Therefore, quality of service and specific lower
layer issues such as collisions in the air, hidden
terminals, etc. are of lower importance for us than
using real routing protocols and reflecting the ef-
fects of mobility in MANETs on connectivity.

• Possible comparability: much work in the area is
done with ns-2 and we want to be able to compare
our solutions with those from others without re-
implementing them in our simulation or emulation
environment. Using standard formats for scenario
files, such as those from ns-2, would enable us to
perform experiments with the same scenarios and
to compare our results with results obtained with
other tools.

Many researchers are aware of the need for appropriate

development environments of MANET protocols, but the
majority is being focused on link layer and network layer
issues. Therefore, we could not find existing simulation
or emulation environments that completely fulfill our
requirements. Inspired by the approach of the network
emulator MobiEmu [15], we have developed an emula-
tion platform called NEMAN. To the best of our knowl-
edge, NEMAN is the only platform able to emulate
MANETs consisting of hundreds of nodes on a single PC.
Based on scenario descriptions from ns-2, NEMAN con-
trols the physical connectivity between the virtual mobile
nodes. Currently, we use the Open Link State Routing
Protocol (OLSR) [1] with NEMAN to establish and
maintain the IP layer of the emulated network. The proc-
esses in these virtual mobile nodes bind to virtual net-
work interfaces, i.e., TAP interfaces. By this, the code
developed for NEMAN can be used in real wireless nodes
with a minimal effort. It is the aim of this paper to de-
scribe the design, implementation and first evaluation of
NEMAN, and to analyze its strength and weaknesses.

The rest of the paper is structured as follows. Section
II shows some of the most important related network
emulators. In Section III, we present the architecture of
NEMAN. Implementation details are described in Sec-
tion IV, while in the following sections we explain the
application development process (Section V) and de-
scribe our experiences in using NEMAN for the devel-
opment of a key management protocols and a distributed
event notification service in the Ad-Hoc InfoWare project
(Section VI). Performance and scalability are described
in Section VII. Finally, Section VIII gives a conclusion
and ideas for the future work.

II. RELATED WORK

A common way to perform emulations is to have a sin-
gle machine for each emulated node. In such cases, fil-
tering at the MAC layer is used to achieve the notion of
wireless topology, often by means of iptables.

MobiEmu consists of several slave nodes, as well as
one master node. As the master gives instructions on
topology changes, the slaves set local iptables-rules pre-
venting them from hearing traffic from those nodes they
have no physical connectivity with. However, the con-
cept of having separate physical or virtual machines for
each emulated node, made MobiEmu very impractical for
us to use it as such.

MNE (Mobile Network Emulator [6]) uses a static
network infrastructure to interconnect devices. Each de-
vice has two interfaces, where one acts as a mobile emu-
lation control channel while the other is used for the emu-
lated wireless network. The latter can be an actual wire-
less interface, allowing for some lower layer effects (such
as collisions) to be taken into account as well. Informa-
tion about topology changes is sent through the control
channel, causing the nodes to set or remove iptables-rules
accordingly, as it is done in MobiEmu. The main prob-
lem of this approach is that it still needs a separate device
for each emulated wireless host.

EMWIN [16] improves the issue with the number of
physical machines by allowing each node to have several
network interfaces, each acting as a separate wireless
node. EMWIN intends to provide emulation of some
MAC layer effects by introducing an additional emulated
MAC (eMAC) layer. Again, due to a relatively high
number of machines required, this approach is still im-
practical for our needs.

MobiNet [7] consist of core nodes, used to emulate to-
pology-specific and hop-by-hop network characteristics,
and edge nodes. It is able to emulate a much larger num-
ber of virtual wireless devices by having multiple Virtual
Edge Nodes (VNs), with different IP addresses, on each
edge node. MobiNet has a built-in routing protocol
(DSR) and emulates MAC layer effects as well. Al-
though the number of physical devices required to run
MobiNet is drastically reduced, and the platform seems to
be very well developed, its setup is still somehow com-
plicated, with regards to our requirements.

JEmu [3] was developed by the Networks & Tele-
communications Research Group (NTRG) to emulate the
radio components of their particular communication
stack. To represent nodes in the emulation, JEmu uses
genuine wireless devices with different types of wireless
communication links, as well as stationary machines.
JEmu has a somehow different approach when it comes
to topology simulation. Every packet is first sent to the
emulation engine which then decides whether certain
nodes are able to receive it or whether there should be a
collision, in which case it depends on the specific con-
figuration what should be done.

 2

Table I summarizes roughly the properties of these re-
lated works with respect to our particular requirements.
As it can be seen from the table, none of them fulfills all
the requirements.

III. ARCHITECTURE

NEMAN is designed to emulate a relatively large scale
wireless network, up to hundreds of nodes, within a sin-
gle physical machine. With that respect, NEMAN is clos-
est to MobiNet. The NEMAN architecture comprises the
following three elements, as shown on Fig. 1:

• the user processes represent actual applications
and protocols that are being tested, including rout-
ing daemons,

• the topology manager manages virtual network in-
terfaces and performs packet switching according
to the topology information at a certain moment in
time, and

• the graphical user interface (GUI), used to visual-
ize the emulated network and to induce the topol-
ogy information to the topology manager

All the components, including the topology manager,

run in the user space of the Linux operating system.
Root-privilege is only needed to configure the virtual
network interfaces.

 On top of this basic emulated network infrastructure,
user processes hook to virtual Ethernet network devices,
called TAP devices. TAP devices are available in the
Linux kernel and provide low level support for Ethernet
tunneling. User processes can send and receive data via
TAP interfaces using the classical socket API, thus
achieving portability of code. The only requirement for
the sockets is to use the specific option
SO_BINDTODEVICE, ensuring that a process’ socket
will listen and send only to the specified interface, and
thus not interfere with traffic addressed to some other
process. This is an important requirement having in mind
that all the emulated processes run on the same machine.
One example of such user processes are the routing dae-
mons. Since this infrastructure emulates the physical and
the link layer of MANETs, we must first establish an IP
infrastructure by means of routing daemon processes
hooked to the TAP interfaces. Other processes that are
hooked to the same interfaces can afterwards use the es-
tablished IP infrastructure, allowing us to implement and
test middleware and application layer protocols, which
was exactly our goal. A group of processes hooked to the
same TAP interface represents a node in the emulated
network, called virtual node.

TABLE I
PROPERTIES OF VARIOUS NETWORK EMULATORS

 MobiEmu MNE EMWIN MobiNet JEmu

Usage

Low costs

Scalability

Portability

Routing

Comparability

The topology manager is the core of NEMAN. It is the
user-space application creating and maintaining the TAP
devices. Since TAP devices provide Ethernet tunneling,
we ensured independence with regards to the IP version
being used. Every frame received on a TAP interface is
available to the topology manager, and every frame in-
duced by the topology manager into an interface is avail-
able to the processes hooked to it. In other words, when
the topology manager gets a frame sent to one of its TAP
interfaces, it can then decide to forward it to some of the
other interfaces (or none), according to the topology in-
formation it has at the moment. Due to the fact that all
the nodes run on a single machine, the routing table of the
kernel is not taken into account (this is described more in
depth in Section IV). One TAP interface (in our case,
tap0) is reserved as the monitoring channel, having an
open bidirectional connection to all the other TAP inter-
faces, independent from the topology. This is a very im-
portant feature, allowing us to perform analysis of the
network traffic using standard tools such as tcpdump or
ethereal. Moreover, having in mind that the monitoring
channel works both ways, we are able to use the same
channel to induce traffic into the virtual network from the
“outside world”. This feature comes useful when appli-
cations or services need to be triggered at a specific mo-
ment of time. An example of such a service is shown in
Section VI.B.

tap1 (...)

monitoring,
logging

control
channel

feedback
channel

>[] ||

monitoring
channel

tap2 tap3 tap0

Topology
Manager

GUI

Processes

The implementation of the GUI is currently based on
MobiEmu’s GUI. It is a Tcl/Tk script, independent from
the topology manager and can run on a separate machine.
The GUI shows the current position of nodes, their
transmission ranges and links between nodes that can
directly communicate with each other. Topology and
node movement data are acquired from standard ns-2
scenario files, created by, for example, ns-2’s setdest pro-
gram. Scenario files are interpreted sequentially, allow-

Fig. 1. NEMAN architecture

 3

ing us to introduce some application-specific events at
specific moments in the emulation, thus achieving repeat-
able results. Information about topology changes is sent
to the topology manager through the control channel, in
form of UDP packets. The GUI allows also any user
process to give it some feedback, so that important state
changes in a user process can be visualized as e.g. color
changes in the GUI. An example, where this has proved
to be a very useful feature, is described in Section VI.A.

The current implementation of the emulator provides
us a working network infrastructure, essential for the de-
velopment process of higher layer applications. In the
conclusion, we discuss some possible future extensions,
including the emulation of characteristics typical for
wireless networks, such as collisions in the air, hidden
terminals, obstacles, etc.

IV. IMPLEMENTATION DETAILS

Since all virtual nodes run on the same physical ma-
chine, we had to solve some problems that are not present
in the “real” world, i.e., where each virtual node is also a
physical node.

One of the major problems we noticed was that the
Linux kernel gracefully ignores all incoming packets that
have been sent from one of its own interfaces. Although
in most situations this is a reasonable thing to do, with
respect to security issues and prevention from possible
message loops, it was not an option in our case, where
local interfaces were the only ones communicating be-
tween themselves. The solution was to implement the
send-to-self (STS) patch developed by Ben Greear, which
fixes the problem, allowing for local traffic to be received
as well.

The next problem emerged when the first ARP packets
started coming from our test-applications. For any ARP
packet coming to the machine, independent on the IP
address being queried, all local interfaces that hear the
query answer with their own MAC address. Again, this
might be a useful feature in most of the standard situa-
tions where an IP address represents a physical machine,
but in our case the amount of unnecessary traffic gener-
ated (with false information) was unacceptable. There
are two possibilities to solve this problem. The first one
is to implement a kernel patch, called hidden, developed
by Julian Anastasov. This patch allows for certain de-
vices to be hidden from other devices (hence the name),
when it comes to ARP requests. The second possibility is
to let topology manager directly answer all ARP requests
between its TAP interfaces. Although the second ap-
proach might reduce a bit on realism at the lower layers,
for our case, where we are mainly concerned about con-
nectivity and topology changes, it is acceptable. Fur-
thermore, it turned out that the multi-hop routing problem
can be solved in a corresponding way

The multi-hop routing problem is caused by the fact
that IP addresses of “remote” virtual nodes are tied to
local TAP interfaces. This contradiction prevents the
routing protocols to set routes towards such addresses,
which is the case for all of our emulated nodes. Using

dynamically created iptables-rules to perform routing on
a single machine proved not to work either. Therefore,
we decided to solve the problem on a higher layer, with-
out introducing additional patches into the kernel. The
implementation of the OLSR routing protocol we are
using in our emulated network, the olsr.org OLSR dae-
mon [13], writes every route change to the standard out-
put. This enables us to induce that information directly
into the topology manager, through a parser developed
especially for that purpose. The topology manager then
forwards every packet hop by hop according to the re-
quests from the OLSR daemons to its final destination.
By solving the routing issue that way, no changes were
needed to either the routing daemon or kernel. In addi-
tion, this approach allows us to use other routing proto-
cols (such as AODV [8]) as well, with either no changes
at all or just minor changes to the routing daemon’s out-
put and/or to our parser.

The Linux kernel has a hard-coded upper limit of 100
network interfaces of the same kind. To overcome this
limitation it is only necessary to increase the maximum
number of iterations in a particular loop in the kernel.
This minor change in the kernel increases the scalability
of NEMAN such that only the server’s resources deter-
mine the upper limit.

V. APPLICATION DEVELOPMENT

One of the main points of using an emulator is to be
able to port applications from the emulating platform to
genuine wireless devices without need having to change
the code. Any application able to hook to e.g. Ethernet
(eth*), 802.11 (wlan*) or similar devices can be used
directly with TAP devices as well. The only precondition
is that, in order not to mix with other applications’ data,
an application has to listen and send only to the specified
devices, which is accomplished by using the previously
mentioned SO_BINDTODEVICE option when creating
the socket.

Fig. 2. shows the typical process of using NEMAN.

run the topology manager,
the GUI and possible helper

applications

if necessary, (re)start all the
processes to be emulated

run the emulation

load the scenario file, (re)start
routing daemons

stop the emulation analysis

generate scenario file,
develop applications

Preparation

Emulation Run

Analysis

adjust applications,
if necessary

Fig. 2. Workflow diagram of using NEMAN

 4

0

5

10

15

20

25

30

35

40

45

50

10 20 30 40 50 60 70 80 90 100
Number of nodes in the wireless cell

Se
co

nd
s

Mesh
Chain

The process is roughly divided into three phases. In the
preparation phase, the scenario files and initial user proc-
ess’ code are developed, and the emulator core is initi-
ated. In the next phase, user processes are started. The
analysis phase can overlap with the run-phase, since traf-
fic can be monitored on the fly through the monitoring
channel. The last two phases are then iterated until the
wanted functionality is achieved.

Apart from the applications being tested, additional
helper applications might be needed to, for example, re-
start routing daemons on demand or to listen to messages
triggered by custom events in the scenario file. The
monitoring channel provides the means to perform analy-
sis on what is going on in the network on the fly, by
hooking to tap0 with e.g. standard tools like tcpdump. In
addition, all the traffic can be saved for a later, more de-
tailed analysis. Fig. 3. Time needed to achieve a stable shared key

VI. EXPERIENCES

NEMAN was developed primarily to test and evaluate
applications and protocols for the Ad-Hoc InfoWare pro-
ject. Here, we present our experiences with some of the
applications and protocols we tested and which already
benefit from the emulation platform.

The olsr.org OLSR daemon was the first example
showing that already existing applications needed no
modifications to be able to work with NEMAN. Indeed,
at each moment the output from a certain daemon, show-
ing its 1-hop and 2-hops neighbors, would fully match
what was displayed in the GUI.

A. A Simple Key Management Protocol for MANETs in
Emergency And Rescue Operations (SKiMPy)

The SKiMPy key management protocol [10] is used to
establish a symmetric shared key between the rescue per-
sonnel’s devices. At the network layer, the key provides
the means for establishing a secure network infrastructure
between authorized nodes, while keeping out unauthor-
ized ones. In addition, at the application layer it may be
decided whether the established shared key will be used
to encrypt data as well. SKiMPy is designed and opti-
mized for highly dynamic ad-hoc networks and it is com-
pletely autonomous, requiring no user interaction at all.

In the current implementation, the key management
protocol has been coded directly into the security plugin
[5] of the OLSR routing daemon. Although SKiMPy is
mainly designed to protect all traffic and not only routing,
this was still a good opportunity to test and analyze it in a
realistic environment with a real routing protocol.

The emulator was an essential tool to test the perform-
ance and scalability of SKiMPy. We tested it for two
different static scenarios, called chain and mesh.

In a chain scenario, all nodes are lined up in a single
chain and the distance between all nodes in the chain is
such that only the direct neighbors can communicate in a
single hop with each other. We consider this to be the
worst case scenario for SKiMPy, since its performance
benefits from having more neighbors.

In a mesh scenario, however, nodes have multiple, ran-
domly scattered neighbors, as it is natural in ad-hoc net-
works. Having multiple neighbors allows the protocol to
reduce traffic and resource consumption.

Ten independent runs were performed for each number
of nodes and each scenario, and the results on Fig. 3.
show that the key management protocol scales linearly
with linear increase of the number of nodes and physical
network area accordingly (thus giving the same density of
nodes). In an additional test, we tried to see the scalability
of the protocol when the size of the physical area remains
constant while the number of nodes increases. In this
case, there is much more network traffic involved, as well
as computation, making the test-machine the bottleneck.
Therefore, we were only able to test up to 50 nodes, but
the results for these measurements have shown minimal
differences in the performance, compared to the results
when the density of the nodes was constant.

One of the useful features of MobiEmu’s original GUI
is that it accepts certain feedback messages. A special
application constantly monitors all traffic on the monitor-
ing channel (tap0) and analyzes signed OLSR packets,
containing the ID number of the key used to perform the
signature. When a change is noticed, the ID number is
converted to a 24-bit RGB color code and sent as feed-
back to the GUI, which then colors the node on the screen
accordingly. That way, we got a simple and yet effective
way to see in real time how the protocol works and how
the keys are spread through the network.

To conclude, NEMAN has played an important role in
the process of developing, testing and evaluating
SKiMPy. It presented us both numerical and graphical
proofs that the protocol indeed worked as expected.

B. Distributed Event Notification Service (DENS)

DENS [11] is a communication tool in our architecture,
providing an asynchronous communication mechanism
using the publish/subscribe model which is well suited
for a highly dynamic environment such as our scenario.
Some of the nodes in the network are chosen as so called
DENS-nodes. These nodes have the role of mediators or

 5

brokers between the subscribers and publishers, so both
subscriptions and notifications are sent to them. In a
MANET disconnections causing partitioning are frequent
and the DENS-nodes may therefore get disconnected as
well. We want the service to be highly available so our
solution should survive such network partitions. This is
achieved by replicating information about subscriptions
among the DENS-nodes. However, the replication of
state information together with network partitions can
easily lead to inconsistent replications. One important
tasks for DENS-nodes is therefore to regain a consistent
state as fast as possible. In addition, DENS-nodes may
keep notifications for a specified amount of time, allow-
ing nodes that are temporarily out of reach to still get the
information. Scalability is also an issue since having too
many DENS-nodes would create a lot of traffic when
synchronizing and replicating information about subscrip-
tions and notifications, so we need to run tests to find the
right trade-off between availability of the service and still
making it scalable.

The first implementation of the DENS protocol is cur-
rently under development and NEMAN has proven to be
an essential tool for analyzing and debugging the proto-
col. To trigger DENS-nodes to perform subscriptions
and notifications, which in the real scenario will be done
at the application layer, we use the monitoring channel
for its other purpose, i.e. inducing messages. Control
messages are sent through the monitoring channel to
DENS nodes either directly from the shell, or from the
GUI. Special lines can be added to the scenario file,
causing the GUI to forward them at the specified time,
through a proxy application, into the monitoring channel.

VII. PERFORMANCE AND SCALABILITY

So far, we have been running the emulator using up to
100 nodes and have only noticed degradation of perform-
ance when nodes have in average more than 50 direct
neighbors and all would be turned on at the same time,
causing massive key exchange within the SKiMPy proto-
col. In all the other circumstances, no problems were
noticed. The load on the machine and the amount of con-
trol messages coming to the control channel from the
GUI and the routing parser is reasonable, even with a
high number of nodes and link changes. As one of the
next steps, we will try to analyze in more details where
exactly, with respect to the number of nodes, do we have
boundaries of normal usage.

One of the main places for performance improvement
is the GUI. Although it is easy to use and to be extended
with new functionalities, its performance becomes highly
degraded as the number of nodes and active links is in-
creased, even with the minimal smoothness factor. To
avoid this problem, the graphical display can be tempo-
rarily turned off in cases where results are needed quickly
and they do not depend on time. This can be done either
by changing the application or by simply minimizing the
window. Another problem with large scenarios (either
with regards to the time domain or number of nodes) is
that the GUI loads the whole scenario in memory before

starting to interpret it. Assuming that reading the sce-
nario file on the fly would not impose a new bottleneck,
this might be a point to investigate.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we described the requirements, design,
implementation, and experiences with our emulation plat-
form for MANETs, called NEMAN. Development of
middleware services for emergency and rescue operations
is the main focus of Ad-Hoc InfoWare project. In this
context, NEMAN has already proved to be an important
and very useful tool for the development of our key man-
agement protocol SKiMPy and the distributed event noti-
fication service.

There are several other simulation and emulation envi-
ronments of MANETs, however, to the best of our
knowledge, NEMAN is the only emulation platform al-
lowing to perform MANET emulations of up to hundreds
of nodes on a single machine. By this, NEMAN is a
cheap and efficient environment to develop middleware
protocols, services, and applications. Furthermore, the
code that has been developed on NEMAN can be easily
ported and deployed on genuine wireless devices. Obvi-
ously, this facilitates considerably the step from devel-
opment in an emulation environment to “real life” field
trials and deployment. We hope that this will also con-
tribute in the future to increase the number of research
results that are not only developed and evaluated within a
simulation or emulation environment, but are also tested
with real devices in field trials.

While the current implementation of NEMAN has al-
ready proven to be very useful, there are still some as-
pects of NEMAN we would like to improve, respectively
to extend. We envisage three possible threads of future
work. First, we are interested to increase the number of
nodes that can be efficiently emulated. To overcome the
resource limitations of a single PC, we are looking into
design and implementing a NEMAN version that can run
concurrently on multiple PCs. We might even include
heterogeneous computing platforms into the simulation to
emulate the software where it actually should be running.
For creating such a distributed simulation for ad hoc net-
works, we are investigating distributed simulation, com-
ponent, and multi-agent architectures and technologies
such as the High Level Architecture (HLA) [2] and
Foundation for Intelligent Physical Agents (FIPA) archi-
tecture [4] for multi-agent systems.

Second, we would like to extend the functionality of
the topology manager to not only emulate the connec-
tivity between nodes according to a scenario description,
but also to emulate some other link layer properties, like
Quality-of-Service, hidden terminals, etc. The emulation
of these aspects will require much more resources than
just deciding whether a virtual device should receive a
packet or not. Thus, the availability of a distributed
NEMAN version might be necessary to perform such
emulations with larger number of nodes.

The third thread of possible future work is concerned
with the GUI. The GUI is currently the performance bot-

 6

tleneck in NEMAN. This bottleneck is caused by the fact
that the GUI is implemented in Tcl/Tk. A re-
implementation with a language that can be compiled
should lead to substantial performance improvements.
Furthermore, we are interested to extend the functionality
of the GUI. We would like to use the GUI to turn on and
off nodes at any stage of the emulation by just clicking on
them with, be able to create new nodes on the fly, and
even influence the link layer properties by clicking on
them.

ACKNOWLEDGMENTS

This work has been performed in the Ad-Hoc
InfoWare project and we would like to thank all project
team members and related colleagues for many fruitful
discussions and other contributions. Special thanks go to
Katrine S. Skjelsvik for contributing with valuable feed-
back on NEMAN as a patient beta tester, and Erek Gök-
türk for providing important insights into related work.
Furthermore, we would like to acknowledge the Mo-
biEmu project, whose GUI we used as a starting point for
creating NEMAN.

REFERENCES

[1] Clausen T., Jacquet P., “Optimized Link State Rout-
ing Protocol (OLSR)”, RFC 3626, October 2003.

[2] IEEE-SA Standards Board, IEEE Standard 1516
[3] Flynn, J., Tewari, H., O'Mahony, D., "A Real Time

Emulation System for Mobile Ad Hoc Networks",
Proceedings of the Communication Networks and
Distributed Systems Modeling and Simulation Con-
ference, 2002.

[4] Foundation for Intelligent Physical Agents (FIPA)
standard no: SC00001L, FIPA Abstract Architec-
ture Specification, 2002.

[5] Hafslund A., Tønnesen A., Rotvik J. B., Andersson
J., Kure Ø., “Secure Extension to the OLSR proto-
col”, OLSR Interop Workshop, San Diego, August
2004.

[6] Macker, J. P., Chao, W., Weston, J. W., "A low-
cost, IP-based mobile network emulator (MNE)",
MILCOM 2003 - IEEE Military Communications
Conference, 2003, 22, 481-486.

[7] Mahadevan, P., Rodriguez, A., Becker, D., Vahdat,
A., “MobiNet: A Scalable Emulation Infrastructure
for Ad Hoc and Wireless Networks”, UCSD Tech-
nical Report CS2004-0792, 2004.

[8] Perkins, C., Belding-Royer, E., “Ad hoc On-
Demand Distance Vector (AODV) Routing”, RFC
3561, July 2003.

[9] Plagemann, T., et al., “Middleware Services for
Information Sharing in Mobile Ad-Hoc Networks -
Challenges and Approach”, Workshop on Chal-
lenges of Mobility, IFIP TC6 World Computer
Congress, Toulouse, France, August 2004.

[10] Pužar, M., Andersson, J., Plagemann, T., Roudier,
Y., “SKiMPy: A Simple Key Management Protocol
for MANETs in Emergency and Rescue Opera-
tions”, Technical Report, Department of Informat-
ics, University of Oslo, February 2005.

[11] Skjelsvik, K. S., Goebel, V., Plagemann, T., “A
Highly Available Distributed Event Notification
Service for Mobile Ad-hoc Networks”,
ACM/IFIP/USENIX 5th International Middleware
Conference (Middleware 2004), Toronto, Canada,
October 2004.

[12] The Network Simulator - ns-2,
http://www.isi.edu/nsnam/ns/

[13] Tønnesen A., “Implementing and extending the
Optimized Link State Routing protocol”,
http://www.olsr.org/, August 2004.

[14] Zeng, X., Bagrodia, R., Gerla, M., “GloMoSim: a
Library for the Parallel Network Simulation Envi-
ronment”, Proceedings of the 12th Workshop on
Parallel and Distributed Systems, 1998

[15] Zhang, Y., Li, W., “An Integrated Environment for
Testing Mobile Ad-Hoc Networks”, MOBIHOC'02,
EPFL Lausanne, Switzerland, 2002.

[16] Zheng, P., Ni, L. M., “EMWIN: Emulating a Mo-
bile Wireless Network using a Wired Network”, 5th
ACM international workshop on Wireless mobile
multimedia, Atlanta, Georgia, 2002.

 7

	I. Introduction
	II. Related Work
	III. Architecture
	IV. Implementation Details
	V. Application Development
	VI. Experiences
	A. A Simple Key Management Protocol for MANETs in Emergency And Rescue Operations (SKiMPy)
	B. Distributed Event Notification Service (DENS)
	VII. Performance and Scalability
	VIII. Conclusion and Future Work

