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ABSTRACT
As the statistical power of galaxy weak lensing reaches per cent level precision, large, realistic, and robust simulations are
required to calibrate observational systematics, especially given the increased importance of object blending as survey depths
increase. To capture the coupled effects of blending in both shear and photometric redshift calibration, we define the effective
redshift distribution for lensing, nγ (z), and describe how to estimate it using image simulations. We use an extensive suite of
tailored image simulations to characterize the performance of the shear estimation pipeline applied to the Dark Energy Survey
(DES) Year 3 data set. We describe the multiband, multi-epoch simulations, and demonstrate their high level of realism through
comparisons to the real DES data. We isolate the effects that generate shear calibration biases by running variations on our fiducial
simulation, and find that blending-related effects are the dominant contribution to the mean multiplicative bias of approximately
−2 per cent. By generating simulations with input shear signals that vary with redshift, we calibrate biases in our estimation
of the effective redshift distribution, and demonstrate the importance of this approach when blending is present. We provide
corrected effective redshift distributions that incorporate statistical and systematic uncertainties, ready for use in DES Year 3
weak lensing analyses.

Key words: gravitational lensing: weak – large-scale structure of Universe.

1 IN T RO D U C T I O N

While weak gravitational lensing of galaxies has enormous potential
as a cosmological probe (e.g. Albrecht et al. 2006; Weinberg et al.
2013), measurements of the weak lensing shear have proven to be
extremely difficult in practice (e.g. Mandelbaum et al. 2014). The
shear manifests as a small distortion in the observed shape of a galaxy.

� E-mail: nm746@cam.ac.uk

Its measurement is subject to numerous biases, and requires accurate
calibrations of many properties of the input images. Typically, these
biases have been quantified by assuming a linear relation between
component x of the measured shear ḡobs

x (averaged over an ensemble
of galaxies), and component y of the true shear gtrue

y (e.g. Heymans
et al. 2006)

ḡobs
x = (1 + mxy)gtrue

y + cx, (1)

where mxy is known as the multiplicative bias, and c is known as
the additive bias. This linear relation is expected to hold in the weak
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lensing regime, where gtrue
y is small [and so contributions of order

(gtrue
y )2 can be neglected]. One can also consider the multiplicative

term as quantifying the linear response, Rxy ≡ 1 + mxy of the shear
estimate to a change in the input shear i.e.

Rxy ≡ ∂ḡobs
x

∂gtrue
y

. (2)

The off-diagonal elements of mxy (and Rxy) are often assumed (and
empirically found) to be zero, allowing for the more common notation
where mx ≡ mxx. In the following, we will usually drop the shear
component subscripts for brevity, with expressions involving ḡobs

and gtrue generally holding for either component of the shear.
The most thoroughly studied biases in weak lensing measurements

have mainly been performed with simulations of isolated objects.
These include noise bias (e.g. Kacprzak et al. 2012; Refregier et al.
2012), model bias (e.g. Voigt & Bridle 2010), selection biases (e.g.
Kaiser 2000; Bernstein & Jarvis 2002; Hirata & Seljak 2003), and
biases from miscorrecting for the image point spread function (PSF;
e.g. Paulin-Henriksson et al. 2008). These problems were tackled
by community-driven efforts like the STEP (Heymans et al. 2006;
Massey et al. 2007) and GREAT (Bridle et al. 2010; Kitching
et al. 2013; Mandelbaum et al. 2015) challenges, and aided by the
development of the widely used GalSim1 software for simulation of
astronomical images (Rowe et al. 2015). For isolated objects, the
aforementioned biases have largely been solved by methods like
METACALIBRATION (Huff & Mandelbaum 2017; Sheldon & Huff
2017) and ‘Bayesian Fourier Domain’ (BFD; Bernstein et al. 2016),
at least for sufficiently well-understood data (i.e. with accurately
characterized noise and background levels and PSF). The METACAL-
IBRATION method is particularly powerful because it does not rely on
calibration simulations, which inevitably rely on assumptions about
the properties of the faint, often poorly resolved galaxies used in
weak lensing analyses.

More recently, some studies have begun to study shear calibration
biases in the context of multiple objects and blending. It has generally
been assumed that in this case the use of image simulations will be
essential, and these have been used for the calibration of recent
weak lensing cosmology analyses, for example by Fenech Conti
et al. (2017), Kannawadi et al. (2019) (for the Kilo-Degree Survey2),
Mandelbaum et al. (2018) (for the Hyper Suprime-Cam Subaru
Strategic Program3), and Samuroff et al. (2018), Kacprzak et al.
(2020) (for Dark Energy Survey, DES, Year 1 analyses). Works such
as Hoekstra, Viola & Herbonnet (2017) and Euclid Collaboration
(2019), with an eye to deeper upcoming data sets, have used image
simulations to study effects such as the impact of undetected galaxies
on the shear calibration.

In parallel to these simulation-based calibration efforts, Sheldon
et al. (2020) developed new measurement methodology, METADE-
TECTION, which corrects for much of the impact of blending, in
particular the significant shear biases imparted by detection and
deblending algorithms, as well as the impact of blending at the shape
measurement stage. The METADETECTION method does not require
simulation-based calibration, and exhibits extremely low levels of
shear calibration bias even on (constant shear) simulations designed
to match the depth of Rubin Observatory Legacy Survey of Space
and Time4 (LSST) data.

1https://github.com/GalSim-developers/GalSim
2http://kids.strw.leidenuniv.nl/index.php
3https://hsc.mtk.nao.ac.jp/ssp/
4https://www.lsst.org/

Current and future surveys will have large amounts of blending
of objects at different redshifts (e.g. Dawson et al. 2016). The com-
ponent galaxies in blended systems will therefore often experience
different shears. As we will discuss in Section 2, the impact of this
on weak lensing statistics cannot be fully accounted for by the use
of simplified constant shear simulations used thus far in the field to
calibrate shear measurements, or corrections from shear estimation
methods like METADETECTION. In order to gain intuition into the
possible effects, consider the following simplified situation, shown in
Fig. 1. In both panels, we input a pair of galaxies at different redshifts;
for the sake of illustration we arbitrarily set one at low redshift (z =
0.25) and one at high redshift (z = 0.75). The high redshift galaxy is
placed at the centre of the stamp in both panels. For simplicity, we
have fixed both galaxies to be round before lensing. In the top panels,
the galaxies are not blended together, and in the bottom panels they
are. In both cases, we assume we can unambiguously detect two
separate objects and precisely know their centroids.

Let us consider the response to shear of the central (z = 0.75)
object in each stamp. We can apply shear separately at the two
redshifts from which the light in the image is sourced (which in this
case just means applying shear separately to the two galaxies present
in the stamp). The right-hand panels of Fig. 1 show the response to
shear of the measured shape of the central galaxy, as a function of the
redshift of the applied shear. The response is defined here as above,
as R = (∂ḡobs/∂gtrue). We estimated these responses numerically from
our simple simulations using the METACALIBRATION method. In the
top right panel, we see that the high redshift object does not respond
to the shear of the low redshift one (it is zero at z = 0.25) and has a
unit response to a shear applied at its own redshift (the peak at z =
0.75). This result makes sense since METACALIBRATION is known to
be unbiased at high precision for idealized cases such as this, and the
objects do not overlap.

The more interesting case is when the galaxies are blended, shown
in the lower panels of Fig. 1. In this case, we see that the high redshift
object responds to the shear of the low redshift object (the small peak
at z = 0.25). It also has an apparent greater than unity response to the
shear applied at its own redshift (the peak at z = 0.75 that is greater
than one). Both of these effects are due to the galaxy being blended
with the low redshift neighbour. The latter effect is likely due to the
positioning of the neighbouring galaxy in the positive g1 direction,
which is the shear component for which we compute the response.

However, the response of the high redshift object to a low
redshift shear is a qualitatively different effect, distinct from standard
multiplicative biases due to blending or detection; it is a bias that
depends not only on the presence of the neighbour, but also on
the shear applied to the neighbour. This indicates that the shape
measurement of the high redshift object is carrying information about
the low redshift shear.

In fact, we assert that it is the response to shear that defines how we
should weight the redshifts to which we assign the shear information
for a given object in a weak lensing analysis. This insight is a key
subject of this work, where we will definitively measure these effects
in simulations of the DES Year 3 (Y3) analysis (note that ‘Year 3’
includes the first three years of DES observations). There are also
important implications for analysis of future surveys. As the amount
of blending increases with increased depth, inferring the redshift
distribution relevant for lensing and the shear calibration biases will
be a joint analysis task. In the example above, we have described
how a single detected object can have a (non-unity) response to
shear at multiple redshifts. This effect cannot be fully described by
the traditional multiplicative bias, m. The shear calibration and the
effective redshift distribution cannot be fully decoupled.
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Blending shear and redshift biases 3373

Figure 1. Simple example of the interplay between blending, shear calibration, and photometric redshift distributions. In both rows, the left-hand panel shows
an image of a pair of simulated galaxies, with the central object at higher redshift, z = 0.75, and a neighbouring object at low redshift, z = 0.25. The right-hand
panels show the response of the shape measurement of the central (z = 0.75) object, to applied shear, as a function of the redshift at which that shear is applied.
In the top-row, where the objects are not blended, the high-redshift object only responds to a shear at its own redshift, and since we use METACALIBRATION shear
estimation, the response is unity (i.e. the shear estimation is unbiased) to very high precision. In the bottom right panel, we show the response when the objects
are blended. We see two effects here. First, due to blending, the METACALIBRATION estimator is now biased (the right peak at z = 0.75 has non-unit height).
Secondly, the high-redshift object now responds to input shears at other redshifts (the small peak at z = 0.25). We show in this work that these responses define
the effective redshift distribution for lensing predictions, in addition to quantifying the multiplicative bias of the measurements.

In this work, we expand upon the ideas from this simple example
and apply them to the DES Year 3 shear analysis. We introduce our
formalism for accounting for blending in Section 2. In Section 3, we
describe realistic simulations of the DES Year 3 survey, validating
them against the data. Then in Section 4, we describe and investigate
the source of the traditional shear calibration biases estimated from
constant shear simulations. In Section 5, we show that the biases
described above, due to blended sources with different applied shears,
are present in these DES Y3 simulations. We then present a method
to combine mean shear measurements from the simulations with
estimated redshift distributions in order to jointly infer corrections
to both the shear calibration and the redshift distributions. We apply
this method to the DES Year 3 simulations, producing a parametrized
model of these effects that can be used to interpret the DES Year 3
shear catalogues, which we describe in Section 6. We summarize and
discuss directions for future work in Section 7.

2 QUANTI FYI NG SHEAR CALI BRATI ON
BI ASES FOR WEAK LENSI NG SHEAR
STATISTICS

In the following, we describe our formalism and methodology of
using image simulations to calibrate gravitational lensing measure-
ments. To this end it is useful to distinguish galaxies from detections.
We take a galaxy to be emitting light of fixed redshift z, with a
particular surface brightness profile local to a position θ on the sky.
A detection on the other hand is, simply put, a thing identified by an
algorithm designed to detect and deblend astronomical sources, such
as that employed by SEXTRACTOR (Bertin & Arnouts 1996). Due to
blending, measurements made on a detection may be affected by light
from multiple galaxies or stars and therefore multiple redshifts. We
only have access to detections in an imaging survey, and we measure
statistics averaged over ensembles of detections. We thus must
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determine how effects such as blending affect weak lensing shear
statistics of ensembles of detections, rather than individual galaxies.

In the following, we will work with the simplest such statistic,
ḡobs(θ ), the mean measured shear over all detections within some
pixel at some angular position θ . This is sufficient for our purposes
since more cosmologically interesting 2-point statistics can be
written as functions of such pixel-averaged mean shears, allowing
the straightforward propagation of shear calibration biases, at least
in the case that spatial correlations of the biases can be neglected
(see e.g. Kitching et al. 2019 for an investigation of higher order
effects from relaxing this assumption). We assume there is some
true, redshift-dependent shear field gtrue(θ , z). We can assume that
in the weak lensing regime, where contributions of order (gtrue)2 or
higher can be neglected, the mean measured shear is some linear
function of the true shear field,

ḡobs(θ ) =
∫ ∞

0
dz nγ (z)gtrue(θ , z) + c + η, (3)

where c is an additive bias, and η is some measurement noise
(due to e.g. the intrinsic shapes of galaxies, or pixel noise, that
averages to zero over many such measurements). In the following,
we will often drop η for compactness, such that ḡobs(θ ) is really the
expectation value of the mean measured shear. The response of the
mean measured shear to the true shear field, which has traditionally
been described as the multiplicative bias, m, is now described by
the function nγ (z), which we call the effective redshift distribution
for lensing, or effective redshift distribution for short. In the next
sections, we consider what this function is in idealized conditions,
and how to estimate it from image simulations under less idealized
conditions.

2.1 Isolated galaxies

It is useful to begin by considering the simplified case where
each detection corresponds to a single galaxy. The image of each
galaxy, and thus each detection, is subject to a gravitational shear
field gtrue(θ, z), which depends only on its position θ in the sky
and on its redshift z. Consider an ensemble of detections, e.g. a
single photometric redshift bin in a gravitational lensing analysis. If
each detection’s shear is measured without bias, and each detection
contributes to the mean with equal weight, then we have

ḡobs(θ ) =
∫ ∞

0
dz n(z)gtrue(θ , z). (4)

Here, n(z) is the derivative of the number of detections per unit area
with respect to redshift

n(z′) ∝ dN

dz

∣∣∣∣
z=z′

(5)

and is normalized to unity, such that no denominator is required in
equation (4). Hence in this case, as expected the effective redshift
distribution is simply what is usually called the redshift distribution
i.e. nγ (z) = n(z). One can estimate n(z) as a finely sampled histogram
of redshifts of individual galaxies associated with the detections,

n(z)�z ≈ # of galaxies with z < zj < z + �z

N
, (6)

where N is the total number of galaxies, or

n(z) ∝
∑

j

δ(z − zj ) . (7)

2.2 Isolated galaxies with shear measurement biases

Now suppose that for detections in the shear catalogue (which we
assume still have a one-to-one correspondence to galaxies) at redshift
z, there is a mean multiplicative bias (m̄(z) �= 0), or equivalently
non-unity mean response to shear (R̄(z) �= 1). This could be due to
any imperfect correction of the biases discussed in Section 1 in the
measurement of observed shear. The mean measured shear is now
given by

ḡobs(θ) =
∫ ∞

0
dz R̄(z)n(z)gtrue(θ , z). (8)

The effective redshift distribution is now given by

nγ (z) = R̄(z)n(z) ∝ R̄
dN

dz
(9)

and accounts not only for the fraction of galaxies in an ensemble at a
given redshift, but also for how sensitive to shear our measurements
of the shapes of those galaxies are (this will depend on the shape
measurement method). For example, all galaxies at redshift z

′

could be unresolved. Our catalogue could contain some number of
detections corresponding to them, whose shapes (and thus the shear
they are subject to) we cannot measure. The mean observed shear of
our catalogue (or any other weak lensing statistic) would not respond
to any true shear applied to light from z

′
. Thus, while these galaxies

contribute to dN/dz|z′ , they should not contribute to nγ (z).
The METACALIBRATION method provides estimates of the shear

response for each detection, so it is straightforward to generalize
equation (7) to the case of non-unity response:

nγ (z) =
∑

j Rj δ(z − zj )∑
j Rj

, (10)

where Rj is the METACALIBRATION shear response for detection j, and
the use of

∑
jRj in the denominator ensures nγ (z) is normalized to

unity.

2.3 Blended galaxies and the general case

The definition of nγ (z) of equation (9) seems natural and has been
used not only in DES Year 1 (Hoyle et al. 2018), but in some form by
most other weak gravitational lensing analyses to date. It is accurate
under the assumptions made – that each detection corresponds to
light from a single redshift, and that while response to shear may
be imperfect, it can be described by its mean as a function of the
redshift, or estimated based on some properties of the images of
actual detections, each associated with a single redshift.

Let us now consider the less idealized, ubiquitous case of blending.
Here, a detection is not always associated with a single galaxy. Rather,
measurements on a single detection may be influenced by the light
of multiple galaxies at different redshifts along the line of sight.
The observed shape may respond to shear applied to any of these
multiple galaxies. It is not clear which galaxy’s redshift to associate
with the detection in order to estimate its contribution to dN/dz and
R̄(z). While methods exist for inferring distinct redshift components
in blended systems (Jones & Heavens 2019; Padmanabhan et al.
2019), in theory allowing the assignment of a detection to multiple
redshifts, we still would not know the relative weight to assign to
each redshift component in the ensemble n(z). For a detection j,
with components k at redshift zk, the correct weight Rk

j is the linear
response of the measured shape of the detection, ḡobs

j , to a shear
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applied to component k only, or equivalently at redshift zk only i.e.

Rk
j = ∂ḡobs

j

∂g(zk)
. (11)

The effective redshift distribution nγ (z) for the ensemble would be
formed by summing over components k for each detection j i.e.

nγ (z) =
∑

j

∑
k Rk

j δ(z − zk)∑
j

∑
k Rk

j

. (12)

Here, Rk
j is a generalization of the response used by METACALIBRA-

TION, which is the response of the measured shape of a detection
to a constant (i.e. redshift independent) shear. Unfortunately, unlike
the METACALIBRATION response which can be computed numerically
by applying an artificial shear to galaxy images, we cannot measure
this generalization on real galaxy images, since it would require de-
blending the redshift components in order to shear them individually,
which is impossible to do perfectly.

In the presence of blending, we can thus no longer assume a
separable effective redshift distribution nγ (z) = R̄(z)n(z). Blending,
however, does not invalidate equation (3), which assumes only that in
the weak lensing regime, the observed mean shear ḡobs can always be
approximated as some linear function of the true shear field gtrue(z).
Equation (3) in fact provides a definition of nγ (z) via a functional
derivative

nγ (z) = dḡobs

dgtrue (z)
. (13)

One can also define nγ (z) in the limit �z → 0,

nγ (z)�z = �γ̄ obs

�γ true(z, z + �z)
. (14)

We will later also use Nγ (z1, z2), the integral of nγ (z) over some
redshift interval (z1, z2),

Nγ (z1, z2) =
∫ z2

z1

dz nγ (z). (15)

This is the response of the mean measured shear of the ensemble
γ̄ obs to an applied shear �γ true in redshift interval (z1, z2).

Equations (13) and (14) constitute definitions of the effective
redshift distribution that should be used to describe a sample of
detections in a weak gravitational lensing analysis e.g. for predicting
shear correlation functions or tangential shear signals. Note that the
normalization of nγ (z), i.e.

∫ ∞
0 dznγ (z), is now meaningful. The

normalization is the response of the mean measured shear to a true
shear that is constant in redshift. This corresponds to the traditional 1
+ m, where m is the mean multiplicative bias for the ensemble. Note
that numerical codes for making theoretical predictions of weak
lensing statistics often internally normalize the provided redshift
distribution. In this case, one would need to apply the normalization
of nγ (z) to the predicted statistic as an additional correction.

The use of nγ (z) unifies two effects: biases in photometric
redshifts and shear calibration, which have traditionally been treated
separately. As we enter the era of deeper galaxy surveys, where
blending becomes more and more important, we no longer have the
luxury of treating these two systematic effects separately.

2.4 Calibrating nγ with image simulations

The definition of nγ (z) in equation (9) is superseded by that of
equation (13). In the presence of blending, the two are expected
to disagree, not just in their normalization (i.e. as an overall
multiplicative bias), but also in their shape.

Photometric and/or clustering-based redshift calibration, can at
best (when combined with a METACALIBRATION response estimate
for each detection) aim to measure R̄(z)n(z). Image simulations must
be used to check whether the difference between R̄(z)n(z) and the
true nγ (z) is small, as one might hope as long as blending is rare
or mild. In case that difference is not negligible, image simulation
methods can be used to infer corrections to R̄(z)n(z) that improve its
agreement with the true nγ (z); this is the approach taken in Section 5
of this work.

Equation (14) allows us to operationalize the updated definition
of nγ . From suitable image simulations, we can measure Nγ (z1, z2),
that is, the integral of nγ (z) over some interval α between (zα

1 , zα
2 ), in

which we vary the applied shear. To this end, we need to run a separate
image simulation for each interval we would like to study, with a
differential shear �γ true

α applied to galaxies within that interval. We
will use more compact notation in the following, with Nα

γ denoting
the integral of nγ (z) over redshift interval α,

Nα
γ ≡ Nγ (zα

1 , zα
2 ) (16)

≡ ∫ zα
2

zα
1

dz nγ (z). (17)

This is estimated from our simulations via

Nα
γ = �γ̄ obs

�γ true
α

, (18)

where �γ̄ obs is the change in mean measured shear of the ensemble.
Thus far, we have only considered a single ensemble of detections,

and its effective redshift distribution for lensing, nγ (z). In Section 5,
we will estimate these quantities for multiple subsets of our simulated
detections, for example true or photometric redshift bins. In this
case, we assign these subsets a label i, and denote as ḡobs

i , nγ ,i(z)
and Nα

γ,i , the mean measured shear, effective redshift distribution
and integrated effective redshift distribution for the subset i of our
detections.

In the absence of blending, and if there were no overlap between
the redshift interval α, and the redshift range of galaxies contributing
to detections in subset i, �γ̄ obs

i and thus Nα
γ,i(z) would vanish i.e.

there would be no response of the mean shear for subset i to shear in
redshift interval α. Blending, however, causes a non-zero response for
any realistic selection of an ensemble i of detections. This is because
there will always be some amount of blending between galaxies in
redshift interval α, and the detections in i, and shear applied to the
former will impact the measurement of the shapes of the latter.

3 D ES Y3 I MAG E SI MULATI ONS

Having introduced and motivated our formalism for quantifying
observational biases, we now turn to describing and validating our
suite of DES Year 3-like image simulations. We note again here that
DES Year 3 refers to the first three years of DES data processed
together. In our simulation design, we follow closely the real DES
Year 3 data, by simulating complete sets of single-epoch images
required to form DES Year 3 tiles in all four photometric bands griz,
and then applying the same software for coadding, object detection,
and object measurement as is applied on the real data in Sevilla-
Noarbe et al. (2021) and Gatti et al. (2021). This consistent simulation
of weak lensing data across multiple photometric bands is key a step
forward in the DES’s joint shear and photo-z bias characterization.
We describe the main steps in our fiducial simulation pipeline below.
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3.1 Exposures, single-epoch images, and tiles

DES wide-field images are processed in tiles, square sky regions
of side length 10 000 pixel (≈0.72 degree, see Morganson et al.
2018). There are 10 338 such tiles included in the Y3 data set. For
each tile region, all images overlapping that region are included in
a coadded image for each band. These input images to the coadd
come from many exposures, each of which is a collection of images,
one for each CCD in the Dark Energy Camera (DECam; Flaugher
et al. 2015) focal plane. We refer to these individual CCD images as
single-epoch images. We also organize our image simulation using
this tiling system.

We select at random 400 of the tiles entering the Y3 data set,
and for each tile, generate simulated versions of all the single-epoch
images with any overlap of the tile region. For a given version of our
simulation, this constitutes 62.8 million simulated objects, of which
15.4 million are detected in our shear pipeline, and 4.1 million pass
shear catalogue quality cuts (see Section 3.4). We simulate a total
of 20 versions of this 400 tile set simulation, with versions differing
only in their applied shear field (see Section 3.2), or whether objects
are placed on a regular grid and whether detection is performed (see
Section 3.5). We were limited in producing more simulation volume
by time and computing resources, but find that this 400 tile set is
sufficient volume such that statistical uncertainties in the simulation
measurements are not the dominant uncertainty on our inferred bias
corrections.

3.2 Single-epoch image generation

Our simulation pipeline starts by generating a simulated version
of each single-epoch image using GALSIM5 (Rowe et al. 2015),
with the addition of various custom modules. Briefly, we create
simulated images with noise, PSFs and world-coordinate system
(WCS) estimated from the DES Y3 data, and insert parametric
models for stars and galaxies. The images are simulated with the
following properties:

(i) Pixel geometry: Each simulated single-epoch image is gener-
ated with the pixel geometry of the corresponding image in the real
DES data. This is simply set by the DECam CCD properties, all of
which have 4096 × 2048 pixels.

(ii) Noise: Noise is assumed to be Gaussian and is drawn from
the weight maps estimated for the corresponding image in the real
DES data. For pixels that are masked in the corresponding image, the
median of the weight map is used as the inverse noise variance. This
noise field constitutes the only background on to which simulated
objects are drawn – we do not simulate e.g. non-zero sky background.
This choice implicitly assumes that the background subtraction
performed on the Y3 data is sufficiently accurate.

(iii) WCS: Our input objects to the simulation, for which we
generate a model in sky coordinates, are consistently drawn into
all the single-epoch images they overlap, using the WCS (world-
coordinate system) solution for the corresponding image in the real
data.

(iv) PSF: The drawn objects are convolved with a smoothed
version of the PSF model estimated from the real data by Piff6 (Jarvis
et al. 2021). See Appendix C (Supplementary data) for the details
and justification of this procedure. A significant simplification of our
analysis here is that we do not attempt to measure the PSF from our

5https://github.com/GalSim-developers/GalSim
6https://github.com/rmjarvis/Piff

simulations for use in shape measurement, rather we use the input
PSF models. While we believe this is well justified by the stringent
PSF validation performed in Jarvis et al. (2021), jointly simulating
the inference of PSF and shear would be a natural extension of the
work presented here.

(v) Masking: We package with the simulated images the bad pixel
masks taken from the corresponding real data image files. These
indicate pixels to exclude or interpolate for downstream processing
and measurement codes.

(vi) Input galaxies: We randomly draw galaxy models from a
catalogue of ‘bulge + disc’, two-component parametric fits to galax-
ies in the COSMOS field.7 This catalogue is described in Hartley
et al. (2020); we provide a brief description here. The morphological
parameters (half-light-radius, bulge-to-disc-ratio, ellipticity) of the
parametric galaxy models were fit to Hubble Space Telescope
Advanced Camera for Surveys (HST-ACS) imaging (Koekemoer
et al. 2007; Scoville et al. 2007), specifically we use the re-processed
HST-ACS data of Leauthaud et al. (2007). These model fits were
then used to estimate fluxes for the DECam griz filter bandpasses,
using forced photometry at the same sky positions in deep stacks of
DECam imaging (described in Hartley et al. 2020). The use of both
HST imaging and DECam imaging gives us a catalogue of parametric
galaxy models with realistic and well-constrained morphology (from
HST) and realistic fluxes and colours in the DES filters (from the deep
DES imaging). When drawing a parametric model galaxy into the
simulations, we apply a random rotation to each simulated object.
We additionally match this catalogue (using a 0.75 arcsec matching
radius) to the Laigle et al. (2016) redshift catalogue, and apply area
masks for the problematic regions identified by Hartley et al. (2020),
after which 222 116 unique input objects remain. We remove 60
(0.03 per cent) of these for which the parametric model fits failed.
We additionally apply a selection r50 > −0.25(magi − 22) − 1.35,
which we find effectively removes the stars (we separately simulate
stars using a different catalogue described below).
In our fiducial simulation, we include only galaxies with i-band
magnitude <25.5, which is two magnitudes fainter than our threshold
for inclusion in the eventual shape catalogue. While we do not
perform an analysis of sensitivity to this choice, the results of
e.g. Hoekstra, Viola & Herbonnet (2017) suggest the absence of
fainter objects than this in our simulations will probably bias our
multiplicative bias estimates at the ∼ 0.1 per cent level, well below
our current uncertainties.
In each tile, the number of galaxies simulated is drawn from a Poisson
distribution with mean 170 000, which corresponds to a number
density of 88 galaxies per square arcmin. The density of input objects
was tuned such that the number of detected objects in the simulations
matched the number of detected objects for the same set of tiles in
the real DES Y3 data. The majority of these galaxies will be either
undetected or removed via cuts, resulting in a number density of
roughly 6 galaxies per square arcmin used for shear estimation.
Galaxies are placed randomly on the sky and so are not clustered.
Compared to the real Universe, we expect this to result in less
blending of objects at similar redshifts. We discuss the implications
of this approximation in Sections 6.3 and 7.

(vii) Input stars: We use a catalogue of stars simulated using the
TRILEGAL8 code, with the best-fitting models from the MWFitting
method presented in Pieres et al. (2020). This catalogue contains
both sky positions and fluxes for a simulated population of stars

7http://cosmos.astro.caltech.edu/page/hst
8http://stev.oapd.inaf.it/cgi-bin/trilegal
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complete in the magnitude range 14–26 in the g-band. In our fiducial
simulation, we include only stars with i-band magnitude <25.5.

(viii) Input shear: We run otherwise identical realizations of each
simulation with constant input shears of either +0.02 or −0.02
in a single shear component (the other component being 0). This
allows us to follow the approach of Pujol et al. (2019), who propose
computing multiplicative shear biases via measuring the difference
in recovered shear between two simulations that are identical apart
from a small change in input shear. Using this procedure greatly
reduces the noise (both shape noise and measurement noise) on the
multiplicative bias estimate, since much of it cancels when taking
the difference. Note this is closely related to the idea of the ‘ring-
test’ introduced by Nakajima & Bernstein (2007). We additionally
generate simulations where the applied shear depends on the redshift
of the input galaxy. More specifically, we generate simulations
where galaxies with redshift within some redshift interval α have
a difference in applied shear of �gtrue

α = 0.04 with respect to the
rest of the simulated galaxies. This allows us to measure the Nα

γ as
described in Section 5.1.

3.3 Image reduction, coaddition, and detection

The processing and measurements applied to the simulated images
closely follow that performed on the real DES Y3 images (described
in Morganson et al. 2018; Gatti et al. 2021; Sevilla-Noarbe et al.
2021). We summarize here:

(i) A 10 000 × 10 000 pixel weighted-mean coadd image is
generated for each tile, in each band, using SWARP (Bertin et al.
2002). The weight maps used are the same as those used to generate
the noise on the simulated images. The r, i, and z coadd images
are then themselves combined in a CHI-MEAN coadd image, again
using SWARP.

(ii) The riz coadd is used for object detection and segmentation,
which is performed by SEXTRACTOR (Bertin & Arnouts 1996). SEX-
TRACTOR outputs a catalogue of detected objects, various measured
quantities for these objects, as well as segmentation maps (which
indicate which pixels in the images are assigned to which catalogue
objects).

(iii) Multi-epoch data structure (MEDS; Jarvis et al. 2016) files are
generated for each band for each tile. For each detected object in the
SEXTRACTOR catalogue, the MEDS file contains a postage-stamp
cutout from each of the single-epoch images in which that object
appears. This data format makes convenient the fitting of models
simultaneously to multiple observations of a given object.

3.4 Shear estimation

To generate a shear catalogue for each tile, we run METACALIBRATION

on the r, i, and z MEDS files, which fits an elliptical Gaussian
profile, convolved with the PSF model, to the observed light profile
of each detection. The parameters of the profile are fit jointly to
square regions (stamps) extracted from each single-epoch image
for all bands, apart from a free amplitude allowing an independent
flux in each band. Stamps with a masked fraction of more than 0.1
are not used in the fits. Estimates of the shear response, Rij are
also generated by METACALIBRATION which is the response of the
measured shear in component i to an applied shear in component j.
From the shear catalogues generated by METACALIBRATION we select
a sample suitable for weak lensing measurements by applying the
identical catalogue cuts as those applied to the DES Y3 data in Gatti
et al. (2021). The most significant (in terms of number of objects

removed) of these are cuts on the object signal-to-noise ratio, S/N
> 10, and the ratio of PSF-deconvolved galaxy size, T, to the PSF
size, Tpsf, T/Tpsf > 0.5. T is an area measure (equal to the trace of the
covariance) for the Gaussian profile. The signal-to-noise ratio cut is
required to minimize biases associated with shear-dependence of the
SEXTRACTOR selection, and the size cut reduces the impact of any
PSF modelling errors. See Gatti et al. (2021) for more discussion
of the motivation and details for the shear catalogue cuts, as well
as detailed descriptions of the quantities such as T. This sample can
then be used to estimate the shear recovered from the simulation,
which can then be compared to the true shear input to the simulation
to estimate any biases in the shear recovery.

3.5 Simulation variants

In order to better understand the source of shear calibration biases,
we generate and analyse two sets of simulations additional to the
fiducial simulation described thus far. In the grid simulations,
objects are placed on a regular grid with spacing ≈35 pixels (≈9
arcsec). We would expect any biases related to blending to be
absent in this variant. The second variant is the grid-truedet
simulations, which again places objects on this regular grid, and
in addition the SEXTRACTOR detection catalogue used as input to
the shape measurement is replaced by a catalogue containing the
true positions of input objects. We would expect this to remove
any biases related to possible shear dependence of the SEXTRACTOR

detection probability (e.g. if rounder objects were more likely to be
detected).

3.6 Simulation validation

The final part of our simulation pipeline is validating our simulation’s
realism by comparing it to the real data. We infer below that
the shear biases present are related to the blending of sources
and the possible shear-dependence in how sources are selected,
segmented, and modelled. This blending must therefore be accu-
rately characterized in the simulations. We ensure here that the
number density of sources, the noise levels in the image, and the
distribution of measured source properties like flux and size are well
matched between the fiducial simulation and real DES data. We
expect the effects of blending to be sensitive to the properties of
neighbouring objects (such as the number of them within a given
distance, and their brightness) encountered by our target source
galaxies, so we additionally study statistics sensitive to these in
Section 6.3.

3.6.1 Aesthetics

We generate gri colour images of our simulated coadds, using the
desimage9 package. These are useful for visual inspection of the
simulations, but also for visual comparison to images made via the
same process on the real data. Fig. 2 shows colour images for the
same 1000 × 1000 pixel region of the coadd tile DES0003-3832 in
the real data (left-hand panel) and the fiducial simulation (right-hand
panel). A lack of bright stars in the simulation is apparent. These are
masked out of the real data before analysis, so we do not believe that
their absence from the simulations can impact our results.

9https://github.com/esheldon/desimage
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Figure 2. gri colour image of 1000 × 1000 pixel region of tile DES0003-3832 for the real Y3 data (left-hand panel) and the fiducial simulation (right-hand
panel).

3.6.2 SEXTRACTOR comparisons

SEXTRACTOR forms a crucial part of our pipeline in detecting and
segmenting objects in the coadd images, so it is important that the
simulated images analysed using SEXTRACTOR resemble the real
data. Here, we perform comparisons of the measured properties of
objects detected in the simulations.

The top-left and top-middle panels of Fig. 3 show the joint
distribution of magnitude and size estimated by SEXTRACTOR, for
the g and i-bands, respectively. Specifically, we use MAG AUTO
(an elliptical aperture magnitude), and FLUX RADIUS (with
PHOTF LUXFRAC = 0.5) an estimate of the PSF-convolved
half-light radius of the object.10 Some clear features are apparent
in both simulations and data, such as the shift of the distribution
to larger size in the g-band compared to the i-band, which is due
primarily to the larger PSF. We note that the distributions plotted
share the same normalization, so any differences in absolute number
density would be apparent.

3.6.3 METACALIBRATION quantities

For shear estimation and photometry, we use elliptical Gaussian
models fit to single-epoch images (as opposed to the coadds used
for the SEXTRACTOR quantities discussed above). The distributions
of size and signal-to-noise of a weak lensing galaxy sample have
often been identified as key to the expected level of bias in the
shear recovery (e.g. Kacprzak et al. 2012; Refregier et al. 2012). The
top-right panel of Fig. 3 compares the joint distribution of signal-
to-noise and size between simulations and data. The distributions
are smoother in the log of these quantities, so we actually compare

10see SEXTRACTOR documentation at http://mensa.ast.uct.ac.za/∼holwerda/
SE/Manual.html or https://www.astromatic.net/pubsvn/software/sextractor/tr
unk/doc/sextractor.pdf for more details on these quantities.

distributions of log10(S/N) and (since T can take slightly negative
values) log10(1 + T).

As well as size and signal-to-noise, it is important to verify that
other quantities used to select sub-samples of the source galaxies are
well matched between simulations and data. A key example of this
is selection of objects into bins based on their photometric redshift
(photo-z henceforth). Photo-z algorithms usually use some discrete
set of broad-band fluxes, with ratios of those fluxes (or differences in
magnitudes), known as colours considered particularly informative
for redshift estimation. The bottom three panels of Fig. 3 demonstrate
that the simulations reproduce well the joint distributions of (from
left to right): i-band magnitude and r − i colour, i-band magnitude
and i − z colour, and r − i colour and i − z colour.

3.7 Photo-z inference

The photometric redshift distributions for the simulation sample are
inferred using the SOMPZ method outlined in Myles et al. (2021)
(see also Buchs et al. 2019). Following the methodology applied
to DES Y3 data there, detected objects in the image simulations
are assigned to two self organizing maps (SOMs), corresponding
to ‘wide’ (32 × 32 cells, using riz flux information) and ‘deep’
(64 × 64 cells, using ugrizJHKs colour information from the DES
Deep Fields measurements presented in Hartley et al. 2020). In
the Y3 data analysis, galaxies with spectroscopic redshifts or flux
measurements in a large number of photometric bands (‘deep’
galaxies) are assigned to the higher resolution SOM. When those
same galaxies are assigned to the lower resolution SOM based on
their wide field flux information, they can be used to infer information
about other galaxies with only the limited wide-field photometry
available in order to calibrate the colour–redshift relation.

We use the SOMs constructed from the Y3 data catalogues and
the same software to assign the simulated galaxies (Myles et al.
2021). We assume that all simulation input galaxies have precise
redshifts (equal to the photo-z point estimates by Laigle et al. 2016)
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Blending shear and redshift biases 3379

Figure 3. Comparisons of joint distribution of measured quantities between simulations (orange dashed lines) and DES Y3 data (blue lines). The top-left
and top-middle panels show joint distributions of SEXTRACTOR measured quantities MAG AUTO and FLUX RADIUS g-band and i-band, respectively. The
stellar locus is at larger FLUX RADIUS in the g-band because of the larger PSF. The remaining panels show comparison of quantities estimated by the shape
measurement code (METACALIBRATION). The top-right panel shows the joint distribution of signal-to-noise and size [in fact, log10(S/N) and log10(1 + T)]. The
bottom-left panel shows the joint-distribution of i-band magnitude and r − i colour. The bottom-middle panel shows the joint distribution of i-band magnitude
and i − z colour. The bottom-right panel shows the joint distribution of r − i and i − z colours.

that, together with their measured deep ugrizJHKs fluxes, describe
the deep colour–redshift relation. Matching simulation detections to
input galaxies allows us to generate a transfer function that connects
redshift, deep SOM cell, and wide SOM cell. The wide cells and their
contained galaxies are then grouped together by their mean redshift
in a variety of ways (see below) to form tomographic bins.

The procedure for matching injection galaxies to measured detec-
tions in these simulations begins with a nearest neighbours search
to identify the three closest objects in the truth catalogue to a
given detection. For a detection to be matched to a true object,
it must have a close match within two pixels. If it does not have
one, it is ignored in the rest of the photo-z inference (roughly
0.5 per cent of detections). Detections with an exclusive close match
(i.e. one that is not a close match to any other detection) make up
approximately 30 per cent of the simulated sample. To discriminate
between detections with multiple close truth matches, we loop
over injections from brightest to faintest in i-band magnitude and
assign the brightest close truth match that has not yet been assigned
to another detection. Roughly 70 per cent of detections fall into
this category. If all close matches have already been assigned to
other detections via this loop, no truth match is assigned, but this
happens rarely enough to be negligible. For example, this only
occurs for four cases in the entire fiducial (g1, g2) = (−0.02, 0.00)
simulation.

The wide SOM occupancy for both the simulations and the data
can be seen in Fig. 4, showing very good general agreement. This
is a consequence of the close alignment of colour and magnitude
distributions between the data and the simulations discussed in
Section 3.6.2. The largest point of discrepancy is due to cells
composed of very large, very blue galaxies at low redshifts, which

likely do not significantly contribute to the redshift-dependent effects
of blending that are key to this analysis.

A principal aim of this work is to quantify the shear calibration
separately for each of the photometric redshift bins used in the DES
Y3 cosmology analyses. This requires that we perform an equivalent
photometric redshift binning on the image simulations. One can
motivate several different choices of photo-z binning algorithms in
order to estimate the shear calibration biases that may differ due to the
small differences in colour–redshift relation between the sims and the
data. Presented here is a description of the four binning algorithms
we use and their resulting summary statistics like the mean redshift
per bin.

(i) Fiducial: We use the same mapping between wide SOM cell
and photo-z bin as in the Y3 data. We make this our fiducial choice,
since we think the philosophy of treating the real data and the
simulations as similarly as possible is a sensible one. However, small
differences in wide SOM occupancy between simulations and real
data are apparent with this procedure. Whereas in the data, each
photo-z bin has an equal number of objects (25 per cent of the total,
by construction), there are deviations from 25 per cent occupancy
in the simulations, with the four photo-z bins receiving 19 per cent,
24 per cent, 25 per cent, and 30 per cent of the objects, respectively.

(ii) Equal count (equal): Instead of taking the mapping from
the data, the wide SOM cells are ordered by mean redshift and then
grouped such that an approximately equal number of galaxies end
up in each photo-z bin, much like how the mapping is chosen in the
data.

(iii) Mean redshift matching (z-match): This is a binning that
chooses the wide SOM cells such that they closely match the mean
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Figure 4. The wide SOM population distribution in the data (left) compared to the simulations (centre), with a residual (right) that shows the majority of cells
agree to within 0.05 per cent in total population.

Table 1. Table describing the mean redshift per photo-z bin for each binning
algorithm as compared to that found in the data.

Sample Binning style z̄0 z̄1 z̄2 z̄3

Data Fiducial 0.334 0.517 0.749 0.936
Sim Fiducial 0.311 0.460 0.723 0.894
Sim Equal 0.322 0.510 0.745 0.920
Sim Z-Match 0.325 0.511 0.753 0.930
Sim W-Match 0.294 0.463 0.714 0.895

redshift found in the data photo-z bins, with approximately equal
counts in each bin. By necessity, in this binning scheme a galaxy
may end up assigned to multiple bins, or not assigned to any bin.

(iv) SOM occupancy matching (w-match): This preserves the
mapping used in the fiducial case, but also re-weights galaxies to
reproduce the relative wide SOM cell occupancy found in the Y3
data, using the ratio between the left and centre panels of Fig. 4.

The mean redshift for each of these photo-z binning choices on the
simulations is reported in Table 1, and the full distributions can be
seen in Fig. 5. We see broad similarity between the binning recipes,
but revisit the alternative options in Section 6.2 where we test the
sensitivity of our calibration corrections to the choice of binning
recipe.

4 R ESULTS I : SHEAR CALIBRATION BIAS ES
F RO M C O N S TA N T S H E A R SI M U L AT I O N S

In this section, we begin by examining the shear calibration biases
apparent in constant shear simulations, and we report average shear
calibration bias estimates for the full DES Y3-like sample, as well
as for individual photo-z bins. As described in Section 2, these
bias estimates are not sufficient in general to correct theoretical
predictions for weak lensing shear statistics, hence in Section 5,
we present estimates of biases in nγ (z), using simulations where the
input shear varies with redshift.

For these calculations, we use four 400 tile constant shear
simulations with input shear

(g1, g2) ∈ {(0.02, 0), (−0.02, 0), (0, 0.02), (0,−0.02)} (19)

(see Section 3.2). Each simulation is identical (i.e. random elements
of the simulation use the same random seeds) apart from the applied
shear, reducing the noise on the differences between the mean shear
measured between pairs of the simulations (see Pujol et al. 2019).
See Table 2 for more details.

For each shear component μ, the multiplicative and additive biases,
mμ and cμ are calculated by fitting the model

ḡobs
x = (1 + mx)gtrue

x + cx (20)

to the pair of simulations with gtrue
x = ±0.02, where ḡobs

x is the
measured mean shear for component x. The uncertainty on ḡobs

x ,
inferred from jackknifing over the simulated tiles, is included in the
fit.

Table 3 contains mean multiplicative biases for our fiducial,
grid, and grid-truedet simulations. In the grid simulation,
blending is removed by placing down objects on a grid. In thegrid-
truedet simulation, objects are again placed on a grid, and in
addition we use their true positions for the detection catalogue,
rather than the detection catalogue estimated using SEXTRACTOR.
We expect this to additionally remove any selection biases due to
shear-dependence of the SEXTRACTOR selection.

While the fiducial simulations exhibit a mean multiplicative bias
of ≈ −2 per cent, the multiplicative bias for both the grid and the
grid-truedet simulations are greatly reduced, with a remaining
bias of around −0.4 per cent. We can draw a few conclusions from
this. First, the fact that we see consistent biases for the grid and
grid-truedet cases implies that we do not have significant
SEXTRACTOR biases for isolated objects. This is not unexpected,
since we apply an S/N > 10 cut to our catalogues that likely
dominates over the threshold for detection used by SEXTRACTOR,
and METACALIBRATION is able to accurately correct for selection
biases due to this cut.

Beyond that, we can attribute most of the multiplicative bias
we see in the fiducial simulation to the presence of blending.
As explored in Sheldon et al. (2020), the presence of blending
can likely generate biases through various (related) mechanisms.
First, there is ‘detection’ bias due to shear-dependence of the
detection algorithm, including the decision of how many different
objects to assign to a blend. Secondly, one may also expect an
additional bias due to the presence of a neighbour in the shape
measurement process, either due to its contaminating flux, or due to
some unaccounted-for shear dependence of the neighbour masking
algorithm. With these simulations, we cannot fully decouple these
effects. A simulation with randomly placed objects as in the fiducial
simulation, but using true detection to remove detection biases, would
shed light on the issue, but we did not have the resources to run this
variation.

Fig. 6 shows the multiplicative bias (averaged over shear com-
ponent) as a function of signal-to-noise ratio. For the grid and
grid-truedet cases, there is no clear trend with S/N, while
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Blending shear and redshift biases 3381

Figure 5. The photometric redshift distributions for the four photo-z binning schemes applied in the simulations (described in Section 3.7), as well as the
estimated Y3 data redshift distributions (labelled ‘DATA - Fiducial’). For plotting purposes all curves have been smoothed using a Gaussian kernel of width
0.01 in z.

Table 2. Image simulation properties. Each line lists a specific image simulation produced for this work. The fiducial simulation places objects at random
into the image and uses SEXTRACTOR for object detection. We also ran variations for some of the simulations where objects were placed on a grid (grid) or
we used their true locations for shear measurements (grid-truedet).

Variant Sheared redshift interval (g1, g2) in redshift interval (g1, g2) outside redshift interval Object placement SEXTRACTOR detection

grid-truedet [0.0, 3.0] (+ 0.02, 0.00) – grid no
grid-truedet [0.0, 3.0] (− 0.02, 0.00) – grid no
grid-truedet [0.0, 3.0] (0.00, +0.02) – grid no
grid-truedet [0.0, 3.0] (0.00, −0.02) – grid no

grid [0.0, 3.0] (+ 0.02, 0.00) – grid yes
grid [0.0, 3.0] (− 0.02, 0.00) – grid yes
grid [0.0, 3.0] (0.00, +0.02) – grid yes
grid [0.0, 3.0] (0.00, −0.02) – grid yes

fiducial [0.0, 3.0] (+ 0.02, 0.00) – random yes
fiducial [0.0, 3.0] (− 0.02, 0.00) – random yes
fiducial [0.0, 3.0] (0.00, +0.02) – random yes
fiducial [0.0, 3.0] (0.00, −0.02) – random yes

fiducial [0.0, 0.4] (+ 0.02, 0.00) (− 0.02, 0.00) random yes
fiducial [0.4, 0.7] (+ 0.02, 0.00) (− 0.02, 0.00) random yes
fiducial [0.7, 1.0] (+ 0.02, 0.00) (− 0.02, 0.00) random yes
fiducial [1.0, 3.0] (+ 0.02, 0.00) (− 0.02, 0.00) random yes
fiducial [0.0, 0.4] (0.00, +0.02) (0.00, −0.02) random yes
fiducial [0.4, 0.7] (0.00, +0.02) (0.00, −0.02) random yes
fiducial [0.7, 1.0] (0.00, +0.02) (0.00, −0.02) random yes
fiducial [1.0, 3.0] (0.00, +0.02) (0.00, −0.02) random yes

for the fiducial case, there do appear to be variations with S/N,
although only at the per cent level, and we do not attempt to explain
this behaviour. We also do not have a conclusive explanation for
the ≈ −0.4 per cent biases remaining in the grid and grid-
truedet simulations. Appendix B (Supplementary data) explores
various potential sources of small (sub-per cent) multiplicative biases
using idealized simulations, and we do see the potential for biases
due to masking at the ∼ 0.1 per cent, so this may be contributing
some of the remaining bias. Given that we directly apply the masks
from the DES Y3 data to our simulations, we are confident that the

biases in the simulations due to masking will be at a similar level to
that present in the real data.

In order to provide some more detail on the impact of blending
on the multiplicative bias, we attempt to compute the bias as a
function of object separation as follows. Using the galaxies in the
input truth catalogues for our simulations, we find pairs of input
galaxies that are separated by some distance and are no closer to any
other galaxy in the simulation than the other galaxy in its pair. We
then define a small region in the simulated image encompassing each
pair, such that detections in this region include light from just these
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Table 3. Average multiplicative (m) and additive (c) biases for thefiducial,grid, andgrid-truedet simulations.
While we expect no bias in the shear measurements for simulations of objects on a grid with no detection employed,
we do find a small bias due to masking corrections. See Appendix B (Supplementary data) for details. The fiducial
simulations show non-trivial multiplicative biases due to a combination of blending, object detection effects, masking,
and potentially other unknown causes.

Variant m1 × 100 m2 × 100 m × 100 c1 × 104 c2 × 104

grid-truedet − 0.48 ± 0.07 − 0.40 ± 0.07 − 0.44 ± 0.05 − 2.06 ± 1.48 − 2.77 ± 1.46
grid − 0.33 ± 0.15 − 0.35 ± 0.15 − 0.34 ± 0.11 − 2.14 ± 1.34 − 3.59 ± 1.40
fiducial − 2.23 ± 0.16 − 1.93 ± 0.17 − 2.08 ± 0.12 − 0.86 ± 1.35 − 1.34 ± 1.45
fiducial bin 0 − 1.55 ± 0.44 − 0.96 ± 0.45 − 1.25 ± 0.31 1.57 ± 3.05 − 4.38 ± 2.75
fiducial bin 1 − 1.77 ± 0.56 − 1.87 ± 0.54 − 1.82 ± 0.39 − 1.86 ± 2.66 − 0.69 ± 2.79
fiducial bin 2 − 2.51 ± 0.64 − 2.03 ± 0.67 − 2.27 ± 0.44 − 3.05 ± 2.39 1.11 ± 2.43
fiducial bin 3 − 0.038 ± 0.79 − 0.034 ± 0.88 − 3.60 ± 0.59 0.31 ± 2.78 − 1.24 ± 2.89

Figure 6. Multiplicative bias as a function of S/N for the fiducial, grid,
and grid-truedet simulations. The fiducial simulation places the
objects in the images at random positions and detects them with SEXTRACTOR.
The grid simulation places them on a grid with ≈9 arcsec spacing and
still employs SEXTRACTOR. The grid-truedet simulation uses a grid
for the objects, but uses their true positions instead of detecting them with
SEXTRACTOR.

two galaxies. Specifically, we used a circle of radius 0.75 times the
pair separation, centred on the midpoint between the two galaxies.
Detections in these regions were used to compute the multiplicative
bias as a function of separation. The results of this exercise are
shown in Fig. 7. For comparison, we show the predicted effects of
detection bias from Sheldon et al. (2020) for a simplified simulation
set-up involving only pairs of galaxies with equal size and flux. Note
also that Sheldon et al. (2020) used a different procedure to remove
the light of neighbouring objects. At small separations, we see the
qualitative effects of detection bias, which is a large negative bias. At
large separations, the bias is consistent with zero within the statistical
noise. At intermediate scales, we also see a positive bias that was
not apparent in the Sheldon et al. (2020) simulation results. This can
occur when a neighbour is not detected, so may only be significant
when pairs with widely disparate fluxes are included.

To summarize, we see multiplicative biases in our simulations from
at least three sources. First, as shown in Appendix B (Supplementary
data), the effects of masking and their corrections used in the DES Y3
analysis cause a small, few tenths of a per cent bias. Secondly, for very
close pairs of truth objects, we see a strong negative multiplicative
bias in Fig. 7 that is qualitatively consistent with the detection biases
studied in Sheldon et al. (2020). At intermediate separations, we
see some positive multiplicative bias which is presumably blending-
related, involving pairs with widely different fluxes.

Figure 7. Multiplicative bias for detections corresponding to pairs of truth
objects separated by a given angle. To make this plot, we find pairs of true
objects separated by some distance in the truth catalogue in our fiducial
simulations and not near any other objects. We then use detected objects near
this location to measure the multiplicative bias as a function of separation. At
small scales, we find signals in our simulations that appear to be from detection
bias. For comparison, we show the detection bias result from Sheldon et al.
(2020) as the red line. At intermediate scales, we see a positive bias, which
is probably from pairs where one source is much fainter than the other. The
bias converges to be consistent with zero at large separations.

We note here that the mean multiplicative bias of ≈−0.02 we
estimate here is somewhat different from the multiplicative bias
prior of 0.012 ± 0.012 inferred by Zuntz et al. (2018) for the DES
Year 1 shear catalogue, which used very similar shape measurement
methodology. We believe the significant improvements in simulation
realism presented here explain this discrepancy. We note also that
Sheldon et al. (2020), which used an independent set of image
simulations to those presented here, that we believe also contained
significant improvements with respect to those used by Zuntz et al.
(2018), reported multiplicative biases much close to those presented
here for DES-like simulations.

In Section 6.3, we use a re-weighting procedure to estimate
systematic uncertainty (due to potential simulation inaccuracy) in
the impact of blending, which is then propagated to our final priors
on the shear calibration.
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5 R ESULTS II : ESTIMATES OF nγ ( z) BIASES
FROM REDSHIFT-DEPENDENT SHEAR
SIMULATIONS

We explained in Section 2 that for theory predictions of shear
statistics involving ensembles of detections over a range of redshifts,
we require an estimate of nγ (z), the effective redshift distribution
for lensing. In this section, we describe the extra simulations and
methodology used to infer biases in the DES Y3 methodology for
estimating nγ (z). To summarize, we take the following approach
(with much more detail given in the following section). For each
photo-z bin i:

(i) We measure Nα
γ,i for four redshift intervals α (with

ranges (zα
1 , zα

2 )), from simulations with a change in applied
shear within that interval. We use redshift intervals (zα

1 , zα
2 ) ∈

{(0.0, 0.4), (0.4, 0.7), (0.7, 1.0), (1.0, 3.0)}. Note these redshift in-
tervals α have no specific correspondence to the four photo-z bins i
we use.

(ii) We compare this measurement to the prediction based on
integrating the METACALIBRATION response-weighted redshift dis-
tribution, nmcal

γ (z) (which is how nγ (z) is estimated in the real data).
(iii) Due to computing limitations, we can only measure Nα

γ,i

in the four coarse aforementioned redshift intervals. However, we
need a finely sampled nγ (z) to make theory predictions. Therefore,
we use a model that parametrizes deviations from nmcal

γ (z) of the
form nmodel

γ (z) = f (z)nmcal
γ (z) + g(z), where f(z) and g(z) are smooth

functions of z. We fit this model to our Nα
γ,i measurement.

We start in Section 5.1 by describing the simulation inputs
and procedure for estimating Nα

γ for a given ensemble of de-
tections. In Section 5.2, we present the Nγ ,i estimates for the
case without redshift binning, and compare these to the predic-
tion from the METACALIBRATION response-weighted redshift dis-
tribution, nmcal

γ (z). In Section 5.3, we present measurements of
Nα

γ,i for ensembles of galaxies restricted to true redshift inter-
vals, a case which most clearly demonstrates the response of
galaxies assigned one redshift to a shear applied at another.
In Section 5.4, we present measurements of Nα

γ,i , for each
photo-z bin i, again comparing these to the nmcal

γ (z). In Sec-
tion 5.5, we describe our modelling approach using fitting func-
tions to infer nγ (z) corrections from these measurements, and
finally in Section 5.6 present the resulting nγ (z) bias model con-
straints.

5.1 Estimating Nα
γ

As discussed in Section 2, we can estimate Nα
γ , which is nγ (z)

integrated over the interval zα
1 < z < zα

2 , by generating a simulation
which we can label α, that has constant true shear gconst apart from
in redshift interval α which has an applied true shear gconst + �gtrue

α .
Our estimate for Nα

γ is then given by

Nα
γ = �ḡobs

α

�gtrue
α

, (21)

where �ḡobs
α is the change in measured mean shear w.r.t a simulation

with constant shear gconst at all redshifts.
In practice, we always use �gtrue

α = 0.04 and gconst = −0.02.
The latter is chosen because we already generated simulations with
constant shear −0.02 (separately for both shear components) for the
constant shear results in Section 4. That is, for each redshift interval

α, we generate an extra simulation with

(g1, g2) =
{

(0.02, 0.00) if zα
1 < z < zα

2

(−0.02, 0.00) otherwise.
(22)

This allows us to estimate Nα
γ for the first shear component; we also

generate an analogous simulation to estimate it for the second shear
component, with

(g1, g2) =
{

(0.00, 0.02) if zα
1 < z < zα

2

(0.00, −0.02) otherwise,
(23)

and then average over the two sets of per-shear-component Nα
γ

measurements.
We use four redshift intervals α with lower and upper redshift lim-

its (zα
1 , zα

2 ) ∈ {(0.0, 0.4), (0.4, 0.7), (0.7, 1.0), (1.0, 3.0)}. The bot-
tom section of Table 2 summarizes the simulation inputs for these
redshift-dependent shear simulations.

Since we have only a finite volume of simulation and thus noisy
estimates of �ḡobs

α , and the estimates for different α are correlated
(for two reasons – they are differences with a common constant shear
simulation, and their random seeds are matched with that constant
shear simulation to reduce noise on the differences), we construct the
covariance matrix Cov(�ḡobs

α , �gobs
β ) by jackknifing over simulated

tiles. We then have

Cov
(
Nα

γ , Nβ
γ

) = Cov
(
�ḡobs

α , �gobs
β

)
/
(
0.042

)
. (24)

5.2 Effective redshift distribution for lensing: simulation
measurements versus predictions

We start with the simplest case of Nα
γ for the full ensemble of detected

objects in our simulations that pass the standard selection cuts – we
call this the ‘non-tomographic’ case, since no tomographic redshift
binning is applied. As discussed in Section 2, we are interested
foremost in measuring biases in the estimation of nγ (z) via the
method used on the real data – that is, a METACALIBRATION response-
weighted histogram of redshift estimates, which we denote nmcal

γ (z).
From this, one can make a prediction for Nα

γ

Nα,mcal
γ =

∫ zα
2

zα
1

dz nmcal
γ (z). (25)

Since in the simulations we work with discrete detections with
assigned redshifts, we can estimate Nα,mcal

γ via summing the META-
CALIBRATION responses of detections assigned to redshift interval
α:

Nα,mcal
γ =

∑
zα

1 <zj <zα
2
Rj∑

j Rj

, (26)

where the sum in the numerator is over all detected objects with an
assigned redshift in the interval zα

1 < zj < zα
2 , and the sum in the

denominator is over all detected objects. Nα,mcal
γ then is simply the

fraction of the response-weighted detections in redshift interval α.
Any differences between this fraction, and the Nα

γ measured directly
from the simulations via equation (21) would imply a bias in nmcal

γ (z)
as an estimate of nγ (z).

In the top panel of Fig. 8, we show the simulation measurements
of Nα

γ , as well the Nα,mcal
γ and for reference the redshift distribution

nmcal
γ (z). On this scale, the simulation measurements, Nα

γ , are indis-
tinguishable from the prediction, Nα,mcal

γ , so in the bottom panel we
show the fractional difference between the two quantities. The blue
rectangles are the fractional difference between Nα

γ measured from
the simulations (equation 21) and, Nα,mcal

γ (estimated via equation 26)
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Figure 8. Measurements of Nα
γ without photo-z binning. Top panel: The

orange line is nmcal
γ (z) [the METACALIBRATION response-weighted n(z)], and

the black horizontal lines show Nα,mcal
γ i.e. the prediction for Nα

γ based on

integrating nmcal
γ (z) over each interval α. We also show as blue rectangles

the direct measurements of Nα
γ from the simulations, with the height of the

rectangle indicating the 1σ uncertainty region. In both cases, we divide by
the width of the redshift interval α for consistency with the plotted nmcal

γ (z).
On this scale, the per cent level differences between Nα

γ (black lines) and

Nα,mcal
γ (blue rectangles) are difficult to perceive, hence we show fractional

difference in the bottom panel. Bottom panel: Blue rectangles indicate the
fractional difference between the measured Nα

γ , and Nα,mcal
γ . Nα,mcal

γ is biased
high, especially for z > 1, where the bias is around 6 per cent. This means
that the response of the shear catalogue to shear at z > 1 is around 6 per cent
less than predicted. Orange rectangles show, m̄α the mean multiplicative bias
for objects assigned to each redshift interval, as inferred from constant shear
simulations. The fact that the two sets of measurements differ implies the
presence of cross-redshift blending – where galaxies assigned to one redshift
interval have some non-zero response to shear applied to a different interval.

i.e. Nα
γ /Nα,mcal

γ − 1 for the four redshift intervals α. The height of
the rectangles denotes the 1 − σ error bounds on this fractional
difference, propagated from the covariance on the measured Nα

γ .
We see that Nα,mcal

γ is a per cent-level overestimate of Nα
γ , with the

disparity increasing for the higher redshift intervals.
What is going on here? Let us consider the highest redshift

interval. Fig. 8 implies that our ensemble of detections responds to
a shear in this redshift interval around 6 per cent more weakly than
one would expect from the METACALIBRATION response-weighted
redshift distribution. This could be an indication of either of two
subtly different effects (or both):

(i) The measured shear for detections assigned redshift z depends
only on the applied shear at redshift z, but has some (redshift-
dependent) mean multiplicative bias m̄(z) �= 0 or equivalently non-
unity mean response R̄(z) �= 1 (that is not captured by METACAL-
IBRATION), such that γ̄ obs(z) = R̄(z)γ true(z), and therefore nγ (z) =
R̄(z)nmcal

γ (z).
(ii) Due to blending, the measured shear for detections assigned

redshift z has some additional non-zero response to the applied shear
at other redshifts z

′
(due to contamination by light from galaxies

at z
′
), such that γ̄ obs(z) = ∫

R(z, z′)γ true(z′). Here, R(z, z
′
) is some

function that determines the strength of linear response to shear
applied at redshift z

′
, for detections assigned redshift z. We might

expect this sort of effect from blending, since the measured shear of
objects assigned redshift z may be influenced by the shear applied
to light from other redshifts z

′
. This is precisely the effect we

demonstrated with our simple simulation in Section 1, where the
shape measurement of the high z galaxy had non-zero response to
shear applied to the low z galaxy.

We know to some extent the first effect is present – we do see a
multiplicative bias in the constant shear simulations in Section 4. In
the next section, we show measurements of Ni

γ,α , for true redshift
bins i, which gives us a clear insight into whether the second effect is
present. But before that, is useful to consider m̄α , the multiplicative
bias for detections assigned to redshift interval α as measured from
constant shear simulations. If only the first mechanism above was
present, we would expect this measurement to be equivalent to the
fractional difference Nα

γ /Nα,mcal
γ − 1 shown in Fig. 8. The orange

rectangles in Fig. 8 show m̄α , and the difference with respect
to Nα

γ /Nα,mcal
γ − 1 implies the presence of the second mechanism

above, as we will explore further in the next section.

5.3 Nα
γ measurements for assigned true redshift bins

We noted in Section 2.4 that it will be useful to measure Nα
γ for

subsets i of our detections. While using photometric redshift bins as
those subsets, as we do in the next section, is more directly applicable
to an analysis of real data, it is instructive to study Nα

γ,i for bins i
in ‘true’ redshift, or really assigned true redshift. The qualification
here is important because we have already noted that detections do
not necessarily correspond to only one galaxy, so may not have a
unique true redshift, but they are assigned a unique true redshift in
the matching procedure described in Section 3.7.

A measurement of Nα
γ,i for i �= α directly probes the presence of

effect (ii) discussed above – the linear response of the shear measured
for detections assigned a redshift z, to the applied shear at other
redshifts z

′ �= z. It is calculated via

Nα
γ,i = �γ̄ obs

α,i

�γ true
α

, (27)

where �γ̄ obs
α,i is the change in mean measured shear for galaxies

assigned to redshift interval i only, for the simulation in which redshift
interval α is sheared. Nα

γ,i can be related to the R(z, z
′
) postulated in

Section 5.2 via

Nα
γ,i =

∫ zi
2

zi
1

dz

∫ zα
2

zα
1

dz′R
(
z, z′) . (28)

The prediction for Nα
γ,i based on the METACALIBRATION response-

weighted n(z) for detections assigned to redshift interval i, nmcal
γ,i (z), is

simple. Since in this case the full sample is within redshift interval i,
we should see unity response to shear applied to the assigned interval
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Figure 9. Measurements of Nα
γ,i for assigned true redshift interval i. Nα

γ,i

is the response of the mean shear of galaxy ensemble i, to a shear applied in
redshift interval α. In this case our ensembles i correspond to intervals in true
redshift. The METACALIBRATION prediction for Nα

γ,i in this case is simply the
identity matrix: Nα

γ,i = δiα , since one would expect unity response of galaxies
to shear applied in their own redshift interval, and zero response otherwise.
Hence we have subtracted δiα in this plot to reduce the dynamic range. The
y-axis then demonstrates the biases from assuming the METACALIBRATION-
response weighted n(z) as the effective redshift distribution.

i i.e. when α = i, and zero response otherwise i.e. when α �= i. That
is, Nmcal

γ,i = δi,α .
In Fig. 9, we plot as points with error bars the Nα

γ,i for the
four redshift intervals used. Since we expect Nα

γ,i to be close to
unity for i = α, we subtract δiα from the measurements so that
the results are all near zero. We see that the diagonal elements of
Nα

γ,i are all less than unity, implying that detections assigned to a
given redshift interval do not have unity response to shear applied
in that same redshift interval, with the size of the effect increasing
from around 1 per cent at low redshift to around 10 per cent at high
redshift. This implies the presence of a multiplicative shear bias
e.g. due to a dilution of the applied shear due to contamination
of the shape measurement by light from other (unsheared) redshift
intervals.

The off-diagonal terms in Nα
γ,i are predominantly positive, es-

pecially for i = 3, that is for detections assigned to the highest
redshift interval. This means that the detections exhibit a positive
response to shear applied in the other redshift intervals α �= i, a clear
detection of the mechanism (ii) described in the previous section,
and demonstrated in our simple simulation in Section 1. This effect
is potentially important since it implies that there will be extra
correlation in the shears measured at different redshifts w.r.t what
one would expect from the estimated redshift distribution nmcal

γ (z).
Or put differently, there will be additional tails or broadening in the
effective redshift distribution for weak lensing.

5.4 Nα
γ measurements for photo-z bins

We now repeat the above measurement, but applied to photometric
redshift bins, rather than bins of assigned true redshifts. These are the
most directly applicable measurements for the DES Y3 weak lensing
analyses. We use the same simulations and shear measurements to
calculate the integrated effective density Nα

γ,i for photometric redshift
bin i. Nα

γ,i is estimated from the simulations in the same way as above
but now simply restricting the mean shear calculation to detections
assigned to photometric redshift bin i, according to the procedure
described in Section 3.7. Note the change in meaning of index i,
which now labels the photo-z bin rather than the bin in assigned true
redshift.

Fig. 10 shows the difference between the Nα
γ,i measurements and

the N
α,mcal
γ,i predictions for each photo-z bin i. In this case, Nα,mcal

γ,i is no
longer δi,α as before, since for any (i, α) pair, the photo-z bin i includes
galaxies outside of the range (zα

1 , zα
2 ). Instead, we now calculate

N
α,mcal
γ,i using equation (26), summing over the METACALIBRATION

responses for the galaxies in each photo-z bin i. The blue rectangles in
Fig. 10 show the resulting Nα

γ,i − N
α,mcal
γ,i values with their estimated

uncertainties.
The measurements are noisier for this case, especially where there

is little weight in the underlying n(z), e.g. at high redshift (α = 2
and α = 3) for the first photo-z bin, i = 0. Due to the fact that
our photometric redshift pipeline cannot group galaxies perfectly in
redshift, the effects from source blending in Fig. 9 are diluted. The
model fits that also appear in Fig. 10 are described in the next section.

5.5 nγ (z) bias model constraints for photo-z bins

Above, we have made measurements of Nα
γ,i in a set of coarse redshift

bins. While these measurements constitute direct constraints on the
shear systematics in these bins, we expect the underlying effects to be
smooth functions of redshift, and we require a continuous corrected
nγ (z) to make theoretical predictions. Thus, we now fit a smooth
model to the measurements. We posit that this smooth model has
two terms as follows

nmodel
γ,i (z) = (1 + Fi(z)) nmcal

γ,i (z) + Gi(z) . (29)

The term Fi(z) captures changes in the effective weighting of the
discrete sources used to construct nmcal

γ,i (z). These effects could in-
clude things like constant multiplicative biases or redshift-dependent
multiplicative bias effects. The term Gi(z) captures responses to shear
at redshifts not present in the naive nmcal

γ,i (z) distribution computed
from the detected sources. This term is designed to capture blending
effects where high-redshift sources respond to input shear at lower
redshifts. Note though that a sufficiently flexible Fi(z) could also
capture such effects.

5.5.1 The model

Due to the limited volume of image simulation data, we can only
employ relatively constrained models. For Gi(z), we fit a template
with a single free amplitude. The template is built from the flux
density of the COSMOS sample in the riz-bands as a function
of redshift. This model is motivated by the idea that for random
projections, blending effects will be proportional to the flux density
of objects.

For Fi(z), we employ a model with two parts. First, we have a
constant term that is meant to capture overall multiplicative biases.
Secondly, we employ a perturbative method detailed in Berberan-
Santos (2007) to build a set of correction terms that capture mean
shifts in the redshift distribution and possibly changes in its width.
The overall idea of this method is that we can expand nmodel

γ,i (z)
perturbatively about the input nmcal

γ,i (z) with the coefficients of the
expansion corresponding to changes in the moments of nmcal

γ,i (z). The
form of this series for two general PDFs h(x) and p(x) is

h(x) ≈ p(x)

(
1 + a1

1

p(x)

dp(x)

dx
+ a2

1

2p(x)

d2p(x)

dx2
+ . . .

)
. (30)

In our application, we use either the first or the first two terms of this
series to generate template functions to put into Fi(z). We then fit for
the coefficients a1 and/or a2. Given that directly differentiating the
simulation nmcal

γ,i (z) will be quite noisy, we fit a model to this quantity
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Figure 10. Modelling nmodel
γ,i (z) using Nα

γ,i from our image simulations. In each panel, the blue rectangles show Nα
γ,i − Nα,mcal

γ for the photometric redshift
bin i. The width represents the redshift extent of the interval α and height indicates the 1σ uncertainty on the measurement. The grey band in each panel shows
the posteriors of our nmodel

γ,i (z) and the horizontal black lines are the integrals over this model which form the predictions for the Nα
γ,i measurements from the

simulations. The light and dark purple lines show the models that would result if one used a constant multiplicative bias of −0.01 and −0.03, respectively. It is
clear from the simulation data, especially in bin 2, that no constant multiplicative bias model would be sufficient. In particular, at lower redshift in bin 2, they
cannot capture the increased response to low redshift shear due to blending.

and then differentiate that model. If we call this model φ(z; θ i), then
the final form for Fi(z) is

Fi(z) = a0 + a1
1

φ(z; θi)

dφ(z; θi)

dz
+ a2

1

2φ(z; θi)

d2φ(z; θi)

dz2
. (31)

In this expression, a0 is approximately an overall multiplicative bias
term, a1 approximately controls changes in the mean redshift of
nmcal

γ,i (z), and a2 approximately controls a combination of the mean
and the width of nmcal

γ,i (z). We use the following distribution (Baugh &
Efstathiou 1993; Brainerd, Blandford & Smail 1996),

φ(z; a, b, c) ∝ za exp
(
−
( z

b

)c)
(32)

for our fiducial model for φ, keeping only the terms up to a1

in equation (31). As an alternative, we also considered using a
Student’s-t distribution with ν = 1 degree of freedom, keeping all
terms up to a2. We found that for the Student’s-t distribution we
needed to increase the width of the distribution by a factor of 10
when generating the model terms in order to avoid extremely strong
model effects in the tails of the distribution.

From these smooth models, we can estimate Nα
γ,i via

N
α,model
γ,i =

∫ zα
2

zα
1

dz nmodel
γ,i (z). (33)

We can also make a prediction for the mean multiplicative bias for
photo-z bin i, m̄i , or equivalently mean response R̄i = 1 + m̄i , which

we measured from the constant shear sims, which is simply

R̄model
i =

∫ ∞

0
nmodel

γ,i (z), (34)

i.e. the normalization of nγ (z)model. Therefore, we can use both Nα
γ,i

and R̄i measurements to constrain the Fi(z) and Gi(z) components
of our nγ (z) bias model.

5.5.2 Fitting procedure

Equipped with simulation measurements of Nα
γ,i and R̄i , an estimate

of their joint covariance matrix Ci (again estimated by jackknifing
over simulated tiles) and a model for nγ (z) with which we can predict
them, we can now form a likelihood to constrain that model.

We use Markov Chain Monte Carlo (MCMC) to produce samples
of F(z) and G(z) and thus nmodel

γ (z). Our likelihood is

log L = N
([

R̄i , N
α
γ,i

]sim − [
R̄i , N

α
γ,i

]model
, Ci

)
, (35)

where N (μ, �) indicates a Gaussian distribution with mean μ

and covariance �. We use wide, uninformative priors on the free
parameters of F(z) and G(z), and use EMCEE (Foreman-Mackey et al.
2013) to sample the posterior. We use a configuration of 12 walkers
taking 104 steps each. We then discard the first 5 × 103 samples
and thin the rest of the samples by a factor of 10. Our final chains
have autocorrelation lengths of approximately 40–50 and are thus
long enough to generate a sufficient number of independent samples.
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Blending shear and redshift biases 3387

Table 4. Inferred constraints on m and δz̄ from the nγ (z) model samples fit
to the image simulations measurements. These nγ (z) models are generated
by perturbing the image simulation nmcal

γ (z).

Quantity Tomo. bin Fiducial model Student’s-t model

m × 100 0 −1.36 ± 0.29 −1.37 ± 0.29
m × 100 1 −1.78 ± 0.36 −1.77 ± 0.36
m × 100 2 −2.48 ± 0.41 −2.52 ± 0.42
m × 100 3 −3.34 ± 0.52 −3.31 ± 0.52

�z̄0 × 100 0 −0.65 ± 0.27 −0.96 ± 0.30
�z̄0 × 100 1 −0.80 ± 0.31 −0.76 ± 0.29
�z̄0 × 100 2 −0.36 ± 0.26 −0.40 ± 0.19
�z̄0 × 100 3 −1.13 ± 0.60 −0.45 ± 0.37

Having sampled the posteriors of the model parameters, we can then
produce samples of F(z), G(z), and nmodel

γ,i (z) that are conditioned on
our simulation measurements.

5.6 Model constraints

The posterior constraints on our models are shown in Fig. 10 as the
grey bands. We also show the predictions for Nα

γ,i as the horizontal
grey lines. We find that our model generally provides a good fit to
the data. In this figure, we also show the predictions of a model
that employs a constant m per tomographic bin, i.e. nmodel

γ,i (z) = (1 +
mi)nmcal

γ,i (z). While this model may be sufficient for the lower redshift
tomographic bins, in bin i = 2 we find that it cannot capture the low
redshift tails introduced into nmodel

γ,i (z), perhaps due to blending.
From each nmodel

γ,i (z) sample, we can calculate an effective multi-
plicative bias m, and a change in mean redshift �z̄. m is equal to the
normalization of nmodel

γ,i (z) minus 1, i.e.

m =
∫

dz nmodel
γ,i (z) − 1 (36)

and

�z̄ =
∫

dz znmodel
γ,i (z)∫

dz nmodel
γ,i (z)

−
∫

dz znmcal
γ,i (z)∫

dz nmcal
γ,i (z)

. (37)

Note we have chosen the sign convention of our definition of �z̄ to
match that used in the cosmology analyses (e.g. DES Collaboration
2021), which means it is the correction one would apply to nmcal

γ,i (z),
rather than the bias in nmcal

γ,i (z) (which would have the opposite sign).
These two summary statistics of nγ (z) are probably the two most

important for weak lensing analysis, where higher order biases in
the redshift distribution are likely to have a subdominant effect to
changes in normalization (i.e. multiplicative bias) or mean redshift.
The two models give largely similar constraints in m and δz̄, with the
fiducial model in general allowing slightly larger shifts in redshift.
The first two lines of Table 4 contain these inferred m and δz̄

constraints for the two nγ (z) bias models (fiducial and Student’s-
t), when applied to the fiducial n(z)s from the image simulations.

The nγ (z) bias model constraints encapsulate our characterization
of shear calibration biases for each DES Y3 photometric redshift
bin, including redshift dependent effects such as the impact of
blending on the effective redshift distribution for lensing. They also
include the statistical uncertainty on the calibration due to finite
simulation volume. When using the nγ (z) bias model for the real
DES Y3 data, we apply it instead to the n(z)s estimated from
the DES Y3 data. In the next section, we describe this procedure,
and explore potential systematic uncertainties in our corrections, in

order to provide statistical and systematic uncertainty priors on the
corrections measured from the simulations here.

6 nγ ( z) C O R R E C T I O N S F O R TH E D E S Y 3
S H E A R C ATA L O G U E

In Section 5, we generated estimates of the bias in our methodology
for constructing the effective redshift distribution for lensing, nγ (z).
We did this by comparing direct estimates of nγ (z) from the
image simulations, possible only because we know the input shear
to the simulations, to the method we use on the Y3 data: the
METACALIBRATION response-weighted redshift distribution, nmcal

γ (z).
These bias estimates are intended to be used to make corrections to
the redshift distributions used in theory predictions in weak lensing
cosmology analyses. In our case, those redshift distributions are those
estimated from the DES Y3 data, summarized in Myles et al. (2021),
which provide ensembles of redshift distributions constrained by
both galaxy flux information, and clustering (Gatti et al. 2020). In
Section 6.1, we describe our procedure for applying our corrections
to these redshift distributions. This procedure results in a set of nγ (z)
samples, which can be sampled over when performing cosmological
parameter inference (e.g. using the HYPERRANK method described in
Cordero et al. 2021).

The accuracy of our corrections depends on how realistically we
have simulated the DES Y3 data. In Sections 6.2–6.4, we explore
this issue by inspecting the sensitivity of our nγ (z) bias corrections
to variations in the simulation measurements or simulation analysis
choices. Results from these variations feed into our systematic
uncertainties.

Finally, in Section 6.5, we summarize our final corrections which
include both statistical and systematic uncertainties.

6.1 Applying corrections to the DES Y3 n(z)s

Myles et al. (2021) provide an ensemble of 1000 samples (for each of
the four photo-z bins) drawn from the posterior of the set of photo-z
bin redshift distributions, constrained by both galaxy flux (including
colour) and clustering information. These distributions are already
weighted by the METACALIBRATION response estimated from the DES
data, so in fact correspond to samples of nmcal

γ,i (z). For each of these
1000 samples, we draw 100 randomly chosen samples of our bias
model inferred from our simulation measurements, quantified by the
functions F(z) and G(z). Then we apply these model biases to nmcal

γ,i (z)
using equation (29) to produce estimates of nγ (z). This process leaves
us with 1000 × 100 = 100, 000 nγ (z) samples for each photo-z bin,
but note that in practice one could downsample this set of nγ (z)s to
a more manageable number depending on the application.

In Fig. 11, we show the distributions of mean multiplicative bias, m
(top panels), and mean redshift, z̄ (bottom panels) inferred from these
nγ (z) samples. m is calculated as in equation (36) i.e. is simply the
normalization of nγ (z) minus 1. In all cases the height of the violin
shape is proportional to the fractional weight in the distribution at a
given value of the x-axis. The lines labelled ‘fiducial’ represent the
inferred m and z̄ distributions for this case. We also list the mean
and standard deviation of these m and z̄ distributions in Table 5. We
note here that we are in some sense extrapolating the corrections we
have inferred from our simulations on to the DES Y3 data, and one
must always be careful with extrapolation. However, the fact that
the mean m values inferred from the image simulation nγ (z) models
(first row of Table 4) are within the 1σ bounds of the ‘fiducial’ Y3
data m priors in Table 5, gives us confidence that this extrapolation
is well behaved.
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3388 N. MacCrann et al.

Figure 11. Distributions of the inferred m (top panels) and mean redshift z̄ (bottom panels) of our DES Y3 redshift nγ (z) estimates, generated by applying
our simulation corrections to an input ensemble of redshift distributions. For each line nγ (z) corrections are applied from a variation on the fiducial simulation
analysis, which have been chosen to expose potential systematic errors in the fiducial approach. The lines marked ‘final’ represent the mixture approach described
in Section 6.5, which incorporates systematic uncertainty by mixing together samples from the alternative approaches with the fiducial analysis. In the lower
panel, we show also in the first line the distribution of mean redshifts for the input (i.e. before correction) redshift distributions.

In Table 5, we also list the mean and standard deviation of two other
quantities, labelled ‘δz̄’ and ‘δz̄FG’. These are defined as follows. For
a given input nmcal

γ (z) sample, which we will call nmcal
s (z), we generate

an output nγ (z) sample, nγ , s(z), by applying samples of the F(z) and
G(z) perturbation functions. For a given nγ , s(z), δz̄s is defined as
the change in mean redshift with respect to the mean redshift of the
ensemble of input nmcal

γ (z) samples i.e.

δz̄s = z̄
[
nγ,s(z)

] − 〈
z̄
[
nmcal

s (z))
]〉

s
, (38)

where z̄ [ψ(z)] represents the mean redshift of the function ψ(z), and
<>s represents an average over all samples s. Note the distribution
of this δz̄ will include the scatter in the input nmcal

γ (z) samples.
The quantity δz̄FG on the other hand does not; it is defined as

δz̄FG,s = z̄
[
nγ,s(z)

] − z̄
[
nmcal

s (z)
]

(39)

for a given sample s, and thus isolates the impact of applying the
F(z) and G(z) correction functions. Hence it is this quantity that is
more directly comparable to the �z̄ we defined in Section 5.6 for the

image simulation nγ (z), and listed values for in Table 4. The image
simulation �z̄ from Table 4 are all within the 1σ bounds of the δz̄FG

distributions, except for photo-z bin 1, where it is within 2σ .
In the next three sub-sections, we test for sensitivity of the inferred

m and δz̄ priors to various potential systematics in our simulation
corrections.

6.2 Alternative photo-z-binning schemes

Given the range of viable different photo-z binning schemes pre-
sented in Section 3.7, we test for the sensitivity of our corrections
to this choice, and include a corresponding contribution to our
systematic uncertainties related to this choice. For each of the photo-
z binning schemes, we repeat the inference of nγ (z) corrections
performed in Section 5.5, but now using the slightly different Nα

γ,i

and R̄i measurements resulting from changing the photo-z binning
scheme. This results in sets of F(z) and G(z) samples for each
photo-z binning scheme, from which we can generate nγ (z) samples
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Blending shear and redshift biases 3389

Table 5. Summary statistics of the DES Y3 data nγ (z) distributions, or in the case of the lines labelled ‘input’, input ensemble of
redshift distributions i.e. before correction. The ‘input’ lines hence have no associated multiplicative bias m. The column labelled
z̄ is the mean and standard deviation of the distribution of mean redshift of nγ (z). The column labelled δz̄ is the mean and standard
deviation of the distribution of δz̄, which for a given nγ (z), is the difference in mean redshift w.r.t to the mean redshift of the input
ensemble of n(z). The column labelled δz̄FG is the mean and standard deviation of the distribution of δz̄FG, which for a given
nγ (z), is the difference in mean redshift w.r.t the mean redshift of the specific n(z) sample used to generate the nγ (z).

Model Photo-z bin m × 100 z̄ δz̄ × 100 δz̄FG × 100

input 0 N/A 0.341 ± 0.016 0.000 ± 1.608 0.000 ± 0.000
fiducial 0 −0.789 ± 0.625 0.341 ± 0.019 −0.021 ± 1.938 −0.021 ± 0.711
alternate nγ (z) 0 −1.346 ± 0.541 0.330 ± 0.018 −1.054 ± 1.834 −1.054 ± 0.991
re-weighted 0 −0.574 ± 0.615 0.337 ± 0.017 −0.406 ± 1.750 −0.406 ± 0.353
zmatch pz 0 −0.368 ± 0.481 0.335 ± 0.016 −0.565 ± 1.644 −0.565 ± 0.143
wmatch pz 0 −0.172 ± 0.790 0.341 ± 0.018 −0.009 ± 1.766 −0.009 ± 0.361
equal pz 0 1.117 ± 0.908 0.335 ± 0.017 −0.580 ± 1.651 −0.580 ± 0.212

final 0 −0.627 ± 0.908 0.336 ± 0.018 −0.467 ± 1.846 −0.467 ± 0.758

input 1 N/A 0.528 ± 0.013 −0.000 ± 1.280 0.000 ± 0.000
fiducial 1 −1.703 ± 0.446 0.524 ± 0.013 −0.367 ± 1.344 −0.367 ± 0.215
alternate nγ (z) 1 −2.315 ± 1.080 0.515 ± 0.018 −1.267 ± 1.812 −1.267 ± 1.441
re-weighted 1 −1.589 ± 0.461 0.523 ± 0.013 −0.467 ± 1.341 −0.467 ± 0.193
zmatch pz 1 −2.869 ± 0.375 0.521 ± 0.012 −0.725 ± 1.212 −0.725 ± 0.358
wmatch pz 1 −1.763 ± 0.452 0.524 ± 0.013 −0.385 ± 1.335 −0.385 ± 0.218
equal pz 1 −2.308 ± 0.435 0.522 ± 0.013 −0.561 ± 1.311 −0.561 ± 0.282

final 1 −1.984 ± 0.779 0.521 ± 0.015 −0.671 ± 1.506 −0.671 ± 0.833

input 2 N/A 0.750 ± 0.006 −0.000 ± 0.629 0.000 ± 0.000
fiducial 2 −2.667 ± 0.458 0.746 ± 0.006 −0.365 ± 0.632 −0.365 ± 0.209
alternate nγ (z) 2 −1.649 ± 0.892 0.729 ± 0.012 −2.048 ± 1.173 −2.048 ± 1.251
re-weighted 2 −2.570 ± 0.494 0.746 ± 0.006 −0.355 ± 0.641 −0.355 ± 0.152
zmatch pz 2 −2.759 ± 0.511 0.743 ± 0.006 −0.676 ± 0.637 −0.676 ± 0.204
wmatch pz 2 −2.967 ± 0.483 0.745 ± 0.006 −0.411 ± 0.627 −0.411 ± 0.202
equal pz 2 −2.558 ± 0.430 0.743 ± 0.006 −0.613 ± 0.626 −0.613 ± 0.256

final 2 −2.412 ± 0.760 0.741 ± 0.011 −0.830 ± 1.071 −0.830 ± 0.959

input 3 N/A 0.946 ± 0.015 0.000 ± 1.524 0.000 ± 0.000
fiducial 3 −3.794 ± 0.718 0.934 ± 0.013 −1.170 ± 1.317 −1.170 ± 1.046
alternate nγ (z) 3 −3.780 ± 0.606 0.945 ± 0.019 −0.060 ± 1.913 −0.060 ± 0.977
re-weighted 3 −3.574 ± 0.841 0.933 ± 0.014 −1.304 ± 1.378 −1.304 ± 1.333
zmatch pz 3 −3.253 ± 0.589 0.933 ± 0.017 −1.313 ± 1.698 −1.313 ± 0.902
wmatch pz 3 −4.179 ± 0.852 0.927 ± 0.015 −1.875 ± 1.490 −1.875 ± 1.575
equal pz 3 −3.442 ± 0.690 0.933 ± 0.015 −1.277 ± 1.548 −1.277 ± 1.037

final 3 −3.692 ± 0.761 0.936 ± 0.017 −1.008 ± 1.672 −1.008 ± 1.290

for the DES Y3 data, following the procedure in Section 6.1. The
inferred ms and z̄s for these cases are also shown in Fig. 11, as
the lines labelled ‘zmatch pz-binning’, ‘wmatch pz-binning ’, and
‘equal pz-binning’ (see Section 3.7 for the details of the binning
methods).

6.3 Simulation re-weighting

The overall agreement between object properties and density in the
simulation and real data is very good, both globally and within
each redshift bin. To validate that any remaining differences would
not significantly modify our inferred shear calibration, we focus
on several properties most likely to correlate with the amount of
blending, which is our main source of shear calibration bias.

We implement a re-weighting scheme designed to match the
small-scale counts of close pairs in the DES Y3 data, including
the magnitude dependence of this behaviour. We believe this should
provide a first order estimate of the potential impact of ignoring
galaxy clustering in our simulations, which although weak for our
wide-in-redshift photometric redshift bins, may have non-negligible
impact on the amount of blending.

We choose three quantities on which to re-weight: the magnitude
(calculated from the mean of the flux in the r, i, and z bands),
the distance to the nearest neighbour, and the magnitude of the
nearest neighbour (again based on the r, i, and z bands). The
neighbour can be any detected object with non-negative flux (i.e.
we do not restrict the neighbour candidates to objects passing
shape catalogue cuts). We then aim to produce a set of weights
to apply to the simulation results that will improve the match of
the joint distributions of these quantities between simulations and
data.

To accomplish this, we use k-means clustering to define clusters of
these three quantities based on 200 000 randomly selected objects in
each photo-z bin. We then assign all objects in both the simulations
and DES Y3 data to these clusters. Weights are produced for each
photo-z bin by taking the ratio of the number of objects assigned
to each data cluster to the number assigned to each simulation
cluster. We show in Fig. 12 that this re-weighting of objects improves
agreement with the data.

We update the weights of our simulated shear catalogues, and re-
derive the nγ (z) correction model (by re-performing the Nα

γ,i and R̄i

measurements and the nmodel
γ,i (z) fits). We again apply the resulting
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3390 N. MacCrann et al.

Figure 12. Distribution of distance to nearest neighbour for each photo-z bin. The first and third rows show these distributions (as normalized histograms) for
the Y3 data (‘Y3’, blue), the image simulations (‘sim’, orange), and the re-weighed simulations (‘sim rw’, green – using the re-weighting procedure described
in Section 6.3). The second and fourth rows show the fractional difference of the ‘sim’ and ‘sim rw’ distributions with respect to the Y3 data distributions. In
all cases, the agreement between simulations and data is improved by the re-weighting procedure.

F(z) and G(z) corrections to the Y3 data n(z) ensemble to get an
ensemble of nγ (z) samples. The inferred ms and z̄s for these cases
are also shown in Fig. 11, as the lines labelled ‘re-weighted’. The
impact on z̄ is small, with at most 0.2 per cent shifts in the mean.
There is also a small (between 0.1 and 0.2 per cent), coherent shift in
the mean of the m distributions to less negative values for all photo-
z bins. While small, we find the sign surprising, since we expect
this re-weighting procedure to increase the number of close pairs
in the simulation, and thus increase the impact of blending on the
multiplicative bias.

We note that this re-weighting procedure will not include all the
potentially relevant effects present in a galaxy sample with realistic
clustering. We discuss in detail in Section 7 the possibility that we
have underestimated blending-related biases as a result of this.

6.4 Alternative nγ (z) bias parametrization

We chose a fiducial functional form for the multiplicative correction
F(z) in our nγ (z) bias model. This was based on the perturbative
expansion in equation (31), applied to the n(z) model in equation (32).
Note that we only use this simple parametric model to generate a
functional form for the perturbations from nmcal

γ (z); we do not use
the parametric fit directly. We have also investigated the use of a
Student’s-t model, which we use to generate an alternative set of F(z)
and G(z) samples with which we correct the DES Y3 n(z) ensemble.
The resulting inferred m and δz̄ distributions are shown in Fig. 11,
as the lines labelled ‘alternate nγ (z) model’. We observe some non-
negligible shifts with respect to the fiducial m and z̄. The largest are
for photo-z bin 2, with a shift in the mean of the m distribution of
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1.0 per cent, and a shift in the mean z̄ of −1.7 per cent. We also see
broadening of the z̄ distributions for all photo-z bins.

6.5 Final nγ (z) priors

As discussed in Section 6.1, the nγ (z) samples inferred from applying
the results of our fiducial simulation to the DES Y3 data n(z) include
our fiducial correction and statistical uncertainties. We incorporate
systematic uncertainties as follows. We generate a final prior on nγ (z)
which is a mixture of the priors inferred from our fiducial approach,
and the variations described in Sections 6.2–6.4. More precisely, we
formulate the prior P(nγ (z)) as

P (nγ (z)) ∝ P (nγ (z)|Fiducial assumptions)

+ P (nγ (z)|Simulation re-weighting)

+ P (nγ (z)|Alternative nγ (z) bias parameterization)

+ P (nγ (z)|Alternative photo-z binning scheme). (40)

Each term on the right-hand side represents the prior on nγ (z) given
some set of analysis assumptions. We normalize each term on the
right-hand side such that they contribute equal weight to the total
prior on nγ (z). Note that this means the priors based on the three
alternative photo-z binning schemes described in Section 6.2 each
contribute only one-third of the weight to the mixed prior, compared
to the other variations. This choice, while somewhat arbitrary, ensures
we give equal weight to the three categories of systematic uncertainty
defined in Sections 6.2–6.4.

We can generate the final prior on nγ (z) simply by combining the
samples from the individual cases in the correct proportions. The
inferred m and z̄ distributions for this final prior is shown in the
bottom rows of Fig. 11. The grey dotted vertical lines show the 5th
and 95th percentiles of this final prior, while the dashed vertical line
shows its median.

One can see qualitatively by eye that this mixture prior accounts
for systematic uncertainties with a longer tail where there is an outlier
in one of the variations. For example, the m distribution for bin 0,
while still centred close to the fiducial case, gains extra weight in the
tail to high m due to the outlying m distribution for the ‘equal’ photo-
z binning variation. Similarly, the significant shift for the alternate
nγ (z) variation in the z̄ distribution for bin 2 is accounted for by a
large tail to low z̄ values.

We note that the m and δz̄ statistics presented here are summary
statistics of the full corrections, which are incorporated into perturbed
nγ (z) samples. It is these nγ (z) samples that should be used in the-
oretical predictions of weak lensing statistics (e.g. shear correlation
functions or tangential shear) for the DES Year 3 shear catalogue.
An algorithm for efficiently sampling over discrete nγ (z) samples,
such as that presented in Cordero et al. (2021) can be used (or
alternatively one could directly sample the likelihood in equation 35,
simultaneously with the likelihood for the Year 3 weak lensing
statistics). However, for some applications, it may be desirable and
sufficiently accurate to directly use the inferred m and δz̄ statistics
as approximate corrections to the effective redshift distribution, and
sample over them as nuisance parameters. The accuracy of such an
approach should be validated against the use of the full corrections.

7 D ISCUSSION

Image simulations have long been recognized as an essential tool
for calibrating shear estimation pipelines, and have played a role in
providing the shear calibration for all recent weak lensing cosmology
analyses. While current methodologies like METACALIBRATION have

made major strides in dealing with well-studied shear estimation
biases like noise bias and model bias, we are now entering an
era of weak lensing data that is both deep, resulting in significant
blending of galaxy surface brightness profiles, and voluminous,
thus statistically powerful enough to have very strict accuracy
requirements.

In this work, we present realistic image simulations designed
to accurately calibrate many of the complexities in analysing real
imaging data. By using a combination of morphological information
from HST and flux information from DES Deep Fields, we make
use of an input galaxy sample with realistic joint distributions of
flux (in multiple bands) and morphology. This, along with careful
simulation of the observational characteristics of real DES Y3 data,
gives us confidence that measurements of biases can be reliably
applied as calibration corrections. This multiband weak lensing
calibration simulation allows us to perform the same photometric
redshift inference as is performed on the real data, allowing reliable
and consistent corrections for each photometric redshift bin.

While we believe these simulations are sufficiently realistic given
the requirements of the DES Year 3 cosmology analyses, they do
of course involve approximations and shortcuts that may not be
sufficiently accurate for future analyses. We do not simulate the
estimation of the WCS solution, PSF, background levels or noise
levels in our simulations, under the assumption that any errors in our
estimation of these in the real data are negligible. These assumptions
should be carefully re-examined for more precise upcoming weak
lensing data sets.

In addition, we simulated galaxies with random sky positions,
rather than a realistic level of clustering. While our re-weighting
procedure in Section 6.3 can increase the number of pairs of close
detected objects, it does not explicitly match the number of groups
of more than two close detected objects, however, at current number
densities, we expect those to be much less frequent. The re-weighting
also cannot impact the statistics of undetected objects, and so will not
change the frequency of detected galaxies having close, undetected
neighbours. This specific case is investigated in detail by Euclid
Collaboration (2019), who demonstrate that for Euclid-like data, the
clustering of faint galaxies around the bright ones used for shape
measurement can induce a multiplicative bias of ∼ −0.5 per cent
(with respect to the case where the faint galaxies are unclustered).
Since this is of the same order as our statistical uncertainties, it is
worth careful consideration.

We first note that the only conclusive way to judge the impact
of the clustering of undetected galaxies is to simulate it. However,
generating a weak lensing calibration image simulation with realistic
clustering statistics, as well as the realistic distributions of measured
properties demonstrated here (Section 3.6) is an ongoing challenge.
Current cosmological simulations which include the former have not
been demonstrated to produce the high level of agreement with real
data at the image level that is required for weak lensing calibration.
In the absence of such a simulation, we make some arguments that
the size of the biases estimated by Euclid Collaboration (2019) are
likely an upper limit on the size of biases likely to be generated by
clustering of undetected objects in DES Year 3.

First, the DES Year 3 data are shallower than the Euclid-
like simulations in Euclid Collaboration (2019), hence in general
blending-related biases are lessened. Secondly, the ‘faint’ galaxies
in Euclid Collaboration (2019) are defined as having S/N < 10.
We include all objects detected by SEXTRACTOR (and with positive
flux) in our re-weighting procedure, which therefore only misses
out on the S/N < <10 objects that are undetected by SEXTRACTOR.
Thirdly, we are using METACALIBRATION, which has some robustness
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to blending – for very close pairs which are always detected as a single
object, METACALIBRATION performs extremely well (as demonstrated
in Sheldon et al. 2020), because it calibrates the response of the
measurement to shear of all the light in the system. This is not the case
for the shape measurement methods used in Euclid Collaboration
(2019), which we would expect to be more sensitive to ‘model bias’
arising from the unusual apparent morphology of blended systems.
Similarly, METACALIBRATION’s insensitivity to noise bias means faint
objects that are always undetected are unlikely to cause significant
biases; their contribution behaves largely as extra noise.

While these arguments are somewhat based on intuition rather than
extensive simulation results, given constraints on time and computing
resources, we think they justify our approach and priorities for
the calibration of this intermediate data set. None the less, we
recommended that Amon et al. (2021) include a robustness test
where an additional multiplicative bias with prior width 1 per cent
was marginalized over in the cosmological inference from cosmic
shear. This extra bias was assumed to be coherent across redshift
bins, and represents a pessimistic interpretation of the potential bias
arising from the effect explored by Euclid Collaboration (2019). They
find negligible change in the constraint on S8 = σ 8(�m/0.3)0.5, likely
due to the dominance of other sources of systematic uncertainty.

Another potential limitation of our simulations is the limited size
of our input galaxy catalogue (see e.g. Kannawadi, Mandelbaum &
Lackner 2015 for an investigation of the impact of limited input
catalogue size in weak lensing image simulations), which came
from the COSMOS region, motivated by the availability of HST
imaging that provides precise morphological information for our
input galaxies. While our detailed comparisons of the simulation
outputs and the real DES Year 3 data suggest that cosmic variance
in the input catalogue is not a huge effect (and this conclusion
agrees with that of Kannawadi et al. 2019), we would recommend
investigations of the possibility of larger reliable input catalogues
from deep ground-based imaging only (as measured by Hartley et al.
2020 and used in injection simulations by Everett et al. 2020). The
planned LSST deep-drilling fields would be a valuable source of such
data.

Conceptually, we have stressed the importance of characterizing
biases due to blending via their impact on the effective redshift
distribution. When blending becomes an important contributor to
shear calibration biases, photo-z and shear inference can no longer
be cleanly decoupled. Folding both photo-z and shear calibration
biases into an effective redshift distribution for lensing, nγ (z), is
both a compact approach, and very general in that nγ (z) is the key
observational quantity required to make theoretical predictions for
most weak lensing signals of interest. The normalization of nγ (z)
corresponds to the traditional mean multiplicative bias, 1 + m.

Via simulations with redshift-dependent shear signals, we have
provided a methodology for directly estimating nγ (z) integrated over
finite redshift intervals. The key point in this approach is that the value
of the effective redshift distribution at a given redshift is defined by
the response of the ensemble to shear at that redshift. Therefore, only
by simulating such a shear signal can the effective redshift distribu-
tion be estimated robustly. We believe that with the increased depth
(and therefore increased blending) and stricter accuracy requirements
of future surveys such as the Rubin Observatory and Euclid, such an
approach will become essential i.e. nγ (z) is the quantity that must be
accurately characterized for reliable cosmological inference, which
is a requirement beyond the traditional approach of characterizing
the multiplicative bias m.

In Section 6, we propagated our simulation measurements through
to corrections for the DES Y3 redshift distributions, producing from

an input ensemble of redshift distributions, an output ensemble of
effective redshift distributions, nγ (z) ready for use in the Year 3
weak lensing cosmology analyses. This output ensemble includes
both statistical (due to finite simulation volume) and systematic
(due to potential simulation inaccuracies) uncertainties. These nγ (z)
should be used directly in the theoretical predictions for weak
lensing statistics like the shear correlation functions and galaxy–
galaxy lensing tangential shear, as the effective redshift distribution
entering the lensing kernel. Note that the (in general non-unity)
normalization of the effective redshift distributions should be retained
in the calculations, or applied to the resulting theory prediction
if using a numerical code that normalizes the redshift distribution
internally. This data will be made available along with the DES
Year 3 shear catalogues, on publication of the key Year 3 cosmology
analyses, as part of the DES Y3 coordinated release.11
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Appendix C: PIFF PSF model smoothing for simulations
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