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Abstract 35 

Obesity is associated with increased muscle mass and muscle strength. Methods taking into 36 

account the total body mass to reveal obese older individuals at increased risk of functional 37 

impairment are needed. Therefore, we aimed to detect methods to identify obese older adults 38 

at increased risk of functional impairment. Home-dwelling older adults (n 417, ≥ 70 years of 39 

age) were included in this cross-sectional study. Gender-specific cut-off points for two 40 

obesity phenotypes (waist circumference [WC] and body fat mass [FM %]) were used to 41 

divide women and men into obese and non-obese groups, and within-gender comparisons 42 

were performed. Obese women and men, classified by both phenotypes, had similar absolute 43 

handgrip strength (HGS), but lower relative HGS (HGS/total body mass) (P < 0.001) than 44 

non-obese women and men, respectively. Women with increased WC and FM %, and men 45 

with increased WC had higher appendicular skeletal muscle mass (P < 0.001), lower muscle 46 

quality (HGS/upper appendicular muscle mass) (P < 0.001) and spent longer time on the stair 47 

climb test and the repeated sit-to stand test (P < 0.05) than non-obese women and men, 48 

respectively. Absolute muscle strength was not able to discriminate between obese and non-49 

obese older adults. However, relative muscle strength in particular, but also muscle quality 50 

and physical performance tests, where the total body mass was taken into account or served as 51 

an extra load, identified obese older adults at increased risk of functional impairment. 52 

Prospective studies are needed to determine clinically relevant cut-off points for relative HGS 53 

in particular. 54 

 55 

Introduction 56 

Aging and inactivity are associated with loss of muscle mass, muscle strength and muscle 57 

quality (1–4). Obesity and low muscle strength are strong predictors of functional decline 58 

among older adults (5), and serious health consequences such as limitations in daily living 59 

activities (6), disability, risk of falling, fracture and mortality (7,8). Aging is characterized by 60 

changes in body composition where loss of muscle mass is often accompanied by increased 61 

fat mass. Age-related changes in body composition also include fat redistribution, with 62 

reduction in peripheral subcutaneous fat and increased visceral fat, and fat deposition in non-63 

adipose tissue such as e.g. skeletal muscles (3,9). Along with the rising number of older adults 64 

aged above 65 years, the prevalence of obesity among older adults is expected to increase 65 

(10,11). Obesity, excessive accumulation of body fat, is associated with higher muscle mass (12–66 

14), suggesting that the strength production capacity is higher in obese than non-obese 67 

individuals (15–17). Additionally, since obesity is related to reduced muscle function and 68 
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mobility limitation (18–20), muscle strength and physical performance tests where the total body 69 

mass is taken into account or serve as an extra load, may be useful tests to identify obese 70 

individuals at increased risk of functional impairment  71 

Handgrip strength (HGS) is widely used as an indicator of overall muscle strength, 72 

especially among older people (21).  Low HGS in older adults has consistently been linked to 73 

poor health outcomes such as long-term disability onset, low quality of life (22,23), functional 74 

decline and mortality (24). However, in individuals with obesity, where fat mass serves as an 75 

extra load while moving, a limitation with measuring the absolute HGS is the reduced ability 76 

to reflect the actual physical performance capacity. Relative HGS (HGS/total body mass) has 77 

been suggested as a more sensitive method than absolute HGS to discriminate between obese 78 

and non-obese older adults at risk of impaired physical performance (25). Further, muscle 79 

quality, defined as the ratio of muscle strength or power per unit muscle mass (26) is another 80 

suggested parameter to identify muscle function in older adults, and the use of muscle quality 81 

is expected to grow in importance (27,28). 82 

To prevent negative health outcomes and to enable older adults to remain living 83 

independently in their homes, effective and low-cost strategies to early identify functional 84 

impairment related to obesity are needed. In the present study, we aimed to detect methods to 85 

identify obese older adults at increased risk of functional impairment. By using two common 86 

phenotype definitions of obesity, we wanted to compare muscle strength (absolute HGS, 87 

relative HGS, and stair climb test), muscle quality (absolute HGS/upper body appendicular 88 

skeletal muscle mass) and physical performance (balance test, repeated sit-to-stand test, and 89 

gait speed) between obese and non-obese home-dwelling older adults.  90 

 91 

Methods 92 

Participants  93 

The present study was conducted in 2014-15 at Oslo and Akershus University College of 94 

Applied Sciences, Norway. Invitation letters were sent to home-dwelling women and men (≥ 95 

70 years) living in the area of Skedsmo, Norway, listed in the National Population Register. In 96 

total, 2860 older adults (≥ 70 years of age) were invited to participate, of which 477 (17%) 97 

responded to the invitation and thus 438 (16%) participated. One participant withdrew the 98 

informed consent. Bioimpedance analyzer (BIA) measurements were only available in 417 99 

individuals, thus 417 were included in this study. There were no exclusion criteria. Cognitive 100 

health and nutritional status were measured using the Mini-Mental State Examination 101 

(MMSE) test form and the Mini Nutritional Assessment form® (MNA), respectively. Both 102 
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the MMSE and MNA have a maximal score of 30 points, and high scores indicate a high 103 

cognitive function and good nutritional status, respectively. In a previous study, data on 104 

cognitive health (MMSE-score), nutritional status (MNA-score), co-morbidities and dietary 105 

intake (2 x 24 hour dietary recall method) in the same study population (n 417) have been 106 

shown (29). The data included in the current study were obtained from a cross-sectional study 107 

which served as a screening visit for a randomized controlled study (Clinicaltrials.gov, ID no. 108 

NCT02218333) (30). The present study was conducted according to the guidelines in the 109 

Declaration of Helsinki and all procedures involving human subjects were approved by the 110 

Regional Committees for Medical and Health Research Ethics, Health Region South East, 111 

Norway (2014/150/REK). Written informed consent was obtained from all participants. 112 

Extracts from the National Population Registry were used according to, and with approval by 113 

the Norwegian Tax Administration.  114 

 115 

Study design 116 

In this cross-sectional study, gender-specific cut-off points for two obesity phenotypes (waist 117 

circumference [WC] and percentage of body fat [FM %]) were used to create groups that 118 

allowed within-gender comparisons of muscle strength, muscle mass, muscle quality and 119 

physical performance between obese and non-obese. For women the cut-off points were > 120 

35 % FM and ≥ 88 cm (obese) or ≤ 35 % and < 88 cm (non-obese). For men the cut-off points 121 

were > 25 % FM and ≥102 cm (obese) or ≤ 25 % and < 102 cm (non-obese) (31).  122 

 123 

Body composition and waist circumference  124 

Body composition was measured by a single frequency BIA (BC-418 MA, Tanita Corp., 125 

Tokyo Japan), operating at 50 kHz, providing measurements of fat-free mass (FFM), body fat 126 

mass (FM) and FM % for the whole body. The participants were standing barefoot on the 127 

instrument platform. Four pairs of electrodes were positioned at each hand and foot, in which 128 

the low-voltage current entered the limbs. Appendicular skeletal muscle mass was derived 129 

from the sum of the fat-free mass of the four limbs based on equations incorporated in the 130 

software by the manufacturer. In-house validation of BIA against dual-energy X-ray 131 

absorptiometry (DXA) was performed in 47 individuals of the current study population, 132 

showing comparable estimates of appendicular skeletal muscle mass measured with BIA on 133 

group level. Between-day CV % (SD/mean) of the BIA measurement of fat-free mass was 134 

calculated in a subgroup (n 46). Each subject was measured twice, on separate days. The 135 

between day CV % was 1.8 %. To identify subjects with low appendicular skeletal muscle 136 
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mass, gender specific cut-off points (< 15 kg in women and < 20 kg in men) were used (28,32). 137 

WC (centimeters) was measured with the use of a measuring band in standing position with 138 

arms hanging loosely, and on exhalation at the midpoint between the top of the iliac crest and 139 

the lower margin of the last palpable rib. The measurement was performed with the abdomen 140 

relaxed at the end of expiration (33). 141 

 142 

Muscle strength, muscle quality and physical performance  143 

HGS of both hands was measured using a digital handheld dynamometer (KE-MAP80K1, 144 

Kern MAP, Elstra, Germany). Participants were placed in a sitting position, elbow in 90° 145 

flexion and wrist in a neutral position. The participants were asked to squeeze the 146 

dynamometer as hard as possible simultaneously by breathing out. The maximal HGS of three 147 

measurements was registered from each hand. Absolute HGS was defined as the maximal 148 

HGS, regardless of dominant or non-dominant hand. Low absolute HGS was defined as < 16 149 

kg in women and < 27 kg in men (28,34). Relative HGS was defined as the absolute HGS 150 

(kg)/total body mass (kg). Upper body muscle quality was calculated by absolute HGS/upper 151 

body appendicular skeletal muscle mass (26,35–38). As described elsewhere, in a subgroup of 47 152 

participants the between-day CV of absolute handgrip strength was 5.0 % (29). Low muscle 153 

quality was defined as muscle quality < 5.475 in women and < 5.760 in men (36). The stair 154 

climb test (16 steps, 18 cm height) has been found to be a relevant measure of leg power 155 

(force and speed) impairments (39). The test was performed where each participant was given 156 

two attempts with at least two minutes rest in between, and the best performance was 157 

registered. The time was recorded to the nearest 100th of a second. No cut-off points for slow 158 

stair climb exits. The Short Physical Performance Battery (SPPB) tests (balance test, repeated 159 

sit-to-stand test and gait speed) were performed according to the SPPB protocol (40). 160 

According to SPPB, Scores of 0-4 of the three tests were summed to give a maximal total 161 

score of 12 points, and a total score ≤ 8 points indicates poor physical performance. To 162 

describe subjects with reduced muscle strength in the lower body and reduced gait speed, cut-163 

off points for the repeated sit-to-stand test (> 15.0 sec) and gait speed (≤ 0.8 m/sec) were used 164 

(28).  165 

 166 
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Statistic 167 

All continuous normally distributed data were presented as mean (standard deviation, SD), 168 

not normally distributed data were presented as median (25-75 percentiles) and categorical 169 

data as number and percentage. For continuous variables, independent sample t-test or Mann-170 

Whitney U test were used in normally distributed and not normally distributed data, 171 

respectively, and for categorical variables, the chi-square test was used. Cohen´s kappa (ĸ) 172 

was used to determine the agreement between the two phenotypes (WC and FM%) of obesity 173 

used to define women and men as either obese or non-obese. The level of significance was 174 

defined as P < 0.05. All analysis were performed using SPSS for Windows (version 26.0; 175 

SPSS, Inc., Chicago, IL, USA).  176 

 177 

Results 178 

Characteristic of the study population  179 

In this study, 417 community-dwelling older women (n =217, 52 %) aged 74 (71-77) years, 180 

and men (n = 200, 48 %) aged 78 (74-82) years were included. The MMSE and MNA scores 181 

were skewed towards high values, and the median scores were 28 (26-30) and 28 (27-29) in 182 

women, and 29 (26-30) and 28 (27-29) in men, respectively.  As shown in Table 1, using WC 183 

and FM % to define obesity, 59 % and 62 % of the women, respectively, were obese. In men, 184 

38 % and 49 % were defined as obese, respectively. Agreement between WC and FM % 185 

classification was ĸ= 0.62 (95% CI 0.51-0.73) P< 0.001 in women and ĸ=0.54 (95% CI 0.43-186 

0.65) P< 0.001 in men. Mean (SD) absolute HGS was 21.8 (4.7) kg in women, and 38.1 (7.0) 187 

kg in men. Few women and men had low absolute HGS (7 % and 6 %, respectively), low 188 

SPPB score (6 % and 8 %, respectively) and low appendicular skeletal muscle mass (7 % and 189 

8 %, respectively). Despite this, low muscle quality was observed in 64 % and 34 % of the 190 

women and men, respectively. Data on relative HGS, muscle quality, physical performance 191 

and body composition in women and men are further outlined in Table 1.  192 

 193 

Body composition, muscle strength, muscle quality and physical performance  194 

As shown in Table 2, older women with obesity defined by increased WC or FM %, had 195 

significantly higher appendicular skeletal muscle mass, but similar absolute HGS than non-196 

obese women. However, the obese women had significantly lower relative HGS and muscle 197 

quality, and they spent significantly longer time performing the stair climb test and the 198 

repeated sit-to-stand test than the non-obese women (Table 2). As shown in Table 3, obese 199 

men defined by WC or FM % had similar absolute HGS, but lower relative HGS compared to 200 
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non-obese men. Further, obese men defined by WC had higher appendicular skeletal muscle 201 

mass, lower muscle quality, spent longer time on the stair climb test and the repeated sit-to-202 

stand test than the non-obese men. The only difference between obese and non-obese men 203 

defined by FM % was lower relative HGS among obese men. 204 

 205 

Discussion  206 

In the present study, where home-dwelling older adults had high cognitive function 207 

and good nutritional status, we show that the absolute muscle strength was not able to 208 

discriminate between obese and non-obese older adults. However, relative muscle strength in 209 

particular, but also muscle quality and physical performance tests where the total body mass 210 

was taken into account or served as an extra load, identified the obese older adults at 211 

increased risk of functional impairment. 212 

Obesity is associated with higher fat mass and muscle mass (12–14,41), and HGS 213 

produced by obese individuals is higher than in non-obese (16,17). HGS is widely used for the 214 

measurement of muscle strength, and cut-off points for low HGS has been lowered by the 215 

European Working Group on Sarcopenia in Older People (EWGSOP) (28) compared to 216 

previous recommendations (42). Thus, the probability to misclassify obese individuals has 217 

increased. To identify obese older individuals with low muscle strength, the total body mass 218 

must also be taken into account. Further, this may incorrectly lead to the suggestion that the 219 

actual muscle strength in obese individuals is sufficient. The present study shows that obese 220 

and non-obese older adults had similar absolute HGS, but the obese individuals had poorer 221 

physical performance where total body mass served as an extra load (repeated sit-to-stand and 222 

stair climb tests) than the non-obese. Even though absolute HGS is a highly efficient 223 

screening tool (43), it may misclassify individuals as it only accounts for ~ 40% of the variance 224 

in lower body strength (44). Thus, caution should be taken into account when estimating 225 

overall strength from absolute HGS in obese individuals and from one single measurement 226 

tool (45–47). Since strength production capacity relative to body mass was lower among the 227 

obese than non-obese, it may indicate that relative HGS is a more sensitive method than 228 

absolute HGS to identify obese older adults at the risk of functional impairment. Furthermore, 229 

relative HGS has been associated with cardiometabolic disease risk factors (48–50). Currently, 230 

no population specific cut-off points for low relative HGS exist. Future prospective studies 231 

are needed to establish gender specific cut-off points that predicts clinically relevant impaired 232 

muscle function. 233 
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Despite finding a higher appendicular skeletal muscle mass in obese compared to non-234 

obese individuals, differences were not observed in absolute HGS between the two groups. It 235 

is well known that obesity leads to fat infiltration into muscle tissue, causing decline in 236 

muscle strength to a greater extent than loss of muscle mass (2). Previous studies in older 237 

adults have shown that increased fat mass contributes to a deterioration of muscle strength 238 

and lower absolute HGS (51,52). Muscle quality, expressing muscle strength relative to muscle 239 

mass, declines with age and obesity (14,53), and marked inter-individual differences in rates of 240 

loss have been reported (26,35,54). In accordance with previous studies, lower muscle quality 241 

was observed in obese women and men, which may explain the lack of differences in absolute 242 

HGS between obese and non-obese individuals (14,55). By definition, muscle quality provides a 243 

good indication of muscle function. However, muscle quality referring both to micro- and 244 

macroscopic changes in muscle architecture and composition (27,56) and may thus be 245 

technically difficult to measure accurately (27,57–59).  Further, previous studies have shown that 246 

both muscle mass, obesity and age affect the relationship between muscle quality and physical 247 

function (54). Consequently, despite similar values of muscle quality, obese individuals may 248 

have poorer muscle function than non-obese. Muscle quality measurement is suggested to 249 

grow in importance, but cut-off points for low values needs to be established and validation of 250 

muscle quality as an assessment tool is needed. However, since the active muscle mass may 251 

only be a small part of the total muscle mass, it is important to emphasize that both relative 252 

HGS and muscle quality estimated by absolute HGS/upper body muscle mass have 253 

limitations.  Further, muscle quality (HGS/upper body muscle mass) would not necessarily be 254 

a good measure of overall muscle quality because the muscle mass may be differently 255 

distributed on the body. Thus, implementation of muscle quality as a screening measurement 256 

for functional impairment in older adults, especially among obese, should be done with 257 

caution. 258 

Absolute HGS has traditionally been used as a measure of muscle strength in the 259 

assessment of muscle function in older adults. However, as previously shown, lower body 260 

strength may better reflect the functional capacity compared with absolute HGS, that are 261 

necessary for activities of daily living such as mobility, gait speed and stairs climbing (41,60,61). 262 

In addition, although absolute HGS has been shown to strongly correlate with leg strength in 263 

older adults, absolute HGS does not provide valid results when evaluating the efficacy of 264 

exercise intervention programs to increase muscle mass or strength in an older population (47). 265 

The repeated sit-to-stand and stair climb tests are widely used as lower extremity strength 266 

measurement (21,62), and have been shown relevant measures of leg power impairments (39). 267 
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Further, these methods take total body mass into account and are affected by muscle strength, 268 

dynamic balance and cardiorespiratory endurance, and thus represent overall physical 269 

performance rather than overall muscle strength (63,64). The short gait speed test (4m), may not 270 

be as sensitive as repeated sit-to-stand and stair climb tests in older obese adults, but studies 271 

where longer walking distances have been used (20m and 500m) (65,66) show differences 272 

between the obese and non-obese. In a clinical context, repeated sit-to-stand test and stair 273 

climbing test are simple tests that could be easily implemented. 274 

More women than men were classified as obese, and a substantial agreement between 275 

WC and FM % was observed among women. A moderate agreement between the methods 276 

was observed in men, and only obesity defined by WC identified individuals at increased risk 277 

for functional impairment. In a previous study, where the two obesity phenotypes WC and 278 

FM % were compared, WC were more sensitive to identify older adults at the risk of 279 

functional impairment than FM % (67). However, in our study, more men were defined as 280 

obese by FM % than WC. Thus, the lower agreement between the obese-phenotypes in men 281 

than in women, could be explained by the cut-off point to define obesity by FM % in men is 282 

too low. Furthermore, WC is a surrogate measure of visceral adiposity and may reflect greater 283 

inflammatory potential (68) and insulin resistance (69), which may contribute to progressive loss 284 

of muscle mass, muscle strength, and muscle quality (69–71). In a clinical context, WC 285 

measurement may be preferred because it is easier to implement than FM %. Moreover, 286 

increased WC is associated with lower quality of life, a decline in physical function, and a 287 

slightly higher risk of disability over time (65). Thus, WC has been suggested to be measured 288 

routinely in clinical practice (72). 289 

 There are, however, some limitations in this study. Food intake and physical activity 290 

may affect BIA measurements. Due to practicalities, non-fasting measurement of body 291 

composition BIA was performed in this study. To reduce the effect of physical activity, all 292 

physical tests were performed after the BIA measurement was performed. However, the 293 

participants had no restrictions on physical activity the last 24 hours prior to the study visit. 294 

Thus, the non-fasting measurement and the activity level may thus have influenced the 295 

estimation of fat free mass and fat mass in our study. Whether this has contributed to the 296 

reduced agreement between WC and FM % is plausible, but uncertain. Furthermore, the 297 

majority of older adults had high SPPB score, and the study population included was 298 

relatively healthy having high cognitive function, adequate nutritional status and dietary 299 

intake, and only a few had severe inflammatory disease (9%) or respiratory diseases (5%) as 300 

further described elsewhere (29). Despite this, we cannot exclude the possibility that diseases, 301 
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pain or motivation may have affected the ability to perform the physical tests in some 302 

individuals. Unfortunately, we were not able to reveal age-related intra-muscular changes 303 

which affect the muscle quality. The participants included in the present study had high 304 

muscle mass and physical performance, and thus, the results may not be generalized to obese 305 

older frail or sarcopenic older adults. A strength of the present study was the large number of 306 

participants, and the fact that several tests were included to assess body composition and 307 

muscle function. 308 

In conclusion, methods to identify obese older adults with increased risk of functional 309 

impairment are needed. We show that neither muscle mass nor absolute muscle strength, was 310 

able to discriminate between obese and non-obese older adults at increased risk of functional 311 

impairment. However, relative muscle strength, muscle quality, and physical performance 312 

tests where body mass serves as an extra load, identified obese older adults with an increased 313 

risk of functional impairment. Relative HGS is a simple and an effective method that is easy 314 

to implement for routine clinical practice. Thus, prospective studies are needed to investigate 315 

clinically relevant cut-off points for relative HGS in relation to functional impairment in older 316 

adults. 317 
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Table 1.  Antropometric measurements, muscle strength, -quality and physical performance in women and men. 

   Women (n 217)  Men (n 200) 

  Mean/median/n SD/Q1-Q3/%   Mean/median/n SD/Q1-Q3/% 

Waist circumference (cm) 91.4 12.5  99.2 10.3 

   women ≥ 88 cm, men ≥ 102 cm (n) 128 59  75 38 

Fat mass (%) 36.2 7.0  25.2 6.1 

   women > 35%, men > 25% (n) 135 62  97 49 

Absolute hand grip strength (kg)† 21.8 4.7  38.1 7.0 

    women < 16 kg, men < 27 kg (n) 16 7  11 6 

Relative handgrip strength (kg/kg)† 0.32 0.07  0.47 0.09 

Muscle quality (kg/kg)† 5.2 1.0  6.2 1.0 

   women < 5.475, men < 5.760 (n) 138 64  68 34 

Appendicular skeletal mucsle mass (kg)  17.8 2.6  24.3 3.3 

    women < 15 kg, men < 20 kg (n) 16 7  15 8 

Stair climb test (sec)ⱡ 7.9 2.3  6.7 1.8 

Repeated sit-to-stand test (sec)$ 11.7 3.3  11.1 2.4 

    > 15.0 sec (n)$ 26 12  12 6 

Gait speed (m/sec) 1.2 0.1  1.3 0.2 

    ≤ 0.8 m/sec (n) 13 6  5 3 

Balance test < 10 sec (n)¢ 35 16  20 10 

SPPB (score) 11 11-12  11 11-12 

    ≤ 8 points (n) 13 6  8 4 

BMI (kg/m2) 26.3 4.5  26.0 3.5 

  > 30 kg/m2 (n) 40 18  24 12 

Fat free mass (kg) 43.5 5.6  60.0 7.2 

Fat mass (kg) 25.7 8.7  20.8 7.2 

Body weight (kg) 69.2 12.9  80.8 12.0 
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Height (cm) 162 6.0   176 6.5 

†Two women and four men missing.  

ⱡ Three women missing.  

$ Two women missing. 

¢ One women missing. 
 

 

Table 2. Absolute and relative handgrip strength, muscle quality and -mass, and physical performance in obese and non-

obese older women. 

  FM % > 35   FM %  ≤ 35   WC ≥ 88 cm  WC < 88 cm   

  n 135 n 82   n 128 n 89 P-value* P-value** 

Absolute HGS (kg) 21.7 (4.6)† 21.8 (4.9)†  22.1 (4.6)† 21.4 (4.7)† 0.89 0.27 

Relative HGS (kg/kg) 0.29 (0.06)† 0.37 (0.08)†  0.29 (0.06)† 0.36 (0.08)† < 0.001 <0.001 

Muscle quality (kg/kg) 5.0 (0.1)† 5.5 (1.1)†  4.9 (0.9)† 5.5 (1.0)† < 0.001 <0.001 

Appendicular skeletal muscle mass (kg)  18.4 (2.5) 16.7 (2.4)  18.8 (2.6)† 16.3 (1.7)† <0.001 <0.001 

Stair climb test (sec) 8.2 (2.1)ⱡ 7.4 (2.5)†  8.3 (2.4)ⱡ 7.4 (2.1)† 0.01 0.01 

Repeated sit-to-stand test (sec) 12.2 (3.5)ⱡ 11.0 (2.7)  12.2 (3.3)ⱡ 11.1 (3.2) 0.01 0.02 

Gait speed (m/sec) 1.2 (0.2) 1.3 (0.2)   1.2 (0.2) 1.3 (0.2) 0.08 0.10 

FM, Total body fat mass; WC, Waist circumference; HGS, Handgrip strength. 

* Between women with FM > 35 % vs ≤ 35%. 

** Between women with WC ≥ 88 cm vs < 88 cm. 
† One missing. 
ⱡ Two missing. 
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Table 3. Absolute and relative handgrip strength, muscle quality and -mass, and physical performance in obese and non-

obese older men. 

  FM % > 25   FM % ≤ 25   WC ≥ 102 cm  WC < 102 cm   

   n 97 n 103   n 75 n 125 P-value* P-value** 

Absolute HGS (kg) 38.0 (6.8)ⱡ 38.1 (7.2)ⱡ  38.6 (6.7)ⱡ 37.7 (7.2)ⱡ 0.91 0.38 

Relative HGS (kg/kg) 0.44 (0.08)ⱡ 0.50 (0.09)ⱡ  0.43 (0.07)ⱡ 0.50 (0.08)ⱡ <0.001 <0.001 

Muscle quality (kg/kg) 6.1 (0.9)ⱡ 6.3 (1.0)ⱡ  5.8 (0.8)ⱡ 6.5 (1.0)ⱡ 0.23 <0.001 

Appendicular skeletal muscle mass (kg) 24.6 (3.4) 24.1 (3.2)  26.2 (2.8) 23.2 (3.1) 0.21 <0.001 

Stair climb test (sec) 7.0 (1.9) 6.5 (1.8)  7.2 (1.9) 6.5 (1.7) 0.06 0.004 

Repeated sit-to-stand test (sec) 11.1 (2.2) 11.1 (2.7)  11.6 (2.4) 10.8 (2.5) 0.96 0.04 

Gait speed (m/sec) 1.3 (0.2) 1.3 (0.2)   1.3 (0.2) 1.3 (0.2) 0.30 0.63 

FM, Total body fat mass; WC, Waist circumference; HGS, Handgrip strength. 

* Between men with FM > 25 % vs ≤ 25%. 

** Between women with WC ≥ 102 cm vs < 102 cm. 
ⱡ Two missing. 

 

 

 


