1	Article
-	

2 A novel genetic marker for the *C9orf72* repeat expansion in the Finnish population

Hannah Rostalski^a, Ville Korhonen^b, Teemu Kuulasmaa^c, Eino Solje^{d,e}, Johanna Krüger^{f,g},
FinnGen, Karri Kaivola^h, Per Kristian Eideⁱ, Jean-Charles Lambert^j, Valtteri Julkunen^{d,e},
Pentti J. Tienari^h, Anne M. Remes^{f,g}, Ville Leinonen^b, Mikko Hiltunen^{c*}, Annakaisa
Haapasalo^{a*}

- ^aA. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P. O. Box 1627
 (Neulaniementie 2), 70211 Kuopio, Finland.
- ^bNeurocenter, Neurosurgery, Kuopio University Hospital and University of Eastern Finland,
 Kuopio, Finland.
- ^cInstitute of Biomedicine, Yliopistonranta 1E, University of Eastern Finland, 70211 Kuopio,
 Finland.
- ¹³ ^dInstitute of Clinical Medicine Neurology, University of Eastern Finland.
- ¹⁴ ^eNeuro Center, Neurology, Kuopio University Hospital, Kuopio, Finland.
- ¹⁵ ^fResearch Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland.
- ^gMedical Research Center (MRC), Oulu University Hospital, Oulu, Finland.
- ¹⁷ ^hDepartment of Neurology, Helsinki University Hospital and Translational Immunology
- 18 Program, Biomedicum, University of Helsinki, Helsinki, Finland.
- ⁱOslo University Hospital-Rikshospitalet; and Institute of Clinical Medicine, Faculty of
- 20 Medicine, University of Oslo, Norway.
- ^jUniv. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE facteurs de risque
- 22 et déterminants moléculaires des maladies liés au vieillissement, Lille, France.

23	*These authors contributed equally to this work
24	Corresponding authors:
25	*Annakaisa Haapasalo, PhD, Adjunct Professor, Research Director
26	Email: annakaisa.haapasalo@uef.fi; Tel: +358403552768
27	and
28	*Mikko Hiltunen, PhD, Professor
29	Email: mikko.hiltunen@uef.fi; Tel: +358403552014
30	
31	Running title: A novel C9orf72 repeat expansion-associated SNP
32	
33	Disclosure of support for the work:
34	This work was supported by the Academy of Finland, under grant numbers 315459 (AH),
35	315460 (AMR), and 307866 (MH); the Strategic Neuroscience Funding of the University of
36	Eastern Finland; Finnish Brain Foundation (ES), Sigrid Juselius Foundation (ES, MH),
37	Instrumentarium Science Foundation (ES), Orion Research Foundation (ES). This publication
38	is part of a project that has received funding from the European Union's Horizon 2020 research
39	and innovation programme under the Marie Skłodowska-Curie grant agreement No 740264.
40	

41

42 Abstract

Background: *C9orf72* repeat expansion (C9_{exp}) is the most common genetic cause underlying 43 44 frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). However, 45 detection of the C9_{exp} requires elaborative methods. **Objective:** Identification of C9_{exp} carriers 46 from genotyped cohorts could be facilitated by using single nucleotide polymorphisms (SNPs) 47 as markers for the $C9_{exp}$. Methods: We elucidated the potential of the previously described 48 Finnish risk haplotype, defined by the SNP rs3849942, to identify potential C9_{exp} carriers 49 among 218,792 Finns using the FinnGen database. The haplotype approach was first tested in an idiopathic normal pressure hydrocephalus (iNPH) patient cohort containing C9exp carriers 50 51 by comparing intermediate (15-30) and full-length (> 60 repeats) $C9_{exp}$ carriers (n = 41) to $C9_{exp}$ negative patients (< 15 repeats, n=801). Results: In this analysis, rs3849942 was associated 52 with carriership of C9_{exp} (OR 8.44, $p < 2 \times 10^{-15}$), while the strongest association was found 53 with rs139185008 (OR 39.4, $p < 5 \times 10^{-18}$). Unbiased analysis of rs139185008 in FinnGen 54 showed the strongest association with FTLD (OR 4.38, 3×10^{-15}) and motor neuron disease ALS 55 (OR 5.19, 3×10^{-21}). rs139185008 was the top SNP in all diseases (iNPH, FTLD, ALS). 56 Conclusion: Our findings suggest that rs139185008 is a useful marker to identify potential 57 C9_{exp} carriers in the genotyped cohorts and biobanks originating from Finland. 58

59

60 Keywords: Amyotrophic lateral sclerosis; C9orf72; DNA Repeat Expansion; Frontotemporal

61 lobar degeneration; Motor neuron disease; Polymorphism, Single Nucleotide

62

63 Introduction

64 Frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) are 65 neurodegenerative disorders sharing genetic and neuropathological similarities [1]. C9orf72 66 hexanucleotide repeat expansion (C9_{exp}), the most common genetic cause of FTLD and ALS 67 [2], [3], is exceptionally prevalent in Finnish FTLD and ALS patients [4], [5]. Previous studies have suggested that more than 30 units of the $C9_{exp}$ are pathogenic [3], [6]. However, even 68 69 shorter, so called intermediate $C9_{exp}$ (10 units of repeats) may associate with disease [7]. 70 Because it is not possible to sequence the expanded region using whole genome-sequencing, 71 the presence and estimated length of the C9_{exp} can only be determined using repeat-primed 72 PCR, Southern blotting or long-read sequencing [8], [9]. The discovery of specific single nucleotide polymorphisms (SNPs) and groups of SNPs (haplotypes) associating with the C9_{exp} 73 would enable identification of potential C9_{exp} carriers from large genotyped cohorts from which 74 75 the C9_{exp} cannot be detected using current methods. Previously, a Finnish risk haplotype of 42 76 single nucleotide polymorphisms (SNP) was reported to associate with ALS in Finland [10]. 77 Moreover, another risk haplotype of 20 SNPs has been shown to associate with FTLD, ALS, 78 and the C9_{exp} in other European and U.S. cohorts [11]. Here, we aimed to identify a SNP that 79 could be used as a genetic marker to identify C9_{exp} carriers in Finnish cohorts. Our findings 80 showed that the variant rs139185008 distinguishes C9exp carriers from non-carriers and associates with the clinical diagnoses of FTLD and ALS in the large population-based FinnGen 81 82 database. This suggests that rs139185008 might be a powerful genetic marker for the 83 identification of C9_{exp} carriers in other Finnish cohorts as well.

84 Subjects and Methods

85 Cohorts, genotyping and imputations of EADB samples, and clinical endpoints

86 This study includes GWAS data from the European Alzheimer's Disease DNA BioBank 87 (EADB) and the FinnGen database. EADB data were processed as previously described [12]. Finnish idiopathic normal pressure hydrocephalus (iNPH) patients included in the EADB 88 GWAS were diagnosed according to published guidelines and procedures [13], [14]. C9_{exp} 89 90 genotyping was performed using repeat-primed PCR and amplicon length analysis [3]. The 91 iNPH cohort contains 41 C9_{exp} carriers [7 full-length (> 60 repeats) and 34 intermediate C9_{exp} 92 carriers (15-30 repeats)] and 801 controls (< 15 repeats). Forty-eight percent of C9_{exp} carriers 93 and controls were male.

Detailed information of the FinnGen data is described at https://www.finngen.fi/fi. Genome and
clinical data from 218,792 individuals were obtained from FinnGen study data release 5.
Clinical diagnoses were derived from the International Statistical Classification of Diseases and
Related Health Problems, version 10 (ICD-10) codes in Finnish national hospital registries and
cause-of-death registry as part of FinnGen project. UK Biobank data were used for validation
of the identified SNPs and haplotypes.

100 Generation of risk haplotypes associating with C9_{exp}

101 Trans-Omics for Precision Medicine (TOPMed) imputed genotype data from EADB 102 consortium was used [12]. In short, samples were genotyped by using Illumina Infinium Global 103 Screening Array. The samples and variants passing the QC were used as the input of the 104 imputation process. The imputation was performed by the Michigan Imputation Server [12] and 105 TOPMed Freeze5 reference panel [12]. Genotypes were phased with Eagle v2.4105 and imputed with Minimac4 v4-1.0.2. Only SNPs having Hardy-Weinberg equilibrium $p > 10^{-5}$ and 106 imputation quality greater than 0.6 were considered. The imputation quality score for 107 108 rs139185008 was 0.75. The previously published 20-SNP Finnish risk haplotype [11] was used to test for association with the $C9_{exp}$ (iNPH cohort) and clinical diagnoses ("motor neuron disease" for ALS, "circumscribed brain atrophy" for FTLD; FinnGen). Additional upstream and downstream SNPs were added to create larger haplotypes that were able to distinguish $C9_{exp}$ carriers from non-carriers. SNP selection was conducted based on inspection of individual $C9_{exp}$ carrier haplotypes of the phased and imputed most probable genotype data. Minor and major alleles included in the haplotypes are presented in Supplementary Table 1.

115 Analysis of SNP and haplotype association with C9_{exp} and clinical endpoints

116 Both LD-statistics (D') and case vs. control logistic regression analysis with covariates were 117 conducted on pre-processed imputed genotypes using PLINK software [version 1.9; [15]]. For 118 iNPH cohort, only principal component (PC) 1-2, and for FinnGen PC1-5 were used as 119 UK Biobank covariates. data were extracted through 120 http://big.stats.ox.ac.uk/variant/9:27491942-T-C.

121 Data Presentation

Manhattan and regional association plots were drawn using LocusZoom software (v0.12.0). For LD calculation, European reference population was used. Images were modified using LibreOffice Draw (version: 6.0.2.1). Bar graphs and geographical plot of minor allele frequencies (MAFs) were generated, and Pearson's Chi-square test on minor *vs.* major allele counts among Finnish regions was performed using RStudio software (version: 1.1.463) and ggplot2 [16] and geofi packages [17].

128 Data availability

Data are available on reasonable request from the corresponding authors. Due to privacypolicies, the data are not publicly available.

131 *Ethics statement*

- 132 All experimental procedures complied with the standards of the Declaration of Helsinki. The
- 133 Ethics Committee of Hospital District of Northern Savo approved the iNPH study and all
- 134 patients provided an informed consent. Patients and controls in FinnGen provided informed
- 135 consent for biobank research, based on the Finnish Biobank Act (https://www.finngen.fi/fi). All
- 136 DNA samples and data were pseudonymized (iNPH cohort and FinnGen cohort).

137 Results

138 *C9_{exp} associates with SNPs near MOB3B and C9orf72 genes*

139 The most common form of hydrocephalus, iNPH, can be characterized by progressive gait 140 impairment, cognitive decline, and loss of bladder control [18]. Recently, the C9exp was shown 141 to be an important genetic etiology for iNPH [19]. Thus, based on genotype data obtained from 142 a global screening array, SNP association analysis was performed in a well-characterized iNPH 143 patient cohort, comprising intermediate (15-30) and full-length (> 60 repeats) C9_{exp} carriers 144 (n = 41) who were compared to non-carriers (< 15 repeats, n = 801). Previous studies have 145 suggested a pathological threshold of >30 units [3], [6] or >45 units [20] for the C9_{exp}. However, 146 intermediate repeats of <30 units may also associate with disease [4], [6], [7], [20]. In these 147 studies, the minimum lengths of the $C9_{exp}$ among intermediate repeat expansion carriers have 148 been identified as 7 [4] and 17 [7], [20] repeats on the longer allele. Here, we chose a threshold 149 of 15 repeats to define individuals positive for the C9_{exp}. Except for two SNPs, all significantly 150 $C9_{exp}$ -associated SNPs (p < 5×10⁻⁸) were located on chromosome 9 (Figure 1A). Several of 151 these were close or within the MOB kinase activator 3B (MOB3B) or C9orf72 genes, spanning an approx. 94 kb region, and showed a strong linkage disequilibrium (LD) ($r^2 \ge 0.8$) with the 152 153 reference SNP rs3849942 (Figure 1B), a previously reported surrogate marker for the 154 chromosome 9p risk haplotype [2], [11]. Interestingly, rs139185008 (odds ratio, OR = 39.4, 95% CI [17.2-90.5], $p = 4.6 \times 10^{-18}$), localizing within a recombination-poor region 81 541 bp 155 156 upstream of the $C9_{exp}$, showed the strongest single SNP association with $C9_{exp}$ carriership. Also, rs139185008 (MAF 0.016) was in complete LD (D' = 1.00) with the reference SNP rs3849942 157 158 (MAF 0.17), which showed a weaker association with C9exp carriership (OR 8.44, 95% CI [4.99-140.29], $p = 2.0 \times 10^{-15}$). Importantly, rs139185008 was highly abundant in C9_{exp} carriers 159 (minor allele frequency, MAF for full-length and intermediate carriers = 0.21 and 0.19, 160 161 respectively), but rare in non-carriers (<15 repeats, MAF = 0.008). Several C9_{exp}-associated 162 haplotypes were significantly overrepresented in C9exp carriers as compared to non-carriers in 163 the iNPH cohort (Table 1). rs139185008 was part of the haplotypes 2, 5, 8 and 10 showing the 164 most prominent risk effects (OR > 42.0). Moreover, as compared to the previously reported 20-165 SNP Finnish risk haplotype, including e.g., rs868856, rs7046653, rs2814707, rs3849942, and 166 rs774359 [11] (Figure 1B), the inclusion of rs139185008 to haplotypes ("haplo") 2, 5, 8 and 10 167 markedly improved the specificity to identify C9_{exp} carriers from non-carriers in the iNPH 168 cohort (Table 1, Supplementary Table 1). E.g., the OR for haplotype 2 (OR = 11.33, 95% CI 169 [6.38-20.14], $p = 1.28 \times 10^{-16}$) substantially increased after the inclusion of rs139185008 (OR = 42.74, 95% CI [18.35-99.53], p = 3.16×10⁻¹⁸). 170

171 rs139185008 strongly associates with FTLD and ALS in FinnGen

172 Next, we unbiasedly examined in the FinnGen database which clinical diagnoses associate with 173 the SNPs and haplotypes identified in the iNPH cohort. The FinnGen database contains 174 comprehensive genome-wide genotype data and life-long medical history from >200,000 Finns. 175 However, FinnGen does not include genetic data on complex genomic alterations, such as 176 C9_{exp}. rs139185008 and haplotypes 2, 5, 8, and 10 containing the minor allele of rs139185008 177 strongly associated with ALS and FTLD (Table 1). In comparison, the previously reported 20-178 SNP Finnish risk haplotype [11] showed a weaker association with ALS and FTLD (haplo 2, 179 Table 1). In FinnGen, rs139185008 was the top SNP that associated with ALS and FTLD, 180 confirming the result obtained in the iNPH GWAS (Figure 1B). Importantly, rs139185008 also 181 significantly associated with ALS in UK Biobank ($p = 9.0 \times 10^{-8}$), but it was not among the top SNPs associated with ALS (beta value = -0.4; p values $< 4.0 \times 10^{-19}$). 182

183 rs139185008 is regionally enriched to South-Eastern Finland

Finally, we used FinnGen data to calculate the MAF of the rs139185008 according to the region
of birth in Finland (Figure 2). Geographically, the rs139185008 minor allele showed the highest

prevalence in Southern Savonia (MAF = 0.025) and the lowest in Ostrobothnia (MAF = 0.008) (Figure 2). Pearson's Chi-square test of the frequency of rs139185008 minor allele revealed significant differences in the geographic distribution of rs139185008 in Finland ($p < 2.2 \times 10^{-16}$, $X^2 = 282.43$, df = 18).

190 Discussion

191 We report that rs139185008 strongly associates with C9_{exp} in a cohort of iNPH cases, suggesting 192 surrogate marker potential for identifying C9_{exp} carriers in large population-based cohorts and 193 biobank databases. rs139185008 indicated stronger association with FTLD and ALS clinical 194 diagnoses in FinnGen (OR 4.4 and 5.2, respectively) as compared to the previously reported 195 C9exp proxy marker rs3849942 (OR 1.2 and 1.6 respectively). The top SNPs differed in FinnGen 196 and UK Biobank, which indicates that there are differences in the C9_{exp} haplotype structures 197 among European populations. In Finland, the frequency of rs139185008 minor allele was 198 highest in South-Eastern Finland, and lowest in the west-coastal Ostrobothnia, which represent 199 genetically different geographical regions. The regional distribution of rs139185008 in Finland 200 is consistent with the most enriched areas of haplotypes of Finnish Heritage Diseases [21], a 201 phenomenon traceable back to the population migration history within Finland and the resulting 202 genetic isolation due to bottleneck events and founder effects. However, rs139185008 is also 203 highly prevalent in panmictic Helsinki and surrounding areas [22] and showed a link to ALS in 204 the UK Biobank, consisting of a more heterogeneous population. In this context, however, it 205 should be emphasized that the beta-value provided by UK biobank for rs139185008 was 206 negative, indicating an odds ratio below one for this SNP. Importantly, similar results (OR < 1) 207 were also observed with some other SNPs significantly associated with ALS in the UK biobank 208 in the MOB3B/C9orf72 region. Thus, further investigations on the prevalence of rs139185008 209 and its association with C9_{exp}-linked diseases in other populations and cohorts are warranted in 210 the future to evaluate its translational potential beyond Finland and the UK biobank.

Collectively, the present data suggest that specific haplotypes containing rs139185008 are useful proxy markers to identify potential $C9_{exp}$ carriers. Since gene-based therapies are emerging in $C9_{exp}$ -linked diseases, the present findings may be utilized in the identification of potential carriers already at an early phase from biobanks and population cohorts for confirmatory $C9_{exp}$ genotyping and subsequent clinical trials in the future.

216 Acknowledgements

HR is a PhD student in the GenomMed and Molecular Medicine (DPMM) Doctoral Programs
of the University of Eastern Finland, Kuopio, Finland. This study is part of the research
activities of the Finnish FTD Research Network (FinFTD).

220 Conflict of Interest

Pentti J. Tienari holds a patent on C9orf72 in diagnostics and treatment of ALS/FTLD. Theother authors have no conflicts of interest to disclose.

223 Funding

224 This work was supported by the Academy of Finland, under grant numbers 315459 (AH), 315460 (AMR), and 307866 (MH); the Strategic Neuroscience Funding of the University of 225 226 Eastern Finland; Finnish Brain Foundation (ES), Sigrid Juselius Foundation (ES, MH, PJT), 227 Finnish Cultural Foundation (KK) Instrumentarium Science Foundation (ES), Orion Research 228 Foundation (ES). This work was supported by a grant (European Alzheimer DNA BioBank, 229 EADB) from the EU Joint Programme - Neurodegenerative Disease Research (JPND). Inserm 230 UMR1167 is also funded by Inserm, Institut Pasteur de Lille, the Lille Métropole Communauté 231 Urbaine, the French government's LABEX DISTALZ program (development of innovative 232 strategies for a transdisciplinary approach to Alzheimer's disease). This publication is part of a

233	project that has received funding from the European Union's Horizon 2020 research and
234	innovation programme under the Marie Skłodowska-Curie grant agreement No 740264.
235	

236

237

References

[1] T. Van Langenhove, J. van der Zee and C. Van Broeckhoven, "The molecular basis of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum," *Ann. Med.*, vol.

241 44, (8), pp. 817-828, Dec, 2012.

238

[2] M. DeJesus-Hernandez *et al*, "Expanded GGGGCC hexanucleotide repeat in noncoding
region of C9ORF72 causes chromosome 9p-linked FTD and ALS," *Neuron*, vol. 72, (2), pp.
245-256, Oct 20, 2011.

[3] A. E. Renton *et al*, "A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD," *Neuron*, vol. 72, (2), pp. 257-268, Oct 20, 2011.

[4] J. van der Zee *et al*, "A pan-European study of the C9orf72 repeat associated with FTLD:
geographic prevalence, genomic instability, and intermediate repeats," *Hum. Mutat.*, vol. 34,
(2), pp. 363-373, Feb, 2013.

- [5] E. Majounie *et al*, "Frequency of the C9orf72 hexanucleotide repeat expansion in patients
- with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study," *Lancet Neurol.*, vol. 11, (4), pp. 323-330, Apr, 2012.
- [6] S. Van Mossevelde *et al*, "Relationship between C9orf72 repeat size and clinical
 phenotype," *Curr. Opin. Genet. Dev.*, vol. 44, pp. 117-124, Jun, 2017.

[7] C. P. Cali *et al*, "C9orf72 intermediate repeats are associated with corticobasal
degeneration, increased C9orf72 expression and disruption of autophagy," *Acta Neuropathol.*,
vol. 138, (5), pp. 795-811, Nov, 2019.

[8] J. N. Cochran *et al*, "Genome sequencing for early-onset or atypical dementia: high
diagnostic yield and frequent observation of multiple contributory alleles," *Cold Spring Harb Mol. Case Stud.*, vol. 5, (6), pp. 10.1101/mcs.a003491. Print 2019 Dec, Dec 13, 2019.

- [9] M. T. W. Ebbert *et al*, "Long-read sequencing across the C9orf72 'GGGGCC' repeat
 expansion: implications for clinical use and genetic discovery efforts in human disease," *Mol.*
- 263 *Neurodegener*, vol. 13, (1), pp. 46-018-0274-4, Aug 21, 2018.
- [10] H. Laaksovirta *et al*, "Chromosome 9p21 in amyotrophic lateral sclerosis in Finland: a
 genome-wide association study," *Lancet Neurol.*, vol. 9, (10), pp. 978-985, Oct, 2010.
- [11] K. Mok *et al*, "Chromosome 9 ALS and FTD locus is probably derived from a single
 founder," *Neurobiol. Aging*, vol. 33, (1), pp. 209.e3-209.e8, Jan, 2012.
- [12] C. Bellenguez *et al*, "New insights on the genetic etiology of Alzheimer's and related
 dementia," *medRxiv*, pp. 2020.10.01.20200659, 01/01, 2020.
- [13] A. Junkkari *et al*, "The Kuopio idiopathic normal pressure hydrocephalus protocol: initial outcome of 175 patients," *Fluids Barriers CNS*, vol. 16, (1), pp. 21-019-0142-9, Jul 25, 2019.
- [14] N. Relkin *et al*, "Diagnosing idiopathic normal-pressure hydrocephalus," *Neurosurgery*,
 vol. 57, (*3 Suppl*), pp. S4-16; discussion ii-v, Sep, 2005.

- [15] C. C. Chang *et al*, "Second-generation PLINK: rising to the challenge of larger and richer
 datasets," *Gigascience*, vol. 4, pp. 7-015-0047-8. eCollection 2015, Feb 25, 2015.
- [16] H. Wickham *et al*, Ed., *Ggplot2: Elegant Graphics for Data Analysis*. New York:
 Springer-Verlag, 2016.
- [17] M. Kainu *et al*, "geofi: Access Finnish Geospatial Data," 2015-2021.
- [18] J. M Das and M. C. Biagioni, "Normal pressure hydrocephalus," in
- 280 *StatPearls*Anonymous Treasure Island (FL): StatPearls Publishing LLC, 2021.
- [19] V. E. Korhonen *et al*, "Prevalence of C9ORF72 Expansion in a Large Series of Patients
- with Idiopathic Normal-Pressure Hydrocephalus," *Dement. Geriatr. Cogn. Disord.*, vol. 47,
- **283** (*1-2*), pp. 91-103, 2019.
- 284 [20] K. Kaivola *et al*, "Carriership of two copies of C9orf72 hexanucleotide repeat
- intermediate-length alleles is a risk factor for ALS in the Finnish population," *Acta Neuropathologica Communications*, vol. 8, (1), pp. 187, 11/09, 2020.
- [21] A. R. Martin *et al*, "Haplotype Sharing Provides Insights into Fine-Scale Population
 History and Disease in Finland," *Am. J. Hum. Genet.*, vol. 102, (5), pp. 760-775, May 3, 2018.
- [22] A. de la Chapelle and F. A. Wright, "Linkage disequilibrium mapping in isolated
- populations: the example of Finland revisited," *Proc. Natl. Acad. Sci. U. S. A.*, vol. 95, (21),
 pp. 12416-12423, Oct 13, 1998.
- 292
- 293
- 294
- 295
- 296
- 297
- 298
- -
- 299
- 300
- 301 302
- 303

Table 1. Haplotypes and individual SNPs significantly associating with *C9orf72* repeat expansion ($C9_{exp}$) in the iNPH cohort and ALS and FTLD in the FinnGen cohort

Haplotype/ SNP	iNPH cohort (C9orf72		Motor neuron dise	ease ALS (Fir	nGen)		Frontotemporal lobar degeneration (FinnGen)						
	OR (95% CI)	р	MAF in	MAF in	OR (95% CI)	р	MAF in	MAF in	OR (95% CI)	р	MAF in	MAF in	
		-	C9 _{exp} carrier	s control		-	disease	control		-	disease	control	
haplo 1	10.04 (5.79-17.39)	2.01×10 ⁻¹⁶	0.5119	0.1038	1.68 (1.34-2.12)	8.40×10 ⁻⁰⁶	0.1933	0.1239	1.39 (1.09-1.77)	7.74×10 ⁻³	0.1653	0.1248	
haplo 2	11.33 (6.38-20.14)	1.28×10^{-16}	0.5000	0.0943	1.81 (1.43-2.28)	7.05×10 ⁻⁰⁷	0.1849	0.1110	1.49 (1.16-1.90)	1.8×10^{-3}	0.1570	0.1115	
haplo 2*	42.74 (18.35-99.53)	3.16×10 ⁻¹⁸	0.1905	0.0071	5.26 (3.72-7.42)	4.05×10 ⁻²¹	0.0777	0.0156	4.41 (3.06-6.36)	1.97×10 ⁻¹⁵	0.0641	0.0159	
haplo 3	7.08 (4.04-12.41)	7.59×10 ⁻¹²	0.3452	0.0802	1.94 (1.51-2.49)	2.72×10 ⁻⁰⁷	0.1534	0.0847	1.59 (1.22-2.08)	0.7×10 ⁻³	0.1281	0.0857	
haplo 4	7.08 (4.04-12.41)	7.59×10 ⁻¹²	0.3452	0.0802	1.94 (1.51-2.5)	2.57×10 ⁻⁰⁷	0.1534	0.0846	1.59 (1.22-2.08)	6.77×10 ⁻⁴	0.1281	0.0856	
haplo 5	8.23 (4.64-14.63)	6.45×10 ⁻¹³	0.3690	0.0820	2.12 (1.66-2.71)	1.65×10 ⁻⁰⁹	0.1660	0.0860	1.62 (1.24-2.11)	4.23×10 ⁻⁴	0.1302	0.0862	
haplo 5*	46.76 (19.71-110.9)	2.67×10 ⁻¹⁸	0.1905	0.0065	5.12 (3.61-7.26)	5.40×10 ⁻²⁰	0.0756	0.0155	4.57 (3.19-6.56)	1.43×10 ⁻¹⁶	0.0661	0.0158	
haplo 6	8.23 (4.64-14.63)	6.45×10 ⁻¹³	0.3690	0.0820	2.12 (1.66-2.71)	1.64×10 ⁻⁰⁹	0.1660	0.0860	1.62 (1.24-2.11)	4.23×10 ⁻⁴	0.1302	0.0862	
haplo 6*	46.76 (19.71-110.9)	2.67×10 ⁻¹⁸	0.1905	0.0065	5.12 (3.61-7.26)	5.40×10 ⁻²⁰	0.0756	0.0155	4.57 (3.19-6.56)	1.43×10 ⁻¹⁶	0.0661	0.0158	
haplo 7	7.12 (4.07-12.47)	6.73×10 ⁻¹²	0.3452	0.0796	1.94 (1.51-2.5)	2.40×10 ⁻⁰⁷	0.1534	0.0844	1.57 (1.2-2.05)	1.15×10 ⁻³	0.1260	0.0854	
haplo 8	9.48 (5.12-17.56)	8.87×10 ⁻¹³	0.3333	0.0696	2.15 (1.66-2.79)	8.82×10 ⁻⁰⁹	0.1429	0.0714	1.74 (1.32-2.31)	9.32×10 ⁻⁵	0.1178	0.0720	
haplo 8*	46.76 (19.71-110.9)	2.67×10 ⁻¹⁸	0.1905	0.0065	5.12 (3.61-7.27)	5.27×10 ⁻²⁰	0.0756	0.0155	4.42 (3.07-6.38)	1.71×10 ⁻¹⁵	0.0641	0.0158	
haplo 9	9.87 (5.32-18.32)	3.94×10 ⁻¹³	0.3333	0.0666	2.23 (1.72-2.89)	1.85×10 ⁻⁰⁹	0.1429	0.0690	1.81 (1.37-2.39)	3.33×10-5	0.1178	0.0697	
haplo 10	7.68 (4.13-14.3)	1.24×10 ⁻¹⁰	0.2500	0.0495	2.39 (1.83-3.13)	2.24×10 ⁻¹⁰	0.1303	0.0589	1.86 (1.39-2.5)	3.17×10 ⁻⁵	0.1054	0.0597	
haplo 10*	46.51 (19.09-113.3)	2.88×10 ⁻¹⁷	0.1786	0.0059	5.68 (3.98-8.1)	1.12×10 ⁻²¹	0.0735	0.0137	4.84 (3.33-7.02)	1.13×10 ⁻¹⁶	0.0620	0.0140	
rs139185008	39.41 (17.17-90.49)	4.58×10 ⁻¹⁸	0.1905	0.007665	5.19 (3.69-7.3)	2.57×10 ⁻²¹	0.0798	0.0163	4.38 (3.05-6.28)	1.08×10 ⁻¹⁵	0.0661	0.0166	
rs3849942	8.44 (4.99-14.29)	2.04×10 ⁻¹⁵	0.5595	0.1486	1.58 (1.28-1.95)	1.94×10 ⁻⁰⁵	0.2437	0.1698	1.22 (0.97-1.53)	8.53×10 ⁻²	0.1983	0.1704	

Notes: iNPH cohort $N_{carriers/control} = 41/801$; Motor neuron disease ALS $N_{cases/control} = 238/111,855$; Frontotemporal lobar degeneration $N_{cases/control} = 242/214,474$; * denotes that variant chr9_27491944_T_C (rs139185008) was added to haplotype analysis; chromosomal positions of SNPs constituting haplotypes are listed in Supplementary Table 1

Abbreviations: CI, confidence interval; FTLD, frontotemporal lobar degeneration; haplo, haplotype; iNPH, idiopathic normal pressure hydrocephalus; MAF, minor allele frequency; N, number of subjects; OR, odds ratio; SNP, single-nucleotide polymorphism

Figure 1: SNPs associating with the *C9orf72* repeat expansion in iNPH cohort locate near the *MOB3B* and *C9orf72* genes. Manhattan plot of genome-wide association (GWA) of SNPs associated with the *C9orf72* expansion in a Finnish iNPH cohort. Chromosome numbers are indicated below the x-axis (**A**). Regional association plot of chromosome 9 locus, which contained significant association from the GWA study. SNPs of the previously described Finnish risk haplotype [11] and rs139185008 (arrow) are indicated above the plot. Significantly associated SNPs are indicated in bold. Linkage disequilibrium is indicated as color-coded r^2 values. Recombination rates are depicted by continuous line. The reference variant rs3849942 is shown as a diamond. (**B**). Gray lines indicate significance level (p < 5×10⁻⁸). Abbreviations: iNPH, idiopathic normal pressure hydrocephalus; SNP, single nucleotide polymorphism

L	Central Finland 1 -	9,732	
	Central Ostrobothnia 2 -	2,357	
	Kainuu 3 -	4,210	
	Kymenlaakso 4 -	8,626	
	Lapland 5 -	8,030	
	North Karelia 6 -	12,990	
	North Ostrobothnia 7 -	17,457	
irth	Northern Savonia 8 -	17,919	
fbj	Ostrobothnia 9 -	8,038	
n o	Paijat-Hame 10 -	5,705	
<u>g</u> 10	Pirkanmaa 11 -	15,321	
Re	Satakunta 12 -	9,341	
	South Karelia 13 -	6,069	
	South Ostrobothnia 14 -	7,883	
	Southern Savonia 15 -	7,371	
	Southwest Finland 16 -	25,970	
	Tavastia Proper 17 -	5,483	
	Uusimaa 18 -	43,604	
	Åland 19-	260	
		- 00 - 01 -	
	Ċ	o o	
		MAF	

Α

0.02 -

Figure 2: Geographical distribution of rs139185008 minor allele frequencies in different regions in Finland. Minor allele frequencies (MAF) of rs139185008 in Finland. Pearson's Chi-square test revealed statistically significant deviation ($p < 2.2 \times 10^{-16}$, $X^2 = 282.43$, df = 18) of the geographical distribution of the minor allele counts of rs139185008. Genotyped population sizes are given for each region. Mean MAF for all regions is indicated as black vertical line (**A**). MAF of rs139185008 within Finnish regions showed geographical clustering of high (dark magenta) and low (white) frequencies (**B**).

Supplementary file

Supplementary Table 1. List of SNPs included in haplotypes

Supplementary Information. List of FinnGen authors and their affiliation

position	SNP	reference	alternative	haplo 1	haplo 2	haplo 2*	haplo 3	haplo 4	haplo 5	haplo 5*	haplo 6	haplo 6*	haplo 7	haplo 8	haplo 8*	haplo 9	haplo 10	haplo 10*
27451484	rs4879507	С	Т														С	С
27453329	rs10812599	С	Т														С	С
27455825	rs10967945	С	Т														С	С
27456930	rs7021930	G	А														G	G
27461738	rs76444167	А	G														А	А
27463312	rs62542379	G	А														G	G
27467672	rs10757663	G	А						А	А	А	А				А	А	А
27468264	rs61349511	А	G						А	А	А	А				А	А	А
27474216	rs10967952	Т	C						т	Т	т	т				Т	Т	т
27477876	rs1444533	С	Т						Т	Т	Т	Т				Т	Т	Т
27478054	rs1822723	Ċ	т		C	С			-	-	-	-		С	C	C	C	C
27478711	rs4879514	T	C		-	-			C	C	C	C		C	C	Ĉ	C	C
27482237	rs4879515	Ċ	т	т	т	т	т	т	C	C	C	C	т	т	т	т	т	т
27482257	rs10812602	4	G			•		Δ	٨	Δ	Δ	۸	Δ	Δ	1	1	1	1
27488094	rs17779457	Т	G					А	G	G	G	G	G	G	G	G	G	G
27480253	1317779457	1	G	Δ	۸	۸	۸	Δ	4	4	4	4	4	4	4	4	4	4
27400255	18808850	A .	G	1	^	^	л л	^	1	л ,	1	1	^	^	л л	A .	A .	A .
27490909	13/040000	A T	C	A	A	C	А	А	A	C	A	A C	А	A	C	А	A	C
27491944	18139183008	ſ	C A			C				C	0	C		C	C	0	C	C
27495475	1077441	G	A	0	C	C	C	C	C	C	G	G	C	G	G	G	G	G
27502988	rs19//661	C m	A	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
27508689	rs2166128	1	C					m	C	C	C m	C m	C m	C	C	C T	C	C
2/510494	rs2477522	C	1					I	1	1	1	1	1	1	1	1	1	1
27513838	rs/4439636	С	Т						C	C	С	С	C	C	С	С	C	С
2/521398	rs/5/41240	C	1						C	C	C	C	0	C	C	C	C	C
27527739	rs11/25/581	T	С		~				Т	T	Т	Т	Т	T	Т	T	T	T
27529318	rs903603	G	A	G	G	G	G	G					G	G	G	G	G	G
27533986	rs10812610	С	A	C	C	C	C	C	_	_	_	_	C	C	C	C	C	C
27536399	rs2814707	C	Т	Т	Т	T	Т	Т	Т	T	Т	Т	Т	Т	Т	Т	Т	T
27543283	rs3849942	Т	С	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
27543384	rs3849943	С	Т						С	С	С	С	С	С	С	С	С	С
27546892	rs13691	G	А						G	G	G	G	G	G	G	G	G	G
27549487	rs80067552	G	Т						G	G	G	G	G	G	G	G	G	G
27553878	rs12349820	Т	С	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
27556782	rs10122902	G	Α	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G
27556833	rs62538126	С	Α						С	С	С	С	С	С	С	С	С	С
27557532	rs76925759	Т	С						Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
27557921	rs10757665	Т	С	Т	Т	Т	Т	Т					Т	Т	Т	Т	Т	Т
27559735	rs1565948	G	А	G	G	G	G	G					G	G	G	G	G	G
27561051	rs774359	Т	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С
27572257	rs2282241	С	А	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С
27575787	rs1948522	С	Т	С	С	С	С	С					С	С	С	С	С	С
27579562	rs1982915	А	G	G	G	G	G	G					G	G	G	G	G	G
27580676	rs12350076	А	С					С	С	С	С	С	С	С	С	С	С	С
27582805	rs17769370	С	Т						С	С	С	С	С	С	С	С	С	С
27583130	rs7864502	G	С				С	С					С	С	С	С	С	С
27583296	rs702230	Т	А				А	А					А	Α	А	А	А	А
27583756	rs28522676	G	Т				Т	Т					Т	Т	Т	Т	Т	Т
27583819	rs4879585	А	С						А	А	А	А	А	А	А	А	А	А
27584061	rs34555425	G	С				G											
27585699	rs36062268	G	А					G			G	G	G	G	G	G	G	G
27586164	rs2453556	А	G	G	G	G	G	G					G	G	G	G	G	G
27586447	rs7848063	G	А					А	А	А	А	А	А	А	А	А	А	А
27587790	rs3910852	Т	С						Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
27588733	rs702231	С	A	А	А	А	А	А					А	А	А	А	А	А
27589659	rs696826	Ā	G	G	G	G	G	G					G	G	G	G	G	G
27589698	rs112001877	Т	C	-	-	-	-		Т	Т	Т	Т	T	-	-	T	T	T
27591128	rs9792688	T	Ā					Т	-	-	-	-	T			-	-	-
27601619	rs75747155	G	А														G	G
		-															-	-

Haplotypes listed in Table 1; SNPs which are included in haplotypes are marked with alternative allele (gray); **" in haplotype name denotes that SNP rs139185008 was added to haplotype analysis

FINNGEN

Aarno Palotie¹, Mark Daly¹, Howard Jacob², Athena Matakidou³, Heiko Runz⁴, Sally John⁴, Robert Plenge⁵, Mark McCarthy⁶, Julie Hunkapiller⁶, Meg Ehm⁷, Dawn Waterworth⁷, Caroline Fox⁸, Anders Malarstig⁹, Kathy Klinger¹⁰, Kathy Call10, Tim Behrens¹¹, Patrick Loerch¹², Tomi Mäkelä¹³, Jaakko Kaprio¹, Petri Virolainen¹⁴, Kari Pulkki¹⁴, Terhi Kilpi¹⁵, Markus Perola¹⁵, Jukka Partanen¹⁶, Anne Pitkäranta¹⁷, Riitta Kaarteenaho¹⁸, Seppo Vainio¹⁸, Miia Turpeinen¹⁸, Raisa Serpi¹⁸, Tarja Laitinen¹⁹, Johanna Mäkelä¹⁹, Veli-Matti Kosma²⁰, Urho Kujala²¹, Outi Tuovila²², Minna Hendolin²², Raimo Pakkanen²², Jeff Waring², Bridget Riley-Gillis², Jimmy Liu⁴, Shameek Biswas⁵, Julie Hunkapiller⁶, Dorothee Diogo⁸, Catherine Marshall⁹, Xinli Hu⁹, Matthias Gossel¹⁰, Robert Graham¹¹, Tim Behrens¹¹, Beryl Cummings¹², Samuli Ripatti¹, Johanna Schleutker¹⁴, Mikko Arvas¹⁶, Olli Carpén¹⁷, Reetta Hinttala¹⁸, Johannes Kettunen¹⁸, Arto Mannermaa²⁰, Jari Laukkanen²¹, Hilkka Soininen²³, Valtteri Julkunen²³, Anne Remes²³, Reetta Kälviäinen²³, Jukka Peltola²⁴, Pentti Tienari²⁵, Juha Rinne²⁶, Adam Ziemann², Jeffrey Waring², Sahar Esmaeeli², Nizar Smaoui², Anne Lehtonen², Susan Eaton⁴, Sanni Lahdenperä⁴, Janet van Adelsberg⁵, Shameek Biswas⁵, John Michon⁶, Geoff Kerchner⁶, Natalie Bowers⁶, Edmond Teng⁶, John Eicher⁸, Vinay Mehta⁸, Padhraig Gormley⁸, Kari Christopher Whelan⁹, Fanli Xu⁷, David Pulford⁷, Martti Färkkilä²⁵, Sampsa Linden⁹. Pikkarainen²⁵, Airi Jussila²⁷, Timo Blomster²⁸, Mikko Kiviniemi²⁹, Markku Voutilainen²⁶, Bob Georgantas², Graham Heap², Fedik Rahimov², Keith Usiskin⁵, Tim Lu⁶, Danny Oh⁶, Kirsi Kalpala⁹, Melissa Miller⁹, Linda McCarthy⁷, Kari Eklund²⁵, Antti Palomäki²⁶, Pia Isomäki²⁷, Laura Pirilä²⁶, Oili Kaipiainen-Seppänen²⁹, Johanna Huhtakangas²⁸, Bob Georgantas², Fedik Rahimov², Apinya Lertratanakul², Marla Hochfeld⁵, Kirsi Kalpala⁹, Nan Bing⁹, Jorge Esparza Gordillo⁷, Nina Mars¹, Margit Pelkonen²⁹, Paula Kauppi²⁵, Hannu Kankaanranta²⁴, Terttu Harju²⁸, David Close³, Steven Greenberg⁵, Hubert Chen⁶, Jo Betts⁷, Soumitra Ghosh⁷, Veikko Salomaa³⁰, Teemu Niiranen³⁰, Markus Juonala²⁶, Kaj Metsärinne²⁶, Mika Kähönen²⁷, Juhani Junttila²⁸, Markku Laakso²³, Jussi Pihlajamäki²³, Juha Sinisalo²⁵, Marja-Riitta Taskinen²⁵, Tiinamaija Tuomi²⁵, Ben Challis³, Andrew Peterson⁶, Audrey Chu⁸, Jaakko Parkkinen⁹, Melissa Miller⁹, Anthony Muslin¹⁰, Dawn Waterworth⁷, Heikki Joensuu²⁵, Tuomo Meretoja²⁵, Lauri Aaltonen²⁵, Johanna Mattson²⁵, Annika Auranen²⁴, Peeter Karihtala²⁸, Saila Kauppila²⁸, Päivi Auvinen²³, Klaus Elenius²⁶, Relja Popovic², Jennifer Schutzman⁶, Andrey Loboda⁸, Aparna Chhibber⁸, Heli Lehtonen⁹, Stefan McDonough⁹, Marika Crohns¹⁰, Diptee Kulkarni⁷, Kai Kaarniranta²³, Joni A Turunen²⁵, Terhi Ollila²⁵, Sanna Seitsonen²⁵, Hannu Uusitalo²⁴, Vesa Aaltonen²⁶, Hannele Uusitalo-Järvinen²⁴, Marja Luodonpää²⁸, Nina Hautala²⁸, Stephanie Loomis⁴, Erich Strauss⁶, Hao Chen⁶, Anna Podgornaia⁸, Joshua Hoffman⁷, Kaisa Tasanen²⁸, Laura Huilaja²⁸, Katariina Hannula-Jouppi²⁵, Teea Salmi²⁷, Sirkku Peltonen²⁵, Leena Koulu²⁵, Ilkka Harvima²³, Kirsi Kalpala⁹, Ying Wu⁹, David Choy⁶, Fedik Rahimov², Dawn Waterworth⁷, Pirkko Pussinen²⁵, Aino Salminen²⁵, Tuula Salo²⁵, David Rice²⁵, Pekka Nieminen²⁵, Ulla Palotie²⁵, Maria Siponen²³, Liisa Suominen²³, Päivi Mäntylä²³, Ulvi Gursoy²⁶, Vuokko Anttonen²⁸, Kirsi Sipilä²⁸, Justin Wade Davis², Bridget Riley-Gillis², Danjuma Quarless², Fedik Rahimov², Sahar Esmaeeli², Slavé Petrovski³, Eleonor Wigmore³, Chia-Yen Chen⁴, Paola Bronson4, Ellen Tsai⁴, Yunfeng Huang⁴, Joseph Maranville⁵, Elmutaz Shaikho Elhaj Mohammed⁵, Samir Wadhawan³¹, Erika Kvikstad³¹, Minal Caliskan³¹, Diana Chang⁶, Tushar Bhangale⁶, Natalie Bowers⁶, Sarah Pendergrass⁶, Emily Holzinger⁸, Xing Chen⁹, Åsa Hedman⁹, Karen S King⁷, Clarence Wang¹⁰, Ethan Xu¹⁰, Franck Auge¹⁰, Clement Chatelain¹⁰, Deepak Rajpal¹⁰, Dongyu Liu¹⁰, Katherine Call¹⁰, Tai-he Xia¹⁰, Matt Brauer¹¹, Mitja Kurki¹, Samuli Ripatti¹, Juha Karjalainen¹, Aki Havulinna¹, Anu Jalanko¹, Priit Palta¹, Pietro della Briotta Parolo¹, Wei Zhou³², Susanna Lemmelä¹, Manuel Rivas³³, Jarmo Harju¹, Arto Lehisto¹, Andrea Ganna¹, Vincent Llorens¹, Hannele Laivuori¹, Sina Rüeger¹, Mari E Niemi¹, Taru Tukiainen¹, Mary Pat Reeve¹, Henrike Heyne¹, Nina Mars¹, Kimmo Palin³⁴, Javier Garcia-Tabuenca³⁵, Harri Siirtola³⁵, Tuomo Kiiskinen¹, Tuomo Kiiskinen¹, Jiwoo Lee¹, Kristin Tsuo¹, Amanda Elliott¹, Kati Kristiansson¹⁵, Kati Hyvärinen³⁶, Jarmo Ritari³⁶, Miika Koskinen¹⁷, Katri Pylkäs¹⁸, Marita Kalaoja¹⁸, Minna Karjalainen¹⁸, Tuomo Mantere¹⁸, Eeva Kangasniemi¹⁹, Sami Heikkinen²⁰, Sami Heikkinen²¹, Eija Laakkonen²¹, Csilla Sipeky³⁷, Samuel Heron³⁷, Antti Karlsson¹⁴, Dhanaprakash Jambulingam³⁷, Venkat Subramaniam Rathinakannan³⁷, Anu

Jalanko¹, Risto Kajanne¹, Mervi Aavikko¹, Manuel González Jiménez¹, Mitja Kurki¹, Juha Karjalainen¹, Pietro della Briotta Parola¹, Sina Rüeger¹, Arto Lehistö¹, Masahiro Kanai³², Hannele Laivuori¹, Aki Havulinna¹, Susanna Lemmelä¹, Tuomo Kiiskinen¹, Mari Kaunisto¹, Jarmo Harju¹, Elina Kilpeläinen¹, Timo P. Sipilä¹, Georg Brein¹, Ghazal Awaisa¹, Anastasia Shcherban¹, Kati Donner¹, Timo P. Sipilä¹, Anu Loukola¹⁷, Päivi Laiho¹⁵, Tuuli Sistonen¹⁵, Essi Kaiharju¹⁵, Markku Laukkanen¹⁵, Elina Järvensivu¹⁵, Sini Lähteenmäki¹⁵, Lotta Männikkö¹⁵, Regis Wong¹⁵, Hannele Mattsson¹⁵, Kati Kristiansson¹⁵, Susanna Lemmelä¹, Tero Hiekkalinna¹⁵, Teemu Paajanen¹⁵, Priit Palta¹, Kalle Pärn¹, Harri Siirtola³⁵, Javier Gracia-Tabuenca³⁵

¹Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Finland. ²Abbvie, Chicago, IL, United States. ³Astra Zeneca, Cambridge, United Kingdom. ⁴Biogen, Cambridge, MA, United States. ⁵Celgene, Summit, NJ, United States. ⁶Genentech, San Francisco, CA, United States. ⁷GlaxoSmithKline, Brentford, United Kingdom. ⁸Merck, Kenilworth, NJ, United States. ⁹Pfizer, New York, NY, United States. ¹⁰Sanofi, Paris, France. ¹¹Maze Therapeutics, San Francisco, CA, United States. ¹²Janssen Biotech, Beerse, Belgium. ¹³HiLIFE, University of Helsinki, Finland, Finland. ¹⁴Auria Biobank / University of Turku / Hospital District of Southwest Finland, Turku, Finland. ¹⁵THL Biobank / The National Institute of Health and Welfare Helsinki, Finland. ¹⁶Finnish Red Cross Blood Service / Finnish Hematology Registry and Clinical Biobank, Helsinki, Finland. ¹⁷Helsinki Biobank / Helsinki University and Hospital District of Helsinki and Uusimaa, Helsinki, Finland. ¹⁸Northern Finland Biobank Borealis / University of Oulu / Northern Ostrobothnia Hospital District, Oulu, Finland. ¹⁹Finnish Clinical Biobank Tampere / University of Tampere / Pirkanmaa Hospital District, Tampere, Finland. ²⁰Biobank of Eastern Finland / University of Eastern Finland / Northern Savo Hospital District, Kuopio, Finland. ²¹Central Finland Biobank / University of Jyväskylä / Central Finland Health Care District, Jyväskylä, Finland. ²²Business Finland, Helsinki, Finland. ²³Northern Savo Hospital District, Kuopio, Finland. ²⁴Pirkanmaa Hospital District, Tampere, Finland. ²⁵Hospital District of Helsinki and Uusimaa, Helsinki, Finland. ²⁶Hospital District of Southwest Finland, Turku, Finland. ²⁷Pirkanmaa Hospital District, Tampere, Finland. ²⁸Northern Ostrobothnia Hospital District, Oulu, Finland. ²⁹Northern Savo Hospital District, Kuopio, Finland. ³⁰The National Institute of Health and Welfare Helsinki, Finland. ³¹Bristol-Meyers-Squibb. ³²Broad Institute, Cambridge, MA, United States. ³³University of Stanford, Stanford, CA, United States. ³⁴University of Helsinki, Helsinki, Finland. ³⁵University of Tampere, Tampere, Finland. ³⁶Finnish Red Cross Blood Service, Helsinki, Finland. ³⁷University of Turku, Turku, Finland.