
Continental Shelf Research 232 (2022) 104630

Available online 7 December 2021
0278-4343/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

On group velocity and spatial damping of diurnal continental shelf waves 

Jan Erik H. Weber a,*, Eli Børve a,b 

a Department of Geosciences, University of Oslo, Norway 
b Akvaplan-Niva AS, Fram Centre, Tromsø, Norway   

A R T I C L E  I N F O   

Keywords: 
Continental shelf waves 
Diurnal tidal forcing 
Inner porous shelf 
Group velocity 
Wave damping 

A B S T R A C T   

Diurnal continental shelf waves (CSWs) are studied theoretically for an idealized shelf topography. Wave 
attenuation is caused by the exchange of fluid on the sloping shelf with an inner region through a permeable 
coastline. As an example, we consider the region outside Lofoten-Vesterålen in north Norway. Here CSWs with 
diurnal tidal frequencies are possible in a small wave number range centered around zero group velocity. A 
previous investigation with a Robin condition (a weighted combination of Dirichlet and Neumann conditions) at 
the permeable boundary has shown that the spatial damping coefficient becomes infinitely large when the group 
velocity of the CSWs approaches zero. Here we demonstrate that this is not a result of the mathematical 
formulation, but reflects a physical reality. We show this by modelling the highly convoluted inner archipelagic 
region as a series of densely packed vertical Hele Shaw cells. By comparing the two ways of describing a 
permeable coastal boundary (Robin/Hele Shaw), we may express the Robin parameter in terms of the physical 
parameters (permeability, eddy viscosity) that characterize the flow on the inner porous shelf. The radiation 
stresses that drive the Lagrangian mean currents are the same in the two cases. This means that the spatial mean 
current distribution over the sloping shelf becomes unaltered when we compare the Robin case and the porous 
inner shelf case.   

1. Introduction 

It is well known that oscillating fluxes through straits may generate 
continental shelf waves (CSWs); see e.g. Buchwald and Kachoyan 
(1987), Middleton (1988), Morrow et al. (1990) for the generation of 
CSWs along the Australian shelf from oscillating motion in the Bass 
Strait. In addition, at the south coast of British Columbia, Foreman and 
Thomson (1997) demonstrate that CSWs are generated when the strong 
diurnal tidal currents in Juan de Fuca Strait encounter the abrupt 
topography near the entrance to the strait. Even in cases without a strait, 
CSWs with diurnal tidal frequency may be generated on the shelf slope if 
the local group velocity is close to zero due to changes in topography as 
demonstrated by Cartwright (1969) for the shelf near St. Kilda in the and 
Lam (1999) for the Greenland shelf. 

In north Norway, the strong tidal Moskstraumen is a clear parallel to 
the oscillating fluxes in the Australian Bass strait, pressing water back 
and forth across the depth contours of the shelf outside Lofoten. Nu
merical modelling of the tidal motion in the Lofoten -Vesterålen region 
reveals a distinct amplification of the currents for the tidal diurnal K1 
component (Ommundsen and Gjevik, 2000; Moe et al., 2002; Børve 

et al., 2021). In Fig. 1, we have inserted a map of the Lofoten-Vesterålen 
region. 

In Weber and Børve (2021), CSWs were studied at three different 
locations outside Vesterålen; see Fig. 2. In each transect the shelf ge
ometry was idealized in the same way as in Buchwald and Adams 
(1968). 

The topography at the three transects were very similar, and the 
dispersion diagrams, using the analysis in Drivdal et al. (2016), are 
depicted in Fig. 3. 

We note from Fig. 3 that CSWs with diurnal frequencies are possible 
outside Vesterålen in a wave number region centered around zero group 
velocity. 

Usually, in modelling CSWs, the coastline is taken to be a solid wall. 
However, along the Norwegian coast there are a myriad of small islands 
and narrow fjords with a lateral scale much smaller than the CSW 
wavelength, as is evident from Fig. 1. Hence, since CSWs have a velocity 
component normal to the depth contours, which usually follows the 
coastline, there will be an exchange of fluid between the CSW and the 
narrow fjords. In the fjord system, the dissipation will be considerable. 
This will remove energy from the CSW, and lead to spatial damping as it 
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propagates along the shelf slope. We note that this phenomenon is a 
clear parallel to the damping of surface waves over a permeable seabed 
by Reid and Kajiura (1957); see also Webber and Huppert (2020) for 
surface waves over coral reefs. 

We demonstrate that a non-zero velocity normal to the coastline 
inevitably will lead to a spatial damping of the CSWs. In a recent paper 
(Weber and Børve, 2021) this is done by applying a Robin condition 
(Gustafson, 1998) at the coastal boundary. The Robin condition is a 
weighted combination of Dirichlet boundary conditions and Neumann 
boundary conditions and is common in many branches of physics. The 
Robin condition, through a small parameter, allows for a small velocity 
normal to the coastline, which is exactly what happens when we have an 
inner shelf region with narrow fjords and small islands. The damping 
rate is then obtained as a function of the small Robin parameter. 

In the present paper, we attempt to model the inner shelf near 
Lofoten-Vesterålen in north Norway in a less mathematical way. Since 
on average most of the narrow fjords are perpendicular to the coastline, 
we model them by a Hele Shaw geometry (Hele Shaw, 1898) with thin 
vertical plates normal to the coast; see also Batchelor (1967). Between 

two adjacent plates, we assume a balance between the pressure gradient 
force and an eddy viscous force. If the plates are sufficiently close, we 
can average the pressure-driven quadratic flow between them and 
obtain a mean friction force that is proportional to the (negative) mean 
velocity. In this way, the fjord system acts as a macroscopic porous 
medium, obeying Darcy’s law (Bear, 1972) in the direction normal to the 
coast. By matching the mean velocity and the pressure at the boundary 
between the permeable inner shelf and the inviscid outer CSW region, 
we find the complex dispersion relation for the CSWs, yielding the 
spatial damping rate. 

The rest of this paper is structured as follows: Section 2 presents the 
mathematical formulation of the flow on the outer and inner shelf. 
Section 3 yields the complex dispersion relation, while Section 4 dis
cusses the mean drift in this case. Finally, Section 5 contains some 
concluding remarks. 

2. Mathematical formulation 

The shelf geometry with the trapped CSWs is adapted from Buchwald 
and Adams (1968). However, instead of assuming a solid or completely 
open boundary at the shelf break, we now formulate a boundary that is 
partly permeable. This is motivated by the fact that the western coast of 
Norway contains a myriad of narrow fjords and small islands through 
which the shelf water may percolate. In Fig. 4, we have depicted the 
geometry of our problem. The x axis is placed along the shelf break, and 

Fig. 1. Map of the Lofoten-Vesterålen region with the depth of the bottom 
contours in meters. The red arrow indicates the position of Moskstraumen. 

Fig. 2. Positions of transects T1,T2,T3 across the shelf outside Vesterålen.  

Fig. 3. Dispersion diagrams for transects T1,T2,T3 outside Vesterålen (first 
mode), showing non-dimensional frequency ω/f vs wave number k. Here f =

1.3%10− 4 s− 1 is the Coriolis parameter. The upper horizontal dashed line is the 
non-dimensional tidal frequency for the K1 component. 

Fig. 4. A diagram showing the configuration with a coastal inner region − D ≤

y ≤ 0 of constant depth which is modelled by a series of Hele Shaw cells 
(vertical thin plates at a small distance h). 
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the y axis is directed toward the sea. The z axis is vertically upwards. The 
velocity components in the various directions are (u,v,w), while the free 
surface is given by z = η. In our application to Lofoten-Vesterålen, the 
continental shelf is quite narrow, and the bottom profile is given by z =

− H(y) where 

H = {
H0, − D ≤ y ≤ 0
H0 exp(2by), 0 ≤ y ≤ B
H0 exp(2bB), y ≥ B.

(1) 

Here b is a constant describing the steepness of the slope, and B is the 
width of the sloping shelf. One possible way to model the energy loss due 
narrow fjords and straits on the inner shelf, is to describe this region as 
consisting of a series of vertical Hele Shaw cells (Hele Shaw, 1898) at a 
small distance h; see Fig. 4. 

2.1. The sloping shelf region 

The linear CSW problem is solved along the lines of Buchwald and 
Adams (1968), and Gill and Schumann (1974); see also Gill (1982). 
Using mid-depth as a reference depth in the Lofoten area, the barotropic 
Rossby radius. 

a0 is of the order 900 km, while the shelf width B is typically 60 km. 
Hence, in the sloping shelf region (1), we have B2/a2

0≪1. This means 
that we can make the rigid lid approximation (Gill and Schumann, 
1974). In fact, a more thorough analysis for the CSW Eigen modes, 
allowing for a moving surface, shows that the rigid lid approximation is 
indeed well fulfilled for the Lofoten region; see (Drivdal et al., 2016, 
their Fig. 5). 

The continuity equation then allows for the introduction of a stream 
function ψ1 such that u1H1 = − ψ1y and v1H1 = ψ1x, where subscripts 
denote partial derivatives. We assume that the waves are so long that the 
pressure is hydrostatic in the vertical direction. The following analysis is 
standard, and we just give a short outline. Neglecting any effects of 
friction in the shelf region (1), the linearized momentum equations 
become 

− ψ1ty − f ψ1x = − gH1η1x (2)  

ψ1tx − f ψ1y = − gH1η1y (3) 

Here f is the constant Coriolis parameter, and g is the acceleration 
due to gravity. We now introduce a travelling wave solution (Gill, 1982) 
by 

ψ1 =H1/2
1 φ1(y)exp i(κx − ωt) (4)  

where κ is the complex wave number and ω is the real frequency. Then 
the governing equations reduce to 

φ′′
1 + l2φ1 = 0 (5)  

where the prime denotes derivation with respect to y, and 

l2 = 2fbκ/ω − b2 − κ2 (6) 

At the edge of the shelf y = B, we must generally have continuity of 
pressure and normal fluxes. Utilizing that the deep ocean has a flat 
bottom, it is easy to show that the continuity conditions imply for the 
stream function at the shelf edge that 

ψ1y + κψ1 = 0, y = B. (7) 

(Weber and Drivdal, 2012). In terms of the φ1 function, the boundary 
condition becomes 

φ′

1 +(b+ κ)φ1 = 0 y = B (8) 

Writing the solution to (5) as 

φ1 =H− 1/2
0 [A1 sin l(y − B)+C1 cos l(y − B)] (9)  

we find by applying (8) that C1 = − lA1/(b + κ). Hence, 

φ1 =A1H− 1/2
0 [sin l(y − B) − (l / (b+ κ))cos l(y − B)] (10) 

We then obtain for the volume flux normal to the coast and the 
surface elevation 

V1 =Hv1 = iκH1/2φ1 exp i(κx − ωt) (11)  

η1 =(1 / (gH1/2κ))[(κf − bω)φ1 − ωφ
′

1]exp i(κx − ωt) (12) 

These quantities are needed for matching with the corresponding 
solutions on the inner shelf. 

2.2. The permeable inner shelf 

The reader is referred to Batchelor (1967) for a more thorough dis
cussion of the Hele Shaw concept. The important point here is that the 
inner shelf region now becomes a sink of wave energy, so that the CSW, 
through exchange of water with the inner shelf, will suffer attenuation as 
it propagates along the contours of the sloping shelf. 

If the horizontal distance h between the plates in Fig. 4 is sufficiently 
small, we can neglect the motion in the x direction. In each cell we as
sume a balance in the y-direction between the pressure gradient and the 
viscous force, leading to 

0= −
1
ρp2y + νv2xx (13)  

where ν is the kinematic eddy viscosity. In (13) we have assumed that 
|v2xx|≫|v2yy|, |v2zz| since the separation between the plates is small. 
Furthermore, in each cell we assume hydrostatic balance in the vertical, 
that is 

p2 = − ρg(z − η2) (14)  

where η2 is the surface elevation. From (13) and (14), assuming no-slip 
at x = 0, h, we obtain a velocity which is quadratic in x. Averaging 
between the planes, the oscillatory velocity can be written 

v2 =
1
h

∫h

0

v2dx= − [gh2 / (12ν)]η2y (15) 

By rearranging, we arrive at 

0= − gη2y − (ν /K)v2 (16) 

We realize that (16) expresses Darcy’s law for a porous medium 
(Bear, 1972), where K = h2/12 is the effective permeability. 

The continuity equation in the Hele Shaw cell becomes 

v2y +w2z = 0 (17) 

By integrating (17) in the vertical, we obtain 

η2t = − H0v2y (18) 

Insertion into (16), and assuming v2∝exp i(κx − ωt), we find 

v2yy − γ2v2 = 0 (19)  

where 

γ2 = − iων/(gH0K) (20) 

We assume that the onshore velocity vanishes at the end of the 
permeable shelf region (2), i.e. 

v2(y = − D) = 0. The solutions then become 

V2 =H0v2 =A2H0 sinh γ(y+D)exp i(κx − ωt) (21)  

η2 = − (iγH0 /ω)A2 cosh γ(y+D)exp i(κx − ωt) (22) 
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where the constant A2 is related to the shelf wave constant A1 in (10) 
through the matching conditions. 

3. Matching conditions and the dispersion relation 

At the shelf break, the volume flux normal to the coastline and the 
surface elevation (i.e. pressure) must be continuous. Hence, since 
H1(0) = H0, 

v1 = v2 y = 0, (23)  

η1 = η2 y = 0, (24) 

Inserting from (11) and (21) into (23), we obtain 

A2 = − (iκ / (H0 sinh γD))[sin lB+(l / (b+ κ))cos lB]A1 (25) 

Finally, utilizing (25), we find from (12), (22) and (24) the complex 
dispersion relation for this problem: 

tan lB+ l / (b+ κ)= − [ω2 tanh γD / (2γgH0κ2b(b+ κ))](Q1 tan lB − Q2)

(26)  

where 

Q1 = b3 + bl2 + κ(b2 − l2 − bκ − κ2) (27)  

and 

Q2 = l(b + κ)2
+ l3 (28) 

In (26), κ, l, γ are complex quantities. From the definition (20), we 
find 

γ =(1 − i)ω(2gH0)
− 1/2R− 1/2 (29)  

where we have defined a small parameter R by 

R=ωK/ν (30) 

For surface waves over a porous bed, Reid and Kajiura (1957) find 
that R is a fundamental small parameter of the porous problem. We 
assume that this is also the case for our permeable shelf. Then we realize 
that γD in (26) is a large dimensionless quantity. Accordingly, we have 
that tanh γD ∼ 1. Hence, we may write (26) as 

tan lB+ l / (b+ κ)= − (1+ i)ω(Q1 tan lB − Q2)R1/2 / [2(2gH0)
1/2κ2b(b+ κ)]

(31) 

In this paper, we consider spatial damping: 

κ = k + iα (32)  

where the real part of the wave number k is the free variable in this 
problem. We assume that the imaginary part α (the spatial damping rate) 
is a small quantity. Since ω is real, it follows from (6) that l is complex. 
We take 

l= l0 + iδ (33)  

where δ ∼ O(α). The lowest order solution of (31) yields l0 = l0(k). We 
assume that the modified frequency is ω = ω0 + O(α/k)2. Then, from the 
real part of (6) to lowest order 

ω0 = 2fbk/(b2 + l2
0 + k2) (34) 

For the imaginary part to O(α) we obtain 

δ=(α / k)[b2 + l2
0 − k2]/(2l0) (35) 

Inserting into (6), we find that ω = ω0 + O(α2 /k2) as anticipated. 
What now remains is to determine l0 and α from the real and imaginary 
parts of (31). 

Using (32)-(33), and expanding the trigonometric functions 
appearing in (31), we find from the real part to lowest order that 

tan l0B= − l0/(b+ k) (36)  

as in Buchwald and Adams (1968). 
From the imaginary part, using (35), we obtain to O(α /k) that 

α= c(gH0)
− 1/2l2

0[(b + k)2
+ l2

0](2R)1/2
/M (37)  

where c = ω0/k is the phase speed. Furthermore, we have defined 

M =(b2 + l2
0 − k2)(b+ k+B(b + k)2

+Bl2
0) − 2kl2

0 (38) 

At this point, it is convenient to introduce the group velocity cg = ∂ 
ω0/∂k into the problem. From Weber and Drivdal (2012) we obtain, 
when using (38): 

cg = cM / [(b2 + l2
0 + k2)(b+ k+B(b + k)2

+Bl2
0)] (39) 

Inserting for M, we can write the dimensionless spatial damping rate 
(37) as 

α / k = Nc2(gH0)
− 1/2

(2R)1/2
/cg (40) 

Here N is a positive dimensionless quantity defined by 

N = k− 1l2
0((b + k)2

+ l2
0) / [(b

2 + l2
0 + k2)(b+ k+B(b + k)2

+Bl2
0)] (41) 

We notice that α/k in (40) becomes infinitely large when cg→0. It is 
positive when approached from the smaller wave number side and 
negative when approached from the larger wave number side. In the 
latter case it must be remembered that x < 0, so αx > 0 in the attenu
ation factor exp( − αx). Obviously, our calculations assuming a small 
damping rate is not valid here, but this singular behavior indicates that 
no wave energy escapes in either direction from the point where the 
group velocity is zero. 

From a barotropic numerical model for tidal motion, Børve et al. 
(2021) compute a distinct amplification of the current speed in the 
Lofoten region for the diurnal K1 tidal component. This amplification 
was also observed by Moe et al. (2002), and model calculations in the 
same study imply the existence of short CSWs on the shelf outside 
Lofoten with diurnal frequency. These findings support the theoretical 
behavior predicted in the present paper of an energy accumulation at the 
K1 frequency in a region where the group velocity is nearly zero. 

In Weber and Børve (2021), the spatial damping of the wave field is 
obtained by applying a Robin condition (Gustafson, 1998) at the 
permeable coastal boundary. In the present notation, the Robin condi
tion can be written as 

rv1y + v1 = 0, y = 0, (42)  

where r is the small Robin parameter. With this condition, the spatial 
damping rate becomes (Weber and Børve, 2021) 

α / k= [2Bl2
0{(b + k)2

+ l2
0} / {(b

2 + l2
0 + k2)L}](c / cg)(r /B) (43) 

J.E.H. Weber and E. Børve                                                                                                                                                                                                                   
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Here 

L= b+ k+B(b + k)2
+ Bl2

0 (44) 

By comparing (40) and (43), we can express the Robin parameter in 
terms of the physical parameters (permeability, eddy viscosity) that 
characterize the flow on the inner porous shelf. We then find for the 
dimensionless Robin parameter 

rk = [c/(2gH0)
1/2 ](ωK/ν)1/2 (45)  

4. The mean drift over the shelf 

Weber and Børve (2021) present an analysis of the non-linear mean 
drift currents due to spatially damped diurnal CSWs. The fluid over the 
shelf is assumed to be inviscid, and the damping occurs through a small 
exchange of fluid through the coastal boundary. The Lagrangian mean 
drift current is found to be independent of the value of the small Robin 
parameter rk, as long as it is non-zero. 

The dynamical problem in Weber and Børve (2021) is similar to the 
present one with a porous inner shelf. For the same geometry, the wave 
solutions over the shelf become equal. The expressions for the damping 
coefficient and the imaginary part of the cross-shelf wave number δ are 
different in the two cases, but the relation between them, i.e. eqn. (35), 
is the same. As a result, the calculation of the radiation stresses that drive 
the Lagrangian mean currents is the same in the two cases. This means 
that the spatial mean current distribution over the sloping shelf becomes 
unaltered when we compare the Robin case and the porous inner shelf 
case. 

As a reminder of the importance this drift current potentially has for 
the transport cod egg and larvae from the spawning sites in the Lofoten- 
Vesterålen region, we make a brief revisit. In Fig. 5 we have plotted the 
Lagrangian (particle-following) mean non-dimensional velocity uL/ u0 
over an idealized Vesterålen shelf (1), where H0 = 50 m, B = 60 km and 
b = 3.2%10− 5 m− 1. Furthermore, from Fig. 3, the diurnal CSW with 
positive group velocity has an along-shore wave number k =

4%10− 5m− 1. From (36) we find l0 = 4.3%10− 5 m− 1 for the corre
sponding cross-shore wave number (first mode). For details concerning 
the calculation of the non-linear current, we refer to Weber and Børve 
(2021). 

We observe from the figure that the Lagrangian drift velocity is 
basically located over the shallow part of the shelf with a positive 
(northward) value at the inner 10 km, and a distinct maximum at the 
coast. Between 10 km and 50 km the drift is negative (southward) with a 
smaller maximum value. 

5. Concluding remarks 

The spatial damping coefficient for a CSW on a shelf where the inner 
archipelago is modelled as a porous medium, is proportional to the in
verse group velocity. Hence, in the case where the local group velocity 
tends to zero, there will be an accumulation of wave energy in this re
gion. This may occur for CSWs with the diurnal K1 tidal frequency in the 
Lofoten-Vesterålen region in north Norway. For the mean drift currents 
induced by the CSWs, it is interesting to note that the actual modelling of 
the permeable coastal boundary that separates the inner archipelago 
from the sloping outer shelf (Robin/Hele Shaw) is not crucial. The 
important point is that the coastal boundary must allow for a small non- 
zero velocity normal to the coast. This induces the small spatial damping 
of the linear wave field, which in turn determines the driving forces for 
the nonlinear Lagrangian drift current. 
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