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Summary

This thesis is centred on the interactions between climate and spatial dynamics regulating the abundance
and distribution of marine fish. In particular, the thesis focus on Atlantic cod (Gadus morhua) in the North
Sea, and its ecology and management under climate change by adopting a multidisciplinary approach, where
the boundaries of oceanography, ecology, economics and fisheries management meet. | explored this
interface, proposing some answers toward adaptive fisheries management.

North Sea cod has been among the main target species of commercial fisheries for centuries. Intense fishing
pressure, in combination with environmental change, has resulted in a dramatic stock decline in the past
decades. Management of the fisheries has allowed a gradual a recovery of North Sea cod stock since the mid
2000’s. However, in the past few years (since 2017) the North Sea cod stock has showed once again signs of
decline. In addition to fishing pressure, recent declines in the North Sea cod may be due to global climate
change (in particular, increase in sea surface temperature and related changes in the zooplankton
community) that has been causally linked to reduced recruitment and increased predation of juvenile cod.
Such effects are uneven across the area, seemingly more pronounced in the South and less in the North. This
heterogeneous spatial response may be attributed to geographical and environmental factors such as the
latitudinal gradient of temperature, differences in topography (i.e. depth) or oceanographic characteristics
(e.g. current and tidal patterns). At the same time the presence of multiple populations within the North Sea
stock may promote niche differentiation in response to climate change. These populations with independent
dynamics may potentially require different management strategies. Such spatial heterogeneity is
acknowledged but the stock is currently managed as a homogeneous unit. However, appropriate
management should account for the spatial distribution of populations, their connectivity, their response to
climate, and the effects of predator-prey interaction at the correct spatial scale.

Throughout this thesis, | attempted to investigate how the interaction between spatial dynamics and the
effects of climate impact cod ecology and population dynamics, and in turn how these emerging interactions
may influence management. First, | explored spatial ecosystem dynamics (Paper 1), then the effects of larval
behaviour on their distribution across spatial scales (Paper 2), and effects of inclusion of larval transport and
of connectivity on estimates of recruitment (Paper 3). Finally, | explored through modelling the potential
effects of including spatial population structure and climate change on the projected optimal management
strategies (Paper 4).

In particular, in Paper 1, my co-authors and | developed a spatial version of an existing (non-spatial)
ecosystem model, using the Ecopath with Ecosim framework (a widely applied ecosystem modelling tool)
and its spatial component Ecospace. We explored quantitatively the capability of the model to correctly
reproduce known spatial patterns of fish biomass and fishing effort. Our results show a satisfactory capability
to reproduce spatial distribution for fish biomass, but not for fishing effort. Moreover our study explored the
sensitivity of model performance to variations in Ecospace parameters, identifying the most influential, and
discussing the importance of accounting for parameter uncertainty.

In Papers 2, 3 and 4 we addressed the issue of multiple populations and their spatial distribution. In Paper 2

we applied a coupled physical-biological model that simulates spatial distribution of particles representing

cod eggs and larvae in the North Sea. We assessed the relative importance of three factors commonly

considered highly relevant for modelling early life stages of marine organisms, namely spatio-temporal

resolution of the model, explicit inclusion of larval vertical movement, and interannual variability. We found

that the predicted spatial distribution of particles is moderately influenced by vertical movement and ocean
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model resolution. However, spatial distribution differs substantially between years. This implies that
interannual variation in ocean dynamics plays a critical role in determining the degree of retention in the
study area. We additionally observed that the effect of vertical movement strongly depends on the
spatiotemporal scale of the analyses.

In Paper 3 we applied a coupled physical-biological model to assess whether explicit inclusion of eggs and
larvae transport processes outputs can improve the performance of stock-recruitment models. We thus
paired a 44-year long time series of cod recruitment and spawning stock biomass data with larval transport
anomaly, connectivity and sea surface temperature, both population-specific and at stock scale. We
proposed a novel method to account for connectivity explicitly. This showed an effect of connectivity on
recruitment, albeit small, and only at the population scale. Conversely, the traditional method detects a small
effect of transport anomaly, and only at the stock scale. Moreover, we investigated the relationship between
temperature and populations connectivity. We found a correlation between increasing temperature and
larval drift from south to north, revealing potential effects of changing climate on population connectivity in
the area.

Finally, in Paper 4 we developed a bioeconomic model, based on an age-specific population dynamic model,
to assess whether management that accounts for population structure could provide higher long-term
economic returns. We explored alternative management strategies for the North Sea cod metapopulation,
where two sub-populations are managed either independently or as unique stock unit. We tested the
hypothesis that the advantage of managing populations separately increases under rising temperature, given
different population sensitivity to temperature. Our results showed that, in the context of optimal
management, moving from non-spatial management to population specific management was not
economically advantageous under any climate scenario, likely due to the similar response to temperature of
our modelled populations. The economic impacts caused by increasing temperature or by adopting a
suboptimal constant harvest rate (irrespective of population scale) were larger than managing at the
incorrect spatial scale.

This thesis proposes that interactions between climate change, fish population structure and the spatial
distribution of fish eggs and larvae influence the population dynamics and, therefore, the sustainability and
profitability of the fishery. These interactions should be accounted for by management, despite the existing
gaps in our understanding of the interrelationships between ecology, oceanography, economics and
management.
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1. Introduction

The marine environment is a multidimensional realm, concealing its true nature beneath a curtain of waves
and foam. The capability of modern scientists to grasp its underlying complexity is only marginally better
compared to our colleagues from a century ago. Through modern technology, we have considerably
advanced our knowledge and understanding in the last decades, but so much is still lying ahead (or
underneath) of us. This thesis investigates some aspects of spatial dynamics of fish ecology and the
approaches we apply to understand it and to manage fisheries, in the context of a changing climate. This
thesis touches upon different aspects of spatial ecology and other fields, from ecosystem dynamics and food-
web theory, to fisheries management, to population and metapopulation dynamics, to oceanographic
biology, and to bioeconomics.

This thesis focuses on North Sea cod stock (Gadus morhua) as a case study to investigate whether fisheries
management may benefit from explicit considerations of the spatial relationships, and the dependencies
between climate and stock components.

For the past 10 years, gradual recovery of North Sea cod from near-collapse to sustainable state has been
the flagship of successful, science-based fisheries management from the European management system.
Nonetheless, the latest assessment of this stock (2019) indicated a sharp stock decline in SSB in the last few
years (ICES, 2019). This had consequences for the industry, such as the withdrawal of sustainability label from
Marine Stewardship Council (MSC) in 2019, gained in 2017 (Marine Stewardship Council (MSC), 2017, 2019).
The consequences were severe also for the scientific community, dismayed once again when facing the hard
fact that managing nature is far more complex, and frustrating, than we would like. The credibility of the
scientific process behind the assessment and scientific advice, however, is not impaired.

The present thesis promotes the message that aspects such as the influence of climate, spatial distribution
of fishing fleets and population structure, and their interactions, should not be overlooked and could play a
pivotal role for improving stock management, when fully understood and properly integrated. A spatially
explicit management that can account for cod populations’ dynamics in a warming North Sea ecosystem, and
for a moving fishery, is needed now more than ever.

2. Study context

2.1 The North Sea
The North Sea is a semi-enclosed basin, physically divided into a southern shallow area and a northern deeper
one. The Norwegian Deep and the continental slope constitute the natural borders of the basin in the North-
East and North-West respectively (Figure 1), while the Dover Strait separates the basin from the English
Channel at the South. Conventionally, the waters of the Norwegian Trench and Norwegian coast are included
in the North Sea while the Skagerrak, Kattegat and English Channel are part of the so-called Greater North
Sea Region, being oceanographically well connected but separate for management purpose (ICES, 2018).

10



62

60

Latitude
56 58

54

52

Longitude

Populations

South
Northwest
Viking

Figure 1. Map of the study area with the population areas, main currents, and key topographic features. Source: the author.

Ocean circulation is influenced by topography and inflow of North Atlantic water. The northern area,
characterised by seasonal stratification in summer, is influenced by inflow of saline Atlantic water flowing
along the western slope of the Norwegian Trench as well as from the channels between Orkneys and Shetland
islands. This current transports into the region the copepod Calanus finmarchicus, an important food source
for many species, including larval cod (Beaugrand et al., 2003; Nicolas et al., 2014). One branch of the current
flows southward along the Scottish and English coast; another, larger branch flows along the Norwegian
Trench and into Skagerrak. This follows a counter-clockwise trajectory along the Skagerrak coast, and after
mixing with the less saline Norwegian coastal current, flows north-westward along the eastern slope of the
Norwegian Trench and into the Norwegian Sea (Huserbraten et al., 2018). The southern North Sea is
dominated by continental freshwater runoff from the large rivers on mainland Europe, and by tidal patterns,
which in combination with wind and wave turbulence and shallow topography result in permanent mixing.
The intermediate saline current from the English Channel and the coastal, low saline Jutland Current flow
along the continental coast and into the Skagerrak (Sundby et al., 2017).

The North Sea area is characterised by temperate climate and by a mixed faunal assemblage, including Boreal
(northern) and Lusitanic (southern) species. Species distribution is related to the changes in temperature
observed in recent decades, with gradual expansion of southern species in warm periods, and contraction
and deepening of northern, cold-related species (Barcelo et al., 2016; Dulvy et al., 2008; Petitgas et al., 2012).
The North Sea hosts areas with high natural value such as the Wadden sea, recognised as UNESCO world
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heritage site for its specificities including biodiversity (Common Wadden Sea Secretariat, 2016) and an
important seabird area (Reise et al., 2010), and other valuable habitats, with over 80 000 km? protected as
EU SAC within the Natura 2000 network (European Environment Agency, 2015; OSPAR, 2017). For example,
the Dogger bank, the largest sand bank in the area, hosts important diversity including benthic communities
and target and non-target fish species (Anonymous, 2016; Plumeridge and Roberts, 2017; STECF, 2019a),
while seals and cetaceans occur around coastal and offshore areas (Russell et al., 2017; Waggitt et al., 2020).

Episodic productivity changes have been observed in the North Sea. These influence key components of the
ecosystem, with phytoplankton, zooplankton, and demersal and pelagic fish all having exhibited cycles in
variability. These cycles, sometimes linked to regime shifts (notably around 2000), are attributed to
oscillations of the temperature cycle of the North Atlantic (the Atlantic Multidecadal Oscillation, AMO) (Alheit
et al., 2012; Goberville et al., 2014; Stige et al., 2006).

The North Sea has an important history of fishing (Barrett et al., 2004a), the management of which has been
complex due to the mixed nature of fisheries (Kempf et al., 2016; Mackinson et al., 2009; Ulrich et al., 2016).
The main fisheries can be divided in demersal and pelagic. Demersal fisheries target roundfish (in particular
gadoids) and flatfish (especially sole and plaice), while pelagic fisheries target herring and mackerel for
human consumption, and sandeel, sprat and Norway pout for fishmeal and other industrial use. Shrimp and
Norway lobster also constitute important target species (ICES, 2018). Fisheries management is conducted in
accordance with the EU Common Fisheries Policy (CFP), by coastal state agreements. Agreements cover area-
species- and gear-specific limits in catches. The total allowable catches are established regularly on the basis
of scientific advice from ICES and the Scientific Technical Economic Committee for Fisheries (STECF) of the
European Union. Management has been partially successful: after years of systematic decline of most stocks,
a moderate recovery was observed in recent years for several of the fish stocks after a large reduction in
fishing effort and possibly also a reduction of bycatch (ICES, 2018, 2019).

Other activities such as shipping traffic, oil and gas extraction and wind farms, are increasingly causing
conflicts with fishing activities (Klinger et al., 2018). National efforts for the implementation of national
Marine Spatial Planning regulations, under the directions of the European Union (EU) Marine Spatial Planning
Directive (2014/89/EU), are attempting to address these conflicts (Lacroix and Pioch, 2011; Schupp et al.,
2019; Stelzenmdiiller et al., 2016), and the North Sea is at the forefront of practical implementations of MSP
and of multi-use of space at sea experiences (e.g. windfarm-fisheries and windfarm-aquaculture: Buck et al.,
2017; Stelzenmiiller et al., 2016).

2.2 Atlantic cod in the North Sea

Atlantic cod (Gadus morhua; Figure 2) is a widely distributed predatory teleost, occurring across both sides
of the North Atlantic Ocean. It is a highly adaptable species, inhabiting bentho-pelagic areas from over 300
meters deep to coastal and inshore areas, displaying high plasticity and adaptability (Barth et al., 2017;
Malachowicz and Wenne, 2019; Wenne et al., 2020). Individual populations have adapted to diverse lifestyles
and behaviours: some display massive ocean-going spawning migrations (e.g. East Greenland cod: Bonanomi
et al., 2016; North-East Arctic cod: Langangen et al., 2018), others favour localised sedentary lifestyle in
inshore areas throughout their lifetime (e.g. Norwegian coastal cod and fjord populations: Knutsen et al.,
2018; Rogers and Stenseth, 2017; Roney et al., 2018), with a range of migratory behaviours described
(Robichaud and Rose, 2004).
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Figure 2. Atlantic cod captured during field work in Flgdevigen, Arendal, Norway. The fish was captured with fyke nets, tagged and
released shortly after. Cod can tolerate large stress and recover well from handling and even surgery for electronic tags implant.
Photo: The author.

Thanks to its characteristics, the large attained size and massive abundance, cod has been a target species
since the Neolithic (Enghoff et al., 2007; Hufthammer et al., 2006) but only in the last millennium it became
a key source of food (Geffen et al., 2011; Rose et al., 2019), permitting coastal societies to thrive (Barrett et
al., 1999; Sicking and Abreu-Ferreira, 2008). Thanks to its nutritional value and the unique suitability of its
meat for drying and preserving, it fostered international trades across Europe and beyond (Barrett, 2018;
Barrett et al., 2004b, 2011; Wubs-Mrozewicz, 2008). Cod is thought to have been among the critical factors
allowing colonization from European fishers and traders into the Americas (Kurlansky, 1999). For these
reasons, Atlantic cod has aniconic value in cultures throughout Europe, including areas well beyond its actual
occurrence range. While the global landings have declined through time with the depletion of most stocks
(Figure 3), Atlantic cod remains among the top 10 landed species worldwide (FAO, 2020a, 2020b).
Additionally, cod is one of the most studied species, in particular in the context of climate change (Ferreira
et al., 2017), and serves as the poster child for seminal studies of fish ecology that inspired generations of
scientists (Beaugrand et al., 2003; Beaugrand and Kirby, 2010; Brander, 2010; Cushing, 1990; Drinkwater,
2005; Durant et al., 2007; Harden Jones, 1968; Hjort, 1914; Portner et al., 2008, 2001; Stige et al., 2006).
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Figure 3. Total landings of Atlantic cod (Gadus morhua, million tonnes in blue) and ratio between Cod landings and aggregated
landings for all marine fish species globally (in red). Data from Fishstat database, FAO (2020b).

The North Sea hosts one of the historically largest stocks in the Eastern side of the North Atlantic (cfr. for
example supplementaty information in Sguotti et al., 2019). North Sea cod is one of the main commercial
species in the area. The stock has shown historical decline (Engelhard et al., 2014) with the lowest point in
abundance in the early 2000s, when the stock almost collapsed (Yletyinen et al., 2018). Oscillations have
been linked to climate fluctuations and overall changes in the ecosystem (Beaugrand et al., 2003; Cushing,
1990; Edwards et al., 2002; ICES, 2018). However, in the past decades the decline in biomass has been mostly
linked to fisheries (Brander, 2018; Cook et al., 1997; Froese and Quaas, 2012) or to a combination between
negative climatic conditions for adults (Butzin and Pértner, 2016; Engelhard et al., 2014; Neuheimer and
Grgnkjeer, 2012; Nunez-Riboni et al., 2019), for larval stages (Beaugrand et al., 2003, 2008; Nicolas et al.,
2014), and fisheries (Brander, 2005, 2010; Lilly et al., 2013). A considerable improvement in selectivity,
triggered by the recovery plan for cod (EC 1342/2008) and based on incentives linked to the fishing effort
regime and to national measures, allowed a gradual recovery, compatible with rebuilding of the spawning
stock (Brander, 2018; ICES, 2019). However, the recruitment may be still strongly subject to environmental
variability and to the effect of climate change on temperature, on the plankton community and on the
predation mortality in the first year of life at the planktonic and settlement stages of recruits (Akimova et al.,
2019; Hjermann et al., 2013; Kempf et al., 2010).

Although managed as a unitary stock (ICES, 2019), North Sea cod is considered to be composed of a mosaic
of biologically resolved units (Figure 1), with limited overlap and varying degree of connectivity (André et al.,
2016; Heath et al., 2014; ICES, 2015, 2020; Knutsen et al., 2018; Neat et al., 2014; Wright et al., 2018). The
units can be reduced to two main populations: the Viking bank and the South populations (Heath et al., 2014;
ICES, 2019; Wright et al., 2018). The latter is often separated into a South proper (centred around the Dogger
Bank) and a Northwest unit (Gonzalez-Irusta and Wright, 2016; Holmes et al., 2014; ICES, 2019). These two
are genetically homogenous but show limited adult connectivity (so their relationship is as yet unclear (Heath
et al., 2014; ICES, 2020; Neat et al., 2014). The Dogger Bank, the German Bight and Southern Bight are, or
have been in the past, important nursery and spawning areas (Brander, 1994; Fox et al., 2008; Gonzalez-
Irusta and Wright, 2016). The spatial variability and heterogeneity of North Sea cod has been shown by
multiple means including population dynamics based on survey indices (Holmes et al., 2008, 2014), otolith
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microchemistry (Wright et al., 2006a, 2018), genetics (Heath et al., 2014; Nielsen et al., 2009; Poulsen et al.,
2011), and behaviour with tagging studies revealing spatial segregation between areas (Neat et al., 2014;
Righton et al., 2007; Wright et al., 2006b). These differences correspond to differences in maturation and
growth patterns (Neuheimer and Grgnkjeer, 2012; Wright et al., 2011), depth distribution, possibly linked to
thermal preferences (Neat et al., 2014; Righton et al., 2010) as well as varying influence of temperature, food
and predation on early life stages and their effects on recruitment (Akimova et al., 2016, 2019; Hjermann et
al., 2013; Holmes et al., 2008; Nicolas et al., 2014; Speirs et al., 2010). These biological units are subject to
uneven fishing mortality, present differing capability to sustain fishing pressure and to recover (Heath et al.,
2014; ICES, 2019), and potentially differing capability to withstand climate change (Barth et al., 2017,
Bonanomi et al., 2015; Butzin and Pértner, 2016; Nunez-Riboni et al., 2019). Therefore, they may respond
differently to harvesting. In this light, multiple authors have suggested that assessment should account for
multiple populations, or for a metapopulation structure (e.g. Gonzélez-Irusta and Wright, 2016; Heath et al.,
2014; Neat et al., 2014; Wright et al., 2018). However, up until now ICES WGNSSK provided advice at whole
stock level. The capability to allocate catch and survey data to specific units, and uncertainty about the areas
of overlap and mixing, prevented so far population-specific assessment (ICES, 2019), however explorations
have been performed to further investigate population structure (ICES, 2015, 2019): trends in substock
biomass have been monitored, and novel approaches combining assessment models with metapopulation
theories have been tested (Jardim et al., 2018). The current Benchmark Workshop on North Sea Stocks
(WKNSEA 2021, ongoing at the time of writing this thesis) is evaluating the current data and assessment
methodology in order to reach agreement on an assessment methodology to be used in future update
assessments. To clarify the role of stock identification in North Sea cod, WKNSEA will make use of the results
of the recent ICES Workshop On Stock Identification Of North Sea Cod (WKNSCodID), which reviewed
information on the population structure of North Sea cod to recommend the most plausible scenario of
population structure for stock assessment and fishery management advice. The workshop recommended
that ICES stock assessments process should support advice for managing the Viking cod and Dogger cod
populations as distinct units, in light of their genetic differences, and account for the phenotypic diversity in
the Dogger population (ICES, 2020).

2.3 The influence of climate
Climate change is considered one of the most impacting threats to the marine environment (Boonstra et al.,
2015). While environmental variation has been studied for a longer time (e.g. Hjort, 1914), anthropogenic
climate change has been broadly recognised only relatively recently (IPCC, 1990). Since then, the effect of
climate change on marine environment has been the subject of intense research (Ferreira et al., 2017,
Grieneisen and Zhang, 2011; Pedersen et al., 2016).

The increase in temperature seems to be the most commonly investigated effect of climate change in marine
ecosystems (Ferreira et al., 2017), possibly because of its crucial role in the functioning of biological systems
at organismal level scaling up to ecosystems, affecting life-history strategies, productivity, and the geographic
distribution of marine life (Beaugrand et al., 2008; Cheung et al., 2016; Perry et al., 2005; Pinsky et al., 2018).
Sea surface temperature (SST) is often used as a proxy for experienced temperature; it is more easily
measured compared to bottom temperature, and is generally considered an accurate proxy (but see Akimova
et al., 2016, for example).

In general, environmental factors influence marine organisms through direct and indirect pathways (Brander,
2010). Direct pathways include changes in physiological rates, in feeding success, and in behaviour. Indirect
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effects may be due to changes in food, predators, parasites and diseases. Physiological rates and behaviour
can be studied directly through experimental manipulation, while food-web effects are more complex to
assess. Irrespectively, these changes affect the organisms in terms of growth, survival and reproductive
output, highly relevant aspects for stock assessment of the commercial stocks. For example, trade-offs
between somatic growth and metabolic costs due to temperature increase in cod and other fish species are
well known (e.g. Brander, 2010; Holt and Jgrgensen, 2015). Thermal tolerance influence metabolic activity
and allocation of energy for reproduction and somatic growth (Pértner et al., 2008). These effects can scale
up from individual to the whole population level (Butzin and Portner, 2016; Nunez-Riboni et al., 2019). The
effects are reflected on the patterns of maturation, survival and fitness (Holt and Jgrgensen, 2014, 2015;
Neuheimer and Grgnkjaer, 2012). When temperature exceeds the optimum, these changes affect fish
distribution and local abundance (e.g. Dinesen et al., 2019), as fish are assumed to move toward colder water,
where available. Comparison between populations of Atlantic cod across its range showed that southernmost
populations are closer to the thermal limits and will be negatively impacted by increasing temperature, while
northernmost populations will benefit (Brander, 2010; Drinkwater, 2005). Notably, at local level seasonal
patterns may matter more than average annual: the difference in SST increase between seasons may have
diverging and counteracting effects (Rogers et al., 2011). These effects can be confounded by other factors
such as individual behaviour or ecological adaptations. For example, populations performing seasonal
migration for reproduction will maintain historical spawning grounds also in the face of climate change. The
southernmost spawning areas in the North Sea are still used by cod (Fox et al., 2008; Gonzalez-Irusta and
Wright, 2016) despite the local thermal conditions are currently considered suboptimal, and are predicted to
become unsuitable for reproduction (Butzin and Poértner, 2016; Nunez-Riboni et al., 2019). Individual
behaviour can also appear counterintuitive: Neat and Righton (2007) observed that some cod individuals did
not move to colder areas at reach, and rather suffered suboptimal warm temperature and increased
vulnerability. The causes are not clear, highlighting the limited understanding even in one of the most studied
fields. This shows that predictions of the effects of climate change on populations can be confounded by
individual behaviour and may prove inaccurate.

Survey indices can show effectively the emergent changes in spatial distribution, resulting from combination
of direct and indirect factors, the extent of which is difficult to disentangle, and to tell apart from the effects
of fishing (Engelhard et al., 2014; Heath et al., 2014; Rindorf and Lewy, 2006).

Larval dispersal and population connectivity may be impacted by rising temperature as well: early life stages
of marine organisms generally develop faster in a warmer water, reduce their pelagic time, and their dispersal
distance. Their survival will depend on encountering enough food during the pelagic phase, given a higher
metabolic demand; and in encountering favourable conditions at settlement. This may, in turn, affect the
connectivity between subunits in the stock. The extent to which dispersal stage is affected by increasing
temperature, is not well known in North Sea cod (but see Heath et al., 2008), however some information can
be drawn from other areas in the North Atlantic (Fuchs et al., 2020), the Mediterranean Sea (Andrello et al.,
2015) or tropical coral reefs (Munday et al., 2009).

Indirect effects of climate change include alterations of the trophic structure of the ecosystem across life
stages: these include changes of prey and predators, as well as competitors, parasites and diseases. While
the latter are little studied, the predator-prey relationships have received considerable attention, through
analyses and modelling studies. The most important effects revolve around the food availability at the larval
stage: thermal regimes alter the quantity and quality of food available, with consequences for growth,
reproduction and mortality. Typical case is that of changes in calanoid community composition in the North
Sea and in the North East Atlantic in general observed in the latest decades which has been indicated as the
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main cause for the decline of cod recruitment in the North Sea (Beaugrand et al., 2003; Beaugrand and Kirby,
2010; Nicolas et al., 2014; Olsen et al., 2011). Additional mechanisms include the match-mismatch between
larval food and larvae hatching time (Asch et al., 2019; Durant et al., 2007) suggested for cod in the North
Sea by Daewel et al., (2011), and increased predation mortality from species that benefit from warming such
as herring and grey gurnards (Akimova et al., 2019; Hjermann et al., 2013; Kempf et al., 2013). For adults, an
indirect effect may be the change in prey availability. Brander (2010) reports about the case of Icelandic cod,
where temperature increase did not produce the expected increase in growth rate possibly due to the decline
of their main prey, capelin Mallotus villosus.

The interaction between climate and other pressures, prominently fishing pressure, may lead to complex
dynamics that need to be carefully considered. For example, heavily fished populations are more sensitive to
environmental forcing due to the curtailed age structure (Ottersen et al., 2006; Rouyer et al., 2011), while
their natural mortality may be influenced by fishing (Jgrgensen and Holt, 2013). The interaction between
climate change and fishing pressure can also influence the genetic diversity of populations: for example, loss
of genetic diversity is associated to the collapse of West Greenland cod stock (Bonanomi et al., 2015).

The spatial distribution of cod in the North Sea, instead, is suggested to be influenced by a combination of
climate and fishing pressure: Blanchard et al. (2005) demonstrated that the range contraction of juvenile
North Sea cod could be linked to reduced abundance as well as increased temperature, also noting that the
distribution change may have increased cod vulnerability to fishing mortality. Rindorf and Lewy (2006) linked
the northward shift in distribution to the effect of a series of warm, windy winters on cod larvae, and on the
resultant distribution of settlers, further noting that this effect might be intensified by the curtailed age
structure due to fishing pressure. Engelhard et al. (2014) found that the changing distribution of North Sea
cod through the decades is linked to a combination of fishing and climate change, with a northward shift best
explained by warming, and an eastward shift attributable instead to overexploitation of western fishing
grounds.

Through effects on fish, climate change has profound consequences for the fisheries relying on them: the
catch composition, fleet profitability and dynamics are also affected (Cheung et al., 2013; Lam et al., 2016),
and the change in fish distribution can result in increasing conflicts for transboundary fish species (Diekert
and Nieminen, 2015; Gullestad et al., 2020; Pinsky et al., 2018). This is already happening, for example, in the
case of Atlantic Mackerel, which has expanded northward, causing a breakdown of the former agreements
between countries sharing the stock (Elfarsdéttir, 2020; @sthagen et al., 2020; Spijkers and Boonstra, 2017).

3. Methods and approaches applied

3.1 Ecosystem modelling
The interaction between species can be investigated through models of predator-prey dynamics, and in some
cases whole ecosystems, including biotic and abiotic factors. When spatial considerations are critical for
understanding the dynamics of the system, spatial food-web models have been applied (e.g. Kempf et al.,
2013; Lindegren et al., 2014).

For the investigation of spatial dynamics of ecosystem interactions, we used the Ecopath with Ecosim (EwE)
approach, and its spatial component Ecospace (Christensen and Walters, 2004). We used an existing non-
spatial model parameterised for the North Sea (Mackinson and Daskalov, 2007) and developed the spatial
component, Ecospace (Paper 1). We explored quantitatively the capability of the model to correctly
reproduce known spatial patterns of fish biomass and fishing effort. Moreover our study explored the
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sensitivity of model performance to parameters, identifying those with higher sensitivity, which seem to be
the most important for model calibration.

The Ecopath with Ecosim approach is one of the most widely applied ecosystem modelling framework
(Colléter et al., 2015), with a long history of applications to marine ecosystem modelling and fisheries
management questions (Heymans et al., 2016). The model is built hierarchically: the base component is the
Ecopath model, a static mass-balanced snapshot of a closed ecosystem, represented by functional groups
connected through trophic interactions. Functional groups (species or groups of ecologically similar species)
are represented as biomass “pools”. Diet composition determines flows of energy and matters between
functional groups. Ecopath is based on a system of linear equations which describe the average flow between
groups and defined fishing fleets.

Ecosim, the time-dynamic module, uses the mass-balanced Ecopath model as a starting point to describe the
temporal dynamics within the ecosystem, with annual or monthly time steps, through a system of differential
equations. Ecosim is routinely parameterised through fitting to time series of biomass and catches of a subset
of species or trophic groups. The model can include additional information to drive the dynamics (e.g.
environmental variables, fishing mortality or fishing effort).

Ecospace is the spatial-temporal explicit module of EwE (Walters et al., 1999, 2000). It is based on a two-
dimensional “map”, a grid of equally sized cells on which the biomass of functional groups is distributed and
interacts with predators, prey and fishing fleets, according to a modified version of the Ecosim differential
equations (Christensen and Walters, 2004). Ecospace was specifically developed to model the trophic
dynamics of marine protected areas, assessing trade-offs between their relative size and effort redistribution,
as well as effects of protection on non-target species, predators and preys (Walters et al., 1999, 2000).
Ecospace evolved considerably in the past decade: the implementation of externally derived habitat
preference maps based on single species distribution models, effectively integrates a niche model in the
spatial trophic model. This allows to measure cumulative impacts of multiple physical, oceanographic, and
environmental factors (Christensen et al., 2014; Pits et al., 2020). Interoperability with GIS tools allows now
to run spatio-temporal simulations (Coll et al., 2016; Steenbeek et al., 2013). These improvements allowed
diversification of applications in fields such as development of renewable energy (Alexander et al., 2016;
Halouani et al., 2020), Marine Spatial Planning (Romagnoni, 2019; Steenbeek et al., 2020), and interactions
between environmental-driven fish displacement and fisheries dynamics (Bauer et al., 2018).

3.2 Drift model

The planktonic early life stage is considered, for broadcast spawning fish, a critical period, and one of the key
phases for shaping a year class productivity (Cushing, 1990; Hjort, 1914), although evidence is growing that
density dependence at settlement and juvenile phases have an important role too (Houde, 2008). Early life
stages (eggs and larvae; hereafter ELS) can be studied through simulation models. In this context, coupled
physical-biological models for early life stages of marine fish are increasingly applied (Huebert et al., 2018;
Peck and Hufnagl, 2012).

In Papers 2 and 3 we modelled the drift of cod planktonic eggs and larvae, using the open source particle
tracking framework OpenDrift (Dagestad et al., 2018, github.com/opendrift). To simulate transport with
ocean currents and temperature-dependent development, we coupled offline a reanalysis of the regional
ocean circulation model ROMS (Shchepetkin and McWilliams, 2005) configured for ocean regions including
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the North Sea to a cod egg and larvae individual-based model (IBM), integrated as a module to OpenDrift.
The IBM simulates development and transport of cod eggs and larvae based on earlier studies (Kristiansen et
al., 2009a, 2009b, 2014).

In Paper 2, we compared different reanalyses of the oceanographic model and formulations of the cod egg
and larvae IBM, in order to assess the relative importance of spatiotemporal resolution of the oceanographic
model, inclusion of vertical movement, and interannual variability in oceanographic conditions.

In Paper 3, we have combined >40 years of oceanographic model predictions to track the eggs and larval drift
from and to putative population areas in order to assess the long-term changes to retention and connectivity.
This information was then incorporated into stock-recruitment models in different ways, to account for
effective spawning stock size when explicitly accounting for retention and connectivity.

Physical (hydrodynamic) models with Lagrangian particle-tracking subroutines, coupled IBMs can account for
growth, behaviour and mortality of the simulated eggs and larvae of fish or other planktonic organisms (e.g.
Fiksen et al., 2007). Temperature-dependent growth allow to account for the differential increase in size
based on the experienced temperature, while inclusion of vertical movement may allow to capture the
important effects of diel vertical migrations. These features make biophysical modelling of early life stage
IBMs very popular tools to investigate processes affecting distributions and productivity of marine fish
species (Peck and Hufnagl, 2012) and to examine how environmental characteristics affect the distribution,
growth and/or survival of marine organisms (Huebert et al., 2018; Siddon et al., 2013). Biophysical modelling
of fish early life stages have been applied to study the spatial distribution of the spawning stages (Eriksen et
al., 2020; Muir et al., 2020), connectivity between populations (Barbut et al., 2019; Heath et al., 2008; Ospina-
alvarez et al., 2020) and the effects of spatial mortality on fish ELS due to natural and anthropogenic factors
(Fiksen et al., 2007; Langangen et al., 2014a, 2014b, 2017; Peck and Hufnagl, 2012; Stige et al., 2018).

3.3 Bioeconomic model and optimisation

Fisheries management, in addition to biological considerations, needs to ensure the viability of the fishery in
socioeconomic terms (Hilborn and Walters, 1992). Bioeconomics is a branch of resource economics that
addresses the use of living resources, and it is widely applied to study fisheries management. Modelling such
dynamics can be useful and important to gain understanding of the different impacts from the ecological,
economic and social assumptions criteria for management policies for exploitation of the natural resources.
In the marine realm, they are often applied for assessing the economic profitability of management scenarios
aimed at obtaining maximum sustainable yield or to evaluate alternative measures and their impacts on the
ecological, economics, and social goals (Nielsen et al., 2017; STECF, 2019b).

In Paper 4, we compare two alternative management strategies in terms of their bioeconomic optimal long-
term performance. We explore the management options of a spatially structured stock, comparing explicit
population-specific management against an aggregated management where two populations are managed
disregarding their individual dynamics. We build a bioeconomic model based on an age-structure population
model for each of the two populations (described by Equation 1), and compare the optimized economic gain
of population specific and undifferentiated management under three climate scenarios. The biological model
described population dynamics through abundance (N; ; ) for each population i, age g, at time t as:

H_ .-
bt=1a-1) -Mg_,

Nita = <Ni,t—1,a—1 - w
t—1,a-1

Equation 1.
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The number of fish harvested are obtained dividing harvest H (in weight) by mean weight at age W;,. Natural
mortality at age M,accounts for natural loss. Average individual weight at age and proportion of mature fish
at age P,, are used to calculate SSB;: that is used to calculate recruitment R: (entering the population as
abundance at age 1) through a stock-recruitment function. Multiple stock-recruitment model formulations
were explored, including different functional forms and with inclusion of temperature and/or zooplankton
following Olsen et al. (2011). For consistency, we selected a model that performed satisfactorily for both
population, rather than using different models for the two populations. The selected stock-recruitment
model (Equation 2) was based on the Beverton-Holt function with temperature influencing recruitment
through change of maximum recruitment level (asymptote height).

SSB;

Ri, = e(@i—0iTit)
' (1+ (evissBy.))

egi,t

Equation 2

The model calculated recruitment R;: at each time step t for each population i as a function of SSB;+, scaled
temperature T;; and parameters «;, 0;, and y;. e(@i=0iTit) \yas the maximum reproductive rate at
temperature T, and positive temperature anomalies resulted in a negative effect on recruitment (lower
asymptote height) and vice versa. Random noise ¢; ; was introduced as lognormal error. Parameters were
estimated from data for each population i.

The optimal harvest rate was obtained by maximising the net present value (NPV) over a long time horizon,
for any of the two management scenarios m to be compared. NPV (Equation 3) is the cumulative sum of the
discounted annual profit:

4
1
NPY™ = Z—H’”
Li(1+8) "

Equation 3

where is the discount factor, & is the interest rate, I1{"* is annual profit in year t, for management

_r
(1+68)¢t
scenario m, and Z is the time horizon. In this formulation, profit II{"* is a function of harvest rate, and
population-specific time paths of total biomass B, and Bs:for North and South populations respectively. The
profit function for each management scenario m was:

m _ m m HTrlr,lt ;ril—“
Ht - p( nt + HS,t) K B + B
n,t st

where p is price per unit of biomass and « is a parameter for the cost functions (Equation 4 and Equation 5)
Annual harvest of North and South populations Hy% and H{'; were functions of harvest rate (the control
variable optimised) and total biomass B, and Bs:. The harvest functions were:

PSM __ 1 *
Hi¢™ = hiBi;
Equation 4
And
UM __ %
Hi;" = h'B;;
Equation 5
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for each population i, at time t, for the Population Specific Management (PSM) and Undifferentiated
Management (UM) scenarios.

The study explores climate change effects by specifying the diverse response of the two cod stocks to climate
through a temperature-dependent, empirically derived stock-recruitment function. This study thus firstly
focuses on the optimal management of population structure, and secondly on how the optimal strategy may
change when heterogeneous climate sensitivity is included in the model and climate is forced with simulated
predictions.

Several bioeconomic modelling frameworks and ad-hoc models exist and are currently applied in multiple
contexts. For example, Nielsen et al. (2017) reviewed bioeconomic models applied in Europe, analysing the
different capabilities to capture multispecies dynamics, spatial dynamics, and their levels of effectiveness
and implementation in fisheries management. Bioeconomic models have been used to assess the effects of
climate change on fisheries economic performance: for example, several studies propose approaches to
include and mitigate the detrimental effects of climate change (e.g. Bastardie et al., 2010; Miller et al., 2013).
Spatial bioeconomic models have been applied frequently in the study of spatially uneven distribution of
resources or fishing effort with patchy environment (Sanchirico and Wilen, 1999, 2001). The spatial aspect
acquires added relevance when stock distribution is influenced by the effect of climate change. This is key
for example in the case of straddling stocks (Diekert and Nieminen, 2015), invasive species (Kaiser et al.,
2018), and spatial interaction between species. Voss et al. (2018) recently applied a spatially explicit
bioeconomic model to investigate the role of recruitment strategies, i.e. connectivity, on the fisheries and,
most important, on the traditional communities relying on them for subsistence and for cultural heritage.
Although multiple studies of North Sea fisheries in bioeconomic terms exist (Bartelings et al., 2015; Heymans
et al., 2011; Simons et al., 2014; Ulrich et al., 2011), the economic implications of predicted climate change
on North Sea fisheries are relatively scarcely studied (Groeneveld et al., 2018; Pinnegar et al., 2016). In this
sense, our study addresses an understudied research niche.

4. Results and Discussion

This thesis focuses on the interaction between spatial marine ecology, oceanography and management under
climate change. The key hypothesis is that the interaction between spatial dynamics and climate influences
population dynamics, with consequences for management and for the sustainability and profitability of the
fishery. The overarching question of the thesis is thus: can we identify emerging interactions between spatial
dynamics and climate change, and to what extent do these interactions influence fisheries management?

While the effects of environmental variation and climate change and those of spatial dynamics on North Sea
cod have been investigated before, the interaction between climate change and spatial dynamics is relatively
less studied, in particular under management and economic perspectives.

The overall answer provided by this thesis is that the effects of climate differ between subunits of the stock,
and the spatial dynamics are influenced by climate through the connectivity between units and differential
sensitivity to climate across the stock spatial distribution. Moreover we observed different effects depending
on the scale of observation, i.e. at population vs. stock level, and across spatio-temporal resolution. These
emergent interactions between climate and spatial dynamics are highly relevant for spatial ecology and for
fisheries management. However, we did not observe a clear economic incentive in spatially explicit
management, not even in light of differences in climate effect between populations. This result may be
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bounded by the knowledge gaps and model limitations, revealing what relevant aspects remain to be
explored and understood and opening new research perspectives.

The overarching research question was broken up into smaller parts, narrowing down on some aspects, albeit
in a non-exhaustive way. We focused on four main aspects: three with an ecological focus and one with
intertwined ecological, management and economic focus: 1) Spatial food-web dynamics, 2) scale of dynamics
of drift models and their effect on connectivity, 3) metapopulation dynamics and interaction between larval
transport, climate change and recruitment; and 4) bioeconomically optimal management strategy. These
four aspects of interest correspond to the Papers composing this thesis.

4.1 Spatial food-web dynamics
The dynamics among species in a system, and between species and the abiotic factors, depend critically on
the spatial distribution of these elements. Several ad-hoc spatial models have been applied to understand
multispecies dynamics and their interaction in space (Akimova et al., 2019; Hjermann et al., 2013; Kempf et
al., 2013; Lindegren et al., 2014).

Spatial multispecies models that can take into account the interaction between species and multiple
pressures and impacts on the ecosystem, can be highly useful to capture complex spatial dynamics. These
models may help to address questions where multi-species spatial dynamics play a key role for fisheries
management perspectives. These models, however, face the challenging trade-off between complexity and
accuracy. Spatial models can increase the number of parameters exponentially. Performance assessment of
ecosystem models is critical, especially when their development is intended for applied purposes. Validation
of spatio-temporal models with comparable data is an emerging field within ecological models (Rose et al.,
2009; Stow et al., 2009; Vliet et al., 2011), and only few marine ecosystem models have been critically
evaluated with data in terms of their predictive capability (Lynam et al., 2017; Piits et al., 2020).

The research question developed in Paper 1 is: Can spatial ecosystem models capture known spatial dynamics
effectively? Can we measure quantitatively the fit to data and the sensitivity of the model to parameter
uncertainty?

In detail, the first chapter of the thesis assesses the spatial ecosystem dynamics and interactions between
fleets and species. Based on an existing ecosystem model (Mackinson and Daskalov, 2007), a spatial version
was developed. Model outputs were compared with spatio-temporal data to assess both model performance
and sensitivity to parameters setting through an ad-hoc procedure for quantitative prediction to data
evaluation. Results show that the model is sensitive to some parameters in particular, highlighting that
information such as fish dispersal rate and the behaviour of fishing fleets, are key to understand how the
system responds spatially. The model was capable or reproducing fish distribution patterns. Effort
distribution, in turn, seems not to follow rational, medium-term profit-based solutions as assumed by the
model. Instead, we propose that effort distribution in this system might be driven by processes acting at fine
temporal scale and by decisions related to concerns other than immediate profit, perhaps driven by market
dynamics and to the quota system and the multispecies nature of the fishery.

This Paper sets the baseline for the thesis, confirming the role of spatial information, such as fish dispersal
and fisheries distribution as well as predator-prey overlap, in understanding the ecology of target fish species
including cod. In general terms, moreover, the paper serve the spatial ecosystem modelling community,
setting the baseline of critical assessment of spatial predictions of species and fleets distribution for rigorous
application of fisheries models. In perspective, the application of this work could be highly useful for
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management applications: well-tested models can be reliably applied to inform spatial management
measures, such as fishing closures or effort restrictions in some areas (e.g. north versus south). Moreover,
estimates of natural mortality for cod from a multispecies model is included into the currently applied stock
assessment models. This, however, is not spatially resolved, while it is now clear that predation differ
between areas. A robust Ecospace model could provide spatio-temporal mortality patterns, possibly resolved
at sub-stock level for North Sea cod. Our work shows that model predictions of spatial distributions can
reliably reproduce specie distribution. However spatial predictions require robust assessment, which, so far,
is often lacking from spatial ecosystem modelling implementations. Recent studies started to focus on this
aspect (e.g. Lynam et al., 2017; Plts et al., 2020), showing that our study identified an important gap, and
provided a useful guideline for successive investigations in this field.

4.2 Sensitivity of larval transport models across spatial and temporal scales
The early life stages (ELS) play a key role in shaping the year class of most fish species, including Atlantic cod.
Variability of direction and strength of currents may influence the transport of larvae into suitable areas for
feeding and, thus, the success of a year class recruitment (e.g. Wilson and Laman, 2020). Moreover, the
variability in transport might affect the potential connectivity between areas and sub-populations.

In Paper 2, we assess how vertical movement, ocean model resolution and interannual variation in ocean
dynamics influence drift patterns and population connectivity. The research question posed was: What are
the most important aspects that influence the spatial distribution of simulated eggs and larvae of cod in the
North Sea? We studied how alternative setup for ELS transport models provide different results, quantifying
the most influential aspects, across spatial and temporal scales of spatial distribution.

We focused on these three aspects in particular, because of their known importance in modelling ELS
distribution (Bolle et al., 2009; Lacroix et al., 2013). However, the inclusion of vertical movement and of fine-
scale model reanalysis has a major computational demand. Similarly, inclusion of multiple years is
constrained by availability of oceanographic models that go back in time. Our focus was on identifying trade-
offs between inclusion of higher accuracy (e.g. vertical movement, high resolution), and computational cost.

We found that the results are moderately influenced by vertical movement and ocean model resolution but
differ substantially between years, confirming previous studies on the importance of interannual variation in
ocean circulation for modelled fish larvae drift in the North Sea (Bolle et al., 2009; Henriksen et al., 2018;
Lacroix et al., 2013). Interannual variability in ocean transport may be related to wind patterns (Bolle et al.,
2009; Wilson and Laman, 2020), and to large scale oceanographic patterns such as the North Atlantic
Oscillation (NAO) index, (Henriksen et al., 2018; Huserbraten et al., 2018; Jonsson et al., 2016) which can
influence regional to local current patterns and strength. While ocean model resolution is consistently more
influential than vertical movement, the effect of vertical movement strongly depends on the spatiotemporal
scale of the analyses. These results add up to the growing literature on sensitivity of drift models (Peck and
Hufnagl, 2012), revealing that some model features often considered highly relevant, might ultimately be of
minor importance for a specific research question and case study such as the North Sea, where the limited
stratification might result in reduced role of vertical movement for drift patterns and overall ELS distribution.
Sensitivity analysis should therefore be specific to the question and study area.

The importance of interannual variability is a critical result as it confirms the relevance of long-term analysis,
enabled by long time series of ocean model reanalysis. This could not be possible with higher resolution
models, which are only available for most recent years. These results find immediate application: we can
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safely apply models with relatively coarse resolution but with longer time series, allowing to monitor long-
term changes and use them for population dynamics, and effects of climate change. This study paves the way
to Paper 3, by demonstrating that a computationally less intensive model, but with a longer time series, may
perform similarly well than a more advanced model.

4.3 metapopulation dynamics and interaction between larval transport, climate change and recruitment
The interaction between ELS transport, environment, connectivity and recruitment dynamics is relatively well
known for cod in the North Sea. However, the relevance of these dynamics for management is scarcely
studied. In Paper 3, we ask the question: Can we include advection and connectivity into analysis of
population dynamics that are useful for management? We focus on stock-recruitment models: these are
commonly used in fisheries science to relate the amount of spawning stock in one year with the recruitment
in the next year. These models are widely recognised to poorly capture the relationship but are nonetheless
commonly used due to the intuitive mechanism relating stock size to production (Subbey et al., 2014). In
many cases, their performance has been improved when introducing environmental anomalies as a
parameter (Akimova et al., 2016; Hilborn and Walters, 1992), or when weighting the spawning stock by,
among other variables, the age or sex structure in the spawning component (Marshall et al., 2006).

Here, we applied the quantitative measures of larval retention and of connectivity between subpopulations
to the stock-recruitment curves commonly used in stock assessment, in place of other, commonly used
environmental variables such as SST. In addition, we propose a novel method for accounting for population
connectivity in stock-recruitment models, weighting SSB by the effective larval contribution to a determinate
population. Paper 3 shows that the importance of the retention anomaly, and of the connectivity between
populations, differ across scales of observation. The effect of retention anomaly is small but not negligible,
and comparable in magnitude to those of other commonly used variables such as SST. Moreover, the
modelled connectivity between populations seems to present a correlation with SST, indicating a potential
interaction between climate change and spatial population structure.

These results allow us to apply the stock-recruitment curves with ELS drift, and our newly developed method,
to this and other stocks. More important, these results help to investigate hypotheses about connectivity
and its interaction with climate through transport, and to explore their application for management (Hidalgo
et al., 2019; Wilson and Laman, 2020), opening up for novel research directions and positioning our study in
the emerging field of operational fisheries oceanography (Hidalgo et al., 2019).

4.4 Economically optimal management and the problem of spatial population structure
In fisheries management, stocks are geographically defined. However, the stock resolution is rarely based on
biological metrics and is generally an artefact. This has resulted in several stocks being managed at the
incorrect spatial scale, often due to a lack of knowledge or insufficient data at population specific scale (Kerr
et al., 2017). Mismanagement of population structure may lead to incorrect estimation of reference points
for management, increasing the probability of collapse (Sterner, 2007). Such effects might go unnoticed until
it is too late, as plausibly happened with the abrupt collapse of the cod fishery off Newfoundland and
Labrador (Hutchings, 1996; Lilly, 2008). The results of such mismanagement might have led to disappearance
of individual populations, with the erosion of the diversity in a stock (e.g. Bonanomi et al., 2015). Population
diversity is a richness, offering a buffer to perturbations through the so-called portfolio effect (Schindler et
al., 2010), and implying genetic diversity that might result in higher adaptation potential to climate change
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(Bonanomi et al., 2015; Hauser and Carvalho, 2008). Where information is sufficient for informed population-
specific management, it is important to investigate whether separated management could improve the
sustainability of the fishery, and ultimately its management system, both under an ecological and economic
perspective. For example, by estimating reference points at the correct biological scale, population-specific
management might limit the danger of serial populations depletion and of stock collapse with resulting
economic loss for the fishing sector.

North Sea cod is a strong candidate for separation of management for the two known populations. In Paper
4, we ask the question: Can we propose spatial management by population as a management measure that
outperforms the non-spatial one, using economic justification? Do we observe a change in the optimal
management strategy (i.e. spatial vs non-spatial), in light of their different temperature sensitivities? The
latter question in particularis important in light of the growing focus on adaptation to climate change (Woods
et al., n.d.). If the differential effect of climate between populations is large, we can propose spatial
management as a climate change adaptation strategy. Our results however cannot point at a difference in
optimal management strategy: from an economic perspective it is equally profitable to harvest two
populations individually or as one, when either management strategy is optimised. This result does not
change when climate influences the recruitment dynamics of the two stocks. These results might be bounded
by the simplification of our model that adopts an optimal, time-invariant harvest rate and by the relative
similarity in response to climate of the two modelled populations. The response to climate is based on
empirical stock-recruitment relationships including the effects of temperature. However, this analysis did not
consider explicitly larval drift, nor the effects of climate variability and its interaction with connectivity
between populations. Paper 3 showed that, the connectivity between populations is also influenced by
temperature. The results may therefore differ if the additional effect of climate on drift was included in the
bioeconomic model. In a similar analysis, Voss et al. (2018) found that biological heterogeneity explain
differences in spatial management, whereas overlooking the heterogeneity might provide homogeneous
optimal management.

Our overall result, however, is in line with the existing literature on economic profitability of population-
specific management: for example, Holland and Herrera (2010, 2012) showed that the benefit of managing
populations at their biological spatial scale depends on biological, economic and technical factors including
uncertainty in spatial aggregation as well as mixing and migration between populations, especially if
asymmetric. They found that the risk of mismanagement might be such that aggregated management may
be a safer solution in determinate cases. Lindegren et al. (2013) performed a similar analysis on Oresund cod
population, highlighting the need for developing sub-stock-specific management recommendations to allow
the maintenance of population structuring, also in light of the economic benefits for local small scale
fisheries. Our results highlight the importance of carefully assessing economic benefits and practical
feasibility of alternative management strategies in the context of spatially structured populations (Kerr et al.,
2016; Voss et al., 2018).

Although these results cannot be generalised, our bioeconomic exploration of spatial management options
for spatially structured populations under climate change is a novel, and widely applicable, research question.
Moreover we show that the effects of increasing temperature and of adopting optimal (rather than sub-
optimal) harvest rate, irrespective of population scale, have a larger economic impact than managing at the
correct spatial scale.
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5. Conclusion and significance
The importance of spatial processes in population dynamics and ecosystems has been highlighted since the
early ages of fisheries science, however their application into management has proven difficult. Nevertheless,
the technological advancements and the improved understanding of marine fisheries dynamics and spatial
populations structure has allowed considerable advancements of this field in the recent decades.

There is momentum for including complexity in the management of fish stocks, accounting for spatial
structure and for environmental effects: many recent studies focus on this subject (e.g. Hidalgo et al., 2019;
Voss et al., 2018), calling for inclusion of larval connectivity (the operational oceanography concept), of
population structure, and of spatial multispecies interaction.

This thesis contributes to the field by identifying processes that can influence population dynamics at local
and regional scales, and proposing approaches to assess the relevance of climate and spatial scale, and their
interactions, on population dynamics and on fisheries management. | explored whether interactions
between spatial dynamics and climate can influence population dynamics, and whether such interactions in
turn can affect optimal management strategies. | proposed the integration between bioeconomic,
oceanographic and ecosystemic aspects to assess the spatial scale of fish ecology dynamics and of fisheries
management.

These results open up for novel research questions: for example, one could wonder whether accounting for
temperature-dependent connectivity or inclusion of connectivity in stock-recruitment dynamics (as proposed
by Paper 3), would influence the optimal management strategy in the context of spatially explicit
management. Another possible research line could be the integration of spatially explicit, population-specific
natural mortality into stock assessment. Natural mortality is likely to differ between the two populations
based on the predators in the area and of differing sensitivity to climate changes. These aspects, and how
they vary in time through the food-web, could be captured by a spatial ecosystem model such as that
presented in Paper 1. Along the line of ecosystem dynamics, one may wonder whether and how spatial
management measures for one species would fit in a mixed fisheries context such as the North Sea demersal
fisheries? And with the impending Brexit process, what would be the trans-national negotiations for
international sharing of the quotas when considering or disregarding the population structure, especially
when the outlook for the two populations’ sensitivity to climate change differs? These and many other
guestions come to mind, showing that the research exposed here is bearer of innovation, stimulating novel
thinking.

Spatially explicit management strategies that can account for a moving fishery in relation to population
dynamics as well as the impact of global warming are needed now more than ever due to the potential for
future climate change and continued fishing pressure. For North Sea cod, an ICES benchmark workshop
(WKNSEA) is ongoing at the time of writing this thesis. Among the topics, the workshop aims to assess
whether stock assessment at population level is feasible. This shows once again that this thesis is highly
timely. Hopefully, the results here presented could be of relevance for this and other future applications,
towards sustainable exploitation of North Sea cod (and other stocks) in the face of climate change and its
interactions with fish ecology and spatial dynamics.
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The Ecospace model has been developed from the Ecopath with Ecosim food web model to add a spa-
tial dimension for investigating marine ecosystems. In this study, we evaluated the sensitivity of an
Ecospace model developed for the North Sea ecosystem to some of its key parameters, and we examined
this model’s capability to reproduce trends in spatial time-series of fish biomass and fishing effort. We
measured the fit between the spatiotemporal model predictions and the corresponding data of biomass
for 12 species and effort for three fishing fleets. Our results suggest that the Ecospace model for the
North Sea can predict quite successfully the species distribution, but not the distribution of fishing effort.
We hypothesise that the reason might be that Ecospace assumes spatial effort distribution to be driven
mainly by profit, while other factors might be more important in our system at the spatiotemporal scale
explored. The model might thus fail to capture fisher’s behaviour accurately for this system. Despite the
limitations of our ad hoc approach for sensitivity analysis, these results hint that some problems exist
in our model, which might extend to other Ecospace models and perhaps to the framework in general.
This study highlights the importance of validating Ecospace models with data if their results are used for
management advice. We suggest that, in order to make of Ecospace a more robust tool for management
advice, some critical improvements are needed: the development of an algorithm for parameter optimi-
sation through fitting the model predictions to data, and advancement of the effort distribution model.
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1. Introduction Fulton, 2011; Fulton et al., 2011). However, the model behaviour

across different parameters values and prediction capability of the

Fisheries management is moving towards an Ecosystem
Approach to Fisheries (EAF). EAF complements and integrates
single-species management by accounting for trophic food web
effects. Overlooking inter-specific interactions can result in unex-
pected deterioration of ecosystem structure and fish stocks (ICES,
2012b; Mackinson et al., 2009; Pikitch et al., 2004; Walters et al.,
2005). Ecosystem models are promising tools for management
advice, thanks to the appealing capability to include a wide range
of processes across a wide range of scales, and to provide quan-
titative and easy-to-interpret results. Inclusion of these tools into
management advice is getting increasingly advanced, most often
in combination with other approaches (e.g., Dichmont et al., 2013;
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models should be accurately investigated in order to provide reli-
able tools for managers (e.g., Harwood and Stokes, 2003). In this
study, we explored capabilities and limitations of a widely used
model to provide a quantitative evaluation which could be useful
for its future application for management advice.

The importance of spatial dimension in marine fisheries ecol-
ogy is increasingly recognised (Ciannelli et al., 2008; Kempf et al.,
2010, 2013). Marine organisms distribute spatially according to
specific patterns, either statically (as a result of their habitat and
environmental preferences) or actively moving (e.g., reproductive
migration). Similarly, fishermen decide where to fish based on
their knowledge about fish distribution and other factors. Neither
fish nor fishers are thus homogenously or randomly distributed in
space, an implicit assumption in non-spatial fisheries assessment
and management. Spatial structure and processes can explain local
dynamics with relevance at the whole basin level, while ignoring
such structure and processes can undermine our understanding



G. Romagnoni et al. / Ecological Modelling 300 (2015) 50-60 51

of the systems and our capability to manage them effectively
(Hjermann et al., 2013; Kempf et al., 2010, 2013; Pelletier and
Mahévas, 2005; Sanchirico, 2005).

By integrating spatial dynamics and food web interactions, spa-
tially explicit ecosystem models can be useful to support an EAF. A
number of modelling frameworks have undertaken this approach:
Osmose (Shin and Cury, 2001), Atlantis (Fulton et al., 2011) and
Ecopath with Ecosim (Christensen and Pauly, 1992; Walters et al.,
1997) are among the most used tools (Fulton, 2011; Pelletier and
Mahévas, 2005; Plaganyi, 2007). These models are certainly not
the panacea for the problem of fisheries management; however
they can prove useful for selecting among policy choices. Ecopath
with Ecosim (EwE) is an approach based on a mass-balanced food
web model (Christensen and Pauly, 1992; Walters et al., 1997) and
it includes the spatial component Ecospace (Walters et al., 1999).
Ecospace was developed mainly for studying spatial management
scenarios, in particular marine protected areas (MPAs), and their
effect on ecosystem dynamics and fishing profitability (Beattie
etal., 2002; Le Quesne et al., 2008; Metcalfe et al., in review). Rather
than attempting to incorporate all possible processes that regulate
spatial food-web dynamics (an arguably impossible task), Ecospace
aims at reproducing general, but realistic, distribution patterns at
aregional scale.

In order to make the Ecospace model a valuable and reliable tool,
one needs to carefully evaluate the model performance in several
ways. An important exercise is sensitivity analysis (Saltelli et al.,
2008), which explores the variation in model fit across different
values of the parameters. Formal parameter sensitivity analysis
has already been performed for Ecopath (Essington, 2007) and
Ecosim (Gaichas et al., 2012) but no analysis of the whole parame-
ter dimension has to our knowledge been performed for Ecospace.
Some studies explored model robustness to changes in parame-
ters input of £50% (e.g., Chen et al., 2009; Espinosa-Romero et al.,
2011), focusing however on one parameter at a time, a procedure
which does not allow to explore the whole parameter dimension
(Saltelli and Annoni, 2010). In general, the large number of param-
eters is a major challenge in modelling, and especially for Ecospace,
as it makes it difficult to explore the parameter dimension system-
atically. Furthermore, realistic estimates of parameter values can
be difficult to quantify, due to the lack of detailed information at
the species and fleet level for many of the parameters. Default or
user-defined values for Ecospace parameters are thus often used,
without any critical assessment of their robustness.

Another important practice is the evaluation of a model per-
formance through comparison with data. In Ecospace, this analysis
was performed in a few studies for species distribution (Daskalov
et al,, 2011; Mackinson et al., unpublished), however no study to
our knowledge has compared predictions of spatial distribution of
fishing effort to data. Given that the evaluation of MPA effects on
fishery profitability is largely based on predicted fleet response,
i.e., variation in effort distribution, fleet behaviour is a key feature
in Ecospace. It is therefore fundamental to evaluate quantitatively
the capability of the model to reproduce known spatial patterns of
fleets’ distribution.

Two complementary tools are then necessary for evaluating
Ecospace: (i) sensitivity analysis to variation in parameters sett-
ings; and (ii) a systematic evaluation of model performance through
comparison of model predictions to data. In this paper we use
both these tools to firstly identify which parameters have the
largest effect on the performance of the North Sea Ecospace model;
and secondly quantify the North Sea Ecospace model capability of
reproducing known trends and spatial distribution of fish species as
well as fishing fleets. Our aim is to evaluate the realism and unmask
what is needed in order to improve and set quality standards for
this Ecospace model, but also the framework as such, in order to be
an efficient tool for management advice.

2. Methods
2.1. Ecopath with Ecosim

Ecopath with Ecosim (EwE) is a food-web model based on
the assumption of mass-balance. It was developed for modelling
marine ecosystems and understanding the impact of fisheries
and other pressures on the system (Christensen and Pauly, 1992;
Walters et al., 1997, 1999). The model and its assumptions have
been discussed widely in the literature (Christensen and Walters,
2004; Pauly et al., 2000; Plaganyi and Butterworth, 2004). The
model is built hierarchically: the base component is the Ecopath
model, a static mass-balanced snapshot of a closed ecosystem, rep-
resented through a network of nodes (functional groups) and links
(trophic interactions). Functional groups (which can be species,
groups of ecologically similar species, ontogenetic classes, or detri-
tus groups) are represented as biomass “pools”. Diet composition
determines flows of energy and matters between functional groups.
Ecopathis based on a system of linear equations which describe the
average flow between groups within an interval of time. The main
equation is:

P; = B - M+ Y; + E; + BA; + P; - (1 — EE;)

where, for each functional group i, P; is productivity, B; is biomass,
M; is total mortality rate from predation, Y; is mortality rate from
fishery, E; is net emigration rate (emigration-immigration), BA; is
biomass accumulation rate, and EE; is ecotrophic efficiency (the
proportion of production which is utilised in the system). The term
P; - (1 — EE;) can be interpreted as the mortality from other causes
than predation or fishery. The mortality from predation links preda-
tors and preys, through the equation:

B;-M;=> Bj-(Q/B);-DG;
Jj

where the total predation mortality of group i is given by the sum
across all predators j of the predator biomass B; times the con-
sumption per unit of biomass of j (i.e. the term Q/B);) times the
fraction of prey group i in the diet of group j (the term DCj;). The sec-
ond main equation of Ecopath states that consumption is equal to
production plus respiration plus unassimilated food. Ecosim devel-
ops the Ecopath food web in a time-dynamic simulation through a
system of differential equations, which calculates flow of biomass
across functional groups through time. Information from the Eco-
path module is combined with parameters and assumption about
feeding relationships which are used to parameterise the differen-
tial equations. Ecosim is routinely parameterised through fitting
to time series of biomass and catches. The basic Ecosim equa-
tion expresses the rate of variation in time of biomass B for each
group i as:

dB;
e =gi‘ZjS*Zij+Ii*(Mi+Fi+ei)'Bi
j j

where g; is the net growth efficiency, Q;; is the consumption rate
of group i on group j, and Q; is the consumption rate of group
j on group i. The first two terms represent the total consump-
tion of group i and the total predation suffered by group i from
all other groups, respectively. I; is the immigration rate, M; is the
non-predation natural mortality rate, F; is the fishing mortality rate,
and e; is the emigration rate. In Ecosim, consumption Q;; is calcu-
lated through the foraging arena theory (Waltersetal., 1997), which
splits the biomass pool of a prey species available to a predator into
an available (“vulnerable”) and an unavailable (“non-vulnerable”)
fraction, regulated by a parameter named “vulnerability”. Ecosim
is particularly sensitive to vulnerability, which is the parameter
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estimated by fitting the model to time series data (Mackinson,
2014). For further details about the model framework we refer
to Christensen and Walters (2004), Christensen et al. (2008) and
Walters et al. (1997).

2.2. Ecospace

Ecospace is the spatial component of EwE (Walters, 2000;
Walters et al., 2010, 1999). It is based on a two-dimensional
“map”, a grid of equally sized cells on which the biomass of
functional groups is distributed. Species distribution is modelled
through habitat assignment based on group-specific preference
with respect to feeding and predation regimes, and dispersal rates.
Temporal changes in biomass and consumption of species at the
local scale are simulated with predator-prey relationships through
a set of Ecosim differential equations for every cell in the map.
Groups can move to adjacent cells through random-directional
movements depending on swimming speed. Ecospace inherits
parameters and data (e.g., time series of biomass, fishing effort,
and environmental forcing functions) from the underlying Eco-
path and Ecosim models. Additional parameters and inputs are
required to regulate the initial allocation of biomass and fleet
distributions, and their temporal and spatial dynamic develop-
ments (Christensen and Walters, 2004; Christensen et al., 2008;
Martell et al., 2005; Walters et al., 1999). Details of the theory,
parameterisation and robustness checks for habitat map and initial-
isation settings are provided in the Supplementary Appendix (A.1
and A.2).

The parameters in Ecospace that regulate spatial distribution
of groups and species are: “Base Dispersal Rate”, “Relative Dis-
persal in Bad Habitat”, “Relative Vulnerability in Bad Habitat”,
and “Relative Feeding Rate in Bad Habitat” (Table 1). These can
be fine-tuned at group level however they also have a default
value. Base Dispersal rate, corresponding to swimming speed, is
entered in Ecospace for each species in km/year. It can be set
between 0 and infinite and has a default value of 300 km/year
(Table 1). Recall that in Ecospace the performance of a species in
non-favourable habitat is assumed to be worse than in favourable
habitat. This is simulated through three parameters, which operate
as weight factors. The Relative Dispersal in Bad Habitat parame-
ter increases dispersal rate in non-favourable habitats to simulate
greater active attempt to move elsewhere with better conditions.
It can be set from 1 (which inactivates the mechanism) to 10 and
at default is set at 2 (i.e., twice the speed in non-favourable habi-
tat as in favourable habitat). Relative Vulnerability in Bad Habitat
is a weight factor for the vulnerability parameter in Ecosim. It
regulates the increased vulnerability to predation (or decreased
sheltering capacity) in a less-than-optimal habitat. Its default value
is 2 (twice more vulnerable in bad habitat), and it can be set
between 1 and 100. Relative Feeding Rate in Bad Habitat gov-
erns how much a group will feed (and ultimately grow) in a bad
habitat. It decreases the feeding rate (reducing the Ecopath value
of Q/B, Consumption/Biomass ratio). This parameter can be set
between 0 and 1, and its default value is 0.05 (Christensen et al.,
2008).

Fleets distribution can be regulated through the parameters
“Effective Power” and “Total Efficiency Multiplier” (Table 1). Fish-
ing mortality per species per cell depends on the distribution
of fishing effort. Initially, effort is distributed through assigna-
tion of fleets to habitats, and by closing cells to some or to all
fleets to simulate MPAs. Then, a gravity model (Caddy, 1975;
Walters et al., 1999) spreads yearly fishing effort values (inher-
ited from Ecosim) across all cells open to fishing (i.e., cells which
are not land, not MPAs and are set as suitable habitat to a cer-
tain fleet) proportionally to the “attractiveness” of each cell. At
every time step, attractiveness A, to cell n for fleet k, for all
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Fig. 1. Study area. The North Sea divided in the ICES statistical rectangles corre-
sponding to Ecospace cells used in this study. The area included in the Ecospace
model comprises cells shown in both dark and light grey. In dark grey are shown
cells for which biomass data from the ICES survey were available. In light grey are
shown cells included in the Ecospace model but for which biomass data was not
available for comparison. White cells are not included in the Ecospace model.

i species in I (all species in the catch portfolio of fleet k) is:

I 1/0
A= > i 1Pk Qi+ Bin
' Cn,k

where py; is the price for species i for fleet k, qy; is the catchabil-
ity of species i by fleet k, and G, is the cost for fleet k of fishing
in cell n. The argument in bracket corresponds to profit, and o
measures variation among fishermen in the perception of profit
from fishing in cell n. Profit depends thus on the abundance in the
cell n of target species of fleet k, and on fleet-specific and species-
specific prices. Cost is based on a map of sailing costs, and on fixed
costs (as assigned in Ecopath). The ratio 1/o is called “P” and cor-
responds to the Effective Power, one of two parameters that can
be changed to influence fleets effort distribution. P is by default set
equal to 1. Setting P higher than 1 means a lower variation in the
perception of profit among fishermen (o). High P results therefore
in effort being concentrated in the most profitable cells (in these
cells attractiveness grows, while in less profitable cells it decreases),
whereas low P results in smoother distribution of effort across the
map. Maps of effort distribution are then converted to cell-specific
fishing mortality per species at every time step. Finally, Total Effi-
ciency Multiplier is a multiplier factor for effort, with a default value
of 1.

2.3. Study area

The North Sea is a semi-enclosed basin, with temperate cli-
mate and mixed faunal assemblage, including boreal and Lusitanic
species. The basin is divided in a southern shallow area and a
northern deeper one. The Norwegian Deep and the continental
slope constitute the natural borders of the basin in the North-
East, and North-West respectively (Fig. 1). The North Sea has
an important history of fishing, the management of which has
been complex due to the mixed nature of fisheries and the large
number of countries that fish in these waters. Other activities
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Table 1

53

The parameters of Ecospace evaluated in this study and their characteristics: category (indicating parameters related to either species or fleets distribution), default value,
unit of measure (dimensionless parameters are indicated by a dash), and the range of values explored in this study. For parameters Base Dispersal Rate, Effective Power and
Total Efficiency Multiplier the upper limit of the range is not given in Ecospace. Range limits used in this study are displayed. Range limits can differ across sub-parameters

within the same parameter.

Parameter name Category Default value Unit Range explored in this study
Base Dispersal Rate Species 300 km/year 0-2000%/2000"/300¢
Relative Dispersal in Bad Habitat Species 2 - 0-100

Relative Vulnerability in Bad Habitat Species 2 - 0-10

Relative Feeding Rate in Bad Habitat Species 0.05 - 0-1

Effective Power Fleet 1 - 0-304/37¢/150"

Total Efficiency Multiplier Fleet 1 - 0-1.39/3¢/1.5f

@ Pelagic species.

b Demersal species.
¢ Invertebrates.

4 Otter trawl.

¢ Beam trawl.

f Pelagic trawl.

(e.g., shipping traffic, oil and gas extraction and wind farms) are
increasingly causing conflicts with fishing activities (Gimpel et al.,
2013). The main fisheries can be divided in demersal and pelagic.
Demersal fisheries target roundfish (in particular gadoids) and
flatfish (especially sole and plaice), while pelagic fisheries tar-
get herring and mackerel for human consumption, and sandeel
and sprat for fishmeal and other industrial use. Shrimp and
Norway lobster also constitute important target species (ICES,
2013). Fisheries management is based on bilateral agreement
between European Union and Norway, with area-, species- and
gear-specific limits in catches. The total allowable catches are
established yearly on the basis of scientific advice from ICES
and the Scientific Technical Economic Committee for Fisheries
(STECF) of the European Union, a quota of which is assigned to
each country and fleet. Management has been partially success-
ful: after years of systematic decline of most stocks, a moderate
recover was observed in recent years for several of the fish
stocks after a large reduction in fishing effort and possibly also
a reduction of bycatch (ICES, 2013). The food web structure and
ecosystem functioning of the North Sea is just starting to be
understood and the large number of species and their interac-
tions make it a very complex system to manage (Mackinson et al.,
2009).

2.4. Application of the Ecospace model for the North Sea
ecosystem

The model used for this study is an Ecopath with Ecosim and
Ecospace model based on Mackinson and Daskalov (2007) and its
recent updates (Heymans et al., 2011; ICES, 2011, 2012b). Since
the present study only focuses on Ecospace, the underlying Eco-
path and Ecosim models were not explored and forcing functions,
parameters and data for these components were unchanged from
the model in ICES (2011). Details of the forcing functions used for
the North Sea Ecosim model are provided by Mackinson (2014). The
structure of the Ecospace model (i.e., the model building blocks,
data and parameterisation) from Mackinson and Daskalov (2007)
was also maintained, however some changes were brought in this
study to the map, the habitat assignment and some initialisation
parameters, and forcing functions were not included. The North Sea
model is based on a “base year”, 1991, and develops dynamically
in time for 17 years until 2007. Ecospace models, once initialised,
take a variable number of time steps to reach equilibrium. For this
study, a burn-in period of 17 years (same length as the time series
used) was included to allow the model to reach equilibrium. For
the burn-in period all data were set equal to baseline (i.e., at the
same level of 1991).

2.5. Data

We compared model predictions for biomass and fishing effort
with corresponding spatially resolved data of biomass and fishing
effort (hereafter, “observation”). Data of biomass for 12 selected
species (namely: starry ray Ambliraja radiata, cod Gadus morhua,
whiting Merlangius merlangus, haddock Melanogrammus aeglefinus,
saithe Pollachius virens, norway pout Trisopterus esmarkii, gurnards
Eutrigla sp., Trigla sp. and Aspitrigla sp., herring Clupea harengus,
mackerel Scomber scomber, sandeel (family Ammodytidae), plaice
Pleuronectes platessa and sole Solea solea) were obtained from the
North Sea ICES International Bottom Trawl Survey (IBTS). Fishing
effort data were obtained from STECF (2011). Six fleets (out of
the 12 fleets present in the model) were included in the analy-
sis: beam trawl, pelagic trawl, otter trawl, shrimp trawl, nephrops
trawl, sandeel trawl. Since the partitioning between fleets in the
spatial data from STECF was different from the Ecospace model, we
lumped the last four fleets in the group named “Otter trawl”.

Observations and predictions for both biomass and effort are
comparable for spatial and temporal distribution: both sets are
available on a yearly basis and at the same spatial scale, based
on ICES statistical sub-rectangles (hereafter “cells”) of 1 degree
(Longitude) by 0.5 degree (Latitude). Due to changes in the data
distribution across years, the spatial and temporal coverage is not
uniform. For every year, only cells present in both observations and
predictions were used, resulting in 154 cells for the base year and
similar but varying number for other years. The unit of Ecospace
biomass is t/kmZ2. In ICES IBTS data, the unit is in catch per unit
effort, standardised to numbers/hour of trawling. This value was
converted to kg/hour using species mean weight as conversion fac-
tor. The two datasets (predictions and observations) were made
comparable using a constant (mean observed/mean predicted) as
converting factor for each group. The two independent datasets
have the same mean value after conversion. The same process was
performed for fishing effort observations and predictions.

Ecospace uses price and cost data (which are species-and fleet-
specific) and calculates fleet-specific maps of sailing cost based on
distance from ports. Through a gravity model, Ecospace assigns
effort in space based on these cost maps and fish biomass distribu-
tion (Walters et al., 1999; see also Section 2.2). Cost and price data
in Ecospace are inherited from the underlying EWE model. The price
and cost data used for this study are based on Heymans etal. (2011),
in turn obtained from the SGECA 08-02 working group report (AER,
2008), reviewed by STECF. Other data required by Ecospace (fleets
assignment to habitats and to ports, fixed costs, target species per
fleet), were all based on information available in the previous EWE
North Sea model (Heymans et al., 2011; ICES, 2011).



54 G. Romagnoni et al. / Ecological Modelling 300 (2015) 50-60

3. Theoretical background
3.1. Model parameters

The number of estimated parameters in the model is determined
by (i) the number of functional groups that have parameters (either
biomass, P/B, Q/B, or EE) estimated in solving the mass-balance
equation in Ecopath, and (ii) the number of vulnerability and pri-
mary production anomalies in Ecosim. In the Ecospace component,
parameters for distribution and dispersion are estimated outside
the model and used as inputs. No parameters are directly esti-
mated by Ecospace itself. Parameterisation of the North Sea model
is described in detail in Mackinson and Daskalov (2007), Mackinson
et al. (2009), Heymans et al. (2011), and ICES (2011). In this study,
parameters for Ecopath and Ecosim were kept the same as in those
publications, but Ecospace parameters were varied manually to
evaluate their effect on the performance of the spatial predictions.

3.2. Measure of model fit

Spatially resolved observations and predictions for each of the
17 years of the simulation were compared through correlation coef-
ficient. Data were found to be non-normally distributed for all 12
species groups (Shapiro-Wilks test for normality). Therefore, the
Spearman'’s rank correlation coefficient (hereafter called “correla-
tion”) was chosen as measure of fit, as it is capable of dealing with
non-normal data. Correlation provides a measure of how well high
and low values are predicted by the model, i.e., the model capability
of reproducing relative patterns. Positive values (close to 1) indi-
cate a positive correlation of the model’s prediction with the data,
i.e., prediction of high values in the Ecospace grid cells where high
values were observed, and prediction of low values where low val-
ues were observed. With negative correlation values (approaching
—1) the model shows a negative correlation with the data (high
values predicted where low values were observed and vice versa).
Values close to 0 suggest a weak or unclear trend, i.e., the model is
not assigning univocally high or low prediction to high or low data
values. Correlation values between observations and predictions
were calculated for each species and fleet for every year for which
data were available: since biomass data are available from 1991 to
2005, and effort data from 2003 to 2007, the two time-series over-
lap only for three years. For our analysis, a value of overall fit for
each model was calculated as follows: (i) for every year, the median
across all 15 groups (including both species and fleets in the three
years when both categories are present) was calculated; (ii) the 17
yearly values of median correlation were then averaged to obtain a
mean value of model performance across the period of study. This
value was used as total measure on the model fit. The diagram in
Fig. 2 shows the framework for model initialisation, model run and
the analysis of results.

3.3. Parameter sensitivity

The high number of parameters in Ecospace does not allow
exploring all possible parameter combinations manually. However,
no automated procedure is at present implemented in the Ecospace
software. We therefore used an ad hoc method, with progressive
exclusion of non-influential parameters and reduction of parame-
ter space by aggregating groups into macro-groups of ecologically
similar species. Following previous studies (e.g., Chen et al., 2009;
Fouzai et al., 2012), the species were divided into three macro-
groups: wide-range dispersing organisms (denominated “Pelagic”),
medium-ranged (“Demersal”) and small-ranged (“Invertebrates”).
For fleets, aggregation in macro-group was necessary only for Otter
trawl, as described in Section 2.5. Parameters explored were (see
also Table 1): Base Dispersal Rate, Relative Dispersal in Bad Habitat,

c
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parameters results
Analysis of
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Fig. 2. Diagram of the framework for model initialisation, model run and analy-
sis of model results. Setup of habitat and fleet distribution was based on data and
maintained constant throughout the analyses. At every run, the Ecospace model
produces output of spatial abundance and effort. These are externally compared to
data, and the resulting values of model fit are then analysed. Model parameters are
then changed after the analysis of previous results and the model is run again.

Relative Vulnerability in Bad Habitat, Relative Feeding Rate in Bad
Habitat (related to species distribution), Effective Power and Total
Efficiency Multiplier (related to effort distribution; see Sections 2.1
and 2.2). Each parameter was subset into “sub-parameters” corre-
sponding to the macro-groups of species or fleets.

We then explored the behaviour of the model across the param-
eters’ ranges. This process took two steps: firstly, each parameter
was analysed individually. For each parameter, we identified the
range of possible values assumed, explored the behaviour for each
sub-parameter and the interaction across sub-parameters, and
recorded the variation in fit from default value at each value. This
allowed to quantify the effect of parameters on total fit and to
identify non-influential parameters, which were excluded from
further analyses. Every individual parameter exploration was an
interaction across its three sub-parameters, resulting in a three-
dimensional matrix for each of the six parameters.

Secondly, a set of models in which all influential parameters
were changed simultaneously was examined to observe parame-
ter changes and their reciprocal influences (i.e., interaction effect).
For each parameter, the model was run alternatively with other
parameters varying, and with other parameters at fixed default
value. The difference between these was taken as the effect of the
parameter on the total fit. To further reduce dimensionality, a sub-
sample of parameter levels was used. Three levels were selected:
high (with all sub-parameters at the highest value of their range),
low (all sub-parameters at lowest value of their range) and inter-
mediate (all sub-parameters set at the median or closest lower
value). This method provided a distribution of fit (absolute and
relative percentage change from the default value) for each param-
eter, corresponding to changes across the parameter’s range. A flow
chart (Fig. 3) describes the approach used to reduce the parameter
dimension (see also supplementary appendix section A.3 for further
details).

3.4. Model predictive capability

In order to understand the model’s predictive capability, the
results were separated into species and fleets because the meth-
ods used to predict these two categories differ substantially in
Ecospace. A measure of fit for each of the two categories (species
and fleets) was developed using the same method as for the total fit
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restricted number of parameter combinations, which were used for the analysis of interaction across all influential parameters.

(Section 3.2). Correlations for each category and for the total fit were
calculated across a range of parameter values to investigate the
magnitude and direction of effects of parameters on the model and
if trends were consistent between categories and the total fit. Fur-
thermore, group-specific correlations (for each species and fleet)
were analysed to understand if trends observed for categories were
driven by one or few groups, or if they were representative of trends
observed across the groups, implying that the predictive capabil-
ity was influenced by category-specific factors. All analyses were
performed using R statistical package 2.15.0 (R Development Core
Team, 2012).

4. Results

4.1. Model fit

The model at default valuesyielded a fit of 0.33 (Table 2). Calibra-
tion of the parameters across their range provided an improvement

of up to 15% in fit between prediction and data compared to a model
calibrated with parameters at the default values. This indicates that
changes in parameters can modify the performance of the model,
as expected. In comparison, a model with parameters set as in the
Mackinson and Daskalov (2007) Ecospace model provided a fit of
0.27, a comparable (if slightly lower) fit to the model used in this
study. Critically, in the exploration of one parameter at a time the
highest fit were obtained with parameters set at the highest lev-
els of the explored ranges (see supplementary Table A3), and the
pattern was respected when using values higher than what is con-
sidered realistic. This is a problem because, if the model was to be
parameterised through fit to data, it would lead to use unrealistic
parameter values.

4.2. Sensitivity analysis

The model resulted to be sensitive to some, but not all of the
parameters under investigation. Parameters Relative Dispersal in
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Table 2

Spearman’s rank correlation coefficient for each of the 12 fish species and three fleets, for each year from 1991 to 2007. Dashes are reported where no available data. Median across the 15 groups (or less) is reported in the far

right column for each year. The mean across all median values, reported in bold character, is the value used for comparing across models in this study. The values reported in the table are from a model with all parameters set at

the Ecospace default values. All reported correlation values in the table are statistically significant (P<0.05). Non-significant values are reported as 0.

Otter trawl Pelagic trawl Median

Plaice Sole Beam trawl

Sandeel
0.446
0.425

Mackerel
0.321

Herring
0.42

Gurnards
0.472

Norway pout

0.773

Saithe
0.654
0.642
0.62

Haddock
0.815

Whiting
0.375

Starry ray
0.505
0.547
0.469
0.37

Cod

Year

0.489

0.72

0.775
0.725
0.74

0.271

1991
1992
1993

0.545
0.485

0.643
0.501

0.279

0.543
0.562
0.52

0.375
0.307

0.423

0.767

0.805
0.8

0.252

0.456

0.353

0.781

6

0.217

0.215

0.457

0.479

0.739
0.74
0.69

0.404
0.396
0.354
0.428

0.351

0.786

0.604
0.642
0.63

0.828
0.83

0.435
0.4

0

0

0.291

1994
1995

0.398
0.382

0.563
0.404
0.524
0.376
0.465

0.233

0
0
0

0.366
0.359

0.382
0.282
0.265
0.273
0.204
0.283
0.375
0.314

0.779

0.388
0.423

0.233

0.797

0.821

0.211
0

1996
1997
1998

0.498

0.767
0.781

0.508
0.485

0.728
0.73

0.695
0.72

0.803
0.839
0.816

0.488

0.376

0.339
0.33

0.376
0.403

0.192

0
0
0
0
0
0

0.367

0.789
0.749
0.752
0.771

0.161

0
0
0
0
0

0.315

0.764
0.763

0.76

0

1999
2000
2001

0.349
0.416

0.443
0.273
0.467

0.383

0.257

0.678

0.822

0.315

0.447

0.279

0.717

0.384 0.453 0.841 0.667
0.82

0.352
0.39

0.410

0.468
0.6

0.277

0.639

0.282

2002
2003
2004
2005
2006
2007
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0.356

-0.17

-0.271
-0.225
-0.215
-0.171

0.83
-0.747
-0.72
-0.729
-0.744

0.356
0.432

0.795
0.778
0.752

0.199
0.187
0.229

28
0.238
0.322

0.

0.623

0.666
0.655

0.842
0.839
0.898

0.238

-0.21
—-0.166

-0.25

0.45

0.596

0
0

0.325
0.351

0.322
-0.250
-0.171

0.378

0.377

-0.174

0.661

0.663

0.17

0.333
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Fig. 4. Effect of parameters Base Dispersal Rate, Relative Vulnerability in Bad Habi-
tat, Effective Power, Total Efficiency Multiplier on fit under interaction. Percentage
change of fit is represented on the y axis.

Bad Habitat and Relative Feeding Rate in Bad Habitat caused no
changes to model fit throughout their ranges both under individual
parameter sensitivity and under interaction with other parameters.
These two parameters were thus excluded from further analyses.
The model was affected by all other parameters explored, and the
model fit was generally improved by changing the parameters from
the default values. Percentage change of fit from the default value
(Fig. 4) was different in median value and in standard deviation for
each of the parameters: Base Dispersal Rate had a median value
of 3.7 (interquartile range 2.2-5.6); Relative Vulnerability had a
median value of 0.12 (interquartile range —0.07 to 0.56); Effective
Power had a median value of 11.7 (interquartile range 3.4-14.1);
Total Efficiency Multiplier had a median value of 2.14 (interquartile
range —0.45 to 4.15).

4.3. Model predictive capability

By splitting the model results into different categories, we
could observe the differences in the model prediction capabil-
ity for species and fleets distribution (Fig. 5). The predictions of
fleets’ distribution were consistently negatively correlated with
data, with median values around -0.26 across all parameters and
with small variability. Biomass predictions were much closer to the
data, with correlation consistently above 0.4 across all parameters.
The median across the 15 groups (12 species and three fleets), used
throughout this study as a measure of fit, was slightly lower than
species, as expected. Trends for individual parameters (with neg-
ative fit for fleets and positive for species) were confirmed also
in an “interaction model” with all parameters changed simulta-
neously (Fig. 5). Looking at the differences between parameters,
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Fig. 5. Model fit for the full model (“interaction”) and individual parameters Base Dispersal Rate, Relative Vulnerability in Bad Habitat, Effective Power, Total Efficiency
Multiplier, divided by the categories species, fleets, and the total (combining species and fleets).

it is interesting to see that in general the median values were fairly
stable but the interquartile ranges varied for different parameters.
Largest variations around the median for fleets were observed with
parameter Effective Power. For species, Effective Power had largest
effect on the variation, followed by Total Efficiency Multiplier and
Base Dispersal Rate. This suggests that the parameters might affect
differently the two categories of the model, however the biolog-
ical component (i.e., species) is affected also by the fleet-specific
parameters (Effective Power and Total Efficiency Multiplier), but
not so much the opposite. The model prediction, species-by-species
and fleet-by-fleet, also confirmed the trend (Fig. 6). Most species
showed a good fit: nine species out of 12 had correlation above
0.35, and 4 above 0.60, while only for Cod, Whiting and Mackerel
the correlation was consistently low (below 0.2). Furthermore, Cod,
Starry ray and Gurnard also showed larger variance around their
median than all other groups. Fleets predictions were all negative
or not significant. The total model fit, used to evaluate the model
sensitivity, was closer to the values of species than to fleets.

5. Discussion

This study is, to the best of our knowledge, the first attempt
to perform sensitivity analysis of Ecospace parameters using fit

to data as a measure of model performance. Ecospace is a widely
used tool for evaluating the outcomes of policy scenarios involving
MPAs and other spatial management measures on both ecosystems
and fisheries. There is a variety of uses for Ecospace: for instance,
effects of aquaculture on the ecosystem (Piroddi et al.,2011), move-
ment models (Martell et al., 2005), game theory (Beattie et al.,
2002) and further progresses are made to add realism by inclusion
of nutrient-phytoplankton-zooplankton models (e.g., Steenbeek
et al,, 2013; Walters et al., 2010) while moving towards an end-
to-end modelling approach (e.g., Fulton, 2010; Rose et al., 2010;
Travers et al., 2007). The original purpose and main application of
Ecospace is however the evaluation of MPAs’ effectiveness in light
of ecosystem dynamics and of the effects of effort displacement
(Walters, 2000; Walters et al., 1999). The use of Ecospace for man-
agement is now suggested within the framework of a shift towards
ecosystem-based fisheries management in Europe (ICES, 2012b).
For use within a theoretical and purely speculative approach, the
model does not require to be validated with data. However, before
its results and outcomes are included into management actions,
a severe and rigorous evaluation process should take place, con-
cerning the data quality, parameterisation and model capability to
reproduce known trends. In this study we evaluated the model
under two complementary aspects: we explored and quantified
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Fig. 6. Group-specific fits by species, fleets, and the total (combining species and fleets) across alternative parameter combinations for 3 alternative model settings, with all

parameters set at the highest, lowest or median levels of the ranges, respectively.



58 G. Romagnoni et al. / Ecological Modelling 300 (2015) 50-60

first the sensitivity of the North Sea Ecospace model to parame-
ter settings, and then the model’s capability of predicting known
distribution trends of species and fleets.

Our sensitivity analysis showed that some parameters are more
influential on the model performance, while some others had no
effect at all. The model seemed to be overall robust to variation in
parameter settings as the largest change in fit showed an improve-
ment of about 15% compared to the fit at default setting. The
parameters to which the model was found to be most sensitive
require further investigation: in particular, for the two fleets-
related parameters (Effective Power and Total Efficiency Multiplier)
there is little, if any, reference to sensitivity in the published mod-
els. These parameters affected the total fit the most, and further
studies on the significance of these parameters and on realistic val-
ues should be undertaken in the future. Base Dispersal Rate also
affected the model fit, and this value as well should be investi-
gated in more detail. Few studies performed sensitivity analysis
on this parameter (e.g., Chen et al., 2009; Espinosa-Romero et al.,
2011; Martell et al., 2005). Reliable estimates for this parameter are
scant, even for the best studied species. Base Dispersal Rate is based
on random dispersal, which is scarcely studied: most of the fish
movement studies focus on directional migration (such as spawn-
ing migration in flatfish, Hunter et al., 2004; Rjinsdorp and Pastoors,
1995), or on point estimates of tagged individuals across a period
of days to months, but rarely through years (e.g., Righton et al.,
2007). Furthermore, the variability in dispersal can be extremely
large within a single species: some inshore populations of cod show
a dispersal range <10 km (Knutsen et al., 2011), while others per-
form migrations of hundreds of km (Neuenfeldt et al., 2013). The
attempt of defining an exact dispersal rate for every speciesis there-
fore intrinsically inappropriate, while it could be useful to explore a
range of values. Several studies used simplifications such as lump-
ing species into fast-moving, slow-moving and sedentary species,
which was also adopted in this study, and of these, many used the
arbitrary “300-30-3 rule” for assigning Base Dispersal Rate (e.g.,
Chen et al., 2009; Fouzai et al., 2012; Piroddi et al., 2011; Zeller and
Reinert, 2004). This, in the lack of better estimates and coupled with
adequate sensitivity analysis, could be a valid solution. Through
the sensitivity analysis we also identified some problems of our
Ecospace model. The best values for some of the parameters or
sub-parameters were at the maximum of their ranges, suggesting
that optimal values are outside of the range explored (see supple-
mentary Table A3). This is of course a problem, especially in those
cases when the parameter values providing the highest fit were
unrealistic (e.g., for Base Dispersal Rate). These findings point at
problems in either the model, the data (discussed further below),
or the method used for sensitivity analysis. In this study we used a
manually implemented ad hoc method for the sensitivity analysis,
which did not cover the full parameter dimension. The analysis of
parameter interactions was based on a subset of models with arbi-
trarily determined combinations of parameter values. The subset
was selected so to be representative of the whole range of param-
eters, however it could have overlooked optimal combinations of
parameters.

The model capability of predicting known spatial trends clearly
differed between species and fleets: our North Sea Ecospace model
did a relatively inaccurate job in predicting distribution of fleets.
This result was consistent across ranges of parameters (the pre-
dictions for fleet distributions are negatively correlated with the
data across all parameter ranges for every parameter tested) and
within the groups: despite the fit for some species was worse
than for others, for no species the fit was as low as for any fleet
(Fig. 5). This result suggests that the fit of species distribution pre-
diction to data (as done in Daskalov et al. (2011) and Mackinson
et al. (unpublished)) provides a valuable and reliable evaluation for
species distribution, but it does not provide a full picture of the

whole ecosystem, since the human component (fisheries) is not
explicitly included. Ecospace applications focus on spatial fisheries
management, for example effects of MPAs on the ecosystem via
spatial re-distribution of fleets (Walters, 2000). These applications
assume that fleet behaviour is realistic, i.e., that the model is capa-
ble of reproducing choice criteria of fishers. In no Ecospace study
so far, to the best of our knowledge, such prediction capability has
been quantified with data. In our North Sea Ecospace model, the
prediction capability for fleet effort was found to be relatively poor.
While this might be due to the specificities of the study area, we
cannot exclude that similar results could be observed in other mod-
els and areas. We therefore suggest that a quantitative assessment
is routinely undertaken for parameterisation of Ecospace models,
in particular for cases where the models’ results are used for man-
agement advice.

Our hypothesis is that the reason for the low fit between effort
predictions and data lies in the mismatch between the resolution
of the spatial effort distribution model and the fishers’ behaviour.
The gravity model used in Ecospace to distribute fishing effort in
space is rooted in decision-making theory: it assumes that fish-
ermen’s decisions on where to fish depend mainly on profitability.
However, fishermen do not have perfect knowledge of the real pro-
fitability of fishing in an area beforehand. This is accounted for in
Ecospace through attractiveness. The attractiveness of an area for
fishermen is modelled as profit scaled by variation o. This value
represents the different decision criteria among fishers, and can
be interpreted as a measure of different strategies adopted. Attrac-
tiveness is thus a measure of profitability scaled by the perception
and knowledge of the system that fishermen in a fleet have. Effort
allocation in Ecospace is therefore based on perceived profitability
(Walters et al., 1999). However, in the real world the behaviour
of fishermen might be strongly dependent on other factors: for
example, other fisher’s position might play a role (Poos et al., 2010;
Poos and Rijnsdorp, 2007). A key factor for the North Sea might
be the fact that the target species in any particular fishing trip is
not necessarily the most profitable, but can depend on the avail-
able species-specific quotas, and by the daily oscillations in market
price. In the model, the profitability is derived by aggregated profit-
ability per all species in the area; however, fishers do in fact aim for
one or few species at a time, and all the others are bycatch. There-
fore, decisions on where to fish are based on considerations about
the instantaneous profitability of one species. Lastly, effort data are
aggregated across the year, while the fishers’ decisions are taken
on a daily or weekly basis, and this might not be captured well by
the model.

There are a number of alternative explanations for the low fit
observed between effort data and model prediction. Factors influ-
encing the model results include for example data quality, objective
function, initialisation parameters, grouping of species and fleets,
and settings of the underlying Ecosim model. Biomass data, for
example, could fail to reproduce adequately real species distribu-
tion, and IBTS data used here are known to have spatial dependence
(Lewy and Kristensen, 2009). Given that the species prediction is
relatively accurate, however, spatial dependence in biomass data
was not considered problematic for this study. Effort data might
also fail to adequately represent fleets distribution in space and
time. We compared main distribution trends with data available at
national level for few countries, and no major inconsistencies were
found. Temporal trends were also explored by comparing effort
time series (used in Ecosim) with aggregated STECF data. The two
datasets were comparable only for four years, however two fleets
out of three showed highly comparable trends. This suggests that
the STECF data represent adequately fleets spatial distribution and
temporal trends. The effects of the objective function, initialisation
parameters, cost and price data and other settings were investi-
gated through robustness checks (supplementary appendix section



G. Romagnoni et al. / Ecological Modelling 300 (2015) 50-60 59

A.4), and none of these affected the results. Alternative grouping
of the Demersal trawl efforts, and alternative settings for vulnera-
bility of Ecosim were also explored: under some combinations of
values a small improvement in the fit of Demersal trawl fleet was
observed. This suggests that Ecosim parameterisation and alter-
native fleet grouping might affect Ecospace spatial performance
through species distribution. However, Beam trawl and Pelagic
trawl consistently showed low fit across all parameters exploration.
Overall, we cannot exclude completely that the low fit of effort pre-
dictions to data is due to effort data quality or to parameterisation
and settings of the model. We however maintain that the results
observed are due to limitations of the model for predictions of effort
distribution.

For future applications of Ecospace, and especially when the
results are used for management advice, we recommend that (i)
validation with data is performed, using both biomass and effort
data; this is in general good practice to ensure that the model
works properly, and to quantify predictive capability. In addition
it can reveal problems within the model, as in our case with the
predictions of effort distributions. And (ii) we recommend that a
thorough evaluation of sensitivity of the model to parameters set-
ting is performed. In order to properly evaluate sensitivity, one
needs to explore the whole parameter dimension (e.g., through
Global Sensitivity Analysis; Morris et al., 2014; Saltelli et al., 2008,
1999). We used a manual, ad hoc approach to screen out parame-
ters and reduce the number of parameter values to explore. This
approach provided indications about the model behaviour and
about its strength and weaknesses and was therefore a useful exer-
cise but it is not suited to explore the whole parameter dimension.
A thorough parameter exploration and a more rigorous sensitivity
analysis could only be achieved through an optimisation algorithm,
however no such tool is currently implemented in the Ecospace
software. An algorithm could also be useful to parameterise the
model through fit to data. This is already common practice in the
Ecopath and Ecosim modules (Christensen and Walters, 2004), for
which optimisation algorithms are implemented. Finally, we sug-
gest that care must be taken when interpreting effort predictions,
as our results suggest that not in all cases the model captures fleets’
behaviour accurately. We suggest that further improvement in the
effort model could be needed for Ecospace to become a robust
tool for advice about fisheries dynamics across spatial management
scenarios.

6. Conclusions

There is in general a need for management advice modelling
tools that combine multispecies models, spatially explicit mod-
els, and socio-economic considerations (ICES, 2012a; Kempf et al.,
2013; Thunberg et al., 2012). The ongoing progress of spatially
explicit ecosystem models, among which Ecospace, coupled with
improved understanding of mechanisms operating at the local scale
(Hjermann et al., 2013; Kempf et al., 2013), could help improving
spatial multispecies modelling and management.

This study is the first to quantify the fit between model predic-
tions and data for Ecospace using both species and fleet distribution.
Here we showed that comparison of model prediction to spatial dis-
tribution can be useful to evaluate the model performance, and that
sensitivity analysis can help to understand the model behaviour.
This approach could be part of a larger set of standard rules for cal-
ibration and evaluation of Ecospace models to be used for policy
advice for the ecosystem-based management of marine resources.

This study finds its significance in the context of a larger effort
to improve Ecospace through continuous development and testing
(Walters et al., 2010), where the model is in continuous evolution
and constantly changing to address new questions and challenges.

It has been suggested that Ecospace should not at present be consid-
ered as a management tool, and its primary goal should be scenario
exploration and policy testing, for which the model is effective
(Beattie et al., 2002; Dichmont et al., 2013; Martell et al., 2005;
Walters, 2000; Walters et al., 2010, 1999), while caution should be
used when interpreting results. We believe that, to develop this
framework further, focus should be given to the development of an
algorithm for parameter optimisation, and to the improvement of
the model for fishing fleets’ behaviour. Thanks to these improve-
ments and to other recent developments (e.g., Christensen et al.,
2014; Steenbeek et al., 2013; Walters et al., 2010) we are confident
that the Ecospace model will become a more robust tool, suitable
also for management advice.
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Appendix A:

Additional information on Ecospace, a description of the model parameterization,

assumptions and robustness checks.

A.1. Background information on Ecospace model

A.1.1. Spatial model and habitat map

Ecosystems are not homogeneous in space, and to simulate this, the Ecospace map can be
divided into a number of user-defined habitats. Each cell of the map is assigned to one and only
one habitat, and every functional group and fleet can be assigned to one or more habitats by the
user. The decision on habitat assignation is based on what is considered as “favourable” and “non-
favourable” habitats. In Ecospace, non-favourable habitats can be imagined as portions of sea
where a species has lower probability of surviving and reproducing successfully due to some
characteristics of the area, for example bottom type. This can result in higher predation mortality
and/or low feeding success for a species because it cannot hide or feed effectively. These factors
are difficult to quantify through predator-prey relationship, and are thus represented through habitat
setting. The classic example is that of a coral reef fish displaced in the open ocean. Although in
absolute terms the potential predators could be more abundant on a coral reef, in the open ocean
the coral fish can’t hide as it would do on a reef, and will be therefore more vulnerable. For the

coral reef fish, open ocean is a non-favourable habitat.

In previous versions of the model, both species and fleets were allocated to habitats with a
presence-absence assignation. In the EwE software version 6.3 (used in this study), habitat
assignment for fleets is still based on the presence-absence method, while the assignment of
species to habitat has been improved (Christensen et al., 2014). For every habitat type, the user

can set a continuous value between 0 and 1. This is valid for all cells belonging to the habitat. The



software then allocates to each cell of the habitat in question a proportion of the initial biomass
corresponding to the given value. The Ecopath biomass of a group at the base year is then split
between all cells of the habitats to which the group is assigned. Habitat assignment governs the
initial spatial distribution of species in the model (initialisation). For effort, the fleet-specific Ecopath
effort is spread in Ecospace based on the gravity model (see section 2.2 in the text), limiting to
habitats to which the fleet has been assigned. In Ecospace, at every time step, an Ecosim model is
run for every cell (and thus for the sub-food webs therein), while movement between adjacent cells
is regulated by the parameters for species distribution. Thus, the results of Ecospace for each cell
at each time step depend on trophic relationships and fishing (through an Ecosim run) and on

movement across cells and the parameterisation of the Ecospace model.

A.1.2. Initialisation settings

Initialisation settings regulate the setting of the distribution of species at time step 0 and the type of
model used for distribution of multi-stanza groups (i.e. groups divided in multiple age classes):
either partial differential equations or an individual-based model. In EwE version 6.3, these settings
include: Initialisation; Model Type; Capacity Calculation; Effort Calculation. These can be set
through alternative choice. In particular, Initialisation can be set as either “Ecopath Base Biomass”
or “Habitat-Adjusted Biomass”. Initialisation determines how biomass for each group is assigned
from Ecopath to Ecospace. Using “Ecopath Base Biomass”, biomass assigned to each cell in
favourable habitat is equal to the mean biomass value in Ecopath, and with lower value in the non-
optimal habitat. Alternatively, the “Habitat-Adjusted Biomass” setting concentrates the whole
biomass of a group to cells belonging to favourable habitat. If, for example, an organism is found in
10% of the ecosystem, and it has a mean Ecopath biomass of 10 t/km?, it will be distributed in the
favourable habitat with biomass of 100 t/km?. Model Type can be set in three alternative
possibilities, which regulate how multi-stanza groups are managed in Ecospace. In EWE version
6.3, three alternatives are possible: “EwE6 Multi-Stanza Model”, “Individual-Based Model”, and

“Partial Differential Equation”. Capacity Calculation can be set at two non-exclusive levels:



“‘Habitat” and “Capacity”, and the option “Capacity and Habitat” is also allowed. This determines
how the biomass is assigned, based on habitat assignment or on capacity (or both). Effort
Calculation can be set as “Predict Effort” or “Ecopath Effort”: the former calculates effort based on
profit-based gravity model while the latter uses effort data directly from Ecopath (Christensen et al.,

2008; Wallters et al., 1999).



A.2. Specifications of the North Sea Ecospace model used in this study: settings and

parameterization

A.2.1. Habitat map used in this study

The habitat map for the present study was based on the Ecospace model from Mackinson and
Daskalov (2007). The study area was divided into 5 habitats based on bathymetry and other
characteristics (<22 meters depth, 22-51; 52-115; >115 and “Coast”). Some modifications were

brought from the map to ensure continuity across habitats. See figure A.1.

Coast

[W<22m
Wa2-sim
Wsi-1u5m
- >115m

Figure A.1. Ecospace Map and Habitats for the North Sea model used in this study. Cells in white

represent land.



A.2.2. Initialisation settings

Different combinations of initialisation settings were tested to explore how these settings affected
model performance. All alternative combinations between “Initialisation”, “Model Type” and
“Capacity Calculation” were attempted, with other parameters (i.e. Ecospace species distribution
and effort distribution parameters) at default level (table A.1). Effort Calculation was left at the
default mode, “Predict Effort”, because the alternative, “Use Ecopath Effort”, provided no
predictions of effort, and the outcomes were not directly comparable to the other parameters. This
robustness test showed that habitat “Capacity Calculation” is the most impacting parameter, with
Capacity and Habitat & Capacity providing lower fit (negative). Little changes occurred between
“Initialisation” parameters, and between “Model Types”, with changes of up to 2% of the initial
value (relative fit shows percentage change from the default value). Individual-Based Model (IBM)

and Partial Differential Equation (PDE) perform slightly better than Multi-Stanza Model (MSM) in

general, but to a small extent.

For the final model, all Initialisation settings were maintained as default: Habitat-Adjusted Biomass
setting for “Initialisation”, EWE6 multi-stanza for “Model Type”, Habitat only for “Capacity
Calculations” and Predict Effort for “Effort Calculations”. EWEG Multi-Stanza model was chosen
over the Individual Base Model, as it is more reliable for model building, as well as faster in
computation (Walters et al., 2010), although Espinosa-Romero et al. (2011) found that Individual

Based Model provided more conservative prediction for biomass production.



Model Capacitity
Initialisation type calculation Fit Relative fit
EBB MSM H
EBB MSM C&H -0.176 -1.529
EBB MSM C -0.247 -1.743
EBB IBM H
EBB IBM C&H -0.169 -1.508
EBB IBM C -0.203 -1.610
EBB PDE H
EBB PDE C&H -0.157 -1.470
EBB PDE C -0.242 -1.726
HAB MSM H
HAB MSM C&H -0.167 -1.501
HAB MSM C -0.247 -1.743
HAB IBM H
HAB IBM C&H -0.162 -1.486
HAB IBM C -0.203 -1.610
HAB PDE H
HAB PDE C&H -0.161 -1.484
HAB PDE C -0.242 -1.726

Table A.1. Combination of initialisation settings and their performance. EBB: Ecopath Base
Biomass; HAB: Habitat-Adjusted Biomass; MSM: Multi-Stanza Model; IBM: Individual Based
Model; PDE: Partial Differential Equation; H: Habitat only; C&H: Capacity and Habitat; C: Capacity
only. All other parameters are at default. Colour scale indicates the value of fit: light shades of grey

indicate low fit, dark shades of grey indicate high fit.

A.2.3. Habitat assignment

Following Mackinson and Daskalov (2007), groups were assigned to habitats on the basis of
surveys of biomass distribution where available. ICES International Bottom Trawl Surveys (IBTS)

and ICES Benthic Survey were used for most groups, in particular fish and macro-invertebrates.



The survey data are available at the same spatial resolution on which the Ecospace map cell grid
was based, i.e. cells of 0.5 degrees in Latitude and 1 degree in Longitude, corresponding to ICES
statistical rectangles. For all fish groups and most macro-invertebrate groups, biomass distribution
data were used to calculate the relative density for each cell. For each group, biomass for each cell
from IBTS survey was averaged between 1985 and 1995 to obtain an estimate of the long-term
average for 1991, the base year of the model. For each habitat, average biomass was calculated
(sum of biomass in cells/number of cells). Sum of all average biomasses was then calculated, and
finally the relative density for each habitat was obtained as: average biomass for that habitat/sum
of all average biomasses. For each species, the relative abundance in each habitat was thus
obtained, summing across all habitats to unitary value. The relative biomass value for each habitat

was then used in the Ecospace model.

For the groups Baleen whales, Toothed whales, Seals and Seabirds, habitat was assigned based
on different sources. Species included in each of these groups were unchanged from the
Mackinson and Daskalov (2007) model. Baleen whales (here only considering minke whales,
Balaenoptera acutorostrata) are generally more abundant in the western North Sea (ICES, 2012).
Abundance estimates available from SCANS (Small Cetacean Abundance in the North Sea
survey, Hammond et al., 2002), Atlas of Cetaceans (Reid et al., 2003), and SCANS Il final report
(SCANS-II, 2008), all indicate higher abundance in the northern-central and western North Sea
(roughly corresponding to habitats “62-115 m depth” and “Coastal”, of the Ecospace map, figure
A.1). Data from Reid et al. (2003) covered the 1979-1997 time-window, which was considered a
reliable proxy for a long-term average close to the situation in 1991. SCANS Il final report provides
maps from 1994 and 2005, the former being used here as a proxy for 1991. Therefore, habitat for
Baleen whales was decided to be “52-115 m” depth and “Coastal”. Toothed whales considered in
this model were harbour porpoise (Phocoena phocoena), Atlantic white-sided dolphin
(Lagenorhynchus acutus) and white-beaked dolphin (Lagenorhynchus albirostris). In SCANS I
final report, the distribution of harbour porpoises in 1994 and 2005 is provided. The 1994 figure is
used a basis for Ecospace habitat for Toothed whales. Lagenorhynchus spp. have much smaller

biomass and distribution, so porpoises were used as proxy for the distribution of the whole Toothed
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whales group. From this and other sources (Hammond et al., 2002; Reid et al., 2003), Toothed
whales were set to habitats “22-51 m”, “52-115 m” and “Coastal’. The habitat for seals was mainly
determined based on information contained in ICES (2012). Habitat for seals was thus set as “<21
m”, “62-115 m”, “>115 m” and “Coastal”’. Habitat for seabirds was based on species (or genus)

maps for distribution from the online database Eurobis (http://bio.emodnet.eu/portal/index.php)

from MarBEF (2004). All the 12 seabird species included in this group are widely distributed on the
whole basin (except shag and great skua, only present on the west part of the North Sea). Based

on this information, the Seabird group was assigned to all habitats in the Ecospace model.

Three groups of macro-invertebrates (Squids and cuttlefish, Large crabs, Nephrops) were present
in both the IBTS and the Benthic Survey and the habitat estimation was applied for both survey
data. Only for the Large crabs the results are similar, while there are some differences, probably
due to sampling method, in the other groups among surveys. For the final model, habitat selection

was based on data from the Benthic Survey.



A.3. Parameter exploration

A.3.1. Definition of sub-parameters

To reduce parameter dimension, we did not explore variations to parameters in all 68 trophic
groups included in the model. We instead lumped the groups into macro-groups based on
ecological similarities and according to the method used by, among others, Chen et al. (2009) and
Fouzai et al. (2012). All groups were thus divided between fast-moving (“Pelagic”), slow-moving
(“Demersal”) and static organisms (“Invertebrates”). See table A.2 for classification of the groups to
macro-groups. These macro-groups were then investigated separately and in combination and
considered as “sub-parameters”. For the fleets, we only investigated 6 out of 12 fleets included in
the model because limitation in data availability did not allow us to investigate dynamics for all of
the fleets. Fleets were grouped into three macro-groups: two of them corresponding to a single
fleet (Beam and Pelagic trawl) while the Otter trawl included multiple fleets (Otter trawl proper,
Shrimp trawl, Nephrops trawl and Sandeel trawl). The three macro-groups were used as sub-
parameters for those parameters focusing on the fleet dynamics, namely Effective Power and Total

Efficiency Multiplier.

Group Name Base Dispersal Rate Macro-groups
Baleen whales 652.437 Pelagic
Toothed whales 974.725 Pelagic
Seals 275.124 Pelagic
Seabirds 275.124 Pelagic
Juvenile sharks 78.607 Demersal
Spurdog 275.124 Demersal
Large piscivorous sharks 275124 Pelagic
Small sharks 78.607 Demersal
Juvenile rays 78.607 Demersal
Starry ray + others 157.214 Demersal
Thornback & Spotted ray 157.214 Demersal
Skate + cuckoo ray 157.214 Demersal



Juvenile Cod(0-2, 0-40cm) 110.050 Demersal

Cod (adult) 196.517 Pelagic
Juvenile Whiting (0-1, 0-20cm) 110.050 Demersal
Whiting (adult) 157.214 Pelagic
Juvenile Haddock (0-1, 0-20cm) 110.050 Demersal
Haddock (adult) 157.214 Pelagic
Juvenile Saithe (0-3, 0-40cm) 110.050 Demersal
Saithe (adult) 196.517 Pelagic
Hake 196.517 Demersal
Blue whiting 157.214 Pelagic
Norway pout 500.000 Pelagic
Other gadoids (large) 157.214 Demersal
Other gadoids (small) 157.214 Demersal
Monkfish 157.214 Demersal
Gurnards 157.214 Demersal
Herring (juvenile 0, 1) 110.050 Pelagic
Herring (adult) 157.214 Pelagic
Sprat 78.607 Pelagic
Mackerel 235.820 Pelagic
Horse mackerel 1000.000 Pelagic
Sandeels 75.000 Pelagic
Plaice 75.000 Demersal
Dab 75.000 Demersal
Long-rough dab 78.607 Demersal
Flounder 78.607 Demersal
Sole 78.607 Demersal
Lemon sole 78.607 Demersal
Witch 78.607 Demersal
Turbot and brill 78.607 Demersal
Megrim 78.607 Demersal
Halibut 78.607 Demersal
Dragonets 78.607 Demersal
Catfish (Wolf-fish) 157.214 Demersal
Large Demersal fish 157.214 Demersal
Small Demersal fish 78.607 Demersal
Miscellaneous filterfeeding pelagic fish 141.492 Pelagic
Squid & cuttlefish 141.492 Demersal
Fish larvae 29.871 Invertebrates
Carnivorous zooplankton 29.871 Invertebrates
Herbivorous & Omnivorous zooplankton 29.871 Invertebrates

Gelatinous zooplankton 78.607 Invertebrates



Large crabs 20.000 Demersal

Nephrops 5.000 Demersal

Epifaunal macrobenthos (mobile grazers) 30.000 Demersal

Infaunal macrobenthos 5.000 Invertebrates
Shrimp 29.871 Demersal

Small mobile epifauna (swarming crustaceans) 29.871 Invertebrates
Small infauna (polychaetes) 29.871 Invertebrates
Sessile epifauna 29.871 Invertebrates
Meiofauna 29.871 Invertebrates
Benthic microflora 29.871 Invertebrates
Planktonic microflora 29.871 Invertebrates
Phytoplankton 29.871 Invertebrates
Detritus - DOM -water column 29.871 Invertebrates
Detritus - POM - sediment 29.871 Invertebrates
Discards 10.000 Invertebrates

Table A.2. Base Dispersal Rate values from Mackinson and Daskalov (2007) and assignation to
macro-groups used in this study. The distinction in “Pelagic”, “Demersal” and “Invertebrates”

corresponds to wide-range, medium-range and small-range dispersing organisms, respectively.

A.3.2. Upper range limits

For those parameters which do not have a specified upper range limit (namely, Base Dispersal
Rate, Effective Power and Total Efficiency Multiplier), an upper limit was set for this study. Upper
limit for Base Dispersal Rate was based on the highest value used by Mackinson and Daskalov
(2007). The value of 1000 km/year was therefore considered as the upper limit of realistic dispersal
value. However, since accurate information on dispersal are lacking, it was considered appropriate
to include a “buffer” on the upper limit of realistic values. Larger values (up to and over 20000
km/year) were therefore explored. Threshold for inclusion in the final range was arbitrarily set to
twice the reported maximum value of dispersal. Values of up to 2000 km/year (twice the “realistic”
value) were therefore included in the range for Pelagic and Demersal. For Invertebrates,
furthermore, preliminary analyses showed that values above 300 km/year provided negligible
changes in fit, while values in the lower limit provided most of the change. For this reason, the

upper limit for Invertebrates was set at 300. Upper range limits for Effective Power and Total
11



Efficiency Multiplier were based on exploratory analyses. For Effective Power, the range studied
includes “realistic” values (roughly between 0.5 and 10, Carl Walters Pers. Comm.). Buffer values
below and above the realistic values were explored. Values between 0 and 1 provided very little
deviation from default fit and where therefore not included in the final range. Values above 10
provided large changes in fit and were included in the final exploration as buffer. Upper range limits
were specific for each sub-parameter, and were selected as the highest values before the model
collapsed. For Power Effort, these were 30, 150 and 37 for the sub-parameter Otter trawl, Pelagic
trawl and Beam trawl respectively. For Total Efficiency Multiplier, these were 1.3, 3 and 1.5 for the
sub-parameter Otter trawl, Pelagic trawl and Beam trawl respectively. See table 1 and table A.3.a-

h.

A.3.3. Sub-parameters exploration

The exploration of sub-parameters took a number of steps:

LT L]

i) Initially, each sub-parameter (“Pelagic”, “Demersal”’, “Invertebrates” for species-related

parameters and “Pelagic”, “Otter” and “Beam” for fleet-related parameters) was explored
individually throughout its range (for example, from 0 to 100 by steps of 10 for a parameter

restrained between 0 and 100).

ii) Then, for each of the three sub-parameters a subset of values were selected, including the
lowest value (0 or 1) and the highest (100 in this example), as well as intermediate values (50 in
our example). Also, values at which the individual parameters exhibited peculiar behaviour (e.g.,
sudden changes of slope, threshold values above which the response curve flattened) were further
investigated. The rationale for this was to reduce the number of parameter values to explore under

interaction.

i) The selected subsets of parameter values were explored in a three-way interaction for each of
the three sub-parameter values, and for each of the six parameters studied. Matrices reporting the

fit between data and model prediction for each combination for parameters Base Dispersal Rate,
12



Relative Vulnerability, Effective Power and Total Efficiency Multiplier are provided in table A.3 with
both absolute fit (table A.3.a, c, e, g) and relative fit (table A.3.b, d, f, h). Relative fit is given as the
percentage change that the model provides as compared with default values. For default values,
the percentage change is of course equal 0. Models with percentage change >0 correspond to an
improvement and vice versa. Changes of parameters Relative Dispersal in Bad Habitat and
Relative Feeding Rate in Bad Habitat did not result in any change of fit of model. These

parameters were therefore not further investigated and are not shown here.

A.3.4. Parameter interaction

For the exploration of parameter interactions, a sub-set of parameter values was selected so to
represent the overall range of possible values assumed. For each parameter, three levels were
selected: high (with all sub-parameters at the highest value of their range), low (all sub-parameters
at lowest value of their range) and intermediate (all sub-parameters set at the median or closest
lower value). For example, the three values selected for the parameter Total Efficiency Multiplier

were:

low: Otter = 0.1, Pelagic = 0.1, Beam = 0.1;

intermediate: Otter = 1, Pelagic = 1, Beam = 1;

high: Otter = 1.3, Pelagic = 1.5, Beam = 3.

This method allowed exploring across all ranges of all sub-parameters. A combination of 34 =64

parameter combinations was finally used for the parameter interaction analysis.

13
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A.4. Limitations, assumptions and robustness checks

A.4.1. Method limitations and assumptions

The results of this study are dependent on a number of factors which might affect the outcome,

some of which are discussed below.

The method used to control model performance, Spearman’s rank correlation between model
prediction of biomass and effort for each cell and spatially resolved observations, allows evaluating
areas with “good” and “bad” prediction capacity. The ranked correlation evaluates to what extent
the rank of predictions follows the rank of data looking at cell-by-cell prediction and data values.
Correlation is therefore capable of showing if the model is predicting high values in cells where
data values are high, and vice versa; but it does not allow quantitative evaluation of the absolute
values of residuals (as would, for example, Mean Sum of Square). Mean Sum of Square (MSS)
was also calculated and the results were qualitatively similar to those of correlation. However,
correlation has the advantage of being limited between -1 and +1, which makes it easy to interpret
and compare across parameter values and potentially between different models. For this reason
correlation was chosen as measure of fit for this study. The total measure of fit was calculated with
an objective function which used the median of all correlations for each year, and then the mean of
all yearly medians. Medians were used due to the large dispersion of values across groups (with
some species being around 0.8, some fleets down to -0.7). Between years, however, values were
not so dispersed; therefore mean was chosen over median. An alternative objective function based
on the median of medians overestimated the fit, providing higher total value than mean of medians.
For these reasons, the objective function finally used to measure total fit was based on the mean of

medians of Spearman’s rank correlations across species and fleets.

The Ecospace model is strongly dependent on its underlying Ecopath with Ecosim model. For this
study we did not modify the underlying Ecopath and Ecosim models. Therefore the results could
differ for alternative parameterization of Ecosim. However, investigation over sensitivity to the
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Ecosim vulnerability (see section A.4.2) showed moderate influence of Ecosim vulnerability setting
on the Ecospace fit, with differences in spatial fit being influenced more by changes in Ecospace
parameters than in Ecosim vulnerability. Only when vulnerability in Ecosim was set equal to 10 for
all groups, the performance of Ecospace was affected visibly. This finding confirms once again that
having a fully calibrated Ecosim model is fundamental in order to build a correct Ecospace model,
however Ecospace parameters seemed to be more important for spatial distribution than Ecosim

parameters.

Some of the Ecospace parameters related to initialisation, in particular the “Initialisation” and the
“Model Type” for age-structured groups (Multistanza or Individual Base Model), were explored
through combinations of these parameter settings, without performing a full sensitivity analysis,
and we did not however observe major differences (see section A.2.2). The IBM model performed
slightly better than the Multistanza model. The latter was however used because it is considered to

be better for model building and fitting (Walters et al., 2010).

The model used in this study did not include Ecospace factors such as advection, primary
productivity, and migration, which can be important for spatial distribution of fish species (e.g.,
Martell et al., 2005; Steenbeek et al., 2013). It is possible that inclusion of such data would provide

better prediction for fish species, adding realism to the model.

Cost and price data are important for the effort allocation model, however they are also difficult to
obtain. Robustness check with changes in prices and costs did not show any noticeable change in

the model performance (see section A.4.2), and fleet distribution prediction did not improve.

Temporal and spatial resolution of the datasets might also be a reason for poor model predictions:
effort data from STECF are resolved yearly, however they are a combination of a process that take
place on a different scale, i.e. on a daily or weekly basis. Data could therefore not be reflective of
the real effort distribution, a problematic extending also to the biomass data, which is known to be
spatially dependent (Lewy and Kristensen, 2009). Effort spatial data and the aggregated effort data

(used in the Ecosim model) were compared (aggregating the spatially resolved data). The two
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datasets overlap for only four years. Demersal and Beam trawls resulted to have a high fit between
spatial and aggregated time series. Pelagic trawl had a negative fit. Due to the few comparable

years, the results were not significant, and these results should be interpreted cautiously.

Spatial coverage of effort data might also represent a problem: the STECF dataset of spatially
resolved effort data cover most, but not all cells in the study area. It is possible that data availability
for the first years of compilation of the dataset (used for the present study) was limited for some
fleet-regions combinations. Other sources of effort data could be available through the Vessel
Monitoring System (VMS). However these data are presently only available at national level and

not for all fishing nations that operate in the study area.

Species groups and fleets groups were aggregated in order to reduce the dimensionality of the
model. Species were grouped into sub-parameters (as explained in subsection A.3.1) based on
their ecological characteristics. This grouping could affect the overall result of the model. We
compared the results with model runs using alternative species grouping (using species dispersal
setting at species level, as from Mackinson and Daskalov (2007). The model results were very
similar, and in particular the fleet fit did not change noticeably when species were not grouped.
This suggests that the lumping criteria for species used in this study did not affect the results.
Fleets groups were also lumped into sub-parameters. Demersal Otter trawl sub-parameter was a
macro-group including Otter trawl proper, and other trawler fleets: Shrimp trawler, Nephrops
trawler, and Sandeel trawler. These were separate fleets in the Ecospace model but no separate
data were available for the effort data from STECF. Since the four fleets were assumed to have
similar behaviour, they were aggregated into one macro-group for the analysis. Parameters were
therefore changed for the four fleets in Ecospace accordingly. The implication of this assumption
might imply a slightly different response for the Otter trawl fleet, but would not touch upon the
beam and pelagic fleet in any case, thus not affecting the overall result of the study. Robustness
checks were run with alternative fleet assignation, which showed that results were similar with

alternative settings, with only minor differences (A.4.2.6). Under the combinations “Otter +

22



Shrimp”, the fit for Demersal trawl improved slightly but noticeably. However, the fit of some

species declined, bringing the overall model fit to lower levels than the default combination.

A.4.2. Robustness check

For some of the parameters we explored variation with alternative setting across a range of model
parameters. We used 4 models representing the parameter ranges: Low, High (with all influential
parameters at minima and maxima of their ranges, respectively), Default, and a “Conservative”
model, with values arbitrarily set at an intermediate level. For each parameter tested, we selected
a range of scenarios. This allowed to check whether the results obtained through the model are
sensitive to any of the model assumptions, by observing whether the variation in model fit depend
more on model settings (i.e. High, Low, Default or Conservative settings) or on the parameter
scenarios. Parameters tested for robustness were Cost, Spatial cost, Prices, Ecosim vulnerability
and a No fishing scenario. Cost and Prices are input of the Ecopath model, while Spatial cost was
calculated by Ecospace based on the port distribution, retained for this model from the Mackinson

and Daskalov (2007) model.

A.4.2.1 Cost

Costs are specified in Ecopath and divided into Fixed, Variable and Sailing costs (with Sailing cost
being at 0 in the used model). The alternative scenarios explored changes in model fit with: all
costs set at 0; Variable costs set at 0; Sailing costs being set at the values of Variable costs; costs
being set without subsidies (following Heymans et al., 2011). All these scenarios were compared
with the “normal” case, with all cost input at default. The expected differences across scenarios
should be dependent on the changes that cost assignment should have on the gravity model for
fleet effort assignment, and hence on the fleet fithess to data (and indirectly also affecting species

distribution through fishing). See figure A.2 and table A.4.
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Figure A.2. Robustness check for cost

Normal Without subsidies All at 0 Variable costs at 0  Sailing costs
Low 0.305 0.305 0.306 0.303 0.300
Conservative 0.393 0.393 0.393 0.415 0.415
Default 0.333 0.333 0.333 0.355 0.355
High 0.424 0.424 0.424 0.443 0.442

Table A.4. Robustness check for cost

A.4.2.2. Spatial cost

Spatial cost scenarios investigated were based on alternative ports settings, since the spatial cost
layer were automatically generated by Ecospace on the basis of fleet-specific home port
designation and variable costs. We therefore tested an “all port” scenario where every fleet is
allowed in any port; a “no port” scenario” where no fleet has favoured ports; and a scenario where

all fleets have the same set of favoured port (we arbitrarily chose three cells on the Danish coast
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as ports). These scenarios were compared with a “normal scenario with all ports set as default.

The expected differences across scenarios should depend on the role that spatial costs play in the

gravity model, and on how it affects the different fleet fithess to effort data and indirectly also

species’ fithess to biomass data. See figure A.3 and table A.5.
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Figure A.3. Robustness check for Spatial cost
Normal All ports  No ports  All same ports
Low 0.305 0.306 0.305 0.305
Conservative 0.393 0.393 0.393 0.393
Default 0.333 0.333 0.333 0.333
High 0.424 0.424 0.424 0.424

Table A.5. Robustness check for Spatial cost
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A.4.2.3. Price

Price scenarios investigated were aiming at identifying the sensitivity of the model to changes in
the magnitude of price or in the species composition. The “price 10 times” scenario increased ten-
fold all price data, and the “only target” scenarios set at 0 all prices for non-target species (i.e. only
the 12 selected species). The rational for this was that many fleets target specifically species with
low value (e.g. forage fish) but accidentally capture other species with higher price. Nonetheless,
their fishing pattern is determined by the target species and not by the by-catch. Expected changes
from these scenarios should depend on the changes in profitability expected by each fleet with an
increase in price of their catches, and thus a change of the spatial effort patterns. See figure A.4

and table A.6.

0.5

<

0.4+

0.3
-
(T8
0.2
0.1
" Low
® Conservative
4 Default
0.0 1 ® High
= o 0
3 = 2
‘© = 3
© o 8—
(0] 3 -
g g =
- & S
>
c
(@)

Figure A.4. Robustness check for Price

26



Price default Price 10 times Only target spp.

Low 0.305 0.305 0.306
Conservative 0.393 0.393 0.392
Default 0.333 0.333 0.335
High 0.424 0.424 0.423

Table A.6. Robustness check for Price

A.4.2.4. No Fishing

A “no fishing” scenario was investigated to explore whether the model fit changed when no fishing
occurred. In Ecospace, fishing fleet can be allowed to fish in one or more habitats; for the “no
fishing” scenario, all fleets were set as not allowed to fish in any of the habitats. This scenario was
compared with a “default” scenario. For this scenario, furthermore, the biomass-specific fit was
also investigated. The expected results were to see if the “no fishing” scenario would produce
scarce fit. The fit on biomass only, instead was explored to test whether the lack of fishing would

affect somehow the fish species distribution. See figure A.5 and A.6 and table A.7 and A.8.
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Default total fit

No fishing total fit

Low 0.305
Conservative 0.393
Default 0.333
High 0.424

0.403
0.414
0.398
0.440

Table A.7. Robustness check for “no fishing” Total Fit
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Figure A.6. Robustness check for “no fishing” Biomass Fit

Default biomass fit

No fishing biomass fit

Low 0.393
Conservative 0.479
Default 0.419
High 0.522

0.403
0.414
0.398
0.440

Table A.8. Robustness check for “no fishing” Biomass Fit
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A.4.2.5. Ecosim vulnerability

The vulnerability in Ecosim was explored through 4 scenarios by setting it at default (i.e. with

values from the model used in this study), all species at 1, all species at 2 and all species at 10.

The changes in performance of the model were expected to explain if the Ecospace performance

depends on the Ecosim parameters setup. Under the scenario V10 a slight improvement of the fit

of Demersal trawl was observed. This suggests that the parameterisation of Ecosim vulnerability

can have an effect on Ecospace spatial distribution of effort, through species distribution. See

figure A.7 and table A.9.
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Figure A.7. Robustness check for Ecosim vulnerability setting
V default V1 V2 V10
Low 0.296 0.333 0.326 0.105
Conservative 0.394 0.413 0.400 0.324
Default 0.333 0.351 0.346 0.370
High 0.424 0.385 0.425 0.321

Table A.9. Robustness check for vulnerability
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A.4.2.6. Setting of the macro-group Demersal trawl

Otter trawl macro-group assignation was explored by testing the default assignation (with Otter,
Nephrops, Sandeel and Shrimp trawlers lumped together) against other assignations: Otter trawl
alone, Otter and Nephrops trawls lumped, Otter and Sandeel trawls lumped, Otter and shrimp

trawls lumped. See figure A.8 and table A.10.
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Figure A.8. Robustness check for Demersal trawl Setting
Default Only Otter Otter + Nephrops Otter + Sandeel Otter +Shrimp

Low 0.322 0.319 0.302 0.328 0.324
Conservative 0.395 0.348 0.347 0.386 0.353
Default 0.331 0.331 0.331 0.331 0.331
High 0.423 0.380 0.381 0.415 0.385

Table A.10. Robustness check of Demersal trawl Setting
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Abstract

The survival of fish eggs and larvae, and therefore recruitment success, can be criti-
cally affected by transport in ocean currents. Combining a model of early-life stage
dispersal with statistical stock-recruitment models, we investigated the role of larval
transport for recruitment variability across spatial scales for the population complex
of North Sea cod (Gadus morhua). By using a coupled physical-biological model, we
estimated the egg and larval transport over a 44-year period. The oceanographic
component of the model, capable of capturing the interannual variability of tem-
perature and ocean current patterns, was coupled to the biological component, an
individual-based model (IBM) that simulated the cod eggs and larvae development
and mortality. This study proposes a novel method to account for larval transport
and success in stock-recruitment models: weighting the spawning stock biomass
by retention rate and, in the case of multiple populations, their connectivity. Our
method provides an estimate of the stock biomass contributing to recruitment and
the effect of larval transport on recruitment variability. Our results indicate an ef-
fect, albeit small, in some populations at the local level. Including transport anomaly
as an environmental covariate in traditional stock-recruitment models in turn cap-
tures recruitment variability at larger scales. Our study aims to quantify the role of
larval transport for recruitment across spatial scales, and disentangle the roles of
temperature and larval transport on effective connectivity between populations,
thus informing about the potential impacts of climate change on the cod population
structure in the North Sea.
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temperature
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1 | INTRODUCTION

Recruitment of fish stocks depends largely on survival during the first
year and in particular during the pelagic early-life stages (ELS) in broad-
cast spawning teleost fish (Houde, 2008;Leggett & Deblois, 1994). A
number of factors affect the ELS survival, including temperature, food
availability and predation (Folkvord, 2005;Peck & Hufnagl, 2012). In
addition to these factors, the interannual variability in recruitment
can be influenced by advective transport of eggs and larvae from
spawning to nursery areas (Bailey, 1981;Henriksen et al., 2018).
Recent physical-biological modelling studies have related larval
transport and success to recruitment using various approaches (Peck
& Hufnagl, 2012), including comparisons between modelled larval
survival and observed recruitment (Daewel, Schrum, & Gupta, 2015)
and between modelled and observed juvenile distributions (Huwer,
Hinrichsen, Hussy, & Eero, 2016). One alternative approach to as-
sess the effect of larval transport on recruitment is the application of
stock-recruitment models. Historically, parametric stock-recruitment
models have been used to link variation in stock size with recruitment
success. While the predictive capability of these models remains lim-
ited (Subbey, Devine, Schaarschmidt, & Nash, 2014), inclusion of en-
vironmental variables such as temperature (Akimova, Nufez-Riboni,
Kempf, & Taylor, 2016;Planque, Fox, Saunders, & Rockett, 2003), the
North Atlantic Oscillation index (NAO) (Brander & Mohn, 2004), sur-
face wind speed (Hare, Brooks, Palmer, & Churchill, 2015), zooplank-
ton prey availability (Olsen et al., 2011) and interactions between
these factors (Duplisea & Robert, 2008;0lsen et al., 2011) can help to
identify key biological mechanisms driving the interannual variability
in stock-recruitment. We hypothesise that accounting for transport
variability in stock-recruitment models can help to explain parts of
the observed recruitment variability. In fact, it has been suggested
that ELS transport could be one of the drivers behind the unclear
relationship between spawning stock size and recruitment (Huwer
et al., 2016). While some studies have included proxies of larval
transport in stock-recruitment relationships (Baumann et al., 2006;
Zimmermann, Claireaux, & Enberg, 2019), few have included direct
estimates of larval transport (but see Hidalgo et al., 2019).

Moreover, transport can influence connectivity among popula-
tions (e.g. through interannual variability in oceanographic current
patterns, Huwer et al., 2016;Kvile, Romagnoni, Dagestad, Langangen,
& Kristiansen, 2018) and recruitment dynamics across large geo-
graphic scales (Cadrin, Goethel, Morse, Fay, & Kerr, 2019;Henriksen
et al., 2018;Hinrichsen, Von Dewitz, & Dierking, 2018) and thereby
population management (Fogarty & Botsford, 2007;Hidalgo
et al., 2019;Ramesh, Rising, & Oremus, 2019). Critically, the spatial
scale of observation can affect the stock-recruitment relationship,
providing contrasting results across scales (Chang, Chen, Halteman,
& Wilson, 2016). The importance of environmental drivers for re-
cruitment can also differ across subunits within a stock (Brosset
et al., 2018). We therefore expect the importance of larval transport
variability for recruitment to differ across spatial scales (i.e. basin
vs. sub-basin) and between individual populations. In this study, we
explore alternative approaches to explicitly include larval transport

in stock-recruitment functions, and quantitatively assess the effect
of transport on recruitment across spatial scales. We use annual
estimates of larval retention and population connectivity, obtained
through a coupled physical-biological model of larval drift, focusing
on North Sea cod (Gadus morhua) as a case study.

We initially include retention anomaly as an environmental co-
variate in traditional parametric stock-recruitment model formula-
tions and compare its effect to alternative covariates, namely sea
surface temperature (SST) and the North Atlantic Oscillation index
(NAO). In addition, we propose a novel approach for inclusion of the
effect of larval transport in stock-recruitment models by weight-
ing spawning stock biomass (SSB) according to yearly retention and
advection rates, providing a measure of “effective biomass.” Two
alternative approaches are proposed to account for effective bio-
mass: including only retention in the spawning area of origin (reten-
tion-only SSB, rSSB), and including retention and inflow of larvae
from other areas (net drift SSB, ndSSB), effectively accounting for
connectivity. Additionally, we quantify temporal patterns in popula-
tion connectivity and their relationship with SST and NAO.

2 | MATERIALS AND METHODS
2.1 | Ocean circulation in the North Sea

Ocean circulation in the semi-enclosed North Sea basin is influ-
enced by topography and inflow of North Atlantic water, separat-
ing the basin into a shallow southern and a deeper northern area.
The northern area is influenced by inflow of saline Atlantic water
flowing along the western slope of the Norwegian Trench. This cur-
rent transports the planktonic copepod, Calanus finmarchicus, an
important food source for larval cod (Nicolas, Rochette, Llope, &
Licandro, 2014) and other species, into the region. The current flows
along the Norwegian Trench and into Skagerrak, where it enters the
“Skagerrak loop.” It follows a counterclockwise trajectory along the
Skagerrak coast, and after mixing with the less saline Norwegian
coastal current, flows north-westward along the eastern slope of
the Norwegian Trench and into the Norwegian Sea (Huserbraten,
Moland, & Albretsen, 2018). The southern North Sea is dominated
by continental freshwater run-off and tidal patterns, which in com-
bination with wind and wave turbulence and shallow topography
result in permanent mixing. The intermediate saline current from
the English Channel and the coastal, low saline Jutland Current flow
along the continental coast and into the Skagerrak, entering the

“Skagerrak loop” (Sundby, Kristiansen, Nash, & Johannessen, 2017).

2.2 | Cod populations in the North Sea

Although managed as one stock (ICES, 2018c), North Sea cod com-
prises a number of spatially segregated units, with limited over-
lap and varying degree of connectivity (Heath et al., 2014;Neat
etal., 2014). The main units are the Viking and the South populations.
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The latter is often separated into a South proper (centred around the
Dogger Bank) and a Northwest unit; these two subpopulations are
genetically homogenous but show contrasting demographic trends
and limited adult connectivity, so their relationship is as yet unclear
(Neat et al., 2014). In this study, we considered alternative scenarios
with three populations (Viking, South and Northwest), two popula-
tions (Viking and South including Northwest) and a single popula-
tion (aggregating Viking, South and Northwest), the latter roughly
corresponding to the current management unit. The populations’
spatial extent (Figure 1) was based on ICES (2015). We calculated
larval connectivity between the populations and assessed drift into
the Skagerrak (which is excluded from our populations) and the
Norwegian Sea, Scottish sea and English Channel (hereafter called
“outside”; Figure 1). Particles leaving the study area (i.e. entering the

“outside” area) were considered lost.

2.3 | Early-Life Stage (ELS) dispersal model

To quantify larval retention and connectivity between pop-

ulations, we wused a coupled physical-biological model
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FIGURE 1 Study area showing distribution of populations
(following ICES, 2015) and other potential sink areas for simulated
cod larvae in our study. Nursery areas are overlaid to the
population of appartenance

(hereafter, ELS dispersal model) for the time period 1971-2014
and included the model output in statistical stock-recruit-
ment models for the same years. The individual-based model
(IBM) simulates development and transport of cod eggs and lar-
vae based on earlier studies of larval cod (Kristiansen, Lough,
Werner, Broughton, & Buckley, 2009;Kristiansen, Stock,
Drinkwater, & Curchitser, 2014;Kristiansen, Vikebg, Sundby, Huse,
& Fiksen, 2009). The IBM is integrated as a module in the open
source Lagrangian particle tracking framework OpenDrift (github.
com/opendrift; Dagestad, Réhrs, Breivik, & Adlandsvik, 2018;Kvile
et al., 2018), and the code for the cod eggs and larvae module is
available on github.com/trondkr/KINO-ROMS/tree/master/Romag
noni-2019-OpenDrift. To simulate transport with ocean currents
and temperature-dependent development, the IBM was coupled
offline to a reanalysis of the regional ocean circulation model ROMS
(Shchepetkin & McWilliams, 2005) configured for ocean regions
covering the Nordic Seas (including the North Sea) and parts of the
Arctic Ocean, with 4 km horizontal resolution, 32 vertical layers
and output stored daily (Lien, Gusdal, Albretsen, & Melsom, 2013).
For downloading options, see http://thredds.met.no/thredds/
nansen_daily.html. Further details on the characteristics and limita-
tions of the ELS dispersal model are available in Kvile et al. (2018).

Due to long-term and interannual variation in the relative impor-
tance of spawning grounds (Gonzalez-Irusta & Wright, 2016;Sundby
et al., 2017) and the uncertainty in spawning ground locations early
in the time series, we released particles representing cod eggs
uniformly within the three populations’ spatial extent (Figure 1).
Although this could reduce the precision of connectivity estimates
in some years, we considered this approach as more conservative
when modelling larval transport over a long time period including
years with unknown spawning ground distribution. To obtain uni-
form spatial distribution (0.12-0.14 eggs/kmz), we set the number
of eggs released based on the sizes of the population areas: ~32,400
in the South (~270,000 km?), ~22,950 in the Northwest (~170,000
km?) and ~27,000 in the Viking area (~200,000 km?), for a total
of ~91,500 eggs.

We defined the timing of egg release using prior knowledge
of the population spawning periods (Brander, 1994, 2005;Fox
et al., 2008): between December 15th and April 15th for the South
population, between January 1st and May 1st for the Northwest
population and between February 1st and May 15th for the Viking
population (Figure 2a). The number of eggs released per day fol-
lowed a Gaussian distribution, N(g, &%), where u=1and s =0.25,
scaled to the length of the spawning season and the total num-
ber of particles defined per population area and with peaks that
approximately matched the spawning peak described by Brander
(1994). Setting a broader spawning season than observed in re-
cent years accounts for uncertainty in the spawning season early
in the time series. For example, spawning was allowed to start in
December for the South population to account for the fact that the
Southern Bight component, which spawns earlier than the German
Bight and Central-west (Brander, 1994), was more abundant in the
past.
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Eggs were released in equal numbers at 10 m depth intervals be-
tween 0 and 50 m (i.e. for a given population, an equal number of
eggs was uniformly released at 0, 10, 20, 30, 40 and 50 m). After
release, eggs and larvae were advected horizontally at fixed depths
using an Euler interpolation scheme without horizontal diffusion
and a 1-hr time step. The Euler scheme differed minimally com-
pared to a more computationally costly Runge-Kutta scheme (Kvile
et al.,, 2018). We used different drift depths to represent vertical
movement within the depth range typically available in the North
Sea, based on the finding that incorporating a more computationally
costly vertical movement behaviour had limited effect on connec-
tivity and retention of cod ELS at settlement in the North Sea (Kvile
et al., 2018). Development time of planktonic eggs (d, days) was a
function of the ambient sea water temperature (T, °C) according to

the ocean model reanalyses, parameterised based on observations
for cod eggs (Langangen, Stige, Yaragina, Vikebg, et al., 2014, based
on data in Ellertsen, Fossum, Solemdal, Sundby, & Tilseth, 1987,
Figure 2b):

Ind=3.65-0.145xT 1)

After completing the egg stage, the simulated individuals hatch
into cod larvae. The simulated cod larvae grew with a growth rate
(GR, percentage of larval weight/day) depending on larval weight (W,
mg) and ambient temperature (T), as estimated experimentally for
Atlantic cod larvae (Folkvord, 2005) (Figure 2c):

GR=1.08+1.79xT—0.074xTxIn W=0.0965xTxIn W2+0.0112x Tx In W?
(2)
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Larvae were assumed to feed ad libitum, and their initial weight
was set at 0.08 mg. Larval length (L, mm) was a function of weight
(Folkvord, 2005) (Figure 2d):

| = 2:296+0.277xIn W-0.005128xIn W2 (3)

We assumed that cod larvae had no directional horizontal
(swimming) movement. During the simulation, eggs were subject to
a fixed daily mortality rate (m) of 0.2, which is within the range of
mean values estimated in studies of cod eggs (0.1-0.32, Rijnsdorp
& Jaworski, 1990; see Table 2 in Langangen, Stige, Yaragina, Vikebg,
et al., 2014). For larvae, we set the mortality rate to decrease with
weight (Figure 2e) as parameterised for North Sea cod larvae in
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FIGURE 3 (a) Sea surface temperature (SST) by population area
across the three, two and single populations cases, and the NAO
index. (b) Spawning stock biomass (SSB) by population area across
the three, two and single populations cases

Akimova, Hufnagl, Kreus, and Peck (2016), based on the size-spec-
trum theory (Peterson & Wroblewski, 1984):

m=0.06x W04 )

The survival probability of each individual was updated throughout
the simulation according to the mortality rate (i.e. individuals were not
removed from the simulation), following a super-individual approach
(Scheffer, Baveco, DeAngelis, Rose, & van Nes, 1995).

Larvae settled when reaching a length >49 mm (Bastrikin,
Gallego, Millar, Priede, & Jones, 2014). Only larvae settling within
known nursery areas for North Sea cod (based on Heath et al., 2014;
see Figure 1) were considered to successfully settle and survive;
larvae that reached settlement length outside nursery areas were
considered dead (hereafter “not settling”). Larvae not reaching set-
tlement length by the end of the simulation (set to 15th August for
South and 29th September for Northwest and Viking) were consid-
ered dead (amounting to <1% of larvae, not included in the analysis).
The juvenile stage was not simulated since cod adopt a demersal life-
style upon reaching settlement length.

For each population, we estimated the proportion of larvae (a)
retained in a nursery area for the given population of origin; (b) drift-
ing into the nursery area of another population; (c) drifting out of
the study area (to the Skagerrak or “outside”) and (d) reaching set-
tlement size within any population area, but not within a nursery
area (“not settling”). Annual values (1971-2014) for these metrics
were included in the stock-recruitment analysis (see below). To test
the robustness of the results of the stock-recruitment analysis to
key assumptions in the larval dispersal model, we performed addi-
tional simulations where the mortality rate (for eggs and larvae) was
adjusted by £20% and separate simulations where settlement size
was adjusted by £20%. We ran these additional simulations for 1990
and 2010, two years with different climatic conditions (high and low
NAO phase, respectively; Figure 3) and contrasting results of larval
dispersal. Parameters included in the ELS model are summarised in
Table 1.

TABLE 1 Parameters used in the ELS model

Parameter Unit Meaning

u Mean of the Gaussian distribution of
eggs spawned per day (1)

o Standard deviation of the Gaussian
distribution of eggs spawned per day
(0.25)
d days Development time of planktonic eggs
T °C Ambient sea water temperature
GR % of larval Larval growth rate
weight/
day
w mg Larval weight
L mm Larval length
m day™ Mortality rate
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2.4 | Observational data

We calculated population-specific estimates of SSB and recruit-
ment (age 1) based on abundance data (1971-2014) obtained
from the ICES North Sea International Bottom Trawl Survey (NS-
IBTS) as catch per unit of effort per ICES statistical sub-rectangle
(ICES, 2018a; Figure 3). Although more accurate abundance esti-
mates could be obtained by using standardised indices instead of
raw data, these are only available from 1983. We instead used raw
data to include a longer time series, spanning years when SSB was
higher, to provide robustness to the stock-recruitment estimates.
We generated annual data of age-specific abundance to match the
ICES statistical sub-rectangle using Catch-Per-Unit-Effort (CPUE)
adjusted for swept area and gear catchability, assuming that the
sample is representative of fish abundance. The swept area is a
function of standardised tow length and net width during tow-
ing, which in turn is a function of tow depth (ICES, 2012). Average
depth per sub-rectangle (NGDC, 1995) was used as a proxy for
tow depth. Catchability coefficient for the survey gear by age
(Fraser, Greenstreet, & Piet, 2007) was multiplied by the ratio of
the swept area to the whole ICES rectangle area. SSB was calcu-
lated as abundance per age multiplied by maturity and weight per
age and year, assumed homogeneous between populations lacking
population-specific data (ICES, 2017). The recruitment index was
estimated by back-calculating abundance of age 1 from averaged
age 2 and 3 abundances scaled by the age- and year-specific natu-
ral mortality (ICES, 2015). As climate variables, we included sea
surface temperature (SST) mean monthly values (ICES, 2018b) for
the period February to June (the period of highest sensitivity of
cod larvae to temperature in this area, Nicolas et al., 2014), re-
solved at ICES sub-rectangles and averaged per population area;
and monthly means of NAO data (NOAA, 2018) averaged per year
(Figure 3).

2.5 | Stock-recruitment models

We used the Cushing parametric stock-recruitment model formula-
tion, following recent literature on North Sea cod (Akimova, Nufez-
Riboni, et al., 2016). We considered model formulations with (a)
drift anomaly included as a covariate or using (b) retention-only SSB
(rSSB) or (c) net drift plus retention of SSB (ndSSB) as an alternative
predictor for recruitment to SSB. Conceptually, the SSB effectively
contributing to recruitment is a fraction of total SSB: rSSB accounts
for the proportion of larvae retained within the population of origin
after settlement. ndSSB accounts both for the proportion retained
and for the number of larvae settling into a population from other
populations, quantified as the fraction of other populations’ SSB

drifted into the population of interest:

rSSB,=SSB,xD,, (5)

ndSSB,=SSB,xD,,,+ Y SSB,xD,,
pp (6)

For any population p in the pool of all populations P, rSSB was
calculated as the product of its SSB and the retention proportion
Dp’p. ndSSB was the sum of rSSB and the summed product of the bio-
mass and drift proportion into p for all other populations in P (Dpyp).

Similarly to the SSB-based models, models with ndSSB and rSSB
were fitted with or without climate variables as covariates (Table 2).
The models thus took the form (Akimova, Nufiez-Riboni, et al., 2016):

R=a§ (7)

Where recruitment R was calculated as a function of the generic
S (either SSB, rSSB or ndSSB). This was extended for inclusion of
climate variable E as:

R=qS+0E) (8)

E was any climate variable (SST, NAO or retention anomaly, RA).
RA was calculated as the annual deviation from the mean larval
retention over the whole time series for a given population, deter-
mined from the ELS dispersal model.

The linear forms of the models (see Appendix S1) were tested
for residuals assumptions, and outliers were removed from the anal-
ysis. Commonly used model comparison methods such as AIC and
likelihood-based approaches could not be used since models with
SSB, ndSSB or rSSB included different data in the predictor variable.
Models were therefore compared through their absolute fit to data
using adjusted R?, with significance threshold set at .05. Adjusted R?
allows highlighting the combinations of predictor and covariates with
highest explanatory power, that is those that improve the model more

than expected by chance, with penalisation of additional parameters.

3 | RESULTS

We compared the performance of stock-recruitment models for
North Sea cod across the three population levels and model for-
mulations (SSB, rSSB, ndSSB, Table 3). At the three populations

scale, models including SST as a covariate (models 2, 6 and 9) have

TABLE 2 Models used in analyses with their predictors and
climate variables

Model Predictor Covariate
1 SSB None
2 SSB SST
3 SSB NAO
4 SSB RA

5 rSSB None
6 rSSB SST
7 rSSB NAO
8 ndSSB None
9 ndSSB SST
10 ndSSB NAO
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highest fit to data for the South and Northwest populations. In
the Northwest population, models with ndSSB have higher fit than
their counterparts with SSB when including no covariate or NAO
(but not with SST). Model performance is generally low for the
Viking population, with only models replacing SSB with ndSSB with
or without SST as covariate (models 8 and 9) showing significant
fit (p < .05). At the two populations scale, results for the South (in-

cluding Northwest) unit are similar to the three populations scale,

but with higher overall fit. In the Viking population, models 1-4
and 5-7 in the two and three population cases are fitted to the
same data and models 8-10 (with ndSSB) give similar results to
the three populations scale. Combining the Northwest and South
populations result in slight changes in connectivity values for the
Viking population. At the single population scale, model 4 using re-
tention anomaly as covariate shows highest fit, followed by model
2 with SST.

TABLE 3 Adjusted R? and p-values for each model (Table 2) and population across the three cases of population scale

South Viking Northwest
Predictor Covariate Adj. R? p Adj. R? P Adj. R? P
1 SSB None .22 .001 .04 .106 .23 .001
2 SSB SST _ .001 .03 .233 _ .000
3 SSB NAO .20 .008 .05 171 19 .011
4 SSB D .22 .005 -.01 445 19 .009
5 rSSB None 21 .001 121 .001
6 rSSB SST _ .001 .185 .000
7 rSSB NAO .23 .005 .218 .012
8 ndSSB None .18 .003 .016 .27 .000
9 ndssB sST 22 oo 027 184 000
10 ndSSB NAO 19 .010 .090 .25 .003
South + Northwest
Predictor Covariate Adj. R? p p
1 SSB None .26 .000 .04 106
2 SSB SST _ .000 .03 .233
3 SSB NAO .24 .003 .05 171
4 SSB D .23 .004 -.01 445
5 rSSB None .25 .000 .03 21
6 rSSB SST L84 000 05 185
7 rSSB NAO .24 .003 .218
8 ndSSB None .25 .000 .010
9 ndSSB SST _ .000 .018
10 ndSSB NAO .23 .004 .068
Single population
Predictor Covariate Adj. R? p
1 SSB None .24 .001
2 SSB SST _ .001
3 SSB NAO .21 .006
4 SSB D _ .000
5 rSSB None 15 .005
6 rSSB SST 21 .007
7 rSSB NAO 14 .031
8 ndSSB None = =
9 ndSSB SST - -
10 ndSSB NAO - -

Note: Darker shades of grey indicate higher adjusted R? (higher model fit and better model performance).

In the single population case, ndSSB is not calculated.
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The interannual variation in SSB, rSSB and ndSSB is largest for the
Viking and Northwest units (Figure 4). The three indices show similar
interannual patterns (but for example the peak around 1985 in Viking
SSB Figure missing in rSSB and ndSSB), but can still result in different
fit to data (Figure 5b), with, for example, higher fit using ndSSB than
rSSB in Viking and Northwest populations (Table 3). Using traditional
SSB with retention anomaly (model 4, Table 3), the effect of retention
is captured at the single population scale but not at the two or three
populations scale. In this case, the effect has a similar magnitude and
effect as the inclusion of SST as covariate (Figure 5a,c).

The interannual variation in retention and connectivity is rela-
tively low (Figure 6). Retention is higher in South (0.39 + 0.08) and
Northwest (0.31 + 0.06) populations compared to the Viking pop-
ulation (0.14 + 0.04). Connectivity among the three populations is
always low. The drift from South to Northwest and Viking popula-
tions is comparable (0.02 + 0.03 and 0.03 + 0.03, respectively). The
drift from the Northwest to South population is slightly higher than
to the Viking population (0.07 + 0.04 and 0.04 + 0.03, respectively),

while drift from the Viking population is low or close to zero to the
Northwest and South populations (0.03 + 0.05 and 0.01 + 0.01,
respectively). The proportion of larvae drifting to the Skagerrak
from the South and Viking populations is similar (0.07 + 0.07 and
0.07 £ 0.06, respectively) while drift from the Northwest popula-
tion is lower (0.02 + 0.03). The proportion of larvae drifting outside
of the study area is low for the South (0.03 + 0.03) and Northwest
(0.07 £ 0.05) populations. In contrast, for the Viking population, drift
to the outside area is higher than the retention rate (0.39 + 0.13).
The proportion of larvae remaining within the study area but not
settling within a nursery area is high for all populations (0.46 + 0.08,
0.48 £ 0.09 and 0.36 + 0.08 for South, Northwest and Viking popu-
lations, respectively). Only drift from the South to the Viking popula-
tion and to the Skagerrak and from South to Northwest populations
significantly increase or decrease, respectively, in time (Table 4).
The NAO and SST indices are significantly correlated with drift
anomalies across population scales (Table 4). SST is positively cor-
related with drift to the Skagerrak at the single population scale
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FIGURE 4 Interannual variation in SSB, rSSB and ndSSB (thick, medium and thin lines, respectively) across populations for the three, two

and single population cases. Note that rSSB and ndSSB are close, but not identical, for the South population. For the single population case,

ndSSB is not calculated



S 11 FY

SSB (1,000 tons)
0 20 60 100

o |
@) ) m) <4 ©
® o G © ©
& ® o @
g » } B
E ~ ‘ B
o © _| &
E = o & ¢
1 S5
o © - IS
i ~ | ©
’ g Max SST & QO ® Max RA
N~ v g —
~ / - ® Mean SST @ rSSB = ® Mean RA
® Min SST © _| © ndSSB Min RA
| | | | | | | | | | | | | |
20 40 60 80 100 120 0 5 10 15 50 100 150 200 250
SSB (1,000 tons) ndSSB, rSSB (1,000 tons) SSB (1,000 tons)

FIGURE 5 Effects of inclusion of covariates and alternative SSB predictors across populations, spatial scale and predictor variables. Data
(dots) and predicted stock-recruitment relationships (lines) for the following: (a) inclusion of SST as covariate (model 2) for the South unit

at the three populations scale; (b) three alternative predictor variables with no covariates (models 1, 5, 8) for the Viking unit at the three
populations scale; and (c) inclusion of retention anomaly (model 4) in the single population case. In (a) and (c), dots colour scale indicates the
covariate anomaly, line colour indicates the model prediction at corresponding maximum, mean and minimum value of the covariate. In (b),
SSB scaled by 107! (open dots, dark grey line) is compared to rSSB (purple dots and line) and ndSSB (orange dots and line)

FIGURE 6 Contribution (retention South Northwest Viking
and proportion of larvae drifted to other
areas) from each of the three populations
(South in red; Northwest in green; Viking
in blue) and numbers of individuals not
settled. (Drift to Kattegat is not shown as
it was always close to 0). “Not settling”
includes larvae that reach settlement
length outside of nursery areas, and
“outside” includes particles drifting out of

|
|
|

00 02 04 06 08 1.0
I

0.0 02 04 06 08 1.0
L

0.0 02 04 06 08 10
I

WALANA WAy

- L0 B i e A - v "
FUadi™ ey T e

(VYo G

s P

- | enmns > 4 _
. 9 T T T T T T T T T T T T T T T
the study area (see Figure 1) S 1970 1990 2010 1970 1990 2010 1970 1990 2010
% Skagerrak Outside Not settling
8 S S Q

o _| © | © |

o o o

© | © | ©

IS o o e

o o o

N N N

o o o

= Abvsta/ hw v/ W O |Aamr A | O

© 5 T T T T © T T T T T 2 T T T T

1970 1990 2010 1970 1990 2010 1970 1990 2010
Year
@m=»  South Northwest @ Viking

and with drift to the Skagerrak and to the Viking unit from all from the Viking to the South populations, reduced retention in the
populations at two and three population scales. SST is negatively South population at the two populations scale, reduced drift from
correlated with drift from Viking to South populations (at two pop- Viking to Northwest populations and reduced retention in the
ulations scale) and with retention in South population (also at two Northwest population at the three populations scale. The number

populations scale). A high NAO phase corresponds to reduced drift of individuals not settling in the Viking population is associated
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TABLE 4 Pearson correlation coefficients between indices of drift, climate and year

Source Sink Years

South South

Northwest - **
Viking 042
Skagerrak 0.48  ***
Outside

3 populations

Not settling
Viking South
Northwest
Viking
Skagerrak
Outside
Not settling
Northwest South
Northwest
Viking
Skagerrak
Outside
Not settling
South
Viking 0.44 **
Skagerrak 0.39 **
Outside
Not settling - *

South
Viking

2 populations South

Viking

Skagerrak

Outside

Not settling
Single population North Sea North Sea
Skagerrak
Outside

Not settling

*
*

*
*
*

*
*
*

o
w
*
*

* *
*
*

SST
NAO SST South SST Viking Northwest
043 ** 043 **
043 ** 0.37 * 042 *

*ok *ok

0.37 * 0.38 ** 0.39 **
0.32 * 046 ** 044 ** O3Sl *
0.39 *

*ok

*ok

*

0.34 * 03 *
0.45 ** 033 * 041 **
0.31 *

0.33 * 04 ** 041 **
0.37 * 048 044 **

*ok

0.37 * 0.33 * 039 **
0.32 * 045 ** 044 **
0.39 **

*k

0.38 * 0.5
0.36 *

*%

Note: “Not settling” represents the proportion of particles that do not reach settlement size within a nursery area and are lost.

Positive correlations are represented in light grey, negative correlation in dark grey.

Asterisks indicate the significance level (***<0.001<**<0.01<*<0.05).
White cells indicate non-significant values at the 0.05 level.

with high NAO. A high NAO is also positively correlated with high
drift into the Skagerrak and outside the study area for all popula-
tions scales except the South population at the three populations
scale.

4 | DISCUSSION

In this study, we combined long-term observational data with
modelled estimates of larval transport to quantitatively assess the

effect of transport on recruitment across spatial scales of obser-
vation, and we propose a novel approach for measuring effective
biomass contributing to recruitment. While the effect of transport
on recruitment has previously been explored using coupled bio-
logical-oceanographic models (e.g. Daewel et al., 2015;Hinrichsen
et al.,, 2016), direct inclusion of ELS dispersal model output in stock-
recruitment models is less common (but see Hidalgo et al., 2019).
Some studies have used proxies for larval transport such as wind
speed (e.g. Hare et al.,, 2015;Koster et al., 2003), water circulation
indices (Zimmermann et al., 2019) or cumulative average depth of
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modelled particles (Baumann et al., 2006). We instead incorporate
estimates of the proportion of cod larvae retained within a popu-
lation and the influx of larvae from neighbouring populations, that
is a more direct proxy for the effect of larval transport (Hidalgo
et al., 2019), and apply this approach to the North Sea cod.

Our results suggest that although larval drift appears to play a
minor role in the recruitment dynamics of North Sea cod, the effect
is comparable in magnitude to the well-established effect of SST
on cod recruitment (Beaugrand & Kirby, 2010;Nicolas et al., 2014).
Similarly, Daewel et al. (2015) found that although correlations be-
tween modelled larval survival and observed recruitment of North
Sea cod were variable and periodically low, effects of transport pro-
cesses and temperature on larval survival were of comparable im-
portance. Comparing different model formulations and population
scales, our analysis captures the interplay between oceanographic
drift and temperature on recruitment patterns across spatial scales
of observation (Figure 7). Specifically, the importance of considering
larval drift depends on the spatial scale of analyses. At the popula-
tion scale, larval transport between populations and larval loss due
to transport affect the recruitment in Viking and Northwest popu-
lations. When aggregating all populations at the basin scale these
effects are diluted, but not dissipated, and are captured through the

retention anomaly (Figure 7).

4.1 | Effective biomass

Estimating effective biomass is a novel approach to account for lar-
val transport compared to using SSB with additive covariates. In tra-
ditional stock-recruitment models, a covariate allows higher (lower)

asymptotic value, that is higher (lower) expected recruitment at a

3 Populations

2 Populations

FIGURE 7 Graphical scheme
summarising the key factors influencing
recruitment of the different populations
across spatial scales: sea surface
temperature (SST), larval inflow (through
connectivity with other populations) and
retention anomaly (RA)

Single Population

W1 LE Y-

given SSB value, while maintaining the shape of the curve (Figure 5a,
c). Incorporating retention anomaly as a covariate, the interpreta-
tion is that a positive anomaly (higher than usual retention) results in
higher level of recruitment compared to the same level of SSB with a
lower drift anomaly. Subbey et al. (2014) point out that model forms
with environmental covariates are generally linear approximations
of non-linear environmental effects, approximations that might be
unreliable or inaccurate. In our case, the linear approximation at the
single population scale captures an overall effect that encompasses
multiple mechanisms operating at finer scale. Conversely, the inclu-
sion of drift as effective biomass allows estimating the contributing
biomass to an observed recruit value and re-designing the curve al-
together (Figure 5b), permitting higher flexibility to data compared
to the traditional SSB.

Spawning stock biomass is a suboptimal variable for predict-
ing recruitment, since it does not capture biological aspects such
as age and size structure, sex ratio, total egg production, skipped
spawning or interannual variability in fecundity or condition (K&ster
et al., 2003; Marshall et al., 2003; Marshall, Needle, Thorsen,
Kjesbu, & Yaragina, 2006; Marteinsdottir & Begg, 2002; Minte-
vera et al., 2019). Marshall et al. (2006) and Kdoster et al. (2003)
show that female-only spawner biomass and predicted potential
egg production are better predictors of realised egg production
than SSB in Northeast Arctic and Baltic cod stocks. Similarly, our
study shows that effective SSB might be a better predictor at pop-
ulation scale for some populations, such as the Viking unit, charac-
terised by large drift to other areas and low retention rate. A similar
result was observed by Hidalgo et al. (2019) who found that re-
tention influenced recruitment in European Hake populations char-
acterised by high drift to and from other areas in the northwest

Mediterranean.

South Northwest

Viking

fg;%g

Inflow Inflow

SST SST

South Viking

S =
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North Sea cod
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4.2 | Effects of drift and climate variables on
recruitment

We investigated the emergent relationships between climate
variables (SST and NAO), connectivity and retention metrics and
recruitment. High SST can influence recruitment through faster de-
velopment and thus increased retention and survival to settlement
(Heath, Kunzlik, Gallego, Holmes, & Wright, 2008). Additionally,
both SST and NAO could be proxies for other phenomena acting at
local scales, such as food availability (Capuzzo et al., 2018;Nicolas
et al., 2014) and flow regimes (Henriksen et al., 2018). NAO and
SST can furthermore be correlated to connectivity and retention
(Table 4). However, these relationships do not necessarily affect
recruitment dynamics. For example, NAO is correlated with reten-
tion and connectivity across populations and scales, but including
NAO as a covariate in the stock-recruitment model does generally
not improve model fit (Table 3). NAO as a proxy thus captures the
phenomena influencing circulation patterns, but not those affecting
actual survival to recruitment.

Sea surface temperature interacts with each population in differ-
ent ways. For the South population, increased SST is correlated with
increased outflow to the Viking and Skagerrak populations; how-
ever, accounting for drift does not improve the stock-recruitment
model fit. This might be due to the limited outflow and high reten-
tion in the South population. The observed effect of SST on recruit-
ment could therefore be due to other mechanisms: for example food
availability (Nicolas et al., 2014), physiological constraints (Butzin
& Portner, 2016;Nunez-Riboni, Taylor, Kempf, Pu, & Mathis, 2019)
and predation by warm-water predators (Akimova, Hufnagl, et al.,
2016). For the Viking population, our results suggest that SST could
influence recruitment through drift both positively and negatively.
In fact, higher SST is associated with increased retention and inflow,
but also increased outflow to Skagerrak. At present, the two effects
seem to counterbalance each other: SST does not influence recruit-
ment according to our model results. However, with increasing SST
this equilibrium, which currently masks the underlying relationships,
might break down with unforeseeable outcomes in terms of mag-
nitude and direction. Recruitment in the Northwest population is
negatively associated with increased SST via reduced drift from the
Viking population. The effects of both SST and inflow on recruit-
ment are strong but not additive (indicated by similar fit of model
2 and of model 8 and 9), and likely reflect the same phenomenon:
increasing temperature corresponds to decreasing inflow, resulting
in lower recruitment for the Northwest population.

For the South population, the importance of SST for recruitment
and its correlation with drift patterns are similar in the three- and
two population scales, indicating that effects of SST (but not of
NAO) on the dynamics of retention, connectivity and recruitment
are dominated by the South component in the combined unit. At
the single population scale, the association between SST and drift
is reduced: SST is correlated with flow into the Skagerrak but not
with retention. At this scale, however, recruitment is affected by SST
and, importantly, by drift. Here the retention anomaly (model 4), but

not rSSB, improves the stock-recruitment model fit. The two models
involve the same variable (retention), but differing mechanisms, as
described in the section “Effective biomass” above.

Overall, our results indicate that the key mechanisms affect-
ing recruitment (summarised in Figure 7) include: SST in the South
population through processes unrelated to larval transport, SST
and transport through the same underlying phenomenon in the
Northwest population, with inflow from the Viking population and
retention being higher in low SST years, and inflow from other popu-

lations into the Viking population (Figure 5b; Table 3).

4.3 | Drift patterns, retention and population
connectivity

The retention and connectivity patterns estimated here broadly re-
flect known patterns for the area. The southern North Sea is charac-
terised by a generally retentive system (Henriksen et al., 2018), while
in the northern area there is a strong flow to the Skagerrak and the
Norwegian Sea (Huserbraten et al., 2018). Consequently, the South
and North populations are generally isolated, with limited connectiv-
ity (Heath et al., 2008). According to our results, connectivity be-
tween the Northwest and South units is higher, but declined from
the 1970s to present, while connectivity between South and Viking
units increased.

Drifting into a suitable nursery area, however, is not enough for
granting survival to recruitment, as density dependence and preda-
tion after settlement might influence successful recruitment into the
new populations (Akimova, Hufnagl, et al., 2016;Heath et al., 2014).
Some studies discriminate potential connectivity (estimated from
modelled particle drift) from effective connectivity using genetic
methods (e.g. Bode et al., 2019;Jahnke et al., 2017). In our study,
effective connectivity is an emerging result of fitting stock-recruit-
ment models to data after inclusion of drift anomaly. Our results
highlight that effective connectivity only affects the Viking and
Northwest populations.

Notably, we assess how larval drift influences recruitment, ir-
respective of whether individuals merge with the host population
or return to the natal population after being accounted as recruits.
For example, our results indicate that larvae from the South unit
enter the Viking area and survive until being accounted as recruit-
ment of the Viking population (shown by higher fit with ndSSB
than rSSB or SSB). However, the Viking and South units show ge-
netic differences, generally considered incompatible with inter-
breeding between populations (Heath et al., 2014). We therefore
speculate that juveniles from the South unit settle in the Viking
area and survive until age 1, to then return to the population of or-
igin. This mechanism, known as homing behaviour and site fidelity,
is known for cod in the North Sea (Neat et al., 2014) and between
the North Sea and Skagerrak (André et al., 2016;Jonsson, Corell,
André, Svedang, & Moksnes, 2016), and is suggested for larvae
drifting from the Norwegian Trench (within our Viking area) to the
Norwegian Sea (Huserbraten et al., 2018).
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Although drift between the North Sea and Skagerrak is well
known (Jonsson et al., 2016), we show here for the first time, to our
knowledge, that larval drift from the Viking and South units into the
Skagerrak is potentially of the same order of magnitude, showing an
increasing trend in time and positive correlation with SST (Table 4).
Although the effective contribution cannot be determined in this
study, trends in larval influx from the North Sea might have impli-
cations for management and recovery of cod in offshore and coastal
areas of the Skagerrak.

Our results are influenced by the assumptions and simplifica-
tions of the ELS dispersal model. However, in a previous study, Kvile
et al. (2018) showed that the present model configuration yields
comparable results to a more realistic but computationally costly
alternative. Specifically, both the inclusion of vertical swimming be-
haviour and the use of a higher resolution ocean model that resolves
tidal circulation had limited effects on larval drift patterns compared
to interannual variations in ocean dynamics. Since our aim here was
to quantify long-term interannual variation in population connec-
tivity, we opted for a less computationally costly representation of
vertical movement using fixed drift depths, and applied the coarser
ocean model that was available for 44 years. Additionally, sensitiv-
ity analyses of the parameterisation of ELS mortality and settlement
size, the latter related to temperature-dependent growth, confirmed
the robustness of the results to these key parameters (Tables A2
and A3 in the Appendix S1). Finally, factors such as spatially explicit
predation pressure and prey fields, variability in fecundity, juvenile
mortality through predation and density dependence upon settle-
ment might all affect recruitment dynamics, but are not accounted
for in this study. These caveats need to be considered in the inter-

pretation of results.

4.4 | Implications for management

Despite the relatively low prediction power and major assumptions
(Subbey et al., 2014), stock-recruitment models are routinely ap-
plied in management for short-term advice (e.g. Punt, 2019), and
there is increasing interest in including spatial structure in recruit-
ment dynamics in stock assessment (Cadrin et al., 2019;Hidalgo
et al., 2019;Punt, 2019). Although reliable ocean current forecasts
are not available in advance, estimates of larval drift can be use-
ful to inform short-term forecasts (Henriksen et al., 2018;Hidalgo
et al., 2019). This effort is however constrained by the availability
and rapid applicability of ocean models in the context of operational
fisheries oceanography (Hidalgo et al., 2019).

We find relatively low fit to data in the stock-recruitment
models for North Sea cod, and inclusion of indices for larval drift
results in relatively small improvements. Considering the compu-
tational cost of running ELS dispersal models, one must therefore
carefully consider the benefits of this approach for the specific case
at hand. Regardless, our study highlights a novel approach for ac-
counting for connectivity in stock-recruitment dynamics, with po-
tential applications for fisheries assessment and management in

stocks characterised by highly dynamic oceanographic conditions.
Adopting spawning output metrics that account for effective con-
nectivity, for example, could affect the determination of biological
reference points (Minte-vera et al., 2019), with direct implications
for management. For example, relationships between drift, tempera-
ture and recruitment across populations (Figure 7) have implications
for management of the North Sea cod population complex in the
context of a changing climate (Nunez-Riboni et al., 2019).

Future research should focus on how climate change can influ-
ence larval transport, survival of larvae drifting between units and
homing behaviour. Understanding these aspects, and developing op-
erational fisheries oceanography and its application to management,
will improve our capacity to tailor management to the population

structure in the context of a changing climate.
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Appendix S1: Linearised stock-recruitment functions

The corresponding linear formulas to the Cushing stock-recruitment model (Akimova et al., 2016) is:
Log(R) = Log(a) + yLog(SSB)

and

Log(R) = Log(a) + yLog(SSB) + Log(SSB) X 6 E

Subbey et al. (2014) point to the need to correct recruitment for the bias introduced by log-transforming
the recruitment. Sensitivity test (table A1) shows that the results when such correction is included differ
minimally from the non-corrected recruitment, thus for the main analysis the dataset was not corrected for
the bias.



South Viking Northwest
Predictor Covariate | adjR2 Pval adjR2 Pval adjR2 Pval
1 SSB None 022 0001 004 0106| 023 0001
2 SSB SST I 031] o0o001| 003 02330035 0.000
3 SSB NAO 020 0008| 005 0171 019 0011
4 SSB RA 022 0005| -0.01 0445| 019  0.009
5 ndSSB  None 0.18 0.003- 0.016 | 027  0.000
6 ndsSB  SST | 027 o.001 0.027 [ 0:34  0.000
7 ndSSB NAO 019 0010 009 009 | 025 0.003
8 rssB None 021 0001 003 0121| 022 0.001
9 rssB SST I 029 0001| 005 0185 033  0.000
10 rsSB NAO 023 0005| 004 0218| 018  0.012
South Viking
Predictor Covariate | adjR2 Pval adjR2 Pval
1 SSB None 026 0000| 004 0.106
2 SSB SST 036 0000 003 0.233
3 SSB NAO 024  0003| 005 0171
4 SSB RA 024  0004| -001  0.445
5 ndSSB None 025  0.000 0.010
6 ndsSB  SST | 033 0000 0.018
7 ndSSB NAO 023  0.004 0.068
8 rssB None 025 0000| 003 0121
9 rssB SST | 034 0000| 005 0.85
10 rsSB NAO 024 0003| 004 0218
South
Predictor Covariate | adjR2 Pval
1 SSB None 0.24 0.001
2 SsB SST 0.001
3 SSB NAO 022  0.005
4 SSB RA 0.000
5 ndSSB None - -
6 ndSSB  SST - -
7 ndSSB NAO - -
8 rssB None 0.16  0.005
9 rssB SST 021  0.007
10 rsSB NAO 014  0.029

Table Al. Values of Adjusted R? and respective P-values including correction from the bias introduced by log-
transformation of the recruitment data (see Table 2 in main text) for each model and population across the
three cases of population scale. Darker shades of grey indicate higher Adjusted R? (higher model fit and
better model performance). For single population ndSSB is not calculated.



South

20% decrease default 20% increase
1990 2010 1990 2010 1990 2010
South 0.30 0.49 0.31 0.49 0.32 0.48
NW 0.01 0.06 0.01 0.05 0.01 0.04
Viking 0.06 0.01 0.05 0.01 0.05 0.01
Skagerrak 0.16 0.02 0.14 0.01 0.12 0.01
Outside 0.04 0.02 0.04 0.02 0.03 0.02
Not settling 0.43 0.40 0.45 0.42 0.47 0.44

Viking

20% decrease default 20% increase
1990 2010 1990 2010 1990 2010
South 0.00 0.02 0.00 0.02 0.00 0.02
NW 0.01 0.03 0.01 0.03 0.01 0.03
Viking 0.12 0.11 0.13 0.11 0.13 0.11
Skagerrak 0.22 0.05 0.23 0.04 0.23 0.04
Outside 0.37 0.43 0.34 0.41 0.32 0.38
Not settling 0.27 0.36 0.29 0.39 0.31 0.41

Northwest

20% decrease default 20% increase
1990 2010 1990 2010 1990 2010
South 0.11 0.06 0.11 0.06 0.11 0.07
NW 0.27 0.30 0.27 0.30 0.26 0.30
Viking 0.03 0.04 0.03 0.04 0.03 0.04
Skagerrak 0.07 0.01 0.07 0.01 0.07 0.01
Outside 0.06 0.02 0.06 0.02 0.06 0.02
Not settling 0.44 0.57 0.46 0.57 0.47 0.57

Table A2. Sensitivity of connectivity to setting of mortality parameter. Connectivity at settlement for the
three populations for two years with contrasting oceanographic patterns for default value and +/-20%



South

20% decrease default 20% increase
1990 2010 1990 2010 1990 2010

South 0.34 0.47 0.31 0.49 0.32 0.47
NW 0.00 0.06 0.01 0.05 0.01 0.05
Viking 0.04 0.01 0.05 0.01 0.06 0.01
Skagerrak 0.13 0.01 0.14 0.01 0.13 0.01
Outside 0.03 0.02 0.04 0.02 0.05 0.02
Not settling 0.45 0.43 0.45 0.42 0.43 0.44

Viking

20% decrease default 20% increase
1990 2010 1990 2010 1990 2010
South 0.00 0.02 0.00 0.02 0.00 0.02
NW 0.01 0.03 0.01 0.03 0.01 0.03
Viking 0.10 0.12 0.13 0.11 0.13 0.11
Skagerrak 0.22 0.04 0.23 0.04 0.23 0.05
Outside 0.33 0.37 0.34 0.41 0.36 0.43
Not settling 0.34 0.42 0.29 0.39 0.27 0.37

Northwest

20% decrease default 20% increase
1990 2010 1990 2010 1990 2010
South 0.12 0.04 0.11 0.06 0.12 0.07
NW 0.27 0.31 0.27 0.30 0.27 0.30
Viking 0.02 0.03 0.03 0.04 0.04 0.05
Skagerrak 0.07 0.01 0.07 0.01 0.08 0.02
Outside 0.06 0.02 0.06 0.02 0.07 0.02
Not settling 0.45 0.59 0.46 0.57 0.43 0.53

Table A3. Sensitivity of connectivity to setting of settlement size parameter. Connectivity at settlement for
the three populations for two years with contrasting oceanographic patterns for default value and +/-
20%



References:

Akimova, A., Nufiez-Riboni, I., Kempf, A., and Taylor, M. H. 2016. Spatially-Resolved Influence of
Temperature and Salinity on Stock and Recruitment Variability of Commercially Important Fishes in
the North Sea. Plos One, 11: e0161917.

Subbey, S., Devine, J. A., Schaarschmidt, U., and Nash, R. D. M. 2014. Modelling and forecasting stock—
recruitment: current and future perspectives. ICES Journal of Marine Science, 71: 2307-2322.












“...E quindi uscimmo a riveder le stelle.”

Dante, Inferno XXXIV, 139
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