The multiple dimensions of spatial ecology in fisheries management

How climate, economy, and connectivity shape Cod (Gadus morhua) dynamics in a changing North Sea.

Giovanni Romagnoni

Dissertation presented for the degree of Philosophiae Doctor (PhD)

2021

Department of Biosciences
Faculty of Mathematics and Natural Sciences
University of Oslo

© Giovanni Romagnoni, 2021

Series of dissertations submitted to the
Faculty of Mathematics and Natural Sciences, University of Oslo No. 2403

ISSN 1501-7710

All rights reserved. No part of this publication may be reproduced or transmitted, in any form or by any means, without permission.

Cover: Hanne Baadsgaard Utigard.
Print production: Reprosentralen, University of Oslo.

Acknowledgements

It is said that scientific work often results in more questions than answers.
When I look at what I have done in the past nine-and-a-half years, I have many questions. What have I done? Was it worth it? Why did it have to go this way?
In time, I have learned to accept things as they are. This does not mean passively accepting everything: I have also learned to fight for what I believe must be changed. And I have learned how to change things in life and in Science. My Scientific work can make the difference, by contributing -even if only marginally- to global knowledge about management of natural resources. That's not much, but not that little either. Almost ten years after starting, I now look with pride at this thesis, the result of my hard work.
This acquired awareness was not reached without pain. When I read that most PhD students face severe psychological strain during their work, I can reconnect. Nonetheless, here stands the written proof of my success.

My travel was constellated of difficulties and joys, and I cannot thank enough each and everyone of those that shared my good times and helped me in difficult times. Naming you all would be tough, but you know who you are. Thanks to all my colleagues at CEES, for the many scientific exchanges and fun moments. Thanks to the fantastic CEES Admin Team. Thanks to the Marine Group, and in special place to Joel, Geir, Leif and Dag. You made me feel welcome from my very first day at CEES, and without your help and constant advice my path would have been much tougher. Thanks to all NorMER friends and colleagues: Alex, Sofia, Ben, Becky, Johanna, Sara, Maija, Emmi, Hlynur, Jed, Will, Pam, and all the gang- but most of all, thanks to the invaluable Jason. In Nils' words: "good science is fun when made with good friends". I could not have wished for a better team to share this fantastic NorMER experience. You have a special place in my heart. Thanks to my office mates: Mats, Anna, but a very special thanks to Kristina: you have been so much more than an office mate to me: a true friend, and an invaluable source of inspiration and support in my work. Thanks for being there when I needed. Also, you've been the only one to try to make sense of my lame attempts to speak Norsk! Thanks for that too! I cannot forget to thank Robin, for your invaluable support, help, and friendship. I hope one day our paths will cross again. Thanks to the Flødevigen team: Esben, Even, and Halvor. The fieldwork with cod and trout telemetry tagging was possibly the most rewarding experience in my PhD time. Thanks for giving me this opportunity! Even if I couldn't include this in my PhD in the end, I still consider this as a fundamental part of my PhD experience. Thanks to the colleagues in the Resource Economics department at University of Helsinki for the extensive and deep exchange. I have only fond memories of my visiting period with you.

And, naturally, thanks to my supervisory team, the official and unofficial ones. Nils, thank you for your constant effort in promoting and advancing our working groups, both CEES and NorMER. With NorMER, you put the conditions for creating long-lasting impact research on marine science, and of life-long friendship between us young researchers. Could one ask for more? Indeed, you have nurtured the next generation of scientists, and possibly the following one too: my children now want to be zoologist! Thank you also for always responding with enthusiasm, but also with concrete feedbacks, to my ideas, independently by their usefulness or craziness. You supported my many travels abroad, my workshop proposals, and even my request for more drinks to foster discussion among young researchers. You know well how that went, and I thank you once again for this.

Marko, thank you for being a fantastic, supportive, engaging and -most of all- fun supervisor. I cannot think what my PhD would have been without your supervision. I'm looking forward to keep working with you, one way or another.
Mia, thank you for all the long-lasting, patient support. I know it has been tough, and I know sometimes we haven't found a way to make things work as smoothly as they should. However, here we are. I have learned so many things under your supervision: patience, perseverance, determination, and trust in my own skills and capacities. I have grown stronger, and tougher. It hasn't been easy, but I thank you for all of this.
Finally I want to thank my unofficial supervisors: Florian, thank you for your invaluable help and support: I can't forget your dedication in helping me navigating into the new world of bioeconomics. Those long discussions about model structures have been among the most profound and educational experiences in my PhD.

I will never be able to thank enough \varnothing ystein. You picked up the rumbles of my PhD project when I felt lost and confused, and indicated me the direction to follow. You gave me constant support, listened to my rants, and provided me easy and pragmatic solutions, being always ready to listen. When I think of how I want to be as a supervisor, I think of you. Without your support, I don't think I would have ever got here.

I cannot finish this long list before thankin all my friends who made our life in Oslo fun and enjoyable: Alice, Dani, Cerlo, Gøril, Sara, Riccardo, Dušan, Leiry, Trygve, and all the others that crossed our paths in those fantastic years!
And naturally, I cannot forget to thank my everlasting PhD companion, mate, friend, Tristan. See, we got there! Thanks for always being there mate. I'm so glad we can celebrate our achievements together, soon enough and with a big party.

Last but not least.
Il ringraziamento più importante va alla mia famiglia che non ha mai smesso di credere, o almeno di fingere, che potessi arrivare fino in fondo. Grazie mamma, papà, Fra, per il vostro supporto. Grazie anche a Ludo, e a tutti i parenti ed amici. Soprattutto a quelli che non mi hanno molestato chiedendomi a che punto fosse il dottorato!

Più di tutti, devo ringraziare l'amore della mia vita, la mia adorata moglie Veronica. Per tutte le notti in bianco, per gli anni passati ad aspettare pazientemente, per i sorrisi, per aver sopportato tutto questo. E, naturalmente, per Marco e Nora.

List of papers

Paper 1:
Romagnoni G., Mackinson S., Hong J., Eikeset A.M. (2015). The Ecospace model applied to the North Sea: Evaluating spatial predictions with fish biomass and fishing effort data. Ecological Modelling, 300(0), 50-60

Paper 2:

Kvile* K. $\emptyset .$, Romagnoni* G., Dagestad K-F., Langangen \varnothing., Kristiansen T. (2018). Sensitivity of modelled North Sea cod larvae transport to vertical behaviour, ocean model resolution and interannual variation in ocean dynamics. ICES Journal of Marine Science 75, 2413-2424. *equal contribution

Paper 3:

Romagnoni G.*, Kvile K. . *, Dagestad K-F., Kristiansen T., Eikeset A.M., Stenseth, N.C., Langangen \varnothing. (2020). Influence of larval transport and temperature on recruitment dynamics of North Sea cod (Gadus morhua) across spatial scales of observation. Fisheries Oceanography 29, 324-339. *equal contribution

Paper 4:

Romagnoni G., Diekert F.K., Lindroos M.A., Eikeset, A.M. A Bioeconomic optimal management of spatially structured populations is independent of management scale under climate change: North Sea cod (Gadus morhua) as case study. Manuscript.

Summary

This thesis is centred on the interactions between climate and spatial dynamics regulating the abundance and distribution of marine fish. In particular, the thesis focus on Atlantic cod (Gadus morhua) in the North Sea, and its ecology and management under climate change by adopting a multidisciplinary approach, where the boundaries of oceanography, ecology, economics and fisheries management meet. I explored this interface, proposing some answers toward adaptive fisheries management.

North Sea cod has been among the main target species of commercial fisheries for centuries. Intense fishing pressure, in combination with environmental change, has resulted in a dramatic stock decline in the past decades. Management of the fisheries has allowed a gradual a recovery of North Sea cod stock since the mid 2000's. However, in the past few years (since 2017) the North Sea cod stock has showed once again signs of decline. In addition to fishing pressure, recent declines in the North Sea cod may be due to global climate change (in particular, increase in sea surface temperature and related changes in the zooplankton community) that has been causally linked to reduced recruitment and increased predation of juvenile cod. Such effects are uneven across the area, seemingly more pronounced in the South and less in the North. This heterogeneous spatial response may be attributed to geographical and environmental factors such as the latitudinal gradient of temperature, differences in topography (i.e. depth) or oceanographic characteristics (e.g. current and tidal patterns). At the same time the presence of multiple populations within the North Sea stock may promote niche differentiation in response to climate change. These populations with independent dynamics may potentially require different management strategies. Such spatial heterogeneity is acknowledged but the stock is currently managed as a homogeneous unit. However, appropriate management should account for the spatial distribution of populations, their connectivity, their response to climate, and the effects of predator-prey interaction at the correct spatial scale.

Throughout this thesis, I attempted to investigate how the interaction between spatial dynamics and the effects of climate impact cod ecology and population dynamics, and in turn how these emerging interactions may influence management. First, I explored spatial ecosystem dynamics (Paper 1), then the effects of larval behaviour on their distribution across spatial scales (Paper 2), and effects of inclusion of larval transport and of connectivity on estimates of recruitment (Paper 3). Finally, I explored through modelling the potential effects of including spatial population structure and climate change on the projected optimal management strategies (Paper 4).

In particular, in Paper 1, my co-authors and I developed a spatial version of an existing (non-spatial) ecosystem model, using the Ecopath with Ecosim framework (a widely applied ecosystem modelling tool) and its spatial component Ecospace. We explored quantitatively the capability of the model to correctly reproduce known spatial patterns of fish biomass and fishing effort. Our results show a satisfactory capability to reproduce spatial distribution for fish biomass, but not for fishing effort. Moreover our study explored the sensitivity of model performance to variations in Ecospace parameters, identifying the most influential, and discussing the importance of accounting for parameter uncertainty.

In Papers 2, 3 and 4 we addressed the issue of multiple populations and their spatial distribution. In Paper 2 we applied a coupled physical-biological model that simulates spatial distribution of particles representing cod eggs and larvae in the North Sea. We assessed the relative importance of three factors commonly considered highly relevant for modelling early life stages of marine organisms, namely spatio-temporal resolution of the model, explicit inclusion of larval vertical movement, and interannual variability. We found that the predicted spatial distribution of particles is moderately influenced by vertical movement and ocean
model resolution. However, spatial distribution differs substantially between years. This implies that interannual variation in ocean dynamics plays a critical role in determining the degree of retention in the study area. We additionally observed that the effect of vertical movement strongly depends on the spatiotemporal scale of the analyses.

In Paper 3 we applied a coupled physical-biological model to assess whether explicit inclusion of eggs and larvae transport processes outputs can improve the performance of stock-recruitment models. We thus paired a 44-year long time series of cod recruitment and spawning stock biomass data with larval transport anomaly, connectivity and sea surface temperature, both population-specific and at stock scale. We proposed a novel method to account for connectivity explicitly. This showed an effect of connectivity on recruitment, albeit small, and only at the population scale. Conversely, the traditional method detects a small effect of transport anomaly, and only at the stock scale. Moreover, we investigated the relationship between temperature and populations connectivity. We found a correlation between increasing temperature and larval drift from south to north, revealing potential effects of changing climate on population connectivity in the area.

Finally, in Paper 4 we developed a bioeconomic model, based on an age-specific population dynamic model, to assess whether management that accounts for population structure could provide higher long-term economic returns. We explored alternative management strategies for the North Sea cod metapopulation, where two sub-populations are managed either independently or as unique stock unit. We tested the hypothesis that the advantage of managing populations separately increases under rising temperature, given different population sensitivity to temperature. Our results showed that, in the context of optimal management, moving from non-spatial management to population specific management was not economically advantageous under any climate scenario, likely due to the similar response to temperature of our modelled populations. The economic impacts caused by increasing temperature or by adopting a suboptimal constant harvest rate (irrespective of population scale) were larger than managing at the incorrect spatial scale.

This thesis proposes that interactions between climate change, fish population structure and the spatial distribution of fish eggs and larvae influence the population dynamics and, therefore, the sustainability and profitability of the fishery. These interactions should be accounted for by management, despite the existing gaps in our understanding of the interrelationships between ecology, oceanography, economics and management.
Table of Contents
List of papers 6
Summary 7

1. Introduction 10
2. Study context 10
2.1 The North Sea 10
2.2 Atlantic cod in the North Sea 12
2.3 The influence of climate 15
3. Methods and approaches applied 17
3.1 Ecosystem modelling 17
3.2 Drift model 18
3.3 Bioeconomic model and optimisation 19
4. Results and Discussion 21
4.1 Spatial food-web dynamics 22
4.2 Sensitivity of larval transport models across spatial and temporal scales 23
4.3 metapopulation dynamics and interaction between larval transport, climate change and recruitment 24
4.4 Economically optimal management and the problem of spatial population structure 24
5. Conclusion and significance 26
References 27
Paper 1
Supplementary Information to Paper 1
Paper 2
Supplementary Information to Paper 2
Paper 3
Supplementary Information to Paper 3
Paper 4
Supplementary Information to Paper 4

The marine environment is a multidimensional realm, concealing its true nature beneath a curtain of waves and foam. The capability of modern scientists to grasp its underlying complexity is only marginally better compared to our colleagues from a century ago. Through modern technology, we have considerably advanced our knowledge and understanding in the last decades, but so much is still lying ahead (or underneath) of us. This thesis investigates some aspects of spatial dynamics of fish ecology and the approaches we apply to understand it and to manage fisheries, in the context of a changing climate. This thesis touches upon different aspects of spatial ecology and other fields, from ecosystem dynamics and foodweb theory, to fisheries management, to population and metapopulation dynamics, to oceanographic biology, and to bioeconomics.

This thesis focuses on North Sea cod stock (Gadus morhua) as a case study to investigate whether fisheries management may benefit from explicit considerations of the spatial relationships, and the dependencies between climate and stock components.

For the past 10 years, gradual recovery of North Sea cod from near-collapse to sustainable state has been the flagship of successful, science-based fisheries management from the European management system. Nonetheless, the latest assessment of this stock (2019) indicated a sharp stock decline in SSB in the last few years (ICES, 2019). This had consequences for the industry, such as the withdrawal of sustainability label from Marine Stewardship Council (MSC) in 2019, gained in 2017 (Marine Stewardship Council (MSC), 2017, 2019). The consequences were severe also for the scientific community, dismayed once again when facing the hard fact that managing nature is far more complex, and frustrating, than we would like. The credibility of the scientific process behind the assessment and scientific advice, however, is not impaired.

The present thesis promotes the message that aspects such as the influence of climate, spatial distribution of fishing fleets and population structure, and their interactions, should not be overlooked and could play a pivotal role for improving stock management, when fully understood and properly integrated. A spatially explicit management that can account for cod populations' dynamics in a warming North Sea ecosystem, and for a moving fishery, is needed now more than ever.

2. Study context

2.1 The North Sea

The North Sea is a semi-enclosed basin, physically divided into a southern shallow area and a northern deeper one. The Norwegian Deep and the continental slope constitute the natural borders of the basin in the NorthEast and North-West respectively (Figure 1), while the Dover Strait separates the basin from the English Channel at the South. Conventionally, the waters of the Norwegian Trench and Norwegian coast are included in the North Sea while the Skagerrak, Kattegat and English Channel are part of the so-called Greater North Sea Region, being oceanographically well connected but separate for management purpose (ICES, 2018).

Figure 1. Map of the study area with the population areas, main currents, and key topographic features. Source: the author.

Ocean circulation is influenced by topography and inflow of North Atlantic water. The northern area, characterised by seasonal stratification in summer, is influenced by inflow of saline Atlantic water flowing along the western slope of the Norwegian Trench as well as from the channels between Orkneys and Shetland islands. This current transports into the region the copepod Calanus finmarchicus, an important food source for many species, including larval cod (Beaugrand et al., 2003; Nicolas et al., 2014). One branch of the current flows southward along the Scottish and English coast; another, larger branch flows along the Norwegian Trench and into Skagerrak. This follows a counter-clockwise trajectory along the Skagerrak coast, and after mixing with the less saline Norwegian coastal current, flows north-westward along the eastern slope of the Norwegian Trench and into the Norwegian Sea (Huserbråten et al., 2018). The southern North Sea is dominated by continental freshwater runoff from the large rivers on mainland Europe, and by tidal patterns, which in combination with wind and wave turbulence and shallow topography result in permanent mixing. The intermediate saline current from the English Channel and the coastal, low saline Jutland Current flow along the continental coast and into the Skagerrak (Sundby et al., 2017).

The North Sea area is characterised by temperate climate and by a mixed faunal assemblage, including Boreal (northern) and Lusitanic (southern) species. Species distribution is related to the changes in temperature observed in recent decades, with gradual expansion of southern species in warm periods, and contraction and deepening of northern, cold-related species (Barcelò et al., 2016; Dulvy et al., 2008; Petitgas et al., 2012). The North Sea hosts areas with high natural value such as the Wadden sea, recognised as UNESCO world
heritage site for its specificities including biodiversity (Common Wadden Sea Secretariat, 2016) and an important seabird area (Reise et al., 2010), and other valuable habitats, with over $80000 \mathrm{~km}^{2}$ protected as EU SAC within the Natura 2000 network (European Environment Agency, 2015; OSPAR, 2017). For example, the Dogger bank, the largest sand bank in the area, hosts important diversity including benthic communities and target and non-target fish species (Anonymous, 2016; Plumeridge and Roberts, 2017; STECF, 2019a), while seals and cetaceans occur around coastal and offshore areas (Russell et al., 2017; Waggitt et al., 2020).

Episodic productivity changes have been observed in the North Sea. These influence key components of the ecosystem, with phytoplankton, zooplankton, and demersal and pelagic fish all having exhibited cycles in variability. These cycles, sometimes linked to regime shifts (notably around 2000), are attributed to oscillations of the temperature cycle of the North Atlantic (the Atlantic Multidecadal Oscillation, AMO) (Alheit et al., 2012; Goberville et al., 2014; Stige et al., 2006).

The North Sea has an important history of fishing (Barrett et al., 2004a), the management of which has been complex due to the mixed nature of fisheries (Kempf et al., 2016; Mackinson et al., 2009; Ulrich et al., 2016). The main fisheries can be divided in demersal and pelagic. Demersal fisheries target roundfish (in particular gadoids) and flatfish (especially sole and plaice), while pelagic fisheries target herring and mackerel for human consumption, and sandeel, sprat and Norway pout for fishmeal and other industrial use. Shrimp and Norway lobster also constitute important target species (ICES, 2018). Fisheries management is conducted in accordance with the EU Common Fisheries Policy (CFP), by coastal state agreements. Agreements cover area-species- and gear-specific limits in catches. The total allowable catches are established regularly on the basis of scientific advice from ICES and the Scientific Technical Economic Committee for Fisheries (STECF) of the European Union. Management has been partially successful: after years of systematic decline of most stocks, a moderate recovery was observed in recent years for several of the fish stocks after a large reduction in fishing effort and possibly also a reduction of bycatch (ICES, 2018, 2019).

Other activities such as shipping traffic, oil and gas extraction and wind farms, are increasingly causing conflicts with fishing activities (Klinger et al., 2018). National efforts for the implementation of national Marine Spatial Planning regulations, under the directions of the European Union (EU) Marine Spatial Planning Directive (2014/89/EU), are attempting to address these conflicts (Lacroix and Pioch, 2011; Schupp et al., 2019; Stelzenmüller et al., 2016), and the North Sea is at the forefront of practical implementations of MSP and of multi-use of space at sea experiences (e.g. windfarm-fisheries and windfarm-aquaculture: Buck et al., 2017; Stelzenmüller et al., 2016).

2.2 Atlantic cod in the North Sea

Atlantic cod (Gadus morhua; Figure 2) is a widely distributed predatory teleost, occurring across both sides of the North Atlantic Ocean. It is a highly adaptable species, inhabiting bentho-pelagic areas from over 300 meters deep to coastal and inshore areas, displaying high plasticity and adaptability (Barth et al., 2017; Malachowicz and Wenne, 2019; Wenne et al., 2020). Individual populations have adapted to diverse lifestyles and behaviours: some display massive ocean-going spawning migrations (e.g. East Greenland cod: Bonanomi et al., 2016; North-East Arctic cod: Langangen et al., 2018), others favour localised sedentary lifestyle in inshore areas throughout their lifetime (e.g. Norwegian coastal cod and fjord populations: Knutsen et al., 2018; Rogers and Stenseth, 2017; Roney et al., 2018), with a range of migratory behaviours described (Robichaud and Rose, 2004).

Figure 2. Atlantic cod captured during field work in Flødevigen, Arendal, Norway. The fish was captured with fyke nets, tagged and released shortly after. Cod can tolerate large stress and recover well from handling and even surgery for electronic tags implant. Photo: The author.

Thanks to its characteristics, the large attained size and massive abundance, cod has been a target species since the Neolithic (Enghoff et al., 2007; Hufthammer et al., 2006) but only in the last millennium it became a key source of food (Geffen et al., 2011; Rose et al., 2019), permitting coastal societies to thrive (Barrett et al., 1999; Sicking and Abreu-Ferreira, 2008). Thanks to its nutritional value and the unique suitability of its meat for drying and preserving, it fostered international trades across Europe and beyond (Barrett, 2018; Barrett et al., 2004b, 2011; Wubs-Mrozewicz, 2008). Cod is thought to have been among the critical factors allowing colonization from European fishers and traders into the Americas (Kurlansky, 1999). For these reasons, Atlantic cod has an iconic value in cultures throughout Europe, including areas well beyond its actual occurrence range. While the global landings have declined through time with the depletion of most stocks (Figure 3), Atlantic cod remains among the top 10 landed species worldwide (FAO, 2020a, 2020b). Additionally, cod is one of the most studied species, in particular in the context of climate change (Ferreira et al., 2017), and serves as the poster child for seminal studies of fish ecology that inspired generations of scientists (Beaugrand et al., 2003; Beaugrand and Kirby, 2010; Brander, 2010; Cushing, 1990; Drinkwater, 2005; Durant et al., 2007; Harden Jones, 1968; Hjort, 1914; Pörtner et al., 2008, 2001; Stige et al., 2006).

Figure 3. Total landings of Atlantic cod (Gadus morhua, million tonnes in blue) and ratio between Cod landings and aggregated landings for all marine fish species globally (in red). Data from Fishstat database, FAO (2020b).

The North Sea hosts one of the historically largest stocks in the Eastern side of the North Atlantic (cfr. for example supplementaty information in Sguotti et al., 2019). North Sea cod is one of the main commercial species in the area. The stock has shown historical decline (Engelhard et al., 2014) with the lowest point in abundance in the early 2000s, when the stock almost collapsed (Yletyinen et al., 2018). Oscillations have been linked to climate fluctuations and overall changes in the ecosystem (Beaugrand et al., 2003; Cushing, 1990; Edwards et al., 2002; ICES, 2018). However, in the past decades the decline in biomass has been mostly linked to fisheries (Brander, 2018; Cook et al., 1997; Froese and Quaas, 2012) or to a combination between negative climatic conditions for adults (Butzin and Pörtner, 2016; Engelhard et al., 2014; Neuheimer and Grønkjær, 2012; Nunez-Riboni et al., 2019), for larval stages (Beaugrand et al., 2003, 2008; Nicolas et al., 2014), and fisheries (Brander, 2005, 2010; Lilly et al., 2013). A considerable improvement in selectivity, triggered by the recovery plan for cod (EC 1342/2008) and based on incentives linked to the fishing effort regime and to national measures, allowed a gradual recovery, compatible with rebuilding of the spawning stock (Brander, 2018; ICES, 2019). However, the recruitment may be still strongly subject to environmental variability and to the effect of climate change on temperature, on the plankton community and on the predation mortality in the first year of life at the planktonic and settlement stages of recruits (Akimova et al., 2019; Hjermann et al., 2013; Kempf et al., 2010).

Although managed as a unitary stock (ICES, 2019), North Sea cod is considered to be composed of a mosaic of biologically resolved units (Figure 1), with limited overlap and varying degree of connectivity (André et al., 2016; Heath et al., 2014; ICES, 2015, 2020; Knutsen et al., 2018; Neat et al., 2014; Wright et al., 2018). The units can be reduced to two main populations: the Viking bank and the South populations (Heath et al., 2014; ICES, 2019; Wright et al., 2018). The latter is often separated into a South proper (centred around the Dogger Bank) and a Northwest unit (González-lrusta and Wright, 2016; Holmes et al., 2014; ICES, 2019). These two are genetically homogenous but show limited adult connectivity (so their relationship is as yet unclear (Heath et al., 2014; ICES, 2020; Neat et al., 2014). The Dogger Bank, the German Bight and Southern Bight are, or have been in the past, important nursery and spawning areas (Brander, 1994; Fox et al., 2008; GonzálezIrusta and Wright, 2016). The spatial variability and heterogeneity of North Sea cod has been shown by multiple means including population dynamics based on survey indices (Holmes et al., 2008, 2014), otolith
microchemistry (Wright et al., 2006a, 2018), genetics (Heath et al., 2014; Nielsen et al., 2009; Poulsen et al., 2011), and behaviour with tagging studies revealing spatial segregation between areas (Neat et al., 2014; Righton et al., 2007; Wright et al., 2006b). These differences correspond to differences in maturation and growth patterns (Neuheimer and Grønkjær, 2012; Wright et al., 2011), depth distribution, possibly linked to thermal preferences (Neat et al., 2014; Righton et al., 2010) as well as varying influence of temperature, food and predation on early life stages and their effects on recruitment (Akimova et al., 2016, 2019; Hjermann et al., 2013; Holmes et al., 2008; Nicolas et al., 2014; Speirs et al., 2010). These biological units are subject to uneven fishing mortality, present differing capability to sustain fishing pressure and to recover (Heath et al., 2014; ICES, 2019), and potentially differing capability to withstand climate change (Barth et al., 2017; Bonanomi et al., 2015; Butzin and Pörtner, 2016; Nunez-Riboni et al., 2019). Therefore, they may respond differently to harvesting. In this light, multiple authors have suggested that assessment should account for multiple populations, or for a metapopulation structure (e.g. González-Irusta and Wright, 2016; Heath et al., 2014; Neat et al., 2014; Wright et al., 2018). However, up until now ICES WGNSSK provided advice at whole stock level. The capability to allocate catch and survey data to specific units, and uncertainty about the areas of overlap and mixing, prevented so far population-specific assessment (ICES, 2019), however explorations have been performed to further investigate population structure (ICES, 2015, 2019): trends in substock biomass have been monitored, and novel approaches combining assessment models with metapopulation theories have been tested (Jardim et al., 2018). The current Benchmark Workshop on North Sea Stocks (WKNSEA 2021, ongoing at the time of writing this thesis) is evaluating the current data and assessment methodology in order to reach agreement on an assessment methodology to be used in future update assessments. To clarify the role of stock identification in North Sea cod, WKNSEA will make use of the results of the recent ICES Workshop On Stock Identification Of North Sea Cod (WKNSCodID), which reviewed information on the population structure of North Sea cod to recommend the most plausible scenario of population structure for stock assessment and fishery management advice. The workshop recommended that ICES stock assessments process should support advice for managing the Viking cod and Dogger cod populations as distinct units, in light of their genetic differences, and account for the phenotypic diversity in the Dogger population (ICES, 2020).

2.3 The influence of climate

Climate change is considered one of the most impacting threats to the marine environment (Boonstra et al., 2015). While environmental variation has been studied for a longer time (e.g. Hjort, 1914), anthropogenic climate change has been broadly recognised only relatively recently (IPCC, 1990). Since then, the effect of climate change on marine environment has been the subject of intense research (Ferreira et al., 2017; Grieneisen and Zhang, 2011; Pedersen et al., 2016).

The increase in temperature seems to be the most commonly investigated effect of climate change in marine ecosystems (Ferreira et al., 2017), possibly because of its crucial role in the functioning of biological systems at organismal level scaling up to ecosystems, affecting life-history strategies, productivity, and the geographic distribution of marine life (Beaugrand et al., 2008; Cheung et al., 2016; Perry et al., 2005; Pinsky et al., 2018). Sea surface temperature (SST) is often used as a proxy for experienced temperature; it is more easily measured compared to bottom temperature, and is generally considered an accurate proxy (but see Akimova et al., 2016, for example).

In general, environmental factors influence marine organisms through direct and indirect pathways (Brander, 2010). Direct pathways include changes in physiological rates, in feeding success, and in behaviour. Indirect
effects may be due to changes in food, predators, parasites and diseases. Physiological rates and behaviour can be studied directly through experimental manipulation, while food-web effects are more complex to assess. Irrespectively, these changes affect the organisms in terms of growth, survival and reproductive output, highly relevant aspects for stock assessment of the commercial stocks. For example, trade-offs between somatic growth and metabolic costs due to temperature increase in cod and other fish species are well known (e.g. Brander, 2010; Holt and Jørgensen, 2015). Thermal tolerance influence metabolic activity and allocation of energy for reproduction and somatic growth (Pörtner et al., 2008). These effects can scale up from individual to the whole population level (Butzin and Pörtner, 2016; Nunez-Riboni et al., 2019). The effects are reflected on the patterns of maturation, survival and fitness (Holt and Jørgensen, 2014, 2015; Neuheimer and Grønkjær, 2012). When temperature exceeds the optimum, these changes affect fish distribution and local abundance (e.g. Dinesen et al., 2019), as fish are assumed to move toward colder water, where available. Comparison between populations of Atlantic cod across its range showed that southernmost populations are closer to the thermal limits and will be negatively impacted by increasing temperature, while northernmost populations will benefit (Brander, 2010; Drinkwater, 2005). Notably, at local level seasonal patterns may matter more than average annual: the difference in SST increase between seasons may have diverging and counteracting effects (Rogers et al., 2011). These effects can be confounded by other factors such as individual behaviour or ecological adaptations. For example, populations performing seasonal migration for reproduction will maintain historical spawning grounds also in the face of climate change. The southernmost spawning areas in the North Sea are still used by cod (Fox et al., 2008; González-Irusta and Wright, 2016) despite the local thermal conditions are currently considered suboptimal, and are predicted to become unsuitable for reproduction (Butzin and Pörtner, 2016; Nunez-Riboni et al., 2019). Individual behaviour can also appear counterintuitive: Neat and Righton (2007) observed that some cod individuals did not move to colder areas at reach, and rather suffered suboptimal warm temperature and increased vulnerability. The causes are not clear, highlighting the limited understanding even in one of the most studied fields. This shows that predictions of the effects of climate change on populations can be confounded by individual behaviour and may prove inaccurate.
Survey indices can show effectively the emergent changes in spatial distribution, resulting from combination of direct and indirect factors, the extent of which is difficult to disentangle, and to tell apart from the effects of fishing (Engelhard et al., 2014; Heath et al., 2014; Rindorf and Lewy, 2006).

Larval dispersal and population connectivity may be impacted by rising temperature as well: early life stages of marine organisms generally develop faster in a warmer water, reduce their pelagic time, and their dispersal distance. Their survival will depend on encountering enough food during the pelagic phase, given a higher metabolic demand; and in encountering favourable conditions at settlement. This may, in turn, affect the connectivity between subunits in the stock. The extent to which dispersal stage is affected by increasing temperature, is not well known in North Sea cod (but see Heath et al., 2008), however some information can be drawn from other areas in the North Atlantic (Fuchs et al., 2020), the Mediterranean Sea (Andrello et al., 2015) or tropical coral reefs (Munday et al., 2009).

Indirect effects of climate change include alterations of the trophic structure of the ecosystem across life stages: these include changes of prey and predators, as well as competitors, parasites and diseases. While the latter are little studied, the predator-prey relationships have received considerable attention, through analyses and modelling studies. The most important effects revolve around the food availability at the larval stage: thermal regimes alter the quantity and quality of food available, with consequences for growth, reproduction and mortality. Typical case is that of changes in calanoid community composition in the North Sea and in the North East Atlantic in general observed in the latest decades which has been indicated as the
main cause for the decline of cod recruitment in the North Sea (Beaugrand et al., 2003; Beaugrand and Kirby, 2010; Nicolas et al., 2014; Olsen et al., 2011). Additional mechanisms include the match-mismatch between larval food and larvae hatching time (Asch et al., 2019; Durant et al., 2007) suggested for cod in the North Sea by Daewel et al., (2011), and increased predation mortality from species that benefit from warming such as herring and grey gurnards (Akimova et al., 2019; Hjermann et al., 2013; Kempf et al., 2013). For adults, an indirect effect may be the change in prey availability. Brander (2010) reports about the case of Icelandic cod, where temperature increase did not produce the expected increase in growth rate possibly due to the decline of their main prey, capelin Mallotus villosus.

The interaction between climate and other pressures, prominently fishing pressure, may lead to complex dynamics that need to be carefully considered. For example, heavily fished populations are more sensitive to environmental forcing due to the curtailed age structure (Ottersen et al., 2006; Rouyer et al., 2011), while their natural mortality may be influenced by fishing (Jørgensen and Holt, 2013). The interaction between climate change and fishing pressure can also influence the genetic diversity of populations: for example, loss of genetic diversity is associated to the collapse of West Greenland cod stock (Bonanomi et al., 2015).
The spatial distribution of cod in the North Sea, instead, is suggested to be influenced by a combination of climate and fishing pressure: Blanchard et al. (2005) demonstrated that the range contraction of juvenile North Sea cod could be linked to reduced abundance as well as increased temperature, also noting that the distribution change may have increased cod vulnerability to fishing mortality. Rindorf and Lewy (2006) linked the northward shift in distribution to the effect of a series of warm, windy winters on cod larvae, and on the resultant distribution of settlers, further noting that this effect might be intensified by the curtailed age structure due to fishing pressure. Engelhard et al. (2014) found that the changing distribution of North Sea cod through the decades is linked to a combination of fishing and climate change, with a northward shift best explained by warming, and an eastward shift attributable instead to overexploitation of western fishing grounds.
Through effects on fish, climate change has profound consequences for the fisheries relying on them: the catch composition, fleet profitability and dynamics are also affected (Cheung et al., 2013; Lam et al., 2016), and the change in fish distribution can result in increasing conflicts for transboundary fish species (Diekert and Nieminen, 2015; Gullestad et al., 2020; Pinsky et al., 2018). This is already happening, for example, in the case of Atlantic Mackerel, which has expanded northward, causing a breakdown of the former agreements between countries sharing the stock (Elfarsdóttir, 2020; \emptyset sthagen et al., 2020; Spijkers and Boonstra, 2017).

3. Methods and approaches applied

3.1 Ecosystem modelling

The interaction between species can be investigated through models of predator-prey dynamics, and in some cases whole ecosystems, including biotic and abiotic factors. When spatial considerations are critical for understanding the dynamics of the system, spatial food-web models have been applied (e.g. Kempf et al., 2013; Lindegren et al., 2014).

For the investigation of spatial dynamics of ecosystem interactions, we used the Ecopath with Ecosim (EwE) approach, and its spatial component Ecospace (Christensen and Walters, 2004). We used an existing nonspatial model parameterised for the North Sea (Mackinson and Daskalov, 2007) and developed the spatial component, Ecospace (Paper 1). We explored quantitatively the capability of the model to correctly reproduce known spatial patterns of fish biomass and fishing effort. Moreover our study explored the
sensitivity of model performance to parameters, identifying those with higher sensitivity, which seem to be the most important for model calibration.

The Ecopath with Ecosim approach is one of the most widely applied ecosystem modelling framework (Colléter et al., 2015), with a long history of applications to marine ecosystem modelling and fisheries management questions (Heymans et al., 2016). The model is built hierarchically: the base component is the Ecopath model, a static mass-balanced snapshot of a closed ecosystem, represented by functional groups connected through trophic interactions. Functional groups (species or groups of ecologically similar species) are represented as biomass "pools". Diet composition determines flows of energy and matters between functional groups. Ecopath is based on a system of linear equations which describe the average flow between groups and defined fishing fleets.

Ecosim, the time-dynamic module, uses the mass-balanced Ecopath model as a starting point to describe the temporal dynamics within the ecosystem, with annual or monthly time steps, through a system of differential equations. Ecosim is routinely parameterised through fitting to time series of biomass and catches of a subset of species or trophic groups. The model can include additional information to drive the dynamics (e.g. environmental variables, fishing mortality or fishing effort).

Ecospace is the spatial-temporal explicit module of EwE (Walters et al., 1999, 2000). It is based on a twodimensional "map", a grid of equally sized cells on which the biomass of functional groups is distributed and interacts with predators, prey and fishing fleets, according to a modified version of the Ecosim differential equations (Christensen and Walters, 2004). Ecospace was specifically developed to model the trophic dynamics of marine protected areas, assessing trade-offs between their relative size and effort redistribution, as well as effects of protection on non-target species, predators and preys (Walters et al., 1999, 2000). Ecospace evolved considerably in the past decade: the implementation of externally derived habitat preference maps based on single species distribution models, effectively integrates a niche model in the spatial trophic model. This allows to measure cumulative impacts of multiple physical, oceanographic, and environmental factors (Christensen et al., 2014; Püts et al., 2020). Interoperability with GIS tools allows now to run spatio-temporal simulations (Coll et al., 2016; Steenbeek et al., 2013). These improvements allowed diversification of applications in fields such as development of renewable energy (Alexander et al., 2016; Halouani et al., 2020), Marine Spatial Planning (Romagnoni, 2019; Steenbeek et al., 2020), and interactions between environmental-driven fish displacement and fisheries dynamics (Bauer et al., 2018).

3.2 Drift model

The planktonic early life stage is considered, for broadcast spawning fish, a critical period, and one of the key phases for shaping a year class productivity (Cushing, 1990; Hjort, 1914), although evidence is growing that density dependence at settlement and juvenile phases have an important role too (Houde, 2008). Early life stages (eggs and larvae; hereafter ELS) can be studied through simulation models. In this context, coupled physical-biological models for early life stages of marine fish are increasingly applied (Huebert et al., 2018; Peck and Hufnagl, 2012).

In Papers 2 and 3 we modelled the drift of cod planktonic eggs and larvae, using the open source particle tracking framework OpenDrift (Dagestad et al., 2018, github.com/opendrift). To simulate transport with ocean currents and temperature-dependent development, we coupled offline a reanalysis of the regional ocean circulation model ROMS (Shchepetkin and McWilliams, 2005) configured for ocean regions including
the North Sea to a cod egg and larvae individual-based model (IBM), integrated as a module to OpenDrift. The IBM simulates development and transport of cod eggs and larvae based on earlier studies (Kristiansen et al., 2009a, 2009b, 2014).
In Paper 2, we compared different reanalyses of the oceanographic model and formulations of the cod egg and larvae IBM, in order to assess the relative importance of spatiotemporal resolution of the oceanographic model, inclusion of vertical movement, and interannual variability in oceanographic conditions.
In Paper 3, we have combined >40 years of oceanographic model predictions to track the eggs and larval drift from and to putative population areas in order to assess the long-term changes to retention and connectivity. This information was then incorporated into stock-recruitment models in different ways, to account for effective spawning stock size when explicitly accounting for retention and connectivity.
Physical (hydrodynamic) models with Lagrangian particle-tracking subroutines, coupled IBMs can account for growth, behaviour and mortality of the simulated eggs and larvae of fish or other planktonic organisms (e.g. Fiksen et al., 2007). Temperature-dependent growth allow to account for the differential increase in size based on the experienced temperature, while inclusion of vertical movement may allow to capture the important effects of diel vertical migrations. These features make biophysical modelling of early life stage IBMs very popular tools to investigate processes affecting distributions and productivity of marine fish species (Peck and Hufnagl, 2012) and to examine how environmental characteristics affect the distribution, growth and/or survival of marine organisms (Huebert et al., 2018; Siddon et al., 2013). Biophysical modelling of fish early life stages have been applied to study the spatial distribution of the spawning stages (Eriksen et al., 2020; Muir et al., 2020), connectivity between populations (Barbut et al., 2019; Heath et al., 2008; Ospinaalvarez et al., 2020) and the effects of spatial mortality on fish ELS due to natural and anthropogenic factors (Fiksen et al., 2007; Langangen et al., 2014a, 2014b, 2017; Peck and Hufnagl, 2012; Stige et al., 2018).

3.3 Bioeconomic model and optimisation

Fisheries management, in addition to biological considerations, needs to ensure the viability of the fishery in socioeconomic terms (Hilborn and Walters, 1992). Bioeconomics is a branch of resource economics that addresses the use of living resources, and it is widely applied to study fisheries management. Modelling such dynamics can be useful and important to gain understanding of the different impacts from the ecological, economic and social assumptions criteria for management policies for exploitation of the natural resources. In the marine realm, they are often applied for assessing the economic profitability of management scenarios aimed at obtaining maximum sustainable yield or to evaluate alternative measures and their impacts on the ecological, economics, and social goals (Nielsen et al., 2017; STECF, 2019b).
In Paper 4, we compare two alternative management strategies in terms of their bioeconomic optimal longterm performance. We explore the management options of a spatially structured stock, comparing explicit population-specific management against an aggregated management where two populations are managed disregarding their individual dynamics. We build a bioeconomic model based on an age-structure population model for each of the two populations (described by Equation 1), and compare the optimized economic gain of population specific and undifferentiated management under three climate scenarios. The biological model described population dynamics through abundance ($N_{i, t, a}$) for each population i, age a, at time t as:

$$
N_{i, t, a}=\left(N_{i, t-1, a-1}-\frac{H_{i, t-1, a-1}^{m}}{W_{t-1, a-1}}\right) e^{-M_{a-1}}
$$

Equation 1.

The number of fish harvested are obtained dividing harvest H (in weight) by mean weight at age $W_{t, a}$. Natural mortality at age M_{a} accounts for natural loss. Average individual weight at age and proportion of mature fish at age P_{a}, are used to calculate $S S B_{i, t}$ that is used to calculate recruitment R_{t} (entering the population as abundance at age 1) through a stock-recruitment function. Multiple stock-recruitment model formulations were explored, including different functional forms and with inclusion of temperature and/or zooplankton following Olsen et al. (2011). For consistency, we selected a model that performed satisfactorily for both population, rather than using different models for the two populations. The selected stock-recruitment model (Equation 2) was based on the Beverton-Holt function with temperature influencing recruitment through change of maximum recruitment level (asymptote height)

$$
R_{i, t}=e^{\left(\alpha_{i}-\theta_{i} T_{i, t}\right)} \frac{S S B_{i, t}}{\left(1+\left(e^{\left.\gamma_{i} S S B_{i, t}\right)}\right)\right.} e^{\varepsilon_{i, t}}
$$

Equation 2

The model calculated recruitment $R_{i, t}$ at each time step t for each population i as a function of $S S B_{i, t}$, scaled temperature $T_{i, t}$ and parameters α_{i}, θ_{i}, and γ_{i}. $e^{\left(\alpha_{i}-\theta_{i} T_{i, t}\right)}$ was the maximum reproductive rate at temperature T, and positive temperature anomalies resulted in a negative effect on recruitment (lower asymptote height) and vice versa. Random noise $\varepsilon_{i, t}$ was introduced as lognormal error. Parameters were estimated from data for each population i.

The optimal harvest rate was obtained by maximising the net present value (NPV) over a long time horizon, for any of the two management scenarios m to be compared. NPV (Equation 3) is the cumulative sum of the discounted annual profit:

$$
N P V^{m}=\sum_{t=0}^{Z} \frac{1}{(1+\delta)^{t}} \Pi_{t}^{m}
$$

Equation 3

where $\frac{1}{(1+\delta)^{t}}$ is the discount factor, δ is the interest rate, Π_{t}^{m} is annual profit in year t, for management scenario m, and Z is the time horizon. In this formulation, profit Π_{t}^{m} is a function of harvest rate, and population-specific time paths of total biomass $B_{n, t}$ and $B_{s, t}$ for North and South populations respectively. The profit function for each management scenario m was:

$$
\Pi_{t}^{m}=p\left(H_{n, t}^{m}+H_{s, t}^{m}\right)-\kappa\left(\frac{H_{n, t}^{m}}{B_{n, t}}+\frac{H_{s, t}^{m}}{B_{s, t}}\right)
$$

where p is price per unit of biomass and κ is a parameter for the cost functions (Equation 4 and Equation 5) Annual harvest of North and South populations $H_{n, t}^{m}$ and $H_{s, t}^{m}$ were functions of harvest rate (the control variable optimised) and total biomass $B_{n, t}$ and $B_{s, t}$. The harvest functions were:

$$
H_{i, t}^{P S M}=h_{i}^{*} B_{i, t}
$$

Equation 4
And

$$
H_{i, t}^{U M}=h^{*} B_{i, t}
$$

for each population i, at time t, for the Population Specific Management (PSM) and Undifferentiated Management (UM) scenarios.

The study explores climate change effects by specifying the diverse response of the two cod stocks to climate through a temperature-dependent, empirically derived stock-recruitment function. This study thus firstly focuses on the optimal management of population structure, and secondly on how the optimal strategy may change when heterogeneous climate sensitivity is included in the model and climate is forced with simulated predictions.

Several bioeconomic modelling frameworks and ad-hoc models exist and are currently applied in multiple contexts. For example, Nielsen et al. (2017) reviewed bioeconomic models applied in Europe, analysing the different capabilities to capture multispecies dynamics, spatial dynamics, and their levels of effectiveness and implementation in fisheries management. Bioeconomic models have been used to assess the effects of climate change on fisheries economic performance: for example, several studies propose approaches to include and mitigate the detrimental effects of climate change (e.g. Bastardie et al., 2010; Miller et al., 2013). Spatial bioeconomic models have been applied frequently in the study of spatially uneven distribution of resources or fishing effort with patchy environment (Sanchirico and Wilen, 1999, 2001). The spatial aspect acquires added relevance when stock distribution is influenced by the effect of climate change. This is key for example in the case of straddling stocks (Diekert and Nieminen, 2015), invasive species (Kaiser et al., 2018), and spatial interaction between species. Voss et al. (2018) recently applied a spatially explicit bioeconomic model to investigate the role of recruitment strategies, i.e. connectivity, on the fisheries and, most important, on the traditional communities relying on them for subsistence and for cultural heritage. Although multiple studies of North Sea fisheries in bioeconomic terms exist (Bartelings et al., 2015; Heymans et al., 2011; Simons et al., 2014; Ulrich et al., 2011), the economic implications of predicted climate change on North Sea fisheries are relatively scarcely studied (Groeneveld et al., 2018; Pinnegar et al., 2016). In this sense, our study addresses an understudied research niche.

4. Results and Discussion

This thesis focuses on the interaction between spatial marine ecology, oceanography and management under climate change. The key hypothesis is that the interaction between spatial dynamics and climate influences population dynamics, with consequences for management and for the sustainability and profitability of the fishery. The overarching question of the thesis is thus: can we identify emerging interactions between spatial dynamics and climate change, and to what extent do these interactions influence fisheries management?

While the effects of environmental variation and climate change and those of spatial dynamics on North Sea cod have been investigated before, the interaction between climate change and spatial dynamics is relatively less studied, in particular under management and economic perspectives.

The overall answer provided by this thesis is that the effects of climate differ between subunits of the stock, and the spatial dynamics are influenced by climate through the connectivity between units and differential sensitivity to climate across the stock spatial distribution. Moreover we observed different effects depending on the scale of observation, i.e. at population vs. stock level, and across spatio-temporal resolution. These emergent interactions between climate and spatial dynamics are highly relevant for spatial ecology and for fisheries management. However, we did not observe a clear economic incentive in spatially explicit management, not even in light of differences in climate effect between populations. This result may be
bounded by the knowledge gaps and model limitations, revealing what relevant aspects remain to be explored and understood and opening new research perspectives.

The overarching research question was broken up into smaller parts, narrowing down on some aspects, albeit in a non-exhaustive way. We focused on four main aspects: three with an ecological focus and one with intertwined ecological, management and economic focus: 1) Spatial food-web dynamics, 2) scale of dynamics of drift models and their effect on connectivity, 3) metapopulation dynamics and interaction between larval transport, climate change and recruitment; and 4) bioeconomically optimal management strategy. These four aspects of interest correspond to the Papers composing this thesis.

4.1 Spatial food-web dynamics

The dynamics among species in a system, and between species and the abiotic factors, depend critically on the spatial distribution of these elements. Several ad-hoc spatial models have been applied to understand multispecies dynamics and their interaction in space (Akimova et al., 2019; Hjermann et al., 2013; Kempf et al., 2013; Lindegren et al., 2014).

Spatial multispecies models that can take into account the interaction between species and multiple pressures and impacts on the ecosystem, can be highly useful to capture complex spatial dynamics. These models may help to address questions where multi-species spatial dynamics play a key role for fisheries management perspectives. These models, however, face the challenging trade-off between complexity and accuracy. Spatial models can increase the number of parameters exponentially. Performance assessment of ecosystem models is critical, especially when their development is intended for applied purposes. Validation of spatio-temporal models with comparable data is an emerging field within ecological models (Rose et al., 2009; Stow et al., 2009; Vliet et al., 2011), and only few marine ecosystem models have been critically evaluated with data in terms of their predictive capability (Lynam et al., 2017; Püts et al., 2020).

The research question developed in Paper 1 is: Can spatial ecosystem models capture known spatial dynamics effectively? Can we measure quantitatively the fit to data and the sensitivity of the model to parameter uncertainty?

In detail, the first chapter of the thesis assesses the spatial ecosystem dynamics and interactions between fleets and species. Based on an existing ecosystem model (Mackinson and Daskalov, 2007), a spatial version was developed. Model outputs were compared with spatio-temporal data to assess both model performance and sensitivity to parameters setting through an ad-hoc procedure for quantitative prediction to data evaluation. Results show that the model is sensitive to some parameters in particular, highlighting that information such as fish dispersal rate and the behaviour of fishing fleets, are key to understand how the system responds spatially. The model was capable or reproducing fish distribution patterns. Effort distribution, in turn, seems not to follow rational, medium-term profit-based solutions as assumed by the model. Instead, we propose that effort distribution in this system might be driven by processes acting at fine temporal scale and by decisions related to concerns other than immediate profit, perhaps driven by market dynamics and to the quota system and the multispecies nature of the fishery.

This Paper sets the baseline for the thesis, confirming the role of spatial information, such as fish dispersal and fisheries distribution as well as predator-prey overlap, in understanding the ecology of target fish species including cod. In general terms, moreover, the paper serve the spatial ecosystem modelling community, setting the baseline of critical assessment of spatial predictions of species and fleets distribution for rigorous application of fisheries models. In perspective, the application of this work could be highly useful for
management applications: well-tested models can be reliably applied to inform spatial management measures, such as fishing closures or effort restrictions in some areas (e.g. north versus south). Moreover, estimates of natural mortality for cod from a multispecies model is included into the currently applied stock assessment models. This, however, is not spatially resolved, while it is now clear that predation differ between areas. A robust Ecospace model could provide spatio-temporal mortality patterns, possibly resolved at sub-stock level for North Sea cod. Our work shows that model predictions of spatial distributions can reliably reproduce specie distribution. However spatial predictions require robust assessment, which, so far, is often lacking from spatial ecosystem modelling implementations. Recent studies started to focus on this aspect (e.g. Lynam et al., 2017; Püts et al., 2020), showing that our study identified an important gap, and provided a useful guideline for successive investigations in this field.
4.2 Sensitivity of larval transport models across spatial and temporal scales

The early life stages (ELS) play a key role in shaping the year class of most fish species, including Atlantic cod. Variability of direction and strength of currents may influence the transport of larvae into suitable areas for feeding and, thus, the success of a year class recruitment (e.g. Wilson and Laman, 2020). Moreover, the variability in transport might affect the potential connectivity between areas and sub-populations.

In Paper 2, we assess how vertical movement, ocean model resolution and interannual variation in ocean dynamics influence drift patterns and population connectivity. The research question posed was: What are the most important aspects that influence the spatial distribution of simulated eggs and larvae of cod in the North Sea? We studied how alternative setup for ELS transport models provide different results, quantifying the most influential aspects, across spatial and temporal scales of spatial distribution.

We focused on these three aspects in particular, because of their known importance in modelling ELS distribution (Bolle et al., 2009; Lacroix et al., 2013). However, the inclusion of vertical movement and of finescale model reanalysis has a major computational demand. Similarly, inclusion of multiple years is constrained by availability of oceanographic models that go back in time. Our focus was on identifying tradeoffs between inclusion of higher accuracy (e.g. vertical movement, high resolution), and computational cost.

We found that the results are moderately influenced by vertical movement and ocean model resolution but differ substantially between years, confirming previous studies on the importance of interannual variation in ocean circulation for modelled fish larvae drift in the North Sea (Bolle et al., 2009; Henriksen et al., 2018; Lacroix et al., 2013). Interannual variability in ocean transport may be related to wind patterns (Bolle et al., 2009; Wilson and Laman, 2020), and to large scale oceanographic patterns such as the North Atlantic Oscillation (NAO) index, (Henriksen et al., 2018; Huserbråten et al., 2018; Jonsson et al., 2016) which can influence regional to local current patterns and strength. While ocean model resolution is consistently more influential than vertical movement, the effect of vertical movement strongly depends on the spatiotemporal scale of the analyses. These results add up to the growing literature on sensitivity of drift models (Peck and Hufnagl, 2012), revealing that some model features often considered highly relevant, might ultimately be of minor importance for a specific research question and case study such as the North Sea, where the limited stratification might result in reduced role of vertical movement for drift patterns and overall ELS distribution. Sensitivity analysis should therefore be specific to the question and study area.

The importance of interannual variability is a critical result as it confirms the relevance of long-term analysis, enabled by long time series of ocean model reanalysis. This could not be possible with higher resolution models, which are only available for most recent years. These results find immediate application: we can
safely apply models with relatively coarse resolution but with longer time series, allowing to monitor longterm changes and use them for population dynamics, and effects of climate change. This study paves the way to Paper 3, by demonstrating that a computationally less intensive model, but with a longer time series, may perform similarly well than a more advanced model.
4.3 metapopulation dynamics and interaction between larval transport, climate change and recruitment The interaction between ELS transport, environment, connectivity and recruitment dynamics is relatively well known for cod in the North Sea. However, the relevance of these dynamics for management is scarcely studied. In Paper 3, we ask the question: Can we include advection and connectivity into analysis of population dynamics that are useful for management? We focus on stock-recruitment models: these are commonly used in fisheries science to relate the amount of spawning stock in one year with the recruitment in the next year. These models are widely recognised to poorly capture the relationship but are nonetheless commonly used due to the intuitive mechanism relating stock size to production (Subbey et al., 2014). In many cases, their performance has been improved when introducing environmental anomalies as a parameter (Akimova et al., 2016; Hilborn and Walters, 1992), or when weighting the spawning stock by, among other variables, the age or sex structure in the spawning component (Marshall et al., 2006).

Here, we applied the quantitative measures of larval retention and of connectivity between subpopulations to the stock-recruitment curves commonly used in stock assessment, in place of other, commonly used environmental variables such as SST. In addition, we propose a novel method for accounting for population connectivity in stock-recruitment models, weighting SSB by the effective larval contribution to a determinate population. Paper 3 shows that the importance of the retention anomaly, and of the connectivity between populations, differ across scales of observation. The effect of retention anomaly is small but not negligible, and comparable in magnitude to those of other commonly used variables such as SST. Moreover, the modelled connectivity between populations seems to present a correlation with SST, indicating a potential interaction between climate change and spatial population structure.

These results allow us to apply the stock-recruitment curves with ELS drift, and our newly developed method, to this and other stocks. More important, these results help to investigate hypotheses about connectivity and its interaction with climate through transport, and to explore their application for management (Hidalgo et al., 2019; Wilson and Laman, 2020), opening up for novel research directions and positioning our study in the emerging field of operational fisheries oceanography (Hidalgo et al., 2019).
4.4 Economically optimal management and the problem of spatial population structure

In fisheries management, stocks are geographically defined. However, the stock resolution is rarely based on biological metrics and is generally an artefact. This has resulted in several stocks being managed at the incorrect spatial scale, often due to a lack of knowledge or insufficient data at population specific scale (Kerr et al., 2017). Mismanagement of population structure may lead to incorrect estimation of reference points for management, increasing the probability of collapse (Sterner, 2007). Such effects might go unnoticed until it is too late, as plausibly happened with the abrupt collapse of the cod fishery off Newfoundland and Labrador (Hutchings, 1996; Lilly, 2008). The results of such mismanagement might have led to disappearance of individual populations, with the erosion of the diversity in a stock (e.g. Bonanomi et al., 2015). Population diversity is a richness, offering a buffer to perturbations through the so-called portfolio effect (Schindler et al., 2010), and implying genetic diversity that might result in higher adaptation potential to climate change
(Bonanomi et al., 2015; Hauser and Carvalho, 2008). Where information is sufficient for informed populationspecific management, it is important to investigate whether separated management could improve the sustainability of the fishery, and ultimately its management system, both under an ecological and economic perspective. For example, by estimating reference points at the correct biological scale, population-specific management might limit the danger of serial populations depletion and of stock collapse with resulting economic loss for the fishing sector.

North Sea cod is a strong candidate for separation of management for the two known populations. In Paper 4, we ask the question: Can we propose spatial management by population as a management measure that outperforms the non-spatial one, using economic justification? Do we observe a change in the optimal management strategy (i.e. spatial vs non-spatial), in light of their different temperature sensitivities? The latter question in particular is important in light of the growing focus on adaptation to climate change (Woods et al., n.d.). If the differential effect of climate between populations is large, we can propose spatial management as a climate change adaptation strategy. Our results however cannot point at a difference in optimal management strategy: from an economic perspective it is equally profitable to harvest two populations individually or as one, when either management strategy is optimised. This result does not change when climate influences the recruitment dynamics of the two stocks. These results might be bounded by the simplification of our model that adopts an optimal, time-invariant harvest rate and by the relative similarity in response to climate of the two modelled populations. The response to climate is based on empirical stock-recruitment relationships including the effects of temperature. However, this analysis did not consider explicitly larval drift, nor the effects of climate variability and its interaction with connectivity between populations. Paper 3 showed that, the connectivity between populations is also influenced by temperature. The results may therefore differ if the additional effect of climate on drift was included in the bioeconomic model. In a similar analysis, Voss et al. (2018) found that biological heterogeneity explain differences in spatial management, whereas overlooking the heterogeneity might provide homogeneous optimal management.

Our overall result, however, is in line with the existing literature on economic profitability of populationspecific management: for example, Holland and Herrera $(2010,2012)$ showed that the benefit of managing populations at their biological spatial scale depends on biological, economic and technical factors including uncertainty in spatial aggregation as well as mixing and migration between populations, especially if asymmetric. They found that the risk of mismanagement might be such that aggregated management may be a safer solution in determinate cases. Lindegren et al. (2013) performed a similar analysis on Öresund cod population, highlighting the need for developing sub-stock-specific management recommendations to allow the maintenance of population structuring, also in light of the economic benefits for local small scale fisheries. Our results highlight the importance of carefully assessing economic benefits and practical feasibility of alternative management strategies in the context of spatially structured populations (Kerr et al., 2016; Voss et al., 2018).

Although these results cannot be generalised, our bioeconomic exploration of spatial management options for spatially structured populations under climate change is a novel, and widely applicable, research question. Moreover we show that the effects of increasing temperature and of adopting optimal (rather than suboptimal) harvest rate, irrespective of population scale, have a larger economic impact than managing at the correct spatial scale.

5. Conclusion and significance

The importance of spatial processes in population dynamics and ecosystems has been highlighted since the early ages of fisheries science, however their application into management has proven difficult. Nevertheless, the technological advancements and the improved understanding of marine fisheries dynamics and spatial populations structure has allowed considerable advancements of this field in the recent decades.

There is momentum for including complexity in the management of fish stocks, accounting for spatial structure and for environmental effects: many recent studies focus on this subject (e.g. Hidalgo et al., 2019; Voss et al., 2018), calling for inclusion of larval connectivity (the operational oceanography concept), of population structure, and of spatial multispecies interaction.

This thesis contributes to the field by identifying processes that can influence population dynamics at local and regional scales, and proposing approaches to assess the relevance of climate and spatial scale, and their interactions, on population dynamics and on fisheries management. I explored whether interactions between spatial dynamics and climate can influence population dynamics, and whether such interactions in turn can affect optimal management strategies. I proposed the integration between bioeconomic, oceanographic and ecosystemic aspects to assess the spatial scale of fish ecology dynamics and of fisheries management.

These results open up for novel research questions: for example, one could wonder whether accounting for temperature-dependent connectivity or inclusion of connectivity in stock-recruitment dynamics (as proposed by Paper 3), would influence the optimal management strategy in the context of spatially explicit management. Another possible research line could be the integration of spatially explicit, population-specific natural mortality into stock assessment. Natural mortality is likely to differ between the two populations based on the predators in the area and of differing sensitivity to climate changes. These aspects, and how they vary in time through the food-web, could be captured by a spatial ecosystem model such as that presented in Paper 1. Along the line of ecosystem dynamics, one may wonder whether and how spatial management measures for one species would fit in a mixed fisheries context such as the North Sea demersal fisheries? And with the impending Brexit process, what would be the trans-national negotiations for international sharing of the quotas when considering or disregarding the population structure, especially when the outlook for the two populations' sensitivity to climate change differs? These and many other questions come to mind, showing that the research exposed here is bearer of innovation, stimulating novel thinking.

Spatially explicit management strategies that can account for a moving fishery in relation to population dynamics as well as the impact of global warming are needed now more than ever due to the potential for future climate change and continued fishing pressure. For North Sea cod, an ICES benchmark workshop (WKNSEA) is ongoing at the time of writing this thesis. Among the topics, the workshop aims to assess whether stock assessment at population level is feasible. This shows once again that this thesis is highly timely. Hopefully, the results here presented could be of relevance for this and other future applications, towards sustainable exploitation of North Sea cod (and other stocks) in the face of climate change and its interactions with fish ecology and spatial dynamics.

References

Akimova, A., Hufnagl, M., and Peck, M. A. 2019. Spatiotemporal dynamics of predators and survival of marine fish early life stages : Atlantic cod (Gadus morhua) in the North Sea. Progress in Oceanography, 176: 102121. Elsevier. https://doi.org/10.1016/j.pocean.2019.102121.

Akimova, A., Núñez-Riboni, I., Kempf, A., and Taylor, M. H. 2016. Spatially-Resolved Influence of Temperature and Salinity on Stock and Recruitment Variability of Commercially Important Fishes in the North Sea. Plos One, 11: e0161917.

Alexander, K. A., Meyjes, S. A., and Heymans, J. J. 2016. installations: Guaging the utility of Ecospace. Ecological Modelling: 1-14. Elsevier B.V. http://dx.doi.org/10.1016/j.ecolmodel.2016.01.016.
Alheit, J., Pohlmann, T., Casini, M., Greve, W., Hinrichs, R., Mathis, M., Driscoll, K. O., et al. 2012. Progress in Oceanography Climate variability drives anchovies and sardines into the North and Baltic Seas, 96: 128139.

André, C., Svedäng, H., Knutsen, H., Dahle, G., Jonsson, P., Ring, A.-K., Sköld, M., et al. 2016. Population structure in Atlantic cod in the eastern North Sea-Skagerrak-Kattegat: early life stage dispersal and adult migration. BMC Research Notes, 9: 63. BioMed Central.
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4739106\&tool=pmcentrez\&rendertype=a bstract.

Andrello, M., Mouillot, D., Somot, S., Thuiller, W., and Manel, S. 2015. Additive effects of climate change on connectivity between marine protected areas and larval supply to fished areas. Diversity and Distributions, 21: 139-150.
Anonymous. 2016. Background Document to the draft Joint Recommendation for Offshore Fisheries Management on the International Dogger Bank under the revised Common Fisheries Policy. 1-73 pp.
Asch, R. G., Stock, C. A., and Sarmiento, J. L. 2019. Climate change impacts on mismatches between phytoplankton blooms and fish spawning phenology. Global Change Biology: 1-16.
Barbut, L., Crego, C. G., Delerue-ricard, S., Vandamme, S., Volckaert, F. A. M., and Lacroix, G. 2019. How larval traits of six fl at fi sh species impact connectivity. Limnology and Oceanography, 64: 1150-1171.
Barcelò, C., Ciannelli, L., Olsen, E. M., Johannessen, T., and Knutsen, H. 2016. Eight decades of sampling reveal a contemporary novel fish assemblage in coastal nursery habitats. Global Change Biology, 22: 1155-1167.
Barrett, J. H. 2018. Studying medieval sea fishing and fish trade: how and why.
Barrett, J. H., Locker, A. M., and Roberts, C. M. 2004a. 'Dark Age Economics ' revisited : the English fish bone evidence AD 600-1600: 88-105.
Barrett, J. H., Locker, A. M., and Roberts, C. M. 2004b. The origins of intensive marine fishing in medieval Europe : the English evidence: 2417-2421.
Barrett, J. H., Nicholson, R. A., and Cero, R. 1999. Trends in Northern Scotland : 3500 BC to AD 1500: 353388.

Barrett, J. H., Orton, D., Johnstone, C., Harland, J., Neer, W. Van, Ervynck, A., Roberts, C., et al. 2011. Interpreting the expansion of sea fi shing in medieval Europe using stable isotope analysis of archaeological cod bones: 1-9.
Bartelings, H., Hamon, K. G., Berkenhagen, J., and Buisman, F. C. 2015. Bio-economic modelling for marine spatial planning application in North Sea shrimp and flatfish fisheries. Environmental Modelling and Software, 74: 156-172. Elsevier Ltd. http://dx.doi.org/10.1016/j.envsoft.2015.09.013.
Barth, J. M. I., Berg, P. R., Jonsson, P. R., Bonanomi, S., Corell, H., Hemmer-Hansen, J., Jakobsen, K. S., et al. 2017. Genome architecture enables local adaptation of Atlantic cod despite high connectivity. Molecular Ecology, 26: 4452-4466.

Bastardie, F., Nielsen, J. R., and Kraus, G. 2010. The eastern Baltic cod fishery: a fleet-based management strategy evaluation framework to assess the cod recovery plan of 2008. ICES Journal of Marine Science.
Bauer, B., Bauer, B., Meier, H. E. M., Casini, M., Hoff, A., and Margo, P. 2018. Reducing eutrophication increases spatial extent of communities supporting commercial fisheries : a model case study Reducing
eutrophication increases spatial extent of communities supporting commercial fisheries : a model case study.
Beaugrand, G., Brander, K. M., Alistair Lindley, J., Souissi, S., and Reid, P. C. 2003. Plankton effect on cod recruitment in the North Sea. Nature, 426: 661-664.
Beaugrand, G., Edwards, M., Brander, K., Luczak, C., and Ibanez, F. 2008. Causes and projections of abrupt climate-driven ecosystem shifts in the North Atlantic. Ecology Letters, 11: 1157-1168.
Beaugrand, G., and Kirby, R. R. 2010. Climate, plankton and cod. Global Change Biology, 16: 1268-1280.
Blanchard, J. L., Heffeman, O. A., and Fox, C. J. 2005. North Sea (ICES Divisions IVa-c and VIId). In Spawning and life history information for North Atlantic cod stocks. ICES Cooperative Research Report, No. 274. 152 pp., pp. 76-88. Ed. by K. M. Brander.
Bolle, L. J., Dickey-collas, M., Beek, J. K. L. Van, Erftemeijer, P. L. A., Witte, J. I. J., Van der Veer, H. W., and Rijnsdorp, A. D. 2009. Variability in transport of fish eggs and larvae. III. Effects of hydrodynamics and larval behaviour on recruitment in plaice. Marine Ecology Progress Series, 390: 195-211.
Bonanomi, S., Overgaard Therkildsen, N., Retzel, A., Berg Hedeholm, R., Pedersen, M. W., Meldrup, D., Pampoulie, C., et al. 2016. Historical DNA documents long-distance natal homing??in marine fish. Molecular Ecology, 25: 2727-2734.
Bonanomi, S., Pellissier, L., Therkildsen, N. O., Hedeholm, R. B., Retzel, A., Meldrup, D., Olsen, S. M., et al. 2015. Archived DNA reveals fisheries and climate induced collapse of a major fishery. Scientific reports, 5: 15395. Nature Publishing Group. http://dx.doi.org/10.1038/srep15395.
Boonstra, W. J., Ottosen, K. M., Ferreira, A. S. A., Richter, A., Rogers, L. A., Pedersen, M. W., Kokkalis, A., et al. 2015. What are the major global threats and impacts in marine environments? Investigating the contours of a shared perception among marine scientists from the bottom-up. Marine Policy, 60: 197201. Elsevier. http://dx.doi.org/10.1016/j.marpol.2015.06.007.

Brander, K. M. 1994. The location and timing of cod spawning around the British Isles. ICES Journal of Marine Science, 51: 71-89.
Brander, K. M. 2005. Cod recruitment is strongly affected by climate when stock biomass is low. ICES Journal of Marine Science, 62: 339-343.
Brander, K. M. 2010. Cod Gadus morhua and climate change: Processes, productivity and prediction. Journal of Fish Biology, 77: 1899-1911.
Brander, K. M. 2018. Climate change not to blame for cod population decline. Nature Sustainability, 1: 262264.

Buck, B. H., Krause, G., Pogoda, B., Grote, B., Wever, L., Goseberg, N., Schupp, M. F., et al. 2017. The German Case Study: Pioneer Projects of Aquaculture-Wind Farm Multi-Uses. In Aquaculture Perspective of Multi-Use Sites in the Open Ocean, Springer O, pp. 253-354. Ed. by B. H. Buck and R. Langan.
Butzin, M., and Pörtner, H. O. 2016. Thermal growth potential of Atlantic cod by the end of the 21st century. Global Change Biology, 22: 4161-4168.
Cheung, W. W. L., Reygondeau, G., and Frölicher, T. L. 2016. Large benefits to marine fisheries of meeting the $1.5^{\circ} \mathrm{C}$ global warming target. Science, 354: 1591-1594.
Cheung, W. W. L., Watson, R., and Pauly, D. 2013. Signature of ocean warming in global fisheries catch. Nature, 497: 365-368. Nature Publishing Group. http://dx.doi.org/10.1038/nature12156.
Christensen, V., Coll, M., Steenbeek, J., Buszowski, J., Chagaris, D., and Walters, C. J. 2014. Representing Variable Habitat Quality in a Spatial Food Web Model.
Christensen, V., and Walters, C. J. 2004. Ecopath with Ecosim: Methods, capabilities and limitations. Ecological Modelling, 172: 109-139.
Coll, M., Steenbeek, J., Sole, J., Palomera, I., and Christensen, V. 2016. Modelling the cumulative spatialtemporal effects of environmental drivers and fishing in a NW Mediterranean marine ecosystem. Ecological Modelling. Elsevier B.V. http://dx.doi.org/10.1016/j.ecolmodel.2016.03.020.
Colléter, M., Valls, A., Guitton, J., Gascuel, D., Pauly, D., and Christensen, V. 2015. Global overview of the applications of the Ecopath with Ecosim modeling approach using the EcoBase models repository.

Ecological Modelling, 302: 42-53. Elsevier B.V. http://dx.doi.org/10.1016/j.ecolmodel.2015.01.025.
Common Wadden Sea Secretariat. 2016. Report on the State of Conservation of the World Heritage property "The Wadden Sea (N1314)". Wilhelmshaven, Germany.
Cook, R. M., Sinclair, a., and Stefánsson, G. 1997. Potential collapse of North Sea cod stocks.
Cushing, D. H. 1990. Plankton Production and Year-class Strength in Fish Populations : an Update of the Match / M ismatc h Hypothesis. Advances in Marine Biology, 26: 249-293.
Daewel, U., Peck, M. a., and Schrum, C. 2011. Life history strategy and impacts of environmental variability on early life stages of two marine fishes in the North Sea: an individual-based modelling approach. Canadian Journal of Fisheries and Aquatic Sciences, 68: 426-443.
Dagestad, K.-F., Röhrs, J., Breivik, \varnothing., and Ådlandsvik, B. 2018. OpenDrift v1.0: A generic framework for trajectory modelling. Geoscientific Model Development, 11: 1405-1420.
Diekert, F. K., and Nieminen, E. 2015. International fisheries agreements with a shifting stock *: 1-32.
Dinesen, G. E., Neuenfeldt, S., Kokkalis, A., Lehmann, A., Egekvist, J., Kristensen, K., Munk, P., et al. 2019. Cod and climate : a systems approach for sustainable fisheries management of Atlantic cod (Gadus morhua) in coastal Danish waters. Journal of Coastal Conservation, 23: 943-958. Journal of Coastal Conservation.
Drinkwater, K. F. 2005. The response of Atlantic cod (Gadus morhua) to future climate change. ICES Journal of Marine Science, 62: 1327-1337.
Dulvy, N. K., Rogers, S. I., Jennings, S., Stelzenmüller, V., Dye, S. R., and Skjoldal, H. R. 2008. Climate change and deepening of the North Sea fish assemblage: A biotic indicator of warming seas. Journal of Applied Ecology, 45: 1029-1039.
Durant, J. M., Hjermann, D. Ø., Ottersen, G., and Stenseth, N. C. 2007. Climate and the match or mismatch between predator requirements and resource availability. Climate Dynamics, 33: 271-283.
Edwards, M., Beaugrand, G., Reid, P. C., Rowden, A. A., and Jones, M. B. 2002. Ocean climate anomalies and the ecology of the North Sea. Marine Ecology Progress Series, 239: 1-10.
Elfarsdóttir, K. M. 2020. The Atlantic mackerel (Scomber scombrus) conflict in the Northeast Atlantic.
Engelhard, G. H., Righton, D. A., and Pinnegar, J. K. 2014. Climate change and fishing: A century of shifting distribution in North Sea cod. Global Change Biology, 20: 2473-2483.
Enghoff, I. B., MacKenzie, B. R., and Nielsen, E. . E. 2007. The Danish fish fauna during the warm Atlantic period (ca. 7000-3900 BC): forerunner or future changes? Fisheries Research 8, 7: 167-180.
Eriksen, E., Huserbråten, M., Gjøsæter, H., Vikebø, F., and Albretsen, J. 2020. Polar cod egg and larval drift patterns in the Svalbard archipelago. Polar Biology, 43: 1029-1042. Springer Berlin Heidelberg. https://doi.org/10.1007/s00300-019-02549-6.
European Environment Agency. 2015. Marine protected areas in Europe's seas. An overview and perspectives for the future. 1-40 pp.
FAO. 2020a. The State of the World Fisheries and Aquaculture. http://www.fao.org/3/ca9229en/online/ca9229en.html\#chapter-1_1.
FAO. 2020b. Fisheries and aquaculture software. FishStat Plus - Universal software for fishery statistical time series. Rome. Updated 14 September 2017. [Cited 7 October 2020]. http://www.fao.org/fishery/.
Ferreira, S. A., Kokkalis, A., Pedersen, M. W., Romagnoni, G., Bardarson, H., Bonanomi, S., Boonstra, W. J., et al. 2017. Geographic distribution of climate change research in the Nordic seas. In ESSAS Open Science Meeting, Tromso, Norway. Poster presentation S5-P4.
Fiksen, \varnothing., Jørgensen, C., Kristiansen, T., Vikebø, F., and Huse, G. 2007. Linking behavioural ecology and oceanography: Larval behaviour determines growth, mortality and dispersal. Marine Ecology Progress Series, 347: 195-205.
Fox, C. J., Taylor, M., Dickey-collas, M., Fossum, P., Kraus, G., Rohlf, N., Munk, P., et al. 2008. indirect means Mapping the spawning grounds of North Sea cod (Gadus morhua) by direct and indirect means.
Froese, R., and Quaas, M. 2012. Mismanagement of the North Sea cod by the European Council. Ocean \& Coastal Management, 70:54-58. Elsevier Ltd.
http://www.sciencedirect.com/science/article/pii/S0964569112000749.
Fuchs, H. L., Chant, R. J., Hunter, E. J., Curchitser, E. N., Gerbi, G. P., and Chen, E. Y. 2020. Wrong-way migrations of benthic species driven by ocean warming and larval transport. Nature Climate Change, 10. Springer US. http://dx.doi.org/10.1038/s41558-020-0894-x.

Geffen, A. J., Høie, H., Folkvord, A., Hufthammer, A. K., Andersson, C., Ninnemann, U., Pedersen, R. B., et al. 2011. High Latitude Climate Variability and Its Effect on Fishery Resources As High-latitude climate variability and its effect on fisheries resources as revealed by fossil cod otoliths.
Goberville, E., Beaugrand, G., and Edwards, M. 2014. Synchronous response of marine plankton ecosystems to climate in the Northeast Atlantic and the North Sea. Journal of Marine Systems, 129: 189-202.
González-Irusta, J. M., and Wright, P. J. 2016. Spawning grounds of Atlantic cod (Gadus morhua) in the North Sea. ICES Journal of Marine Science: Journal du Conseil, 73: 304-315.
Grieneisen, M. L., and Zhang, M. 2011. The current status of climate change research. Nature Publishing Group, 1: 1-2. Nature Publishing Group.
Groeneveld, R. A., Bartelings, H., Börger, T., Bosello, F., Buisman, E., Delpiazzo, E., Eboli, F., et al. 2018. Economic impacts of marine ecological change: Review and recent contributions of the VECTORS project on European marine waters. Estuarine, Coastal and Shelf Science, 2015: 152-163.
Gullestad, P., Sundby, S., and Kjesbu, O. S. 2020. Management of transboundary and straddling fish stocks in the Northeast Atlantic in view of climate-induced shifts in spatial distribution. Fish and Fisheries, 21: 1008-1026.
Halouani, G., Villanueva, C., Raoux, A., Claude, J., Ben, F., Lasram, R., Foucher, E., et al. 2020. A spatial food web model to investigate potential spillover effects of a fishery closure in an offshore wind farm. Journal of Marine Systems, 212: 103434. Elsevier. https://doi.org/10.1016/j.jmarsys.2020.103434.
Harden Jones, F. R. 1968. Fish Migration. London. 325 pp.
Hauser, L., and Carvalho, G. R. 2008. Paradigm shifts in marine fisheries genetics: Ugly hypotheses slain by beautiful facts. Fish and Fisheries, 9: 333-362.
Heath, M. R., Culling, M. A., Crozier, W. W., Fox, C. J., Gurney, W. S. C., Hutchinson, W. F., Nielsen, E. E., et al. 2014. Combination of genetics and spatial modelling highlights the sensitivity of cod (Gadus morhua) population diversity in the North Sea to distributions of fishing. ICES Journal of Marine Science, 71: 794-807.
Heath, M. R., Kunzlik, P. A., Gallego, A., Holmes, S. J., and Wright, P. J. 2008. A model of meta-population dynamics for North Sea and West of Scotland cod-The dynamic consequences of natal fidelity. Fisheries Research, 93: 92-116.
Henriksen, O., Christensen, A., Jónasdóttir, S., Mackenzie, B. R., Nielsen, K. E., Mosegård, H., and Van Deurs, M. 2018. Oceanographic flow regime and fish recruitment : reversed circulation in the North Sea coincides with unusually strong sandeel recruitment. Marine Ecology Progress Series, 607: 187-205.
Heymans, J. J., Coll, M., Link, J. S., Mackinson, S., Steenbeek, J., Walters, C., and Christensen, V. 2016. Best practice in Ecopath with Ecosim food-web models for ecosystem-based management. Ecological Modelling, 331: 173-184. Elsevier B.V. http://dx.doi.org/10.1016/j.ecolmodel.2015.12.007.
Heymans, J. J., Mackinson, S., Sumaila, U. R., Dyck, A., and Little, A. 2011. The impact of subsidies on the ecological sustainability and future profits from North Sea fisheries. PLoS ONE, 6.
Hidalgo, M., Rossi, V., Monroy, P., Ser-Giacomi, E., Hernandez-Garcia, E., Guijarro, B., Massutì, E., et al. 2019. Accounting for ocean connectivity and hydroclimate in fi sh recruitment fl uctuations within transboundary metapopulations. Ecological Applications, 0: 1-13.
Hilborn, R., and Walters, C. J. 1992. Quantitative Fisheries Stock Assessment: choice, dynamics and uncertainty. Chapman and Hill, New York.
Hjermann, D., Fisher, J. A. D., Rouyer, T., Frank, K. T., and Stenseth, N. C. 2013. Spatial analysis of North Sea cod recruitment: Concurrent effects of changes in spawning stock biomass, temperature and herring abundance. Marine Ecology Progress Series, 480: 263-275.

Hjort, J. 1914. Fluctuations in the great fisheries of northern Europe viewed in the light of biological research.

Rapp. P.-V. Reun. Cons. Int. Explo. Mer, 20: 1-228.
Holland, D. S., and Herrera, G. E. 2010. Benefits and risks of increased spatial resolution in the management of fishery metapopulations under uncertainty. Natural Resource Modeling, 23: 494-520.
Holland, D. S., and Herrera, G. E. 2012. The impact of age structure, uncertainty, and asymmetric spatial dynamics on regulatory performance in a fishery metapopulation. Ecological Economics, 77: 207-218.
Holmes, S. J., Millar, C. P., Fryer, R. J., and Wright, P. J. 2014. Gadoid dynamics: differing perceptions when contrasting stock vs. population trends and its implications to management. ICES Journal of Marine Science, 71: 1433-1442.
Holmes, S. J., Wright, P. J., and Fryer, R. J. 2008. Evidence from survey data for regional variability in cod dynamics in the North Sea and West of Scotland: 206-215.
Holt, R. E., and Jørgensen, C. 2014. Climate warming causes life-history evolution in a model for Atlantic cod (Gadus morhua). Conservation Physiology, 2.
Holt, R. E., and Jørgensen, C. 2015. Climate change in fish : effects of respiratory constraints on optimal life history and behaviour. Biology Letters, 11: 20141032.
Houde, E. D. 2008. Emerging from Hjort's shadow. Journal of Northwest Atlantic Fishery Science, 41: 53-70.
Huebert, K. B., Pätsch, J., Hufnagl, M., Kreus, M., and Peck, M. A. 2018. Modeled larval fish prey fields and growth rates help predict recruitment success of cod and anchovy in the North Sea. Marine Ecology Progress Series, 600: 111-126.
Hufthammer, A. K., Dahl, C. A., Folkvord, A., and Geffen, A. J. 2006. Mesolithic seasonal sea temperatures revealed from stable isotope analysis of cod otoliths.
Huserbråten, M. B. O., Moland, E., and Albretsen, J. 2018. Cod at drift in the North Sea. Progress in Oceanography, 167: 116-124.
Hutchings, J. A. 1996. Spatial and Temporal Variation in the Density of Northern Cod and a Review of Hypotheses of the Stock's Collapse. Canadian Journal of Fisheries and Aquatic Sciences, 53: 943-962.
ICES. 2015. Report of the Benchmark Workshop on North Sea Stocks (WKNSEA), 2-6 February 2015, Copenhagen, Denmark. ICES CM 2015/ACOM:32. 253 pp: 2-6.
ICES. 2018. ICES Ecosystem Overviews Greater North Sea Ecoregion. 1-23 pp.
ICES. 2019. WORKING GROUP ON THE ASSESSMENT OF DEMERSAL STOCKS IN THE NORTH SEA AND SKAGERRAK (WGNSSK). 1271 pp.
ICES. 2020. WORKSHOP ON STOCK IDENTIFICATION OF NORTH SEA COD (WKNSCodID). 82 pp.
IPCC. 1990. Summary for policymakers. In Climate change: the IPCC scientific assessment., p. 410. Ed. by J. Houghton, G. Jenkins, and J. Ephraums. Cambridge University Press, Cambridge, New York and Melbourne.
Jardim, E., Eero, M., Silva, A., Ulrich, C., Pawlowski, L., Holmes, S. J., Ibaibarriaga, L., et al. 2018. Testing spatial heterogeneity with stock assessment models. PLoS ONE, 13.
Jonsson, P. R., Corell, H., André, C., Svedäng, H., and Moksnes, P. O. 2016. Recent decline in cod stocks in the North Sea-Skagerrak-Kattegat shifts the sources of larval supply. Fisheries Oceanography, 25: 210-228.
Jørgensen, C., and Holt, R. E. 2013. Natural mortality: Its ecology, how it shapes fish life histories, and why it may be increased by fishing. Journal of Sea Research, 75: 8-18.
Kaiser, B. A., Kourantidou, M., and Fernandez, L. 2018. A Case for the Commons: The Snow Crab in the Barents Brooks. Journal of Environmental Management, 210: 338-348.
Kempf, A., Dingsør, G. E., Huse, G., Vinther, M., Floeter, J., and Temming, A. 2010. The importance of predator - prey overlap: predicting North Sea cod recovery with a multispecies assessment model. ICES Journal of Marine Science, 67: 1989-1997.
Kempf, A., Mumford, J., Levontin, P., Leach, A., Hoff, A., Hamon, K. G., Bartelings, H., et al. 2016. The MSY concept in a multi-objective fisheries environment - Lessons from the North Sea. Marine Policy, 69: 146-158.
Kempf, A., Stelzenmüller, V., Akimova, A., and Floeter, J. 2013. Spatial assessment of predator - prey relationships in the North Sea: the influence of abiotic habitat properties on the spatial overlap
between 0-group cod and grey gurnard. Fisheries Management and Ecology, 22: 174-192.
Kerr, L. A., Hintzen, N. T., Cadrin, S. X., Clausen, L. W., Dickey-collas, M., Goethel, D. R., Hatfield, E. M. C., et al. 2016. Lessons learned from practical approaches to reconcile mismatches between biological population structure and stock units of marine fish. ICES Journal of Marine Science.
Kerr, L. A., Hintzen, N. T., Cadrin, S. X., Clausen, L. W., Dickey-collas, M., Goethel, D. R., Hatfield, E. M. C., et al. 2017. Lessons learned from practical approaches to reconcile mismatches between biological population structure and stock units of marine fish. ICES Journal of Marine Science, 74: 1708-1722.
Klinger, D. H., Maria, A., Davíðsdóttir, B., Winter, A., and Watson, J. R. 2018. The mechanics of blue growth : Management of oceanic natural resource use with multiple , interacting sectors. Marine Policy, 87: 356-362. Elsevier Ltd. https://doi.org/10.1016/j.marpol.2017.09.025.
Knutsen, H., Jorde, P. E., Hutchings, J. A., Carl, K. M. J., Grønkjær, J., Peter, H., Sodeland, M., et al. 2018. Stable coexistence of genetically divergent Atlantic cod ecotypes at multiple spatial scales. Evolutionary Applications: 1-13.
Kristiansen, T., Lough, R., Werner, F., Broughton, E., and Buckley, L. 2009a. Individual-based modeling of feeding ecology and prey selection of larval cod on Georges Bank. Marine Ecology Progress Series, 376: 227-243.
Kristiansen, T., Stock, C., Drinkwater, K. F., and Curchitser, E. N. 2014. Mechanistic insights into the effects of climate change on larval cod. Global Change Biology, 20: 1559-1584.
Kristiansen, T., Vikebø, F., Sundby, S., Huse, G., and Fiksen, \varnothing. 2009b. Modeling growth of larval cod (Gadus morhua) in large-scale seasonal and latitudinal environmental gradients. Deep Sea Research Part II: Topical Studies in Oceanography, 56: 2001-2011. Elsevier.
Kurlansky, M. 1999. Cod: A Biography of the Fish That Changed the World. Vintage Publishing. 304 pp.
Lacroix, D., and Pioch, S. 2011. The multi-use in wind farm projects : more conflicts or a win-win opportunity ?, 135: 129-135.
Lacroix, G., Maes, G. E., Bolle, L. J., and Volckaert, F. A. M. 2013. Modelling dispersal dynamics of the early life stages of a marine flatfish (Solea solea L.). Journal of Sea Research, 84: 13-25. Elsevier B.V. http://dx.doi.org/10.1016/j.seares.2012.07.010.
Lam, V. W. Y., Cheung, W. W. L., Reygondeau, G., and Sumaila, U. R. 2016. Projected change in global fisheries revenues under climate change. Scientific Reports, 6: 32607.

Langangen, \varnothing., Christian, L., Kristina, S., Yaragina, N. A., Egil, J., Frode, S., and Geir, B. V. 2018. Multi-decadal variations in spawning ground use in Northeast Arctic haddock (Melanogrammus aeglefinus): 1-10.
Langangen, \varnothing., Olsen, E., Stige, L. C., Ohlberger, J., Yaragina, N. A., Vikebø, F. B., Bogstad, B., et al. 2017. The effects of oil spills on marine fi sh: Implications of spatial variation in natural mortality. Marine Pollution Bulletin, 119: 102-109. The Authors. http://dx.doi.org/10.1016/j.marpolbul.2017.03.037.
Langangen, \varnothing., Stige, L. C., Yaragina, N. A., Ottersen, G., Vikeb \varnothing, F. B., and Stenseth, N. C. 2014a. Spatial variations in mortality in pelagic early life stages of a marine fish (Gadus morhua). Progress in Oceanography, 127: 96-107.
Langangen, \varnothing., Stige, L. C., Yaragina, N. A., Vikebø, F. B., Bogstad, B., and Gusdal, Y. 2014b. Egg mortality of northeast Arctic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus. ICES Journal of Marine Science, 71: 1129-1136.
Lilly, G., O, N., and Brattey, J. 2013. A review of the contributions of fisheries and climate variability to contrasting dynamics in two Arcto-boreal Atlantic cod (Gadus morhua) stocks: persistent high productivity in the Barents Sea and collapse on the Newfoundland and Labrador Shelf. Progress in Oceanography, 114: 106-125.
Lilly, G. R. 2008. The Decline , Recovery, and Collapse of Atlantic Cod (Gadus morhua) off Labrador and Eastern Newfoundland. In Resiliency of Gadid Stocks to Fishing and Climate Change, Alaska Sea, pp. 6788. Ed. by and D. W. G.H. Kruse, K. Drinkwater, J.N. Ianelli, J.S. Link, D.L. Stram, V. Wespestad. Fairbanks.
Lindegren, M., Andersen, K., Casini, M., and Neuenfeldt, S. 2014. A metacommunity perspective on source sink dynamics and management : the Baltic Sea as a case study. Ecological Applications, 24: 1820-1832.

Lindegren, M., Waldo, S., Nilsson, P. A., Sveda, H., and Persson, A. 2013. and Management Recommendations. ICES Journal of Marine Science, 70: 1140-1150.
Lynam, C., Steenbeek, J., Mackinson, S., Garcia, C., Wright, S., Posen, P., Lincoln, S., et al. 2017. Investigating food web effects due to man-made structures using COupled Spatial Modelling (COSM). 1-38 pp.
Mackinson, S., and Daskalov, G. 2007. An ecosystem model of the North Sea to support an ecosystem approach to fisheries management: description and parameterisation. Science Series Technical Report, 142: 196 pp.
Mackinson, S., Deas, B., Beveridge, D., and Casey, J. 2009. Mixed-fishery or ecosystem conundrum ? Multispecies considerations inform thinking on long-term management of North Sea demersal stocks. Canadian Journal of Fisheries and Aquatic Science, 66: 1107-1129.
Malachowicz, M., and Wenne, R. 2019. Marine Genomics Microarray analysis of gene expression of Atlantic cod from different Baltic Sea regions : Adaptation to salinity. Marine Genomics, 48: 1-3. Elsevier. https://doi.org/10.1016/j.margen.2019.04.006.
Marine Stewardship Council (MSC). 2017. north-sea-cod-certified-as-sustainable. https://www.msc.org/media-centre/press-releases/north-sea-cod-certified-as-sustainable (Accessed 9 June 2020).
Marine Stewardship Council (MSC). 2019. north-sea-cod-to-lose-sustainability-certification. https://www.msc.org/media-centre/press-releases/north-sea-cod-to-lose-sustainability-certification (Accessed 9 June 2020).
Marshall, C. T., Needle, C. L., Thorsen, A., Kjesbu, O. S., and Yaragina, N. A. 2006. Systematic bias in estimates of reproductive potential of an Atlantic cod (Gadus morhua) stock : implications for stock-recruit theory and management. Canadian Journal of Fisheries and Aquatic Science, 63: 980-994.
Miller, K., Munro, G., Sumaila, U. R., and Cheung, W. 2013. Governing marine fisheries in a changing climate: A game-theoretic perspective. Canadian Journal of Agriculture Economics, 61: 309-334.
Muir, A. P., Dubois, S. F., Ross, R. E., Firth, L. B., Knights, A. M., Lima, F. P., Seabra, R., et al. 2020. Seascape genomics reveals population isolation in the reef-building honeycomb worm, Sabellaria alveolata (L.). BMC Evolutionary Biology, 20: 1-16. BMC Evolutionary Biology.
Munday, P. L., Leis, J. M., Lough, J. M., Paris, C. B., Kingsford, M. J., Berumen, M. L., and Lambrechts, J. 2009. Climate change and coral reef connectivity. Coral Reefs, 28: 379-395.
Neat, F. C., Bendall, V., Berx, B., Wright, P. J., Cuaig, M., Townhill, B., Schön, P. J., et al. 2014. Movement of Atlantic cod around the British Isles: Implications for finer scale stock management. Journal of Applied Ecology, 51: 1564-1574.
Neat, F., and Righton, D. 2007. Warm water occupancy by North Sea cod. Proceedings. Biological sciences / The Royal Society, 274: 789-798.
Neuheimer, A. B., and Grønkjær, P. 2012. Climate effects on size-at-age: Growth in warming waters compensates for earlier maturity in an exploited marine fish. Global Change Biology, 18: 1812-1822.
Nicolas, D., Rochette, S., Llope, M., and Licandro, P. 2014. Spatio-Temporal variability of the North Sea Cod recruitment in relation to temperature and zooplankton. PLoS ONE, 9: e88447.
Nielsen, E. E., Wright, P. J., Hemmer-hansen, J., Poulsen, N. A., Gibb, I. M., and Meldrup, D. 2009. Microgeographical population structure of cod Gadus morhua in the North Sea and west of Scotland: the role of sampling loci and individuals.
Nielsen, J. R., Thunberg, E., Holland, D. S., Schmidt, J. O., Fulton, E. A., Bastardie, F., Punt, A. E., et al. 2017. Integrated ecological - economic fisheries models - Evaluation , review and challenges for implementation: 1-29.
Nunez-Riboni, I., Taylor, M. H., Kempf, A., Pu, M., and Mathis, M. 2019. Spatially resolved past and projected changes of the suitable thermal habitat of North Sea cod (Gadus morhua) under climate change. ICES Journal of Marine Science.
Olsen, E. M., Ottersen, G., Llope, M., Chan, K.-S., Beaugrand, G., and Stenseth, N. C. 2011. Spawning stock and recruitment in North Sea cod shaped by food and climate. Proceedings of the Royal Society B: Biological Sciences, 278: 504-510.

OSPAR. 2017. Intermediate Assessment. https://oap.ospar.org/en/ospar-assessments/intermediate-assessment-2017/biodiversity-status/fish-and-food-webs/.
Ospina-alvarez, A., De Juan, S., Alós, J., Basterretxea, G., Alonso-Fernández, A., Follana-Bernà, G., Palmer, M., et al. 2020. MPA network design based on graph theory and emergent properties of larval dispersal. Marine Ecology Progress Series, 650: 309-326.
Østhagen, A., Spijkers, J., and Totland, O. A. 2020. Collapse of cooperation? The North-Atlantic mackerel dispute and lessons for international cooperation on transboundary fish stocks. Maritime Studies, 19: 155-165. Maritime Studies.
Ottersen, G., Hjermann, D. A. G. Ø., and Stenseth, N. C. H. R. 2006. Changes in spawning stock structure strengthen the link between climate and recruitment in a heavily fished cod (Gadus morhua) stock: 230-243.
Peck, M. A., and Hufnagl, M. 2012. Can IBMs tell us why most larvae die in the sea ? Model sensitivities and scenarios reveal research needs. Journal of Marine Systems, 93: 77-93. Elsevier B.V. http://dx.doi.org/10.1016/j.jmarsys.2011.08.005.
Pedersen, M. W., Kokkalis, A., Bardarson, H., Bonanomi, S., Boonstra, W. J., Butler, W. E., Diekert, F. K., et al. 2016. Trends in marine climate change research in the Nordic region since the first IPCC report. Climatic Change, 134: 147-161.
Perry, A. L., Low, P. L., Ellis, J. R., and Reynolds, J. D. 2005. Climate Change and Distribution Shifts in Marine Fishes. Science, 308: 1912-1915. http://www.sciencemag.org/cgi/doi/10.1126/science. 1111322.
Petitgas, P., Alheit, J., Peck, M. A., Raab, K., Irigoien, X., Huret, M., Kooij, J. Van Der, et al. 2012. Anchovy population expansion in the North Sea.
Pinnegar, J. K., Engelhard, G. H., Jones, M. C., Cheung, W. W. L., Peck, M. A., Rijnsdorp, A. D., and Brander, K. M. 2016. Socio-economic Impacts—Fisheries. In North Sea Region Climate Change Assesment, pp. 375396. Ed. by Markus Quante and Franciscus Coljin. Springer International Publishing AG Switzerland.

Pinsky, M. L., Reygondeau, G., Caddell, R., Palacios-Abrantes, J., Spijkers, J., and Cheung, W. W. L. 2018. Preparing ocean governance for species on the move. Science, 360: 1189-1191.
Plumeridge, A. A., and Roberts, C. M. 2017. Conservation targets in marine protected area management suffer from shifting baseline syndrome : A case study on the Dogger Bank. Marine Pollution Bulletin, 116: 395-404. Elsevier Ltd. http://dx.doi.org/10.1016/j.marpolbul.2017.01.012.
Pörtner, H., Bock, C., Knust, R., Lannig, G., Lucassen, M., Mark, F. C., and Sartoris, F. J. 2008. Cod and climate in a latitudinal cline : physiological analyses of climate effects in marine fishes.
Pörtner, H. O., Berdal, B., Blust, R., Brix, O., Colosimo, A., De Wachter, B., Giuliani, A., et al. 2001. Climate induced temperature effects on growth performance, fecundity and recruitment in marine fish: Developing a hypothesis for cause and effect relationships in Atlantic cod (Gadus morhua) and common eelpout (Zoarces viviparus). Continental Shelf Research, 21: 1975-1997.
Poulsen, N. A., Hemmer-hansen, J., Loeschcke, V., Carvalho, G. R., and Nielsen, E. E. 2011. Microgeographical population structure and adaptation in Atlantic cod Gadus morhua : spatio-temporal insights from gene-associated DNA markers. Marine Ecology Progress Series, 436: 231-243.
Püts, M., Taylor, M., Núñez-riboni, I., Steenbeek, J., Stäbler, M., Möllmann, C., and Kempf, A. 2020. Insights on integrating habitat preferences in process-oriented ecological models - a case study of the southern North Sea. Ecological Modelling, 431: 109189. Elsevier. https://doi.org/10.1016/j.ecolmodel.2020.109189.
Reise, K., Baptist, M., Burbridge, P., Dankers, N., Fischer, L., Flemming, B., Oost, A. P., et al. 2010. The Wadden Sea - A Universally Outstanding Tidal Wetland. Wadden Sea Ecosystem No. 29. Wilhelmshaven, Germany. 7-24 pp.
Righton, D. A., Andersen, K. H., Neat, F., Thorsteinsson, V., Steingrund, P., Svedäng, H., Michalsen, K., et al. 2010. Thermal niche of Atlantic cod Gadus morhua: Limits, tolerance and optima. Marine Ecology Progress Series, 420: 1-13.
Righton, D., Quayle, V. A., Hetherington, S., and Burt, G. 2007. Movements and distribution of cod (Gadus morhua) in the southern North Sea and English Channel: results from conventional and electronic
tagging experiments. Journal of the Marine Biological Association of the United Kingdom, 87: 599-613.
Rindorf, A., and Lewy, P. 2006. Warm, windy winters drive cod north and homing of spawners keeps them there: 445-453.

Robichaud, D., and Rose, G. A. 2004. Migratory behaviour and range in Atlantic cod: Inference from a century of tagging. Fish and Fisheries, 5: 185-214.
Rogers, L. A., and Stenseth, N. C. 2017. Fine-scale population dynamics in a marine fish species inferred from dynamic state-space models: 888-898.
Rogers, L. A., Stige, L. C., Olsen, E. M., Knutsen, H., Chan, K., and Chr, N. 2011. Climate and population density drive changes in cod body size throughout a century on the Norwegian coast.
Romagnoni, G. 2019. Building, balancing, fitting and calibrating a simplified Ecopath with Ecosim North Sea model for the MSP Challenge Platform Edition game.
Roney, N. E., Oomen, R. A., and Hutchings, J. A. 2018. Fine - scale population differences in Atlantic cod reproductive success : A potential mechanism for ecological speciation in a marine fish: 1-11.
Rose, G. A., Marteinsdóttir, G., and Godø, O. R. 2019. Exploitation : Cod is Fish and Fish is Cod. In Atlantic Cod: A Bio-Ecology, pp. 287-336. Ed. by G. A. Rose. John Wiley \& Sons, Inc.
Rose, K. A., Roth, B. M., and Smith, E. P. 2009. Skill assessment of spatial maps for oceanographic modeling. Journal of Marine Systems, 76: 34-48. Elsevier B.V.
Rouyer, T., Ottersen, G., Durant, J. M., Hidalgo, M., Hjermann, D. Ø., Persson, J., Stige, L. C., et al. 2011. Shifting dynamic forces in fish stock fluctuations triggered by age truncation ? Global Change Biology, 17: 3046-3057.

Russell, D. J. F., Jones, E. L., and Morris, C. D. 2017. Updated Seal Usage Maps : The Estimated at - sea Distribution of Grey and Harbour Seals. 1-30 pp.
Sanchirico, J. N., and Wilen, J. E. 1999. Bioeconomics of Spatial Exploitation in a Patchy Environment. Journal of Environmental Economics and Management, 37: 129-150. http://www.sciencedirect.com/science/article/B6WJ6-45GMWWS1/2/ef057297374dd43467bb30e725d7b568\\nhttp://www.sciencedirect.com/science/article/pii/S0 095069698910609.

Sanchirico, J. N., and Wilen, J. E. 2001. Dynamics of Spatial Exploitation : A Metapopulation Approach Dynamics of Spatial Exploitation : A Metapopulation Approach. Natural Resource Modeling, 14.
Schindler, D. E., Hilborn, R., Chasco, B., Boatright, C. P., Quinn, T. P., Rogers, L. a, and Webster, M. S. 2010. Population diversity and the portfolio effect in an exploited species. Nature, 465: 609-12.
Schupp, M. F., Bocci, M., Depellegrin, D., Kafas, A., Kyriazi, Z., Lukic, I., Schultz-zehden, A., et al. 2019. Toward a Common Understanding of Ocean Multi-Use, 6: 1-12.
Sguotti, C., Otto, S. A., Cormon, X., Werner, K. M., Deyle, E., Sugihara, G., and Mo, C. 2019. Non-linearity in stock - recruitment relationships of Atlantic cod : insights from a multi-model approach.
Shchepetkin, A. F., and McWilliams, J. C. 2005. The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9: 347-404.
Sicking, L., and Abreu-Ferreira, D. 2008. Beyond the Catch: fisheries of the North Atlantic, the North Sea and the Baltic, 900-1850. Brill, Leiden. 428 pp.
Siddon, E. C., Kristiansen, T., Mueter, F. J., Holsman, K. K., Heintz, R. A., and Farley, E. V. 2013. Spatial MatchMismatch between Juvenile Fish and Prey Provides a Mechanism for Recruitment Variability across Contrasting Climate Conditions in the Eastern Bering Sea. PLoS ONE, 8: e84526.
Simons, S. L., Bartelings, H., Hamon, K. G., Kempf, A. J., Döring, R., and Temming, A. 2014. Integrating stochastic age-structured population dynamics into complex fisheries economic models for management evaluations: the North Sea saithe fishery as a case study. ICES Journal of Marine Science, 71: 1638-1652.
Speirs, D. C., Guirey, E. J., Gurney, W. S. C., and Heath, M. R. 2010. A length-structured partial ecosystem model for cod in the North Sea. Fisheries Research, 106: 474-494. Elsevier B.V.
http://dx.doi.org/10.1016/j.fishres.2010.09.023.

Spijkers, J., and Boonstra, W. J. 2017. Environmental change and social conflict : the northeast Atlantic mackerel dispute. Regional Environmental Change, 17: 1835-1851. Regional Environmental Change.
STECF. 2019a. Review of Joint Recommendations for Natura 2000 sites at Dogger Bank, Cleaver Bank, Frisian Front and Central Oyster grounds. (STECF-19-04). 1-42 pp.
STECF. 2019b. Scientific , Technical and Economic Committee for Fisheries (STECF) Evaluation of fishing effort regime in the Western Mediterranean - part IV (STECF-19-14). Luxembourg.
Steenbeek, J., Coll, M., Gurney, L., Mélin, F., Hoepffner, N., Buszowski, J., and Christensen, V. 2013. Bridging the gap between ecosystem modeling tools and geographic information systems : Driving a food web model with external spatial - temporal data. Ecological Modelling, 263: 139-151. Elsevier B.V. http://dx.doi.org/10.1016/j.ecolmodel.2013.04.027.
Steenbeek, J., Romagnoni, G., Bentley, J. W., Heymans, J. J., Serpetti, N., and Gonçalves, M. 2020. Combining ecosystem modeling with serious gaming in support of transboundary maritime spatial planning: 1-13.
Stelzenmüller, V., Diekmann, R., Bastardie, F., Schulze, T., Berkenhagen, J., Kloppmann, M., Krause, G., et al. 2016. Co-location of passive gear fisheries in offshore wind farms in the German EEZ of the North Sea: A first socio-economic scoping Co-location of passive gear fi sheries in offshore wind farms in the German EEZ of the North Sea : A fi rst socio-economic scoping. Journal of Environmental Management. Elsevier Ltd. http://dx.doi.org/10.1016/j.jenvman.2016.08.027.
Sterner, T. 2007. Unobserved diversity, depletion and irreversibility The importance of subpopulations for management of cod stocks. Ecological Economics, 61: 566-574.
Stige, L. C., Ottersen, G., Brander, K., Chan, K., and Stenseth, N. C. 2006. Cod and climate : effect of the North Atlantic Oscillation on recruitment in the North Atlantic, 325: 227-241.
Stige, L. C., Ottersen, G., Yaragina, N. A., Vikebø, F. B., Stenseth, N. C., and Langangen, \varnothing. 2018. Combined effects of fishing and oil spills on marine fish : role of stock demographic structure for offspring overlap with oil. Marine Pollution Bulletin: 336-342.
Stow, C. A., Jolliff, J., Mcgillicuddy, D. J., Doney, S. C., Allen, J. I., Friedrichs, M. A. M., Rose, K. A., et al. 2009. Skill assessment for coupled biological / physical models of marine systems. Journal of Marine Systems, 76: 4-15. Elsevier B.V. http://dx.doi.org/10.1016/j.jmarsys.2008.03.011.
Subbey, S., Devine, J. A., Schaarschmidt, U., and Nash, R. D. M. 2014. Modelling and forecasting stockrecruitment: current and future perspectives, 71: 2307-2322.
Sundby, S., Kristiansen, T., Nash, R., and Johannessen, T. 2017. Dynamic Mapping of North Sea Spawning Report of the KINO Project, Fisken og Havet, Intitute of Marine Research, Norway, Bergen, Tech. rep. 22017, 195 pp.
Ulrich, C., Reeves, S. A., Vermard, Y., Holmes, S. J., and Vanhee, W. 2011. Reconciling single-species TACs in the North Sea demersal fisheries using the Fcube mixed-fisheries advice framework, 68: 1535-1547.
Ulrich, C., Vermard, Y., Dolder, P. J., Brunel, T., Jardim, E., Holmes, S. J., Kempf, A., et al. 2016. Achieving maximum sustainable yield in mixed fisheries : a management approach for the North Sea demersal fisheries.

Vliet, J. Van, Bregt, A., and Hagen-zanker, A. 2011. Revisiting Kappa to Account for Change in the Accuracy Assessment of Land-Use Change Models. Elsevier B.V. http://dx.doi.org/10.1016/j.ecolmodel.2011.01.017.
Voss, R., Quaas, M. F., Schmidt, J. O., Stoeven, M. T., Francis, T. B., Levin, P. S., Armitage, D. R., et al. 2018. Quantifying the bene fi ts of spatial fi sheries management - An ecological- economic optimization approach. Ecological Modelling, 385: 165-172. Elsevier. https://doi.org/10.1016/j.ecolmodel.2018.07.012.
Waggitt, J. J., Evans, P. G. H., Andrade, J., Banks, A. N., Boisseau, O., Bolton, M., Bradbury, G., et al. 2020. Distribution maps of cetacean and seabird populations in the North-East Atlantic. Journal of Applied Ecology, 57: 253-269.
Walters, C., Pauly, D., and Christensen, V. 1999. ECOSPACE: prediction of mesoscale spatial patterns in trophic relationships of exploited ecosystems, with particular reference to impacts of marine protected areas. Ecosystems, 2: 539-554.

Walters, C., Pauly, D., Christensen, V., and Kitchell, J. F. 2000. Representing density dependent consequences of life history strategies in aquatic ecosystems: EcoSim II. Ecosystems, 3: 70-83.
Wenne, R., Bernas, R., Kijewska, A., Poćwierz-Kotus, A., Strand, J., Petereit, C., Plauška, K., et al. 2020. OPEN SNP genotyping reveals substructuring in weakly differentiated populations of Atlantic cod (Gadus morhua) from diverse environments in the Baltic Sea. Scientific reports, 10: 1-15.
Wilson, M. T., and Laman, N. 2020. Interannual variation in the coastal distribution of a juvenile gadid in the northeast Pacific Ocean: The relevance of wind and effect on recruitment. Fisheries Oceanography: 120.

Woods, P. J., Macdonald, J.I., Barðarson, H., Bonanomi, S., Boonstra, W. J., Cornell, G., Cripps, G., Danielsen, R., et al. (n.d.). "Does fisheries management facilitate adaptation to climate-change in global North nations. ICES Journal of Marine Science.
Wright, P. J., Galley, E., Gibb, I. M., and Neat, F. C. 2006a. Fidelity of adult cod to spawning grounds in Scottish waters. Fisheries Research, 77: 148-158.
Wright, P. J., Millar, C. P., and Gibb, F. M. 2011. Intrastock differences in maturation schedules of Atlantic cod, Gadus morhua. ICES Journal of Marine Science, 68: 1918-1927.
Wright, P. J., Neat, F. C., Gibb, F. M., Gibb, I. M., and Thordarson, H. 2006b. Evidence for metapopulation structuring in cod from the west of Scotland and North Sea. Journal of Fish Biology, 69: 181-199.
Wright, P. J., Régnier, T., Gibb, F. M., and Augley, J. 2018. Assessing the role of ontogenetic movement in maintaining population structure in fish using otolith microchemistry: 7907-7920.
Wubs-Mrozewicz, J. 2008. Fish, stock and barrel. Changes in the stockfish trade in northern Europe, c. 13601560,. In Beyond the Catch, Northern W, pp. 187-208. Ed. by L. Sicking and D. Abreu-Ferreira. Brill, Leida.
Yletyinen, J., Butler, W., Ottersen, G., Andersen, K. H., Bonanomi, S., Diekert, F. K., Folke, C., et al. 2018. When is a fish stock collapsed? bioRxiv preprint doi: https://doi.org/10.1101/329979: 1-15.

Paper I

The Ecospace model applied to the North Sea: Evaluating spatial predictions with fish biomass and fishing effort data

Giovanni Romagnoni ${ }^{\text {a,* }}$, Steven Mackinson ${ }^{\text {b }}$, Jiang Hong ${ }^{\text {c }}$, Anne Maria Eikeset ${ }^{\text {a }}$
${ }^{\text {a }}$ Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Blindern, NO-0316 Oslo, Norway
${ }^{\text {b }}$ Centre for Fisheries, Environment and Aquaculture Science, Pakefield Road, Lowestoft, Suffolk NR33 OHT, UK
${ }^{\text {c S State Key Laboratory of Estuarine and Coastal Research, East China Normal University, North Zhongshan Road, Shanghai 200062, China }}$

ARTICLE INFO

Article history:

Received 7 September 2014
Received in revised form
16 December 2014
Accepted 20 December 2014

Keywords:

Ecopath with Ecosim
Sensitivity analysis
Spatial management
Ecosystem model
Model evaluation
Ecospace

Abstract

The Ecospace model has been developed from the Ecopath with Ecosim food web model to add a spatial dimension for investigating marine ecosystems. In this study, we evaluated the sensitivity of an Ecospace model developed for the North Sea ecosystem to some of its key parameters, and we examined this model's capability to reproduce trends in spatial time-series of fish biomass and fishing effort. We measured the fit between the spatiotemporal model predictions and the corresponding data of biomass for 12 species and effort for three fishing fleets. Our results suggest that the Ecospace model for the North Sea can predict quite successfully the species distribution, but not the distribution of fishing effort. We hypothesise that the reason might be that Ecospace assumes spatial effort distribution to be driven mainly by profit, while other factors might be more important in our system at the spatiotemporal scale explored. The model might thus fail to capture fisher's behaviour accurately for this system. Despite the limitations of our ad hoc approach for sensitivity analysis, these results hint that some problems exist in our model, which might extend to other Ecospace models and perhaps to the framework in general. This study highlights the importance of validating Ecospace models with data if their results are used for management advice. We suggest that, in order to make of Ecospace a more robust tool for management advice, some critical improvements are needed: the development of an algorithm for parameter optimisation through fitting the model predictions to data, and advancement of the effort distribution model.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Fisheries management is moving towards an Ecosystem Approach to Fisheries (EAF). EAF complements and integrates single-species management by accounting for trophic food web effects. Overlooking inter-specific interactions can result in unexpected deterioration of ecosystem structure and fish stocks (ICES, 2012b; Mackinson et al., 2009; Pikitch et al., 2004; Walters et al., 2005). Ecosystem models are promising tools for management advice, thanks to the appealing capability to include a wide range of processes across a wide range of scales, and to provide quantitative and easy-to-interpret results. Inclusion of these tools into management advice is getting increasingly advanced, most often in combination with other approaches (e.g., Dichmont et al., 2013;

[^0]Fulton, 2011; Fulton et al., 2011). However, the model behaviour across different parameters values and prediction capability of the models should be accurately investigated in order to provide reliable tools for managers (e.g., Harwood and Stokes, 2003). In this study, we explored capabilities and limitations of a widely used model to provide a quantitative evaluation which could be useful for its future application for management advice.

The importance of spatial dimension in marine fisheries ecology is increasingly recognised (Ciannelli et al., 2008; Kempf et al., 2010, 2013). Marine organisms distribute spatially according to specific patterns, either statically (as a result of their habitat and environmental preferences) or actively moving (e.g., reproductive migration). Similarly, fishermen decide where to fish based on their knowledge about fish distribution and other factors. Neither fish nor fishers are thus homogenously or randomly distributed in space, an implicit assumption in non-spatial fisheries assessment and management. Spatial structure and processes can explain local dynamics with relevance at the whole basin level, while ignoring such structure and processes can undermine our understanding
of the systems and our capability to manage them effectively (Hjermann et al., 2013; Kempf et al., 2010, 2013; Pelletier and Mahévas, 2005; Sanchirico, 2005).

By integrating spatial dynamics and food web interactions, spatially explicit ecosystem models can be useful to support an EAF. A number of modelling frameworks have undertaken this approach: Osmose (Shin and Cury, 2001), Atlantis (Fulton et al., 2011) and Ecopath with Ecosim (Christensen and Pauly, 1992; Walters et al., 1997) are among the most used tools (Fulton, 2011; Pelletier and Mahévas, 2005; Plagányi, 2007). These models are certainly not the panacea for the problem of fisheries management; however they can prove useful for selecting among policy choices. Ecopath with Ecosim (EwE) is an approach based on a mass-balanced food web model (Christensen and Pauly, 1992; Walters et al., 1997) and it includes the spatial component Ecospace (Walters et al., 1999). Ecospace was developed mainly for studying spatial management scenarios, in particular marine protected areas (MPAs), and their effect on ecosystem dynamics and fishing profitability (Beattie et al., 2002; Le Quesne et al., 2008; Metcalfe et al., in review). Rather than attempting to incorporate all possible processes that regulate spatial food-web dynamics (an arguably impossible task), Ecospace aims at reproducing general, but realistic, distribution patterns at a regional scale.

In order to make the Ecospace model a valuable and reliable tool, one needs to carefully evaluate the model performance in several ways. An important exercise is sensitivity analysis (Saltelli et al., 2008), which explores the variation in model fit across different values of the parameters. Formal parameter sensitivity analysis has already been performed for Ecopath (Essington, 2007) and Ecosim (Gaichas et al., 2012) but no analysis of the whole parameter dimension has to our knowledge been performed for Ecospace. Some studies explored model robustness to changes in parameters input of $\pm 50 \%$ (e.g., Chen et al., 2009; Espinosa-Romero et al., 2011), focusing however on one parameter at a time, a procedure which does not allow to explore the whole parameter dimension (Saltelli and Annoni, 2010). In general, the large number of parameters is a major challenge in modelling, and especially for Ecospace, as it makes it difficult to explore the parameter dimension systematically. Furthermore, realistic estimates of parameter values can be difficult to quantify, due to the lack of detailed information at the species and fleet level for many of the parameters. Default or user-defined values for Ecospace parameters are thus often used, without any critical assessment of their robustness.

Another important practice is the evaluation of a model performance through comparison with data. In Ecospace, this analysis was performed in a few studies for species distribution (Daskalov et al., 2011; Mackinson et al., unpublished), however no study to our knowledge has compared predictions of spatial distribution of fishing effort to data. Given that the evaluation of MPA effects on fishery profitability is largely based on predicted fleet response, i.e., variation in effort distribution, fleet behaviour is a key feature in Ecospace. It is therefore fundamental to evaluate quantitatively the capability of the model to reproduce known spatial patterns of fleets' distribution.

Two complementary tools are then necessary for evaluating Ecospace: (i) sensitivity analysis to variation in parameters settings; and (ii) a systematic evaluation of model performance through comparison of model predictions to data. In this paper we use both these tools to firstly identify which parameters have the largest effect on the performance of the North Sea Ecospace model; and secondly quantify the North Sea Ecospace model capability of reproducing known trends and spatial distribution of fish species as well as fishing fleets. Our aim is to evaluate the realism and unmask what is needed in order to improve and set quality standards for this Ecospace model, but also the framework as such, in order to be an efficient tool for management advice.

2. Methods

2.1. Ecopath with Ecosim

Ecopath with Ecosim (EwE) is a food-web model based on the assumption of mass-balance. It was developed for modelling marine ecosystems and understanding the impact of fisheries and other pressures on the system (Christensen and Pauly, 1992; Walters et al., 1997, 1999). The model and its assumptions have been discussed widely in the literature (Christensen and Walters, 2004; Pauly et al., 2000; Plagányi and Butterworth, 2004). The model is built hierarchically: the base component is the Ecopath model, a static mass-balanced snapshot of a closed ecosystem, represented through a network of nodes (functional groups) and links (trophic interactions). Functional groups (which can be species, groups of ecologically similar species, ontogenetic classes, or detritus groups) are represented as biomass "pools". Diet composition determines flows of energy and matters between functional groups. Ecopath is based on a system of linear equations which describe the average flow between groups within an interval of time. The main equation is:
$P_{i}=B_{i} \cdot M_{i}+Y_{i}+E_{i}+B A_{i}+P_{i} \cdot\left(1-E E_{i}\right)$
where, for each functional group i, P_{i} is productivity, B_{i} is biomass, M_{i} is total mortality rate from predation, Y_{i} is mortality rate from fishery, E_{i} is net emigration rate (emigration-immigration), $B A_{i}$ is biomass accumulation rate, and $E E_{i}$ is ecotrophic efficiency (the proportion of production which is utilised in the system). The term $P_{i} \cdot\left(1-E E_{i}\right)$ can be interpreted as the mortality from other causes than predation or fishery. The mortality from predation links predators and preys, through the equation:
$B_{i} \cdot M_{i}=\sum_{j} B_{j} \cdot(Q / B)_{j} \cdot D C_{j i}$
where the total predation mortality of group i is given by the sum across all predators j of the predator biomass B_{j} times the consumption per unit of biomass of j (i.e. the term $Q / B)_{j}$) times the fraction of prey group i in the diet of group j (the term $D C_{j i}$). The second main equation of Ecopath states that consumption is equal to production plus respiration plus unassimilated food. Ecosim develops the Ecopath food web in a time-dynamic simulation through a system of differential equations, which calculates flow of biomass across functional groups through time. Information from the Ecopath module is combined with parameters and assumption about feeding relationships which are used to parameterise the differential equations. Ecosim is routinely parameterised through fitting to time series of biomass and catches. The basic Ecosim equation expresses the rate of variation in time of biomass B for each group i as:

$$
\frac{d B_{i}}{d t}=g_{i} \cdot \sum_{j} Q_{j i}-\sum_{j} Q_{i j}+I_{i}-\left(M_{i}+F_{i}+e_{i}\right) \cdot B_{i}
$$

where g_{i} is the net growth efficiency, $Q_{j i}$ is the consumption rate of group i on group j, and $Q_{i j}$ is the consumption rate of group j on group i. The first two terms represent the total consumption of group i and the total predation suffered by group i from all other groups, respectively. I_{i} is the immigration rate, M_{i} is the non-predation natural mortality rate, F_{i} is the fishing mortality rate, and e_{i} is the emigration rate. In Ecosim, consumption $Q_{i j}$ is calculated through the foraging arena theory (Walters et al., 1997), which splits the biomass pool of a prey species available to a predator into an available ("vulnerable") and an unavailable ("non-vulnerable") fraction, regulated by a parameter named "vulnerability". Ecosim is particularly sensitive to vulnerability, which is the parameter
estimated by fitting the model to time series data (Mackinson, 2014). For further details about the model framework we refer to Christensen and Walters (2004), Christensen et al. (2008) and Walters et al. (1997).

2.2. Ecospace

Ecospace is the spatial component of EwE (Walters, 2000; Walters et al., 2010, 1999). It is based on a two-dimensional "map", a grid of equally sized cells on which the biomass of functional groups is distributed. Species distribution is modelled through habitat assignment based on group-specific preference with respect to feeding and predation regimes, and dispersal rates. Temporal changes in biomass and consumption of species at the local scale are simulated with predator-prey relationships through a set of Ecosim differential equations for every cell in the map. Groups can move to adjacent cells through random-directional movements depending on swimming speed. Ecospace inherits parameters and data (e.g., time series of biomass, fishing effort, and environmental forcing functions) from the underlying Ecopath and Ecosim models. Additional parameters and inputs are required to regulate the initial allocation of biomass and fleet distributions, and their temporal and spatial dynamic developments (Christensen and Walters, 2004; Christensen et al., 2008; Martell et al., 2005; Walters et al., 1999). Details of the theory, parameterisation and robustness checks for habitat map and initialisation settings are provided in the Supplementary Appendix (A. 1 and A.2).

The parameters in Ecospace that regulate spatial distribution of groups and species are: "Base Dispersal Rate", "Relative Dispersal in Bad Habitat", "Relative Vulnerability in Bad Habitat", and "Relative Feeding Rate in Bad Habitat" (Table 1). These can be fine-tuned at group level however they also have a default value. Base Dispersal rate, corresponding to swimming speed, is entered in Ecospace for each species in km/year. It can be set between 0 and infinite and has a default value of $300 \mathrm{~km} / \mathrm{year}$ (Table 1). Recall that in Ecospace the performance of a species in non-favourable habitat is assumed to be worse than in favourable habitat. This is simulated through three parameters, which operate as weight factors. The Relative Dispersal in Bad Habitat parameter increases dispersal rate in non-favourable habitats to simulate greater active attempt to move elsewhere with better conditions. It can be set from 1 (which inactivates the mechanism) to 10 and at default is set at 2 (i.e., twice the speed in non-favourable habitat as in favourable habitat). Relative Vulnerability in Bad Habitat is a weight factor for the vulnerability parameter in Ecosim. It regulates the increased vulnerability to predation (or decreased sheltering capacity) in a less-than-optimal habitat. Its default value is 2 (twice more vulnerable in bad habitat), and it can be set between 1 and 100. Relative Feeding Rate in Bad Habitat governs how much a group will feed (and ultimately grow) in a bad habitat. It decreases the feeding rate (reducing the Ecopath value of Q / B, Consumption/Biomass ratio). This parameter can be set between 0 and 1 , and its default value is 0.05 (Christensen et al., 2008).

Fleets distribution can be regulated through the parameters "Effective Power" and "Total Efficiency Multiplier" (Table 1). Fishing mortality per species per cell depends on the distribution of fishing effort. Initially, effort is distributed through assignation of fleets to habitats, and by closing cells to some or to all fleets to simulate MPAs. Then, a gravity model (Caddy, 1975; Walters et al., 1999) spreads yearly fishing effort values (inherited from Ecosim) across all cells open to fishing (i.e., cells which are not land, not MPAs and are set as suitable habitat to a certain fleet) proportionally to the "attractiveness" of each cell. At every time step, attractiveness $A_{n, k}$ to cell n for fleet k, for all

Fig. 1. Study area. The North Sea divided in the ICES statistical rectangles corresponding to Ecospace cells used in this study. The area included in the Ecospace model comprises cells shown in both dark and light grey. In dark grey are shown cells for which biomass data from the ICES survey were available. In light grey are shown cells included in the Ecospace model but for which biomass data was not available for comparison. White cells are not included in the Ecospace model.
i species in I (all species in the catch portfolio of fleet k) is:
$A_{n, k}=\left(\frac{\sum_{i=1}^{I} p_{k, i} \cdot q_{k, i} \cdot B_{i, n}}{C_{n, k}}\right)^{1 / \sigma}$
where $p_{k, i}$ is the price for species i for fleet $k, q_{k, i}$ is the catchability of species i by fleet k, and $C_{n, k}$ is the cost for fleet k of fishing in cell n. The argument in bracket corresponds to profit, and σ measures variation among fishermen in the perception of profit from fishing in cell n . Profit depends thus on the abundance in the cell n of target species of fleet k, and on fleet-specific and speciesspecific prices. Cost is based on a map of sailing costs, and on fixed costs (as assigned in Ecopath). The ratio $1 / \sigma$ is called " P " and corresponds to the Effective Power, one of two parameters that can be changed to influence fleets effort distribution. P is by default set equal to 1 . Setting P higher than 1 means a lower variation in the perception of profit among fishermen (σ). High P results therefore in effort being concentrated in the most profitable cells (in these cells attractiveness grows, while in less profitable cells it decreases), whereas low P results in smoother distribution of effort across the map. Maps of effort distribution are then converted to cell-specific fishing mortality per species at every time step. Finally, Total Efficiency Multiplier is a multiplier factor for effort, with a default value of 1 .

2.3. Study area

The North Sea is a semi-enclosed basin, with temperate climate and mixed faunal assemblage, including boreal and Lusitanic species. The basin is divided in a southern shallow area and a northern deeper one. The Norwegian Deep and the continental slope constitute the natural borders of the basin in the NorthEast, and North-West respectively (Fig. 1). The North Sea has an important history of fishing, the management of which has been complex due to the mixed nature of fisheries and the large number of countries that fish in these waters. Other activities

Table 1
The parameters of Ecospace evaluated in this study and their characteristics: category (indicating parameters related to either species or fleets distribution), default value, unit of measure (dimensionless parameters are indicated by a dash), and the range of values explored in this study. For parameters Base Dispersal Rate, Effective Power and Total Efficiency Multiplier the upper limit of the range is not given in Ecospace. Range limits used in this study are displayed. Range limits can differ across sub-parameters within the same parameter.

Parameter name	Category	Default value	Unit	Range explored in this study
Base Dispersal Rate	Species	300	km/year	0-2000 $/ 2000^{\text {b }} / 300^{\text {c }}$
Relative Dispersal in Bad Habitat	Species	2	-	0-100
Relative Vulnerability in Bad Habitat	Species	2	-	0-10
Relative Feeding Rate in Bad Habitat	Species	0.05	-	0-1
Effective Power	Fleet	1	-	$0-30^{\text {d }} / 37^{\text {e }} / 150^{\text {f }}$
Total Efficiency Multiplier	Fleet	1	-	$0-1.3^{\text {d }} / 3^{\mathrm{e}} / 1.5^{\text {f }}$

${ }^{\text {a }}$ Pelagic species.
${ }^{\text {b }}$ Demersal species.
${ }^{\text {c }}$ Invertebrates.
d Otter trawl.
${ }^{e}$ Beam trawl.
${ }^{f}$ Pelagic trawl.
(e.g., shipping traffic, oil and gas extraction and wind farms) are increasingly causing conflicts with fishing activities (Gimpel et al., 2013). The main fisheries can be divided in demersal and pelagic. Demersal fisheries target roundfish (in particular gadoids) and flatfish (especially sole and plaice), while pelagic fisheries target herring and mackerel for human consumption, and sandeel and sprat for fishmeal and other industrial use. Shrimp and Norway lobster also constitute important target species (ICES, 2013). Fisheries management is based on bilateral agreement between European Union and Norway, with area-, species- and gear-specific limits in catches. The total allowable catches are established yearly on the basis of scientific advice from ICES and the Scientific Technical Economic Committee for Fisheries (STECF) of the European Union, a quota of which is assigned to each country and fleet. Management has been partially successful: after years of systematic decline of most stocks, a moderate recover was observed in recent years for several of the fish stocks after a large reduction in fishing effort and possibly also a reduction of bycatch (ICES, 2013). The food web structure and ecosystem functioning of the North Sea is just starting to be understood and the large number of species and their interactions make it a very complex system to manage (Mackinson et al., 2009).

2.4. Application of the Ecospace model for the North Sea ecosystem

The model used for this study is an Ecopath with Ecosim and Ecospace model based on Mackinson and Daskalov (2007) and its recent updates (Heymans et al., 2011; ICES, 2011, 2012b). Since the present study only focuses on Ecospace, the underlying Ecopath and Ecosim models were not explored and forcing functions, parameters and data for these components were unchanged from the model in ICES (2011). Details of the forcing functions used for the North Sea Ecosim model are provided by Mackinson (2014). The structure of the Ecospace model (i.e., the model building blocks, data and parameterisation) from Mackinson and Daskalov (2007) was also maintained, however some changes were brought in this study to the map, the habitat assignment and some initialisation parameters, and forcing functions were not included. The North Sea model is based on a "base year", 1991, and develops dynamically in time for 17 years until 2007. Ecospace models, once initialised, take a variable number of time steps to reach equilibrium. For this study, a burn-in period of 17 years (same length as the time series used) was included to allow the model to reach equilibrium. For the burn-in period all data were set equal to baseline (i.e., at the same level of 1991).

2.5. Data

We compared model predictions for biomass and fishing effort with corresponding spatially resolved data of biomass and fishing effort (hereafter, "observation"). Data of biomass for 12 selected species (namely: starry ray Ambliraja radiata, cod Gadus morhua, whiting Merlangius merlangus, haddock Melanogrammus aeglefinus, saithe Pollachius virens, norway pout Trisopterus esmarkii, gurnards Eutrigla sp., Trigla sp. and Aspitrigla sp., herring Clupea harengus, mackerel Scomber scomber, sandeel (family Ammodytidae), plaice Pleuronectes platessa and sole Solea solea) were obtained from the North Sea ICES International Bottom Trawl Survey (IBTS). Fishing effort data were obtained from STECF (2011). Six fleets (out of the 12 fleets present in the model) were included in the analysis: beam trawl, pelagic trawl, otter trawl, shrimp trawl, nephrops trawl, sandeel trawl. Since the partitioning between fleets in the spatial data from STECF was different from the Ecospace model, we lumped the last four fleets in the group named "Otter trawl".

Observations and predictions for both biomass and effort are comparable for spatial and temporal distribution: both sets are available on a yearly basis and at the same spatial scale, based on ICES statistical sub-rectangles (hereafter "cells") of 1 degree (Longitude) by 0.5 degree (Latitude). Due to changes in the data distribution across years, the spatial and temporal coverage is not uniform. For every year, only cells present in both observations and predictions were used, resulting in 154 cells for the base year and similar but varying number for other years. The unit of Ecospace biomass is t / km^{2}. In ICES IBTS data, the unit is in catch per unit effort, standardised to numbers/hour of trawling. This value was converted to $\mathrm{kg} /$ hour using species mean weight as conversion factor. The two datasets (predictions and observations) were made comparable using a constant (mean observed/mean predicted) as converting factor for each group. The two independent datasets have the same mean value after conversion. The same process was performed for fishing effort observations and predictions.

Ecospace uses price and cost data (which are species-and fleetspecific) and calculates fleet-specific maps of sailing cost based on distance from ports. Through a gravity model, Ecospace assigns effort in space based on these cost maps and fish biomass distribution (Walters et al., 1999; see also Section 2.2). Cost and price data in Ecospace are inherited from the underlying EwE model. The price and cost data used for this study are based on Heymans et al. (2011), in turn obtained from the SGECA 08-02 working group report (AER, 2008), reviewed by STECF. Other data required by Ecospace (fleets assignment to habitats and to ports, fixed costs, target species per fleet), were all based on information available in the previous EwE North Sea model (Heymans et al., 2011; ICES, 2011).

3. Theoretical background

3.1. Model parameters

The number of estimated parameters in the model is determined by (i) the number of functional groups that have parameters (either biomass, $P / B, Q / B$, or EE) estimated in solving the mass-balance equation in Ecopath, and (ii) the number of vulnerability and primary production anomalies in Ecosim. In the Ecospace component, parameters for distribution and dispersion are estimated outside the model and used as inputs. No parameters are directly estimated by Ecospace itself. Parameterisation of the North Sea model is described in detail in Mackinson and Daskalov (2007), Mackinson et al. (2009), Heymans et al. (2011), and ICES (2011). In this study, parameters for Ecopath and Ecosim were kept the same as in those publications, but Ecospace parameters were varied manually to evaluate their effect on the performance of the spatial predictions.

3.2. Measure of model fit

Spatially resolved observations and predictions for each of the 17 years of the simulation were compared through correlation coefficient. Data were found to be non-normally distributed for all 12 species groups (Shapiro-Wilks test for normality). Therefore, the Spearman's rank correlation coefficient (hereafter called "correlation") was chosen as measure of fit, as it is capable of dealing with non-normal data. Correlation provides a measure of how well high and low values are predicted by the model, i.e., the model capability of reproducing relative patterns. Positive values (close to 1) indicate a positive correlation of the model's prediction with the data, i.e., prediction of high values in the Ecospace grid cells where high values were observed, and prediction of low values where low values were observed. With negative correlation values (approaching -1) the model shows a negative correlation with the data (high values predicted where low values were observed and vice versa). Values close to 0 suggest a weak or unclear trend, i.e., the model is not assigning univocally high or low prediction to high or low data values. Correlation values between observations and predictions were calculated for each species and fleet for every year for which data were available: since biomass data are available from 1991 to 2005, and effort data from 2003 to 2007, the two time-series overlap only for three years. For our analysis, a value of overall fit for each model was calculated as follows: (i) for every year, the median across all 15 groups (including both species and fleets in the three years when both categories are present) was calculated; (ii) the 17 yearly values of median correlation were then averaged to obtain a mean value of model performance across the period of study. This value was used as total measure on the model fit. The diagram in Fig. 2 shows the framework for model initialisation, model run and the analysis of results.

3.3. Parameter sensitivity

The high number of parameters in Ecospace does not allow exploring all possible parameter combinations manually. However, no automated procedure is at present implemented in the Ecospace software. We therefore used an ad hoc method, with progressive exclusion of non-influential parameters and reduction of parameter space by aggregating groups into macro-groups of ecologically similar species. Following previous studies (e.g., Chen et al., 2009; Fouzai et al., 2012), the species were divided into three macrogroups: wide-range dispersing organisms (denominated "Pelagic"), medium-ranged ("Demersal") and small-ranged ("Invertebrates"). For fleets, aggregation in macro-group was necessary only for Otter trawl, as described in Section 2.5. Parameters explored were (see also Table 1): Base Dispersal Rate, Relative Dispersal in Bad Habitat,

Fig. 2. Diagram of the framework for model initialisation, model run and analysis of model results. Setup of habitat and fleet distribution was based on data and maintained constant throughout the analyses. At every run, the Ecospace model produces output of spatial abundance and effort. These are externally compared to data, and the resulting values of model fit are then analysed. Model parameters are then changed after the analysis of previous results and the model is run again.

Relative Vulnerability in Bad Habitat, Relative Feeding Rate in Bad Habitat (related to species distribution), Effective Power and Total Efficiency Multiplier (related to effort distribution; see Sections 2.1 and 2.2). Each parameter was subset into "sub-parameters" corresponding to the macro-groups of species or fleets.

We then explored the behaviour of the model across the parameters' ranges. This process took two steps: firstly, each parameter was analysed individually. For each parameter, we identified the range of possible values assumed, explored the behaviour for each sub-parameter and the interaction across sub-parameters, and recorded the variation in fit from default value at each value. This allowed to quantify the effect of parameters on total fit and to identify non-influential parameters, which were excluded from further analyses. Every individual parameter exploration was an interaction across its three sub-parameters, resulting in a threedimensional matrix for each of the six parameters.

Secondly, a set of models in which all influential parameters were changed simultaneously was examined to observe parameter changes and their reciprocal influences (i.e., interaction effect). For each parameter, the model was run alternatively with other parameters varying, and with other parameters at fixed default value. The difference between these was taken as the effect of the parameter on the total fit. To further reduce dimensionality, a subsample of parameter levels was used. Three levels were selected: high (with all sub-parameters at the highest value of their range), low (all sub-parameters at lowest value of their range) and intermediate (all sub-parameters set at the median or closest lower value). This method provided a distribution of fit (absolute and relative percentage change from the default value) for each parameter, corresponding to changes across the parameter's range. A flow chart (Fig. 3) describes the approach used to reduce the parameter dimension (see also supplementary appendix section A. 3 for further details).

3.4. Model predictive capability

In order to understand the model's predictive capability, the results were separated into species and fleets because the methods used to predict these two categories differ substantially in Ecospace. A measure of fit for each of the two categories (species and fleets) was developed using the same method as for the total fit

Fig. 3. Flow chart of the approach used to reduce the parameter dimension. The approach provided a selection of values for individual parameters' sensitivity analysis and a restricted number of parameter combinations, which were used for the analysis of interaction across all influential parameters.
(Section 3.2). Correlations for each category and for the total fit were calculated across a range of parameter values to investigate the magnitude and direction of effects of parameters on the model and if trends were consistent between categories and the total fit. Furthermore, group-specific correlations (for each species and fleet) were analysed to understand if trends observed for categories were driven by one or few groups, or if they were representative of trends observed across the groups, implying that the predictive capability was influenced by category-specific factors. All analyses were performed using R statistical package 2.15.0 (R Development Core Team, 2012).

4. Results

4.1. Model fit

The model at default values yielded a fit of 0.33 (Table 2). Calibration of the parameters across their range provided an improvement
of up to 15% in fit between prediction and data compared to a model calibrated with parameters at the default values. This indicates that changes in parameters can modify the performance of the model, as expected. In comparison, a model with parameters set as in the Mackinson and Daskalov (2007) Ecospace model provided a fit of 0.27 , a comparable (if slightly lower) fit to the model used in this study. Critically, in the exploration of one parameter at a time the highest fit were obtained with parameters set at the highest levels of the explored ranges (see supplementary Table A3), and the pattern was respected when using values higher than what is considered realistic. This is a problem because, if the model was to be parameterised through fit to data, it would lead to use unrealistic parameter values.

4.2. Sensitivity analysis

The model resulted to be sensitive to some, but not all of the parameters under investigation. Parameters Relative Dispersal in
Table 2
 right column for each year. The mean across all median values, reported in bold character, is the value used for comparing across models in this study
the Ecospace default values. All reported correlation values in the table are statistically significant ($P<0.05$). Non-significant values are reported as 0 .

Year	Cod	Starry ray	Whiting	Haddock	Saithe	Norway pout	Gurnards	Herring	Mackerel	Sandeel	Plaice	Sole	Beam trawl	Otter trawl	Pelagic trawl	Median
1991	0.271	0.505	0.375	0.815	0.654	0.773	0.472	0.42	0.321	0.446	0.775	0.72	-	-	-	0.489
1992	0.252	0.547	0	0.805	0.642	0.767	0.375	0.543	0.279	0.425	0.725	0.643	-	-	-	0.545
1993	0.215	0.469	0.217	0.86	0.62	0.781	0.307	0.562	0.353	0.456	0.74	0.501	-	-	-	0.485
1994	0.291	0.37	0.435	0.828	0.604	0.786	0.423	0.52	0.351	0.404	0.739	0.479	-	-	-	0.457
1995	0.233	0.388	0.4	0.83	0.642	0.779	0.382	0.366	0.233	0.396	0.74	0.563	-	-	-	0.398
1996	0.211	0.423	0	0.821	0.63	0.797	0.282	0.359	0	0.354	0.69	0.404	-	-	-	0.382
1997	0	0.488	0	0.803	0.695	0.728	0.265	0.508	0	0.428	0.767	0.524	-	-	-	0.498
1998	0.192	0.376	0	0.839	0.72	0.73	0.273	0.485	0	0.339	0.781	0.376	-	-	-	0.376
1999	0	0.403	0	0.816	0.76	0.764	0.204	0.315	0.161	0.33	0.789	0.465	-	-	-	0.367
2000	0	0.315	0	0.822	0.678	0.763	0.283	0.257	0	0.383	0.749	0.443	-	-	-	0.349
2001	0	0.384	0.453	0.841	0.667	0.717	0.375	0.279	0	0.447	0.752	0.273	-	-	-	0.416
2002	0	0.352	0.282	0.82	0.7	0.639	0.314	0.277	0	0.468	0.771	0.467	-	-	-	0.410
2003	0	0.39	0	0.842	0.666	0.623	0.28	0.199	0	0.6	0.795	0.356	0.83	0	-0.17	0.356
2004	0	0.325	0	0.839	0.655	0.596	0.238	0.187	0	0.45	0.778	0.432	-0.747	-0.21	-0.271	0.238
2005	0.17	0.351	0	0.898	0.663	0.661	0.322	0.229	-0.174	0.377	0.752	0.378	-0.72	-0.166	-0.225	0.322
2006	-	-	-	-	. 6	-	.	,	-	,	. 75	,	-0.729	-0.25	-0.215	-0.250
2007	-	-	-	-	-	-	-	-	-	-	-	-	-0.744	0	-0.171	-0.171
																0.333

Fig. 4. Effect of parameters Base Dispersal Rate, Relative Vulnerability in Bad Habitat, Effective Power, Total Efficiency Multiplier on fit under interaction. Percentage change of fit is represented on the y axis.

Bad Habitat and Relative Feeding Rate in Bad Habitat caused no changes to model fit throughout their ranges both under individual parameter sensitivity and under interaction with other parameters. These two parameters were thus excluded from further analyses. The model was affected by all other parameters explored, and the model fit was generally improved by changing the parameters from the default values. Percentage change of fit from the default value (Fig. 4) was different in median value and in standard deviation for each of the parameters: Base Dispersal Rate had a median value of 3.7 (interquartile range 2.2-5.6); Relative Vulnerability had a median value of 0.12 (interquartile range -0.07 to 0.56); Effective Power had a median value of 11.7 (interquartile range 3.4-14.1); Total Efficiency Multiplier had a median value of 2.14 (interquartile range -0.45 to 4.15).

4.3. Model predictive capability

By splitting the model results into different categories, we could observe the differences in the model prediction capability for species and fleets distribution (Fig. 5). The predictions of fleets' distribution were consistently negatively correlated with data, with median values around -0.26 across all parameters and with small variability. Biomass predictions were much closer to the data, with correlation consistently above 0.4 across all parameters. The median across the 15 groups (12 species and three fleets), used throughout this study as a measure of fit, was slightly lower than species, as expected. Trends for individual parameters (with negative fit for fleets and positive for species) were confirmed also in an "interaction model" with all parameters changed simultaneously (Fig. 5). Looking at the differences between parameters,

Fig. 5. Model fit for the full model ("interaction") and individual parameters Base Dispersal Rate, Relative Vulnerability in Bad Habitat, Effective Power, Total Efficiency Multiplier, divided by the categories species, fleets, and the total (combining species and fleets).
it is interesting to see that in general the median values were fairly stable but the interquartile ranges varied for different parameters. Largest variations around the median for fleets were observed with parameter Effective Power. For species, Effective Power had largest effect on the variation, followed by Total Efficiency Multiplier and Base Dispersal Rate. This suggests that the parameters might affect differently the two categories of the model, however the biological component (i.e., species) is affected also by the fleet-specific parameters (Effective Power and Total Efficiency Multiplier), but not so much the opposite. The model prediction, species-by-species and fleet-by-fleet, also confirmed the trend (Fig. 6). Most species showed a good fit: nine species out of 12 had correlation above 0.35 , and 4 above 0.60 , while only for Cod, Whiting and Mackerel the correlation was consistently low (below 0.2). Furthermore, Cod, Starry ray and Gurnard also showed larger variance around their median than all other groups. Fleets predictions were all negative or not significant. The total model fit, used to evaluate the model sensitivity, was closer to the values of species than to fleets.

5. Discussion

This study is, to the best of our knowledge, the first attempt to perform sensitivity analysis of Ecospace parameters using fit
to data as a measure of model performance. Ecospace is a widely used tool for evaluating the outcomes of policy scenarios involving MPAs and other spatial management measures on both ecosystems and fisheries. There is a variety of uses for Ecospace: for instance, effects of aquaculture on the ecosystem (Piroddi et al., 2011), movement models (Martell et al., 2005), game theory (Beattie et al., 2002) and further progresses are made to add realism by inclusion of nutrient-phytoplankton-zooplankton models (e.g., Steenbeek et al., 2013; Walters et al., 2010) while moving towards an end-to-end modelling approach (e.g., Fulton, 2010; Rose et al., 2010; Travers et al., 2007). The original purpose and main application of Ecospace is however the evaluation of MPAs' effectiveness in light of ecosystem dynamics and of the effects of effort displacement (Walters, 2000; Walters et al., 1999). The use of Ecospace for management is now suggested within the framework of a shift towards ecosystem-based fisheries management in Europe (ICES, 2012b). For use within a theoretical and purely speculative approach, the model does not require to be validated with data. However, before its results and outcomes are included into management actions, a severe and rigorous evaluation process should take place, concerning the data quality, parameterisation and model capability to reproduce known trends. In this study we evaluated the model under two complementary aspects: we explored and quantified

Fig. 6. Group-specific fits by species, fleets, and the total (combining species and fleets) across alternative parameter combinations for 3 alternative model settings, with all parameters set at the highest, lowest or median levels of the ranges, respectively.
first the sensitivity of the North Sea Ecospace model to parameter settings, and then the model's capability of predicting known distribution trends of species and fleets.

Our sensitivity analysis showed that some parameters are more influential on the model performance, while some others had no effect at all. The model seemed to be overall robust to variation in parameter settings as the largest change in fit showed an improvement of about 15% compared to the fit at default setting. The parameters to which the model was found to be most sensitive require further investigation: in particular, for the two fleetsrelated parameters (Effective Power and Total Efficiency Multiplier) there is little, if any, reference to sensitivity in the published models. These parameters affected the total fit the most, and further studies on the significance of these parameters and on realistic values should be undertaken in the future. Base Dispersal Rate also affected the model fit, and this value as well should be investigated in more detail. Few studies performed sensitivity analysis on this parameter (e.g., Chen et al., 2009; Espinosa-Romero et al., 2011; Martell et al., 2005). Reliable estimates for this parameter are scant, even for the best studied species. Base Dispersal Rate is based on random dispersal, which is scarcely studied: most of the fish movement studies focus on directional migration (such as spawning migration in flatfish, Hunter et al., 2004; Rjinsdorp and Pastoors, 1995), or on point estimates of tagged individuals across a period of days to months, but rarely through years (e.g., Righton et al., 2007). Furthermore, the variability in dispersal can be extremely large within a single species: some inshore populations of cod show a dispersal range $<10 \mathrm{~km}$ (Knutsen et al., 2011), while others perform migrations of hundreds of km (Neuenfeldt et al., 2013). The attempt of defining an exact dispersal rate for every species is therefore intrinsically inappropriate, while it could be useful to explore a range of values. Several studies used simplifications such as lumping species into fast-moving, slow-moving and sedentary species, which was also adopted in this study, and of these, many used the arbitrary "300-30-3 rule" for assigning Base Dispersal Rate (e.g., Chen et al., 2009; Fouzai et al., 2012; Piroddi et al., 2011; Zeller and Reinert, 2004). This, in the lack of better estimates and coupled with adequate sensitivity analysis, could be a valid solution. Through the sensitivity analysis we also identified some problems of our Ecospace model. The best values for some of the parameters or sub-parameters were at the maximum of their ranges, suggesting that optimal values are outside of the range explored (see supplementary Table A3). This is of course a problem, especially in those cases when the parameter values providing the highest fit were unrealistic (e.g., for Base Dispersal Rate). These findings point at problems in either the model, the data (discussed further below), or the method used for sensitivity analysis. In this study we used a manually implemented ad hoc method for the sensitivity analysis, which did not cover the full parameter dimension. The analysis of parameter interactions was based on a subset of models with arbitrarily determined combinations of parameter values. The subset was selected so to be representative of the whole range of parameters, however it could have overlooked optimal combinations of parameters.

The model capability of predicting known spatial trends clearly differed between species and fleets: our North Sea Ecospace model did a relatively inaccurate job in predicting distribution of fleets. This result was consistent across ranges of parameters (the predictions for fleet distributions are negatively correlated with the data across all parameter ranges for every parameter tested) and within the groups: despite the fit for some species was worse than for others, for no species the fit was as low as for any fleet (Fig. 5). This result suggests that the fit of species distribution prediction to data (as done in Daskalov et al. (2011) and Mackinson et al. (unpublished)) provides a valuable and reliable evaluation for species distribution, but it does not provide a full picture of the
whole ecosystem, since the human component (fisheries) is not explicitly included. Ecospace applications focus on spatial fisheries management, for example effects of MPAs on the ecosystem via spatial re-distribution of fleets (Walters, 2000). These applications assume that fleet behaviour is realistic, i.e., that the model is capable of reproducing choice criteria of fishers. In no Ecospace study so far, to the best of our knowledge, such prediction capability has been quantified with data. In our North Sea Ecospace model, the prediction capability for fleet effort was found to be relatively poor. While this might be due to the specificities of the study area, we cannot exclude that similar results could be observed in other models and areas. We therefore suggest that a quantitative assessment is routinely undertaken for parameterisation of Ecospace models, in particular for cases where the models' results are used for management advice.

Our hypothesis is that the reason for the low fit between effort predictions and data lies in the mismatch between the resolution of the spatial effort distribution model and the fishers' behaviour. The gravity model used in Ecospace to distribute fishing effort in space is rooted in decision-making theory: it assumes that fishermen's decisions on where to fish depend mainly on profitability. However, fishermen do not have perfect knowledge of the real profitability of fishing in an area beforehand. This is accounted for in Ecospace through attractiveness. The attractiveness of an area for fishermen is modelled as profit scaled by variation σ. This value represents the different decision criteria among fishers, and can be interpreted as a measure of different strategies adopted. Attractiveness is thus a measure of profitability scaled by the perception and knowledge of the system that fishermen in a fleet have. Effort allocation in Ecospace is therefore based on perceived profitability (Walters et al., 1999). However, in the real world the behaviour of fishermen might be strongly dependent on other factors: for example, other fisher's position might play a role (Poos et al., 2010; Poos and Rijnsdorp, 2007). A key factor for the North Sea might be the fact that the target species in any particular fishing trip is not necessarily the most profitable, but can depend on the available species-specific quotas, and by the daily oscillations in market price. In the model, the profitability is derived by aggregated profitability per all species in the area; however, fishers do in fact aim for one or few species at a time, and all the others are bycatch. Therefore, decisions on where to fish are based on considerations about the instantaneous profitability of one species. Lastly, effort data are aggregated across the year, while the fishers' decisions are taken on a daily or weekly basis, and this might not be captured well by the model.

There are a number of alternative explanations for the low fit observed between effort data and model prediction. Factors influencing the model results include for example data quality, objective function, initialisation parameters, grouping of species and fleets, and settings of the underlying Ecosim model. Biomass data, for example, could fail to reproduce adequately real species distribution, and IBTS data used here are known to have spatial dependence (Lewy and Kristensen, 2009). Given that the species prediction is relatively accurate, however, spatial dependence in biomass data was not considered problematic for this study. Effort data might also fail to adequately represent fleets distribution in space and time. We compared main distribution trends with data available at national level for few countries, and no major inconsistencies were found. Temporal trends were also explored by comparing effort time series (used in Ecosim) with aggregated STECF data. The two datasets were comparable only for four years, however two fleets out of three showed highly comparable trends. This suggests that the STECF data represent adequately fleets spatial distribution and temporal trends. The effects of the objective function, initialisation parameters, cost and price data and other settings were investigated through robustness checks (supplementary appendix section
A.4), and none of these affected the results. Alternative grouping of the Demersal trawl efforts, and alternative settings for vulnerability of Ecosim were also explored: under some combinations of values a small improvement in the fit of Demersal trawl fleet was observed. This suggests that Ecosim parameterisation and alternative fleet grouping might affect Ecospace spatial performance through species distribution. However, Beam trawl and Pelagic trawl consistently showed low fit across all parameters exploration. Overall, we cannot exclude completely that the low fit of effort predictions to data is due to effort data quality or to parameterisation and settings of the model. We however maintain that the results observed are due to limitations of the model for predictions of effort distribution.

For future applications of Ecospace, and especially when the results are used for management advice, we recommend that (i) validation with data is performed, using both biomass and effort data; this is in general good practice to ensure that the model works properly, and to quantify predictive capability. In addition it can reveal problems within the model, as in our case with the predictions of effort distributions. And (ii) we recommend that a thorough evaluation of sensitivity of the model to parameters setting is performed. In order to properly evaluate sensitivity, one needs to explore the whole parameter dimension (e.g., through Global Sensitivity Analysis; Morris et al., 2014; Saltelli et al., 2008, 1999). We used a manual, ad hoc approach to screen out parameters and reduce the number of parameter values to explore. This approach provided indications about the model behaviour and about its strength and weaknesses and was therefore a useful exercise but it is not suited to explore the whole parameter dimension. A thorough parameter exploration and a more rigorous sensitivity analysis could only be achieved through an optimisation algorithm, however no such tool is currently implemented in the Ecospace software. An algorithm could also be useful to parameterise the model through fit to data. This is already common practice in the Ecopath and Ecosim modules (Christensen and Walters, 2004), for which optimisation algorithms are implemented. Finally, we suggest that care must be taken when interpreting effort predictions, as our results suggest that not in all cases the model captures fleets' behaviour accurately. We suggest that further improvement in the effort model could be needed for Ecospace to become a robust tool for advice about fisheries dynamics across spatial management scenarios.

6. Conclusions

There is in general a need for management advice modelling tools that combine multispecies models, spatially explicit models, and socio-economic considerations (ICES, 2012a; Kempf et al., 2013; Thunberg et al., 2012). The ongoing progress of spatially explicit ecosystem models, among which Ecospace, coupled with improved understanding of mechanisms operating at the local scale (Hjermann et al., 2013; Kempf et al., 2013), could help improving spatial multispecies modelling and management.

This study is the first to quantify the fit between model predictions and data for Ecospace using both species and fleet distribution. Here we showed that comparison of model prediction to spatial distribution can be useful to evaluate the model performance, and that sensitivity analysis can help to understand the model behaviour. This approach could be part of a larger set of standard rules for calibration and evaluation of Ecospace models to be used for policy advice for the ecosystem-based management of marine resources.

This study finds its significance in the context of a larger effort to improve Ecospace through continuous development and testing (Walters et al., 2010), where the model is in continuous evolution and constantly changing to address new questions and challenges.

It has been suggested that Ecospace should not at present be considered as a management tool, and its primary goal should be scenario exploration and policy testing, for which the model is effective (Beattie et al., 2002; Dichmont et al., 2013; Martell et al., 2005; Walters, 2000; Walters et al., 2010, 1999), while caution should be used when interpreting results. We believe that, to develop this framework further, focus should be given to the development of an algorithm for parameter optimisation, and to the improvement of the model for fishing fleets' behaviour. Thanks to these improvements and to other recent developments (e.g., Christensen et al., 2014; Steenbeek et al., 2013; Walters et al., 2010) we are confident that the Ecospace model will become a more robust tool, suitable also for management advice.

Acknowledgements

This paper is a deliverable of the Nordic Centre for Research on Marine Ecosystems and Resources under Climate Change (NorMER), which is funded by the Norden Top-level Research Initiative sub-programme 'Effect Studies and Adaptation to Climate Change'. Thanks to Alexandros Kokkalis, Benjamin Weigel, Carl Walters, Jeroen Steenbeek, Leif Christian Stige, Nils Christian Stenseth, Øystein Langangen and an anonymous reviewer for valuable comments and discussions which improved this work. S. Mackinson gratefully acknowledges support from Defra M1228 Fizzyfish project and GAP2 EU FP7 project 266544.

Appendix A. Supplementary Information

Supplementary information associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/ j.ecolmodel.2014.12.016.

References

AER, 2008. Commission Staff Working Document: Preparation of Annual Economic Report (SGECA 08-02). Copenhagen, 21-25 April 2008, 335 pp.
Beattie, A., Sumaila, U.R., Christensen, V., Pauly, D., 2002. A model for the bioeconomic evaluation of marine protected area size and placement in the North Sea. Nat. Resour. Model. 15, 413-437.
Caddy, J.F., 1975. Spatial model for an exploited shellfish population, and its application to the Georges Bank scallop fishery. J. Fish. Res. Board Can. 32, 1305-1328.
Chen, Z., Xu, S., Qiu, Y., Lin, Z., Jia, X., 2009. Modeling the effects of fishery management and marine protected areas on the Beibu Gulf using spatial ecosystem simulation. Fish. Res. 100, 222-229.
Christensen, V., Coll, M., Steenbeek, J., Buszowski, J., Chagaris, D., Walters, C.J., 2014. Representing variable habitat quality in a spatial food web model. Ecosystems 17, 1397-1412.
Christensen, V., Pauly, D., 1992. ECOPATH II - a software for balancing steadystate ecosystem models and calculating network characteristics. Ecol. Model. 61, 169-185.
Christensen, V., Walters, C.J., 2004. Ecopath with Ecosim: methods, capabilities and limitations. Ecol. Model. 172, 109-139
Christensen, V., Walters, C., Pauly, D., Forrest, R., 2008. Ecopath with Ecosim version 6. User Guide. November 2008. Lenfest Ocean Futures Project, 235 pp.

Ciannelli, L., Fauchald, P., Chan, K.S., Agostini, V.N., Dingsør, G.E., 2008. Spatial fisheries ecology: recent progress and future prospects. J. Mar. Syst. 71, 223-236
Daskalov, G., Mackinson, S., Mulligan, B., 2011. Modelling possible food-web effects of aggregate dredging in the Eastern English Channel. Marine Environment Protection Fund MEPF 08/P37., pp. 1-68.
Dichmont, C.M., Ellis, N., Bustamante, R.H., Deng, R., Tickell, S., Pascual, R., LozanoMontes, H., Griffiths, S., Punt, A., 2013. Evaluating marine spatial closures with conflicting fisheries and conservation objectives. J. Appl. Ecol. 50, 1060-1070.
Espinosa-Romero, M.J., Gregr, E.J., Walters, C., Christensen, V., Chan, K.M.A., 2011. Representing mediating effects and species reintroduction in Ecopath with Ecosim. Ecol. Model. 222, 1569-1579.
Essington, T.E., 2007. Evaluating the sensitivity of a trophic mass-balance model (Ecopath) to imprecise data inputs. Can. J. Fish. Aquat. Sci. 64, 628-637.
Fouzai, N., Coll, M., Palomera, I., Santojanni, A., Arneri, E., Christensen, V., 2012. Fishing management scenarios to rebuild exploited resources and ecosystems of the Northern-Central Adriatic (Mediterranean Sea). J. Mar. Syst. 102-104, 39-51.
Fulton, E.A., 2010. Approaches to end-to-end ecosystem models. J. Mar. Syst. 81, 171-183.
Fulton, E.A., 2011. Interesting times: winners, losers, and system shifts under climate change around Australia. ICES J. Mar. Sci. 68, 1329-1342.

Fulton, E.A., Link, J.S., Kaplan, I.C., Savina-Rolland, M., Johnson, P., Ainsworth, C. Horne, P., Gorton, R., Gamble, R.J., Smith, A.D.M., Smith, D.C., 2011. Lessons in modelling and management of marine ecosystems: the Atlantis experience. Fish Fisheries 12, 171-188.
Gaichas, S.K., Odell, G., Aydin, K.Y., Francis, R.C., Rochet, M.-J., 2012. Beyond the defaults: functional response parameter space and ecosystem-level fishing thresholds in dynamic food web model simulations. Can. J. Fish. Aquat. Sci. 69 2077-2094.
Gimpel, A., Stelzenmüller, V., Cormier, R., Floeter, J., Temming, A., 2013. A spatially explicit risk approach to support marine spatial planning in the German EEZ. Mar. Environ. Res. 86, 56-69.
Harwood, J., Stokes, K., 2003. Coping with uncertainty in ecological advice: lessons from fisheries. Trends Ecol. Evol. 18, 617-622.
Heymans, J.J., Mackinson, S., Sumaila, U.R., Dyck, A., Little, A., 2011. The Impact of subsidies on the ecological sustainability and future profits from North Sea fisheries. PLoS ONE, 6.
Hjermann, D., Fisher, J.A.D., Rouyer, T., Frank, K.T., Stenseth, N.C., 2013. Spatial analysis of North Sea cod recruitment: concurrent effects of changes in spawning stock biomass, temperature and herring abundance. Mar. Ecol. Prog. Ser. 480, 263-275.
Hunter, E., Metcalfe, J.D., Arnold, G.P., Reynolds, J.D., 2004. Impacts of migratory behaviour on population structure in North Sea plaice. J. Anim. Ecol. 73, 377-385.
ICES, 2011. Report of the Working Group on Multispecies Assessment Methods (WGSAM). 10-14 October 2011, Woods Hole, USA. ICES CM 2011/SSGSUE:10.
ICES, 2012a. Report of the Study Group on Integration of Economics. Stock Assessment and Fisheries Management (SGIMM), by correspondence. ICES CM 2012/SSGRSP:06, 27 pp.
ICES, 2012b. Report of the Working Group on Multispecies Assessment Methods (WGSAM), 22-26 October 2012, Venice, Italy. ICES CM 2012/SSGSUE:10, 145 pp.
ICES, 2013. Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK), 24-30 April 2013, ICES Headquarters, Copenhagen. ICES CM 2013/ACOM:13, 1435 pp.
Kempf, A., Dingsør, G.E., Huse, G., Vinther, M., Floeter, J., Temming, A., 2010. The importance of predator-prey overlap: predicting North Sea cod recovery with a multispecies assessment model. ICES J. Mar. Sci. 67, 1989-1997.
Kempf, A., Stelzenmüller, V., Akimova, A., Floeter, J., 2013. Spatial assessment of predator-prey relationships in the North Sea: the influence of abiotic habitat properties on the spatial overlap between 0-group cod and grey gurnard. Fish. Oceanogr. 22, 174-192.
Knutsen, H., Olsen, E.M., Jorde, P.E., Espeland, S.H., Andre, C., Stenseth, N.C., 2011. Are low but statistically significant levels of genetic differentiation in marine fishes 'biologically meaningful'? A case study of coastal Atlantic cod. Mol. Ecol 20, 768-783.
Le Quesne, W., Arreguín-Sánchez, F., Albañez-Lucero, M., Cheng, H.-Q., Cruz Escalona, V., Daskalov, G., Ding, H., González Rodríguez, E., Heymans, J., Jiang, H., Lercari, D., López-Ferreira, C., López-Rocha, J., Mackinson, S., Pinnegar, J., Polunin, N. Wu, J., Xu, H.-G., Zetina-Rejón, M., 2008. Analysing ecosystem effects of selected marine protected areas with Ecospace spatial ecosystem models. Fish. Cent. Res. Rep. 16, 1-67.
Lewy, P., Kristensen, K., 2009. Modelling the distribution of fish accounting for spatial correlation and overdispersion. Can. J. Fish. Aquat. Sci. 66, 1809-1820.
Mackinson, S., 2014. Combined analyses reveal environmentally driven changes in the North Sea ecosystem and raise questions regarding what makes an ecosystem model's performance credible? Can. J. Fish. Aquat. Sci. 71, 31-46.
Mackinson, S., Daskalov, G., 2007. An ecosystem model of the North Sea to support an ecosystem approach to fisheries management: description and parameterisation. Sci. Ser. Tech Rep., Cefas Lowestoft, 142, 196 pp.
Mackinson, S., Deas, B., Beveridge, D., Casey, J., 2009. Mixed-fishery or ecosystem conundrum? Multispecies considerations inform thinking on long-term management of North Sea demersal stocks. Can. J. Fish. Aquat. Sci. 66, 1107-1129.
Martell, S.J.D., Essington, T.E., Lessard, B., Kitchell, J.F., Walters, C.J., Boggs, C.H., 2005. Interactions of productivity, predation risk, and fishing effort in the efficacy of marine protected areas for the central Pacific. Can. J. Fish. Aquat. Sci. 62, 1320-1336.
Metcalfe, K., Vaz, S., Engelhard, G.H., Villanueva, M.C., Smith, R.J., Mackinson, S, in review. Evaluating conservation and fisheries management strategies by linking spatial prioritization software and ecosystem and fisheries modeling tools. J. Appl. Ecol.
Morris, D.J., Speris, D.C., Cameron, A.I., Heath, M.R., 2014. Global sensitivity analysis of an end-to-end marine ecosystem model of the North Sea: factors affecting the biomass of fish and benthos. Ecol. Model. 273, 251-263.
Neuenfeldt, S., Righton, D., Neat, F., Wright, P.J., Svedang, H., Michalsen, K., Subbey, S., Steingrund, P., Thorsteinsson, V., Pampoulie, C., Andersen, K.H., Pedersen, M.W., Metcalfe, J., 2013. Analysing migrations of Atlantic cod Gadus morhua in the north-east Atlantic Ocean: then, now and the future. J. Fish Biol. 82, 741-763.
Pauly, D., Christensen, V., Walters, C., 2000. Ecopath, Ecosim, and Ecospace as tools for evaluating ecosystem impact of fisheries. ICES J. Mar. Sci. 57, 697-706,

Pelletier, D., Mahévas, S., 2005. Spatially explicit fisheries simulation models for policy evaluation. Fish Fish. 6, 307-349.
Pikitch, E.K., Santora, C., Babcock, E.A., Bakun, A., Bonfil, R., Conover, D.O., Dayton, P., Doukakis, P., Fluharty, D., Heneman, B., Houde, E.D., Link, J., Livingston, P.A. Mangel, M., McAllister, M.K., Pope, J., Sainsbury, K.J., 2004. Ecosystem-based fisheries management. Science 305, 346-347.
Piroddi, C., Bearzi, G., Christensen, V., 2011. Marine open cage aquaculture in the eastern Mediterranean Sea: a new trophic resource for bottlenose dolphins. Mar Ecol. Prog. Ser. 440, 255-266.
Plagányi, É.E., 2007. Models for An Ecosystem Approach to Fisheries. FAO, Rome, 108 pp.
Plagányi, É.E., Butterworth, D.S., 2004. A critical look at the potential of Ecopath with Ecosim to assist in practical fisheries management. Afr. J. Mar. Sci. 26, 261-287.
Poos, J.-J., Quirijns, F.J., Rijnsdorp, A.D., 2010. Spatial segregation among fishing vessels in a multispecies fishery. ICES J. Mar. Sci. 67, 155-164.
Poos, J.-J., Rijnsdorp, A.D., 2007. An "experiment" on effort allocation of fishing vessels: the role of interference competition and area specialization. Can. J. Fish. Aquat. Sci. 64, 304-313.
Righton, D., Quayle, V.A., Hetherington, S., Burt, G., 2007. Movements and distribution of cod (Gadus morhua) in the southern North Sea and English Channel: results from conventional and electronic tagging experiments. J. Mar. Biol. Assoc. UK 87, 599-613.
Rjinsdorp, A.D., Pastoors, M.A., 1995. Modelling the spatial dynamics and fisheries of North Sea plaice (Pleuronectes platessa L.) based on tagging data. ICES J. Mar. Sci. 52, 963-980.
Rose, K.A., Allen, J.I., Artioli, Y., Barange, M., Blackford, J., Carlotti, F., Cropp, R., Daewel, U., Edwards, K., Flynn, K., Hill, S.L., Hille Ris Lambers, R., Huse, G., Mackinson, S., Megrey, B., Moll, A., Rivkin, R., Salihoglu, B., Schrum, C., Shannon, L., Shin, Y.-J., Smith, S.L., Smith, C., Solidoro, C., John, St., Zhou, M.M., 2010. End-to-end models for the analysis of marine ecosystems: challenges, issues, and next steps. Mar. Coast. Fish. 2, 115-130.
Saltelli, A., Annoni, P., 2010. How to avoid a perfunctory sensitivity analysis. Environ. Model. Softw. 25, 1508-1517.
Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboini, J., Gatelli, D., Saisana, M., Tarantola, S., 2008. Global Sensitivity Analysis. The Primer. John Wiley \& Sons Ltd, Chichester, West Sussex.
Saltelli, A., Tarantola, S., Chan, K.P.-S., 1999. A quantitative model-independent method for Global Sensitivity Analysis of model output. Technometrics 41 39-56.
Sanchirico, J.N., 2005. Additivity properties in metapopulation models: implications for the assessment of marine reserves. J. Environ. Econ. Manage. 49, 1-25.
Shin, Y.-J., Cury, P., 2001. Exploring fish community dynamics through sizedependent trophic interactions using a spatialized individual-based model. Aquat. Living Resour. 14, 65-80.
STECF, 2011. Scientific, Technical and Economic Committee for Fisheries (STECF) The 2011 Annual Economic Report on the EU Fishing Fleet (STECF-11-16). Publications Office of the European Union, Luxembourg, EUR 25106 EN, JRC 67866, 234 pp.
Steenbeek, J., Coll, M., Gurney, L., Mélin, F., Hoepffner, N., Buszowski, J., Christensen, V., 2013. Bridging the gap between ecosystem modeling tools and geographic information systems: driving a food web model with external spatial-temporal data. Ecological Modelling 263, 139-151.
Thunberg, E., Holland, D., Nielsen, J.R., Schmidt, J.O., 2012. Coupled economicecological models for ecosystem-based fishery management: exploration of trade-offs between model complexity and management needs. In: Shriver, A.L. (Ed.), Visible Possibilities: The Economics of Sustainable Fisheries, Aquaculture and Seafood Trade: Proceedings of the Sixteenth Biennial Conference of the International Institute of Fisheries Economics and Trade. July 16-20, Dar es Salaam, Tanzania. International Institute of Fisheries Economics and Trade (IIFET), Corvallis, p. 2012.
Travers, M., Shin, Y.J., Jennings, S., Cury, P., 2007. Towards end-to-end models for investigating the effects of climate and fishing in marine ecosystems. Prog. Oceanogr. 75, 751-770.
Walters, C., 2000. Impacts of dispersal, ecological interactions, and fishing effort dynamics on efficacy of marine protected areas: how large should protected areas be? Bull. Mar. Sci. 66, 745-757.
Walters, C., Christensen, V., Martell, S., Kitchell, J., 2005. Possible ecosystem impacts of applying MSY policies from single-species assessment. ICES J. Mar. Sci. 62, 558-568.
Walters, C., Christensen, V., Pauly, D., 1997. Structuring dynamic models of exploited ecosystems from trophic mass-balance assessments. Rev. Fish Biol. Fish. 7, 139-172.
Walters, C., Christensen, V., Walters, W., Rose, K., 2010. Representation of multistanza life histories in ecospace models for spatial organization of ecosystem trophic interaction patterns. Bull. Mar. Sci. 86, 439-459.
Walters, C., Pauly, D., Christensen, V., 1999. Ecospace: prediction of mesoscale spatial patterns in trophic relationships of exploited ecosystems, with emphasis on the impacts of marine protected areas. Ecosystems 2, 539-554.
Zeller, D., Reinert, J., 2004. Modelling spatial closures and fishing effort restrictions in the Faroe Islands marine ecosystem. Ecol. Model. 172, 403-420.

Appendix A:

Additional information on Ecospace, a description of the model parameterization, assumptions and robustness checks.

A.1. Background information on Ecospace model

A.1.1. Spatial model and habitat map

Ecosystems are not homogeneous in space, and to simulate this, the Ecospace map can be divided into a number of user-defined habitats. Each cell of the map is assigned to one and only one habitat, and every functional group and fleet can be assigned to one or more habitats by the user. The decision on habitat assignation is based on what is considered as "favourable" and "nonfavourable" habitats. In Ecospace, non-favourable habitats can be imagined as portions of sea where a species has lower probability of surviving and reproducing successfully due to some characteristics of the area, for example bottom type. This can result in higher predation mortality and/or low feeding success for a species because it cannot hide or feed effectively. These factors are difficult to quantify through predator-prey relationship, and are thus represented through habitat setting. The classic example is that of a coral reef fish displaced in the open ocean. Although in absolute terms the potential predators could be more abundant on a coral reef, in the open ocean the coral fish can't hide as it would do on a reef, and will be therefore more vulnerable. For the coral reef fish, open ocean is a non-favourable habitat.

In previous versions of the model, both species and fleets were allocated to habitats with a presence-absence assignation. In the EwE software version 6.3 (used in this study), habitat assignment for fleets is still based on the presence-absence method, while the assignment of species to habitat has been improved (Christensen et al., 2014). For every habitat type, the user can set a continuous value between 0 and 1 . This is valid for all cells belonging to the habitat. The
software then allocates to each cell of the habitat in question a proportion of the initial biomass corresponding to the given value. The Ecopath biomass of a group at the base year is then split between all cells of the habitats to which the group is assigned. Habitat assignment governs the initial spatial distribution of species in the model (initialisation). For effort, the fleet-specific Ecopath effort is spread in Ecospace based on the gravity model (see section 2.2 in the text), limiting to habitats to which the fleet has been assigned. In Ecospace, at every time step, an Ecosim model is run for every cell (and thus for the sub-food webs therein), while movement between adjacent cells is regulated by the parameters for species distribution. Thus, the results of Ecospace for each cell at each time step depend on trophic relationships and fishing (through an Ecosim run) and on movement across cells and the parameterisation of the Ecospace model.

A.1.2. Initialisation settings

Initialisation settings regulate the setting of the distribution of species at time step 0 and the type of model used for distribution of multi-stanza groups (i.e. groups divided in multiple age classes): either partial differential equations or an individual-based model. In EwE version 6.3, these settings include: Initialisation; Model Type; Capacity Calculation; Effort Calculation. These can be set through alternative choice. In particular, Initialisation can be set as either "Ecopath Base Biomass" or "Habitat-Adjusted Biomass". Initialisation determines how biomass for each group is assigned from Ecopath to Ecospace. Using "Ecopath Base Biomass", biomass assigned to each cell in favourable habitat is equal to the mean biomass value in Ecopath, and with lower value in the nonoptimal habitat. Alternatively, the "Habitat-Adjusted Biomass" setting concentrates the whole biomass of a group to cells belonging to favourable habitat. If, for example, an organism is found in 10% of the ecosystem, and it has a mean Ecopath biomass of $10 \mathrm{t} / \mathrm{km}^{2}$, it will be distributed in the favourable habitat with biomass of $100 \mathrm{t} / \mathrm{km}^{2}$. Model Type can be set in three alternative possibilities, which regulate how multi-stanza groups are managed in Ecospace. In EwE version 6.3, three alternatives are possible: "EwE6 Multi-Stanza Model", "Individual-Based Model", and "Partial Differential Equation". Capacity Calculation can be set at two non-exclusive levels:
"Habitat" and "Capacity", and the option "Capacity and Habitat" is also allowed. This determines how the biomass is assigned, based on habitat assignment or on capacity (or both). Effort Calculation can be set as "Predict Effort" or "Ecopath Effort": the former calculates effort based on profit-based gravity model while the latter uses effort data directly from Ecopath (Christensen et al., 2008; Walters et al., 1999).
A.2. Specifications of the North Sea Ecospace model used in this study: settings and parameterization

A.2.1. Habitat map used in this study

The habitat map for the present study was based on the Ecospace model from Mackinson and Daskalov (2007). The study area was divided into 5 habitats based on bathymetry and other characteristics (<22 meters depth, 22-51; 52-115; >115 and "Coast"). Some modifications were brought from the map to ensure continuity across habitats. See figure A.1.

Figure A.1. Ecospace Map and Habitats for the North Sea model used in this study. Cells in white represent land.

A.2.2. Initialisation settings

Different combinations of initialisation settings were tested to explore how these settings affected model performance. All alternative combinations between "Initialisation", "Model Type" and "Capacity Calculation" were attempted, with other parameters (i.e. Ecospace species distribution and effort distribution parameters) at default level (table A.1). Effort Calculation was left at the default mode, "Predict Effort", because the alternative, "Use Ecopath Effort", provided no predictions of effort, and the outcomes were not directly comparable to the other parameters. This robustness test showed that habitat "Capacity Calculation" is the most impacting parameter, with Capacity and Habitat \& Capacity providing lower fit (negative). Little changes occurred between "Initialisation" parameters, and between "Model Types", with changes of up to 2% of the initial value (relative fit shows percentage change from the default value). Individual-Based Model (IBM) and Partial Differential Equation (PDE) perform slightly better than Multi-Stanza Model (MSM) in general, but to a small extent.

For the final model, all Initialisation settings were maintained as default: Habitat-Adjusted Biomass setting for "Initialisation", EwE6 multi-stanza for "Model Type", Habitat only for "Capacity Calculations" and Predict Effort for "Effort Calculations". EwE6 Multi-Stanza model was chosen over the Individual Base Model, as it is more reliable for model building, as well as faster in computation (Walters et al., 2010), although Espinosa-Romero et al. (2011) found that Individual Based Model provided more conservative prediction for biomass production.

Initialisation	Model type	Capacitity calculation	Fit	Relative fit
EBB	MSM	H	0.333	0.000
EBB	MSM	C\&H	-0.176	-1.529
EBB	MSM	C	-0.247	-1.743
EBB	IBM	H	0.332	-0.003
EBB	IBM	C\&H	-0.169	-1.508
EBB	IBM	C	-0.203	-1.610
EBB	PDE	H	0.334	0.001
EBB	PDE	C\&H	-0.157	-1.470
EBB	PDE	C	-0.242	-1.726
HAB	MSM	H	0.333	-0.002
HAB	MSM	C\&H	-0.167	-1.501
HAB	MSM	C	-0.247	-1.743
HAB	IBM	H	0.340	0.021
HAB	IBM	C\&H	-0.162	-1.486
HAB	IBM	C	-0.203	-1.610
HAB	PDE	H	0.336	0.008
HAB	PDE	C\&H	-0.161	-1.484
HAB	PDE	C	-0.242	-1.726

Table A.1. Combination of initialisation settings and their performance. EBB: Ecopath Base Biomass; HAB: Habitat-Adjusted Biomass; MSM: Multi-Stanza Model; IBM: Individual Based Model; PDE: Partial Differential Equation; H: Habitat only; C\&H: Capacity and Habitat; C: Capacity only. All other parameters are at default. Colour scale indicates the value of fit: light shades of grey indicate low fit, dark shades of grey indicate high fit.

A.2.3. Habitat assignment

Following Mackinson and Daskalov (2007), groups were assigned to habitats on the basis of surveys of biomass distribution where available. ICES International Bottom Trawl Surveys (IBTS) and ICES Benthic Survey were used for most groups, in particular fish and macro-invertebrates.

The survey data are available at the same spatial resolution on which the Ecospace map cell grid was based, i.e. cells of 0.5 degrees in Latitude and 1 degree in Longitude, corresponding to ICES statistical rectangles. For all fish groups and most macro-invertebrate groups, biomass distribution data were used to calculate the relative density for each cell. For each group, biomass for each cell from IBTS survey was averaged between 1985 and 1995 to obtain an estimate of the long-term average for 1991, the base year of the model. For each habitat, average biomass was calculated (sum of biomass in cells/number of cells). Sum of all average biomasses was then calculated, and finally the relative density for each habitat was obtained as: average biomass for that habitat/sum of all average biomasses. For each species, the relative abundance in each habitat was thus obtained, summing across all habitats to unitary value. The relative biomass value for each habitat was then used in the Ecospace model.

For the groups Baleen whales, Toothed whales, Seals and Seabirds, habitat was assigned based on different sources. Species included in each of these groups were unchanged from the Mackinson and Daskalov (2007) model. Baleen whales (here only considering minke whales, Balaenoptera acutorostrata) are generally more abundant in the western North Sea (ICES, 2012). Abundance estimates available from SCANS (Small Cetacean Abundance in the North Sea survey, Hammond et al., 2002), Atlas of Cetaceans (Reid et al., 2003), and SCANS II final report (SCANS-II, 2008), all indicate higher abundance in the northern-central and western North Sea (roughly corresponding to habitats "52-115 m depth" and "Coastal", of the Ecospace map, figure A.1). Data from Reid et al. (2003) covered the 1979-1997 time-window, which was considered a reliable proxy for a long-term average close to the situation in 1991. SCANS II final report provides maps from 1994 and 2005, the former being used here as a proxy for 1991. Therefore, habitat for Baleen whales was decided to be "52-115 m" depth and "Coastal". Toothed whales considered in this model were harbour porpoise (Phocoena phocoena), Atlantic white-sided dolphin (Lagenorhynchus acutus) and white-beaked dolphin (Lagenorhynchus albirostris). In SCANS II final report, the distribution of harbour porpoises in 1994 and 2005 is provided. The 1994 figure is used a basis for Ecospace habitat for Toothed whales. Lagenorhynchus spp. have much smaller biomass and distribution, so porpoises were used as proxy for the distribution of the whole Toothed
whales group. From this and other sources (Hammond et al., 2002; Reid et al., 2003), Toothed whales were set to habitats"22-51 m", "52-115 m" and "Coastal". The habitat for seals was mainly determined based on information contained in ICES (2012). Habitat for seals was thus set as " <21 m", "52-115 m", ">115 m" and "Coastal". Habitat for seabirds was based on species (or genus) maps for distribution from the online database Eurobis (http://bio.emodnet.eu/portal/index.php) from MarBEF (2004). All the 12 seabird species included in this group are widely distributed on the whole basin (except shag and great skua, only present on the west part of the North Sea). Based on this information, the Seabird group was assigned to all habitats in the Ecospace model.

Three groups of macro-invertebrates (Squids and cuttlefish, Large crabs, Nephrops) were present in both the IBTS and the Benthic Survey and the habitat estimation was applied for both survey data. Only for the Large crabs the results are similar, while there are some differences, probably due to sampling method, in the other groups among surveys. For the final model, habitat selection was based on data from the Benthic Survey.

A.3. Parameter exploration

A.3.1. Definition of sub-parameters

To reduce parameter dimension, we did not explore variations to parameters in all 68 trophic groups included in the model. We instead lumped the groups into macro-groups based on ecological similarities and according to the method used by, among others, Chen et al. (2009) and Fouzai et al. (2012). All groups were thus divided between fast-moving ("Pelagic"), slow-moving ("Demersal") and static organisms ("Invertebrates"). See table A. 2 for classification of the groups to macro-groups. These macro-groups were then investigated separately and in combination and considered as "sub-parameters". For the fleets, we only investigated 6 out of 12 fleets included in the model because limitation in data availability did not allow us to investigate dynamics for all of the fleets. Fleets were grouped into three macro-groups: two of them corresponding to a single fleet (Beam and Pelagic trawl) while the Otter trawl included multiple fleets (Otter trawl proper, Shrimp trawl, Nephrops trawl and Sandeel trawl). The three macro-groups were used as subparameters for those parameters focusing on the fleet dynamics, namely Effective Power and Total Efficiency Multiplier.

Group Name	Base Dispersal Rate	Macro-groups
Baleen whales	652.437	Pelagic
Toothed whales	974.725	Pelagic
Seals	275.124	Pelagic
Seabirds	275.124	Pelagic
Juvenile sharks	78.607	Demersal
Spurdog	275.124	Demersal
Large piscivorous sharks	275.124	Pelagic
Small sharks	78.607	Demersal
Juvenile rays	78.607	Demersal
Starry ray + others	157.214	Demersal
Thornback \& Spotted ray	157.214	Demersal
Skate + cuckoo ray	157.214	Demersal

Juvenile Cod(0-2, 0-40cm)	110.050	Demersal
Cod (adult)	196.517	Pelagic
Juvenile Whiting (0-1, 0-20cm)	110.050	Demersal
Whiting (adult)	157.214	Pelagic
Juvenile Haddock (0-1, 0-20cm)	110.050	Demersal
Haddock (adult)	157.214	Pelagic
Juvenile Saithe (0-3, 0-40cm)	110.050	Demersal
Saithe (adult)	196.517	Pelagic
Hake	196.517	Demersal
Blue whiting	157.214	Pelagic
Norway pout	500.000	Pelagic
Other gadoids (large)	157.214	Demersal
Other gadoids (small)	157.214	Demersal
Monkfish	157.214	Demersal
Gurnards	157.214	Demersal
Herring (juvenile 0, 1)	110.050	Pelagic
Herring (adult)	157.214	Pelagic
Sprat	78.607	Pelagic
Mackerel	235.820	Pelagic
Horse mackerel	1000.000	Pelagic
Sandeels	75.000	Pelagic
Plaice	75.000	Demersal
Dab	75.000	Demersal
Long-rough dab	78.607	Demersal
Flounder	78.607	Demersal
Sole	78.607	Demersal
Lemon sole	78.607	Demersal
Witch	78.607	Demersal
Turbot and brill	78.607	Demersal
Megrim	78.607	Demersal
Halibut	78.607	Demersal
Dragonets	78.607	Demersal
Catfish (Wolf-fish)	157.214	Demersal
Large Demersal fish	157.214	Demersal
Small Demersal fish	78.607	Demersal
Miscellaneous filterfeeding pelagic fish	141.492	Pelagic
Squid \& cuttlefish	141.492	Demersal
Fish larvae	29.871	Invertebrates
Carnivorous zooplankton	29.871	Invertebrates
Herbivorous \& Omnivorous zooplankton	29.871	Invertebrates
Gelatinous zooplankton	78.607	Invertebrates

Large crabs	20.000	Demersal
Nephrops	5.000	Demersal
Epifaunal macrobenthos (mobile grazers)	30.000	Demersal
Infaunal macrobenthos	5.000	Invertebrates
Shrimp	29.871	Demersal
Small mobile epifauna (swarming crustaceans)	29.871	Invertebrates
Small infauna (polychaetes)	29.871	Invertebrates
Sessile epifauna	29.871	Invertebrates
Meiofauna	29.871	Invertebrates
Benthic microflora	29.871	Invertebrates
Planktonic microflora	29.871	Invertebrates
Phytoplankton	29.871	Invertebrates
Detritus - DOM -water column	29.871	Invertebrates
Detritus - POM - sediment	29.871	Invertebrates
Discards	10.000	Invertebrates

Table A.2. Base Dispersal Rate values from Mackinson and Daskalov (2007) and assignation to macro-groups used in this study. The distinction in "Pelagic", "Demersal" and "Invertebrates" corresponds to wide-range, medium-range and small-range dispersing organisms, respectively.

A.3.2. Upper range limits

For those parameters which do not have a specified upper range limit (namely, Base Dispersal Rate, Effective Power and Total Efficiency Multiplier), an upper limit was set for this study. Upper limit for Base Dispersal Rate was based on the highest value used by Mackinson and Daskalov (2007). The value of $1000 \mathrm{~km} / \mathrm{year}$ was therefore considered as the upper limit of realistic dispersal value. However, since accurate information on dispersal are lacking, it was considered appropriate to include a "buffer" on the upper limit of realistic values. Larger values (up to and over 20000 $\mathrm{km} /$ year) were therefore explored. Threshold for inclusion in the final range was arbitrarily set to twice the reported maximum value of dispersal. Values of up to $2000 \mathrm{~km} / \mathrm{year}$ (twice the "realistic" value) were therefore included in the range for Pelagic and Demersal. For Invertebrates, furthermore, preliminary analyses showed that values above $300 \mathrm{~km} / \mathrm{year}$ provided negligible changes in fit, while values in the lower limit provided most of the change. For this reason, the upper limit for Invertebrates was set at 300. Upper range limits for Effective Power and Total

Efficiency Multiplier were based on exploratory analyses. For Effective Power, the range studied includes "realistic" values (roughly between 0.5 and 10, Carl Walters Pers. Comm.). Buffer values below and above the realistic values were explored. Values between 0 and 1 provided very little deviation from default fit and where therefore not included in the final range. Values above 10 provided large changes in fit and were included in the final exploration as buffer. Upper range limits were specific for each sub-parameter, and were selected as the highest values before the model collapsed. For Power Effort, these were 30, 150 and 37 for the sub-parameter Otter trawl, Pelagic trawl and Beam trawl respectively. For Total Efficiency Multiplier, these were 1.3, 3 and 1.5 for the sub-parameter Otter trawl, Pelagic trawl and Beam trawl respectively. See table 1 and table A.3.ah.

A.3.3. Sub-parameters exploration

The exploration of sub-parameters took a number of steps:
i) Initially, each sub-parameter ("Pelagic", "Demersal", "Invertebrates" for species-related parameters and "Pelagic", "Otter" and "Beam" for fleet-related parameters) was explored individually throughout its range (for example, from 0 to 100 by steps of 10 for a parameter restrained between 0 and 100).
ii) Then, for each of the three sub-parameters a subset of values were selected, including the lowest value (0 or 1) and the highest (100 in this example), as well as intermediate values (50 in our example). Also, values at which the individual parameters exhibited peculiar behaviour (e.g., sudden changes of slope, threshold values above which the response curve flattened) were further investigated. The rationale for this was to reduce the number of parameter values to explore under interaction.
iii) The selected subsets of parameter values were explored in a three-way interaction for each of the three sub-parameter values, and for each of the six parameters studied. Matrices reporting the fit between data and model prediction for each combination for parameters Base Dispersal Rate,

Relative Vulnerability, Effective Power and Total Efficiency Multiplier are provided in table A. 3 with both absolute fit (table A.3.a, c, e, g) and relative fit (table A.3.b, d, f, h). Relative fit is given as the percentage change that the model provides as compared with default values. For default values, the percentage change is of course equal 0 . Models with percentage change >0 correspond to an improvement and vice versa. Changes of parameters Relative Dispersal in Bad Habitat and Relative Feeding Rate in Bad Habitat did not result in any change of fit of model. These parameters were therefore not further investigated and are not shown here.

A.3.4. Parameter interaction

For the exploration of parameter interactions, a sub-set of parameter values was selected so to represent the overall range of possible values assumed. For each parameter, three levels were selected: high (with all sub-parameters at the highest value of their range), low (all sub-parameters at lowest value of their range) and intermediate (all sub-parameters set at the median or closest lower value). For example, the three values selected for the parameter Total Efficiency Multiplier were:
low: Otter = 0.1, Pelagic $=0.1$, Beam $=0.1$;
intermediate: Otter = 1, Pelagic = 1, Beam = 1;
high: Otter $=1.3$, Pelagic $=1.5$, Beam $=3$.

This method allowed exploring across all ranges of all sub-parameters. A combination of $3^{\wedge} 4=64$ parameter combinations was finally used for the parameter interaction analysis.

a)		Invertebrates 1								Invertebrates 10							
		Demersal								Demersal							
		1	100	250	500	750	1000	1500	2000	1	100	250	500	750	1000	1500	2000
\%	1	0.322	0.324	0.330	0.340	0.344	0.347	0.352	0.355	0.312	0.324	0.330	0.340	0.345	0.348	0.353	0.355
	100	0.327	0.329	0.330	0.343	0.348	0.351	0.356	0.358	0.328	0.330	0.331	0.344	0.349	0.352	0.356	0.349
	250	0.328	0.331	0.329	0.333	0.337	0.340	0.343	0.345	0.329	0.331	0.329	0.333	0.337	0.340	0.343	0.346
	500	0.332	0.332	0.332	0.335	0.339	0.340	0.343	0.345	0.332	0.333	0.332	0.335	0.339	0.340	0.343	0.345
	750	0.342	0.338	0.337	0.341	0.343	0.344	0.347	0.348	0.341	0.338	0.337	0.341	0.344	0.344	0.347	0.348
	1000	0.351	0.347	0.343	0.347	0.347	0.347	0.349	0.350	0.350	0.346	0.343	0.347	0.347	0.347	0.349	0.351
	1500	0.359	0.355	0.352	0.353	0.353	0.352	0.353	0.353	0.359	0.355	0.352	0.353	0.353	0.352	0.353	0.354
	2000	0.366	0.361	0.359	0.359	0.358	0.357	0.356	0.357	0.366	0.361	0.359	0.359	0.358	0.357	0.357	0.357
		Invertebrates 30								Invertebrates 100							
		Demersal								Demersal							
		1	100	250	500	750	1000	1500	2000	1	100	250	500	750	1000	1500	2000
$\begin{aligned} & 0 \\ & \frac{0}{0} \\ & \frac{\pi}{0} \end{aligned}$	1	0.313	0.317	0.322	0.340	0.346	0.349	0.353	0.356	0.318	0.320	0.325	0.331	0.336	0.339	0.344	0.347
	100	0.330	0.330	0.332	0.335	0.340	0.352	0.347	0.350	0.333	0.333	0.334	0.336	0.340	0.343	0.348	0.351
	250	0.330	0.332	0.330	0.333	0.337	0.340	0.343	0.346	0.332	0.332	0.331	0.334	0.338	0.341	0.344	0.347
	500	0.332	0.332	0.331	0.335	0.339	0.340	0.343	0.345	0.331	0.330	0.331	0.335	0.338	0.341	0.343	0.345
	750	0.341	0.337	0.337	0.341	0.344	0.344	0.346	0.347	0.338	0.335	0.336	0.341	0.343	0.344	0.346	0.347
	1000	0.349	0.345	0.343	0.347	0.347	0.347	0.349	0.350	0.345	0.343	0.342	0.347	0.347	0.347	0.348	0.350
	1500	0.359	0.355	0.352	0.353	0.353	0.353	0.353	0.354	0.357	0.353	0.353	0.354	0.353	0.353	0.353	0.354
	2000	0.366	0.361	0.360	0.359	0.358	0.357	0.357	0.357	0.364	0.360	0.361	0.360	0.358	0.357	0.356	0.357
		Invertebrates 300															
		Demersal															
		1	100	250	500	750	1000	1500	2000								
$\begin{aligned} & 0.0 \\ & \frac{0}{0} \\ & \frac{\pi}{0} \end{aligned}$	1	0.329	0.329	0.329	0.332	0.337	0.340	0.343	0.346								
	100	0.340	0.338	0.336	0.338	0.341	0.343	0.347	0.350								
	250	0.335	0.334	0.333	0.336	0.339	0.342	0.346	0.347								
	500	0.328	0.326	0.332	0.337	0.340	0.342	0.345	0.346								
	750	0.332	0.330	0.335	0.341	0.344	0.345	0.346	0.347								
	1000	0.339	0.338	0.342	0.347	0.348	0.347	0.348	0.349								
	1500	0.354	0.350	0.352	0.353	0.353	0.352	0.353	0.354								
	2000	0.361	0.359	0.360	0.359	0.358	0.357	0.356	0.356								

b)		Invertebrates 1								Invertebrates 10							
		Demersal								Demersal							
		1	100	250	500	750	1000	1500	2000	1	100	250	500	750	1000	1500	2000
$\begin{aligned} & \frac{0}{0} \\ & \frac{\pi}{0} \\ & 0 \end{aligned}$	1	-3.451	-2.851	-0.962	1.951	3.248	4.281	5.632	6.417	-6.435	-2.754	-0.909	2.039	3.425	4.422	5.808	6.558
	100	-1.774	-1.218	-0.847	3.019	4.581	5.437	6.744	7.388	-1.439	-1.059	-0.715	3.089	4.590	5.499	6.806	4.846
	250	-1.580	-0.715	-1.245	0.009	1.112	1.968	2.878	3.575	-1.412	-0.538	-1.209	0.009	1.174	1.968	2.983	3.690
	500	-0.309	-0.265	-0.291	0.662	1.765	2.171	2.966	3.531	-0.291	-0.212	-0.335	0.574	1.668	2.171	2.913	3.557
	750	2.630	1.536	1.192	2.436	3.081	3.363	4.007	4.334	2.480	1.474	1.130	2.410	3.134	3.337	3.990	4.343
	1000	5.270	4.016	3.081	4.202	4.202	4.219	4.714	5.120	5.155	3.954	3.028	4.131	4.228	4.272	4.705	5.190
	1500	7.829	6.532	5.640	6.002	5.923	5.667	5.941	6.073	7.794	6.444	5.729	6.082	5.949	5.782	5.932	6.108
	2000	9.921	8.315	7.715	7.653	7.503	7.000	6.938	7.070	9.904	8.218	7.759	7.706	7.476	7.026	6.991	7.088
		Invertebrates 30								Invertebrates 100							
		Demersal								Demersal							
		1	100	250	500	750	1000	1500	2000	1	100	250	500	750	1000	1500	2000
$\begin{aligned} & \frac{0}{0} \\ & \frac{\pi}{0} \\ & 0 \end{aligned}$	1	-6.064	-4.917	-3.451	2.092	3.716	4.661	6.011	6.788	-4.625	-3.866	-2.392	-0.600	0.971	1.774	3.310	4.131
	100	-1.015	-0.839	-0.477	0.503	2.057	5.579	4.272	4.987	-0.124	0.053	0.132	0.830	2.110	2.975	4.290	5.208
	250	-1.086	-0.415	-1.042	0.079	1.218	2.030	3.063	3.787	-0.397	-0.247	-0.671	0.238	1.403	2.313	3.266	4.122
	500	-0.380	-0.459	-0.521	0.441	1.615	2.127	2.869	3.548	-0.644	-0.927	-0.680	0.415	1.571	2.216	2.878	3.601
	750	2.321	1.245	1.033	2.392	3.187	3.363	3.910	4.281	1.562	0.494	0.874	2.277	2.957	3.222	3.725	4.210
	1000	4.811	3.584	3.028	4.122	4.219	4.246	4.608	5.146	3.469	2.807	2.763	4.034	4.272	4.263	4.396	5.005
	1500	7.626	6.435	5.746	6.046	5.976	5.808	6.002	6.249	7.088	5.914	5.790	6.108	6.020	5.826	5.905	6.179
	2000	9.789	8.271	7.918	7.803	7.529	7.106	7.070	7.114	9.339	8.174	8.191	7.953	7.582	7.203	6.964	7.256
		Invertebrates 300															
		Demersal															
		1	100	250	500	750	1000	1500	2000								
$\begin{aligned} & \frac{0}{\mathbb{O}} \\ & \frac{\pi}{\mathbb{N}} \\ & \hline \end{aligned}$	1	-1.165	-1.306	-1.306	-0.256	1.095	1.933	3.036	3.769								
	100	2.083	1.554	0.803	1.333	2.242	2.975	4.149	5.093								
	250	0.424	0.088	-0.035	0.794	1.757	2.595	3.707	4.263								
	500	-1.474	-2.021	-0.344	1.112	2.021	2.657	3.398	3.919								
	750	-0.441	-1.015	0.565	2.445	3.204	3.478	3.760	4.184								
	1000	1.880	1.580	2.710	4.166	4.387	4.237	4.369	4.758								
	1500	6.108	5.120	5.517	6.055	6.002	5.702	5.879	6.099								
	2000	8.306	7.741	8.165	7.882	7.432	7.044	6.823	6.982								

c)		Invertebrates 1			Invertebrates 10			Invertebrates 100		
		Demersal			Demersal			Demersal		
		1	10	100	1	10	100	1	10	100
-	1	0.331	0.336	0.336	0.331	0.336	0.336	0.331	0.336	0.336
	10	0.331	0.335	0.336	0.331	0.335	0.336	0.331	0.335	0.336
	100	0.331	0.335	0.335	0.331	0.335	0.335	0.331	0.335	0.335

d)		Invertebrates 1			Invertebrates 10			Invertebrates 100		
		Demersal			Demersal			Demersal		
		1	10	100	1	10	100	1	10	100
-	1	-0.521	0.697	0.768	-0.521	0.715	0.768	-0.521	0.697	0.768
	10	-0.565	0.671	0.706	-0.574	0.680	0.724	-0.574	0.680	0.733
	100	-0.618	0.583	0.662	-0.618	0.574	0.662	-0.609	0.574	0.662

e)		Pelagic 1					Pelagic 5					Pelagic 10				
		Beam					Beam					Beam				
		1	5	10	20	37	1	5	10	20	37	1	5	10	20	37
$\begin{aligned} & \overline{ \pm} \\ & \stackrel{0}{0} \end{aligned}$	1	0.333	0.334	0.334	0.334	0.334	0.331	0.332	0.332	0.332	0.332	0.330	0.331	0.331	0.331	0.331
	2	0.334	0.336	0.335	0.335	0.335	0.331	0.332	0.332	0.332	0.332	0.330	0.331	0.331	0.331	0.331
	5	0.358	0.358	0.358	0.358	0.358	0.355	0.356	0.356	0.356	0.356	0.354	0.355	0.355	0.355	0.355
	10	0.371	0.371	0.371	0.371	0.371	0.368	0.368	0.368	0.368	0.368	0.367	0.367	0.367	0.367	0.367
	20	0.378	0.378	0.378	0.378	0.378	0.376	0.376	0.376	0.376	0.376	0.375	0.375	0.375	0.375	0.375
	30	0.384	0.384	0.384	0.384	0.384	0.382	0.382	0.382	0.382	0.382	0.381	0.381	0.381	0.381	0.381
		Pelagic 20					Pelagic 100					Pelagic 150				
		Beam					Beam					Beam				
		1	5	10	20	37	1	5	10	20	37	1	5	10	20	37
$\begin{aligned} & \text { © } \\ & \hline 0 \end{aligned}$	1	0.329	0.330	0.330	0.331	0.331	0.327	0.328	0.327	0.328	0.328	0.322	0.324	0.323	0.326	0.325
	2	0.329	0.330	0.331	0.331	0.330	0.328	0.328	0.330	0.330	0.330	0.325	0.326	0.326	0.328	0.327
	5	0.353	0.354	0.354	0.354	0.354	0.351	0.352	0.352	0.352	0.353	0.349	0.352	0.350	0.350	0.351
	10	0.366	0.366	0.366	0.366	0.366	0.365	0.363	0.364	0.364	0.363	0.363	0.363	0.362	0.363	0.362
	20	0.374	0.374	0.374	0.374	0.374	0.371	0.371	0.371	0.372	0.371	0.368	0.368	0.370	0.369	0.369
	30	0.379	0.380	0.380	0.380	0.380	0.373	0.373	0.373	0.373	0.373	0.371	0.370	0.371	0.372	0.369

f)		Pelagic 1					Pelagic 5					Pelagic 10				
		Beam					Beam					Beam				
		1	5	10	20	37	1	5	10	20	37	1	5	10	20	37
	1	0.000	0.300	0.309	0.300	0.327	-0.697	-0.371	-0.335	-0.318	-0.318	-0.918	-0.609	-0.591	-0.574	-0.591
	2	0.106	0.856	0.521	0.521	0.530	-0.759	-0.388	-0.353	-0.344	-0.362	-1.006	-0.680	-0.618	-0.609	-0.636
\%	5	7.362	7.415	7.441	7.432	7.423	6.497	6.726	6.779	6.788	6.797	6.285	6.603	6.611	6.611	6.620
	10	11.210	11.263	11.316	11.307	11.272	10.451	10.557	10.548	10.530	10.522	10.195	10.248	10.266	10.266	10.248
	20	13.390	13.399	13.382	13.355	13.346	12.790	12.887	12.878	12.878	12.870	12.508	12.596	12.578	12.578	12.561
	30	15.129	15.129	15.147	15.120	15.120	14.547	14.582	14.591	14.591	14.564	14.211	14.300	14.317	14.300	14.282
		Pelagic 20					Pelagic 100					Pelagic 150				
		Beam					Beam					Beam				
		1	5	10	20	37	1	5	10	20	37	1	5	10	20	37
刮	1	-1.139	-0.847	-0.821	-0.803	-0.812	-1.915	-1.518	-1.730	-1.562	-1.659	-3.222	-2.710	-3.063	-2.304	-2.586
	2	-1.192	-0.874	-0.794	-0.803	-0.821	-1.492	-1.421	-0.971	-0.847	-1.068	-2.463	-2.251	-2.074	-1.598	-1.730
	5	5.932	6.188	6.196	6.196	6.205	5.455	5.605	5.755	5.773	5.835	4.634	5.526	5.111	4.978	5.323
	10	9.789	9.824	9.833	9.833	9.824	9.427	9.074	9.153	9.304	9.083	8.986	9.021	8.571	8.827	8.597
	20	12.190	12.208	12.234	12.234	12.243	11.254	11.369	11.360	11.572	11.237	10.354	10.319	10.937	10.751	10.645
	30	13.770	13.902	13.938	13.920	13.902	11.846	12.075	11.987	11.899	12.084	11.298	11.087	11.193	11.607	10.875

Table A.3. Absolute fit (a) and relative percentage change in fit (b) for Base Dispersal Rate; Absolute fit (c) and relative percentage change in fit (d)
for Relative Vulnerability; Absolute fit (e) and relative percentage change in fit (f) for Effective Power; Absolute fit (g) and relative percentage
change in fit (h) for Total Efficiency Multiplier. Colour scale indicates the value of fit: high improvements from default fit are represented in darker
shades of grey, low improvement or decrease in fit are in lighter shades of grey. Note that colour scale differs across panels.

A.4. Limitations, assumptions and robustness checks

A.4.1. Method limitations and assumptions

The results of this study are dependent on a number of factors which might affect the outcome, some of which are discussed below.

The method used to control model performance, Spearman's rank correlation between model prediction of biomass and effort for each cell and spatially resolved observations, allows evaluating areas with "good" and "bad" prediction capacity. The ranked correlation evaluates to what extent the rank of predictions follows the rank of data looking at cell-by-cell prediction and data values. Correlation is therefore capable of showing if the model is predicting high values in cells where data values are high, and vice versa; but it does not allow quantitative evaluation of the absolute values of residuals (as would, for example, Mean Sum of Square). Mean Sum of Square (MSS) was also calculated and the results were qualitatively similar to those of correlation. However, correlation has the advantage of being limited between -1 and +1 , which makes it easy to interpret and compare across parameter values and potentially between different models. For this reason correlation was chosen as measure of fit for this study. The total measure of fit was calculated with an objective function which used the median of all correlations for each year, and then the mean of all yearly medians. Medians were used due to the large dispersion of values across groups (with some species being around 0.8 , some fleets down to -0.7). Between years, however, values were not so dispersed; therefore mean was chosen over median. An alternative objective function based on the median of medians overestimated the fit, providing higher total value than mean of medians. For these reasons, the objective function finally used to measure total fit was based on the mean of medians of Spearman's rank correlations across species and fleets.

The Ecospace model is strongly dependent on its underlying Ecopath with Ecosim model. For this study we did not modify the underlying Ecopath and Ecosim models. Therefore the results could differ for alternative parameterization of Ecosim. However, investigation over sensitivity to the

Ecosim vulnerability (see section A.4.2) showed moderate influence of Ecosim vulnerability setting on the Ecospace fit, with differences in spatial fit being influenced more by changes in Ecospace parameters than in Ecosim vulnerability. Only when vulnerability in Ecosim was set equal to 10 for all groups, the performance of Ecospace was affected visibly. This finding confirms once again that having a fully calibrated Ecosim model is fundamental in order to build a correct Ecospace model, however Ecospace parameters seemed to be more important for spatial distribution than Ecosim parameters.

Some of the Ecospace parameters related to initialisation, in particular the "Initialisation" and the "Model Type" for age-structured groups (Multistanza or Individual Base Model), were explored through combinations of these parameter settings, without performing a full sensitivity analysis, and we did not however observe major differences (see section A.2.2). The IBM model performed slightly better than the Multistanza model. The latter was however used because it is considered to be better for model building and fitting (Walters et al., 2010).

The model used in this study did not include Ecospace factors such as advection, primary productivity, and migration, which can be important for spatial distribution of fish species (e.g., Martell et al., 2005; Steenbeek et al., 2013). It is possible that inclusion of such data would provide better prediction for fish species, adding realism to the model.

Cost and price data are important for the effort allocation model, however they are also difficult to obtain. Robustness check with changes in prices and costs did not show any noticeable change in the model performance (see section A.4.2), and fleet distribution prediction did not improve.

Temporal and spatial resolution of the datasets might also be a reason for poor model predictions: effort data from STECF are resolved yearly, however they are a combination of a process that take place on a different scale, i.e. on a daily or weekly basis. Data could therefore not be reflective of the real effort distribution, a problematic extending also to the biomass data, which is known to be spatially dependent (Lewy and Kristensen, 2009). Effort spatial data and the aggregated effort data (used in the Ecosim model) were compared (aggregating the spatially resolved data). The two
datasets overlap for only four years. Demersal and Beam trawls resulted to have a high fit between spatial and aggregated time series. Pelagic trawl had a negative fit. Due to the few comparable years, the results were not significant, and these results should be interpreted cautiously.

Spatial coverage of effort data might also represent a problem: the STECF dataset of spatially resolved effort data cover most, but not all cells in the study area. It is possible that data availability for the first years of compilation of the dataset (used for the present study) was limited for some fleet-regions combinations. Other sources of effort data could be available through the Vessel Monitoring System (VMS). However these data are presently only available at national level and not for all fishing nations that operate in the study area.

Species groups and fleets groups were aggregated in order to reduce the dimensionality of the model. Species were grouped into sub-parameters (as explained in subsection A.3.1) based on their ecological characteristics. This grouping could affect the overall result of the model. We compared the results with model runs using alternative species grouping (using species dispersal setting at species level, as from Mackinson and Daskalov (2007). The model results were very similar, and in particular the fleet fit did not change noticeably when species were not grouped. This suggests that the lumping criteria for species used in this study did not affect the results. Fleets groups were also lumped into sub-parameters. Demersal Otter trawl sub-parameter was a macro-group including Otter trawl proper, and other trawler fleets: Shrimp trawler, Nephrops trawler, and Sandeel trawler. These were separate fleets in the Ecospace model but no separate data were available for the effort data from STECF. Since the four fleets were assumed to have similar behaviour, they were aggregated into one macro-group for the analysis. Parameters were therefore changed for the four fleets in Ecospace accordingly. The implication of this assumption might imply a slightly different response for the Otter trawl fleet, but would not touch upon the beam and pelagic fleet in any case, thus not affecting the overall result of the study. Robustness checks were run with alternative fleet assignation, which showed that results were similar with alternative settings, with only minor differences (A.4.2.6). Under the combinations "Otter +

Shrimp", the fit for Demersal trawl improved slightly but noticeably. However, the fit of some species declined, bringing the overall model fit to lower levels than the default combination.

A.4.2. Robustness check

For some of the parameters we explored variation with alternative setting across a range of model parameters. We used 4 models representing the parameter ranges: Low, High (with all influential parameters at minima and maxima of their ranges, respectively), Default, and a "Conservative" model, with values arbitrarily set at an intermediate level. For each parameter tested, we selected a range of scenarios. This allowed to check whether the results obtained through the model are sensitive to any of the model assumptions, by observing whether the variation in model fit depend more on model settings (i.e. High, Low, Default or Conservative settings) or on the parameter scenarios. Parameters tested for robustness were Cost, Spatial cost, Prices, Ecosim vulnerability and a No fishing scenario. Cost and Prices are input of the Ecopath model, while Spatial cost was calculated by Ecospace based on the port distribution, retained for this model from the Mackinson and Daskalov (2007) model.

A.4.2.1 Cost

Costs are specified in Ecopath and divided into Fixed, Variable and Sailing costs (with Sailing cost being at 0 in the used model). The alternative scenarios explored changes in model fit with: all costs set at 0; Variable costs set at 0; Sailing costs being set at the values of Variable costs; costs being set without subsidies (following Heymans et al., 2011). All these scenarios were compared with the "normal" case, with all cost input at default. The expected differences across scenarios should be dependent on the changes that cost assignment should have on the gravity model for fleet effort assignment, and hence on the fleet fitness to data (and indirectly also affecting species distribution through fishing). See figure A. 2 and table A. 4.

Figure A.2. Robustness check for cost

	Normal	Without subsidies All at 0		Variable costs at 0	Sailing costs
Low	0.305	0.305	0.306	0.303	0.300
Conservative	0.393	0.393	0.393	0.415	0.415
Default	0.333	0.333	0.333	0.355	0.355
High	0.424	0.424	0.424	0.443	0.442

Table A.4. Robustness check for cost

A.4.2.2. Spatial cost

Spatial cost scenarios investigated were based on alternative ports settings, since the spatial cost layer were automatically generated by Ecospace on the basis of fleet-specific home port designation and variable costs. We therefore tested an "all port" scenario where every fleet is allowed in any port; a "no port" scenario" where no fleet has favoured ports; and a scenario where all fleets have the same set of favoured port (we arbitrarily chose three cells on the Danish coast
as ports). These scenarios were compared with a "normal scenario with all ports set as default. The expected differences across scenarios should depend on the role that spatial costs play in the gravity model, and on how it affects the different fleet fitness to effort data and indirectly also species' fitness to biomass data. See figure A. 3 and table A.5.

Figure A.3. Robustness check for Spatial cost

	Normal	All ports	No ports	All same ports
Low	0.305	0.306	0.305	0.305
Conservative	0.393	0.393	0.393	0.393
Default	0.333	0.333	0.333	0.333
High	0.424	0.424	0.424	0.424

Table A.5. Robustness check for Spatial cost

A.4.2.3. Price

Price scenarios investigated were aiming at identifying the sensitivity of the model to changes in the magnitude of price or in the species composition. The "price 10 times" scenario increased tenfold all price data, and the "only target" scenarios set at 0 all prices for non-target species (i.e. only the 12 selected species). The rational for this was that many fleets target specifically species with low value (e.g. forage fish) but accidentally capture other species with higher price. Nonetheless, their fishing pattern is determined by the target species and not by the by-catch. Expected changes from these scenarios should depend on the changes in profitability expected by each fleet with an increase in price of their catches, and thus a change of the spatial effort patterns. See figure A. 4 and table A. 6 .

Figure A.4. Robustness check for Price

	Price default	Price 10 times	Only target spp.
Low	0.305	0.305	0.306
Conservative	0.393	0.393	0.392
Default	0.333	0.333	0.335
High	0.424	0.424	0.423

Table A.6. Robustness check for Price

A.4.2.4. No Fishing

A "no fishing" scenario was investigated to explore whether the model fit changed when no fishing occurred. In Ecospace, fishing fleet can be allowed to fish in one or more habitats; for the "no fishing" scenario, all fleets were set as not allowed to fish in any of the habitats. This scenario was compared with a "default" scenario. For this scenario, furthermore, the biomass-specific fit was also investigated. The expected results were to see if the "no fishing" scenario would produce scarce fit. The fit on biomass only, instead was explored to test whether the lack of fishing would affect somehow the fish species distribution. See figure A. 5 and A. 6 and table A. 7 and A.8.

Figure A.5. Robustness check for "no fishing" Total Fit

	Default total fit	No fishing total fit
Low	0.305	0.403
Conservative	0.393	0.414
Default	0.333	0.398
High	0.424	0.440

Table A.7. Robustness check for "no fishing" Total Fit

Figure A.6. Robustness check for "no fishing" Biomass Fit

	Default biomass fit	No fishing biomass fit
Low	0.393	0.403
Conservative	0.479	0.414
Default	0.419	0.398
High	0.522	0.440

Table A.8. Robustness check for "no fishing" Biomass Fit

A.4.2.5. Ecosim vulnerability

The vulnerability in Ecosim was explored through 4 scenarios by setting it at default (i.e. with values from the model used in this study), all species at 1 , all species at 2 and all species at 10 . The changes in performance of the model were expected to explain if the Ecospace performance depends on the Ecosim parameters setup. Under the scenario V10 a slight improvement of the fit of Demersal trawl was observed. This suggests that the parameterisation of Ecosim vulnerability can have an effect on Ecospace spatial distribution of effort, through species distribution. See figure A. 7 and table A.9.

Figure A.7. Robustness check for Ecosim vulnerability setting

	V default		V1	V2
Vow	0.296	0.333	0.326	0.105
Conservative	0.394	0.413	0.400	0.324
Default	0.333	0.351	0.346	0.370
High	0.424	0.385	0.425	0.321

Table A.9. Robustness check for vulnerability

A.4.2.6. Setting of the macro-group Demersal trawl

Otter trawl macro-group assignation was explored by testing the default assignation (with Otter, Nephrops, Sandeel and Shrimp trawlers lumped together) against other assignations: Otter trawl alone, Otter and Nephrops trawls lumped, Otter and Sandeel trawls lumped, Otter and shrimp trawls lumped. See figure A. 8 and table A. 10 .

Figure A.8. Robustness check for Demersal trawl Setting

	Default	Only Otter	Otter + Nephrops	Otter + Sandeel	Otter +Shrimp
Low	0.322	0.319	0.302	0.328	0.324
Conservative	0.395	0.348	0.347	0.386	0.353
Default	0.331	0.331	0.331	0.331	0.331
High	0.423	0.380	0.381	0.415	0.385

Table A.10. Robustness check of Demersal trawl Setting

References:

Chen, Z., Xu, S., Qiu, Y., Lin, Z., Jia, X., 2009. Modeling the effects of fishery management and marine protected areas on the Beibu Gulf using spatial ecosystem simulation. Fisheries Research 100, 222-229.

Christensen, V., Coll, M., Steenbeek, J., Buszowski, J., Chagaris, D., Walters, C.J., 2014. Representing variable habitat quality in a spatial food web model. Ecosystems 17, 13971412.

Christensen, V., Walters, C., Pauly, D., Forrest, R., 2008. Ecopath with Ecosim version 6. User Guide. November 2008. Lenfest Ocean Futures Project 235 pp.

Espinosa-Romero, M.J., Gregr, E.J., Walters, C., Christensen, V., Chan, K.M.A., 2011. Representing mediating effects and species reintroduction in Ecopath with Ecosim. Ecological Modelling 222, 1569-1579.

Fouzai, N., Coll, M., Palomera, I., Santojanni, A., Arneri, E., Christensen, V., 2012. Fishing management scenarios to rebuild exploited resources and ecosystems of the NorthernCentral Adriatic (Mediterranean Sea). Journal of Marine Systems 102-104, 39-51.

Hammond, P.S., Berggren, P., Benke, H., Borchers, D.L., Collet, A., Heide-Jørgensen, M.P., Heimlich, S., Hiby, A.R., Leopold, M.F., Øien, N., 2002. Abundance of harbour porpoise and other cetaceans in the North Sea and adjacent waters. Journal of Applied Ecology 39, 362376.

Heymans, J.J., Mackinson, S., Sumaila, U.R., Dyck, A., Little, A., 2011. The impact of subsidies on the ecological sustainability and future profits from North Sea fisheries. PLoS ONE 6.

ICES, 2012. Report of the Working Group on Marine Mammal Ecology (WGMME), 5-8 March 2012, Copenhagen, Denmark. ICES CM 2012/ACOM:27. 146 pp.

Lewy, P., Kristensen, K., 2009. Modelling the distribution of fish accounting for spatial correlation and overdispersion. Canadian Journal of Fisheries and Aquatic Sciences 66, 1809-1820.

Mackinson, S., Daskalov, G., 2007. An ecosystem model of the North Sea to support an ecosystem approach to fisheries management: description and parameterisation. Sci. Ser. Tech Rep., Cefas Lowestoft, 142, 196pp.

MarBEF, 2004. European node of the Ocean Biogeographic Information System. Available online at http://www.marbef.org/data/eurobis.php. Consulted on 2012-12-03.

Martell, S.J.D., Essington, T.E., Lessard, B., Kitchell, J.F., Walters, C.J., Boggs, C.H., 2005. Interactions of productivity, predation risk, and fishing effort in the efficacy of marine protected areas for the central Pacific. Canadian Journal of Fisheries and Aquatic Sciences 62, 1320-1336.

Reid, J.B., Evans, P.G.H., Northridge, S.P., 2003. Atlas of cetacean distribution in north-west European waters. Joint Nature Conservation Committee, Peterborough.

SCANS-II, 2008. Small Cetaceans in the European Atlantic and North Sea (SCANS-II) Final Report. St Andrews, Fife.

Steenbeek, J., Coll, M., Gurney, L., Mélin, F., Hoepffner, N., Buszowski, J., Christensen, V., 2013. Bridging the gap between ecosystem modeling tools and geographic information systems: Driving a food web model with external spatial-temporal data. Ecological Modelling 263, 139-151.

Walters, C., Christensen, V., Walters, W., Rose, K., 2010. Representation of multistanza life histories in ecospace models for spatial organization of ecosystem trophic interaction patterns. Bulletin of Marine Science 86, 439-459.

Walters, C., Pauly, D., Christensen, V., 1999. Ecospace: prediction of mesoscale spatial patterns in trophic relationships of exploited ecosystems, with emphasis on the impacts of marine protected areas. Ecosystems 2, 539-554.

Paper II

Paper III

Influence of larval transport and temperature on recruitment dynamics of North Sea cod (Gadus morhua) across spatial scales of observation

Giovanni Romagnoni $^{1}{ }^{\text {(D) }}$ | Kristina Øie Kvile ${ }^{1,2}$ (D) ${ }^{\text {(}}$ Knut-Frode Dagestad ${ }^{3}$ (D) | Anne Maria Eikeset ${ }^{1}$ | Trond Kristiansen ${ }^{4}$ (D) | Nils Chr. Stenseth ${ }^{1,5}$ (D) | Øystein Langangen ${ }^{1}$ (D)

${ }^{1}$ Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
${ }^{2}$ Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
${ }^{3}$ Norwegian Meteorological Institute, Bergen, Norway
${ }^{4}$ Norwegian Institute for Water Research (NIVA), Oslo, Norway
${ }^{5}$ Department of Natural Sciences, Centre for Coastal Research (CCR), University of Agder, Kristiansand, Norway

Correspondence

Giovanni Romagnoni, Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway.
Email: giovanni.romagnoni@ibv.uio.no

Present address

Giovanni Romagnoni, COISPA Tecnologia e Ricerca, Bari, Italy

Funding information

Norden Top-Level Research Initiative subprogram Effect Studies and Adaptation to Climate Change" through the Nordic Centre for Research on Marine Ecosystems and Resources under Climate Change (NorMER); WHOI John H. Steele Postdoctoral Scholar award; VISTA - a basic research program in collaboration between The Norwegian Academy of Science and Letters, and Equinor

Abstract

The survival of fish eggs and larvae, and therefore recruitment success, can be critically affected by transport in ocean currents. Combining a model of early-life stage dispersal with statistical stock-recruitment models, we investigated the role of larval transport for recruitment variability across spatial scales for the population complex of North Sea cod (Gadus morhua). By using a coupled physical-biological model, we estimated the egg and larval transport over a 44-year period. The oceanographic component of the model, capable of capturing the interannual variability of temperature and ocean current patterns, was coupled to the biological component, an individual-based model (IBM) that simulated the cod eggs and larvae development and mortality. This study proposes a novel method to account for larval transport and success in stock-recruitment models: weighting the spawning stock biomass by retention rate and, in the case of multiple populations, their connectivity. Our method provides an estimate of the stock biomass contributing to recruitment and the effect of larval transport on recruitment variability. Our results indicate an effect, albeit small, in some populations at the local level. Including transport anomaly as an environmental covariate in traditional stock-recruitment models in turn captures recruitment variability at larger scales. Our study aims to quantify the role of larval transport for recruitment across spatial scales, and disentangle the roles of temperature and larval transport on effective connectivity between populations, thus informing about the potential impacts of climate change on the cod population structure in the North Sea.

KEYWORDS

Atlantic cod, biophysical model, larval transport, North Sea, populations, stock-recruitment, temperature

[^1]
1 | INTRODUCTION

Recruitment of fish stocks depends largely on survival during the first year and in particular during the pelagic early-life stages (ELS) in broadcast spawning teleost fish (Houde, 2008;Leggett \& Deblois, 1994). A number of factors affect the ELS survival, including temperature, food availability and predation (Folkvord, 2005;Peck \& Hufnagl, 2012). In addition to these factors, the interannual variability in recruitment can be influenced by advective transport of eggs and larvae from spawning to nursery areas (Bailey, 1981;Henriksen et al., 2018). Recent physical-biological modelling studies have related larval transport and success to recruitment using various approaches (Peck \& Hufnagl, 2012), including comparisons between modelled larval survival and observed recruitment (Daewel, Schrum, \& Gupta, 2015) and between modelled and observed juvenile distributions (Huwer, Hinrichsen, Hussy, \& Eero, 2016). One alternative approach to assess the effect of larval transport on recruitment is the application of stock-recruitment models. Historically, parametric stock-recruitment models have been used to link variation in stock size with recruitment success. While the predictive capability of these models remains limited (Subbey, Devine, Schaarschmidt, \& Nash, 2014), inclusion of environmental variables such as temperature (Akimova, Núñez-Riboni, Kempf, \& Taylor, 2016;Planque, Fox, Saunders, \& Rockett, 2003), the North Atlantic Oscillation index (NAO) (Brander \& Mohn, 2004), surface wind speed (Hare, Brooks, Palmer, \& Churchill, 2015), zooplankton prey availability (Olsen et al., 2011) and interactions between these factors (Duplisea \& Robert, 2008;Olsen et al., 2011) can help to identify key biological mechanisms driving the interannual variability in stock-recruitment. We hypothesise that accounting for transport variability in stock-recruitment models can help to explain parts of the observed recruitment variability. In fact, it has been suggested that ELS transport could be one of the drivers behind the unclear relationship between spawning stock size and recruitment (Huwer et al., 2016). While some studies have included proxies of larval transport in stock-recruitment relationships (Baumann et al., 2006; Zimmermann, Claireaux, \& Enberg, 2019), few have included direct estimates of larval transport (but see Hidalgo et al., 2019).

Moreover, transport can influence connectivity among populations (e.g. through interannual variability in oceanographic current patterns, Huwer et al., 2016;Kvile, Romagnoni, Dagestad, Langangen, \& Kristiansen, 2018) and recruitment dynamics across large geographic scales (Cadrin, Goethel, Morse, Fay, \& Kerr, 2019;Henriksen et al., 2018;Hinrichsen, Von Dewitz, \& Dierking, 2018) and thereby population management (Fogarty \& Botsford, 2007;Hidalgo et al., 2019;Ramesh, Rising, \& Oremus, 2019). Critically, the spatial scale of observation can affect the stock-recruitment relationship, providing contrasting results across scales (Chang, Chen, Halteman, \& Wilson, 2016). The importance of environmental drivers for recruitment can also differ across subunits within a stock (Brosset et al., 2018). We therefore expect the importance of larval transport variability for recruitment to differ across spatial scales (i.e. basin vs. sub-basin) and between individual populations. In this study, we explore alternative approaches to explicitly include larval transport
in stock-recruitment functions, and quantitatively assess the effect of transport on recruitment across spatial scales. We use annual estimates of larval retention and population connectivity, obtained through a coupled physical-biological model of larval drift, focusing on North Sea cod (Gadus morhua) as a case study.

We initially include retention anomaly as an environmental covariate in traditional parametric stock-recruitment model formulations and compare its effect to alternative covariates, namely sea surface temperature (SST) and the North Atlantic Oscillation index (NAO). In addition, we propose a novel approach for inclusion of the effect of larval transport in stock-recruitment models by weighting spawning stock biomass (SSB) according to yearly retention and advection rates, providing a measure of "effective biomass." Two alternative approaches are proposed to account for effective biomass: including only retention in the spawning area of origin (reten-tion-only SSB, rSSB), and including retention and inflow of larvae from other areas (net drift SSB, ndSSB), effectively accounting for connectivity. Additionally, we quantify temporal patterns in population connectivity and their relationship with SST and NAO.

2 | MATERIALS AND METHODS

2.1 | Ocean circulation in the North Sea

Ocean circulation in the semi-enclosed North Sea basin is influenced by topography and inflow of North Atlantic water, separating the basin into a shallow southern and a deeper northern area. The northern area is influenced by inflow of saline Atlantic water flowing along the western slope of the Norwegian Trench. This current transports the planktonic copepod, Calanus finmarchicus, an important food source for larval cod (Nicolas, Rochette, Llope, \& Licandro, 2014) and other species, into the region. The current flows along the Norwegian Trench and into Skagerrak, where it enters the "Skagerrak loop." It follows a counterclockwise trajectory along the Skagerrak coast, and after mixing with the less saline Norwegian coastal current, flows north-westward along the eastern slope of the Norwegian Trench and into the Norwegian Sea (Huserbråten, Moland, \& Albretsen, 2018). The southern North Sea is dominated by continental freshwater run-off and tidal patterns, which in combination with wind and wave turbulence and shallow topography result in permanent mixing. The intermediate saline current from the English Channel and the coastal, low saline Jutland Current flow along the continental coast and into the Skagerrak, entering the "Skagerrak loop" (Sundby, Kristiansen, Nash, \& Johannessen, 2017).

2.2 | Cod populations in the North Sea

Although managed as one stock (ICES, 2018c), North Sea cod comprises a number of spatially segregated units, with limited overlap and varying degree of connectivity (Heath et al., 2014;Neat et al., 2014). The main units are the Viking and the South populations.

The latter is often separated into a South proper (centred around the Dogger Bank) and a Northwest unit; these two subpopulations are genetically homogenous but show contrasting demographic trends and limited adult connectivity, so their relationship is as yet unclear (Neat et al., 2014). In this study, we considered alternative scenarios with three populations (Viking, South and Northwest), two populations (Viking and South including Northwest) and a single population (aggregating Viking, South and Northwest), the latter roughly corresponding to the current management unit. The populations' spatial extent (Figure 1) was based on ICES (2015). We calculated larval connectivity between the populations and assessed drift into the Skagerrak (which is excluded from our populations) and the Norwegian Sea, Scottish sea and English Channel (hereafter called "outside"; Figure 1). Particles leaving the study area (i.e. entering the "outside" area) were considered lost.

2.3 | Early-Life Stage (ELS) dispersal model

To quantify larval retention and connectivity between populations, we used a coupled physical-biological model

FIGURE 1 Study area showing distribution of populations (following ICES, 2015) and other potential sink areas for simulated cod larvae in our study. Nursery areas are overlaid to the population of appartenance
(hereafter, ELS dispersal model) for the time period 1971-2014 and included the model output in statistical stock-recruitment models for the same years. The individual-based model (IBM) simulates development and transport of cod eggs and larvae based on earlier studies of larval cod (Kristiansen, Lough, Werner, Broughton, \& Buckley, 2009;Kristiansen, Stock, Drinkwater, \& Curchitser, 2014;Kristiansen, Vikebø, Sundby, Huse, \& Fiksen, 2009). The IBM is integrated as a module in the open source Lagrangian particle tracking framework OpenDrift (github. com/opendrift; Dagestad, Röhrs, Breivik, \& Ådlandsvik, 2018;Kvile et al., 2018), and the code for the cod eggs and larvae module is available on github.com/trondkr/KINO-ROMS/tree/master/Romag noni-2019-OpenDrift. To simulate transport with ocean currents and temperature-dependent development, the IBM was coupled offline to a reanalysis of the regional ocean circulation model ROMS (Shchepetkin \& McWilliams, 2005) configured for ocean regions covering the Nordic Seas (including the North Sea) and parts of the Arctic Ocean, with 4 km horizontal resolution, 32 vertical layers and output stored daily (Lien, Gusdal, Albretsen, \& Melsom, 2013). For downloading options, see http://thredds.met.no/thredds/ nansen_daily.html. Further details on the characteristics and limitations of the ELS dispersal model are available in Kvile et al. (2018).

Due to long-term and interannual variation in the relative importance of spawning grounds (González-Irusta \& Wright, 2016;Sundby et al., 2017) and the uncertainty in spawning ground locations early in the time series, we released particles representing cod eggs uniformly within the three populations' spatial extent (Figure 1). Although this could reduce the precision of connectivity estimates in some years, we considered this approach as more conservative when modelling larval transport over a long time period including years with unknown spawning ground distribution. To obtain uniform spatial distribution (0.12-0.14 eggs $/ \mathrm{km}^{2}$), we set the number of eggs released based on the sizes of the population areas: $\sim 32,400$ in the South ($\sim 270,000 \mathrm{~km}^{2}$), $\sim 22,950$ in the Northwest ($\sim 170,000$ km^{2}) and $\sim 27,000$ in the Viking area ($200,000 \mathrm{~km}^{2}$), for a total of ~91,500 eggs.

We defined the timing of egg release using prior knowledge of the population spawning periods (Brander, 1994, 2005;Fox et al., 2008): between December 15th and April 15th for the South population, between January 1st and May 1st for the Northwest population and between February 1st and May 15th for the Viking population (Figure 2a). The number of eggs released per day followed a Gaussian distribution, $N\left(\mu, \sigma^{2}\right)$, where $\mu=1$ and $\sigma=0.25$, scaled to the length of the spawning season and the total number of particles defined per population area and with peaks that approximately matched the spawning peak described by Brander (1994). Setting a broader spawning season than observed in recent years accounts for uncertainty in the spawning season early in the time series. For example, spawning was allowed to start in December for the South population to account for the fact that the Southern Bight component, which spawns earlier than the German Bight and Central-west (Brander, 1994), was more abundant in the past.

FIGURE 2 Cod egg and larvae IBM functions. (a) Number of eggs released per Julian day (counting from January 1st) per spawning ground; (b) egg development time (d) as a function of temperature; (c) growth rate of larvae day ${ }^{-1}$ (GR, contours) as a function of larval weight and temperature; (d) larval length (L) as a function of weight; and (e) mortality rate (m , day ${ }^{-1}$) for eggs (fixed at 0.2) and larvae as a function of larval weight

Eggs were released in equal numbers at 10 m depth intervals between 0 and 50 m (i.e. for a given population, an equal number of eggs was uniformly released at $0,10,20,30,40$ and 50 m). After release, eggs and larvae were advected horizontally at fixed depths using an Euler interpolation scheme without horizontal diffusion and a 1-hr time step. The Euler scheme differed minimally compared to a more computationally costly Runge-Kutta scheme (Kvile et al., 2018). We used different drift depths to represent vertical movement within the depth range typically available in the North Sea, based on the finding that incorporating a more computationally costly vertical movement behaviour had limited effect on connectivity and retention of cod ELS at settlement in the North Sea (Kvile et al., 2018). Development time of planktonic eggs (d, days) was a function of the ambient sea water temperature $\left(\mathrm{T},{ }^{\circ} \mathrm{C}\right)$ according to
the ocean model reanalyses, parameterised based on observations for cod eggs (Langangen, Stige, Yaragina, Vikebø, et al., 2014, based on data in Ellertsen, Fossum, Solemdal, Sundby, \& Tilseth, 1987, Figure 2b):

$$
\begin{equation*}
\ln d=3.65-0.145 \times T \tag{1}
\end{equation*}
$$

After completing the egg stage, the simulated individuals hatch into cod larvae. The simulated cod larvae grew with a growth rate (GR, percentage of larval weight/day) depending on larval weight (W, mg) and ambient temperature (T), as estimated experimentally for Atlantic cod larvae (Folkvord, 2005) (Figure 2c):
$G R=1.08+1.79 \times T-0.074 \times T \times \ln W-0.0965 \times T \times \ln W^{2}+0.0112 \times T \times \ln W^{3}$

Larvae were assumed to feed ad libitum, and their initial weight was set at 0.08 mg . Larval length (L, mm) was a function of weight (Folkvord, 2005) (Figure 2d):

$$
\begin{equation*}
L=e^{2.296+0.277 \times \ln W-0.005128 \times \ln W^{2}} \tag{3}
\end{equation*}
$$

We assumed that cod larvae had no directional horizontal (swimming) movement. During the simulation, eggs were subject to a fixed daily mortality rate (m) of 0.2 , which is within the range of mean values estimated in studies of cod eggs (0.1-0.32, Rijnsdorp \& Jaworski, 1990; see Table 2 in Langangen, Stige, Yaragina, Vikebø, et al., 2014). For larvae, we set the mortality rate to decrease with weight (Figure 2e) as parameterised for North Sea cod larvae in

FIGURE 3 (a) Sea surface temperature (SST) by population area across the three, two and single populations cases, and the NAO index. (b) Spawning stock biomass (SSB) by population area across the three, two and single populations cases

Akimova, Hufnagl, Kreus, and Peck (2016), based on the size-spectrum theory (Peterson \& Wroblewski, 1984):

$$
\begin{equation*}
m=0.06 \times W^{-0.4} \tag{4}
\end{equation*}
$$

The survival probability of each individual was updated throughout the simulation according to the mortality rate (i.e. individuals were not removed from the simulation), following a super-individual approach (Scheffer, Baveco, DeAngelis, Rose, \& van Nes, 1995).

Larvae settled when reaching a length >49 mm (Bastrikin, Gallego, Millar, Priede, \& Jones, 2014). Only larvae settling within known nursery areas for North Sea cod (based on Heath et al., 2014; see Figure 1) were considered to successfully settle and survive; larvae that reached settlement length outside nursery areas were considered dead (hereafter "not settling"). Larvae not reaching settlement length by the end of the simulation (set to 15th August for South and 29th September for Northwest and Viking) were considered dead (amounting to <1\% of larvae, not included in the analysis). The juvenile stage was not simulated since cod adopt a demersal lifestyle upon reaching settlement length.

For each population, we estimated the proportion of larvae (a) retained in a nursery area for the given population of origin; (b) drifting into the nursery area of another population; (c) drifting out of the study area (to the Skagerrak or "outside") and (d) reaching settlement size within any population area, but not within a nursery area ("not settling"). Annual values (1971-2014) for these metrics were included in the stock-recruitment analysis (see below). To test the robustness of the results of the stock-recruitment analysis to key assumptions in the larval dispersal model, we performed additional simulations where the mortality rate (for eggs and larvae) was adjusted by $\pm 20 \%$ and separate simulations where settlement size was adjusted by $\pm 20 \%$. We ran these additional simulations for 1990 and 2010, two years with different climatic conditions (high and low NAO phase, respectively; Figure 3) and contrasting results of larval dispersal. Parameters included in the ELS model are summarised in Table 1.

TABLE 1 Parameters used in the ELS model

Parameter	Unit	Meaning
μ		Mean of the Gaussian distribution of eggs spawned per day (1)
σ		Standard deviation of the Gaussian distribution of eggs spawned per day (0.25)
d	days	Development time of planktonic eggs
T	${ }^{\circ} \mathrm{C}$	Ambient sea water temperature
GR	\% of larval weight/ day	Larval growth rate
W	mg	Larval weight
L	mm	Larval length
m	day^{-1}	Mortality rate

2.4 | Observational data

We calculated population-specific estimates of SSB and recruitment (age 1) based on abundance data (1971-2014) obtained from the ICES North Sea International Bottom Trawl Survey (NSIBTS) as catch per unit of effort per ICES statistical sub-rectangle (ICES, 2018a; Figure 3). Although more accurate abundance estimates could be obtained by using standardised indices instead of raw data, these are only available from 1983. We instead used raw data to include a longer time series, spanning years when SSB was higher, to provide robustness to the stock-recruitment estimates. We generated annual data of age-specific abundance to match the ICES statistical sub-rectangle using Catch-Per-Unit-Effort (CPUE) adjusted for swept area and gear catchability, assuming that the sample is representative of fish abundance. The swept area is a function of standardised tow length and net width during towing, which in turn is a function of tow depth (ICES, 2012). Average depth per sub-rectangle (NGDC, 1995) was used as a proxy for tow depth. Catchability coefficient for the survey gear by age (Fraser, Greenstreet, \& Piet, 2007) was multiplied by the ratio of the swept area to the whole ICES rectangle area. SSB was calculated as abundance per age multiplied by maturity and weight per age and year, assumed homogeneous between populations lacking population-specific data (ICES, 2017). The recruitment index was estimated by back-calculating abundance of age 1 from averaged age 2 and 3 abundances scaled by the age- and year-specific natural mortality (ICES, 2015). As climate variables, we included sea surface temperature (SST) mean monthly values (ICES, 2018b) for the period February to June (the period of highest sensitivity of cod larvae to temperature in this area, Nicolas et al., 2014), resolved at ICES sub-rectangles and averaged per population area; and monthly means of NAO data (NOAA, 2018) averaged per year (Figure 3).

2.5 | Stock-recruitment models

We used the Cushing parametric stock-recruitment model formulation, following recent literature on North Sea cod (Akimova, NúñezRiboni, et al., 2016). We considered model formulations with (a) drift anomaly included as a covariate or using (b) retention-only SSB (rSSB) or (c) net drift plus retention of SSB (ndSSB) as an alternative predictor for recruitment to SSB. Conceptually, the SSB effectively contributing to recruitment is a fraction of total SSB: rSSB accounts for the proportion of larvae retained within the population of origin after settlement. ndSSB accounts both for the proportion retained and for the number of larvae settling into a population from other populations, quantified as the fraction of other populations' SSB drifted into the population of interest:

$$
\begin{gather*}
\mathrm{rSSB}_{p}=\mathrm{SSB}_{p} \times D_{p, p} \tag{5}\\
\mathrm{ndSSB}_{p}=\mathrm{SSB}_{p} \times D_{p, p}+\sum_{p \neq p} \mathrm{SSB}_{p} \times D_{p, p} \tag{6}
\end{gather*}
$$

For any population p in the pool of all populations P, rSSB was calculated as the product of its SSB and the retention proportion $D_{p, p}$. ndSSB was the sum of rSSB and the summed product of the biomass and drift proportion into p for all other populations in $P\left(D_{P, p}\right)$.

Similarly to the SSB-based models, models with ndSSB and rSSB were fitted with or without climate variables as covariates (Table 2). The models thus took the form (Akimova, Núñez-Riboni, et al., 2016):

$$
\begin{equation*}
R=\alpha S^{\gamma} \tag{7}
\end{equation*}
$$

Where recruitment R was calculated as a function of the generic S (either SSB, rSSB or ndSSB). This was extended for inclusion of climate variable E as:

$$
\begin{equation*}
R=\alpha S^{(\gamma+\theta E)} \tag{8}
\end{equation*}
$$

E was any climate variable (SST, NAO or retention anomaly, RA). RA was calculated as the annual deviation from the mean larval retention over the whole time series for a given population, determined from the ELS dispersal model.

The linear forms of the models (see Appendix S1) were tested for residuals assumptions, and outliers were removed from the analysis. Commonly used model comparison methods such as AIC and likelihood-based approaches could not be used since models with SSB, ndSSB or rSSB included different data in the predictor variable. Models were therefore compared through their absolute fit to data using adjusted R^{2}, with significance threshold set at .05 . Adjusted R^{2} allows highlighting the combinations of predictor and covariates with highest explanatory power, that is those that improve the model more than expected by chance, with penalisation of additional parameters.

3 | RESULTS

We compared the performance of stock-recruitment models for North Sea cod across the three population levels and model formulations (SSB, rSSB, ndSSB, Table 3). At the three populations scale, models including SST as a covariate (models 2, 6 and 9) have

TABLE 2 Models used in analyses with their predictors and climate variables

Model	Predictor	Covariate
1	SSB	None
2	SSB	SST
3	SSB	NAO
4	SSB	RA
5	rSSB	None
6	rSSB	SST
7	rSSB	NAO
8	ndSSB	None
9	ndSSB	SST
10	ndSSB	NAO

highest fit to data for the South and Northwest populations. In the Northwest population, models with ndSSB have higher fit than their counterparts with SSB when including no covariate or NAO (but not with SST). Model performance is generally low for the Viking population, with only models replacing SSB with ndSSB with or without SST as covariate (models 8 and 9) showing significant fit ($p<.05$). At the two populations scale, results for the South (including Northwest) unit are similar to the three populations scale,
but with higher overall fit. In the Viking population, models 1-4 and 5-7 in the two and three population cases are fitted to the same data and models $8-10$ (with ndSSB) give similar results to the three populations scale. Combining the Northwest and South populations result in slight changes in connectivity values for the Viking population. At the single population scale, model 4 using retention anomaly as covariate shows highest fit, followed by model 2 with SST.

TABLE 3 Adjusted R^{2} and p-values for each model (Table 2) and population across the three cases of population scale

	Predictor	Covariate	South		Viking		Northwest	
			Adj. R^{2}	p	Adj. R^{2}	p	Adj. R^{2}	p
1	SSB	None	. 22	. 001	. 04	. 106	. 23	. 001
2	SSB	SST	. 31	. 001	. 03	. 233	. 35	. 000
3	SSB	NAO	. 20	. 008	. 05	. 171	. 19	. 011
4	SSB	D	. 22	. 005	-. 01	. 445	. 19	. 009
5	rSSB	None	. 21	. 001	. 03	. 121	. 22	. 001
6	rSSB	SST	. 29	. 001	. 05	. 185	. 33	. 000
7	rSSB	NAO	. 23	. 005	. 04	. 218	. 18	. 012
8	ndSSB	None	. 18	. 003	. 11	. 016	. 27	. 000
9	ndSSB	SST	. 27	. 001	. 15	. 027	. 34	. 000
10	ndSSB	NAO	. 19	. 010	. 09	. 090	. 25	. 003
			South + Northwest		Viking			
	Predictor	Covariate	Adj. R^{2}	p	Adj. R^{2}	p		
1	SSB	None	. 26	. 000	. 04	. 106		
2	SSB	SST	. 36	. 000	. 03	. 233		
3	SSB	NAO	. 24	. 003	. 05	. 171		
4	SSB	D	. 23	. 004	-. 01	. 445		
5	rSSB	None	. 25	. 000	. 03	. 121		
6	rSSB	SST	. 34	. 000	. 05	. 185		
7	rSSB	NAO	. 24	. 003	. 04	. 218		
8	$n d S S B$	None	. 25	. 000	. 13	. 010		
9	ndSSB	SST	. 32	. 000	. 17	. 018		
10	ndSSB	NAO	. 23	. 004	. 10	. 068		
			Single population					
	Predictor	Covariate	Adj. R^{2}	p				
1	SSB	None	. 24	. 001				
2	SSB	SST	. 28	. 001				
3	SSB	NAO	. 21	. 006				
4	SSB	D	. 32	. 000				
5	rSSB	None	. 15	. 005				
6	rSSB	SST	. 21	. 007				
7	rSSB	NAO	. 14	. 031				
8	$n d S S B$	None	-	-				
9	$n d S S B$	SST	-	-				
10	ndSSB	NAO	-	-				

Note: Darker shades of grey indicate higher adjusted R^{2} (higher model fit and better model performance).
In the single population case, ndSSB is not calculated.

The interannual variation in SSB, rSSB and ndSSB is largest for the Viking and Northwest units (Figure 4). The three indices show similar interannual patterns (but for example the peak around 1985 in Viking SSB Figure missing in rSSB and ndSSB), but can still result in different fit to data (Figure 5b), with, for example, higher fit using ndSSB than rSSB in Viking and Northwest populations (Table 3). Using traditional SSB with retention anomaly (model 4, Table 3), the effect of retention is captured at the single population scale but not at the two or three populations scale. In this case, the effect has a similar magnitude and effect as the inclusion of SST as covariate (Figure 5a,c).

The interannual variation in retention and connectivity is relatively low (Figure 6). Retention is higher in South (0.39 ± 0.08) and Northwest (0.31 ± 0.06) populations compared to the Viking population (0.14 ± 0.04). Connectivity among the three populations is always low. The drift from South to Northwest and Viking populations is comparable (0.02 ± 0.03 and 0.03 ± 0.03, respectively). The drift from the Northwest to South population is slightly higher than to the Viking population (0.07 ± 0.04 and 0.04 ± 0.03, respectively),
while drift from the Viking population is low or close to zero to the Northwest and South populations $(0.03 \pm 0.05$ and 0.01 ± 0.01, respectively). The proportion of larvae drifting to the Skagerrak from the South and Viking populations is similar (0.07 ± 0.07 and 0.07 ± 0.06, respectively) while drift from the Northwest population is lower (0.02 ± 0.03). The proportion of larvae drifting outside of the study area is low for the South (0.03 ± 0.03) and Northwest (0.07 ± 0.05) populations. In contrast, for the Viking population, drift to the outside area is higher than the retention rate (0.39 ± 0.13). The proportion of larvae remaining within the study area but not settling within a nursery area is high for all populations $(0.46 \pm 0.08$, 0.48 ± 0.09 and 0.36 ± 0.08 for South, Northwest and Viking populations, respectively). Only drift from the South to the Viking population and to the Skagerrak and from South to Northwest populations significantly increase or decrease, respectively, in time (Table 4).

The NAO and SST indices are significantly correlated with drift anomalies across population scales (Table 4). SST is positively correlated with drift to the Skagerrak at the single population scale

FIGURE 4 Interannual variation in SSB, rSSB and ndSSB (thick, medium and thin lines, respectively) across populations for the three, two and single population cases. Note that rSSB and ndSSB are close, but not identical, for the South population. For the single population case, ndSSB is not calculated

FIGURE 5 Effects of inclusion of covariates and alternative SSB predictors across populations, spatial scale and predictor variables. Data (dots) and predicted stock-recruitment relationships (lines) for the following: (a) inclusion of SST as covariate (model 2) for the South unit at the three populations scale; (b) three alternative predictor variables with no covariates (models 1,5,8) for the Viking unit at the three populations scale; and (c) inclusion of retention anomaly (model 4) in the single population case. In (a) and (c), dots colour scale indicates the covariate anomaly, line colour indicates the model prediction at corresponding maximum, mean and minimum value of the covariate. In (b), SSB scaled by 10^{-1} (open dots, dark grey line) is compared to rSSB (purple dots and line) and ndSSB (orange dots and line)

FIGURE 6 Contribution (retention and proportion of larvae drifted to other areas) from each of the three populations (South in red; Northwest in green; Viking in blue) and numbers of individuals not settled. (Drift to Kattegat is not shown as it was always close to 0). "Not settling" includes larvae that reach settlement length outside of nursery areas, and "outside" includes particles drifting out of the study area (see Figure 1)

and with drift to the Skagerrak and to the Viking unit from all populations at two and three population scales. SST is negatively correlated with drift from Viking to South populations (at two populations scale) and with retention in South population (also at two populations scale). A high NAO phase corresponds to reduced drift
from the Viking to the South populations, reduced retention in the South population at the two populations scale, reduced drift from Viking to Northwest populations and reduced retention in the Northwest population at the three populations scale. The number of individuals not settling in the Viking population is associated

TABLE 4 Pearson correlation coefficients between indices of drift, climate and year

	Source	Sink	Years		NAO		SST South		SST Vik		SST Northwest	
3 populations	South	South										
		Northwest	-0.4	**								
		Viking	0.42	**			0.43	**			0.43	**
		Skagerrak	0.48	***			0.43	**	0.37	*	0.42	**
		Outside										
		Not settling									-0.33	*
	Viking	South										
		Northwest			-0.42	**	-0.39	**	-0.46	**	-0.33	*
		Viking			0.37	*	0.38	**	0.39	**		
		Skagerrak			0.32	*	0.46	**	0.44	**	0.33	*
		Outside			0.39	**						
		Not settling			-0.52	***	-0.29	*	-0.4	**		
	Northwest	South										
		Northwest			-0.37	*	-0.3	*	-0.43	**		
		Viking			0.34	*			0.3	*		
		Skagerrak			0.45	**	0.33	*	0.41	**		
		Outside			0.31	*						
		Not settling										
2 populations	South	South			-0.48	***	-0.32	*	-0.53	***		
		Viking	0.44	**	0.33	*	0.4	**	0.41	**		
		Skagerrak	0.39	**	0.37	*	0.48	***	0.44	**		
		Outside			0.3	*						
		Not settling	-0.37	*								
	Viking	South			-0.44	**	-0.32	*	-0.45	**		
		Viking			0.37	*	0.33	*	0.39	**		
		Skagerrak			0.32	*	0.45	**	0.44	**		
		Outside			0.39	**						
		Not settling			-0.52	***			-0.4	**		
Single population	North Sea	North Sea			-0.31	*						
		Skagerrak			0.38	**	0.5	***				
		Outside			0.36	*						
		Not settling			-0.46	**						

Note: "Not settling" represents the proportion of particles that do not reach settlement size within a nursery area and are lost.
Positive correlations are represented in light grey, negative correlation in dark grey.

White cells indicate non-significant values at the 0.05 level.
with high NAO. A high NAO is also positively correlated with high drift into the Skagerrak and outside the study area for all populations scales except the South population at the three populations scale.

4 | DISCUSSION

In this study, we combined long-term observational data with modelled estimates of larval transport to quantitatively assess the
effect of transport on recruitment across spatial scales of observation, and we propose a novel approach for measuring effective biomass contributing to recruitment. While the effect of transport on recruitment has previously been explored using coupled bio-logical-oceanographic models (e.g. Daewel et al., 2015;Hinrichsen et al., 2016), direct inclusion of ELS dispersal model output in stockrecruitment models is less common (but see Hidalgo et al., 2019). Some studies have used proxies for larval transport such as wind speed (e.g. Hare et al., 2015;Köster et al., 2003), water circulation indices (Zimmermann et al., 2019) or cumulative average depth of
modelled particles (Baumann et al., 2006). We instead incorporate estimates of the proportion of cod larvae retained within a population and the influx of larvae from neighbouring populations, that is a more direct proxy for the effect of larval transport (Hidalgo et al., 2019), and apply this approach to the North Sea cod.

Our results suggest that although larval drift appears to play a minor role in the recruitment dynamics of North Sea cod, the effect is comparable in magnitude to the well-established effect of SST on cod recruitment (Beaugrand \& Kirby, 2010;Nicolas et al., 2014). Similarly, Daewel et al. (2015) found that although correlations between modelled larval survival and observed recruitment of North Sea cod were variable and periodically low, effects of transport processes and temperature on larval survival were of comparable importance. Comparing different model formulations and population scales, our analysis captures the interplay between oceanographic drift and temperature on recruitment patterns across spatial scales of observation (Figure 7). Specifically, the importance of considering larval drift depends on the spatial scale of analyses. At the population scale, larval transport between populations and larval loss due to transport affect the recruitment in Viking and Northwest populations. When aggregating all populations at the basin scale these effects are diluted, but not dissipated, and are captured through the retention anomaly (Figure 7).

4.1 | Effective biomass

Estimating effective biomass is a novel approach to account for larval transport compared to using SSB with additive covariates. In traditional stock-recruitment models, a covariate allows higher (lower) asymptotic value, that is higher (lower) expected recruitment at a
given SSB value, while maintaining the shape of the curve (Figure 5a, c). Incorporating retention anomaly as a covariate, the interpretation is that a positive anomaly (higher than usual retention) results in higher level of recruitment compared to the same level of SSB with a lower drift anomaly. Subbey et al. (2014) point out that model forms with environmental covariates are generally linear approximations of non-linear environmental effects, approximations that might be unreliable or inaccurate. In our case, the linear approximation at the single population scale captures an overall effect that encompasses multiple mechanisms operating at finer scale. Conversely, the inclusion of drift as effective biomass allows estimating the contributing biomass to an observed recruit value and re-designing the curve altogether (Figure 5b), permitting higher flexibility to data compared to the traditional SSB.

Spawning stock biomass is a suboptimal variable for predicting recruitment, since it does not capture biological aspects such as age and size structure, sex ratio, total egg production, skipped spawning or interannual variability in fecundity or condition (Köster et al., 2003; Marshall et al., 2003; Marshall, Needle, Thorsen, Kjesbu, \& Yaragina, 2006; Marteinsdottir \& Begg, 2002; Mintevera et al., 2019). Marshall et al. (2006) and Köster et al. (2003) show that female-only spawner biomass and predicted potential egg production are better predictors of realised egg production than SSB in Northeast Arctic and Baltic cod stocks. Similarly, our study shows that effective SSB might be a better predictor at population scale for some populations, such as the Viking unit, characterised by large drift to other areas and low retention rate. A similar result was observed by Hidalgo et al. (2019) who found that retention influenced recruitment in European Hake populations characterised by high drift to and from other areas in the northwest Mediterranean.

3 Populations

2 Populations

FIGURE 7 Graphical scheme summarising the key factors influencing recruitment of the different populations across spatial scales: sea surface temperature (SST), larval inflow (through connectivity with other populations) and retention anomaly (RA)

4.2 Effects of drift and climate variables on recruitment

We investigated the emergent relationships between climate variables (SST and NAO), connectivity and retention metrics and recruitment. High SST can influence recruitment through faster development and thus increased retention and survival to settlement (Heath, Kunzlik, Gallego, Holmes, \& Wright, 2008). Additionally, both SST and NAO could be proxies for other phenomena acting at local scales, such as food availability (Capuzzo et al., 2018;Nicolas et al., 2014) and flow regimes (Henriksen et al., 2018). NAO and SST can furthermore be correlated to connectivity and retention (Table 4). However, these relationships do not necessarily affect recruitment dynamics. For example, NAO is correlated with retention and connectivity across populations and scales, but including NAO as a covariate in the stock-recruitment model does generally not improve model fit (Table 3). NAO as a proxy thus captures the phenomena influencing circulation patterns, but not those affecting actual survival to recruitment.

Sea surface temperature interacts with each population in different ways. For the South population, increased SST is correlated with increased outflow to the Viking and Skagerrak populations; however, accounting for drift does not improve the stock-recruitment model fit. This might be due to the limited outflow and high retention in the South population. The observed effect of SST on recruitment could therefore be due to other mechanisms: for example food availability (Nicolas et al., 2014), physiological constraints (Butzin \& Pörtner, 2016;Nunez-Riboni, Taylor, Kempf, Pu, \& Mathis, 2019) and predation by warm-water predators (Akimova, Hufnagl, et al., 2016). For the Viking population, our results suggest that SST could influence recruitment through drift both positively and negatively. In fact, higher SST is associated with increased retention and inflow, but also increased outflow to Skagerrak. At present, the two effects seem to counterbalance each other: SST does not influence recruitment according to our model results. However, with increasing SST this equilibrium, which currently masks the underlying relationships, might break down with unforeseeable outcomes in terms of magnitude and direction. Recruitment in the Northwest population is negatively associated with increased SST via reduced drift from the Viking population. The effects of both SST and inflow on recruitment are strong but not additive (indicated by similar fit of model 2 and of model 8 and 9), and likely reflect the same phenomenon: increasing temperature corresponds to decreasing inflow, resulting in lower recruitment for the Northwest population.

For the South population, the importance of SST for recruitment and its correlation with drift patterns are similar in the three- and two population scales, indicating that effects of SST (but not of NAO) on the dynamics of retention, connectivity and recruitment are dominated by the South component in the combined unit. At the single population scale, the association between SST and drift is reduced: SST is correlated with flow into the Skagerrak but not with retention. At this scale, however, recruitment is affected by SST and, importantly, by drift. Here the retention anomaly (model 4), but
not rSSB, improves the stock-recruitment model fit. The two models involve the same variable (retention), but differing mechanisms, as described in the section "Effective biomass" above.

Overall, our results indicate that the key mechanisms affecting recruitment (summarised in Figure 7) include: SST in the South population through processes unrelated to larval transport, SST and transport through the same underlying phenomenon in the Northwest population, with inflow from the Viking population and retention being higher in low SST years, and inflow from other populations into the Viking population (Figure 5b; Table 3).

4.3 | Drift patterns, retention and population connectivity

The retention and connectivity patterns estimated here broadly reflect known patterns for the area. The southern North Sea is characterised by a generally retentive system (Henriksen et al., 2018), while in the northern area there is a strong flow to the Skagerrak and the Norwegian Sea (Huserbråten et al., 2018). Consequently, the South and North populations are generally isolated, with limited connectivity (Heath et al., 2008). According to our results, connectivity between the Northwest and South units is higher, but declined from the 1970s to present, while connectivity between South and Viking units increased.

Drifting into a suitable nursery area, however, is not enough for granting survival to recruitment, as density dependence and predation after settlement might influence successful recruitment into the new populations (Akimova, Hufnagl, et al., 2016;Heath et al., 2014). Some studies discriminate potential connectivity (estimated from modelled particle drift) from effective connectivity using genetic methods (e.g. Bode et al., 2019;Jahnke et al., 2017). In our study, effective connectivity is an emerging result of fitting stock-recruitment models to data after inclusion of drift anomaly. Our results highlight that effective connectivity only affects the Viking and Northwest populations.

Notably, we assess how larval drift influences recruitment, irrespective of whether individuals merge with the host population or return to the natal population after being accounted as recruits. For example, our results indicate that larvae from the South unit enter the Viking area and survive until being accounted as recruitment of the Viking population (shown by higher fit with ndSSB than rSSB or SSB). However, the Viking and South units show genetic differences, generally considered incompatible with interbreeding between populations (Heath et al., 2014). We therefore speculate that juveniles from the South unit settle in the Viking area and survive until age 1, to then return to the population of origin. This mechanism, known as homing behaviour and site fidelity, is known for cod in the North Sea (Neat et al., 2014) and between the North Sea and Skagerrak (André et al., 2016;Jonsson, Corell, André, Svedäng, \& Moksnes, 2016), and is suggested for larvae drifting from the Norwegian Trench (within our Viking area) to the Norwegian Sea (Huserbråten et al., 2018).

Although drift between the North Sea and Skagerrak is well known (Jonsson et al., 2016), we show here for the first time, to our knowledge, that larval drift from the Viking and South units into the Skagerrak is potentially of the same order of magnitude, showing an increasing trend in time and positive correlation with SST (Table 4). Although the effective contribution cannot be determined in this study, trends in larval influx from the North Sea might have implications for management and recovery of cod in offshore and coastal areas of the Skagerrak.

Our results are influenced by the assumptions and simplifications of the ELS dispersal model. However, in a previous study, Kvile et al. (2018) showed that the present model configuration yields comparable results to a more realistic but computationally costly alternative. Specifically, both the inclusion of vertical swimming behaviour and the use of a higher resolution ocean model that resolves tidal circulation had limited effects on larval drift patterns compared to interannual variations in ocean dynamics. Since our aim here was to quantify long-term interannual variation in population connectivity, we opted for a less computationally costly representation of vertical movement using fixed drift depths, and applied the coarser ocean model that was available for 44 years. Additionally, sensitivity analyses of the parameterisation of ELS mortality and settlement size, the latter related to temperature-dependent growth, confirmed the robustness of the results to these key parameters (Tables A2 and A3 in the Appendix S1). Finally, factors such as spatially explicit predation pressure and prey fields, variability in fecundity, juvenile mortality through predation and density dependence upon settlement might all affect recruitment dynamics, but are not accounted for in this study. These caveats need to be considered in the interpretation of results.

4.4 | Implications for management

Despite the relatively low prediction power and major assumptions (Subbey et al., 2014), stock-recruitment models are routinely applied in management for short-term advice (e.g. Punt, 2019), and there is increasing interest in including spatial structure in recruitment dynamics in stock assessment (Cadrin et al., 2019;Hidalgo et al., 2019;Punt, 2019). Although reliable ocean current forecasts are not available in advance, estimates of larval drift can be useful to inform short-term forecasts (Henriksen et al., 2018;Hidalgo et al., 2019). This effort is however constrained by the availability and rapid applicability of ocean models in the context of operational fisheries oceanography (Hidalgo et al., 2019).

We find relatively low fit to data in the stock-recruitment models for North Sea cod, and inclusion of indices for larval drift results in relatively small improvements. Considering the computational cost of running ELS dispersal models, one must therefore carefully consider the benefits of this approach for the specific case at hand. Regardless, our study highlights a novel approach for accounting for connectivity in stock-recruitment dynamics, with potential applications for fisheries assessment and management in
stocks characterised by highly dynamic oceanographic conditions. Adopting spawning output metrics that account for effective connectivity, for example, could affect the determination of biological reference points (Minte-vera et al., 2019), with direct implications for management. For example, relationships between drift, temperature and recruitment across populations (Figure 7) have implications for management of the North Sea cod population complex in the context of a changing climate (Nunez-Riboni et al., 2019).

Future research should focus on how climate change can influence larval transport, survival of larvae drifting between units and homing behaviour. Understanding these aspects, and developing operational fisheries oceanography and its application to management, will improve our capacity to tailor management to the population structure in the context of a changing climate.

ACKNOWLEDGEMENTS

G.R. was supported by the Norden Top-level Research Initiative sub-programme "Effect Studies and Adaptation to Climate Change" through the Nordic Centre for Research on Marine Ecosystems and Resources under Climate Change (NorMER). K.Ø.K. was supported by the WHOI John H. Steele Post-doctoral Scholar award and VISTA - a basic research program in collaboration between The Norwegian Academy of Science and Letters, and Equinor. We thank an anonymous referee for valuable comments that substantially improved the article.

CONFLICT OF INTERESTS

The authors declare to have no conflict of interest.

AUTHOR CONTRIBUTIONS

GR, KK, $\varnothing L$ and AME conceived the research idea; GR and KK ran data analyses and wrote the manuscript; KFD, TK, \varnothing L, AME and NCS participated in discussions of the results and critically reviewed the manuscript.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Giovanni Romagnoni (iD https://orcid.org/0000-0002-2208-3017 Kristina Øie Kvile iD https://orcid.org/0000-0003-2771-9077
Knut-Frode Dagestad iD https://orcid.org/0000-0002-0412-7485
Trond Kristiansen (iD https://orcid.org/0000-0001-6121-297X
Nils Chr. Stenseth (iD https://orcid.org/0000-0002-1591-5399
Øystein Langangen iD https://orcid.org/0000-0002-6977-6128

REFERENCES

Akimova, A., Hufnagl, M., Kreus, M., \& Peck, M. A. (2016). Modeling the effects of temperature on the survival and growth of North Sea cod (Gadus morhua) through the first year of life. Fisheries Oceanography, 25(3), 193-209. https://doi.org/10.1111/fog. 12145

Akimova, A., Núñez-Riboni, I., Kempf, A., \& Taylor, M. H. (2016). Spatially-resolved influence of temperature and salinity on stock and recruitment variability of commercially important fishes in the North Sea. PLoS One, 11(9), e0161917. https://doi.org/10.1371/journ al.pone. 0161917
André, C., Svedäng, H., Knutsen, H., Dahle, G., Jonsson, P., Ring, A.-K., ... Jorde, P. E. (2016). Population structure in Atlantic cod in the eastern North Sea-Skagerrak-Kattegat: Early life stage dispersal and adult migration. BMC Research Notes, 9(1), 63. https://doi.org/10.1186/ s13104-016-1878-9
Bailey, K. M. (1981). Larval transport and recruitment of Pacific Hake Merluccius productus. Marine Ecology Progress Series, 6, 1-9. https:// doi.org/10.3354/meps006001
Bastrikin, D. K., Gallego, A., Millar, C. P., Priede, I. G., \& Jones, E. G. (2014). Settlement length and temporal settlement patterns of juvenile cod (Gadus morhua), haddock (Melanogrammus aeglefinus), and whiting (Merlangius merlangus) in a northern North Sea coastal nursery area. ICES Journal of Marine Science, 71, 2101-2113. https://doi. org/10.1093/icesjms/fsu029
Baumann, H., Hinrichsen, H., Möllmann, C., Köster, F. W., Malzahn, A. M., \& Temming, A. (2006). Recruitment variability in Baltic Sea sprat (Sprattus sprattus) is tightly coupled to temperature and transport patterns affecting the larval and early juvenile stages. Canadian Journal of Fisheries and Aquatic Sciences, 63, 2191-2201. https://doi. org/10.1139/F06-112
Beaugrand, G., \& Kirby, R. R. (2010). Climate, plankton and cod. Global Change Biology, 16(4), 1268-1280. https://doi. org/10.1111/j.1365-2486.2009.02063.x
Bode, M., Leis, J. M., Mason, L. B., Williamson, D. H., Harrison, H. B., Choukroun, S., \& Jones, G. P. (2019). Successful validation of a larval dispersal model using genetic parentage data. PLOS Biology, 17, e3000380. https://doi.org/10.1371/journal.pbio. 3000380
Brander, K. (1994). The location and timing of cod spawning around the British Isles. ICES Journal of Marine Science, 51, 71-89. https://doi. org/10.1006/jmsc.1994.1007
Brander, K. (2005). Spawning and life history information for North Atlantic cod stocks. ICES Cooperative Research Report, 274, 152.
Brander, K., \& Mohn, R. (2004). Effect of the North Atlantic Oscillation on recruitment of Atlantic cod (Gadus morhua). Canadian Journal of Fisheries and Aquatic Sciences, 61, 1558-1564. https://doi. org/10.1139/F04-087
Brosset, P., Doniol-Valcroze, T., Swain, D. P., Lehoux, C., Van Beveren, E., Mbaye, B. C., ... Plourde, S. (2018). Environmental variability controls recruitment but with different drivers among spawning components in Gulf of St. Lawrence herring stocks. Fisheries Oceanography, 28(1), 1-17. https://doi.org/10.1111/fog. 12272
Butzin, M., \& Pörtner, H. O. (2016). Thermal growth potential of Atlantic cod by the end of the 21st century. Global Change Biology, 22, 41614168. https://doi.org/10.1111/gcb. 13375

Cadrin, S. X., Goethel, D. R., Morse, M. R., Fay, G., \& Kerr, L. A. (2019). "So, where do you come from?" The impact of assumed spatial population structure on estimates of recruitment. Fisheries Research, 217, 156-168. https://doi.org/10.1016/j.fishres.2018.11.030
Capuzzo, E., Lynam, C. P., Barry, J., Stephens, D., Foster, R. M., Greenwood, N. ... Engelhard, G. H. (2018). A decline in primary production in the North Sea over 25 years, associated with reductions in zooplanktonabundance and fish stock recruitment. Global Change Biology, 24(1), e352-e364. https://doi.org/10.1111/gcb. 13916
Chang, J., Chen, Y., Halteman, W., \& Wilson, C. (2016). Roles of spatial scale in quantifying stock - recruitment relationships for American lobsters in the inshore Gulf of. Maine, 25, 1-25.
Daewel, U., Schrum, C., \& Gupta, A. K. (2015). The predictive potential of early life stage individual-based models (IBMs): An example for Atlantic cod Gadus morhua in the North Sea. Marine Ecology Progress Series, 534, 199-219. https://doi.org/10.3354/meps11367

Dagestad, K.-F., Röhrs, J., Breivik, Ø., \& Ådlandsvik, B. (2018). OpenDrift v1.0: A generic framework for trajectory modelling. Geoscientific Model Development, 11, 1405-1420. https://doi.org/10.5194/ gmd-11-1405-2018
Duplisea, D. E., \& Robert, D. (2008). Prerecruit survival and recruitment of northern Gulf of St Lawrence Atlantic cod. ICES Journal of Marine Science, 65(6), 946-952. https://doi.org/10.1093/icesjms/ fsn081
Ellertsen, B., Fossum, P., Solemdal, P., Sundby, S., \& Tilseth, S. (1987). The effect of biological and physical factors on the survival of ArctoNorwegian cod and the influence on recruitment variability. In H. Loeng (Ed.), The Effect of Oceanographic Conditions on Distribution and Population Dynamics of Commercial Fish in the Barents Sea (pp. 101126). Bergen, Norway: Institute of Marine Research.Proceedings of the third Soviet-Norwegian Symposium Murmansk 26-28 May 1986
Fogarty, M. J., \& Botsford, L. W. (2007). Population connectivity and spatial management of marine fisheries. Oceanography, 20(3), 112-123. https://doi.org/10.5670/oceanog.2007.34
Folkvord, A. (2005). Comparison of size-at-age of larval Atlantic cod (Gadus morhua) from different populations based on size- and tem-perature-dependent growth models. Canadian Journal of Fisheries and Aquatic Sciences, 62(5), 1037-1052. https://doi.org/10.1139/ F05-008
Fox, C. J., Taylor, M., Dickey-collas, M., Fossum, P., Kraus, G., Rohlf, N., ... Wright, P. J. (2008). Mapping the spawning grounds of North Sea cod (Gadus morhua) by direct and indirect means. Proceedings. Biological sciences, 275, 1543-1548. https://doi.org/10.1098/rspb.2008.0201
Fraser, H. M., Greenstreet, S. P. R., \& Piet, G. J. (2007). Taking account of catchability in groundfish survey trawls: Implications for estimating demersal fish biomass. ICES Journal of Marine Science, 64(9), 18001819. https://doi.org/10.1093/icesjms/fsm145

González-Irusta, J. M., \& Wright, P. J. (2016). Spawning grounds of Atlantic cod (Gadus morhua) in the North Sea. ICES Journal of Marine Science: Journal Du Conseil, 73, 304-315. https://doi.org/10.1093/ icesjms/fsv180
Hare, J. A., Brooks, E. N., Palmer, M. C., \& Churchill, J. H. (2015). Reevaluating the effect of wind on recruitment in Gulf of Maine Atlantic Cod (Gadus morhua) using an environmentally-explicit stock recruitment model. Fisheries Oceanography, 24, 90-105. https://doi. org/10.1111/fog. 12095
Heath, M. R., Culling, M. A., Crozier, W. W., Fox, C. J., Gurney, W. S. C., Hutchinson, W. F., ... Carvalho, G. R. (2014). Combination of genetics and spatial modelling highlights the sensitivity of cod (Gadus morhua) population diversity in the North Sea to distributions of fishing. ICES Journal of Marine Science, 71, 794-807. https://doi.org/10.1093/icesj ms/fst185
Heath, M. R., Kunzlik, P. A., Gallego, A., Holmes, S. J., \& Wright, P. J. (2008). A model of meta-population dynamics for North Sea and West of Scotland cod-The dynamic consequences of natal fidelity. Fisheries Research, 93(1-2), 92-116. https://doi.org/10.1016/j.fishr es.2008.02.014
Henriksen, O., Christensen, A., Jónasdóttir, S., Mackenzie, B. R., Nielsen, K. E., Mosegård, H., \& Van Deurs, M. (2018). Oceanographic flow regime and fish recruitment: Reversed circulation in the North Sea coincides with unusually strong sandeel recruitment. Marine Ecology Progress Series, 607, 187-205.
Hidalgo, M., Rossi, V., Monroy, P., Ser-Giacomi, E., Hernández-García, E., Guijarro, B., ... Reglero, P. (2019). Accounting for ocean connectivity and hydroclimate in fi sh recruitment fl uctuations within transboundary metapopulations. Ecological Applications, 1-13. https://doi. org/10.1002/eap. 1913
Hinrichsen, H., Lehmann, A., Petereit, C., Nissling, A., Ustups, D., Bergström, U., \& Hüssy, K. (2016). Spawning areas of eastern Baltic cod revisited: Using hydrodynamic modelling to reveal spawning habitat suitability, egg survival probability, and connectivity patterns.

Progress in Oceanography, 143, 13-25. https://doi.org/10.1016/j. pocean.2016.02.004
Hinrichsen, H., Von Dewitz, B., \& Dierking, J. (2018). Variability of advective connectivity in the Baltic Sea. Journal of Marine Systems, 186, 115-122. https://doi.org/10.1016/j.jmarsys.2018.06.010
Houde, E. D. (2008). Emerging from Hjort's shadow. Journal of Northwest Atlantic Fishery Science, 41, 53-70. https://doi.org/10.2960/J.v41.m634
Huserbråten, M. B. O., Moland, E., \& Albretsen, J. (2018). Cod at drift in the North Sea. Progress in Oceanography, 167, 116-124. https://doi. org/10.1016/j.pocean.2018.07.005
Huwer, B., Hinrichsen, H.-H., Hussy, K., \& Eero, M. (2016). Connectivity of larval cod in the transition area between North Sea and Baltic Sea and potential implications for fisheries management. ICES Journal of Marine Science, 73(7), 1815-1824. https://doi.org/10.1093/icesjms/ fsw043
ICES (2012). Manual for the International Bottom Trawl. Surveys - Revision VIII. Series of ICES Survey Protocols (Vol. SISP, 1-IBT).

ICES (2015). Report of the Benchmark Workshop on North Sea Stocks (WKNSEA), 2-6 February 2015. Copenhagen, Denmark: ICES. CM 2015/ACOM:32. 253 pp, (February), 2-6.
ICES (2017). Report of the Working Group on Assessment of Demersal Stocks in the North Sea and Skagerrak, 26 April-5 May 2017, ICES HQ. ICES CM 2017/ACOM:21. 1077 pp.
ICES (2018a). DATRAS data portal. Retrieved February 10, 2018, from http://www.ices.dk/marine-data/data-portals/Pages/DATRAS.aspx
ICES (2018b). ICES Dataset on Ocean Hydrography. Retrieved from http:// www.ices.dk/marine-data/data-portals/Pages/ocean.aspx
ICES (2018c). Report of the Working Group on the in the North Sea and Skagerrak Assessment of Demersal Stocks (WGNSSK). 24 April - 3 May 2018. Oostende, Belgium.

Jahnke, M., Casagrandi, R., Melià, P., Schiavina, M., Schultz, S. T., Zane, L., \& Procaccini, G. (2017). Potential and realized connectivity of the seagrass Posidonia oceanica and their implication for conservation. Diversity and Distributions, 23, 1423-1434. https://doi.org/10.1111/ ddi. 12633
Jonsson, P. R., Corell, H., André, C., Svedäng, H., \& Moksnes, P. O. (2016). Recent decline in cod stocks in the North Sea-Skagerrak-Kattegat shifts the sources of larval supply. Fisheries Oceanography, 25(3), 210-228. https://doi.org/10.1111/fog. 12146
Köster, F. W., Hinrichsen, H.-H., Schnack, D., John, M. A. S., Mackenzie, B. R., \& Tomkiewicz, J.... Aro, E. (2003). Recruitment of Baltic cod and sprat stocks: Identification of critical life stages and incorporation of environmental variability into stock-recruitment relationships. Scientia Marina, 67, 129-154. https://doi.org/10.3989/ scimar.2003.67s1129
Kristiansen, T., Lough, R., Werner, F., Broughton, E., \& Buckley, L. (2009). Individual-based modeling of feeding ecology and prey selection of larval cod on Georges Bank. Marine Ecology Progress Series, 376, 227-243. https://doi.org/10.3354/meps07796
Kristiansen, T., Stock, C., Drinkwater, K. F., \& Curchitser, E. N. (2014). Mechanistic insights into the effects of climate change on larval cod. Global Change Biology, 20(5), 1559-1584. https://doi.org/10.1111/ gcb. 12489
Kristiansen, T., Vikebø, F., Sundby, S., Huse, G., \& Fiksen, Ø. (2009). Modeling growth of larval cod (Gadus morhua) in large-scale seasonal and latitudinal environmental gradients. Deep Sea Research Part II: Topical Studies in Oceanography, 56(21-22), 2001-2011. https://doi. org/10.1016/j.dsr2.2008.11.011
Kvile, K. Ø., Romagnoni, G., Dagestad, K., Langangen, Ø., \& Kristiansen, T. (2018). Sensitivity of modelled North Sea cod larvae transport to vertical behaviour, ocean model resolution and interannual variation in ocean dynamics. ICES Journal of Marine Science, 75(7), 2413. https://doi.org/10.1093/icesjms/fsy039
Langangen, Ø., Stige, L. C., Yaragina, N. A., Vikebø, F. B., Bogstad, B., \& Gusdal, Y. (2014). Egg mortality of northeast Arctic cod (Gadus
morhua) and haddock (Melanogrammus aeglefinus). ICES Journal of Marine Science, 71, 1129-1136. https://doi.org/10.1093/icesjms/ fst007
Leggett, W. C., \& Deblois, E. (1994). Recruitment in marine fishes - is it regulated by starvation and predation in the egg and larval stages. Netherlands Journal of Sea Research, 32, 119-134. https://doi. org/10.1016/0077-7579(94)90036-1
Lien, V. S., Gusdal, Y., Albretsen, J., \& Melsom, A. (2013). Evaluation of a Nordic Seas 4 km numerical ocean model hindcast archive (SVIM), 1960-2011. Fisken Og Havet, 7, 1-80.
Marshall, C. T., Brien, L. O., Morgan, M. J., Saborido-rey, F., Blanchard, J. L., Secor, D. H., Mukhina, N. V. (2003). Developing alternative indices of reproductive potential for use in fisheries management: Case studies for stocks spanning an information gradient, 33.
Marshall, C. T., Needle, C. L., Thorsen, A., Kjesbu, O. S., \& Yaragina, N. A. (2006). Systematic bias in estimates of reproductive potential of an Atlantic cod (Gadus morhua) stock: Implications for stock-recruit theory and management. Canadian Journal of Fisheries and Aquatic Science, 63, 980-994. https://doi.org/10.1139/F05-270
Marteinsdottir, G., \& Begg, G. A. (2002). Essential relationships incorporating the influence of age, size and condition on variables required for estimation of reproductive potential in Atlantic cod Gadus morhua. Marine Ecology Progress Series, 235, 235-256. https://doi. org/10.3354/meps235235
Minte-vera, C. V., Maunder, M. N., Schaefer, K. M., Aires-da-silva, A. M., Commission, I. T. T., Jolla, L., ... States, U. (2019). The influence of metrics for spawning output on stock assessment results and evaluation of reference points: An illustration with yellowfin tuna in the eastern Pacific Ocean. Fisheries Research, 217, 35-45. https://doi. org/10.1016/j.fishres.2018.09.022
National Geophysical Data Center/NESDIS/NOAA/U.S, Department of Commerce. (1995). TerrainBase, Global 5 Arc-minute Ocean Depth and Land Elevation from the US National Geophysical DataCenter (NGDC). Research Data Archive at the National Center for Atmospheric Res. Retrieved January 3, 2012, from http://rda.ucar.edu/datasets/ ds759.2/
Neat, F. C., Bendall, V., Berx, B., Wright, P. J., Ó Cuaig, M., Townhill, B., ... Righton, D. (2014). Movement of Atlantic cod around the British Isles: Implications for finer scale stock management. Journal of Applied Ecology, 51(6), 1564-1574. https://doi. org/10.1111/1365-2664.12343
Nicolas, D., Rochette, S., Llope, M., \& Licandro, P. (2014). Spatio-Temporal variability of the North Sea Cod recruitment in relation to temperature and zooplankton. PLoS One, 9, e88447. https://doi.org/10.1371/ journal.pone. 0088447
NOAA (2018). National Weather Service/ Climate Prediction Center/North Atlantic Oscillation (NAO). Retrieved March 30, 2018, from http:// www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml
Nunez-Riboni, I., Taylor, M. H., Kempf, A., Pu, M., \& Mathis, M. (2019). Spatially resolved past and projected changes of the suitable thermal habitat of North Sea cod (Gadus morhua) under climate change. ICES Journal of Marine Science, 76(7), 2389-2403 https://doi.org/10.1093/ icesjms/fsz132
Olsen, E. M., Ottersen, G., Llope, M., Chan, K.-S., Beaugrand, G., \& Stenseth, N. C. (2011). Spawning stock and recruitment in North Sea cod shaped by food and climate. Proceedings of the Royal Society B: Biological Sciences, 278(1705), 504-510. https://doi.org/10.1098/ rspb. 2010.1465
Peck, M. A., \& Hufnagl, M. (2012). Can IBMs tell us why most larvae die in the sea? Model sensitivities and scenarios reveal research needs. Journal of Marine Systems, 93, 77-93. https://doi.org/10.1016/j.jmars ys.2011.08.005
Peterson, I., \& Wroblewski, J. S. (1984). Mortality rates of fishes in the pelagic ecosystem. Canadian Journal of Fisheries and Aquatic Science, 41, 1117-1120.

Planque, B., Fox, C. J., Saunders, A., \& Rockett, P. (2003). On the prediction of short term changes in the recruit- ment of North Sea cod (Gadus morhua) using statistical temperature forecasts. Scientia Marina, 67, 211-218.
Punt, A. E. (2019). Modelling recruitment in a spatial context : A review of current approaches, simulation evaluation of options, and suggestions for best practices. Fisheries Research, 217, 140-155. https://doi. org/10.1016/j.fishres.2017.08.021
Ramesh, N., Rising, J. A., \& Oremus, K. L. (2019). The small world of global marine fisheries: the cross-boundary consequences of larval dispersal. Science, 364, 1192-1196.
Rijnsdorp, A. D., \& Jaworski, A. (1990). Size-selective mortality in plaice and cod eggs : A new method in the study of egg mortality. Journal Du Conseil International Pour L'exploration De La Mer, 47, 256-263. https://doi.org/10.1093/icesjms/47.2.256
Scheffer, M., Baveco, J. M., DeAngelis, D. L., Rose, K. A., \& van Nes, E. H. (1995). Super-individuals a simple solution for modelling large populations on an individual basis. Ecological Modelling, 80(2-3), 161-170. https://doi.org/10.1016/0304-3800(94)00055-M
Shchepetkin, A. F., \& McWilliams, J. C. (2005). The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-fol-lowing-coordinate oceanic model. Ocean Modelling, 9(4), 347-404. https://doi.org/10.1016/j.ocemod.2004.08.002
Subbey, S., Devine, J. A., Schaarschmidt, U., \& Nash, R. D. M. (2014). Modelling and forecasting stock-recruitment: Current and future perspectives. ICES Journal of Marine Science, 71, 2307-2322.

Sundby, S., Kristiansen, T., Nash, R., \& Johannessen, T. (2017). Dynamic Mapping of North Sea Spawning - Report of the KINO Project, Fisken og Havet, Berge, Norway: Intitute of Marine Research. Tech rep. (2-2017). 195 pp.
Zimmermann, F., Claireaux, M., \& Enberg, K. (2019). Common trends in recruitment dynamics of north- east Atlantic fish stocks and their links to environment, ecology and management. Fish and Fisheries, 20(3), 518-536. https://doi.org/10.1111/faf. 12360

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Romagnoni G, Kvile KØ, Dagestad K-F, et al. Influence of larval transport and temperature on recruitment dynamics of North Sea cod (Gadus morhua) across spatial scales of observation. Fish Oceanogr. 2020;00:1-16. https://doi.org/10.1111/fog. 12474

Supplementary Material to:

Influence of larval transport and temperature on recruitment dynamics of North Sea cod (Gadus morhua) across spatial scales of observation

Giovanni Romagnoni ${ }^{1, *,{ }^{+}}$, Kristina \varnothing ie Kvile ${ }^{1,2,{ }^{\dagger}}$, Knut Frode Dagestad ${ }^{3}$, Anne Maria Eikeset ${ }^{1}$, Trond Kristiansen ${ }^{4}$, Nils Chr. Stenseth ${ }^{1,5}$, and \varnothing ystein Langangen ${ }^{1}$
${ }_{1}$ Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway
2Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
${ }_{3}$ Norwegian Meteorological Institute, Allegaten 70, 5007 Bergen, Norway
4Norwegian Institute for Water Research (NIVA), Gaustadalleen 21, 0349 Oslo, Norway
${ }_{5}$ Centre for Coastal Research (CCR),Department of Natural Sciences, University of Agder, Kristiansand, Norway
*Corresponding author: tel. +39 3408223 423; e-mail: giovanni.romagnoni@ibv.uio.no
${ }^{\dagger}$ The first two authors contributed equally to the article.

Appendix S1: Linearised stock-recruitment functions

The corresponding linear formulas to the Cushing stock-recruitment model (Akimova et al., 2016) is:

$$
\log (R)=\log (\alpha)+\gamma \log (S S B)
$$

and

$$
\log (R)=\log (\alpha)+\gamma \log (S S B)+\log (S S B) \times \theta E
$$

Subbey et al. (2014) point to the need to correct recruitment for the bias introduced by log-transforming the recruitment. Sensitivity test (table A1) shows that the results when such correction is included differ minimally from the non-corrected recruitment, thus for the main analysis the dataset was not corrected for the bias.

			South		Viking		Northwest	
Predictor		Covariate	adjR2	Pval	adjR2	Pval	adjR2	Pval
1	SSB	None	0.22	0.001	0.04	0.106	0.23	0.001
2	SSB	SST	0.31	0.001	0.03	0.233	0.35	0.000
3	SSB	NAO	0.20	0.008	0.05	0.171	0.19	0.011
4	SSB	RA	0.22	0.005	-0.01	0.445	0.19	0.009
5	ndSSB	None	0.18	0.003	0.11	0.016	0.27	0.000
6	ndSSB	SST	0.27	0.001	0.15	0.027	0.34	0.000
7	ndSSB	NAO	0.19	0.010	0.09	0.090	0.25	0.003
8	rSSB	None	0.21	0.001	0.03	0.121	0.22	0.001
9	rSSB	SST	0.29	0.001	0.05	0.185	0.33	0.000
10	rSSB	NAO	0.23	0.005	0.04	0.218	0.18	0.012
			Sou					
	Predictor	Covariate	adjR2	Pval	adjR2	Pval		
1	SSB	None	0.26	0.000	0.04	0.106		
2	SSB	SST	0.36	0.000	0.03	0.233		
3	SSB	NAO	0.24	0.003	0.05	0.171		
4	SSB	RA	0.24	0.004	-0.01	0.445		
5	ndSSB	None	0.25	0.000	0.13	0.010		
6	ndSSB	SST	0.33	0.000	0.17	0.018		
7	ndSSB	NAO	0.23	0.004	0.10	0.068		
8	rSSB	None	0.25	0.000	0.03	0.121		
9	rSSB	SST	0.34	0.000	0.05	0.185		
10	rSSB	NAO	0.24	0.003	0.04	0.218		
			Sou					
	Predictor	Covariate	adjR2	Pval				
1	SSB	None	0.24	0.001				
2	SSB	SST	0.28	0.001				
3	SSB	NAO	0.22	0.005				
4	SSB	RA	0.32	0.000				
5	ndSSB	None	-	-				
6	ndSSB	SST	-	-				
7	ndSSB	NAO	-	-				
8	rSSB	None	0.16	0.005				
9	rSSB	SST	0.21	0.007				
10	rSSB	NAO	0.14	0.029				

Table A1. Values of Adjusted R^{2} and respective P-values including correction from the bias introduced by logtransformation of the recruitment data (see Table 2 in main text) for each model and population across the three cases of population scale. Darker shades of grey indicate higher Adjusted R^{2} (higher model fit and better model performance). For single population ndSSB is not calculated.

	South					
	20\% decrease		default		20\% increase	
	1990	2010	1990	2010	1990	2010
South	0.30	0.49	0.31	0.49	0.32	0.48
NW	0.01	0.06	0.01	0.05	0.01	0.04
Viking	0.06	0.01	0.05	0.01	0.05	0.01
Skagerrak	0.16	0.02	0.14	0.01	0.12	0.01
Outside	0.04	0.02	0.04	0.02	0.03	0.02
Not settling	0.43	0.40	0.45	0.42	0.47	0.44
	Viking					
	20\% decrease		default		20\% increase	
	1990	2010	1990	2010	1990	2010
South	0.00	0.02	0.00	0.02	0.00	0.02
NW	0.01	0.03	0.01	0.03	0.01	0.03
Viking	0.12	0.11	0.13	0.11	0.13	0.11
Skagerrak	0.22	0.05	0.23	0.04	0.23	0.04
Outside	0.37	0.43	0.34	0.41	0.32	0.38
Not settling	0.27	0.36	0.29	0.39	0.31	0.41
	Northwest					
	20\% decrease		default		20\% increase	
	1990	2010	1990	2010	1990	2010
South	0.11	0.06	0.11	0.06	0.11	0.07
NW	0.27	0.30	0.27	0.30	0.26	0.30
Viking	0.03	0.04	0.03	0.04	0.03	0.04
Skagerrak	0.07	0.01	0.07	0.01	0.07	0.01
Outside	0.06	0.02	0.06	0.02	0.06	0.02
Not settling	0.44	0.57	0.46	0.57	0.47	0.57

Table A2. Sensitivity of connectivity to setting of mortality parameter. Connectivity at settlement for the three populations for two years with contrasting oceanographic patterns for default value and $+/-20 \%$

	South					
	20\% decrease		default		20\% increase	
	1990	2010	1990	2010	1990	2010
South	0.34	0.47	0.31	0.49	0.32	0.47
NW	0.00	0.06	0.01	0.05	0.01	0.05
Viking	0.04	0.01	0.05	0.01	0.06	0.01
Skagerrak	0.13	0.01	0.14	0.01	0.13	0.01
Outside	0.03	0.02	0.04	0.02	0.05	0.02
Not settling	0.45	0.43	0.45	0.42	0.43	0.44
	Viking					
	20\% decrease		default		20\% increase	
	1990	2010	1990	2010	1990	2010
South	0.00	0.02	0.00	0.02	0.00	0.02
NW	0.01	0.03	0.01	0.03	0.01	0.03
Viking	0.10	0.12	0.13	0.11	0.13	0.11
Skagerrak	0.22	0.04	0.23	0.04	0.23	0.05
Outside	0.33	0.37	0.34	0.41	0.36	0.43
Not settling	0.34	0.42	0.29	0.39	0.27	0.37
	Northwest					
	20\% decrease		default		20\% increase	
	1990	2010	1990	2010	1990	2010
South	0.12	0.04	0.11	0.06	0.12	0.07
NW	0.27	0.31	0.27	0.30	0.27	0.30
Viking	0.02	0.03	0.03	0.04	0.04	0.05
Skagerrak	0.07	0.01	0.07	0.01	0.08	0.02
Outside	0.06	0.02	0.06	0.02	0.07	0.02
Not settling	0.45	0.59	0.46	0.57	0.43	0.53

Table A3. Sensitivity of connectivity to setting of settlement size parameter. Connectivity at settlement for the three populations for two years with contrasting oceanographic patterns for default value and +/20\%

References:

Akimova, A., Núñez-Riboni, I., Kempf, A., and Taylor, M. H. 2016. Spatially-Resolved Influence of Temperature and Salinity on Stock and Recruitment Variability of Commercially Important Fishes in the North Sea. Plos One, 11: e0161917.

Subbey, S., Devine, J. A., Schaarschmidt, U., and Nash, R. D. M. 2014. Modelling and forecasting stockrecruitment: current and future perspectives. ICES Journal of Marine Science, 71: 2307-2322.

Paper IV

"...E quindi uscimmo a riveder le stelle."

Dante, Inferno XXXIV, 139

[^0]: * Corresponding author at: CEES, Department of Biosciences, University of Oslo P.O. Box 1066, Blindern, NO-0316 Oslo, Norway. Tel.: +47 22859043.

 E-mail address: giovanni.romagnoni@ibv.uio.no (G. Romagnoni).

[^1]: Romagnoni and Kvile contributed equally to the article.

 This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
 © 2020 The Authors. Fisheries Oceanography published by John Wiley \& Sons Ltd

