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Summary  

This thesis is centred on the interactions between climate and spatial dynamics regulating the abundance 
and distribution of marine fish. In particular, the thesis focus on Atlantic cod (Gadus morhua) in the North 
Sea, and its ecology and management under climate change by adopting a multidisciplinary approach, where 
the boundaries of oceanography, ecology, economics and fisheries management meet. I explored this 
interface, proposing some answers toward adaptive fisheries management. 

North Sea cod has been among the main target species of commercial fisheries for centuries. Intense fishing 
pressure, in combination with environmental change, has resulted in a dramatic stock decline in the past 
decades. Management of the fisheries has allowed a gradual a recovery of North Sea cod stock since the mid 
2000’s. However, in the past few years (since 2017) the North Sea cod stock has showed once again signs of 
decline. In addition to fishing pressure, recent declines in the North Sea cod may be due to global climate 
change (in particular, increase in sea surface temperature and related changes in the zooplankton 
community) that has been causally linked to reduced recruitment and increased predation of juvenile cod. 
Such effects are uneven across the area, seemingly more pronounced in the South and less in the North. This 
heterogeneous spatial response may be attributed to geographical and environmental factors such as the 
latitudinal gradient of temperature, differences in topography (i.e. depth) or oceanographic characteristics 
(e.g. current and tidal patterns). At the same time the presence of multiple populations within the North Sea 
stock may promote niche differentiation in response to climate change. These populations with independent 
dynamics may potentially require different management strategies. Such spatial heterogeneity is 
acknowledged but the stock is currently managed as a homogeneous unit. However, appropriate 
management should account for the spatial distribution of populations, their connectivity, their response to 
climate, and the effects of predator-prey interaction at the correct spatial scale. 

Throughout this thesis, I attempted to investigate how the interaction between spatial dynamics and the 
effects of climate impact cod ecology and population dynamics, and in turn how these emerging interactions 
may influence management. First, I explored spatial ecosystem dynamics (Paper 1), then the effects of larval 
behaviour on their distribution across spatial scales (Paper 2), and effects of inclusion of larval transport and 
of connectivity on estimates of recruitment (Paper 3). Finally, I explored through modelling the potential 
effects of including spatial population structure and climate change on the projected optimal management 
strategies (Paper 4).  

In particular, in Paper 1, my co-authors and I developed a spatial version of an existing (non-spatial) 
ecosystem model, using the Ecopath with Ecosim framework (a widely applied ecosystem modelling tool) 
and its spatial component Ecospace. We explored quantitatively the capability of the model to correctly 
reproduce known spatial patterns of fish biomass and fishing effort. Our results show a satisfactory capability 
to reproduce spatial distribution for fish biomass, but not for fishing effort. Moreover our study explored the 
sensitivity of model performance to variations in Ecospace parameters, identifying the most influential, and 
discussing the importance of accounting for parameter uncertainty. 

In Papers 2, 3 and 4 we addressed the issue of multiple populations and their spatial distribution. In Paper 2 
we applied a coupled physical-biological model that simulates spatial distribution of particles representing 
cod eggs and larvae in the North Sea. We assessed the relative importance of three factors commonly 
considered highly relevant for modelling early life stages of marine organisms, namely spatio-temporal 
resolution of the model, explicit inclusion of larval vertical movement, and interannual variability. We found 
that the predicted spatial distribution of particles is moderately influenced by vertical movement and ocean 



8 
 

model resolution. However, spatial distribution differs substantially between years. This implies that 
interannual variation in ocean dynamics plays a critical role in determining the degree of retention in the 
study area. We additionally observed that the effect of vertical movement strongly depends on the 
spatiotemporal scale of the analyses.  

In Paper 3 we applied a coupled physical-biological model to assess whether explicit inclusion of eggs and 
larvae transport processes outputs can improve the performance of stock-recruitment models. We thus 
paired a 44-year long time series of cod recruitment and spawning stock biomass data with larval transport 
anomaly, connectivity and sea surface temperature, both population-specific and at stock scale. We 
proposed a novel method to account for connectivity explicitly. This showed an effect of connectivity on 
recruitment, albeit small, and only at the population scale. Conversely, the traditional method detects a small 
effect of transport anomaly, and only at the stock scale. Moreover, we investigated the relationship between 
temperature and populations connectivity. We found a correlation between increasing temperature and 
larval drift from south to north, revealing potential effects of changing climate on population connectivity in 
the area.  

Finally, in Paper 4 we developed a bioeconomic model, based on an age-specific population dynamic model, 
to assess whether management that accounts for population structure could provide higher long-term 
economic returns. We explored alternative management strategies for the North Sea cod metapopulation, 
where two sub-populations are managed either independently or as unique stock unit. We tested the 
hypothesis that the advantage of managing populations separately increases under rising temperature, given 
different population sensitivity to temperature. Our results showed that, in the context of optimal 
management, moving from non-spatial management to population specific management was not 
economically advantageous under any climate scenario, likely due to the similar response to temperature of 
our modelled populations. The economic impacts caused by increasing temperature or by adopting a 
suboptimal constant harvest rate (irrespective of population scale) were larger than managing at the 
incorrect spatial scale.  

This thesis proposes that interactions between climate change, fish population structure and the spatial 
distribution of fish eggs and larvae influence the population dynamics and, therefore, the sustainability and 
profitability of the fishery. These interactions should be accounted for by management, despite the existing 
gaps in our understanding of the interrelationships between ecology, oceanography, economics and 
management.   
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1. Introduction  
 

The marine environment is a multidimensional realm, concealing its true nature beneath a curtain of waves 
and foam. The capability of modern scientists to grasp its underlying complexity is only marginally better 
compared to our colleagues from a century ago. Through modern technology, we have considerably 
advanced our knowledge and understanding in the last decades, but so much is still lying ahead (or 
underneath) of us. This thesis investigates some aspects of spatial dynamics of fish ecology and the 
approaches we apply to understand it and to manage fisheries, in the context of a changing climate. This 
thesis touches upon different aspects of spatial ecology and other fields, from ecosystem dynamics and food-
web theory, to fisheries management, to population and metapopulation dynamics, to oceanographic 
biology, and to bioeconomics. 

This thesis focuses on North Sea cod stock (Gadus morhua) as a case study to investigate whether fisheries 
management may benefit from explicit considerations of the spatial relationships, and the dependencies 
between climate and stock components.  

For the past 10 years, gradual recovery of North Sea cod from near-collapse to sustainable state has been 
the flagship of successful, science-based fisheries management from the European management system. 
Nonetheless, the latest assessment of this stock (2019) indicated a sharp stock decline in SSB in the last few 
years (ICES, 2019). This had consequences for the industry, such as the withdrawal of sustainability label from 
Marine Stewardship Council (MSC) in 2019, gained in 2017 (Marine Stewardship Council (MSC), 2017, 2019). 
The consequences were severe also for the scientific community, dismayed once again when facing the hard 
fact that managing nature is far more complex, and frustrating, than we would like. The credibility of the 
scientific process behind the assessment and scientific advice, however, is not impaired. 

The present thesis promotes the message that aspects such as the influence of climate, spatial distribution 
of fishing fleets and population structure, and their interactions, should not be overlooked and could play a 
pivotal role for improving stock management, when fully understood and properly integrated. A spatially 
explicit management that can account for cod populations’ dynamics in a warming North Sea ecosystem, and 
for a moving fishery, is needed now more than ever. 

 

2. Study context 
2.1 The North Sea  

The North Sea is a semi-enclosed basin, physically divided into a southern shallow area and a northern deeper 
one. The Norwegian Deep and the continental slope constitute the natural borders of the basin in the North-
East and North-West respectively (Figure 1), while the Dover Strait separates the basin from the English 
Channel at the South. Conventionally, the waters of the Norwegian Trench and Norwegian coast are included 
in the North Sea while the Skagerrak, Kattegat and English Channel are part of the so-called Greater North 
Sea Region, being oceanographically well connected but separate for management purpose (ICES, 2018).  
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Figure 1. Map of the study area with the population areas, main currents, and key topographic features. Source: the author.   

 

Ocean circulation is influenced by topography and inflow of North Atlantic water. The northern area, 
characterised by seasonal stratification in summer, is influenced by inflow of saline Atlantic water flowing 
along the western slope of the Norwegian Trench as well as from the channels between Orkneys and Shetland 
islands. This current transports into the region the copepod Calanus finmarchicus, an important food source 
for many species, including larval cod (Beaugrand et al., 2003; Nicolas et al., 2014). One branch of the current 
flows southward along the Scottish and English coast; another, larger branch flows along the Norwegian 
Trench and into Skagerrak. This follows a counter-clockwise trajectory along the Skagerrak coast, and after 
mixing with the less saline Norwegian coastal current, flows north-westward along the eastern slope of the 
Norwegian Trench and into the Norwegian Sea (Huserbråten et al., 2018). The southern North Sea is 
dominated by continental freshwater runoff from the large rivers on mainland Europe, and by tidal patterns, 
which in combination with wind and wave turbulence and shallow topography result in permanent mixing. 
The intermediate saline current from the English Channel and the coastal, low saline Jutland Current flow 
along the continental coast and into the Skagerrak (Sundby et al., 2017).  

The North Sea area is characterised by temperate climate and by a mixed faunal assemblage, including Boreal 
(northern) and Lusitanic (southern) species. Species distribution is related to the changes in temperature 
observed in recent decades, with gradual expansion of southern species in warm periods, and contraction 
and deepening of northern, cold-related species (Barcelò et al., 2016; Dulvy et al., 2008; Petitgas et al., 2012). 
The North Sea hosts areas with high natural value such as the Wadden sea, recognised as UNESCO world 
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heritage site for its specificities including biodiversity (Common Wadden Sea Secretariat, 2016) and an 
important seabird area (Reise et al., 2010), and other valuable habitats, with over 80 000 km2 protected as 
EU SAC within the Natura 2000 network (European Environment Agency, 2015; OSPAR, 2017). For example, 
the Dogger bank, the largest sand bank in the area, hosts important diversity including benthic communities 
and target and non-target fish species (Anonymous, 2016; Plumeridge and Roberts, 2017; STECF, 2019a), 
while seals and cetaceans occur around coastal and offshore areas (Russell et al., 2017; Waggitt et al., 2020). 

Episodic productivity changes have been observed in the North Sea. These influence key components of the 
ecosystem, with phytoplankton, zooplankton, and demersal and pelagic fish all having exhibited cycles in 
variability. These cycles, sometimes linked to regime shifts (notably around 2000), are attributed to 
oscillations of the temperature cycle of the North Atlantic (the Atlantic Multidecadal Oscillation, AMO) (Alheit 
et al., 2012; Goberville et al., 2014; Stige et al., 2006). 

The North Sea has an important history of fishing (Barrett et al., 2004a), the management of which has been 
complex due to the mixed nature of fisheries (Kempf et al., 2016; Mackinson et al., 2009; Ulrich et al., 2016). 
The main fisheries can be divided in demersal and pelagic. Demersal fisheries target roundfish (in particular 
gadoids) and flatfish (especially sole and plaice), while pelagic fisheries target herring and mackerel for 
human consumption, and sandeel, sprat and Norway pout for fishmeal and other industrial use. Shrimp and 
Norway lobster also constitute important target species (ICES, 2018). Fisheries management is conducted in 
accordance with the EU Common Fisheries Policy (CFP), by coastal state agreements. Agreements cover area- 
species- and gear-specific limits in catches. The total allowable catches are established regularly on the basis 
of scientific advice from ICES and the Scientific Technical Economic Committee for Fisheries (STECF) of the 
European Union. Management has been partially successful: after years of systematic decline of most stocks, 
a moderate recovery was observed in recent years for several of the fish stocks after a large reduction in 
fishing effort and possibly also a reduction of bycatch (ICES, 2018, 2019).  

Other activities such as shipping traffic, oil and gas extraction and wind farms, are increasingly causing 
conflicts with fishing activities (Klinger et al., 2018). National efforts for the implementation of national 
Marine Spatial Planning regulations, under the directions of the European Union (EU) Marine Spatial Planning 
Directive (2014/89/EU), are attempting to address these conflicts (Lacroix and Pioch, 2011; Schupp et al., 
2019; Stelzenmüller et al., 2016), and the North Sea is at the forefront of practical implementations of MSP 
and of multi-use of space at sea experiences (e.g. windfarm-fisheries and windfarm-aquaculture: Buck et al., 
2017; Stelzenmüller et al., 2016).  
 

2.2 Atlantic cod in the North Sea 
Atlantic cod (Gadus morhua; Figure 2) is a widely distributed predatory teleost, occurring across both sides 
of the North Atlantic Ocean. It is a highly adaptable species, inhabiting bentho-pelagic areas from over 300 
meters deep to coastal and inshore areas, displaying high plasticity and adaptability (Barth et al., 2017; 
Malachowicz and Wenne, 2019; Wenne et al., 2020). Individual populations have adapted to diverse lifestyles 
and behaviours: some display massive ocean-going spawning migrations (e.g. East Greenland cod: Bonanomi 
et al., 2016; North-East Arctic cod: Langangen et al., 2018), others favour localised sedentary lifestyle in 
inshore areas throughout their lifetime (e.g. Norwegian coastal cod and fjord populations: Knutsen et al., 
2018; Rogers and Stenseth, 2017; Roney et al., 2018), with a range of migratory behaviours described 
(Robichaud and Rose, 2004). 
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Figure 2. Atlantic cod captured during field work in Flødevigen, Arendal, Norway. The fish was captured with fyke nets, tagged and 
released shortly after. Cod can tolerate large stress and recover well from handling and even surgery for electronic tags implant. 

Photo: The author. 

Thanks to its characteristics, the large attained size and massive abundance, cod has been a target species 
since the Neolithic (Enghoff et al., 2007; Hufthammer et al., 2006) but only in the last millennium it became 
a key source of food (Geffen et al., 2011; Rose et al., 2019), permitting coastal societies to thrive (Barrett et 
al., 1999; Sicking and Abreu-Ferreira, 2008). Thanks to its nutritional value and the unique suitability of its 
meat for drying and preserving, it fostered international trades across Europe and beyond (Barrett, 2018; 
Barrett et al., 2004b, 2011; Wubs-Mrozewicz, 2008). Cod is thought to have been among the critical factors 
allowing colonization from European fishers and traders into the Americas (Kurlansky, 1999). For these 
reasons, Atlantic cod has an iconic value in cultures throughout Europe, including areas well beyond its actual 
occurrence range. While the global landings have declined through time with the depletion of most stocks 
(Figure 3), Atlantic cod remains among the top 10 landed species worldwide (FAO, 2020a, 2020b). 
Additionally, cod is one of the most studied species, in particular in the context of climate change (Ferreira 
et al., 2017), and serves as the poster child for seminal studies of fish ecology that inspired generations of 
scientists (Beaugrand et al., 2003; Beaugrand and Kirby, 2010; Brander, 2010; Cushing, 1990; Drinkwater, 
2005; Durant et al., 2007; Harden Jones, 1968; Hjort, 1914; Pörtner et al., 2008, 2001; Stige et al., 2006). 
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Figure 3. Total landings of Atlantic cod (Gadus morhua, million tonnes in blue) and ratio between Cod landings and aggregated 
landings for all marine fish species globally (in red). Data from Fishstat database, FAO (2020b). 

The North Sea hosts one of the historically largest stocks in the Eastern side of the North Atlantic (cfr. for 
example supplementaty information in Sguotti et al., 2019). North Sea cod is one of the main commercial 
species in the area. The stock has shown historical decline (Engelhard et al., 2014) with the lowest point in 
abundance in the early 2000s, when the stock almost collapsed (Yletyinen et al., 2018). Oscillations have 
been linked to climate fluctuations and overall changes in the ecosystem (Beaugrand et al., 2003; Cushing, 
1990; Edwards et al., 2002; ICES, 2018). However, in the past decades the decline in biomass has been mostly 
linked to fisheries (Brander, 2018; Cook et al., 1997; Froese and Quaas, 2012) or to a combination between 
negative climatic conditions for adults (Butzin and Pörtner, 2016; Engelhard et al., 2014; Neuheimer and 
Grønkjær, 2012; Nunez-Riboni et al., 2019), for larval stages (Beaugrand et al., 2003, 2008; Nicolas et al., 
2014), and fisheries (Brander, 2005, 2010; Lilly et al., 2013). A considerable improvement in selectivity, 
triggered by the recovery plan for cod (EC 1342/2008) and based on incentives linked to the fishing effort 
regime and to national measures, allowed a gradual recovery, compatible with rebuilding of the spawning 
stock (Brander, 2018; ICES, 2019). However, the recruitment may be still strongly subject to environmental 
variability and to the effect of climate change on temperature, on the plankton community and on the 
predation mortality in the first year of life at the planktonic and settlement stages of recruits (Akimova et al., 
2019; Hjermann et al., 2013; Kempf et al., 2010).  
 
Although managed as a unitary stock (ICES, 2019), North Sea cod is considered to be composed of a mosaic 
of biologically resolved units (Figure 1), with limited overlap and varying degree of connectivity (André et al., 
2016; Heath et al., 2014; ICES, 2015, 2020; Knutsen et al., 2018; Neat et al., 2014; Wright et al., 2018). The 
units can be reduced to two main populations: the Viking bank and the South populations (Heath et al., 2014; 
ICES, 2019; Wright et al., 2018). The latter is often separated into a South proper (centred around the Dogger 
Bank) and a Northwest unit (González-Irusta and Wright, 2016; Holmes et al., 2014; ICES, 2019). These two 
are genetically homogenous but show limited adult connectivity (so their relationship is as yet unclear (Heath 
et al., 2014; ICES, 2020; Neat et al., 2014). The Dogger Bank, the German Bight and Southern Bight are, or 
have been in the past, important nursery and spawning areas (Brander, 1994; Fox et al., 2008; González-
Irusta and Wright, 2016). The spatial variability and heterogeneity of North Sea cod has been shown by 
multiple means including population dynamics based on survey indices (Holmes et al., 2008, 2014), otolith 
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microchemistry (Wright et al., 2006a, 2018), genetics (Heath et al., 2014; Nielsen et al., 2009; Poulsen et al., 
2011), and behaviour with tagging studies revealing spatial segregation between areas (Neat et al., 2014; 
Righton et al., 2007; Wright et al., 2006b). These differences correspond to differences in maturation and 
growth patterns (Neuheimer and Grønkjær, 2012; Wright et al., 2011), depth distribution, possibly linked to 
thermal preferences (Neat et al., 2014; Righton et al., 2010) as well as varying influence of temperature, food 
and predation on early life stages and their effects on recruitment (Akimova et al., 2016, 2019; Hjermann et 
al., 2013; Holmes et al., 2008; Nicolas et al., 2014; Speirs et al., 2010). These biological units are subject to 
uneven fishing mortality, present differing capability to sustain fishing pressure and to recover (Heath et al., 
2014; ICES, 2019), and potentially differing capability to withstand climate change (Barth et al., 2017; 
Bonanomi et al., 2015; Butzin and Pörtner, 2016; Nunez-Riboni et al., 2019). Therefore, they may respond 
differently to harvesting. In this light, multiple authors have suggested that assessment should account for 
multiple populations, or for a metapopulation structure (e.g. González-Irusta and Wright, 2016; Heath et al., 
2014; Neat et al., 2014; Wright et al., 2018). However, up until now ICES WGNSSK provided advice at whole 
stock level. The capability to allocate catch and survey data to specific units, and uncertainty about the areas 
of overlap and mixing, prevented so far population-specific assessment (ICES, 2019), however explorations 
have been performed to further investigate population structure (ICES, 2015, 2019): trends in substock 
biomass have been monitored, and novel approaches combining assessment models with metapopulation 
theories have been tested (Jardim et al., 2018). The current Benchmark Workshop on North Sea Stocks 
(WKNSEA 2021, ongoing at the time of writing this thesis) is evaluating the current data and assessment 
methodology in order to reach agreement on an assessment methodology to be used in future update 
assessments. To clarify the role of stock identification in North Sea cod, WKNSEA will make use of the results 
of the recent ICES Workshop On Stock Identification Of North Sea Cod (WKNSCodID), which reviewed 
information on the population structure of North Sea cod to recommend the most plausible scenario of 
population structure for stock assessment and fishery management advice. The workshop recommended 
that ICES stock assessments process should support advice for managing the Viking cod and Dogger cod 
populations as distinct units, in light of their genetic differences, and account for the phenotypic diversity in 
the Dogger population (ICES, 2020).  

 

2.3 The influence of climate  
Climate change is considered one of the most impacting threats to the marine environment (Boonstra et al., 
2015). While environmental variation has been studied for a longer time (e.g. Hjort, 1914), anthropogenic 
climate change has been broadly recognised only relatively recently (IPCC, 1990). Since then, the effect of 
climate change on marine environment has been the subject of intense research (Ferreira et al., 2017; 
Grieneisen and Zhang, 2011; Pedersen et al., 2016). 

The increase in temperature seems to be the most commonly investigated effect of climate change in marine 
ecosystems (Ferreira et al., 2017), possibly because of its crucial role in the functioning of biological systems 
at organismal level scaling up to ecosystems, affecting life-history strategies, productivity, and the geographic 
distribution of marine life (Beaugrand et al., 2008; Cheung et al., 2016; Perry et al., 2005; Pinsky et al., 2018). 
Sea surface temperature (SST) is often used as a proxy for experienced temperature; it is more easily 
measured compared to bottom temperature, and is generally considered an accurate proxy (but see Akimova 
et al., 2016, for example). 

In general, environmental factors influence marine organisms through direct and indirect pathways (Brander, 
2010). Direct pathways include changes in physiological rates, in feeding success, and in behaviour. Indirect 
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effects may be due to changes in food, predators, parasites and diseases. Physiological rates and behaviour 
can be studied directly through experimental manipulation, while food-web effects are more complex to 
assess. Irrespectively, these changes affect the organisms in terms of growth, survival and reproductive 
output, highly relevant aspects for stock assessment of the commercial stocks. For example, trade-offs 
between somatic growth and metabolic costs due to temperature increase in cod and other fish species are 
well known (e.g. Brander, 2010; Holt and Jørgensen, 2015). Thermal tolerance influence metabolic activity 
and allocation of energy for reproduction and somatic growth (Pörtner et al., 2008). These effects can scale 
up from individual to the whole population level (Butzin and Pörtner, 2016; Nunez-Riboni et al., 2019). The 
effects are reflected on the patterns of maturation, survival and fitness (Holt and Jørgensen, 2014, 2015; 
Neuheimer and Grønkjær, 2012). When temperature exceeds the optimum, these changes affect fish 
distribution and local abundance (e.g. Dinesen et al., 2019), as fish are assumed to move toward colder water, 
where available. Comparison between populations of Atlantic cod across its range showed that southernmost 
populations are closer to the thermal limits and will be negatively impacted by increasing temperature, while 
northernmost populations will benefit (Brander, 2010; Drinkwater, 2005). Notably, at local level seasonal 
patterns may matter more than average annual: the difference in SST increase between seasons may have 
diverging and counteracting effects (Rogers et al., 2011). These effects can be confounded by other factors 
such as individual behaviour or ecological adaptations. For example, populations performing seasonal 
migration for reproduction will maintain historical spawning grounds also in the face of climate change. The 
southernmost spawning areas in the North Sea are still used by cod (Fox et al., 2008; González-Irusta and 
Wright, 2016) despite the local thermal conditions are currently considered suboptimal, and are predicted to 
become unsuitable for reproduction (Butzin and Pörtner, 2016; Nunez-Riboni et al., 2019). Individual 
behaviour can also appear counterintuitive: Neat and Righton (2007) observed that some cod individuals did 
not move to colder areas at reach, and rather suffered suboptimal warm temperature and increased 
vulnerability. The causes are not clear, highlighting the limited understanding even in one of the most studied 
fields. This shows that predictions of the effects of climate change on populations can be confounded by 
individual behaviour and may prove inaccurate.  
Survey indices can show effectively the emergent changes in spatial distribution, resulting from combination 
of direct and indirect factors, the extent of which is difficult to disentangle, and to tell apart from the effects 
of fishing (Engelhard et al., 2014; Heath et al., 2014; Rindorf and Lewy, 2006). 

Larval dispersal and population connectivity may be impacted by rising temperature as well: early life stages 
of marine organisms generally develop faster in a warmer water, reduce their pelagic time, and their dispersal 
distance. Their survival will depend on encountering enough food during the pelagic phase, given a higher 
metabolic demand; and in encountering favourable conditions at settlement. This may, in turn, affect the 
connectivity between subunits in the stock. The extent to which dispersal stage is affected by increasing 
temperature, is not well known in North Sea cod (but see Heath et al., 2008), however some information can 
be drawn from other areas in the North Atlantic (Fuchs et al., 2020), the Mediterranean Sea (Andrello et al., 
2015) or tropical coral reefs (Munday et al., 2009). 

Indirect effects of climate change include alterations of the trophic structure of the ecosystem across life 
stages: these include changes of prey and predators, as well as competitors, parasites and diseases. While 
the latter are little studied, the predator-prey relationships have received considerable attention, through 
analyses and modelling studies. The most important effects revolve around the food availability at the larval 
stage: thermal regimes alter the quantity and quality of food available, with consequences for growth, 
reproduction and mortality. Typical case is that of changes in calanoid community composition in the North 
Sea and in the North East Atlantic in general observed in the latest decades which has been indicated as the 
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main cause for the decline of cod recruitment in the North Sea (Beaugrand et al., 2003; Beaugrand and Kirby, 
2010; Nicolas et al., 2014; Olsen et al., 2011). Additional mechanisms include the match-mismatch between 
larval food and larvae hatching time (Asch et al., 2019; Durant et al., 2007) suggested for cod in the North 
Sea by Daewel et al., (2011), and increased predation mortality from species that benefit from warming such 
as herring and grey gurnards (Akimova et al., 2019; Hjermann et al., 2013; Kempf et al., 2013). For adults, an 
indirect effect may be the change in prey availability. Brander (2010) reports about the case of Icelandic cod, 
where temperature increase did not produce the expected increase in growth rate possibly due to the decline 
of their main prey, capelin Mallotus villosus. 

 
The interaction between climate and other pressures, prominently fishing pressure, may lead to complex 
dynamics that need to be carefully considered. For example, heavily fished populations are more sensitive to 
environmental forcing due to the curtailed age structure (Ottersen et al., 2006; Rouyer et al., 2011), while 
their natural mortality may be influenced by fishing (Jørgensen and Holt, 2013). The interaction between 
climate change and fishing pressure can also influence the genetic diversity of populations: for example, loss 
of genetic diversity is associated to the collapse of West Greenland cod stock (Bonanomi et al., 2015). 
The spatial distribution of cod in the North Sea, instead, is suggested to be influenced by a combination of 
climate and fishing pressure: Blanchard et al. (2005) demonstrated that the range contraction of juvenile 
North Sea cod could be linked to reduced abundance as well as increased temperature, also noting that the 
distribution change may have increased cod vulnerability to fishing mortality. Rindorf and Lewy (2006) linked 
the northward shift in distribution to the effect of a series of warm, windy winters on cod larvae, and on the 
resultant distribution of settlers, further noting that this effect might be intensified by the curtailed age 
structure due to fishing pressure. Engelhard et al. (2014) found that the changing distribution of North Sea 
cod through the decades is linked to a combination of fishing and climate change, with a northward shift best 
explained by warming, and an eastward shift attributable instead to overexploitation of western fishing 
grounds.  
Through effects on fish, climate change has profound consequences for the fisheries relying on them: the 
catch composition, fleet profitability and dynamics are also affected (Cheung et al., 2013; Lam et al., 2016), 
and the change in fish distribution can result in increasing conflicts for transboundary fish species (Diekert 
and Nieminen, 2015; Gullestad et al., 2020; Pinsky et al., 2018). This is already happening, for example, in the 
case of Atlantic Mackerel, which has expanded northward, causing a breakdown of the former agreements 
between countries sharing the stock (Elfarsdóttir, 2020; Østhagen et al., 2020; Spijkers and Boonstra, 2017).  

 

3. Methods and approaches applied 
3.1 Ecosystem modelling 

The interaction between species can be investigated through models of predator-prey dynamics, and in some 
cases whole ecosystems, including biotic and abiotic factors. When spatial considerations are critical for 
understanding the dynamics of the system, spatial food-web models have been applied (e.g. Kempf et al., 
2013; Lindegren et al., 2014).  

For the investigation of spatial dynamics of ecosystem interactions, we used the Ecopath with Ecosim (EwE) 
approach, and its spatial component Ecospace (Christensen and Walters, 2004). We used an existing non-
spatial model parameterised for the North Sea (Mackinson and Daskalov, 2007) and developed the spatial 
component, Ecospace (Paper 1). We explored quantitatively the capability of the model to correctly 
reproduce known spatial patterns of fish biomass and fishing effort. Moreover our study explored the 
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sensitivity of model performance to parameters, identifying those with higher sensitivity, which seem to be 
the most important for model calibration.  

The Ecopath with Ecosim approach is one of the most widely applied ecosystem modelling framework 
(Colléter et al., 2015), with a long history of applications to marine ecosystem modelling and fisheries 
management questions (Heymans et al., 2016). The model is built hierarchically: the base component is the 
Ecopath model, a static mass-balanced snapshot of a closed ecosystem, represented by functional groups 
connected through trophic interactions. Functional groups (species or groups of ecologically similar species) 
are represented as biomass “pools”. Diet composition determines flows of energy and matters between 
functional groups. Ecopath is based on a system of linear equations which describe the average flow between 
groups and defined fishing fleets.  

Ecosim, the time-dynamic module, uses the mass-balanced Ecopath model as a starting point to describe the 
temporal dynamics within the ecosystem, with annual or monthly time steps, through a system of differential 
equations. Ecosim is routinely parameterised through fitting to time series of biomass and catches of a subset 
of species or trophic groups. The model can include additional information to drive the dynamics (e.g. 
environmental variables, fishing mortality or fishing effort).  

Ecospace is the spatial-temporal explicit module of EwE (Walters et al., 1999, 2000). It is based on a two-
dimensional “map”, a grid of equally sized cells on which the biomass of functional groups is distributed and 
interacts with predators, prey and fishing fleets, according to a modified version of the Ecosim differential 
equations (Christensen and Walters, 2004). Ecospace was specifically developed to model the trophic 
dynamics of marine protected areas, assessing trade-offs between their relative size and effort redistribution, 
as well as effects of protection on non-target species, predators and preys (Walters et al., 1999, 2000). 
Ecospace evolved considerably in the past decade: the implementation of externally derived habitat 
preference maps based on single species distribution models, effectively integrates a niche model in the 
spatial trophic model. This allows to measure cumulative impacts of multiple physical, oceanographic, and 
environmental factors (Christensen et al., 2014; Püts et al., 2020). Interoperability with GIS tools allows now 
to run spatio-temporal simulations (Coll et al., 2016; Steenbeek et al., 2013). These improvements allowed 
diversification of applications in fields such as development of renewable energy (Alexander et al., 2016; 
Halouani et al., 2020), Marine Spatial Planning (Romagnoni, 2019; Steenbeek et al., 2020), and  interactions 
between environmental-driven fish displacement and fisheries dynamics (Bauer et al., 2018).  

 

3.2 Drift model 
 

The planktonic early life stage is considered, for broadcast spawning fish, a critical period, and one of the key 
phases for shaping a year class productivity (Cushing, 1990; Hjort, 1914), although evidence is growing that 
density dependence at settlement and juvenile phases have an important role too (Houde, 2008).  Early life 
stages (eggs and larvae; hereafter ELS) can be studied through simulation models. In this context, coupled 
physical-biological models for early life stages of marine fish are increasingly applied (Huebert et al., 2018; 
Peck and Hufnagl, 2012).  

In Papers 2 and 3 we modelled the drift of cod planktonic eggs and larvae, using the open source particle 
tracking framework OpenDrift (Dagestad et al., 2018, github.com/opendrift). To simulate transport with 
ocean currents and temperature-dependent development, we coupled offline a reanalysis of the regional 
ocean circulation model ROMS (Shchepetkin and McWilliams, 2005) configured for ocean regions including 
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the North Sea to a cod egg and larvae individual-based model (IBM), integrated as a module to OpenDrift. 
The IBM simulates development and transport of cod eggs and larvae based on earlier studies (Kristiansen et 
al., 2009a, 2009b, 2014). 
In Paper 2, we compared different reanalyses of the oceanographic model and formulations of the cod egg 
and larvae IBM, in order to assess the relative importance of spatiotemporal resolution of the oceanographic 
model, inclusion of vertical movement, and interannual variability in oceanographic conditions. 
In Paper 3, we have combined >40 years of oceanographic model predictions to track the eggs and larval drift 
from and to putative population areas in order to assess the long-term changes to retention and connectivity. 
This information was then incorporated into stock-recruitment models in different ways, to account for 
effective spawning stock size when explicitly accounting for retention and connectivity. 
Physical (hydrodynamic) models with Lagrangian particle-tracking subroutines, coupled IBMs can account for 
growth, behaviour and mortality of the simulated eggs and larvae of fish or other planktonic organisms (e.g. 
Fiksen et al., 2007). Temperature-dependent growth allow to account for the differential increase in size 
based on the experienced temperature, while inclusion of vertical movement may allow to capture the 
important effects of diel vertical migrations. These features make biophysical modelling of early life stage 
IBMs very popular tools to investigate processes affecting distributions and productivity of marine fish 
species (Peck and Hufnagl, 2012) and to examine how environmental characteristics affect the distribution, 
growth and/or survival of marine organisms (Huebert et al., 2018; Siddon et al., 2013). Biophysical modelling 
of fish early life stages have been applied to study the spatial distribution of the spawning stages (Eriksen et 
al., 2020; Muir et al., 2020), connectivity between populations (Barbut et al., 2019; Heath et al., 2008; Ospina-
alvarez et al., 2020) and the effects of spatial mortality on fish ELS due to natural and anthropogenic factors 
(Fiksen et al., 2007; Langangen et al., 2014a, 2014b, 2017; Peck and Hufnagl, 2012; Stige et al., 2018).  

 
3.3 Bioeconomic model and optimisation 

Fisheries management, in addition to biological considerations, needs to ensure the viability of the fishery in 
socioeconomic terms (Hilborn and Walters, 1992). Bioeconomics is a branch of resource economics that 
addresses the use of living resources, and it is widely applied to study fisheries management. Modelling such 
dynamics can be useful and important to gain understanding of the different impacts from the ecological, 
economic and social assumptions criteria for management policies for exploitation of the natural resources. 
In the marine realm, they are often applied for assessing the economic profitability of management scenarios 
aimed at obtaining maximum sustainable yield or to evaluate alternative measures and their impacts on the 
ecological, economics, and social goals (Nielsen et al., 2017; STECF, 2019b).  
In Paper 4, we compare two alternative management strategies in terms of their bioeconomic optimal long-
term performance. We explore the management options of a spatially structured stock, comparing explicit 
population-specific management against an aggregated management where two populations are managed 
disregarding their individual dynamics. We build a bioeconomic model based on an age-structure population 
model for each of the two populations (described by Equation 1), and compare the optimized economic gain 
of population specific and undifferentiated management under three climate scenarios. The biological model 
described population dynamics through abundance ( ௜ܰ,௧,௔) for each population i, age a, at time t as: 

௜ܰ,௧,௔ = ቆ ௜ܰ,௧ିଵ,௔ିଵ − ௜,௧ିଵ,௔ିଵ௠ܹܪ
௧ିଵ,௔ିଵ ቇ ݁ିெೌషభ 

Equation 1. 
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The number of fish harvested are obtained dividing harvest H (in weight) by mean weight at age Wt,a. Natural 
mortality at age Ma accounts for natural loss. Average individual weight at age and proportion of mature fish 
at age Pa, are used to calculate SSBi,t that is used to calculate recruitment Rt (entering the population as 
abundance at age 1) through a stock-recruitment function. Multiple stock-recruitment model formulations 
were explored, including different functional forms and with inclusion of temperature and/or zooplankton 
following Olsen et al. (2011). For consistency, we selected a model that performed satisfactorily for both 
population, rather than using different models for the two populations. The selected stock-recruitment 
model (Equation 2) was based on the Beverton-Holt function with temperature influencing recruitment 
through change of maximum recruitment level (asymptote height).   

 ܴ௜,௧ = ݁൫ఈ೔ିఏ೔்೔,೟൯ ௜,௧ቀ1ܤܵܵ + ൫݁ఊ೔ܵܵܤ௜,௧൯ቁ ݁ఌ೔,೟  
Equation 2 

The model calculated recruitment Ri,t at each time step t for each population i as a function of SSBi,t, scaled 
temperature Ti,t and parameters ߙ௜, ߠ௜, and ߛ௜. ݁൫ఈ೔ିఏ೔்೔,೟൯ was the maximum reproductive rate at 
temperature T, and positive temperature anomalies resulted in a negative effect on recruitment (lower 
asymptote height) and vice versa. Random noise ߝ௜,௧ was introduced as lognormal error. Parameters were 
estimated from data for each population i. 

The optimal harvest rate was obtained by maximising the net present value (NPV) over a long time horizon, 
for any of the two management scenarios ݉ to be compared. NPV (Equation 3) is the cumulative sum of the 
discounted annual profit:  ܸܰܲ௠ =෍ 1(1 + ௧(ߜ ௧௠௓ߎ

௧ୀ଴  

Equation 3 

where ଵ(ଵାఋ)೟ is the discount factor, ߜ is the interest rate, ߎ௧௠ is annual profit in year t, for management 

scenario m, and Z is the time horizon. In this formulation, profit ߎ௧௠ is a function of harvest rate, and 
population-specific time paths of total biomass Bn,t and Bs,t for North and South populations respectively. The 
profit function for each management scenario m was: ߎ௧௠ = ௡,௧௠ܪ൫݌ + ௦,௧௠൯ܪ − ߢ ቆܪ௡,௧௠ܤ௡,௧  ௦,௧ቇܤ௦,௧௠ܪ+

where p is price per unit of biomass and κ is a parameter for the cost functions (Equation 4 and Equation 5) 
Annual harvest of North and South populations ܪ௡,௧௠  and ܪ௦,௧௠  were functions of harvest rate (the control 
variable optimised) and total biomass Bn,t and Bs,t. The harvest functions were: ܪ௜,௧௉ௌெ = ℎ௜∗ܤ௜,௧ 
Equation 4 

And ܪ௜,௧௎ெ = ℎ∗ܤ௜,௧ 
Equation 5 
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for each population i, at time t, for the Population Specific Management (PSM) and Undifferentiated 
Management (UM) scenarios. 

The study explores climate change effects by specifying the diverse response of the two cod stocks to climate 
through a temperature-dependent, empirically derived stock-recruitment function. This study thus firstly 
focuses on the optimal management of population structure, and secondly on how the optimal strategy may 
change when heterogeneous climate sensitivity is included in the model and climate is forced with simulated 
predictions. 

Several bioeconomic modelling frameworks and ad-hoc models exist and are currently applied in multiple 
contexts. For example, Nielsen et al. (2017) reviewed bioeconomic models applied in Europe, analysing the 
different capabilities to capture multispecies dynamics, spatial dynamics, and their levels of effectiveness 
and implementation in fisheries management. Bioeconomic models have been used to assess the effects of 
climate change on fisheries economic performance: for example, several studies propose approaches to 
include and mitigate the detrimental effects of climate change (e.g. Bastardie et al., 2010; Miller et al., 2013). 
Spatial bioeconomic models have been applied frequently in the study of spatially uneven distribution of 
resources or fishing effort with patchy environment (Sanchirico and Wilen, 1999, 2001). The spatial aspect 
acquires added relevance when stock distribution is influenced by the effect of climate change. This is key 
for example in the case of straddling stocks (Diekert and Nieminen, 2015), invasive species (Kaiser et al., 
2018), and spatial interaction between species. Voss et al. (2018) recently applied a spatially explicit 
bioeconomic model to investigate the role of recruitment strategies, i.e. connectivity, on the fisheries and, 
most important, on the traditional communities relying on them for subsistence and for cultural heritage. 
Although multiple studies of North Sea fisheries in bioeconomic terms exist (Bartelings et al., 2015; Heymans 
et al., 2011; Simons et al., 2014; Ulrich et al., 2011), the economic implications of predicted climate change 
on North Sea fisheries are relatively scarcely studied (Groeneveld et al., 2018; Pinnegar et al., 2016). In this 
sense, our study addresses an understudied research niche. 

 

4. Results and Discussion 

 
This thesis focuses on the interaction between spatial marine ecology, oceanography and management under 
climate change. The key hypothesis is that the interaction between spatial dynamics and climate influences 
population dynamics, with consequences for management and for the sustainability and profitability of the 
fishery. The overarching question of the thesis is thus: can we identify emerging interactions between spatial 
dynamics and climate change, and to what extent do these interactions influence fisheries management? 

While the effects of environmental variation and climate change and those of spatial dynamics on North Sea 
cod have been investigated before, the interaction between climate change and spatial dynamics is relatively 
less studied, in particular under management and economic perspectives.  

The overall answer provided by this thesis is that the effects of climate differ between subunits of the stock, 
and the spatial dynamics are influenced by climate through the connectivity between units and differential 
sensitivity to climate across the stock spatial distribution. Moreover we observed different effects depending 
on the scale of observation, i.e. at population vs. stock level, and across spatio-temporal resolution. These 
emergent interactions between climate and spatial dynamics are highly relevant for spatial ecology and for 
fisheries management. However, we did not observe a clear economic incentive in spatially explicit 
management, not even in light of differences in climate effect between populations. This result may be 



22 
 

bounded by the knowledge gaps and model limitations, revealing what relevant aspects remain to be 
explored and understood and opening new research perspectives. 

The overarching research question was broken up into smaller parts, narrowing down on some aspects, albeit 
in a non-exhaustive way. We focused on four main aspects: three with an ecological focus and one with 
intertwined ecological, management and economic focus: 1) Spatial food-web dynamics, 2) scale of dynamics 
of drift models and their effect on connectivity, 3) metapopulation dynamics and interaction between larval 
transport, climate change and recruitment; and 4) bioeconomically optimal management strategy. These 
four aspects of interest correspond to the Papers composing this thesis. 

 

4.1 Spatial food-web dynamics 
The dynamics among species in a system, and between species and the abiotic factors, depend critically on 
the spatial distribution of these elements. Several ad-hoc spatial models have been applied to understand 
multispecies dynamics and their interaction in space (Akimova et al., 2019; Hjermann et al., 2013; Kempf et 
al., 2013; Lindegren et al., 2014). 

Spatial multispecies models that can take into account the interaction between species and multiple 
pressures and impacts on the ecosystem, can be highly useful to capture complex spatial dynamics. These 
models may help to address questions where multi-species spatial dynamics play a key role for fisheries 
management perspectives. These models, however, face the challenging trade-off between complexity and 
accuracy. Spatial models can increase the number of parameters exponentially. Performance assessment of 
ecosystem models is critical, especially when their development is intended for applied purposes. Validation 
of spatio-temporal models with comparable data is an emerging field within ecological models (Rose et al., 
2009; Stow et al., 2009; Vliet et al., 2011), and only few marine ecosystem models have been critically 
evaluated with data in terms of their predictive capability (Lynam et al., 2017; Püts et al., 2020).  

The research question developed in Paper 1 is: Can spatial ecosystem models capture known spatial dynamics 
effectively? Can we measure quantitatively the fit to data and the sensitivity of the model to parameter 
uncertainty?  

In detail, the first chapter of the thesis assesses the spatial ecosystem dynamics and interactions between 
fleets and species. Based on an existing ecosystem model (Mackinson and Daskalov, 2007), a spatial version 
was developed. Model outputs were compared with spatio-temporal data to assess both model performance 
and sensitivity to parameters setting through an ad-hoc procedure for quantitative prediction to data 
evaluation. Results show that the model is sensitive to some parameters in particular, highlighting that 
information such as fish dispersal rate and the behaviour of fishing fleets, are key to understand how the 
system responds spatially. The model was capable or reproducing fish distribution patterns. Effort 
distribution, in turn, seems not to follow rational, medium-term profit-based solutions as assumed by the 
model. Instead, we propose that effort distribution in this system might be driven by processes acting at fine 
temporal scale and by decisions related to concerns other than immediate profit, perhaps driven by market 
dynamics and to the quota system and the multispecies nature of the fishery.  

This Paper sets the baseline for the thesis, confirming the role of spatial information, such as fish dispersal 
and fisheries distribution as well as predator-prey overlap, in understanding the ecology of target fish species 
including cod. In general terms, moreover, the paper serve the spatial ecosystem modelling community, 
setting the baseline of critical assessment of spatial predictions of species and fleets distribution for rigorous 
application of fisheries models. In perspective, the application of this work could be highly useful for 



23 
 

management applications: well-tested models can be reliably applied to inform spatial management 
measures, such as fishing closures or effort restrictions in some areas (e.g. north versus south). Moreover, 
estimates of natural mortality for cod from a multispecies model is included into the currently applied stock 
assessment models. This, however, is not spatially resolved, while it is now clear that predation differ 
between areas. A robust Ecospace model could provide spatio-temporal mortality patterns, possibly resolved 
at sub-stock level for North Sea cod. Our work shows that model predictions of spatial distributions can 
reliably reproduce specie distribution. However spatial predictions require robust assessment, which, so far, 
is often lacking from spatial ecosystem modelling implementations. Recent studies started to focus on this 
aspect (e.g. Lynam et al., 2017; Püts et al., 2020), showing that our study identified an important gap, and 
provided a useful guideline for successive investigations in this field. 

 

4.2 Sensitivity of larval transport models across spatial and temporal scales  
The early life stages (ELS) play a key role in shaping the year class of most fish species, including Atlantic cod. 
Variability of direction and strength of currents may influence the transport of larvae into suitable areas for 
feeding and, thus, the success of a year class recruitment (e.g. Wilson and Laman, 2020). Moreover, the 
variability in transport might affect the potential connectivity between areas and sub-populations.   

In Paper 2, we assess how vertical movement, ocean model resolution and interannual variation in ocean 
dynamics influence drift patterns and population connectivity. The research question posed was: What are 
the most important aspects that influence the spatial distribution of simulated eggs and larvae of cod in the 
North Sea? We studied how alternative setup for ELS transport models provide different results, quantifying 
the most influential aspects, across spatial and temporal scales of spatial distribution.  

We focused on these three aspects in particular, because of their known importance in modelling ELS 
distribution (Bolle et al., 2009; Lacroix et al., 2013). However, the inclusion of vertical movement and of fine-
scale model reanalysis has a major computational demand. Similarly, inclusion of multiple years is 
constrained by availability of oceanographic models that go back in time. Our focus was on identifying trade-
offs between inclusion of higher accuracy (e.g. vertical movement, high resolution), and computational cost.  

We found that the results are moderately influenced by vertical movement and ocean model resolution but 
differ substantially between years, confirming previous studies on the importance of interannual variation in 
ocean circulation for modelled fish larvae drift in the North Sea (Bolle et al., 2009; Henriksen et al., 2018; 
Lacroix et al., 2013). Interannual variability in ocean transport may be related to wind patterns (Bolle et al., 
2009; Wilson and Laman, 2020), and to large scale oceanographic patterns such as the North Atlantic 
Oscillation (NAO) index, (Henriksen et al., 2018; Huserbråten et al., 2018; Jonsson et al., 2016) which can 
influence regional to local current patterns and strength. While ocean model resolution is consistently more 
influential than vertical movement, the effect of vertical movement strongly depends on the spatiotemporal 
scale of the analyses. These results add up to the growing literature on sensitivity of drift models (Peck and 
Hufnagl, 2012), revealing that some model features often considered highly relevant, might ultimately be of 
minor importance for a specific research question and case study such as the North Sea, where the limited 
stratification might result in reduced role of vertical movement for drift patterns and overall ELS distribution. 
Sensitivity analysis should therefore be specific to the question and study area.  

The importance of interannual variability is a critical result as it confirms the relevance of long-term analysis, 
enabled by long time series of ocean model reanalysis. This could not be possible with higher resolution 
models, which are only available for most recent years. These results find immediate application: we can 
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safely apply models with relatively coarse resolution but with longer time series, allowing to monitor long-
term changes and use them for population dynamics, and effects of climate change. This study paves the way 
to Paper 3, by demonstrating that a computationally less intensive model, but with a longer time series, may 
perform similarly well than a more advanced model.  

 

4.3 metapopulation dynamics and interaction between larval transport, climate change and recruitment 
The interaction between ELS transport, environment, connectivity and recruitment dynamics is relatively well 
known for cod in the North Sea. However, the relevance of these dynamics for management is scarcely 
studied. In Paper 3, we ask the question: Can we include advection and connectivity into analysis of 
population dynamics that are useful for management? We focus on stock-recruitment models: these are 
commonly used in fisheries science to relate the amount of spawning stock in one year with the recruitment 
in the next year. These models are widely recognised to poorly capture the relationship but are nonetheless 
commonly used due to the intuitive mechanism relating stock size to production (Subbey et al., 2014). In 
many cases, their performance has been improved when introducing environmental anomalies as a 
parameter (Akimova et al., 2016; Hilborn and Walters, 1992), or when weighting the spawning stock by, 
among other variables, the age or sex structure in the spawning component (Marshall et al., 2006). 

Here, we applied the quantitative measures of larval retention and of connectivity between subpopulations 
to the stock-recruitment curves commonly used in stock assessment, in place of other, commonly used 
environmental variables such as SST. In addition, we propose a novel method for accounting for population 
connectivity in stock-recruitment models, weighting SSB by the effective larval contribution to a determinate 
population. Paper 3 shows that the importance of the retention anomaly, and of the connectivity between 
populations, differ across scales of observation. The effect of retention anomaly is small but not negligible, 
and comparable in magnitude to those of other commonly used variables such as SST. Moreover, the 
modelled connectivity between populations seems to present a correlation with SST, indicating a potential 
interaction between climate change and spatial population structure.  

These results allow us to apply the stock-recruitment curves with ELS drift, and our newly developed method, 
to this and other stocks. More important, these results help to investigate hypotheses about connectivity 
and its interaction with climate through transport, and to explore their application for management (Hidalgo 
et al., 2019; Wilson and Laman, 2020), opening up for novel research directions and positioning our study in 
the emerging field of operational fisheries oceanography (Hidalgo et al., 2019). 

 

4.4 Economically optimal management and the problem of spatial population structure 
In fisheries management, stocks are geographically defined. However, the stock resolution is rarely based on 
biological metrics and is generally an artefact. This has resulted in several stocks being managed at the 
incorrect spatial scale, often due to a lack of knowledge or insufficient data at population specific scale (Kerr 
et al., 2017). Mismanagement of population structure may lead to incorrect estimation of reference points 
for management, increasing the probability of collapse (Sterner, 2007). Such effects might go unnoticed until 
it is too late, as plausibly happened with the abrupt collapse of the cod fishery off Newfoundland and 
Labrador (Hutchings, 1996; Lilly, 2008). The results of such mismanagement might have led to disappearance 
of individual populations, with the erosion of the diversity in a stock (e.g. Bonanomi et al., 2015). Population 
diversity is a richness, offering a buffer to perturbations through the so-called portfolio effect (Schindler et 
al., 2010), and implying genetic diversity that might result in higher adaptation potential to climate change 
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(Bonanomi et al., 2015; Hauser and Carvalho, 2008). Where information is sufficient for informed population-
specific management, it is important to investigate whether separated management could improve the 
sustainability of the fishery, and ultimately its management system, both under an ecological and economic 
perspective. For example, by estimating reference points at the correct biological scale, population-specific 
management might limit the danger of serial populations depletion and of stock collapse with resulting 
economic loss for the fishing sector.  

North Sea cod is a strong candidate for separation of management for the two known populations. In Paper 
4, we ask the question: Can we propose spatial management by population as a management measure that 
outperforms the non-spatial one, using economic justification? Do we observe a change in the optimal 
management strategy (i.e. spatial vs non-spatial), in light of their different temperature sensitivities? The 
latter question in particular is important in light of the growing focus on adaptation to climate change (Woods 
et al., n.d.). If the differential effect of climate between populations is large, we can propose spatial 
management as a climate change adaptation strategy. Our results however cannot point at a difference in 
optimal management strategy: from an economic perspective it is equally profitable to harvest two 
populations individually or as one, when either management strategy is optimised. This result does not 
change when climate influences the recruitment dynamics of the two stocks. These results might be bounded 
by the simplification of our model that adopts an optimal, time-invariant harvest rate and by the relative 
similarity in response to climate of the two modelled populations. The response to climate is based on 
empirical stock-recruitment relationships including the effects of temperature. However, this analysis did not 
consider explicitly larval drift, nor the effects of climate variability and its interaction with connectivity 
between populations. Paper 3 showed that, the connectivity between populations is also influenced by 
temperature. The results may therefore differ if the additional effect of climate on drift was included in the 
bioeconomic model. In a similar analysis, Voss et al. (2018) found that biological heterogeneity explain 
differences in spatial management, whereas overlooking the heterogeneity might provide homogeneous 
optimal management. 

Our overall result, however, is in line with the existing literature on economic profitability of population-
specific management: for example, Holland and Herrera (2010, 2012) showed that the benefit of managing 
populations at their biological spatial scale depends on biological, economic and technical factors including 
uncertainty in spatial aggregation as well as mixing and migration between populations, especially if 
asymmetric. They found that the risk of mismanagement might be such that aggregated management may 
be a safer solution in determinate cases. Lindegren et al. (2013) performed a similar analysis on Öresund cod 
population, highlighting the need for developing sub-stock-specific management recommendations to allow 
the maintenance of population structuring, also in light of the economic benefits for local small scale 
fisheries. Our results highlight the importance of carefully assessing economic benefits and practical 
feasibility of alternative management strategies in the context of spatially structured populations (Kerr et al., 
2016; Voss et al., 2018). 

Although these results cannot be generalised, our bioeconomic exploration of spatial management options 
for spatially structured populations under climate change is a novel, and widely applicable, research question. 
Moreover we show that the effects of increasing temperature and of adopting optimal (rather than sub-
optimal) harvest rate, irrespective of population scale, have a larger economic impact than managing at the 
correct spatial scale.  
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5. Conclusion and significance 
The importance of spatial processes in population dynamics and ecosystems has been highlighted since the 
early ages of fisheries science, however their application into management has proven difficult. Nevertheless, 
the technological advancements and the improved understanding of marine fisheries dynamics and spatial 
populations structure has allowed considerable advancements of this field in the recent decades.   

There is momentum for including complexity in the management of fish stocks, accounting for spatial 
structure and for environmental effects: many recent studies focus on this subject (e.g. Hidalgo et al., 2019; 
Voss et al., 2018), calling for inclusion of larval connectivity (the operational oceanography concept), of 
population structure, and of spatial multispecies interaction.  

This thesis contributes to the field by identifying processes that can influence population dynamics at local 
and regional scales, and proposing approaches to assess the relevance of climate and spatial scale, and their 
interactions, on population dynamics and on fisheries management. I explored whether interactions 
between spatial dynamics and climate can influence population dynamics, and whether such interactions in 
turn can affect optimal management strategies. I proposed the integration between bioeconomic, 
oceanographic and ecosystemic aspects to assess the spatial scale of fish ecology dynamics and of fisheries 
management.  

These results open up for novel research questions: for example, one could wonder whether accounting for 
temperature-dependent connectivity or inclusion of connectivity in stock-recruitment dynamics (as proposed 
by Paper 3), would influence the optimal management strategy in the context of spatially explicit 
management. Another possible research line could be the integration of spatially explicit, population-specific 
natural mortality into stock assessment. Natural mortality is likely to differ between the two populations 
based on the predators in the area and of differing sensitivity to climate changes. These aspects, and how 
they vary in time through the food-web, could be captured by a spatial ecosystem model such as that 
presented in Paper 1. Along the line of ecosystem dynamics, one may wonder whether and how spatial 
management measures for one species would fit in a mixed fisheries context such as the North Sea demersal 
fisheries? And with the impending Brexit process, what would be the trans-national negotiations for 
international sharing of the quotas when considering or disregarding the population structure, especially 
when the outlook for the two populations’ sensitivity to climate change differs? These and many other 
questions come to mind, showing that the research exposed here is bearer of innovation, stimulating novel 
thinking.  

Spatially explicit management strategies that can account for a moving fishery in relation to population 
dynamics as well as the impact of global warming are needed now more than ever due to the potential for 
future climate change and continued fishing pressure. For North Sea cod, an ICES benchmark workshop 
(WKNSEA) is ongoing at the time of writing this thesis. Among the topics, the workshop aims to assess 
whether stock assessment at population level is feasible. This shows once again that this thesis is highly 
timely. Hopefully, the results here presented could be of relevance for this and other future applications, 
towards sustainable exploitation of North Sea cod (and other stocks) in the face of climate change and its 
interactions with fish ecology and spatial dynamics.   
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a b s  t  r  a  c t

The Ecospace  model  has been  developed  from  the  Ecopath  with  Ecosim  food  web  model  to  add  a  spa-

tial  dimension  for investigating  marine  ecosystems.  In  this study,  we  evaluated  the sensitivity of  an

Ecospace  model  developed  for the  North Sea ecosystem  to  some of  its  key parameters,  and we  examined

this  model’s capability to  reproduce  trends  in  spatial  time-series  of fish  biomass  and  fishing  effort. We

measured  the fit between  the spatiotemporal  model  predictions  and  the  corresponding data  of biomass

for  12 species  and effort  for three  fishing  fleets.  Our  results suggest  that the  Ecospace  model for the

North  Sea can  predict  quite  successfully  the species distribution,  but  not  the  distribution  of  fishing effort.

We  hypothesise  that the reason  might be  that Ecospace  assumes  spatial  effort  distribution  to  be  driven

mainly  by  profit, while  other factors  might  be more  important  in  our system  at  the  spatiotemporal  scale

explored.  The model  might thus  fail  to  capture  fisher’s  behaviour  accurately  for this  system.  Despite  the

limitations  of  our  ad  hoc  approach  for  sensitivity  analysis,  these results hint that some problems exist

in  our  model,  which  might  extend  to other  Ecospace  models and  perhaps  to the  framework  in  general.

This  study  highlights the importance  of  validating  Ecospace  models with  data  if their  results are  used  for

management  advice.  We suggest  that,  in  order  to  make  of  Ecospace  a  more  robust tool  for management

advice,  some  critical  improvements  are needed:  the  development  of  an algorithm  for parameter  optimi-

sation  through  fitting the  model  predictions  to data, and advancement  of  the  effort  distribution  model.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Fisheries management is moving towards an Ecosystem

Approach to Fisheries (EAF). EAF complements and integrates

single-species management by accounting for trophic food web

effects. Overlooking inter-specific interactions can result in unex-

pected deterioration of ecosystem structure and fish stocks (ICES,

2012b; Mackinson et al., 2009; Pikitch et al., 2004; Walters et al.,

2005). Ecosystem models are promising tools for management

advice, thanks to the appealing capability to include a  wide range

of processes across a  wide range of scales, and  to provide quan-

titative and easy-to-interpret results. Inclusion of these tools into

management advice is getting increasingly advanced, most often

in combination with other approaches (e.g., Dichmont et al., 2013;

∗ Corresponding author at: CEES, Department of Biosciences, University of Oslo,

P.O. Box 1066, Blindern, NO-0316 Oslo, Norway. Tel.: +47 22859043.

E-mail  address: giovanni.romagnoni@ibv.uio.no (G. Romagnoni).

Fulton, 2011; Fulton et al., 2011). However, the model behaviour

across different parameters values and prediction capability of the

models should be accurately investigated in order to provide reli-

able tools for managers (e.g., Harwood and Stokes, 2003). In this

study, we explored capabilities and limitations of a widely used

model to provide a quantitative evaluation which could be useful

for its  future application for management advice.

The importance of spatial dimension in marine fisheries ecol-

ogy is increasingly recognised (Ciannelli et al., 2008; Kempf et al.,

2010, 2013). Marine organisms distribute spatially according to

specific patterns, either statically (as a  result of their habitat and

environmental preferences) or  actively moving (e.g., reproductive

migration). Similarly, fishermen decide where to fish based on

their knowledge about fish distribution and other factors. Neither

fish nor fishers are thus homogenously or randomly distributed in

space, an implicit assumption in non-spatial fisheries assessment

and management. Spatial structure and processes can explain local

dynamics with relevance at the whole basin level, while ignoring

such structure and processes can undermine our understanding

http://dx.doi.org/10.1016/j.ecolmodel.2014.12.016

0304-3800/© 2015 Elsevier B.V. All rights reserved.
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of the systems and our capability to manage them effectively

(Hjermann et al., 2013; Kempf et  al., 2010, 2013; Pelletier and

Mahévas, 2005; Sanchirico, 2005).

By integrating spatial dynamics and  food web  interactions, spa-

tially explicit ecosystem models can be useful to support an  EAF. A

number of modelling frameworks have undertaken this approach:

Osmose (Shin and Cury, 2001), Atlantis (Fulton et al., 2011) and

Ecopath with Ecosim (Christensen and Pauly, 1992; Walters et al.,

1997) are among the most used tools (Fulton, 2011; Pelletier and

Mahévas, 2005; Plagányi, 2007). These models are certainly not

the panacea for the problem of fisheries management; however

they can prove useful for selecting among policy choices. Ecopath

with Ecosim (EwE) is  an approach based on a  mass-balanced food

web model (Christensen and Pauly, 1992; Walters et al., 1997) and

it  includes the spatial component Ecospace (Walters et al., 1999).

Ecospace was developed mainly for studying spatial management

scenarios, in particular marine protected areas (MPAs), and their

effect on ecosystem dynamics and fishing profitability (Beattie

et al., 2002; Le Quesne et al., 2008; Metcalfe et al., in review). Rather

than attempting to incorporate all possible processes that regulate

spatial food-web dynamics (an arguably impossible task), Ecospace

aims at reproducing general, but realistic, distribution patterns at

a  regional scale.

In  order to make the Ecospace model a  valuable and reliable tool,

one needs to carefully evaluate the model performance in several

ways. An important exercise is  sensitivity analysis (Saltelli et al.,

2008), which explores the variation in model fit across different

values of the parameters. Formal parameter sensitivity analysis

has already been performed for Ecopath (Essington, 2007) and

Ecosim (Gaichas et  al., 2012) but no analysis of the whole parame-

ter dimension has to our knowledge been performed for Ecospace.

Some studies explored model robustness to changes in parame-

ters input of ±50% (e.g., Chen et al., 2009; Espinosa-Romero et al.,

2011), focusing however on one parameter at a time, a  procedure

which does not allow to explore the whole parameter dimension

(Saltelli and Annoni, 2010). In general, the large number of param-

eters is a major challenge in modelling, and  especially for Ecospace,

as it makes it difficult to explore the parameter dimension system-

atically. Furthermore, realistic estimates of  parameter values can

be difficult to quantify, due to the lack of detailed information at

the species and fleet level for many of the parameters. Default or

user-defined values for Ecospace parameters are thus often used,

without any critical assessment of their robustness.

Another important practice is  the evaluation of a  model per-

formance through comparison with data. In Ecospace, this analysis

was performed in a  few studies for species distribution (Daskalov

et al., 2011; Mackinson et al., unpublished), however no study to

our knowledge has compared predictions of spatial distribution of

fishing effort to data. Given that the evaluation of MPA  effects on

fishery profitability is  largely based on predicted fleet response,

i.e., variation in effort distribution, fleet behaviour is  a key feature

in Ecospace. It is therefore fundamental to evaluate quantitatively

the capability of the model to reproduce known spatial patterns of

fleets’ distribution.

Two  complementary tools are then necessary for evaluating

Ecospace: (i) sensitivity analysis to variation in parameters sett-

ings; and (ii) a systematic evaluation of  model performance through

comparison of model predictions to data. In this paper we use

both these tools to firstly identify which parameters have the

largest effect on the performance of the North Sea Ecospace model;

and secondly quantify the North Sea Ecospace model capability of

reproducing known trends and spatial distribution of fish species as

well  as fishing fleets. Our aim is to evaluate the realism and unmask

what is needed in order to improve and set quality standards for

this Ecospace model, but also the framework as such, in order to be

an  efficient tool for management advice.

2.  Methods

2.1. Ecopath with Ecosim

Ecopath  with Ecosim (EwE) is  a food-web model based on

the assumption of mass-balance. It was  developed for modelling

marine ecosystems and understanding the impact of fisheries

and other pressures on the system (Christensen and Pauly, 1992;

Walters et al., 1997, 1999). The model and its assumptions have

been discussed widely in the literature (Christensen and Walters,

2004; Pauly et al., 2000; Plagányi and Butterworth, 2004). The

model is  built hierarchically: the base component is the Ecopath

model, a  static mass-balanced snapshot of a  closed ecosystem, rep-

resented through a network of nodes (functional groups) and links

(trophic interactions). Functional groups (which can be species,

groups of  ecologically similar species, ontogenetic classes, or detri-

tus groups) are represented as biomass “pools”. Diet composition

determines flows of energy and matters between functional groups.

Ecopath is  based on a system of linear equations which describe the

average flow between groups within an interval of time. The main

equation is:

Pi =  Bi · Mi +  Yi +  Ei +  BAi + Pi · (1 −  EEi)

where, for each functional group i,  Pi is  productivity, Bi is  biomass,

Mi is  total mortality rate from predation, Yi is mortality rate from

fishery, Ei is net emigration rate (emigration-immigration), BAi is

biomass accumulation rate, and EEi is  ecotrophic efficiency (the

proportion of production which is utilised in the system). The term

Pi · (1 −  EEi) can be interpreted as the mortality from other causes

than predation or  fishery. The mortality from predation links preda-

tors and preys, through the equation:

Bi ·  Mi =
∑

j

Bj · (Q/B)j · DCji

where the total predation mortality of group i is  given by the sum

across all predators j of the predator biomass Bj times the con-

sumption per unit of biomass of j  (i.e. the term Q/B)j) times the

fraction of prey group i in the diet of group j  (the term DCji).  The sec-

ond main equation of Ecopath states that consumption is equal to

production plus respiration plus unassimilated food. Ecosim devel-

ops the Ecopath food web  in a  time-dynamic simulation through a

system of differential equations, which calculates flow of biomass

across functional groups through time. Information from the Eco-

path module is combined with parameters and assumption about

feeding relationships which are used to parameterise the differen-

tial equations. Ecosim is  routinely parameterised through fitting

to time series of biomass and catches. The basic Ecosim equa-

tion expresses the rate of variation in time of  biomass B for each

group i as:

dBi

dt
= gi ·

∑
j

Qji −
∑

j

Qij + Ii −  (Mi + Fi + ei) · Bi

where gi is the net growth efficiency, Qji is  the consumption rate

of group i on group j, and Qij is  the consumption rate of group

j on  group i.  The first two  terms represent the total consump-

tion of  group i and the total predation suffered by group i from

all other groups, respectively. Ii is the immigration rate, Mi is  the

non-predation natural mortality rate, Fi is the fishing mortality rate,

and ei is  the emigration rate. In Ecosim, consumption Qij is calcu-

lated through the foraging arena theory (Walters et  al.,  1997), which

splits the biomass pool of a  prey species available to a  predator into

an available (“vulnerable”) and an unavailable (“non-vulnerable”)

fraction, regulated by a  parameter named “vulnerability”. Ecosim

is particularly sensitive to vulnerability, which is the parameter
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estimated by fitting the model to time series data (Mackinson,

2014). For further details about the model framework we refer

to Christensen and Walters (2004), Christensen et al. (2008) and

Walters et al. (1997).

2.2.  Ecospace

Ecospace is the spatial component of EwE (Walters, 2000;

Walters et al., 2010, 1999). It is  based on a  two-dimensional

“map”,  a grid of equally sized cells on  which the biomass of

functional groups is  distributed. Species distribution is  modelled

through habitat assignment based on group-specific preference

with respect to feeding and predation regimes, and dispersal rates.

Temporal changes in biomass and consumption of species at the

local scale are simulated with predator–prey relationships through

a  set of Ecosim differential equations for every cell in the map.

Groups can move to adjacent cells through random-directional

movements  depending on swimming speed. Ecospace inherits

parameters and data (e.g., time series of  biomass, fishing effort,

and environmental forcing functions) from the underlying Eco-

path and Ecosim models. Additional parameters and inputs are

required to regulate the initial allocation of  biomass and fleet

distributions, and their temporal and spatial dynamic develop-

ments (Christensen and  Walters, 2004; Christensen et al., 2008;

Martell et al., 2005; Walters et al., 1999). Details of the theory,

parameterisation and robustness checks for habitat map  and initial-

isation settings are provided in the Supplementary Appendix (A.1

and A.2).

The  parameters in Ecospace that regulate spatial distribution

of groups and species are: “Base Dispersal Rate”, “Relative Dis-

persal in Bad Habitat”, “Relative Vulnerability in Bad Habitat”,

and “Relative Feeding Rate in Bad Habitat” (Table 1). These can

be fine-tuned at group level however they also have a  default

value. Base Dispersal rate, corresponding to swimming speed, is

entered in Ecospace for each species in km/year. It can be set

between 0 and infinite and has a  default value of  300 km/year

(Table 1). Recall that in Ecospace the performance of  a  species in

non-favourable habitat is assumed to be worse than in favourable

habitat. This is simulated through three parameters, which operate

as weight factors. The Relative Dispersal in Bad Habitat parame-

ter increases dispersal rate in non-favourable habitats to simulate

greater active attempt to move elsewhere with better conditions.

It can be set from 1 (which inactivates the mechanism) to 10 and

at default is set at 2  (i.e., twice the speed in non-favourable habi-

tat as in favourable habitat). Relative Vulnerability in Bad Habitat

is a weight factor for the vulnerability parameter in Ecosim. It

regulates the increased vulnerability to predation (or  decreased

sheltering capacity) in a  less-than-optimal habitat. Its default value

is  2 (twice more vulnerable in bad habitat), and  it can be set

between 1 and 100. Relative Feeding Rate in Bad Habitat gov-

erns how much a group will feed (and ultimately grow) in a bad

habitat. It decreases the feeding rate (reducing the Ecopath value

of Q/B, Consumption/Biomass ratio). This parameter can be set

between 0 and 1, and its default value is 0.05 (Christensen et al.,

2008).

Fleets distribution can be regulated through the parameters

“Effective Power” and “Total Efficiency Multiplier” (Table 1). Fish-

ing mortality per species per cell depends on the distribution

of fishing effort. Initially, effort is  distributed through assigna-

tion of fleets to habitats, and by closing cells to some or to all

fleets to simulate MPAs. Then, a  gravity model (Caddy, 1975;

Walters et al., 1999) spreads yearly fishing effort values (inher-

ited from Ecosim) across all cells open to fishing (i.e., cells which

are not land, not MPAs and are set as suitable habitat to a cer-

tain fleet) proportionally to the “attractiveness” of each cell. At

every time step, attractiveness An,k to cell n  for fleet k,  for all

Fig. 1. Study area. The North Sea divided in the ICES statistical rectangles corre-

sponding  to Ecospace cells used in this study. The area included in  the  Ecospace

model comprises cells shown in both dark and light grey. In dark grey are shown

cells  for which biomass data from the ICES survey were available. In light grey are

shown cells included in the Ecospace model but for which biomass data was not

available for comparison. White cells are not  included in the Ecospace model.

i species in I (all species in the catch portfolio of fleet k)  is:

An,k =
(∑I

i=1
pk,i · qk,i · Bi,n

Cn,k

)1/�

where pk,i is  the price for species i for fleet k,  qk,i is the catchabil-

ity of species i by fleet k,  and Cn,k is the cost for fleet k of fishing

in cell n.  The argument in bracket corresponds to profit, and �
measures variation among fishermen in the perception of profit

from fishing in cell n. Profit depends thus on the abundance in the

cell n of target species of fleet k,  and on fleet-specific and species-

specific prices. Cost is  based on a  map  of sailing costs, and on fixed

costs  (as assigned in Ecopath). The ratio 1/� is  called “P” and cor-

responds to the Effective Power, one of two parameters that can

be changed to influence fleets effort distribution. P is  by default set

equal to 1. Setting P higher than 1 means a lower variation in the

perception of profit among fishermen (�). High P results therefore

in effort being concentrated in the most profitable cells (in these

cells attractiveness grows, while in less profitable cells it  decreases),

whereas low P results in smoother distribution of effort across the

map. Maps of effort distribution are then converted to cell-specific

fishing mortality per species at  every time step. Finally, Total Effi-

ciency Multiplier is a multiplier factor for effort, with a default value

of  1.

2.3. Study area

The  North Sea is  a  semi-enclosed basin, with temperate cli-

mate and mixed faunal assemblage, including boreal and Lusitanic

species. The basin is  divided in a  southern shallow area and a

northern deeper one. The Norwegian Deep and the continental

slope constitute the natural borders of the basin in the North-

East, and North-West respectively (Fig. 1). The  North Sea has

an important history of fishing, the management of which has

been complex due to the mixed nature of fisheries and the large

number of countries that fish in these waters. Other activities
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Table 1
The  parameters of Ecospace evaluated in this study and their characteristics: category (indicating parameters related to  either species or fleets distribution), default value,

unit  of measure (dimensionless parameters are indicated by a dash), and the  range of values explored in this study. For parameters Base Dispersal Rate, Effective Power and

Total Efficiency Multiplier the upper limit of the  range is not given in Ecospace. Range limits used in this study are displayed. Range limits can differ across sub-parameters

within the same parameter.

Parameter name Category Default value Unit Range explored in this study

Base Dispersal Rate Species 300 km/year 0–2000a/2000b/300c

Relative Dispersal in Bad Habitat Species 2 –  0–100

Relative Vulnerability in  Bad Habitat Species 2 –  0–10

Relative Feeding Rate in Bad Habitat Species 0.05 –  0–1

Effective Power Fleet 1 –  0–30d/37e/150f

Total Efficiency Multiplier Fleet 1 –  0–1.3d/3e/1.5f

a Pelagic species.
b Demersal species.
c Invertebrates.
d Otter trawl.
e Beam trawl.
f Pelagic trawl.

(e.g., shipping traffic, oil and gas extraction and wind farms) are

increasingly causing conflicts with fishing activities (Gimpel et al.,

2013). The main fisheries can be divided in demersal and pelagic.

Demersal fisheries target roundfish (in particular gadoids) and

flatfish (especially sole and  plaice), while pelagic fisheries tar-

get herring and mackerel for human consumption, and sandeel

and sprat for fishmeal and other industrial use. Shrimp and

Norway lobster also constitute important target species (ICES,

2013). Fisheries management is based on bilateral agreement

between European Union and Norway, with area-, species- and

gear-specific limits in catches. The total allowable catches are

established yearly on the basis of scientific advice from ICES

and the Scientific Technical Economic Committee for Fisheries

(STECF) of the European Union, a quota of which is assigned to

each country and fleet. Management has been partially success-

ful: after years of systematic decline of most stocks, a  moderate

recover was observed in recent years for several of  the fish

stocks after a large reduction in fishing effort and possibly also

a reduction of bycatch (ICES, 2013). The food web structure and

ecosystem functioning of the North Sea is  just starting to be

understood and the large number of species and their interac-

tions make it a very complex system to manage (Mackinson et al.,

2009).

2.4. Application of the Ecospace model for the North Sea

ecosystem

The  model used for this study is  an Ecopath with Ecosim and

Ecospace model based on  Mackinson and Daskalov (2007) and its

recent updates (Heymans et al., 2011; ICES, 2011, 2012b). Since

the present study only focuses on Ecospace, the underlying Eco-

path and Ecosim models were not  explored and forcing functions,

parameters and data for these components were unchanged from

the model in ICES (2011). Details of the forcing functions used for

the North Sea Ecosim model are provided by Mackinson (2014). The

structure of the Ecospace model (i.e., the model building blocks,

data and parameterisation) from Mackinson and Daskalov (2007)

was also maintained, however some changes were brought in this

study to the map, the habitat assignment and some initialisation

parameters, and forcing functions were not  included. The North Sea

model is based on a  “base year”, 1991, and develops dynamically

in time for 17 years until 2007. Ecospace models, once initialised,

take a variable number of time steps to reach equilibrium. For this

study, a burn-in period of 17 years (same length as the time series

used) was included to allow the model to reach equilibrium. For

the burn-in period all data were set equal to baseline (i.e., at the

same level of 1991).

2.5. Data

We  compared model predictions for biomass and fishing effort

with corresponding spatially resolved data of biomass and fishing

effort (hereafter, “observation”). Data of biomass for 12 selected

species (namely: starry ray Ambliraja radiata, cod Gadus morhua,

whiting Merlangius merlangus, haddock Melanogrammus aeglefinus,

saithe Pollachius virens, norway pout Trisopterus esmarkii, gurnards

Eutrigla sp., Trigla sp. and Aspitrigla sp., herring Clupea harengus,

mackerel Scomber scomber, sandeel (family Ammodytidae), plaice

Pleuronectes platessa and sole Solea solea) were obtained from the

North Sea ICES International Bottom Trawl Survey (IBTS). Fishing

effort data were obtained from STECF (2011). Six fleets (out of

the 12 fleets present in the model) were included in the analy-

sis: beam trawl, pelagic trawl, otter trawl, shrimp trawl, nephrops

trawl, sandeel trawl. Since the partitioning between fleets in the

spatial data from STECF was different from the Ecospace model, we

lumped  the last four fleets in the group named “Otter trawl”.

Observations and predictions for both biomass and effort are

comparable for spatial and temporal distribution: both sets are

available on a  yearly basis and at the same spatial scale, based

on ICES statistical sub-rectangles (hereafter “cells”) of 1  degree

(Longitude) by 0.5 degree (Latitude). Due to changes in the data

distribution across years, the spatial and temporal coverage is not

uniform. For every year, only cells present in both observations and

predictions were used, resulting in 154 cells for the base year and

similar but varying number for other years. The unit of Ecospace

biomass is  t/km2.  In ICES IBTS data, the unit is  in catch per unit

effort, standardised to numbers/hour of  trawling. This value was

converted to kg/hour using species mean weight as conversion fac-

tor. The two  datasets (predictions and observations) were made

comparable using a  constant (mean observed/mean predicted) as

converting factor for each group. The two independent datasets

have the same mean value after conversion. The same process was

performed for fishing effort observations and predictions.

Ecospace uses price and cost data (which are species-and fleet-

specific) and calculates fleet-specific maps of sailing cost based on

distance from ports. Through a  gravity model, Ecospace assigns

effort in space based on these cost maps and fish biomass distribu-

tion (Walters et al.,  1999; see also Section 2.2). Cost and price data

in Ecospace are inherited from the underlying EwE model. The price

and cost data used for this study are based on Heymans et al. (2011),

in turn obtained from the SGECA 08-02 working group report (AER,

2008), reviewed by STECF. Other data required by Ecospace (fleets

assignment to habitats and  to ports, fixed costs, target species per

fleet), were all based on information available in the previous EwE

North Sea model (Heymans et al.,  2011; ICES, 2011).
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3. Theoretical background

3.1.  Model parameters

The  number of estimated parameters in the model is  determined

by (i) the number of functional groups that have parameters (either

biomass, P/B, Q/B, or EE) estimated in solving the mass-balance

equation in Ecopath, and (ii) the number of vulnerability and  pri-

mary production anomalies in Ecosim. In  the Ecospace component,

parameters for distribution and dispersion are estimated outside

the model and used as inputs. No parameters are directly esti-

mated by Ecospace itself. Parameterisation of the North Sea model

is described in detail in Mackinson and Daskalov (2007), Mackinson

et al. (2009), Heymans et al. (2011), and ICES (2011). In this study,

parameters for Ecopath and Ecosim were kept the same as in those

publications, but Ecospace parameters were varied manually to

evaluate their effect on the performance of the spatial predictions.

3.2. Measure of model fit

Spatially resolved observations and predictions for each of the

17 years of the simulation were compared through correlation coef-

ficient. Data were found to be non-normally distributed for all 12

species groups (Shapiro–Wilks test for normality). Therefore, the

Spearman’s rank correlation coefficient (hereafter called “correla-

tion”) was chosen as measure of fit, as it is  capable of dealing with

non-normal data. Correlation provides a measure of how well high

and low values are predicted by the model, i.e., the model capability

of reproducing relative patterns. Positive values (close to 1)  indi-

cate a positive correlation of the model’s prediction with the data,

i.e., prediction of high values in the Ecospace grid cells where high

values were observed, and prediction of low values where low val-

ues were observed. With negative correlation values (approaching

−1) the model shows a negative correlation with the data (high

values predicted where low values were observed and vice versa).

Values close to 0 suggest a weak or unclear trend, i.e., the model is

not  assigning univocally high or low prediction to high or low data

values. Correlation values between observations and predictions

were calculated for each species and fleet for every year for which

data were available: since biomass data are available from 1991 to

2005, and effort data from 2003 to 2007, the two time-series over-

lap only for three years. For our analysis, a  value of overall fit for

each model was calculated as follows: (i) for every year, the median

across all 15 groups (including both species and fleets in the three

years when both categories are present) was calculated; (ii) the 17

yearly values of median correlation were then averaged to obtain a

mean value of model performance across the period of study. This

value was used as total measure on the model fit. The diagram in

Fig. 2 shows the framework for model initialisation, model run and

the  analysis of results.

3.3.  Parameter sensitivity

The  high number of parameters in Ecospace does not allow

exploring all possible parameter combinations manually. However,

no automated procedure is at present implemented in the Ecospace

software. We therefore used an  ad hoc method, with progressive

exclusion of non-influential parameters and reduction of parame-

ter space by aggregating groups into macro-groups of ecologically

similar species. Following previous studies (e.g., Chen et al., 2009;

Fouzai et al., 2012), the species were divided into three macro-

groups: wide-range dispersing organisms (denominated “Pelagic”),

medium-ranged (“Demersal”) and small-ranged (“Invertebrates”).

For fleets, aggregation in macro-group was necessary only for Otter

trawl, as described in Section 2.5. Parameters explored were (see

also Table 1): Base Dispersal Rate, Relative Dispersal in Bad Habitat,

Fig. 2. Diagram of the framework for model initialisation, model run and analy-

sis of model results. Setup of habitat and fleet distribution was based on data and

maintained constant throughout the analyses. At every run, the  Ecospace model

produces output of spatial abundance and effort. These are externally compared to

data, and the resulting values of model fit are then analysed. Model parameters are

then changed after the analysis of previous results and the  model is  run again.

Relative Vulnerability in Bad Habitat, Relative Feeding Rate in Bad

Habitat (related to species distribution), Effective Power and Total

Efficiency Multiplier (related to effort distribution; see Sections 2.1

and  2.2). Each parameter was subset into “sub-parameters” corre-

sponding to the macro-groups of species or fleets.

We  then explored the behaviour of the model across the param-

eters’ ranges. This process took two  steps: firstly, each parameter

was analysed individually. For each parameter, we identified the

range of possible values assumed, explored the behaviour for each

sub-parameter and the interaction across sub-parameters, and

recorded the variation in fit from default value at each value. This

allowed to quantify the effect of parameters on total fit and to

identify non-influential parameters, which were excluded from

further analyses. Every individual parameter exploration was  an

interaction across its three sub-parameters, resulting in a  three-

dimensional matrix for each of the six parameters.

Secondly, a set of models in which all influential parameters

were changed simultaneously was  examined to observe parame-

ter changes and their reciprocal influences (i.e., interaction effect).

For each parameter, the model was  run alternatively with other

parameters varying, and with other parameters at  fixed default

value. The difference between these was taken as the effect of the

parameter on the total fit. To further reduce dimensionality, a  sub-

sample of parameter levels was used. Three levels were selected:

high (with all sub-parameters at  the highest value of their range),

low (all sub-parameters at lowest value of their range) and inter-

mediate (all  sub-parameters set at the median or closest lower

value). This method provided a distribution of fit (absolute and

relative percentage change from the default value) for each param-

eter, corresponding to changes across the parameter’s range. A flow

chart (Fig. 3) describes the approach used to reduce the parameter

dimension (see also supplementary appendix section A.3 for further

details).

3.4. Model predictive capability

In  order to understand the model’s predictive capability, the

results were separated into species and fleets because the meth-

ods used to predict these two  categories differ substantially in

Ecospace. A measure of  fit for each of the two categories (species

and fleets) was developed using the same method as for the total fit
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Fig. 3. Flow chart of the approach used to  reduce the  parameter dimension. The approach provided a selection of values for individual parameters’ sensitivity analysis and a

restricted number of parameter combinations, which were used for the analysis of interaction across all influential parameters.

(Section 3.2). Correlations for each category and for the total fit were

calculated across a range of parameter values to investigate the

magnitude and direction of effects of parameters on the model and

if  trends were consistent between categories and the total fit. Fur-

thermore, group-specific correlations (for each species and fleet)

were analysed to understand if  trends observed for categories were

driven by one or few groups, or if  they were representative of trends

observed across the groups, implying that the predictive capabil-

ity was influenced by category-specific factors. All analyses were

performed using R  statistical package 2.15.0 (R Development Core

Team, 2012).

4.  Results

4.1. Model fit

The  model at default values yielded a fit of 0.33 (Table 2). Calibra-

tion of the parameters across their range provided an improvement

of  up to 15% in fit between prediction and data compared to a model

calibrated with parameters at the default values. This indicates that

changes in parameters can modify the performance of the model,

as expected. In comparison, a model with parameters set as in the

Mackinson and Daskalov (2007) Ecospace model provided a  fit of

0.27,  a comparable (if slightly lower) fit to the model used in this

study. Critically, in the exploration of one parameter at a  time the

highest fit were obtained with parameters set at the highest lev-

els of the explored ranges (see supplementary Table A3), and the

pattern was  respected when using values higher than what is con-

sidered realistic. This is a problem because, if the model was  to be

parameterised through fit to data, it would lead to use unrealistic

parameter values.

4.2.  Sensitivity analysis

The  model resulted to be sensitive to some, but not all of the

parameters under investigation. Parameters Relative Dispersal in
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Fig. 4. Effect of parameters Base Dispersal Rate, Relative Vulnerability in Bad Habi-

tat, Effective Power, Total Efficiency Multiplier on fit  under interaction. Percentage

change  of fit is represented on the y  axis.

Bad Habitat and Relative Feeding Rate in Bad Habitat caused no

changes to model fit throughout their ranges both under individual

parameter sensitivity and under interaction with other parameters.

These two parameters were thus excluded from further analyses.

The model was  affected by all other parameters explored, and the

model fit was generally improved by changing the parameters from

the default values. Percentage change of fit from the default value

(Fig. 4) was different in median value and in standard deviation for

each of the parameters: Base Dispersal Rate had  a  median value

of 3.7 (interquartile range 2.2–5.6); Relative Vulnerability had a

median value of 0.12 (interquartile range −0.07 to 0.56); Effective

Power had a  median value of 11.7 (interquartile range 3.4–14.1);

Total Efficiency Multiplier had a median value of 2.14 (interquartile

range −0.45 to 4.15).

4.3.  Model predictive capability

By  splitting the model results into different categories, we

could observe the differences in the model prediction capabil-

ity for species and fleets distribution (Fig. 5).  The predictions of

fleets’ distribution were consistently negatively correlated with

data, with median values around -0.26 across all parameters and

with small variability. Biomass predictions were much closer to the

data, with correlation consistently above 0.4 across all  parameters.

The median across the 15 groups (12 species and three fleets), used

throughout this study as a measure of fit, was slightly lower than

species, as expected. Trends for individual parameters (with neg-

ative fit for fleets and positive for species) were confirmed also

in an “interaction model” with all parameters changed simulta-

neously (Fig. 5). Looking at the differences between parameters,
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Fig. 5. Model fit for the  full model (“interaction”) and individual parameters Base Dispersal Rate, Relative Vulnerability in Bad Habitat, Effective Power, Total Efficiency

Multiplier, divided by the  categories species, fleets, and the total (combining species and fleets).

it is interesting to see that in general the median values were fairly

stable but the interquartile ranges varied for different parameters.

Largest variations around the median for fleets were observed with

parameter Effective Power. For species, Effective Power had largest

effect on the variation, followed by Total Efficiency Multiplier and

Base Dispersal Rate. This suggests that the parameters might affect

differently the two categories of the model, however the biolog-

ical component (i.e., species) is  affected also by the fleet-specific

parameters (Effective Power and Total Efficiency Multiplier), but

not so much the opposite. The model prediction, species-by-species

and fleet-by-fleet, also confirmed the trend (Fig. 6). Most species

showed a good fit:  nine species out of 12 had correlation above

0.35, and 4 above 0.60, while only for Cod, Whiting and Mackerel

the correlation was consistently low (below 0.2). Furthermore, Cod,

Starry ray and Gurnard also showed larger variance around their

median than all other groups. Fleets predictions were all negative

or not significant. The total model fit, used to evaluate the model

sensitivity, was closer to the values of species than to fleets.

5.  Discussion

This study is, to the best of our knowledge, the first attempt

to perform sensitivity analysis of Ecospace parameters using fit

to data as a  measure of model performance. Ecospace is a  widely

used tool for evaluating the outcomes of  policy scenarios involving

MPAs and other spatial management measures on both ecosystems

and fisheries. There is a  variety of uses for Ecospace: for instance,

effects of aquaculture on the ecosystem (Piroddi et al., 2011), move-

ment models (Martell et al., 2005), game theory (Beattie et al.,

2002) and further progresses are made to add realism by inclusion

of nutrient–phytoplankton–zooplankton models (e.g., Steenbeek

et al.,  2013; Walters et al., 2010) while moving towards an end-

to-end modelling approach (e.g., Fulton, 2010; Rose et al., 2010;

Travers et al., 2007). The original purpose and main application of

Ecospace is  however the evaluation of MPAs’ effectiveness in light

of ecosystem dynamics and  of the effects of effort displacement

(Walters, 2000; Walters et al., 1999). The use of Ecospace for man-

agement is  now suggested within the framework of  a  shift towards

ecosystem-based fisheries management in Europe (ICES, 2012b).

For use within a  theoretical and purely speculative approach, the

model does not require to be validated with data. However, before

its results and outcomes are included into management actions,

a severe and  rigorous evaluation process should take place, con-

cerning the data quality, parameterisation and model capability to

reproduce known trends. In this study we  evaluated the model

under two  complementary aspects: we explored and quantified

Fig. 6. Group-specific fits by species, fleets, and the total (combining species and fleets) across alternative parameter combinations for 3 alternative model settings, with all

parameters set at the highest, lowest or median levels of the ranges, respectively.
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first the sensitivity of the North Sea Ecospace model to parame-

ter settings, and then the model’s capability of predicting known

distribution trends of  species and fleets.

Our sensitivity analysis showed that some parameters are more

influential on the model performance, while some others had no

effect at all. The model seemed to be overall robust to variation in

parameter settings as the largest change in fit showed an improve-

ment of about 15% compared to the fit at default setting. The

parameters to which the model was found to be most sensitive

require further investigation: in particular, for the two fleets-

related parameters (Effective Power and Total Efficiency Multiplier)

there is little, if any, reference to sensitivity in the published mod-

els. These parameters affected the total fit the most, and further

studies on the significance of these parameters and on  realistic val-

ues should be undertaken in the future. Base Dispersal Rate also

affected the model fit, and this value as well should be investi-

gated in more detail. Few studies performed sensitivity analysis

on this parameter (e.g., Chen et al., 2009; Espinosa-Romero et al.,

2011; Martell et al., 2005). Reliable estimates for this parameter are

scant, even for the best studied species. Base Dispersal Rate is  based

on random dispersal, which is scarcely studied: most of the fish

movement studies focus on directional migration (such as spawn-

ing migration in flatfish, Hunter et al., 2004; Rjinsdorp and Pastoors,

1995), or on point estimates of tagged individuals across a  period

of days to months, but rarely through years (e.g., Righton et al.,

2007). Furthermore, the variability in dispersal can be extremely

large within a single species: some inshore populations of cod show

a  dispersal range <10 km (Knutsen et al., 2011), while others per-

form migrations of hundreds of km (Neuenfeldt et al., 2013). The

attempt of defining an exact dispersal rate for every species is there-

fore intrinsically inappropriate, while it could be useful to explore a

range  of values. Several studies used simplifications such as lump-

ing species into fast-moving, slow-moving and sedentary species,

which was also adopted in this study, and of these, many used the

arbitrary “300-30-3 rule” for assigning Base Dispersal Rate (e.g.,

Chen et al., 2009; Fouzai et al., 2012; Piroddi et al., 2011; Zeller and

Reinert, 2004). This, in the lack of better estimates and coupled with

adequate sensitivity analysis, could be a  valid solution. Through

the sensitivity analysis we also identified some problems of our

Ecospace model. The best values for some of  the parameters or

sub-parameters were at  the maximum of their ranges, suggesting

that optimal values are outside of the range explored (see supple-

mentary Table A3). This is of course a  problem, especially in those

cases when the parameter values providing the highest fit were

unrealistic (e.g., for Base Dispersal Rate). These findings point at

problems in either the model, the data (discussed further below),

or the method used for sensitivity analysis. In this study we  used a

manually implemented ad hoc method for the sensitivity analysis,

which did not cover the full parameter dimension. The  analysis of

parameter interactions was based on a  subset of models with arbi-

trarily determined combinations of parameter values. The subset

was selected so to be representative of the whole range of param-

eters, however it could have overlooked optimal combinations of

parameters.

The  model capability of predicting known spatial trends clearly

differed between species and fleets: our North Sea Ecospace model

did a relatively inaccurate job in predicting distribution of fleets.

This result was consistent across ranges of parameters (the pre-

dictions for fleet distributions are negatively correlated with the

data across all parameter ranges for every parameter tested) and

within the groups: despite the fit for some species was  worse

than for others, for no species the fit was as low as for any fleet

(Fig. 5). This result suggests that the fit of species distribution pre-

diction to data (as done in Daskalov et al. (2011) and Mackinson

et al. (unpublished)) provides a  valuable and reliable evaluation for

species distribution, but it does not provide a  full picture of the

whole  ecosystem, since the human component (fisheries) is not

explicitly included. Ecospace applications focus on spatial fisheries

management, for example effects of MPAs on the ecosystem via

spatial re-distribution of fleets (Walters, 2000). These applications

assume that fleet behaviour is realistic, i.e., that the model is capa-

ble  of reproducing choice criteria of  fishers. In no Ecospace study

so far, to the best of our knowledge, such prediction capability has

been quantified with data. In our North Sea Ecospace model, the

prediction capability for fleet effort was found to be relatively poor.

While this might be due to the specificities of the study area, we

cannot exclude that similar results could be observed in other mod-

els and areas. We therefore suggest that a  quantitative assessment

is routinely undertaken for parameterisation of Ecospace models,

in particular for cases where the models’ results are used for man-

agement advice.

Our  hypothesis is  that the reason for the low fit between effort

predictions and  data lies in the mismatch between the resolution

of the spatial effort distribution model and the fishers’ behaviour.

The gravity model used in Ecospace to distribute fishing effort in

space is  rooted in decision-making theory: it assumes that fish-

ermen’s decisions on where to fish depend mainly on profitability.

However, fishermen do not have perfect knowledge of the real pro-

fitability of fishing in an area beforehand. This is  accounted for in

Ecospace through attractiveness. The attractiveness of an area for

fishermen is  modelled as profit scaled by variation �. This value

represents the different decision criteria among fishers, and can

be interpreted as a  measure of different strategies adopted. Attrac-

tiveness is thus a  measure of profitability scaled by the perception

and knowledge of the system that fishermen in a fleet have. Effort

allocation in Ecospace is therefore based on perceived profitability

(Walters et al., 1999). However, in the real world the behaviour

of fishermen might be strongly dependent on other factors: for

example, other fisher’s position might play a role (Poos et al., 2010;

Poos and Rijnsdorp, 2007). A key factor for the North Sea might

be the fact that the target species in any particular fishing trip is

not  necessarily the most profitable, but can depend on  the avail-

able species-specific quotas, and by the daily oscillations in market

price. In the model, the profitability is derived by aggregated profit-

ability per all species in the area; however, fishers do in fact aim for

one or few species at  a  time, and all the others are bycatch. There-

fore, decisions on where to fish are based on considerations about

the instantaneous profitability of one species. Lastly, effort data are

aggregated across the year, while the fishers’ decisions are taken

on a daily or weekly basis, and this might not be captured well by

the model.

There are a number of alternative explanations for the low fit

observed between effort data and model prediction. Factors influ-

encing the model results include for example data quality, objective

function, initialisation parameters, grouping of species and fleets,

and  settings of the underlying Ecosim model. Biomass data, for

example, could fail to reproduce adequately real species distribu-

tion, and IBTS data used here are known to have spatial dependence

(Lewy and Kristensen, 2009). Given that the species prediction is

relatively accurate, however, spatial dependence in biomass data

was not considered problematic for this study. Effort data might

also fail to adequately represent fleets distribution in space and

time. We  compared main distribution trends with data available at

national level for few countries, and no major inconsistencies were

found. Temporal trends were also explored by comparing effort

time series (used in Ecosim) with aggregated STECF data. The two

datasets were comparable only for four years, however two fleets

out of three showed highly comparable trends. This suggests that

the STECF data represent adequately fleets spatial distribution and

temporal trends. The effects of the objective function, initialisation

parameters, cost and price data and other settings were investi-

gated through robustness checks (supplementary appendix section
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A.4), and none of these affected the results. Alternative grouping

of the Demersal trawl efforts, and alternative settings for vulnera-

bility of Ecosim were also explored: under some combinations of

values a small improvement in the fit of Demersal trawl fleet was

observed. This suggests that Ecosim parameterisation and alter-

native fleet grouping might affect Ecospace spatial performance

through species distribution. However, Beam trawl and Pelagic

trawl consistently showed low fit across all parameters exploration.

Overall, we cannot exclude completely that the low fit of effort pre-

dictions to data is  due to effort data quality or to parameterisation

and settings of the model. We  however maintain that the results

observed are due to limitations of the model for predictions of effort

distribution.

For future applications of Ecospace, and especially when the

results are used for management advice, we recommend that (i)

validation with data is  performed, using both biomass and effort

data; this is in general good practice to ensure that the model

works properly, and to quantify predictive capability. In addition

it can reveal problems within the model, as in our case with the

predictions of effort distributions. And (ii) we  recommend that a

thorough evaluation of sensitivity of the model to parameters set-

ting is performed. In order to properly evaluate sensitivity, one

needs to explore the whole parameter dimension (e.g., through

Global Sensitivity Analysis; Morris et al., 2014; Saltelli et al.,  2008,

1999). We  used a manual, ad hoc approach to screen out parame-

ters and reduce the number of  parameter values to explore. This

approach provided indications about the model behaviour and

about its strength and weaknesses and was therefore a  useful exer-

cise but it is not suited to explore the whole parameter dimension.

A thorough parameter exploration and a  more rigorous sensitivity

analysis could only be achieved through an  optimisation algorithm,

however no such tool is currently implemented in the Ecospace

software. An algorithm could also be useful to parameterise the

model through fit to data. This is already common practice in the

Ecopath and Ecosim modules (Christensen and Walters, 2004), for

which optimisation algorithms are implemented. Finally, we sug-

gest that care must be taken when interpreting effort predictions,

as our results suggest that not in all cases the model captures fleets’

behaviour accurately. We suggest that further improvement in the

effort model could be needed for Ecospace to become a  robust

tool for advice about fisheries dynamics across spatial management

scenarios.

6. Conclusions

There is in general a  need for management advice modelling

tools that combine multispecies models, spatially explicit mod-

els, and socio-economic considerations (ICES, 2012a; Kempf et al.,

2013; Thunberg et al.,  2012). The ongoing progress of spatially

explicit ecosystem models, among which Ecospace, coupled with

improved understanding of mechanisms operating at the local scale

(Hjermann et al., 2013; Kempf et al., 2013), could help improving

spatial multispecies modelling and management.

This study is the first to quantify the fit between model predic-

tions and data for Ecospace using both species and fleet distribution.

Here we showed that comparison of model prediction to spatial dis-

tribution can be useful to evaluate the model performance, and that

sensitivity analysis can help to understand the model behaviour.

This approach could be part of a larger set of standard rules for cal-

ibration and evaluation of Ecospace models to be used for policy

advice for the ecosystem-based management of marine resources.

This  study finds its significance in the context of a  larger effort

to improve Ecospace through continuous development and testing

(Walters et al., 2010), where the model is  in continuous evolution

and constantly changing to address new questions and challenges.

It  has been suggested that Ecospace should not at  present be consid-

ered as a management tool, and its primary goal should be scenario

exploration and policy testing, for which the model is effective

(Beattie et  al., 2002; Dichmont et al., 2013; Martell et al.,  2005;

Walters, 2000; Walters et al., 2010, 1999), while caution should be

used when interpreting results. We  believe that, to develop this

framework further, focus should be given to the development of an

algorithm for parameter optimisation, and to the improvement of

the  model for fishing fleets’ behaviour. Thanks to these improve-

ments and to other recent developments (e.g., Christensen et al.,

2014; Steenbeek et al., 2013; Walters et al., 2010) we  are confident

that the Ecospace model will become a more robust tool, suitable

also for management advice.
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Le  Quesne, W.,  Arreguín-Sánchez, F., Albañez-Lucero, M.,  Cheng, H.-Q., Cruz Escalona,
V., Daskalov, G., Ding, H., González Rodríguez, E., Heymans, J., Jiang, H., Lercari,
D.,  López-Ferreira, C., López-Rocha, J., Mackinson, S.,  Pinnegar, J., Polunin, N.,
Wu, J., Xu, H.-G., Zetina-Rejón, M.,  2008. Analysing ecosystem effects of selected
marine  protected areas with Ecospace spatial ecosystem models. Fish. Cent. Res.
Rep. 16, 1–67.

Lewy,  P., Kristensen, K., 2009. Modelling the distribution of fish accounting for spatial
correlation and overdispersion. Can. J. Fish. Aquat. Sci. 66, 1809–1820.

Mackinson,  S., 2014. Combined analyses reveal environmentally driven changes in
the North Sea ecosystem and raise questions regarding what makes an ecosys-
tem  model’s performance credible? Can. J.  Fish. Aquat. Sci. 71, 31–46.

Mackinson, S., Daskalov, G., 2007. An ecosystem model of the North Sea to  support
an ecosystem approach to fisheries management: description and parameteri-
sation.  Sci. Ser. Tech Rep., Cefas Lowestoft, 142, 196 pp.

Mackinson,  S., Deas, B., Beveridge, D., Casey, J.,  2009. Mixed-fishery or ecosys-
tem  conundrum? Multispecies considerations inform thinking on long-term
management  of North Sea demersal stocks. Can. J. Fish. Aquat. Sci. 66,
1107–1129.

Martell,  S.J.D., Essington, T.E., Lessard, B., Kitchell, J.F., Walters, C.J., Boggs, C.H., 2005.
Interactions of productivity, predation risk, and fishing effort in the efficacy
of  marine protected areas for the central Pacific. Can. J.  Fish. Aquat. Sci. 62,
1320–1336.

Metcalfe,  K., Vaz, S., Engelhard, G.H., Villanueva, M.C., Smith, R.J., Mackinson, S,  in
review. Evaluating conservation and fisheries management strategies by linking
spatial prioritization software and ecosystem and fisheries modeling tools. J.
Appl. Ecol.

Morris, D.J., Speris, D.C., Cameron, A.I.,  Heath, M.R., 2014. Global sensitivity analysis
of an end-to-end marine ecosystem model of the North Sea: factors affecting
the  biomass of fish and benthos. Ecol. Model. 273, 251–263.

Neuenfeldt, S., Righton, D., Neat, F.,  Wright, P.J., Svedang, H., Michalsen, K., Subbey, S.,
Steingrund, P., Thorsteinsson, V., Pampoulie, C., Andersen, K.H., Pedersen, M.W.,
Metcalfe, J., 2013. Analysing migrations of Atlantic cod Gadus morhua in the
north-east  Atlantic Ocean: then, now and the  future. J. Fish Biol. 82, 741–763.

Pauly, D., Christensen, V., Walters, C., 2000. Ecopath, Ecosim, and Ecospace as tools
for evaluating ecosystem impact of fisheries. ICES J.  Mar. Sci. 57, 697–706.

Pelletier, D., Mahévas, S.,  2005.  Spatially explicit fisheries simulation models for
policy evaluation. Fish  Fish. 6, 307–349.

Pikitch, E.K., Santora, C., Babcock, E.A., Bakun, A., Bonfil, R., Conover, D.O., Dayton,
P.,  Doukakis, P.,  Fluharty, D., Heneman, B., Houde, E.D., Link, J., Livingston, P.A.,
Mangel,  M.,  McAllister, M.K., Pope, J.,  Sainsbury, K.J., 2004. Ecosystem-based
fisheries  management. Science 305, 346–347.

Piroddi, C., Bearzi, G., Christensen, V., 2011. Marine open cage aquaculture in  the
eastern Mediterranean Sea: a new trophic resource for bottlenose dolphins. Mar.
Ecol. Prog. Ser. 440, 255–266.

Plagányi, É.E., 2007. Models for An Ecosystem Approach to Fisheries. FAO, Rome, 108
pp.

Plagányi, É.E., Butterworth, D.S., 2004. A critical look at  the potential of Ecopath with
Ecosim to  assist in practical fisheries management. Afr. J.  Mar. Sci. 26, 261–287.

Poos, J.-J., Quirijns, F.J., Rijnsdorp, A.D., 2010. Spatial segregation among fishing
vessels  in a multispecies fishery. ICES J. Mar. Sci. 67, 155–164.

Poos,  J.-J., Rijnsdorp, A.D., 2007. An “experiment” on effort allocation of fishing ves-
sels: the role of interference competition and area specialization. Can. J.  Fish.
Aquat.  Sci. 64, 304–313.

Righton,  D., Quayle, V.A., Hetherington, S.,  Burt, G.,  2007.  Movements and distri-
bution  of cod  (Gadus morhua) in the southern North Sea and English Channel:
results  from conventional and electronic tagging experiments. J. Mar. Biol. Assoc.
UK 87, 599–613.

Rjinsdorp,  A.D., Pastoors, M.A., 1995. Modelling the spatial dynamics and fisheries
of  North Sea plaice (Pleuronectes platessa L.) based on tagging data. ICES J.  Mar.
Sci.  52, 963–980.

Rose,  K.A., Allen, J.I., Artioli, Y., Barange, M.,  Blackford, J., Carlotti, F., Cropp, R., Daewel,
U., Edwards, K., Flynn, K., Hill, S.L., Hille Ris Lambers, R., Huse, G., Mackinson, S.,
Megrey, B., Moll, A., Rivkin, R., Salihoglu, B., Schrum, C., Shannon, L., Shin, Y.-J.,
Smith,  S.L., Smith, C., Solidoro, C., John, St., Zhou, M.M.,  2010. End-to-end models
for  the analysis of marine ecosystems: challenges, issues, and next steps. Mar.
Coast.  Fish. 2, 115–130.

Saltelli,  A., Annoni, P., 2010. How to avoid a perfunctory sensitivity analysis. Environ.
Model. Softw. 25, 1508–1517.

Saltelli,  A., Ratto, M.,  Andres, T., Campolongo, F., Cariboini, J., Gatelli, D., Saisana, M.,
Tarantola, S., 2008. Global Sensitivity Analysis. The Primer. John Wiley &  Sons
Ltd,  Chichester, West Sussex.

Saltelli, A., Tarantola, S., Chan, K.P.-S., 1999. A  quantitative model-independent
method for Global Sensitivity Analysis of model output. Technometrics 41,
39–56.

Sanchirico,  J.N., 2005. Additivity properties in metapopulation models: implications
for the assessment of marine reserves. J.  Environ. Econ. Manage. 49,  1–25.

Shin, Y.-J., Cury, P.,  2001. Exploring fish community dynamics through size-
dependent trophic interactions using a spatialized individual-based model.
Aquat.  Living Resour. 14, 65–80.

STECF, 2011. Scientific, Technical and Economic Committee for Fisheries (STECF) –
The 2011 Annual Economic Report on the EU Fishing Fleet (STECF-11-16). Pub-
lications Office of the European Union, Luxembourg, EUR  25106 EN, JRC 67866,
234  pp.

Steenbeek, J., Coll, M., Gurney, L., Mélin, F., Hoepffner, N., Buszowski, J., Christensen,
V.,  2013. Bridging the gap between ecosystem modeling tools and geographic
information  systems: driving a food web model with external spatial–temporal
data.  Ecological Modelling 263, 139–151.

Thunberg, E.,  Holland, D., Nielsen, J.R., Schmidt, J.O., 2012. Coupled economic-
ecological  models for ecosystem-based fishery management: exploration of
trade-offs between model complexity and management needs. In: Shriver, A.L.
(Ed.), Visible Possibilities: The Economics of Sustainable Fisheries, Aquacul-
ture  and Seafood Trade: Proceedings of the Sixteenth Biennial Conference of
the International Institute of Fisheries Economics and Trade. July 16–20, Dar
es Salaam, Tanzania. International Institute of Fisheries Economics and Trade
(IIFET), Corvallis, p. 2012.

Travers,  M.,  Shin, Y.J., Jennings, S., Cury, P.,  2007. Towards end-to-end models for
investigating the effects of climate and fishing in marine ecosystems. Prog.
Oceanogr.  75, 751–770.

Walters,  C., 2000. Impacts of dispersal, ecological interactions, and fishing effort
dynamics on efficacy of marine protected areas: how large should protected
areas  be? Bull. Mar. Sci. 66, 745–757.

Walters, C., Christensen, V., Martell, S.,  Kitchell, J., 2005. Possible ecosystem impacts
of applying MSY  policies from single-species assessment. ICES J.  Mar. Sci. 62,
558–568.

Walters,  C., Christensen, V., Pauly, D., 1997. Structuring dynamic models of exploited
ecosystems from trophic mass-balance assessments. Rev. Fish  Biol. Fish. 7,
139–172.

Walters, C., Christensen, V., Walters, W.,  Rose, K., 2010. Representation of multi-
stanza  life histories in ecospace models for spatial organization of ecosystem
trophic  interaction patterns. Bull. Mar. Sci. 86, 439–459.

Walters, C., Pauly, D., Christensen, V., 1999. Ecospace: prediction of mesoscale spatial
patterns in trophic relationships of exploited ecosystems, with emphasis on the
impacts of marine protected areas. Ecosystems 2, 539–554.

Zeller,  D., Reinert, J., 2004. Modelling spatial closures and fishing effort restrictions
in  the  Faroe Islands marine ecosystem. Ecol. Model. 172, 403–420.



1 
 

Appendix A:   

Additional information on Ecospace, a description of the model parameterization, 

assumptions and robustness checks. 

A.1. Background information on Ecospace model 

A.1.1. Spatial model and habitat map 

Ecosystems are not homogeneous in space, and to simulate this, the Ecospace map can be 

divided into a number of user-defined habitats. Each cell of the map is assigned to one and only 

one habitat, and every functional group and fleet can be assigned to one or more habitats by the 

user. The decision on habitat assignation is based on what is considered as “favourable” and “non-

favourable” habitats. In Ecospace, non-favourable habitats can be imagined as portions of sea 

where a species has lower probability of surviving and reproducing successfully due to some 

characteristics of the area, for example bottom type. This can result in higher predation mortality 

and/or low feeding success for a species because it cannot hide or feed effectively. These factors 

are difficult to quantify through predator-prey relationship, and are thus represented through habitat 

setting. The classic example is that of a coral reef fish displaced in the open ocean. Although in 

absolute terms the potential predators could be more abundant on a coral reef, in the open ocean 

the coral fish can’t hide as it would do on a reef, and will be therefore more vulnerable. For the 

coral reef fish, open ocean is a non-favourable habitat. 

In previous versions of the model, both species and fleets were allocated to habitats with a 

presence-absence assignation. In the EwE software version 6.3 (used in this study), habitat 

assignment for fleets is still based on the presence-absence method, while the assignment of 

species to habitat has been improved (Christensen et al., 2014). For every habitat type, the user 

can set a continuous value between 0 and 1. This is valid for all cells belonging to the habitat. The 
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software then allocates to each cell of the habitat in question a proportion of the initial biomass 

corresponding to the given value. The Ecopath biomass of a group at the base year is then split 

between all cells of the habitats to which the group is assigned. Habitat assignment governs the 

initial spatial distribution of species in the model (initialisation). For effort, the fleet-specific Ecopath 

effort is spread in Ecospace based on the gravity model (see section 2.2 in the text), limiting to 

habitats to which the fleet has been assigned. In Ecospace, at every time step, an Ecosim model is 

run for every cell (and thus for the sub-food webs therein), while movement between adjacent cells 

is regulated by the parameters for species distribution. Thus, the results of Ecospace for each cell 

at each time step depend on trophic relationships and fishing (through an Ecosim run) and on 

movement across cells and the parameterisation of the Ecospace model.  

A.1.2. Initialisation settings 

Initialisation settings regulate the setting of the distribution of species at time step 0 and the type of 

model used for distribution of multi-stanza groups (i.e. groups divided in multiple age classes):

either partial differential equations or an individual-based model. In EwE version 6.3, these settings 

include: Initialisation; Model Type; Capacity Calculation; Effort Calculation. These can be set 

through alternative choice. In particular, Initialisation can be set as either “Ecopath Base Biomass” 

or “Habitat-Adjusted Biomass”. Initialisation determines how biomass for each group is assigned 

from Ecopath to Ecospace. Using “Ecopath Base Biomass”, biomass assigned to each cell in 

favourable habitat is equal to the mean biomass value in Ecopath, and with lower value in the non-

optimal habitat. Alternatively, the “Habitat-Adjusted Biomass” setting concentrates the whole 

biomass of a group to cells belonging to favourable habitat. If, for example, an organism is found in 

10% of the ecosystem, and it has a mean Ecopath biomass of 10 t/km2, it will be distributed in the 

favourable habitat with biomass of 100 t/km2. Model Type can be set in three alternative 

possibilities, which regulate how multi-stanza groups are managed in Ecospace. In EwE version 

6.3, three alternatives are possible: “EwE6 Multi-Stanza Model”, “Individual-Based Model”, and 

“Partial Differential Equation”. Capacity Calculation can be set at two non-exclusive levels: 
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“Habitat” and “Capacity”, and the option “Capacity and Habitat” is also allowed. This determines 

how the biomass is assigned, based on habitat assignment or on capacity (or both). Effort 

Calculation can be set as “Predict Effort” or “Ecopath Effort”: the former calculates effort based on 

profit-based gravity model while the latter uses effort data directly from Ecopath (Christensen et al., 

2008; Walters et al., 1999). 
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A.2. Specifications of the North Sea Ecospace model used in this study: settings and 

parameterization 

A.2.1. Habitat map used in this study 

The habitat map for the present study was based on the Ecospace model from Mackinson and 

Daskalov (2007). The study area was divided into 5 habitats based on bathymetry and other 

characteristics (<22 meters depth, 22-51; 52-115; >115 and “Coast”). Some modifications were 

brought from the map to ensure continuity across habitats. See figure A.1. 

Figure A.1. Ecospace Map and Habitats for the North Sea model used in this study. Cells in white 

represent land.
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A.2.2. Initialisation settings 

Different combinations of initialisation settings were tested to explore how these settings affected 

model performance. All alternative combinations between “Initialisation”, “Model Type” and 

“Capacity Calculation” were attempted, with other parameters (i.e. Ecospace species distribution 

and effort distribution parameters) at default level (table A.1). Effort Calculation was left at the 

default mode, “Predict Effort”, because the alternative, “Use Ecopath Effort”, provided no

predictions of effort, and the outcomes were not directly comparable to the other parameters. This 

robustness test showed that habitat “Capacity Calculation” is the most impacting parameter, with 

Capacity and Habitat & Capacity providing lower fit (negative). Little changes occurred between 

“Initialisation” parameters, and between “Model Types”, with changes of up to 2% of the initial 

value (relative fit shows percentage change from the default value). Individual-Based Model (IBM) 

and Partial Differential Equation (PDE) perform slightly better than Multi-Stanza Model (MSM) in 

general, but to a small extent. 

For the final model, all Initialisation settings were maintained as default: Habitat-Adjusted Biomass 

setting for “Initialisation”, EwE6 multi-stanza for “Model Type”, Habitat only for “Capacity 

Calculations” and Predict Effort for “Effort Calculations”. EwE6 Multi-Stanza model was chosen 

over the Individual Base Model, as it is more reliable for model building, as well as faster in 

computation (Walters et al., 2010), although Espinosa-Romero et al. (2011) found that Individual 

Based Model provided more conservative prediction for biomass production. 
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Initialisation

Model 

type

Capacitity 

calculation Fit Relative fit

EBB MSM H 0.333 0.000

EBB MSM C&H -0.176 -1.529

EBB MSM C -0.247 -1.743

EBB IBM H 0.332 -0.003

EBB IBM C&H -0.169 -1.508

EBB IBM C -0.203 -1.610

EBB PDE H 0.334 0.001

EBB PDE C&H -0.157 -1.470

EBB PDE C -0.242 -1.726

HAB MSM H 0.333 -0.002

HAB MSM C&H -0.167 -1.501

HAB MSM C -0.247 -1.743

HAB IBM H 0.340 0.021

HAB IBM C&H -0.162 -1.486

HAB IBM C -0.203 -1.610

HAB PDE H 0.336 0.008

HAB PDE C&H -0.161 -1.484

HAB PDE C -0.242 -1.726

Table A.1. Combination of initialisation settings and their performance. EBB: Ecopath Base 

Biomass; HAB: Habitat-Adjusted Biomass; MSM: Multi-Stanza Model; IBM: Individual Based 

Model; PDE: Partial Differential Equation; H: Habitat only; C&H: Capacity and Habitat; C: Capacity 

only. All other parameters are at default. Colour scale indicates the value of fit: light shades of grey 

indicate low fit, dark shades of grey indicate high fit. 

A.2.3. Habitat assignment 

Following Mackinson and Daskalov (2007), groups were assigned to habitats on the basis of 

surveys of biomass distribution where available. ICES International Bottom Trawl Surveys (IBTS) 

and ICES Benthic Survey were used for most groups, in particular fish and macro-invertebrates. 
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The survey data are available at the same spatial resolution on which the Ecospace map cell grid 

was based, i.e. cells of 0.5 degrees in Latitude and 1 degree in Longitude, corresponding to ICES 

statistical rectangles. For all fish groups and most macro-invertebrate groups, biomass distribution 

data were used to calculate the relative density for each cell. For each group, biomass for each cell 

from IBTS survey was averaged between 1985 and 1995 to obtain an estimate of the long-term 

average for 1991, the base year of the model. For each habitat, average biomass was calculated 

(sum of biomass in cells/number of cells). Sum of all average biomasses was then calculated, and 

finally the relative density for each habitat was obtained as: average biomass for that habitat/sum 

of all average biomasses. For each species, the relative abundance in each habitat was thus 

obtained, summing across all habitats to unitary value. The relative biomass value for each habitat 

was then used in the Ecospace model. 

For the groups Baleen whales, Toothed whales, Seals and Seabirds, habitat was assigned based 

on different sources. Species included in each of these groups were unchanged from the 

Mackinson and Daskalov (2007) model. Baleen whales (here only considering minke whales, 

Balaenoptera acutorostrata) are generally more abundant in the western North Sea (ICES, 2012). 

Abundance estimates available from SCANS (Small Cetacean Abundance in the North Sea 

survey, Hammond et al., 2002), Atlas of Cetaceans (Reid et al., 2003), and SCANS II final report 

(SCANS-II, 2008), all indicate higher abundance in the northern-central and western North Sea 

(roughly corresponding to habitats “52-115 m depth” and “Coastal”, of the Ecospace map, figure 

A.1). Data from Reid et al. (2003) covered the 1979-1997 time-window, which was considered a 

reliable proxy for a long-term average close to the situation in 1991. SCANS II final report provides 

maps from 1994 and 2005, the former being used here as a proxy for 1991. Therefore, habitat for 

Baleen whales was decided to be “52-115 m” depth and “Coastal”. Toothed whales considered in 

this model were harbour porpoise (Phocoena phocoena), Atlantic white-sided dolphin 

(Lagenorhynchus acutus) and white-beaked dolphin (Lagenorhynchus albirostris). In SCANS II 

final report, the distribution of harbour porpoises in 1994 and 2005 is provided. The 1994 figure is 

used a basis for Ecospace habitat for Toothed whales. Lagenorhynchus spp. have much smaller 

biomass and distribution, so porpoises were used as proxy for the distribution of the whole Toothed 
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whales group. From this and other sources (Hammond et al., 2002; Reid et al., 2003), Toothed 

whales were set to habitats  “22-51 m”, “52-115 m” and “Coastal”. The habitat for seals was mainly 

determined based on information contained in ICES (2012). Habitat for seals was thus set as “<21 

m”, “52-115 m”, “>115 m” and “Coastal”. Habitat for seabirds was based on species (or genus) 

maps for distribution from the online database Eurobis (http://bio.emodnet.eu/portal/index.php)

from MarBEF (2004). All the 12 seabird species included in this group are widely distributed on the 

whole basin (except shag and great skua, only present on the west part of the North Sea). Based 

on this information, the Seabird group was assigned to all habitats in the Ecospace model. 

Three groups of macro-invertebrates (Squids and cuttlefish, Large crabs, Nephrops) were present 

in both the IBTS and the Benthic Survey and the habitat estimation was applied for both survey 

data. Only for the Large crabs the results are similar, while there are some differences, probably 

due to sampling method, in the other groups among surveys. For the final model, habitat selection 

was based on data from the Benthic Survey. 
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A.3. Parameter exploration 

A.3.1. Definition of sub-parameters 

To reduce parameter dimension, we did not explore variations to parameters in all 68 trophic 

groups included in the model. We instead lumped the groups into macro-groups based on 

ecological similarities and according to the method used by, among others, Chen et al. (2009) and

Fouzai et al. (2012). All groups were thus divided between fast-moving (“Pelagic”), slow-moving 

(“Demersal”) and static organisms (“Invertebrates”). See table A.2 for classification of the groups to 

macro-groups. These macro-groups were then investigated separately and in combination and 

considered as “sub-parameters”. For the fleets, we only investigated 6 out of 12 fleets included in 

the model because limitation in data availability did not allow us to investigate dynamics for all of 

the fleets. Fleets were grouped into three macro-groups: two of them corresponding to a single 

fleet (Beam and Pelagic trawl) while the Otter trawl included multiple fleets (Otter trawl proper, 

Shrimp trawl, Nephrops trawl and Sandeel trawl). The three macro-groups were used as sub-

parameters for those parameters focusing on the fleet dynamics, namely Effective Power and Total 

Efficiency Multiplier. 

Group Name Base Dispersal Rate Macro-groups

Baleen whales 652.437 Pelagic

Toothed whales 974.725 Pelagic

Seals 275.124 Pelagic

Seabirds 275.124 Pelagic

Juvenile sharks 78.607 Demersal

Spurdog 275.124 Demersal

Large piscivorous sharks 275.124 Pelagic

Small sharks 78.607 Demersal

Juvenile rays 78.607 Demersal

Starry ray + others 157.214 Demersal

Thornback & Spotted ray 157.214 Demersal

Skate + cuckoo ray 157.214 Demersal
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Juvenile Cod(0-2, 0-40cm) 110.050 Demersal

Cod (adult) 196.517 Pelagic

Juvenile Whiting (0-1, 0-20cm) 110.050 Demersal

Whiting (adult) 157.214 Pelagic

Juvenile Haddock (0-1, 0-20cm) 110.050 Demersal

Haddock (adult) 157.214 Pelagic

Juvenile Saithe (0-3, 0-40cm) 110.050 Demersal

Saithe (adult) 196.517 Pelagic

Hake 196.517 Demersal

Blue whiting 157.214 Pelagic

Norway pout 500.000 Pelagic

Other gadoids (large) 157.214 Demersal

Other gadoids (small) 157.214 Demersal

Monkfish 157.214 Demersal

Gurnards 157.214 Demersal

Herring (juvenile 0, 1) 110.050 Pelagic

Herring (adult) 157.214 Pelagic

Sprat 78.607 Pelagic

Mackerel 235.820 Pelagic

Horse mackerel 1000.000 Pelagic

Sandeels 75.000 Pelagic

Plaice 75.000 Demersal

Dab 75.000 Demersal

Long-rough dab 78.607 Demersal

Flounder 78.607 Demersal

Sole 78.607 Demersal

Lemon sole 78.607 Demersal

Witch 78.607 Demersal

Turbot and brill 78.607 Demersal

Megrim 78.607 Demersal

Halibut 78.607 Demersal

Dragonets 78.607 Demersal

Catfish (Wolf-fish) 157.214 Demersal

Large Demersal fish 157.214 Demersal

Small Demersal fish 78.607 Demersal

Miscellaneous filterfeeding pelagic fish 141.492 Pelagic

Squid & cuttlefish 141.492 Demersal

Fish larvae 29.871 Invertebrates

Carnivorous zooplankton 29.871 Invertebrates

Herbivorous & Omnivorous zooplankton 29.871 Invertebrates

Gelatinous zooplankton 78.607 Invertebrates
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Large crabs 20.000 Demersal

Nephrops 5.000 Demersal

Epifaunal macrobenthos (mobile grazers) 30.000 Demersal

Infaunal macrobenthos 5.000 Invertebrates

Shrimp 29.871 Demersal

Small mobile epifauna (swarming crustaceans) 29.871 Invertebrates

Small infauna (polychaetes) 29.871 Invertebrates

Sessile epifauna 29.871 Invertebrates

Meiofauna 29.871 Invertebrates

Benthic microflora 29.871 Invertebrates

Planktonic microflora 29.871 Invertebrates

Phytoplankton 29.871 Invertebrates

Detritus - DOM -water column 29.871 Invertebrates

Detritus - POM - sediment 29.871 Invertebrates

Discards 10.000 Invertebrates

Table A.2. Base Dispersal Rate values from Mackinson and Daskalov (2007) and assignation to 

macro-groups used in this study. The distinction in “Pelagic”, “Demersal” and “Invertebrates” 

corresponds to wide-range, medium-range and small-range dispersing organisms, respectively. 

A.3.2. Upper range limits 

For those parameters which do not have a specified upper range limit (namely, Base Dispersal 

Rate, Effective Power and Total Efficiency Multiplier), an upper limit was set for this study. Upper 

limit for Base Dispersal Rate was based on the highest value used by Mackinson and Daskalov 

(2007). The value of 1000 km/year was therefore considered as the upper limit of realistic dispersal 

value. However, since accurate information on dispersal are lacking, it was considered appropriate 

to include a “buffer” on the upper limit of realistic values. Larger values (up to and over 20000 

km/year) were therefore explored. Threshold for inclusion in the final range was arbitrarily set to 

twice the reported maximum value of dispersal. Values of up to 2000 km/year (twice the “realistic” 

value) were therefore included in the range for Pelagic and Demersal. For Invertebrates, 

furthermore, preliminary analyses showed that values above 300 km/year provided negligible 

changes in fit, while values in the lower limit provided most of the change. For this reason, the 

upper limit for Invertebrates was set at 300. Upper range limits for Effective Power and Total 



12 
 

Efficiency Multiplier were based on exploratory analyses. For Effective Power, the range studied 

includes “realistic” values (roughly between 0.5 and 10, Carl Walters Pers. Comm.). Buffer values 

below and above the realistic values were explored. Values between 0 and 1 provided very little 

deviation from default fit and where therefore not included in the final range. Values above 10

provided large changes in fit and were included in the final exploration as buffer. Upper range limits 

were specific for each sub-parameter, and were selected as the highest values before the model 

collapsed. For Power Effort, these were 30, 150 and 37 for the sub-parameter Otter trawl, Pelagic 

trawl and Beam trawl respectively. For Total Efficiency Multiplier, these were 1.3, 3 and 1.5 for the 

sub-parameter Otter trawl, Pelagic trawl and Beam trawl respectively. See table 1 and table A.3.a-

h.

A.3.3. Sub-parameters exploration 

The exploration of sub-parameters took a number of steps: 

i) Initially, each sub-parameter (“Pelagic”, “Demersal”, “Invertebrates” for species-related 

parameters and “Pelagic”, “Otter” and “Beam” for fleet-related parameters) was explored 

individually throughout its range (for example, from 0 to 100 by steps of 10 for a parameter 

restrained between 0 and 100). 

ii) Then, for each of the three sub-parameters a subset of values were selected, including the 

lowest value (0 or 1) and the highest (100 in this example), as well as intermediate values (50 in 

our example). Also, values at which the individual parameters exhibited peculiar behaviour (e.g., 

sudden changes of slope, threshold values above which the response curve flattened) were further 

investigated. The rationale for this was to reduce the number of parameter values to explore under 

interaction. 

iii) The selected subsets of parameter values were explored in a three-way interaction for each of 

the three sub-parameter values, and for each of the six parameters studied. Matrices reporting the 

fit between data and model prediction for each combination for parameters Base Dispersal Rate, 
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Relative Vulnerability, Effective Power and Total Efficiency Multiplier are provided in table A.3 with 

both absolute fit (table A.3.a, c, e, g) and relative fit (table A.3.b, d, f, h). Relative fit is given as the 

percentage change that the model provides as compared with default values. For default values, 

the percentage change is of course equal 0. Models with percentage change >0 correspond to an 

improvement and vice versa. Changes of parameters Relative Dispersal in Bad Habitat and 

Relative Feeding Rate in Bad Habitat did not result in any change of fit of model. These 

parameters were therefore not further investigated and are not shown here. 

A.3.4. Parameter interaction 

For the exploration of parameter interactions, a sub-set of parameter values was selected so to 

represent the overall range of possible values assumed. For each parameter, three levels were 

selected: high (with all sub-parameters at the highest value of their range), low (all sub-parameters 

at lowest value of their range) and intermediate (all sub-parameters set at the median or closest 

lower value). For example, the three values selected for the parameter Total Efficiency Multiplier 

were:  

low: Otter = 0.1, Pelagic = 0.1, Beam = 0.1; 

intermediate: Otter = 1, Pelagic = 1, Beam = 1; 

high: Otter = 1.3, Pelagic = 1.5, Beam = 3. 

This method allowed exploring across all ranges of all sub-parameters. A combination of 3^4 =64 

parameter combinations was finally used for the parameter interaction analysis. 



14
 

 a)
In

ve
rte

br
at

es
 1

In
ve

rte
br

at
es

 1
0

D
em

er
sa

l 
D

em
er

sa
l 

1
10

0
25

0
50

0
75

0
10

00
15

00
20

00
1

10
0

25
0

50
0

75
0

10
00

15
00

20
00

Pelagic

1
0.

32
2

0.
32

4
0.

33
0

0.
34

0
0.

34
4

0.
34

7
0.

35
2

0.
35

5
0.

31
2

0.
32

4
0.

33
0

0.
34

0
0.

34
5

0.
34

8
0.

35
3

0.
35

5
10

0
0.

32
7

0.
32

9
0.

33
0

0.
34

3
0.

34
8

0.
35

1
0.

35
6

0.
35

8
0.

32
8

0.
33

0
0.

33
1

0.
34

4
0.

34
9

0.
35

2
0.

35
6

0.
34

9
25

0
0.

32
8

0.
33

1
0.

32
9

0.
33

3
0.

33
7

0.
34

0
0.

34
3

0.
34

5
0.

32
9

0.
33

1
0.

32
9

0.
33

3
0.

33
7

0.
34

0
0.

34
3

0.
34

6
50

0
0.

33
2

0.
33

2
0.

33
2

0.
33

5
0.

33
9

0.
34

0
0.

34
3

0.
34

5
0.

33
2

0.
33

3
0.

33
2

0.
33

5
0.

33
9

0.
34

0
0.

34
3

0.
34

5
75

0
0.

34
2

0.
33

8
0.

33
7

0.
34

1
0.

34
3

0.
34

4
0.

34
7

0.
34

8
0.

34
1

0.
33

8
0.

33
7

0.
34

1
0.

34
4

0.
34

4
0.

34
7

0.
34

8
10

00
0.

35
1

0.
34

7
0.

34
3

0.
34

7
0.

34
7

0.
34

7
0.

34
9

0.
35

0
0.

35
0

0.
34

6
0.

34
3

0.
34

7
0.

34
7

0.
34

7
0.

34
9

0.
35

1
15

00
0.

35
9

0.
35

5
0.

35
2

0.
35

3
0.

35
3

0.
35

2
0.

35
3

0.
35

3
0.

35
9

0.
35

5
0.

35
2

0.
35

3
0.

35
3

0.
35

2
0.

35
3

0.
35

4
20

00
0.

36
6

0.
36

1
0.

35
9

0.
35

9
0.

35
8

0.
35

7
0.

35
6

0.
35

7
0.

36
6

0.
36

1
0.

35
9

0.
35

9
0.

35
8

0.
35

7
0.

35
7

0.
35

7
In

ve
rte

br
at

es
 3

0
In

ve
rte

br
at

es
 1

00
D

em
er

sa
l 

D
em

er
sa

l 
1

10
0

25
0

50
0

75
0

10
00

15
00

20
00

1
10

0
25

0
50

0
75

0
10

00
15

00
20

00

Pelagic

1
0.

31
3

0.
31

7
0.

32
2

0.
34

0
0.

34
6

0.
34

9
0.

35
3

0.
35

6
0.

31
8

0.
32

0
0.

32
5

0.
33

1
0.

33
6

0.
33

9
0.

34
4

0.
34

7
10

0
0.

33
0

0.
33

0
0.

33
2

0.
33

5
0.

34
0

0.
35

2
0.

34
7

0.
35

0
0.

33
3

0.
33

3
0.

33
4

0.
33

6
0.

34
0

0.
34

3
0.

34
8

0.
35

1
25

0
0.

33
0

0.
33

2
0.

33
0

0.
33

3
0.

33
7

0.
34

0
0.

34
3

0.
34

6
0.

33
2

0.
33

2
0.

33
1

0.
33

4
0.

33
8

0.
34

1
0.

34
4

0.
34

7
50

0
0.

33
2

0.
33

2
0.

33
1

0.
33

5
0.

33
9

0.
34

0
0.

34
3

0.
34

5
0.

33
1

0.
33

0
0.

33
1

0.
33

5
0.

33
8

0.
34

1
0.

34
3

0.
34

5
75

0
0.

34
1

0.
33

7
0.

33
7

0.
34

1
0.

34
4

0.
34

4
0.

34
6

0.
34

7
0.

33
8

0.
33

5
0.

33
6

0.
34

1
0.

34
3

0.
34

4
0.

34
6

0.
34

7
10

00
0.

34
9

0.
34

5
0.

34
3

0.
34

7
0.

34
7

0.
34

7
0.

34
9

0.
35

0
0.

34
5

0.
34

3
0.

34
2

0.
34

7
0.

34
7

0.
34

7
0.

34
8

0.
35

0
15

00
0.

35
9

0.
35

5
0.

35
2

0.
35

3
0.

35
3

0.
35

3
0.

35
3

0.
35

4
0.

35
7

0.
35

3
0.

35
3

0.
35

4
0.

35
3

0.
35

3
0.

35
3

0.
35

4
20

00
0.

36
6

0.
36

1
0.

36
0

0.
35

9
0.

35
8

0.
35

7
0.

35
7

0.
35

7
0.

36
4

0.
36

0
0.

36
1

0.
36

0
0.

35
8

0.
35

7
0.

35
6

0.
35

7
In

ve
rte

br
at

es
 3

00
D

em
er

sa
l 

1
10

0
25

0
50

0
75

0
10

00
15

00
20

00

Pelagic

1
0.

32
9

0.
32

9
0.

32
9

0.
33

2
0.

33
7

0.
34

0
0.

34
3

0.
34

6
10

0
0.

34
0

0.
33

8
0.

33
6

0.
33

8
0.

34
1

0.
34

3
0.

34
7

0.
35

0
25

0
0.

33
5

0.
33

4
0.

33
3

0.
33

6
0.

33
9

0.
34

2
0.

34
6

0.
34

7
50

0
0.

32
8

0.
32

6
0.

33
2

0.
33

7
0.

34
0

0.
34

2
0.

34
5

0.
34

6
75

0
0.

33
2

0.
33

0
0.

33
5

0.
34

1
0.

34
4

0.
34

5
0.

34
6

0.
34

7
10

00
0.

33
9

0.
33

8
0.

34
2

0.
34

7
0.

34
8

0.
34

7
0.

34
8

0.
34

9
15

00
0.

35
4

0.
35

0
0.

35
2

0.
35

3
0.

35
3

0.
35

2
0.

35
3

0.
35

4
20

00
0.

36
1

0.
35

9
0.

36
0

0.
35

9
0.

35
8

0.
35

7
0.

35
6

0.
35

6



15
 

 b)
In

ve
rte

br
at

es
 1

In
ve

rte
br

at
es

 1
0

D
em

er
sa

l 
D

em
er

sa
l 

1
10

0
25

0
50

0
75

0
10

00
15

00
20

00
1

10
0

25
0

50
0

75
0

10
00

15
00

20
00

Pelagic

1
-3

.4
51

-2
.8

51
-0

.9
62

1.
95

1
3.

24
8

4.
28

1
5.

63
2

6.
41

7
-6

.4
35

-2
.7

54
-0

.9
09

2.
03

9
3.

42
5

4.
42

2
5.

80
8

6.
55

8
10

0
-1

.7
74

-1
.2

18
-0

.8
47

3.
01

9
4.

58
1

5.
43

7
6.

74
4

7.
38

8
-1

.4
39

-1
.0

59
-0

.7
15

3.
08

9
4.

59
0

5.
49

9
6.

80
6

4.
84

6
25

0
-1

.5
80

-0
.7

15
-1

.2
45

0.
00

9
1.

11
2

1.
96

8
2.

87
8

3.
57

5
-1

.4
12

-0
.5

38
-1

.2
09

0.
00

9
1.

17
4

1.
96

8
2.

98
3

3.
69

0
50

0
-0

.3
09

-0
.2

65
-0

.2
91

0.
66

2
1.

76
5

2.
17

1
2.

96
6

3.
53

1
-0

.2
91

-0
.2

12
-0

.3
35

0.
57

4
1.

66
8

2.
17

1
2.

91
3

3.
55

7
75

0
2.

63
0

1.
53

6
1.

19
2

2.
43

6
3.

08
1

3.
36

3
4.

00
7

4.
33

4
2.

48
0

1.
47

4
1.

13
0

2.
41

0
3.

13
4

3.
33

7
3.

99
0

4.
34

3
10

00
5.

27
0

4.
01

6
3.

08
1

4.
20

2
4.

20
2

4.
21

9
4.

71
4

5.
12

0
5.

15
5

3.
95

4
3.

02
8

4.
13

1
4.

22
8

4.
27

2
4.

70
5

5.
19

0
15

00
7.

82
9

6.
53

2
5.

64
0

6.
00

2
5.

92
3

5.
66

7
5.

94
1

6.
07

3
7.

79
4

6.
44

4
5.

72
9

6.
08

2
5.

94
9

5.
78

2
5.

93
2

6.
10

8
20

00
9.

92
1

8.
31

5
7.

71
5

7.
65

3
7.

50
3

7.
00

0
6.

93
8

7.
07

0
9.

90
4

8.
21

8
7.

75
9

7.
70

6
7.

47
6

7.
02

6
6.

99
1

7.
08

8
In

ve
rte

br
at

es
 3

0
In

ve
rte

br
at

es
 1

00
D

em
er

sa
l 

D
em

er
sa

l 
1

10
0

25
0

50
0

75
0

10
00

15
00

20
00

1
10

0
25

0
50

0
75

0
10

00
15

00
20

00

Pelagic

1
-6

.0
64

-4
.9

17
-3

.4
51

2.
09

2
3.

71
6

4.
66

1
6.

01
1

6.
78

8
-4

.6
25

-3
.8

66
-2

.3
92

-0
.6

00
0.

97
1

1.
77

4
3.

31
0

4.
13

1
10

0
-1

.0
15

-0
.8

39
-0

.4
77

0.
50

3
2.

05
7

5.
57

9
4.

27
2

4.
98

7
-0

.1
24

0.
05

3
0.

13
2

0.
83

0
2.

11
0

2.
97

5
4.

29
0

5.
20

8
25

0
-1

.0
86

-0
.4

15
-1

.0
42

0.
07

9
1.

21
8

2.
03

0
3.

06
3

3.
78

7
-0

.3
97

-0
.2

47
-0

.6
71

0.
23

8
1.

40
3

2.
31

3
3.

26
6

4.
12

2
50

0
-0

.3
80

-0
.4

59
-0

.5
21

0.
44

1
1.

61
5

2.
12

7
2.

86
9

3.
54

8
-0

.6
44

-0
.9

27
-0

.6
80

0.
41

5
1.

57
1

2.
21

6
2.

87
8

3.
60

1
75

0
2.

32
1

1.
24

5
1.

03
3

2.
39

2
3.

18
7

3.
36

3
3.

91
0

4.
28

1
1.

56
2

0.
49

4
0.

87
4

2.
27

7
2.

95
7

3.
22

2
3.

72
5

4.
21

0
10

00
4.

81
1

3.
58

4
3.

02
8

4.
12

2
4.

21
9

4.
24

6
4.

60
8

5.
14

6
3.

46
9

2.
80

7
2.

76
3

4.
03

4
4.

27
2

4.
26

3
4.

39
6

5.
00

5
15

00
7.

62
6

6.
43

5
5.

74
6

6.
04

6
5.

97
6

5.
80

8
6.

00
2

6.
24

9
7.

08
8

5.
91

4
5.

79
0

6.
10

8
6.

02
0

5.
82

6
5.

90
5

6.
17

9
20

00
9.

78
9

8.
27

1
7.

91
8

7.
80

3
7.

52
9

7.
10

6
7.

07
0

7.
11

4
9.

33
9

8.
17

4
8.

19
1

7.
95

3
7.

58
2

7.
20

3
6.

96
4

7.
25

6
In

ve
rte

br
at

es
 3

00
D

em
er

sa
l 

1
10

0
25

0
50

0
75

0
10

00
15

00
20

00

Pelagic

1
-1

.1
65

-1
.3

06
-1

.3
06

-0
.2

56
1.

09
5

1.
93

3
3.

03
6

3.
76

9
10

0
2.

08
3

1.
55

4
0.

80
3

1.
33

3
2.

24
2

2.
97

5
4.

14
9

5.
09

3
25

0
0.

42
4

0.
08

8
-0

.0
35

0.
79

4
1.

75
7

2.
59

5
3.

70
7

4.
26

3
50

0
-1

.4
74

-2
.0

21
-0

.3
44

1.
11

2
2.

02
1

2.
65

7
3.

39
8

3.
91

9
75

0
-0

.4
41

-1
.0

15
0.

56
5

2.
44

5
3.

20
4

3.
47

8
3.

76
0

4.
18

4
10

00
1.

88
0

1.
58

0
2.

71
0

4.
16

6
4.

38
7

4.
23

7
4.

36
9

4.
75

8
15

00
6.

10
8

5.
12

0
5.

51
7

6.
05

5
6.

00
2

5.
70

2
5.

87
9

6.
09

9
20

00
8.

30
6

7.
74

1
8.

16
5

7.
88

2
7.

43
2

7.
04

4
6.

82
3

6.
98

2



16
 

 c)
In

ve
rte

br
at

es
 1

In
ve

rte
br

at
es

 1
0

In
ve

rte
br

at
es

 1
00

D
em

er
sa

l
D

em
er

sa
l

D
em

er
sa

l
1

10
10

0
1

10
10

0
1

10
10

0

Pelagics

1
0.

33
1

0.
33

6
0.

33
6

0.
33

1
0.

33
6

0.
33

6
0.

33
1

0.
33

6
0.

33
6

10
0.

33
1

0.
33

5
0.

33
6

0.
33

1
0.

33
5

0.
33

6
0.

33
1

0.
33

5
0.

33
6

10
0

0.
33

1
0.

33
5

0.
33

5
0.

33
1

0.
33

5
0.

33
5

0.
33

1
0.

33
5

0.
33

5

d)
In

ve
rte

br
at

es
 1

In
ve

rte
br

at
es

 1
0

In
ve

rte
br

at
es

 1
00

D
em

er
sa

l
D

em
er

sa
l

D
em

er
sa

l
1

10
10

0
1

10
10

0
1

10
10

0

Pelagics

1
-0

.5
21

0.
69

7
0.

76
8

-0
.5

21
0.

71
5

0.
76

8
-0

.5
21

0.
69

7
0.

76
8

10
-0

.5
65

0.
67

1
0.

70
6

-0
.5

74
0.

68
0

0.
72

4
-0

.5
74

0.
68

0
0.

73
3

10
0

-0
.6

18
0.

58
3

0.
66

2
-0

.6
18

0.
57

4
0.

66
2

-0
.6

09
0.

57
4

0.
66

2

  
 



17
 

 e)
Pe

la
gi

c 
1

Pe
la

gi
c 

5
Pe

la
gi

c 
10

Be
am

 
Be

am
 

Be
am

 
1

5
10

20
37

1
5

10
20

37
1

5
10

20
37

Otter

1
0.

33
3

0.
33

4
0.

33
4

0.
33

4
0.

33
4

0.
33

1
0.

33
2

0.
33

2
0.

33
2

0.
33

2
0.

33
0

0.
33

1
0.

33
1

0.
33

1
0.

33
1

2
0.

33
4

0.
33

6
0.

33
5

0.
33

5
0.

33
5

0.
33

1
0.

33
2

0.
33

2
0.

33
2

0.
33

2
0.

33
0

0.
33

1
0.

33
1

0.
33

1
0.

33
1

5
0.

35
8

0.
35

8
0.

35
8

0.
35

8
0.

35
8

0.
35

5
0.

35
6

0.
35

6
0.

35
6

0.
35

6
0.

35
4

0.
35

5
0.

35
5

0.
35

5
0.

35
5

10
0.

37
1

0.
37

1
0.

37
1

0.
37

1
0.

37
1

0.
36

8
0.

36
8

0.
36

8
0.

36
8

0.
36

8
0.

36
7

0.
36

7
0.

36
7

0.
36

7
0.

36
7

20
0.

37
8

0.
37

8
0.

37
8

0.
37

8
0.

37
8

0.
37

6
0.

37
6

0.
37

6
0.

37
6

0.
37

6
0.

37
5

0.
37

5
0.

37
5

0.
37

5
0.

37
5

30
0.

38
4

0.
38

4
0.

38
4

0.
38

4
0.

38
4

0.
38

2
0.

38
2

0.
38

2
0.

38
2

0.
38

2
0.

38
1

0.
38

1
0.

38
1

0.
38

1
0.

38
1

Pe
la

gi
c 

20
Pe

la
gi

c 
10

0
Pe

la
gi

c 
15

0

Be
am

 
Be

am
 

Be
am

 
1

5
10

20
37

1
5

10
20

37
1

5
10

20
37

Otter

1
0.

32
9

0.
33

0
0.

33
0

0.
33

1
0.

33
1

0.
32

7
0.

32
8

0.
32

7
0.

32
8

0.
32

8
0.

32
2

0.
32

4
0.

32
3

0.
32

6
0.

32
5

2
0.

32
9

0.
33

0
0.

33
1

0.
33

1
0.

33
0

0.
32

8
0.

32
8

0.
33

0
0.

33
0

0.
33

0
0.

32
5

0.
32

6
0.

32
6

0.
32

8
0.

32
7

5
0.

35
3

0.
35

4
0.

35
4

0.
35

4
0.

35
4

0.
35

1
0.

35
2

0.
35

2
0.

35
2

0.
35

3
0.

34
9

0.
35

2
0.

35
0

0.
35

0
0.

35
1

10
0.

36
6

0.
36

6
0.

36
6

0.
36

6
0.

36
6

0.
36

5
0.

36
3

0.
36

4
0.

36
4

0.
36

3
0.

36
3

0.
36

3
0.

36
2

0.
36

3
0.

36
2

20
0.

37
4

0.
37

4
0.

37
4

0.
37

4
0.

37
4

0.
37

1
0.

37
1

0.
37

1
0.

37
2

0.
37

1
0.

36
8

0.
36

8
0.

37
0

0.
36

9
0.

36
9

30
0.

37
9

0.
38

0
0.

38
0

0.
38

0
0.

38
0

0.
37

3
0.

37
3

0.
37

3
0.

37
3

0.
37

3
0.

37
1

0.
37

0
0.

37
1

0.
37

2
0.

36
9

 
 



18
 

  f)
Pe

la
gi

c 
1

Pe
la

gi
c 

5
Pe

la
gi

c 
10

Be
am

 
Be

am
 

Be
am

 
1

5
10

20
37

1
5

10
20

37
1

5
10

20
37

Otter

1
0.

00
0

0.
30

0
0.

30
9

0.
30

0
0.

32
7

-0
.6

97
-0

.3
71

-0
.3

35
-0

.3
18

-0
.3

18
-0

.9
18

-0
.6

09
-0

.5
91

-0
.5

74
-0

.5
91

2
0.

10
6

0.
85

6
0.

52
1

0.
52

1
0.

53
0

-0
.7

59
-0

.3
88

-0
.3

53
-0

.3
44

-0
.3

62
-1

.0
06

-0
.6

80
-0

.6
18

-0
.6

09
-0

.6
36

5
7.

36
2

7.
41

5
7.

44
1

7.
43

2
7.

42
3

6.
49

7
6.

72
6

6.
77

9
6.

78
8

6.
79

7
6.

28
5

6.
60

3
6.

61
1

6.
61

1
6.

62
0

10
11

.2
10

11
.2

63
11

.3
16

11
.3

07
11

.2
72

10
.4

51
10

.5
57

10
.5

48
10

.5
30

10
.5

22
10

.1
95

10
.2

48
10

.2
66

10
.2

66
10

.2
48

20
13

.3
90

13
.3

99
13

.3
82

13
.3

55
13

.3
46

12
.7

90
12

.8
87

12
.8

78
12

.8
78

12
.8

70
12

.5
08

12
.5

96
12

.5
78

12
.5

78
12

.5
61

30
15

.1
29

15
.1

29
15

.1
47

15
.1

20
15

.1
20

14
.5

47
14

.5
82

14
.5

91
14

.5
91

14
.5

64
14

.2
11

14
.3

00
14

.3
17

14
.3

00
14

.2
82

Pe
la

gi
c 

20
Pe

la
gi

c 
10

0
Pe

la
gi

c 
15

0

Be
am

Be
am

 
Be

am
 

1
5

10
20

37
1

5
10

20
37

1
5

10
20

37

Otter

1
-1

.1
39

-0
.8

47
-0

.8
21

-0
.8

03
-0

.8
12

-1
.9

15
-1

.5
18

-1
.7

30
-1

.5
62

-1
.6

59
-3

.2
22

-2
.7

10
-3

.0
63

-2
.3

04
-2

.5
86

2
-1

.1
92

-0
.8

74
-0

.7
94

-0
.8

03
-0

.8
21

-1
.4

92
-1

.4
21

-0
.9

71
-0

.8
47

-1
.0

68
-2

.4
63

-2
.2

51
-2

.0
74

-1
.5

98
-1

.7
30

5
5.

93
2

6.
18

8
6.

19
6

6.
19

6
6.

20
5

5.
45

5
5.

60
5

5.
75

5
5.

77
3

5.
83

5
4.

63
4

5.
52

6
5.

11
1

4.
97

8
5.

32
3

10
9.

78
9

9.
82

4
9.

83
3

9.
83

3
9.

82
4

9.
42

7
9.

07
4

9.
15

3
9.

30
4

9.
08

3
8.

98
6

9.
02

1
8.

57
1

8.
82

7
8.

59
7

20
12

.1
90

12
.2

08
12

.2
34

12
.2

34
12

.2
43

11
.2

54
11

.3
69

11
.3

60
11

.5
72

11
.2

37
10

.3
54

10
.3

19
10

.9
37

10
.7

51
10

.6
45

30
13

.7
70

13
.9

02
13

.9
38

13
.9

20
13

.9
02

11
.8

46
12

.0
75

11
.9

87
11

.8
99

12
.0

84
11

.2
98

11
.0

87
11

.1
93

11
.6

07
10

.8
75

 



19
 

 g)
Pe

la
gi

c 
0.

1
Pe

la
gi

c 
1

Pe
la

gi
c 

1.
5

Be
am

 
Be

am
 

Be
am

 
0.

1
1

3
0.

1
1

3
0.

1
1

3

Otter

0.
1

0.
32

2
0.

32
1

0.
32

1
0.

31
8

0.
31

7
0.

31
6

0.
31

7
0.

31
6

0.
31

5

1
0.

34
1

0.
33

8
0.

34
3

0.
33

6
0.

33
3

0.
33

8
0.

33
4

0.
33

1
0.

33
5

1.
3

0.
34

5
0.

34
2

0.
34

7
0.

33
8

0.
33

4
0.

33
9

0.
33

6
0.

33
2

0.
33

6

h)
Pe

la
gi

c 
0.

1
Pe

la
gi

c 
1

Pe
la

gi
c 

1.
5

Be
am

 
Be

am
 

Be
am

 
0.

1
1

3
0.

1
1

3
0.

1
1

3

Otter

0.
1

-3
.4

87
-3

.7
25

-3
.6

98
-4

.6
78

-4
.8

90
-5

.0
75

-4
.7

31
-5

.0
49

-5
.4

29

1
2.

33
0

1.
34

2
2.

78
9

0.
83

9
0.

00
0

1.
42

1
0.

31
8

-0
.5

74
0.

50
3

1.
3

3.
48

7
2.

50
7

4.
08

7
1.

45
6

0.
34

4
1.

76
5

0.
76

8
-0

.2
91

0.
96

2

Ta
bl

e 
A

.3
. A

bs
ol

ut
e 

fit
 (a

) a
nd

 re
la

tiv
e 

pe
rc

en
ta

ge
 c

ha
ng

e 
in

 fi
t (

b)
 fo

r B
as

e 
D

is
pe

rs
al

 R
at

e;
 A

bs
ol

ut
e 

fit
 (c

) a
nd

 re
la

tiv
e 

pe
rc

en
ta

ge
 c

ha
ng

e 
in

 fi
t (

d)
 

fo
r R

el
at

iv
e 

V
ul

ne
ra

bi
lit

y;
 A

bs
ol

ut
e 

fit
 (e

) a
nd

 re
la

tiv
e 

pe
rc

en
ta

ge
 c

ha
ng

e 
in

 fi
t (

f) 
fo

r E
ffe

ct
iv

e 
P

ow
er

; A
bs

ol
ut

e 
fit

 (g
) a

nd
 re

la
tiv

e 
pe

rc
en

ta
ge

 

ch
an

ge
 in

 fi
t (

h)
 fo

r T
ot

al
 E

ffi
ci

en
cy

 M
ul

tip
lie

r. 
C

ol
ou

r s
ca

le
 in

di
ca

te
s 

th
e 

va
lu

e 
of

 fi
t: 

hi
gh

 im
pr

ov
em

en
ts

 fr
om

 d
ef

au
lt 

fit
 a

re
 re

pr
es

en
te

d 
in

 d
ar

ke
r 

sh
ad

es
 o

f g
re

y,
 lo

w
 im

pr
ov

em
en

t o
r d

ec
re

as
e 

in
 fi

t a
re

 in
 li

gh
te

r s
ha

de
s 

of
 g

re
y.

 N
ot

e 
th

at
 c

ol
ou

r s
ca

le
 d

iff
er

s 
ac

ro
ss

 p
an

el
s.



20 
 

A.4. Limitations, assumptions and robustness checks

A.4.1. Method limitations and assumptions

The results of this study are dependent on a number of factors which might affect the outcome, 

some of which are discussed below. 

The method used to control model performance, Spearman’s rank correlation between model 

prediction of biomass and effort for each cell and spatially resolved observations, allows evaluating

areas with “good” and “bad” prediction capacity. The ranked correlation evaluates to what extent 

the rank of predictions follows the rank of data looking at cell-by-cell prediction and data values. 

Correlation is therefore capable of showing if the model is predicting high values in cells where 

data values are high, and vice versa; but it does not allow quantitative evaluation of the absolute 

values of residuals (as would, for example, Mean Sum of Square). Mean Sum of Square (MSS) 

was also calculated and the results were qualitatively similar to those of correlation. However, 

correlation has the advantage of being limited between -1 and +1, which makes it easy to interpret 

and compare across parameter values and potentially between different models. For this reason 

correlation was chosen as measure of fit for this study. The total measure of fit was calculated with 

an objective function which used the median of all correlations for each year, and then the mean of 

all yearly medians.  Medians were used due to the large dispersion of values across groups (with 

some species being around 0.8, some fleets down to -0.7). Between years, however, values were 

not so dispersed; therefore mean was chosen over median. An alternative objective function based 

on the median of medians overestimated the fit, providing higher total value than mean of medians. 

For these reasons, the objective function finally used to measure total fit was based on the mean of 

medians of Spearman’s rank correlations across species and fleets.

The Ecospace model is strongly dependent on its underlying Ecopath with Ecosim model. For this 

study we did not modify the underlying Ecopath and Ecosim models. Therefore the results could 

differ for alternative parameterization of Ecosim. However, investigation over sensitivity to the 
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Ecosim vulnerability (see section A.4.2) showed moderate influence of Ecosim vulnerability setting 

on the Ecospace fit, with differences in spatial fit being influenced more by changes in Ecospace 

parameters than in Ecosim vulnerability. Only when vulnerability in Ecosim was set equal to 10 for 

all groups, the performance of Ecospace was affected visibly. This finding confirms once again that 

having a fully calibrated Ecosim model is fundamental in order to build a correct Ecospace model, 

however Ecospace parameters seemed to be more important for spatial distribution than Ecosim 

parameters. 

Some of the Ecospace parameters related to initialisation, in particular the “Initialisation” and the 

“Model Type” for age-structured groups (Multistanza or Individual Base Model), were explored 

through combinations of these parameter settings, without performing a full sensitivity analysis, 

and we did not however observe major differences (see section A.2.2). The IBM model performed 

slightly better than the Multistanza model. The latter was however used because it is considered to 

be better for model building and fitting (Walters et al., 2010).

The model used in this study did not include Ecospace factors such as advection, primary 

productivity, and migration, which can be important for spatial distribution of fish species (e.g., 

Martell et al., 2005; Steenbeek et al., 2013). It is possible that inclusion of such data would provide 

better prediction for fish species, adding realism to the model.  

Cost and price data are important for the effort allocation model, however they are also difficult to 

obtain. Robustness check with changes in prices and costs did not show any noticeable change in 

the model performance (see section A.4.2), and fleet distribution prediction did not improve. 

Temporal and spatial resolution of the datasets might also be a reason for poor model predictions: 

effort data from STECF are resolved yearly, however they are a combination of a process that take 

place on a different scale, i.e. on a daily or weekly basis. Data could therefore not be reflective of 

the real effort distribution, a problematic extending also to the biomass data, which is known to be 

spatially dependent (Lewy and Kristensen, 2009). Effort spatial data and the aggregated effort data 

(used in the Ecosim model) were compared (aggregating the spatially resolved data). The two 
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datasets overlap for only four years. Demersal and Beam trawls resulted to have a high fit between 

spatial and aggregated time series. Pelagic trawl had a negative fit. Due to the few comparable 

years, the results were not significant, and these results should be interpreted cautiously. 

Spatial coverage of effort data might also represent a problem: the STECF dataset of spatially 

resolved effort data cover most, but not all cells in the study area. It is possible that data availability 

for the first years of compilation of the dataset (used for the present study) was limited for some 

fleet-regions combinations. Other sources of effort data could be available through the Vessel 

Monitoring System (VMS). However these data are presently only available at national level and 

not for all fishing nations that operate in the study area. 

Species groups and fleets groups were aggregated in order to reduce the dimensionality of the 

model. Species were grouped into sub-parameters (as explained in subsection A.3.1) based on 

their ecological characteristics. This grouping could affect the overall result of the model. We 

compared the results with model runs using alternative species grouping (using species dispersal 

setting at species level, as from Mackinson and Daskalov (2007). The model results were very 

similar, and in particular the fleet fit did not change noticeably when species were not grouped.

This suggests that the lumping criteria for species used in this study did not affect the results. 

Fleets groups were also lumped into sub-parameters. Demersal Otter trawl sub-parameter was a 

macro-group including Otter trawl proper, and other trawler fleets: Shrimp trawler, Nephrops 

trawler, and Sandeel trawler. These were separate fleets in the Ecospace model but no separate 

data were available for the effort data from STECF. Since the four fleets were assumed to have 

similar behaviour, they were aggregated into one macro-group for the analysis. Parameters were 

therefore changed for the four fleets in Ecospace accordingly. The implication of this assumption 

might imply a slightly different response for the Otter trawl fleet, but would not touch upon the 

beam and pelagic fleet in any case, thus not affecting the overall result of the study. Robustness 

checks were run with alternative fleet assignation, which showed that results were similar with 

alternative settings, with only minor differences (A.4.2.6). Under  the combinations “Otter + 
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Shrimp”, the fit for Demersal trawl improved slightly but noticeably. However, the fit of some 

species declined, bringing the overall model fit to lower levels than the default combination.

A.4.2. Robustness check 

For some of the parameters we explored variation with alternative setting across a range of model 

parameters. We used 4 models representing the parameter ranges: Low, High (with all influential 

parameters at minima and maxima of their ranges, respectively), Default, and a “Conservative” 

model, with values arbitrarily set at an intermediate level. For each parameter tested, we selected 

a range of scenarios. This allowed to check whether the results obtained through the model are 

sensitive to any of the model assumptions, by observing whether the variation in model fit depend 

more on model settings (i.e. High, Low, Default or Conservative settings) or on the parameter 

scenarios. Parameters tested for robustness were Cost, Spatial cost, Prices, Ecosim vulnerability 

and a No fishing scenario. Cost and Prices are input of the Ecopath model, while Spatial cost was 

calculated by Ecospace based on the port distribution, retained for this model from the Mackinson 

and Daskalov (2007) model.   

A.4.2.1 Cost 

Costs are specified in Ecopath and divided into Fixed, Variable and Sailing costs (with Sailing cost 

being at 0 in the used model). The alternative scenarios explored changes in model fit with: all 

costs set at 0; Variable costs set at 0; Sailing costs being set at the values of Variable costs; costs 

being set without subsidies (following Heymans et al., 2011). All these scenarios were compared 

with the “normal” case, with all cost input at default. The expected differences across scenarios 

should be dependent on the changes that cost assignment should have on the gravity model for 

fleet effort assignment, and hence on the fleet fitness to data (and indirectly also affecting species 

distribution through fishing). See figure A.2 and table A.4. 
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Figure A.2. Robustness check for cost 

Normal Without subsidies All at 0 Variable costs at 0 Sailing costs

Low 0.305 0.305 0.306 0.303 0.300

Conservative 0.393 0.393 0.393 0.415 0.415

Default 0.333 0.333 0.333 0.355 0.355

High 0.424 0.424 0.424 0.443 0.442

Table A.4. Robustness check for cost 

A.4.2.2. Spatial cost  

Spatial cost scenarios investigated were based on alternative ports settings, since the spatial cost 

layer were automatically generated by Ecospace on the basis of fleet-specific home port 

designation and variable costs. We therefore tested an “all port” scenario where every fleet is 

allowed in any port; a “no port” scenario” where no fleet has favoured ports; and a scenario where 

all fleets have the same set of favoured port (we arbitrarily chose three cells on the Danish coast 
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as ports). These scenarios were compared with a “normal scenario with all ports set as default.  

The expected differences across scenarios should depend on the role that spatial costs play in the 

gravity model, and on how it affects the different fleet fitness to effort data and indirectly also 

species’ fitness to biomass data. See figure A.3 and table A.5. 

Figure A.3. Robustness check for Spatial cost 

Normal All ports No ports All same ports

Low 0.305 0.306 0.305 0.305

Conservative 0.393 0.393 0.393 0.393

Default 0.333 0.333 0.333 0.333

High 0.424 0.424 0.424 0.424

Table A.5. Robustness check for Spatial cost 
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A.4.2.3. Price 

Price scenarios investigated were aiming at identifying the sensitivity of the model to changes in 

the magnitude of price or in the species composition. The “price 10 times” scenario increased ten-

fold all price data, and the “only target” scenarios set at 0 all prices for non-target species (i.e. only 

the 12 selected species). The rational for this was that many fleets target specifically species with 

low value (e.g. forage fish) but accidentally capture other species with higher price. Nonetheless, 

their fishing pattern is determined by the target species and not by the by-catch. Expected changes 

from these scenarios should depend on the changes in profitability expected by each fleet with an 

increase in price of their catches, and thus a change of the spatial effort patterns. See figure A.4 

and table A.6. 

Figure A.4. Robustness check for Price 
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Price default Price 10 times Only target spp.

Low 0.305 0.305 0.306

Conservative 0.393 0.393 0.392

Default 0.333 0.333 0.335

High 0.424 0.424 0.423

Table A.6. Robustness check for Price 

A.4.2.4. No Fishing  

A “no fishing” scenario was investigated to explore whether the model fit changed when no fishing 

occurred. In Ecospace, fishing fleet can be allowed to fish in one or more habitats; for the “no 

fishing” scenario, all fleets were set as not allowed to fish in any of the habitats. This scenario was 

compared with a “default” scenario. For this scenario, furthermore, the biomass-specific fit was 

also investigated. The expected results were to see if the “no fishing” scenario would produce 

scarce fit. The fit on biomass only, instead was explored to test whether the lack of fishing would 

affect somehow the fish species distribution. See figure A.5 and A.6 and table A.7 and A.8. 

Figure A.5. Robustness check for “no fishing” Total Fit
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Default total  fit No fishing total fit

Low 0.305 0.403

Conservative 0.393 0.414

Default 0.333 0.398

High 0.424 0.440

Table A.7. Robustness check for “no fishing” Total Fit

Figure A.6. Robustness check for “no fishing” Biomass Fit

Default biomass fit No fishing biomass fit

Low 0.393 0.403

Conservative 0.479 0.414

Default 0.419 0.398

High 0.522 0.440

Table A.8. Robustness check for ”no fishing” Biomass Fit
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A.4.2.5. Ecosim vulnerability 

The vulnerability in Ecosim was explored through 4 scenarios by setting it at default (i.e. with 

values from the model used in this study), all species at 1, all species at 2 and all species at 10. 

The changes in performance of the model were expected to explain if the Ecospace performance 

depends on the Ecosim parameters setup. Under the scenario V10 a slight improvement of the fit 

of Demersal trawl was observed. This suggests that the parameterisation of Ecosim vulnerability 

can have an effect on Ecospace spatial distribution of effort, through species distribution. See 

figure A.7 and table A.9. 

Figure A.7. Robustness check for Ecosim vulnerability setting 

V default V1 V2 V10

Low 0.296 0.333 0.326 0.105

Conservative 0.394 0.413 0.400 0.324

Default 0.333 0.351 0.346 0.370

High 0.424 0.385 0.425 0.321

Table A.9. Robustness check for vulnerability 
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A.4.2.6. Setting of the macro-group Demersal trawl 

Otter trawl macro-group assignation was explored by testing the default assignation (with Otter, 

Nephrops, Sandeel and Shrimp trawlers lumped together) against other assignations: Otter trawl 

alone, Otter and Nephrops trawls lumped, Otter and Sandeel trawls lumped, Otter and shrimp 

trawls lumped. See figure A.8 and table A.10.  

Figure A.8. Robustness check for Demersal trawl Setting 

Default Only Otter Otter + Nephrops Otter + Sandeel Otter +Shrimp

Low 0.322 0.319 0.302 0.328 0.324

Conservative 0.395 0.348 0.347 0.386 0.353

Default 0.331 0.331 0.331 0.331 0.331

High 0.423 0.380 0.381 0.415 0.385

Table A.10. Robustness check of Demersal trawl Setting 
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Appendix S1: Linearised stock-recruitment functions 

The corresponding linear formulas to the Cushing stock-recruitment model (Akimova et al., 2016) is: ( ) = ( ) + ( ) 

and ( ) = ( ) + ( ) + ( ) ×   

 

Subbey et al. (2014) point to the need to correct recruitment for the bias introduced by log-transforming 
the recruitment. Sensitivity test (table A1) shows that the results when such correction is included differ 
minimally from the non-corrected recruitment, thus for the main analysis the dataset was not corrected for 
the bias. 

  



 

South Viking Northwest 
  Predictor Covariate adjR2 Pval adjR2 Pval adjR2 Pval 

1 SSB None 0.22 0.001 0.04 0.106 0.23 0.001 
2 SSB SST 0.31 0.001 0.03 0.233 0.35 0.000 
3 SSB NAO 0.20 0.008 0.05 0.171 0.19 0.011 
4 SSB RA 0.22 0.005 -0.01 0.445 0.19 0.009 
5 ndSSB None 0.18 0.003 0.11 0.016 0.27 0.000 
6 ndSSB SST 0.27 0.001 0.15 0.027 0.34 0.000 
7 ndSSB NAO 0.19 0.010 0.09 0.090 0.25 0.003 
8 rSSB  None 0.21 0.001 0.03 0.121 0.22 0.001 
9 rSSB SST 0.29 0.001 0.05 0.185 0.33 0.000 

10 rSSB NAO 0.23 0.005 0.04 0.218 0.18 0.012 

 South Viking  
  Predictor Covariate adjR2 Pval adjR2 Pval  

1 SSB None 0.26 0.000 0.04 0.106  
2 SSB SST 0.36 0.000 0.03 0.233  
3 SSB NAO 0.24 0.003 0.05 0.171  
4 SSB RA 0.24 0.004 -0.01 0.445  
5 ndSSB None 0.25 0.000 0.13 0.010  
6 ndSSB SST 0.33 0.000 0.17 0.018  
7 ndSSB NAO 0.23 0.004 0.10 0.068  
8 rSSB  None 0.25 0.000 0.03 0.121  
9 rSSB SST 0.34 0.000 0.05 0.185  

10 rSSB NAO 0.24 0.003 0.04 0.218  
South  

  Predictor Covariate adjR2 Pval  
1 SSB None 0.24 0.001  
2 SSB SST 0.28 0.001  
3 SSB NAO 0.22 0.005  
4 SSB RA 0.32 0.000  
5 ndSSB None - -  
6 ndSSB SST - -  
7 ndSSB NAO - -  
8 rSSB  None 0.16 0.005  
9 rSSB SST 0.21 0.007  

10 rSSB NAO 0.14 0.029  
Table A1. Values of Adjusted R2 and respective P-values including correction from the bias introduced by log-
transformation of the recruitment data (see Table 2 in main text) for each model and population across the 

three cases of population scale. Darker shades of grey indicate higher Adjusted R2 (higher model fit and 
better model performance). For single population ndSSB is not calculated. 

 

 

 

 



South 

 20% decrease default 20% increase 
 1990 2010 1990 2010 1990 2010 

South 0.30 0.49 0.31 0.49 0.32 0.48 
NW 0.01 0.06 0.01 0.05 0.01 0.04 
Viking 0.06 0.01 0.05 0.01 0.05 0.01 
Skagerrak 0.16 0.02 0.14 0.01 0.12 0.01 
Outside 0.04 0.02 0.04 0.02 0.03 0.02 
Not settling 0.43 0.40 0.45 0.42 0.47 0.44 

 Viking 

 20% decrease default 20% increase 
 1990 2010 1990 2010 1990 2010 

South 0.00 0.02 0.00 0.02 0.00 0.02 
NW 0.01 0.03 0.01 0.03 0.01 0.03 
Viking 0.12 0.11 0.13 0.11 0.13 0.11 
Skagerrak 0.22 0.05 0.23 0.04 0.23 0.04 
Outside 0.37 0.43 0.34 0.41 0.32 0.38 
Not settling 0.27 0.36 0.29 0.39 0.31 0.41 

 Northwest 

 20% decrease default 20% increase 
 1990 2010 1990 2010 1990 2010 

South 0.11 0.06 0.11 0.06 0.11 0.07 
NW 0.27 0.30 0.27 0.30 0.26 0.30 
Viking 0.03 0.04 0.03 0.04 0.03 0.04 
Skagerrak 0.07 0.01 0.07 0.01 0.07 0.01 
Outside 0.06 0.02 0.06 0.02 0.06 0.02 
Not settling 0.44 0.57 0.46 0.57 0.47 0.57 

Table A2. Sensitivity of connectivity to setting of mortality parameter. Connectivity at settlement for the 
three populations for two years with contrasting oceanographic patterns for default value and +/-20%  

  



South 

 20% decrease default 20% increase 
 1990 2010 1990 2010 1990 2010 

South 0.34 0.47 0.31 0.49 0.32 0.47 
NW 0.00 0.06 0.01 0.05 0.01 0.05 
Viking 0.04 0.01 0.05 0.01 0.06 0.01 
Skagerrak 0.13 0.01 0.14 0.01 0.13 0.01 
Outside 0.03 0.02 0.04 0.02 0.05 0.02 
Not settling 0.45 0.43 0.45 0.42 0.43 0.44 

 Viking 

 20% decrease default 20% increase 
 1990 2010 1990 2010 1990 2010 

South 0.00 0.02 0.00 0.02 0.00 0.02 
NW 0.01 0.03 0.01 0.03 0.01 0.03 
Viking 0.10 0.12 0.13 0.11 0.13 0.11 
Skagerrak 0.22 0.04 0.23 0.04 0.23 0.05 
Outside 0.33 0.37 0.34 0.41 0.36 0.43 
Not settling 0.34 0.42 0.29 0.39 0.27 0.37 

 Northwest 

 20% decrease default 20% increase 
 1990 2010 1990 2010 1990 2010 

South 0.12 0.04 0.11 0.06 0.12 0.07 
NW 0.27 0.31 0.27 0.30 0.27 0.30 
Viking 0.02 0.03 0.03 0.04 0.04 0.05 
Skagerrak 0.07 0.01 0.07 0.01 0.08 0.02 
Outside 0.06 0.02 0.06 0.02 0.07 0.02 
Not settling 0.45 0.59 0.46 0.57 0.43 0.53 

Table A3. Sensitivity of connectivity to setting of settlement size parameter. Connectivity at settlement for 
the three populations for two years with contrasting oceanographic patterns for default value and +/-

20%  
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“…E quindi uscimmo a riveder le stelle.”  
 

Dante, Inferno XXXIV, 139  
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