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Robots are traditionally bound by a fixed morphology during their
operational lifetime, limited to adapting only their control strate-
gies. Here, we present the first quadrupedal robot that can mor-
phologically adapt to different environmental conditions in outdoor,
unstructured environments. Our solution is rooted in embodied AI,
and comprises two components; (i) a robot that permits in-situ mor-
phological adaptation, and (ii) an adaptation algorithm that transi-
tions between the most energy-efficient morphologies based on the
currently-sensed terrain. First, we build a model that describes how
the robot morphology affects performance on selected terrains. We
then test continuous adaptation in realistic outdoor terrain while al-
lowing the robot to constantly update its model. We show that the
robot exploits its training to effectively transition between different
morphological configurations, showing significant performance im-
provements over a non-adaptive approach. The demonstrated bene-
fits of real-world morphological adaptation show the potential for a
new embodied way of incorporating adaptation into future robotic
designs.
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Robots inspecting the damaged Fukushima reactor were presented with a daunting
task: to pass through a narrow duct to enter the area, traverse gaps between platforms,
move over and through various types of debris, and even swim through murky water. De-
signing a robot to work across such diverse and unstructured environments is challenging
as task and environmental conditions may change, sometimes drastically, during opera-
tion. These challenges, chiefly multimodality and unpredictability, are characteristic of
the type of unstructured environment that robotic systems as a whole continue to struggle
with. In Fukushima, technological limitations meant that the eventual solution required
numerous highly specialized traditional robots, with correspondingly high numbers of de-
ployments and extended mission times [1]. Shape-shifting, or morphological adaptation,
presents a more attractive, albeit more technically challenging, solution that is capable of
achieving more complex mission outcomes. Able to vary both body and controller, a mor-
phologically adaptive robot would be able to match its capabilities to its immediate needs:
having at one time a large span to traverse gaps, yet at another time being able to shrink
and squeeze through narrow openings in debris fields. The underlying principle is that
variable morphology provides additional degrees of freedom to more strongly tie a robot’s
behaviour to its immediate environment for improved mission performance, increasing the
likelihood that the robot can adapt and survive in the face of unpredictable environmental
conditions. In principle then, morphologically adaptive robots are a promising enabling
technology to unlock operation to adapt to a broad swathe of unpredictable environments
and tasks on the fly, without having to be redesigned and rebuilt each time they face
something unexpected. Due to this promise, morphological adaptation is an area of in-
creasing scientific focus that encompasses a range of research from variable stiffness robot
limbs [2] to elegant origami-inspired morphing structures [3].

We postulate that the key to developing such flexible, adaptable robots may lie in a
specific subfield of Machine Intelligence called Embodied Artificial Intelligence [4]. Em-
bodied AI is a subfield of Embodied Cognition, which states that the brain (software)
is not the sole source of cognition, but rather that orchestration of interactions between
brain (software), body (hardware), and environment are key to producing intelligent ac-
tion [5]. Viewed through the lens of Embodied Cognition, the physical manifestation of a
robot is a crucial adaption tool, which could be vital in achieving resilient robots that can
operate across challenging real-world environments [6]. Indeed, in some cases, changing
the robot’s morphology might be the only viable option to elicit suitable in-environment
behaviors [7].

In this paper, we present our own morphologically adaptive robot for unstructured
environments, seen in Fig. 1a. The quadruped robot, DyRET (the Dynamic Robot for
Embodied Testing), provides a powerful proof of concept harnessing a variable morphol-
ogy to adapt to realistic real-world conditions in outdoor settings [8, 9]. Morphological
adaptation is provided through variable-length legs, whereby the length of both femur
and tibia can be adjusted on the fly to enable different walking behaviours whilst also
tilting the central body (Fig. 1b). A novel terrain-adaptation algorithm tailors morphol-
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Fig. 1: The morphologically adaptive robot used in this study (a) An overview
of the main components of the robot. (b) The robot with the shortest (left) and longest
(right) leg configuration.

ogy to the current terrain. Bootstrapped with knowledge from controlled experimentation
in indoor terrain boxes, it alters the morphological configuration of the robot online to
optimize energy efficiency when traversing unstructured terrains based on sensed terrain
characteristics.

This work is inspired by multiple fields, including legged robotics, embodied cognition
and AI, and evolutionary robotics. We can broadly segregate the literature into three
topics: (i) controller adaptation with static morphology, (ii) morphological adaptation
offline, and (iii) morphological adaptation online.

Biologically-inspired legged robots are a promising solution for unstructured environ-
ments. Adaptation can be realized purely through software, primarily adapting gait pat-
terns and foot-tip arcs. Techniques that allow locomotion on challenging terrain include
evolutionary approaches [9, 10, 11], reinforcement learning [12, 13], and Bayesian opti-
mization [14, 15], as well as perception-less [16] and hybrid approaches [17, 18, 19]. Online
adaptation to terrains of different compliance under aggressive maneuvers and external
disturbances has been studied [20], as well as walking posture adaptation for navigation in
confined spaces [21]. However, these approaches are implemented on a static morphology
which limits the level of attainable environmental adaptation.

Evolutionary robotics and Artificial Life have deep links to embodied AI, and are
concerned with investigating and understanding biological processes, including adaptive
bodies [22]. While a robotic adaptation process would ideally be embodied [23], most
works in adaptive robotic morphology are carried out in physics simulation, and not on
physical robots [24]. Examples include soft robots [25], modular robots [26], and legged
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robots [27]. Recent work has studied co-optimization of control and morphology using
gradient approaches in differentiable physics simulators [28], which has strong potential
to efficiently couple control, morphology, and environment. These efforts are, so far, only
simulated and run in simple environments.

The next step up from pure simulation of adaptive morphology is selecting a few virtual
robots for real-world manufacture and testing. The manufacturing process can involve
3D printing [29, 30, 31], assembly from building blocks [32, 33], or even silicone mold
techniques for soft robots [34]. However, the performance of these robots is often limited
due to the inaccuracies in the simulation or models used, referred to as the reality gap [35,
36]. This discrepancy means that robots with morphologies optimized in simulation are
not fully adapted to the intricate physical environments they will eventually operate in,
but to a simplified version of it.

Our approach to morphological adaptation is performed exclusively in hardware, which
is guaranteed to work in reality. Other examples where the body of a robot is opti-
mized or changed in the real world directly are relatively rare, including manual assem-
bly [37, 38, 39] or an external mechanism for reconfiguration [40, 41, 42]. Such approaches
require extensive time, external apparatus, or human intervention and are not suitable for
continuous adaptation during independent operation. Few examples exist of robots with
a built-in ability to morphologically adapt, mainly due to the challenges associated with
designing, building and maintaining a robot with a complex dynamic morphology [43].
Many of these robots are therefore relatively small with no payload capacity, and are
limited in their ability to function in real-world unstructured settings, e.g., [44]. More
complicated robots possess a higher potential to solve real-world problems, including
morphing drones [45, 46], multi-modal legged-wheeled [47] and wheeled-flying robots [48].
These more advanced robots typically discretely change between a couple of pre-defined
morphologies, whereas in this paper we sample morphologies from a continuous range.

Compared to the identified literature, our approach is the first to continuously op-
timize the morphology of a real legged robot with the capability to hold a reasonable
payload and, in principle, carry out various missions, outdoors in the real world. It also
makes DyRET the first ‘fully featured’ robot of its size, with software, sensing, and actu-
ation, to close the embodiment brain-body-environment loop in a challenging real-world
setting. To demonstrate this ability, we fill large boxes with real terrain material and train
a simple regression model relating the sensed terrain to the performance of the different
morphological configurations of the robot. We validate this model in a simple scenario
indoors. Finally, we run the robot in realistic terrains outside, where we test contin-
uous adaptation of morphology while simultaneously updating the regression model ‘in
the wild’. Continuous adaptation outperforms a challenging baseline of the best static
configuration discovered during the bootstrapping phase.
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Results

We start by gathering a baseline data set used to bootstrap the subsequent adaptive
process. Our system is then evaluated in two different scenarios: (i) Adapting in a
controlled indoor environment, and (ii) Adapting in a realistic outdoor environment. In
both, we compare the performance of the adaptation algorithm to the best performing
static morphologies from the baseline data set.

Gathering the data set

A baseline data set was collected to pre-learn a model of how the robot’s morphology
affects its performance on different terrains, facilitating efficient adaptation in real-world
environments by avoiding potentially poor-performing morphologies. The baseline model
bootstraps the subsequent learning process and, in our final experiment, is updated con-
tinuously as the robot operates in new environments.

Wooden boxes were filled with terrain materials purchased from a landscaping supplier,
as seen in Fig. 4a. Our robot senses both the hardness and roughness of its terrain, so
we selected three materials with a spread in these two terrain characteristics (details can
be found in Supplementary Table 3). Sand is soft with low roughness, gravel is hard
with high roughness, and a fiber-reinforced concrete sheet provides a hard surface with
low roughness. Please refer to the Methods section for our definitions of roughness and
hardness. Each box consists of two halves filled with different terrain materials. This
allows the robot to walk on the separate terrains, as well allowing us to test terrain
transitions. The boxes were placed in a motion capture facility for high accuracy indoor
positioning.

A minimum change in leg length is needed before seeing a notable effect on robot
behavior, so each leg segment was limited to five uniformly sampled discrete lengths,
giving 25 different morphological combinations in total. The robot walks forward for 15
seconds per morphology, covering all 25 combinations. The velocity varies greatly, but
the theoretical speed is 1.56m/min for the shortest legged robot, and 1.95m/min for the
longest legged robot. The walking surface typically reduces the speed, but it can in some
cases also increase it due to the complex effects of the dynamics of the mechanical system.
Each morphology is tested at five different starting locations per terrain type to cancel
out any local variation in the surface. The robot does not traverse any transitions at this
stage. The data set contains approximately 90 minutes of pure walking data.

The measured cost of transport (COT) for each morphology on the three surfaces can
be seen in Fig. 2. When walking on the concrete, the robot achieves the best energy
efficiency with a long femur and short tibia, as well as a medium femur and medium tibia.
On sand, the robot achieves a high efficiency for short to medium length tibias, with
femur length having less of an effect. Much less consistency is seen in the gravel, but the
best COT is seen for the shortest possible legs.
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Fig. 2: The COT of different leg lengths on the three terrains The lower the COT
is (yellow), the more efficiently the robot is walking. Please note that the ranges – as seen
in the bottom of the figure – are not the same for each surface, to better highlight local
differences within each terrain.

Adapting in a controlled indoor environment

In this preliminary experiment, we demonstrate a simplified case where morphology is
adjusted based on sensed terrain characteristics, but terrains are present in the training
data and discretely separated within terrain boxes (Fig. 3a). In this case there is also no
need to continuously change the leg lengths, as the terrains are highly uniform throughout.
As the terrains are known, the adaptation algorithm takes the form of a classifier (see the
Methods section for details). The robot is brought to a standstill before the morphology
is changed, which is triggered by the onboard sensors detecting a step onto a new terrain
type. This serves as a simplified validation of our final, continuous, adaptation method
done in a realistic outdoor environment.

We used the same terrain boxes used for collecting the baseline data set, seen in
Fig. 4a. The first half was covered in the concrete sheet, with the rest comprising of
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Fig. 3: Diagram showing the two adaptation methods used (a) Adaptation prin-
ciple for the controlled indoor environment. 1a: The robot walks forward while sensing
its environment. 2a: Once a terrain change has been detected, it stops walking. 3a: The
robot changes the length of its legs to the optimal morphology for the new terrain. 4a:
It starts walking with the new morphology, repeating from 1a. (b) Adaptation principle
for realistic outdoor terrains. 1b: The robot predicts the best performing morphology
based on sensor readings and its internal model. 2b: It changes the length of its legs to
this new morphology while walking. 3b: When the legs have reached their goal length,
the robot measures its performance and the terrain characteristics. 4b: It adds the new
measurements to its internal model, before repeating the process from step 1b.

gravel. The lowest-COT morphology for each surface is chosen from our baseline data set
(femur 50mm, tibia 20mm for concrete; femur 0mm, tibia 0mm for gravel), and serves
as a comparison for the adaptive morphology. Each morphology begins on concrete and
walks onto gravel, triggering a change in morphology in the adaptive case. More details
on the experiment design can be found in the Methods section.

Fig. 4b shows that morphologies specialized for one terrain do not transfer well to
the other, and that no single morphology is best across both terrains. This is expected
given our terrain selection method tried to use terrains with different characteristics. The
concrete-specialized morphology achieves a mean COT of 23 while walking on concrete,
which rises to 37 after the transition, resulting in a reduction in energy efficiency of
≈ 60%. The gravel-specialized morphology starts with a mean COT of 36, but achieves
26 on gravel, showing an improvement of ≈ 70% after stepping onto the optimal terrain for
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the morphology. The adaptive morphology is shown to perform consistently well across
these known terrains, and the change detection algorithm triggers a switch in morphology
at the appropriate time.

Adapting in a realistic outdoor environment

Fig. 3b describes an extended method that takes into consideration the additional chal-
lenges of a realistic outdoor environment. As these terrains are highly dynamic and un-
structured, we cannot assume that all terrains that the robot will encounter are present
in the baseline data set. We therefore replace terrain classification (used in our previ-
ous approach) with characterization (details in the Methods section). Realistic outdoor
terrains can also change substantially over even small areas, potentially for every single
step the robot takes. With this extended method, the robot does not stop to change
morphology at any point, but operates continuously while the morphology slowly adapts
and new experiences are added to the (now adaptive) model.

An outside test track was selected, seen in Fig. 4c. The route starts with a section of
grass, before the robot steps on to a concrete road, then back on the grass. Returning
to the same surface again shows to what degree the algorithm is able to adapt its model
based on previous experience of walking on grass.

The robot uses the model detailed in the Methods section to predict the best per-
forming morphology on its current terrain. Since changing the length of the legs takes
a considerable amount of time, only neighboring morphologies are considered (within
12.5mm for the femur, and 20mm for the tibia). The terrain and performance is not
evaluated while the legs are changing length, but after the morphology has been achieved.
The robot takes three steps per leg to get a representative measure, and we refer to this
as an evaluation. It only reconfigures if any of the neighbors are predicted to outperform
the efficiency it just achieved with its current morphology. If not, it simply evaluates the
same morphology again. Evaluations are therefore not based on discrete terrain changes
or time passing, but are done continuously. Additional evaluations will improve the model,
even for repeat measurements for the optimal morphology. The algorithm was allowed 32
evaluations on each terrain section, before being led onto the next. The best all-round
static morphology (lowest COT across all 3 terrain types from the baseline data set: femur
37.5mm, tibia 20mm) served as a comparison.

Fig. 4d shows the energy efficiency (COT) of every morphology evaluated while adapt-
ing. We see that for the first grass section, adaptation gives a median COT of 22, while
the static morphology has 27, a reduction in efficiency of ≈ 17%. We see similar reduc-
tions in the median for the road and second grass surface of ≈ 10% and 26%, respectively.
The adaptation significantly outperforms the all-round best performing morphology on
all three terrain sections.

Fig. 5a shows the difference between the predicted energy efficiency (COT) for the
selected morphology and the actual efficiency measured after walking. The error in COT
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Fig. 4: Environments and results for indoor and outdoor experiments (a) The
terrain boxes used for the experiment in the controlled indoor environment. They contain
sand, gravel and concrete. (b) The COT for the two best static morphologies (gravel-
specialized in green and concrete-specialized in orange) and the adaptation (blue) when
walking on concrete, then gravel in the boxes. The solid lines show the mean of 12
repeats, and the shaded areas show the 95% confidence interval. The vertical gray dashed
line denotes the approximate point where the middle of the robot crosses between the two
terrain types. The front legs step onto the new terrain a few steps before. (c) The outdoor
area used in the experiment in a realistic outdoor environment, with the red line showing
a typical walking path for the robot. It starts on grass, walks onto the road, then back
onto the grass. (d) Standard boxplot of energy efficiency (COT) of the adapting (blue)
and best all-rounder static morphology (orange) on the outside test track. The boxes
extend from the lower to upper quartile, with the median shown within with a black line.
The whiskers on both sides of the boxes show the extreme values. *Statistically significant
differences from two-sided Mann-Whitney U test on each parameter with Holm-Bonferroni
p-value correction (p < 0.01, n1 = 160 (adaptive), n2 = 64 (static all-rounder), *1: U =
2540, *2: U = 747, *3: U = 2001).
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starts very high at ≈ 25, falls below 6 after trying 16 different morphologies, before ending
at ≈ 2.5 at the end of the first grass section. The error spikes to ≈8 as the robot steps
onto the road and ends up at ≈ 4 at the end of the section. When stepping back onto
the grass, the error spikes up to 11, but that is still much less than initially encountered
on the first grass section. It very quickly converges and reaches below 6 in eight more
evaluations before ending at an error of ≈ 5. These statistics are based on a locally-
weighted regression on five repeats of the adaptive run, and contain uncertainty reflected
in the confidence intervals in the figure.

Fig. 5b shows which morphologies are used on each terrain type. Mostly short femur
with long tibia combinations are evaluated while the robot walks on the initial grass
section, as seen to the left in the figure. When it steps onto the road, shown in the
middle, there is a shift to long femur, long tibia combinations. The morphologies tested
on the final grass section are similar to those used on the road. The adaptation algorithm
exploits almost the entire morphological range. The algorithm also delineates the benefit
of having an adaptive morphology—the best generalist static morphology is consistently
outperformed by this adaptation.

Fig. 6 shows how the model’s understanding of the two outdoor terrains changes
during the adaptation runs. The mean terrain characteristics from the outside test track
(roughness 51.0mm2 and hardness 143.4N for grass; roughness 16.5mm2 and hardness
187.4N for the road) was used to visualize the model output at four different stages of the
adaptation process. The initial maps generated solely on the baseline data set contain
many extreme COT values, both at 0 and above 40. The optimal morphologies in the
baseline data set achieved COT values in the range of approximately 18 to 25, while
the worst morphologies were above 35, giving us a reference for realistic COT values.
After walking on the first grass section, multiple prediction updates are seen in red in
the second column of the figure. COT values for the updated grass model are in the
range of 21-26, which can be considered realistic. The road prediction is more varied,
with COT values as low as 12, which is considered unrealistic. After walking on the road,
similarly large updates are seen to the road model in the third column, where we now
have COT values between 19 and 25. The grass model is also slightly updated. After this
section the model has experienced both terrain types, so when transitioning to the final
grass section we see that only seven squares are updated for grass and five for the road.
Only two of 25 possible leg-length combinations (femur 12.5mm, with tibia lengths 60mm
and 80mm) were updated both in the first grass section and the last. The fact that not
more morphologies were updated shows that the adaptation algorithm has successfully
integrated the experience from new terrains with the baseline data set to rapidly generate
low-error predictions.

Fig. 6 also serves as a demonstration of how the algorithm explores the space of
available morphologies. We see from the grass map after the first grass section that the
best predicted COT is in the top right area (femur 50mm, tibia 60mm). Because of the
time taken to transition between morphologies, the adaptation algorithm is limited to
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baseline data set. The second shows the model after the walking on the first grass section,
third after the road section, and the fourth after the final grass section. Data from all
five iterations of the algorithm is included. To indicate where the model was significantly
updated, all visited cells resulting in a change in COT higher than 1 are marked with a
red square.

only selecting the next morphology from neighboring cells. While this gives the benefit
of being able to test a range of different morphologies in a short amount of time in a
stable, controllable manner, it also means that areas like this are left unexplored since it
is surrounded by low-COT cells. We see, however, that the area is visited when the robot
returns to the grass section for a second time, and that it does in fact outperform the
morphologies tested initially.
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Discussion

This work serves as an important step in the direction of morphologically adaptive robots
and the overall goal of robotic operation in unstructured environments. We have demon-
strated the validity of our approach, which harnesses morphological adaptation in an
Embodied AI context to provide significantly improved performance compared to the
best single static morphology.

Key experimental takeaways are (i) we can build a model of how cost of transport is
affected by terrain and morphology, (ii) we can use this model to adapt in a controlled
indoor environment (a proof of concept), and most importantly (iii) we can combine the
model with an adaptation algorithm, allowing the robot to continually vary its morphology
in response to previously-unseen environments in live outdoor experiments over natural,
unstructured terrains, using the previously-learned model as a reference point. In our
testing, the system quickly learned high-performance morphologies on grass, even though
it had only previously experienced sand, gravel, and concrete. Importantly, this dynamic
morphology strategy is shown to achieve better energy efficiency than any single static
morphology during testing, and highlights adaptive morphology as an advantageous trait
for robots operating in unstructured terrains.

In contrast to the relatively controllable indoor experiments, the realistic outdoor
environment exposed our system to many sources of noise and inaccuracy. Outdoor ex-
perimentation also precluded the use of motion capture equipment for position tracking.
To compensate for these difficulties, we used separate regression models for each morphol-
ogy to keep noisy measurements contained. Each of these sub-modules are continually
updated with new data, increasing the accuracy of the model with each new evaluation.
Overly optimistic measurements would likely be selected for a new evaluation and subse-
quently be adjusted to a more realistic level. Overly pessimistic measurements can quickly
be overlooked in favour of neighbouring morphologies, leading to premature convergence
to local optima. This is addressed by only using the previously recorded COT when com-
paring to the predicted performance of the neighbours, enabling a single measurement to
force exploring an otherwise ignored neighbour. Noisy terrain measurements also aid the
algorithm, as walking outside exposes the robot to a range of different terrain examples
very quickly, and the model will therefore gradually be filled out until it has the coverage
needed for realistic prediction for its entire operating environment. This ability to exploit
noise and inaccurate measurements is a strength of our adaptation mechanism allowing
it to cope with complex and changing outdoor environments.

There are a few main limitations to our approach. Primarily, we use a 1-to-1 mapping
of controller to morphology, rather than explicitly searching for effective body-brain com-
binations — a trade-off of faster adaptation speed for less behavioural diversity. Future
efforts may focus on learning more sophisticated models on which to rapidly prototype
control schemes before real-world rollout, as explicit controller adaptation may facilitate a
more diverse behavioural repertoire for a broader range of terrains. We can also consider
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more advanced morphological adaptation mechanisms [2, 49, 50]. To balance reconfig-
urability with mechanical simplicity and stability, our adaptation actuator mechanism
has a speed of ≈1mm/s. Faster adaptation would be advantageous in highly dynamic
environments, where the robot has to constantly play catch-up between its instantaneous
morphological configuration, and the best configuration as predicted by the model. In
practice this was never an issue, as the nearest-neighbour adaptive approach was specif-
ically designed to work on the hardware. Improvements to terrain modelling would also
bring benefits. We used second-order polynomial regression models to facilitate analysis
and gain an understanding the underlying mechanisms and effects of the adaptation pro-
cess. We also chose to look at each morphology separately, instead of constructing one
model that incorporated all data points.

Implications of these results are potentially far-reaching. We hope to inspire the design
and adoption of similar mechanisms, for example, in commercially available platforms, to
further increase their range, the tasks they can complete, and their possible operational
environments. Our key takeaway is that morphological adaptation to real-world environ-
ments is a powerful and promising technique to conquering unstructured terrains, with
significant benefits over the static morphologies that are ubiquitous within current robotics
literature. We hope that our research helps pave the way towards flexible hardware plat-
forms that are capable of performing a variety of useful missions in outdoor, unstructured
terrains.

Methods

Robot platform design

Our robotic platform, the Dynamic Robot for Embodied Testing (DyRET), can be seen in
Fig. 1. It is a quadrupedal mammal-inspired robot with the ability to change the length
of its legs during operation and a fully certified open source hardware project [51]. The
body weights approximately 5kg, measures 50cm by 30cm, and stands between 60cm and
73cm tall, depending on the pose and leg length. The robot is powered by a three cell
5Ah LiPo battery supplying the robot with an unregulated voltage of 12.6V when fully
charged. It has previously been used in laboratory settings, e.g., [9, 52].

Fig. 1a shows the main components of the hardware design. The central body consists
mainly of carbon fiber tubing, milled aluminum, and 3d printed plastic parts, as well as
commercial-off-the-shelf available parts where possible. An RGBD camera is mounted
at the front of the robot, pointing vertically down and measuring the roughness of the
terrain surface under the front legs. Force sensors are mounted at the tip of each leg and
report the perceived surface hardness of the robot.

For indoors experiments, position is measured using a 26-camera motion capture sys-
tem from Qualisys with four reflective markers placed on the robot. This achieves a
sub-cm precision. Outdoors, we use a Ublox c94-m8p differential GPS, mounted on the
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chassis, with the RTK base station placed consistently within 300m of the robot. The
outdoor system typically achieves a precision of less than two cm, which is considered
adequate for accurate speed estimation.

Four legs are attached to the chassis, each with three rotational joints. The proximal
joint consists of a Dynamixel MX-64 servo from Robotis, while the two distal joints use
MX-106 servos. Two prismatic joints vary the lengths of the femur and tibia, using a
geared DC motor and custom linear actuator as shown in Extended Data Fig. 2a. Each
femur can lengthen by 50mm, and each tibia by 100mm. The longest transition, from
minimum to maximum length of the tibia, takes approximately 90s at a speed of about
1mm/s. Increasing the length of the legs acts as a mechanical gearing of the servos.
Longer legs mean higher movement speed at the end of the leg given the same rotational
velocity at the joint. It does, however, come at the cost of less force at the end of the
leg, given the same torque at the joint. Being able to change the length of its legs during
operation allows the robot to select this trade-off between speed and stability as needed.

Our adaptive morphology mechanism alters the available workspace, as seen in Ex-
tended Data Fig. 2b. The longest available leg length increases the workspace volume
by ≈ 75%, and lifts the body ≈ 13cm away from the ground, consequently affecting the
robot’s balance. Only 11% of the workspace for the shortest legs and 6% for the longest
legs overlap. This shared area is too small for an effective gait, making it impossible for
a static robot without adaptive leg-lengths to replicate the behavior of our platform.

Cost of Transport (COT) provides a straightforward and informative means of as-
sessing energy efficiency when walking, taking into account key metrics including energy
expended as well as mass and distance travelled. A dimensionless parameter, COT allows
for ready comparison to other robots as well as to to biological life [53], and is specifically
very popular in the legged robotics community, e.g., [54]. The formula for COT is given in
Equation 1, where E is the energy, m is the mass of the robot, g is standard gravity, and d
is the distance traveled. Energy is, in our case, solely based on the energy expended for lo-
comotion by the servos, measured by an onboard current sensor in each servo. Power used
for control and sensing is assumed to be independent of the morphological configuration,
and therefore not included.

COT =
E

mgd
(1)

Terrain sensing

Our system uses two different methods to sense its terrain: classification and characteriza-
tion. In classification, the goal is to find out which class the perceived terrain belongs to,
out of a few number of example terrains. In our indoor experiments, we only have three
classes: concrete, sand, and gravel. In characterization, the goal is instead to measure
some features of the terrain that are useful for the adaptation process. The perceived
terrain is not classified as being a specific type but is given a set of quantitative measure-
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ments that describe it. Terrains may be characterised in a multitude of ways, here we use
hardness and roughness as they strongly inform the morphology.

Hardness and roughness are often sensed indirectly, e.g. using vision [55]. Precise
definitions also vary slightly across the literature. Here, we evaluate perceived hardness
by measuring the force of the impact as the front feet hit the ground. Roughness is
evaluated by measuring the deviation from a perfectly flat ground plane for a number of
points in front of the robot. Our methods for terrain measurement are informed by our
available sensing hardware.

Hardness is inferred from the impact force measured by the sensors in the front feet
(Optoforce OMD-20-SH-80N) at 100Hz. The back foot sensors are ignored to reduce am-
biguities arising from crossing between two terrain types (front feet on terrain A, back
feet on terrain B). Raw sensor data is run through a median filter of size 5 for noise
reduction, along with the removal of obvious erroneous force measurements of several
times the weight of the complete robot (>100N). The final hardness value reported is
the summed maximum value measured on each of the force axes on both sensors in a
six-second sliding window from the start of the measurement. Details are available in the
Supplementary Materials. Only looking at the maximum from a sliding window means
that increases in hardness are immediately represented in the hardness estimate, while
reductions will take some time to propagate through the system. There is a slight depen-
dency on environmental factors like the friction of the surface, but these are considered
minor contributors compared to the high level of noise in the measurements and natural
variance in the terrains the robot operates in.

Roughness is inferred using the point-cloud from an Intel Realsense D435 RGBD-
camera mounted at the front of the robot and pointing down, providing a 3D represen-
tation of the ground at 6hz. A ground plane is fit to the measured points and all points
that have a distance to the plane of more than 35mm are discarded to filter out the legs
and other parts of the robot from the scene. The mean of the square distances from each
point to the plane is used as a roughness estimate, where zero would imply walking on a
perfectly flat surface.

These methods for extracting terrain features are both relatively simple, but have been
considered adequate for our needs. Details on the sensors and measurement ranges are
available in Supplementary Table 4, and a plot showing the distribution of terrain mea-
surements for the indoor boxes are shown in Extended Data Fig. 3. Sensor measurements
from walking for 16 seconds on the different boxed terrains are also available in Extended
Data Fig. 5. The measurement methods were evaluated on a number of terrains inside
and outside during development, and corresponded well to perceived terrain features by
the researchers. Varying the morphology does have some impact on the measurements
of the walking surface, but quite large changes to the morphology is needed before sig-
nificant differences are found. For hardness, the increased speed of the legs, the reduced
force from the servos, and more flexibility in the mechanism as the distance between the
body and the end of the leg increase are important factors. For roughness, the distance
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to the ground has an effect, as well as increase motion blur from higher speeds. Extended
Data Fig. 4 shows terrain measurements for different speeds, which is directly correlated
with overall leg length.

Terrain characterization, used for adaptation in realistic outdoor environments, is done
via these two features directly. Classification, used for adaptation in the controlled indoor
environment, is done by calculating the Euclidean distance to the mean value for each
terrain group in the data set, and selecting the closest match. Pseudo-code for both
terrain measurement methods are included in the Supplementary Methods.

Gathering the baseline data set

A small data set of walking performance for the different morphological configurations on
selected terrains needed to be generated. To limit the extent of the data collection, we
tested 25 leg length combinations of femur (0, 12.5, 25, 37.5 and 50mm) and tibia (0, 20,
40, 60, and 80mm). A full list of morphologies are available in Supplementary Table 2.
The terrain boxes shown in Fig. 4a contains a mix of gravel, sand, and concrete surfaces.
The gravel and sand was filled to an approximate depth of 15cm, but half a box with
concrete was not possible due to the high weight. Instead, a flat sheet of fiber-reinforced
concrete was placed on top of highly compacted dirt and mulch. These materials were
selected to give a wide spread in the hardness and roughness features we use, as seen in
Supplementary Table 3.

Each evaluation consists of the robot walking forwards on a single surface at a velocity
of about 2m/min for 15 seconds. All of this time was spent on the same surface. This was
done five times for each morphology, starting on different parts of each surface, to account
for local variations in the terrain material. 25 morphologies walking on three different
surface types for five iterations of 15 seconds of walking each yielded approximately 90
minutes of walking data in total, which was collected over two consecutive days.

Baseline modeling

Evaluating how each morphology performs in the real world can take a long time, so
testing all possible leg lengths each time the terrain changes is impossible. A baseline
model allows the robot to efficiently adapt its body during operation by providing some
predictive knowledge of which morphologies might perform well. While walking, the
sensed terrain characteristics are used to generate a map of predicted performance for all
possible morphologies. In our case, we limit the number of morphologies to 25 and treat
them all independently when learning the model.

The whole model is a collection of 25 fully independent sub-models, one for each of
the leg-length pairs in the data set. A diagram can be seen in Extended Data Fig. 1.
Each sub-model is made using second-order polynomial regression to approximate the
relationship between the two terrain characteristics and the energy efficiency of each leg-
length pair. The output is clamped to provide a COT prediction between 0 and 40, as
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values beyond this is considered unrealistic. The parameters for all the sub-models after
indoor data collection can be seen in Supplementary Table 5. Each time the robot tests
a new morphology, the terrain measurements and performance are added to the model
to incorporate new knowledge continuously. When a new terrain is encountered, the
corresponding point from each of the 25 sub-models is used to generate a full predicted
map for the given terrain. Examples of generated maps can be seen in Fig. 6, where they
were made from data at different points throughout the adaptation algorithm.

Selection of the next morphology can be done globally in the generated map, but since
changing the length of the legs can require a lot of time, we always select from neighbor-
ing morphologies in the model, where the new morphology is the neighbor with the best
predicted efficiency (lowest predicted COT), given the measured terrain features. To pri-
oritise more current information, the actual current performance is used when comparing
to new morphologies, and not the theoretical prediction for the current morphology from
the map.

Indoor adaptation experiment

Our goal was to test the simple adaptation method in a controlled indoor environment.
This serves as a precursor to continuous adaptation in unstructured terrains outside by
evaluating the feasibility of our methods on a simpler problem. One of the boxes in
Fig. 4a was used with the first half covered with the concrete sheet and the second half
with gravel. We compare the adaptation method, detailed below, to walking across the
whole box with each of the two optimal static morphologies from the baseline data set
(concrete-specialized, with femur 50mm and tibia 20mm; and gravel-specialized, with
both femur and tibia 0mm).

The robot is initially positioned to walk eight steps on the concrete, before stepping
onto the gravel for the last eight steps. When using the two optimal static morphologies,
the robot walks the full 16 steps without stopping. In the adaptive case, the robot uses
terrain classification to detect the transition between the two terrain types. When a
change has been detected, the robot stops walking and changes the length of its legs. The
new morphology is taken from the best performers in the baseline data set. Once the
desired leg length has been reached, it recommences walking the rest of the 16 steps. The
tests were repeated 12 times to get an accurate representation of the actual performance.
12 iterations of 16 steps gives a total of 192 steps for each morphology. Walking across
the box with the adaptive and two static morphologies gives a total of 576 steps for the
indoor experiment.

Pseudo-code for the experiment is available in the Supplementary Methods.

Outdoor adaptation experiment

Our goal was to test the extended adaptation method in a realistic outdoor environment,
which is the key experiment for this paper. This experiment was done on the outside test
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track shown in Fig. 4c, which consists of mixed terrain, dominated by grassy areas and a
concrete road. As experiments were conducted in the middle of summer in Australia, the
earth was very hard and dry, and the light covering of grass did not contribute much in
terms of perceived hardness. The road includes cracks and small obstacles like rocks and
sticks. No attempt was made to clean up or prepare the outdoor environments in any
way. The adaptation method is compared to the best all-performing static morphology
from the baseline data set (femur 37.5mm, tibia 20mm).

When adapting, the robot is initially positioned on the grass section with its most
conservative morphology (femur 0mm, tibia 0mm). With a target forward velocity of
about 2m/min, the robot is manually steered onto the grass, onto the road, then back
on the grass. The adaptation algorithm is given the chance to change its morphology 32
times on each terrain section, referred to as evaluations. The static morphology evaluates
the same morphology 64 times on each section without any reconfiguration, resulting in
approximately the same time spent walking on each terrain section for the two approaches.
This ensures similar battery conditions for all tests. The adaptation algorithm was tested
five times since results can vary based on local variations in the terrain.

When choosing the next morphology to evaluate, the robot only considered neighbor-
ing morphologies (morphologies that only require changing the leg segment lengths by a
single increment: 12.5mm for femur and 20mm for tibia). It decides on the morphology
based on the model initialized with the baseline data set, as well as the features of the cur-
rent terrain. One evaluation comprises 3 full steps per leg, during which performance and
terrain features are measured. This ensures accurate measurements in the noisy outdoor
environment.

Pseudo-code for the experiment is available in Supplementary Methods 1.

Robot control

The robot uses a high-level spline-based gait controller detailed in [56]. It describes a
continuous, regular crawl gait where the body moves at a static speed, and only one leg is
lifted at a time. Leg trajectories are identical and represented by a looping cubic Hermite
spline. A balancing counter-movement is added to each step where the robot leans to
the opposite side of the currently lifted leg. This allows statically stable gaits and is
needed since each leg weighs approximately the same as the central body. Details on all
parameters for the gait controller can be found in Supplementary Table 1.

Step height is a fundamental parameter, set to 100mm based on the terrains the
robot will be operating in and a safety margin. Step length can then be maximized
within the workspace of the legs (seen in Extended Data Fig. 2b), and step frequency is
calculated to keep the rotational velocity of the servos within a safe range. We also have
to calculate a scaling factor given our variable leg lengths, as increasing the length of the
legs allows longer steps with the same rotational speed for each joint. The step height was
kept constant, but step length and width (the sideways movement) was scaled to keep
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the RPM of the servos consistent throughout the ground movement. The center of the
trajectory spline was kept constant so as not to affect the balance of the robot. Since the
frequency of the gait is kept the same, the increased step length for taller robots leads to
slightly higher walking speeds (up to 25%). The scaling can be found in Supplementary
Table 2.
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Extended Data Figures
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Extended Data Figure 1: A diagram of the prediction model used, instantiated
with the baseline data set measurements from the indoor boxes (a) The full
model with the 25 sub-models for each leg length combination. (b) The sub-model for
femur 50mm tibia 40mm, which shows the predicted energy efficiency (COT) of that
leg-length combination for different terrains. The 15 points are the actual measurements
from the indoor data collection (square from concrete, circle from sand, and diamond
from gravel). When the robot encounters a new terrain, each sub-model is queried at the
given roughness/hardness values to form a predicted 5x5 COT map similar to the ones
shown in Figure. 2 in the main paper.
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Extended Data Figure 2: Reconfigurable mechanism and workspace difference
(a) The components of the mechanical adaptation mechanism. (b) An indication of the
difference in workspace for the two extreme leg lengths.
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Extended Data Figure 3: Terrain features for indoor boxes Kernel density estimate of
the terrain features for the three different surfaces in the indoor terrain boxes, measured
during the data set collection. This includes all the different morphologies. Default
seaborn.jointplot parameters are used for the estimate.
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Extended Data Figure 4: Effect of speed on terrain measurements Terrain char-
acteristics of the three surfaces in the indoor terrain boxes, shown for different walking
speeds. The solid lines show the mean, and the shaded areas show the standard deviation.
(a) Perceived roughness from the depth camera in the front of the robot. (b) Perceived
hardness from the force sensors in the feet.
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Extended Data Figure 5: One walking sequence on the indoor terrains Generated
from single 16 second walking sessions with shortest possible leg length. Roughness to
the left is calculated from the depth camera. The middle plot shows the absolute, filtered
three axis force measurements used to infer hardness, summed for the two front leg sensors
(x-axis, sideways, in blue; y-axis, lengthwise, in orange; and z-axis, up, in green). The
right plot shows the total current reported by the servos.
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Supplementary Materials

Supplementary Methods

Experiment 1: Adapting in controlled indoor environments. Stop when sensing
a change in terrain, reconfigure the morphology, then start walking again.

Start with concrete-specialized morphology (femur 50mm, tibia 20mm)
repeat

Take one step/leg forward, measuring terrain characteristics
if Non-optimal terrain for current morphology detected then

Stop walking
Reconfigure to optimal morphology for detected terrain

end

until 16 steps/leg has been walked in total ;

The robot is initially positioned so that it will take 8 steps on the concrete, before stepping
onto the gravel for the last 8 steps.

Experiment 2: Adapting in realistic outdoor environments - Adapt morphology
and measure terrain and performance without stopping.

Start with initial morphology (femur 0, tibia 0)
Walk for three steps/leg, measuring terrain characteristics
repeat

Generate predicted map for current terrain from model
if best predicted neighbor COT > current COT then

Start changing morphology to best performing neighbor
end
repeat

Take one step/leg
until new leg lengths are achieved ;
Walk for three steps/leg, measuring terrain and energy efficiency
Add measured terrain characteristics and COT to data set
Regenerate model with newly experienced data point

until 96 morphologies tested ;

The robot is initially positioned on the grass, before walking onto road, then back on
grass. It is manually led onto the next terrain type after 32 morphologies have been
tested on each terrain section.
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Algorithm 1: Sensing terrain roughness with the Intel Realsense RGBD camera.

Find 3d plane best approximating the point cloud
Inliers = all points within a 35mm distance of the plane

Square error = 0
for all inliers do

Square error += squared distance between current inlier and plane
end

Mean square error = Square error / number of inliers

if More than 30000 inliers: then
Roughness = Mean square error

else
Roughness = 0

end

Standard methods from the PCL library are used for plane extraction and segmentation.
The RGBD camera used had problems with flat surfaces without discerning visual fea-
tures, so a roughness of 0 was assumed when a very low number of points were returned
by the sensor. The functionality for roughness sensing is mainly implemented in the
pointCloudPlaneFitter.cpp file in the terrain characterizer repository [60].
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Algorithm 2: Sensing terrain hardness with the Optoforce leg sensors.

for both front legs do
for all three axes do

if current force measurement > 100N then
discard measurement

end

end

filtered x-axis force = median(last 5 x-axis measurements)
filtered y-axis force = median(last 5 y-axis measurements)

if current z-axis force measurement < 0 then
current z-axis force measurement = 0

end

filtered z-axis force = median(last 5 z-axis measurements)

end

hardness = 0
for both front legs do

for all three axes do
hardness += max filtered absolute force over last 6 seconds

end

end

The force sensors exhibit some high frequency noise, and a median filter of size 5 has
been used to reduce it. Erroneous values over 100N are also removed due to being above
the nominal capacity of the sensors. Due to the construction of the sensors, it sometimes
reports negative forces in the z-direction. These are also filtered away, as they do not
reflect actual forces. The full datasheet for the sensors has been uploaded to the dyret-
documentation repository [51].
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Supplementary Tables

Supplementary Table 1: Parameters for the gait controller. * These parameters are
linearly scaled as morphology changes, see Supplementary Table 2 for details.

frequency 0.2
lift duration 0.15
p0 x 0.0
p0 y 50.0
p1 x 0.0
p1 y -80.0
p2 x 0.0
p2 y* 50.0
p2 z* 50.0
p3 x 0.0
p3 y* -15.0
p3 z* 100.0
p4 x 0.0
p4 y* -80.0
p4 z* 50.0
wagPhase 0.05
wagAmplitude x 25.0
wagAmplitude y 75.0
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Supplementary Table 2: Morphologies and spline scaling for all leg length combinations
used in our experiments. Optimal and best trade-off morphologies were found while
generating our baseline data set.

ID Femur (mm) Tibia (mm) Total Scaling Comment
0 0 0 0 100% Optimal on gravel
1 0 20 20 103%
2 0 40 40 106%
3 0 60 60 109%
4 0 80 80 112%
5 12.5 0 12.5 103%
6 12.5 20 32.5 106%
7 12.5 40 52.5 109%
8 12.5 60 72.5 113%
9 12.5 80 92.5 116%
10 25 0 25 106%
11 25 20 45 109%
12 25 40 65 113%
13 25 60 85 116%
14 25 80 105 119%
15 37.5 0 37.5 109%
16 37.5 20 57.5 113% Best trade-off for all surfaces
17 37.5 40 77.5 116%
18 37.5 60 97.5 119%
19 37.5 80 117. 122%
20 50 0 50 113% Optimal on sand
21 50 20 70 116% Optimal on concrete
22 50 40 90 119%
23 50 60 110 122%
24 50 80 130 125%
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Supplementary Table 3: Terrain characteristics of the three materials present in the indoor
terrain boxes, shown with median and interquartile range.

Roughness (mm2) Hardness (N)
Median IQR Max Median IQR Max

Concrete 5.1 7.6 14.0 135.5 13.3 155.2
Sand 25.2 18.5 63.9 61.3 8.2 82.8
Gravel 35.7 12.8 58.1 85.7 24.9 119.7

Supplementary Table 4: Values and ranges for all sensors used on the robot. * This is the
nominal range, and the sensor can return values outside of this, depending on calibration.

Sensor Measurement Rate (Hz) Unit Value
Servo (x 12) Current 100 A [-9.2, 9.2]
Optoforce leg sensors (x 4) Force x-direction 100 N *[-40, 40]

Force y-direction 100 N *[-40, 40]
Force z-direction 100 N *[0, 80]

Realsense depth camera 3D point cloud 6 mm
Motion Capture rig Position, x-direction 100 m [0, 8]

Position, y-direction 100 m [0, 8]
Position, z-direction 100 m [0, 6]

RTK GPS Position, x-direction 8 m
Position, y-direction 8 m
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Supplementary Table 5: Regression parameters for models trained on the indoor data
set. Linear regression from the Scikit Learn library was used to generate and deploy the
models. Femur and tibia are measured in mm, roughness in mm2, and hardness in N.

Femur Tibia
independent
term

roughness hardness roughness2
roughness *
hardness

hardness2

0 0 23.111 -0.292 0.124 0.011 -0.001 0
0 20 101.816 -5.604 -0.392 0.085 0.023 0
0 40 -34.391 2.236 0.903 -0.028 -0.012 -0.03
0 60 -34.656 2.999 0.513 -0.049 -0.005 -0.001
0 80 42.523 -0.835 -0.218 0.022 0.003 0.001
12.5 0 -93.561 4.471 1.636 -0.065 -0.017 -0.006
12.5 20 51.254 -1.030 -0.495 0.015 0.008 0.002
12.5 40 64.163 -0.607 -1.038 -0.009 0.018 0.005
12.5 60 -47.784 1.681 1.251 -0.019 -0.007 -0.006
12.5 80 -160.639 3.238 2.799 -0.017 -0.021 -0.011
25 0 -62.823 2.991 1.040 -0.034 -0.012 -0.003
25 20 11.706 -0.204 0.296 -0.009 0.009 -0.002
25 40 -98.220 4.566 1.426 -0.045 -0.021 -0.004
25 60 126.911 -2.581 -1.117 0.008 0.021 0.002
25 80 77.427 -1.355 -0.713 0.008 0.010 0.002
37.5 0 -27.108 1.801 0.626 -0.023 -0.006 -0.002
37.5 20 1.300 1.180 0.223 -0.011 -0.004 -0.001
37.5 40 29.676 0.633 -0.405 -0.009 0.002 0.002
37.5 60 -18.316 0.874 0.625 -0.009 -0.001 -0.002
37.5 80 -32.512 1.157 0.914 -0.008 -0.006 -0.004
50 0 23.989 -0.111 -0.065 -0.008 0.009 0
50 20 -34.658 0.788 1.175 -0.005 -0.004 -0.006
50 40 43.179 -0.147 -0.449 -0.003 0.005 0.002
50 60 -55.32 1.509 1.382 -0.014 -0.007 -0.006
50 80 60.060 -1.578 0-022 0-009 0.011 -0.003
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