Improving Post-Deployment Configuration of Cyber-
Physical Systems Using Machine Learning and Multi-
Objective Search

Safdar Aqeel Safdar

Thesis submitted for the degree of Ph.D.

Department of Informatics, Faculty of Mathematics and Natural Sciences
University of Oslo, 2020

© Safdar Aqeel Safdar, 2021

Series of dissertations submitted to the
Faculty of Mathematics and Natural Sciences, University of Oslo
No. 2379

ISSN 1501-7710

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without permission.

Cover: Hanne Baadsgaard Utigard.
Print production: Reprosentralen, University of Oslo.

Abstract

Today, Cyber-Physical Systems (CPSs) are increasingly becoming an essential part of our daily
lives and can be found in various domains such as energy, communication, and logistics. To
accommodate different needs of users and provide customizations, CPS producers often adopt
Product Line Engineering (PLE) methodologies. Consequently, CPSs are developed by
integrating multiple products within/across product lines (PLs) that communicate with each
other through information networks. Several PLE methodologies exist in the literature, however,
their suitability for CPS PLs needs to be evaluated because of unique characteristics of CPS PLs
(e.g., variabilities corresponding to multiple domains (e.g., electronics, mechanics), complex
configuration processes). Hence, we need to identify key requirements of CPS PLE and evaluate
existing PLE methodologies to assess their capabilities of supporting CPS PLE. Furthermore,
most of the existing studies address challenges related to the pre-deployment configuration (i.e.,
making configuration decisions at design time) of individual products. There is a need for studies
focusing on the post-deployment configuration (i.e., making configuration decisions at runtime)
of interacting products.

In this thesis, first, we conducted a systematic domain analysis and proposed a conceptual
framework for CPS PLs, based on which we evaluated existing PLE methodologies. Then, we
focused on the post-deployment configuration of CPSs and made another two contributions: we
proposed 1) an approach to capture patterns of configurations in the form of configuration rules
and, and 2) another approach for recommending configurations to improve the post-deployment
configuration experience from the perspective of testers and end-users.

To conduct the domain analysis, we analyzed three real-world CPS case studies. Based on the
knowledge collected from the domain analysis and a thorough literature review on PLE, we
proposed a conceptual framework, in which we 1) clarify the context of CPS PLE by formalizing
CPSs, PLE, and configuration process; 2) present classifications of Variation Point (VP),
constraint, and view types in addition to other modeling requirements to support the domain
engineering of CPS PLs; and 3) formalize various types of automation that can be enabled to
support the application engineering of CPS PLs. The completeness of the framework was
evaluated using three real-world case studies containing 2161 VPs, 3943 constraints, and 40
views, 11 configuration tools, and an extensive literature review. Furthermore, we also evaluated
four representative variability modeling techniques (VMTs): Feature Model (FM), Cardinality-
Based Feature Model (CBFM), Common Variability Language (CVL), and SimPL. With the
selected VMTs, we modeled a case study to assess if they can capture variabilities of CPS PLs.
Results show that using SimPL, CVL, CBFM, and FM, we can capture only 81%, 75%, 50%, and
15% of the total variabilities, respectively.

To capture the configuration patterns in the form of configuration rules, we proposed the
Search-Based Rule Mining (SBRM") approach. SBRM" combines multi-objective search with
machine learning to mine configuration rules in an incremental and iterative way. We evaluated

il

the performance of SBRM" using multiple real-world and open-source case studies from the
communication domain and compared its performance with Random Search Based Rule Mining
(RBRM"). Results show that SBRM" performed significantly better than RBRM" in terms of
fitness values, six quality indicators, and 17 Machine Learning Quality Measurements MLQMs.
As compared to RBRM", SBRM" improved the quality of rules up to 28% in terms of MLQMs.

To improve the post-deployment configuration experience, we proposed the Search-Based
Configuration Recommendation (SBCR) approach, which recommends faulty configurations for
CPSs with interacting products under test, based on mined rules. These configurations can be
used to test CPSs and create guidelines for end-users to improve the post-deployment
configuration experience. We evaluated SBCR using the same case studies, for which we mined
the rules using SBRM". Results show that SBCR significantly outpetformed Random Search-
Based Configuration Recommendation (RBCR) in terms of six quality indicators and the
percentage of faulty configurations. Overall, SBCR made up to 22% more accurate
recommendations than RBCR.

iv

Acknowledgements

Postponing the idea of having my own start up and going into research to undertake Ph.D. has
been a transformative experience, which allowed me to be who I am today! ...And of course, this
would not have been possible without persuasiveness of Muhammad Zohaib Igbal to whom I
owe a great deal of gratitude.

I am also sincerely grateful to my supervisors Tao Yue and Shaukat Ali. Without their
continuous support, encouragement, and invaluable knowledge and expertise in software
engineering research, this work would not have been possible. I am also thankful to Hong Lu for
her constructive feedback, insights, and many discussions that we had during my Ph.D. years. I
would also like to acknowledge the Norwegian Research Council for funding this PhD and
providing me an opportunity to conduct the research. A special acknowledgment to Simula
Research Laboratory and Simula School of Research and Innovation for providing an excellent
workplace.

I would like to thank my family and friends in particular Noman Bashir for their continuous
support and encouragement. I would also like to show my deepest gratitude to all the colleagues
at Simula especially my office mates Helge Spieker and Man Zhang. I would also like to express
my gratitude to Shuai Wang for all positive pep talks. Last but not the least, a big thanks to
Dipesh Pradhan for being a great friend and a continuous source of motivation as well as for all
the fun time and discussions we had together during my Ph.D.

To the people with dreams..!

vi

Abbreviation

CPS
PLE
PL

VP
VMT
FM
CBFM
CVL
CPL
SBRM
RBRM
RDBRM
MLQM
SBCR
RBCR
VCS
SPL
MHS
SPS
SBSE
GA

EA
NSGA
MoCell
IBEA
SPEA2
PAES
SMPSO
RS
RIPPER
PART
HV
1GD
ED
GD

GS
ARI

vii

Cyber-Physical Systems

Product Line Engineering

Product Line

Variation Point

Variability Modeling Technique

Feature Model

Cardinality-Based Feature Model

Common Variability Language

Cross-Product Line

Search-Based Rule Mining

Random Search Based Rule Mining

Real Data Based Rule Mining

Machine Learning Quality Measurement
Search-Based Configuration Recommendation
Random Search-Based Configuration Recommendation
Video Conferencing System

Software Product Line

Material Handling System

Subsea Production System

Search-Based Software Engineering

Genetic Algorithm

Evolutionary Algorithm

Non-dominated Sorting Genetic Algorithm
Multi-objective Cellular Genetic Algorithm
Indicator-based Evolutionary Algorithm
Improved Strength Pareto Evolutionary Algorithm
Pareto Archived Evolution Strategy
Speed-constrained Multi-objective Particle Swarm Optimization
Random Search

Repeated Incremental Pruning to Produce Error Reduction
Pruning Rule-Based Classification algorithm
Hypervolume

Inverted Generational Distance

Euclidean Distance from the Ideal Solution
Generational Distance

Generalized Spread

Average Relative Improvement

PFC Percentage of Faulty Configurations

viii

List of paper

The following papers are included in this thesis:

Paper A. Evaluating Variability Modeling Techniques for Supporting Cyber-Physical
System Product Line Engineering

Safdar Ageel Safdar, Tao Yue, Shaukat Ali, and Hong Lu.

Published in the Proceedings of International Conference on Systenz Analysis and Modeling (SAM),
2010.

Paper B. A Framework for Automated Multi-Stage and Multi-Step Product Configuration

of Cyber-Physical Systems

Safdar Ageel Safdar, Hong ILu, Tao Yue, Shaukat Ali, and Kunming Nie.

Published in the Journal of Soffware and Systens Modeling (SoSym), 2020.

Paper C. Mining Cross Product Line Rules with Multi-Objective Search and Machine

Learning

Safdar Ageel Safdar, Hong LLu, Tao Yue, and Shaukat Ali.

Published in the Proceedings of The Genetic and Evolutionary Computation Conference (GECCO), 2017.
Paper D. Combining Multi-Objective Search with Machine Learning to Infer Cross

Product Line Rules for Interacting Products

Safdar Ageel Safdar, Tao Yue, Shaukat Ali, and Hong Lu.

Published in the Journal of Awutomated Software Engineering (ASE), 2019.

Paper E. Recommending Faulty Configurations for Interacting Systems Under Test
Using Multi-Objective Search

Safdar Ageel Safdar, Tao Yue, and Shaukat Ali.

Submitted to the Journal of Transactions on Software Engineering and Methodology (TOSEM), 2020.

Note that all the five papers are self-contained and thus some information might be redundant
across different papers. Also, different abbreviations may have been used in the papers.

My contributions

For all the five papers mentioned above, I am the main contributor for the idea, implementation,
case study design, experimentation, results and analysis, and paper writing. My supervisors Tao
Yue and Shaukat Ali were involved throughout different phases of the work. Hong Lu was also
involved in scientific discussions for idea development, experiment designs, and paper writing for
Paper A-D. Moreover, during my Ph.D., I also contributed in Paper-F, which is not included in
this thesis.

Paper F. Quality Indicators in Search-based Software Engineering: An Empirical
Evaluation
Shaukat Ali, Paolo Arcaini, Dipesh Pradhan, Safdar Aqeel Safdar, and Tao Yue.

Published in the Journal of Transactions on Software Engineering and Methodology (TOSEM), 2020.

ix

Contents

PART-I: Summary

1T INEOAUCHON .t 3
2 BacKground.......cooiiiiiiii s 7
2.1 Product Line Engineering (PLE)c.ccccciiiiiiniiiiiniiiiiicceeicessiceneceens 7
2.2 PLE Optimization Problems ... 8
2.3 Multi-ODbjJective SEALCH c.....vuiuiiiiiiicii s 9
2.4 Branch Distance Calculation HEULISHC ..o 11
2.5 Machine Learningcccuviieuiiiemniiiiiiieiicicciessice st ssesessssssenas 11
3 Research Methods ... 12
3.1 Problem Identification and Formulation ..., 12
3.2 Solution REaAlIZAtION.ccciiieiiiiiiiict s 14
3.3 Solution Evaluation ... 15
4 Research ContributioNSccciiiiiiiiiiiiciniiii et 15
4.1 A Conceptual Framework for CPS PLE (Paper-A and Paper-B)......cccccovviiiviinininnn. 15
4.2 Search-Based Rule Mining (Paper-C, Paper-D)cccovviviininiiniviniciiiciccciienenns 16
4.3 Search-Based Configuration Recommendation (Paper-E) ..o 18
5 Summary Of RESULLS.c.c.cuiiiiiiiiiieieieirccctcct ettt 19
5.1 Paper-A: Evaluating Variability Modeling Techniques for Supporting Cyber-Physical
System Product Line ENGINEEIINGc.ouviiiiiiiiiiiiiiiiiniiiicescieisciesse s 19
5.2 Paper-B: A Framework for Automated Multi-Stage and Multi-Step Product
Configuration of Cyber-Physical SYStemsccccviiiiiniiiiiniiiiiciciceeeeceeanes 20
5.3 Paper-C: Mining Cross Product Line Rules with Multi-Objective Search and Machine
LLEAINING 1.ttt 21
5.4 Paper-D: Using multi-objective search and machine learning to infer rules constraining
PLOAUCE CONFIGULATIONS ..vvveeiriieiiiiiiiietis et 22
5.5 Paper-E: Recommending Faulty Configurations for Interacting Systems Under Test
Using Multi-Objective SEarchoccciviiiiiiiiiiiiiiiiciciicccecs s 25
6 Threats tO VAIAILY coeccccueieiririiicccicieieess ettt nens 26
6.1 Internal VAlIIEY c.c.cccveiiiriniicccceiei ettt 26
6.2 CONSLIUCE VALAILY ..ttt sttt 26
6.3 CoNCIUSION VAAILY wovueiiieiiriiiiccicicteieirncci ettt ettt eseaeaes 27
6.4 EXternal VAlIAIEY ..c.ccueiiiriiiiccccie ettt nens 27
7 Future DIFECHONS ..ovuiiiieticictt s 27
8 CONCIUSION .ottt 28
9 References fOr SUMMATY .c.cciiiiiiiiieieiictccicetetr ettt bbbttt benens 29
PART-II: Papers
Paper A 37
1T INEOAUCHON. oot 39
2 Related WOrK ..o 40
T 070 o1« OO 41
3.1 CaSC STUAY .ttt bbbt 41

x1

3.2 Variability Modeling Techniques.......c.coceiiiiviiiiiiiiiciceceiee 42

33 Procedure of the Study ... 44

4 Basic and CPS-specific Variation Point TYPES......cccoceviieriiiiiiiniiiiiiieeiicesceessicenines 45
4.1 Basic Variation Point TYPES......cocoviiiiiiiiiiiiiiccn s 45
4.2 CPS-specific Variation Point TYPES.....ccccuiviiiiiniiiiniiiicicc e ssseens 47

5 Modeling REqUITEMENLS......c.oviuiiiiiiiiiiiiciiiceiicet st ssaes 49
0 EVAIUALON coeeiiiiit s 49
6.1 Evaluation Based on Basic VP Types (RQ1T) c..cccvuiiiviiiiiiiiiiicicccicccciceees 50
6.2 Evaluation Based on the CPS-Specific VP Types (RQ2).....cccoeuevviniciviniciviicniinicneieanns 51
6.3 Evaluation Based on the Modeling Requirements (RQ3).....ccccocoeuvviiiiinicivniciinicniann 52

7 ThIEats tO VALAILY wovvvecececicieieieirii ettt et enens 53
8 CONCIUSION ..t 53
Paper B 57
1T INEOAUCHON. oot 59
2 Real-World APPLCALIONS ...ceviuieiiiiiiiiiciiiciiiiies et 62
2.1 Material Handling SYStemc.cccuviiiiiiniiiiiiiiciiieniccicnice e 62
2.2 Video Conferencing SYStEM.....cciuiiuiiiiiiiiiiiiciiiiesicies et 62
23 Subsea Production SYStEMcciicecucieieiririccceieiestcecicieset ettt seeseaeaes 63

3 Context FOrmaliZation ..o 063
3.1 PLE TermMinOlOZIESvuvuiiieiiiiiiiiiiiiieiiiiiesiiciessissie s sessssns 063
32 Cyber-Physical SYStEIM c...c.cueuiiiiiiiicicicieiirircccee ettt ettt ecaeae 65
3.3 Configuration PLOCESS.......cuoviuiiiiiiiiiiiciiiiciicc s 066

4 Domain Engineering of CPS Product LINEScccocieiviiieriiiiiiiniiniicniiccesicessiceninas 67
4.1 Modeling CPS Product LINESc.coviuiiriiiiiiiiiiiiiiicienice e 67
4.2 Classification of Variation Point TYPes......ccocuiviiiiniininiiiiccccrccceseees 069
4.2.1 Basic Variation Point TYPEScccceiiiiiiiiiiiiiiiiscsnsssanes 069
4.2.2 CPS-specific Variation Point TYPES ..o 71

4.3 Classification of Constraints in PLEccccooiiiiiiiiniiiiicccceccnseees 72

5 Application Engineering of CPS Product LINescccocvevviiieiiinicininiiiniiciicicceiceeaens 77
5.1 Functionalities of the Configuration SOIUtIONSccveuvivieeriiriiiniriieiiiccericeeees 77
5.2 Relationships among the Functionalities of Configuration Solution and Constraints ..80

0 EVAlUALON coeeiiiii s 83
6.1 Evaluation DEsi@nccuiiiiiiiiiiiiiiiiic s 83
6.1.1 Research QUESTIONS wuvveeveieieiieiiiririeieieieieiee sttt ettt sttt sttt e s 83
6.1.2 Evaluation Tasks and MELLICSccceueuriiuiiniiiiiiiiiniieiiieieice e esseens 83

6.2 Evaluation ReSUILSc.cuiiiiiiiiiiiicicccc s 85
6.2.1 Results fOr RQT ..ottt 85
6.2.2 Results fOr RQ2Z ..ottt ettt 86
6.2.3 Results fOr RQ3Bu .ottt 87
6.2.4 Results fOr RO ..ottt ettt 88

6.3 DiISCUSSION. ...ttt s 93
6.4 Threats t0 VALIAILY .vovcccccieieiriricccceieten ettt 94

7 Related WOTK ... 95
7.1 Domain Engineering of Product LINES.......ccoceiviiiiiiiiiiiiiiicsicsicceesceeeees 95
7.1.1 Modeling APPIOACHESvuiviieiiiiiciiciirci s 95
7.1.2 Key Challenges in Domain Engineering of CPS PLsccccccccvviiivniivnicvinicniaen. 97

7.2 Application Engineering of Product LINEs.......cccoceuviiiiviiciiiiciiniciicceceeene 98
7.2.1 Configuration PLOCESS ...t 98

xii

7.2.2 Key Challenges in Application Engineering of CPS PLs ..o 99

7.3 Formalization in the Context of PLE ..o, 99
8 CONCIUSION oot 100
9 Appendix A: Concepts Definitions and EXamplescccccvviiiiniinniininiiniiecscenene. 105
10 Appendix B: OCL CONSLIANLScuviiuiiiiiiiiieieiieieieiessieie s sssssessassesessssesessassesssses 110
11 Appendix C: Formal Definitions of CONStIAINtScccvevriiuevriiieiiiierniieieiieeiseneicenenseees 116
12 Appendix D: Formal Definitions of Functionalities..........ccccovuverviicrvinicininiciniceisieeeeens 119
1.1 DeciSIONINLEIENECE ...uvueiiieiiiiiiiicii s 119
1.2 DecisiONOLAEIINGvuviieiiiiiiciiic st 119
1.3 RevertingIDECISIONuoviiiiiiiiiiii s 119
1.4 WellFormednessChecking........ccciiiiiiiiiiciiccce s 120
1.5 ConformanceCheCKingcvuiiiiiiiiiiiiii e saes 120
1.6 ConsisteNCYChecKiNg ..o 120
1.7 ReSOIVINGVIOIAtION «..uceiiiieiiiiiiiciii s 120
1.8 CollaborativeCOoNfIGUIATION.ccciuiiieiieiiiciiiici it ssaes 121
1.9 IMPACTANALYSIS ..ot 121
110 CoNflCtDEECTON ..ttt 122
11T ConstraintSElECtiONc.cuvieiiiiiieiiiiiciicec s 123
1.12 ConfiguratioNOPUMIZATION.cvuvieiuriiieriiiieieiieeseesseies et sessses 123
113 RedundancyDeteCtion.....ccccueiririiicicieieieieininiiicicicieieieteetst ettt seneas 123
1.14 IncompletenessDEteCtioN.ccouiuiiuiiiuiiiiciiice s 123
Paper C 125
1. INEOAUCHON. .ot 127
2. OVEIVIEW oottt bbbt 129
3. Search-Based APProachi........iiiiiiiiiiccicc e 130
3.1 Definition and Problem Representation ... 130
3.2 Objectives and Effectiveness MEaSULEScccuviieiiiieiiiiieiniieiiiesieeisesesssesesenns 131
3.2.1 Avoid configuration data satisfying or close to satisfying high confidence rules with
NOTMIAL STATES .ueiiiaiiiicitie e 132
3.2.2 Generate configuration data satisfying or close to satisfying low confidence rules
With NOTMAL STAESeviieiiciici e 132
3.2.3 Generate configuration data satisfying or close to satisfying rules with abnormal
states 132
3.3 FItness FUNCHOMN ... 133
4. BEVAIUALON ot 133
4.1 Experimental SEtUP ..o 133
411 ReSearch QQUESTIONS .ueuiuiuiuiririririeieieteieieittntstseet ettt ettt be ettt st st be bbb e nenessses 134
4.1.2 Case StUAY oo s 134
4.1.3 Evaluation MEtriCScvuiiuiiiiiiiiiiciiiieiiicie et 134
4.1.4 Experimental Tasks, Parameter Settings, and Statistical Analysis........ccccceeveuruncnee. 135
4.2 Experimental EXECUtION ..o 135
4.3 Results and ANALYSIS ..ottt nene 136
43.1 Effectiveness of search (RQ1) .c.ccceiiiinniiiiiiinicccieeestecevesesesesseseeseaes 136
4.3.2 Comparing SBRM with RBRM (RQ2)cccccoeuiiimiiiiiiiiiiniiciccieinncccscisinians 136
4.3.3 Comparing SBRM with RDBRM (RQ3).....ccccceeuimmiimiiiiiiiciccicnccccisieias 136
4.4 Overall DISCUSSIONvuvuiiiiiiiiiiiiciiicii s saes 137
4.5 Threats tO VAlIAILY .ovoveececeieieiriniiccccieieie ettt 138
5. Related WOrK ..o 139

xiil

5.1 Dedicated Rule Mining Approaches.........ccccviciviieiniiciiiicicecesieessiscenes 139

5.2 Non-Dedicated Rule Ming APproaches ... 140
53 SUMMALY ottt sttt 141

0. CONCIUSION ..ttt 141
Paper D 145
T INEOAUCHON. .ttt 147
2 Background.......ciiiiii s 151
2.1 Multi-ObJectiVe SEALCH ... 151
2.2 Machine Learningcccuvuievriiieiiiiiiiiieiiieiiieseisie e sssssanes 151
2.3 Branch Distance Calculation HEULISHCvcuiieiiciiiiiciiiicicicciceceecicenenee 152

B OVEIVIEW ottt 152
4 Search-Based Configuration Generation Approach..........occevviviniciciviniciinicviniciinienes 155
4.1 Formalization of Configuration Generation Problem........cccccoeuvviiivniciiniciiinicniinaee. 155
4.2 Clustering and Classification of CPL Rules.......cccccccviiiviiiiiiniciiciiicccccens 159
4.3 Solution Encoding and Decoding..........cccvviiiviiniiiiniiiiciniiciiciccececeeeees 160
4.4 Objectives and Effectiveness MEaSULEScccuviiiiieiiiieiniienieeeiseneisesesssesessees 160
4.5 FItness FUNCHON ... 162

5 EVAIUAHON oot 163
5.1 Experiment DEsin ..o s 163
5.1.1 Research QUESHONS ..cueuiuiiriririeieieieieiiitnirteieieieieieie ettt bbbttt st be bt st ssesebenen 163

512 Case STUAIES ..ocvuieeiiieiiiiicici s 163

5.1.3 Evaluation MELIICSccuiiieiiiiiieiiiciiieieiciisiciesiscie s ssssesssaes 167

5.1.4 Experimental Tasks and Parameter SEttings........coovevviieerriiieiiinierninieriirieeisieneiiees 170
5.1.5 Statistical ANALYSES .o.cucueuiveiriririiieicicieieieteii ettt 170

5.2 Experiment EXECUION. ..o 171

6 Results and ANALYSIS ...t 172
6.1 Effectiveness of Search (RQ1) ..ot 172
6.2 Comparing SBRM" with RBRM " (RQ2)ovuiumriiiriireeineereienieniseinesseseneiessessssssessessesenenns 173
6.3 Average Relative Improvements in the Quality of Rules (RQ3).......ccccceuvvirvviiiurinnnn. 174
6.4 Comparing the Effectiveness of NSGA-II and NSGA-III (RQ4)....cccevvivivivinvunane 176
6.5 Comparing the quality of rules for SBRM" (RQ5) ...cccuueuniunieniinrercreneinereineineeneeeneenne. 177
6.6 Correlation Analysis (RQO) ..c.cuvuieieiueueiiiniriiiicciceieieieeceeieree ettt 177
6.7 Trend Analysis of the Quality of Rules Across the Iterations (RQ7) ...coveveececvcrerennnne. 178
0.8 Cost of Applying Search to Generate Configurations (RQS8).......ccccvuvicivnicinniicnnnace. 178
6.9 DISCUSSION. ...ttt s 179
6.10 Threats tO VALAILY c.veececeeuereieiiriiecicicietetetrre ettt ettt et 185
6.10.1 Internal ValIIty .cvcececeeieiiiniiicccccieei ettt 185
6.10.2 ConStruct ValIdItY.cveecucueuereiririiiciciereieieiestcicicieteeiseseeeeieesesessese s seseseas 186
6.10.3 Conclusion VAHAILYcccoceririririieeiereieieininiiiccieteteieise st seeesesesesesesesnns 186
6.10.4 External ValIIy .oocccccueiininiiiccccieiecccicieees et 186

7 Related WOTK ..o 186
7.1 Dedicated Rule Mining Approaches.........cccciiiviieiviiciiininiceeeciesienesseseenes 187
7.2 Non-Dedicated Rule Mining APproaches ... 190
7.3 SUMMALY ittt sttt 191

8 Conclusion and Future WOrkc.ccccccviiiiiiiiiiiiiicicce e 191
9 Appendix A: Examples of Generated Rules Using SBRM "covvriuinrninenecneneneneneneene. 197
Paper E 199
T INEOAUCHON. oottt 201

xXiv

2 Background.....c.ciiiii s 204

2.1 Multi-ObJectiVe SEALCH ...t 204
2.2 A Running BXample.......coiiiiiiiiiiiiiiiicesscsesissessssse s 205
23 Cross Product Line (CPL) RUlES....c.ccceuiiiiiiiiiiieieininiccicieieiesseecccesesesseseseeseaes 206

3 Configuration Recommendation APproach ..., 207
3.1 Basic Notations and the Configuration Recommendation Problem..........ccccocvueaneee. 207
3.2 Solution Encoding and Decoding...........ccvviiiiviiiiniininiiciiiiciiciceccceeens 208
3.3 Distance Calculation HEULISTICcucuiieiiiiiiiiiiiiricieciic s 208
3.4 Objectives and Effectiveness MEaASULEScccuviieiiiieiiiiienninieisicesiienisiesesssenessees 210
340 VIOIAHONN™ oottt 210
342 Conformance™™ ...t 210

343 CONFIAENCE ..t 211
344 DISSIMILALIEY N oottt 211

3.5 FItness FUNCHON ... 211

4 Experiment Design and EXECUION. ..o 212
4.1.1 Expefriment Desi ... 212
4.1.2 Research QQUESTIONS ..cuiuiuiuiririririeieieieieieitntststsee ettt ettt ettt ss bbb se e s sses 213
4.1.3 a8 STUAIES .o 214
4.1.4 Evaluation MEtriCScvuiuiuiiiiiiiiiiciiiiiiiciiie e 214
4.1.5 Experimental Tasks and Parameter Settings.......c.ccvuvieuviviiniriininiiniiiciesiiensienene. 216
4.1.6 Statistical ANALYSES c.c.cueueriiririiiicicicieieiirirccete ettt 216

4.2 Experiment EXECUION. ..o s 217

5 Experiment Results and ANalyses ... 218
5.1 Results Of RO T .ttt ettt 218
52 Results Of RO2Z...uiiiiieieieieertrireee ettt sttt 220
5.3 Results Of RQO3B ...ttt sttt ettt 221
5.4 ReSults Of RO ..ottt ettt 223
5.5 Results Of ROS ...ttt 225

6 Practical ConSiderationscciciriiiciiiiiciniieiiieisiieeesse s 226
6.1 Architecture of the SBCRT TOOl......coviiiiiiiiiiiiiciicccecsnee 226
6.2 Guidelines for Applying SBCR and Using Recommended Configurations.................. 227
6.3 Practical IMPlCAtioNS......cccuiiiiiiiiiiiiciciriicc e 229

7 Threats tO VAIAILY cveccceeiiiiiiicccceieiesisi ettt ettt ettt nene 229
8 Related WOrK ..ot 230
9 Conclusion and Future Work ..o 234

XV

xXvi

Part I
Summary

Summary

1 Introduction

Cyber-Physical Systems (CPSs) are highly connected large-scale systems that use embedded
computers to monitor and control physical processes using sensors and actuators [1-5].
Communication is an integral part of these systems, where various subsystems communicate with
each other through information networks (e.g., Internet). Today, such systems are increasingly
becoming an essential part of our daily lives and can be found in diverse domains such as energy,
communication, maritime, and logistics [6, 7]. To address different needs of users, CPSs require
customizations, and thus, many CPS producers opt for Product Line Engineering (PLE)
methodologies [6, 8]. Consequently, CPSs are developed by integrating multiple interacting
products (i.e., subsystems of CPSs) belonging to one or more product lines (PLs). A video
conferencing system (VCS) with multiple endpoints is an example of CPSs (Figure 1), where
these endpoints are products belonging to one or more PLs [9]. Such systems are highly
configurable, as each product has a large number of configurable parameters. For example, a
VCS product developed by Cisco! can have more than 120 configurable parameters, offering
different configuration options to users. Each product has a set of state variables defining system
states and a set of operations to enable interactions among various products.

PLE has two phases: domain engineering and application engineering. Domain engineering
focuses on capturing abstractions in form of commonalities and variabilities, and various types of
constraints for PLs using a modeling methodology (aka variability modeling technique—VMT).
Application engineering involves configuring products using a configuration tool with various
types of automation to support a specific configuration process. A large number of VMTs [10-
19] and configuration tools [20-26] exist in the literature, however, they are confined to
traditional software product lines (SPLs) in various contexts. CPS PLs differs from traditional
SPLs in many ways: 1) CPS PLs has complex variabilities, e.g., variabilities corresponding to
multiple domains (e.g., electronics, software), physical properties of CPSs (e.g., length,
temperature), complex interactions among different components and products, and complex
topologies; 2) multiple binding times (e.g., design time, post-deployment) for captured
variabilities; 3) complex constraints, e.g., dependencies across multiple domains; and 4) a
complex collaborative configuration process where various domain experts from different

! www.cisco.com/c/en/us/products/collaboration-endpoints/index.html

3

department/organizations configure a patt of the product during different phases of the product
development lifecycle. Thus, there is a need to conduct a domain analysis for identifying key
requirements of CPS PLE and evaluating existing PLE methodologies to assess their capabilities
in terms of supporting CPS PLE. Moreover, most of the literature addresses challenges related to
the pre-deployment configuration of individual products and lacks the studies focusing on the
post-deployment configuration of interacting products.

Belong§ to
,—'ProductheA ‘\’ Each Product:
« Configurable Parameters
NS S « State Variables

« Operations

Belongs
to ProqyctLine-3

Internet Q{‘.;
S

Belongs uct-4 ~ Product-6
to ProductLine-2 n\";
t =
X
Product-5

Figure 1: An example of CPSs with multiple interacting products within/across PLs

In this thesis, first, we conducted a systematic domain analysis and then proposed a
conceptual framework for CPS PLs, based on which we evaluated existing PLE methodologies.
After conducting a broader scope study to clarify the problem of supporting CPS PLE, we
narrowed down the scope by focusing on the post-deployment configuration of interacting
products constituting CPS. To this end, we proposed an approach to capture patterns of
configurations in the form of configuration rules and an approach to recommend configurations
for interacting products to improve the post-deployment configuration experience for testers and
end-users.

To conduct domain analysis, we selected and analyzed three real-world CPS case studies:
Material Handling System (MHS), Video Conferencing System (VCS), and Subsea Production
System (SPS). Based on the knowledge collected from the analysis of the CPS case studies and a
thorough literature review on CPS PLE, we proposed a conceptual framework to support both
domain engineering and application engineering of CPS PLs (i.e., Paper-A and Paper-B in Figure
E-2). The proposed framework 1) clarifies the context of CPS PLE by formalizing CPS PLE
based on the PLE ISO/IEC standard for Product Line Engineering and Management [27], and
multi-stage multi-step configuration process; 2) facilitates domain engineering by presenting
classifications of VP types, constraint types, and view types in addition to formalizing other
concepts related to modeling of CPS PLs (e.g., models, model elements, constraint types); and 3)
supports application engineering by formalizing 14 possible functionalities of an automated
configuration tool. We evaluated the completeness of the framework using three real-world case

4

studies (i.e., VCS, MHS, and SPS), 11 configuration tools, and extensive literature reporting
configuration automation techniques. Evaluation results show that the framework has all the
necessary VP, constraint, and view types required to capture and manage variabilities and
constraints of selected CPS case studies. In total, three case studies have 2161 VDPs, 3943
constraints, and 40 views that can be modeled using the framework. Furthermore, 13 out of 14
functionalities in the framework are covered by at least one of the existing tools or techniques in
the literature. However, none of the existing tools has all 14 functionalities. Furthermore, we
selected four representative VMTs: Feature Model (FM) [28], Cardinality-Based Feature Model
(CBFM) [29], Common Variability Language (CVL) [30], and the SimPL methodology [18]. With
the selected VMTs, we modeled the MHS case study to assess if they fulfill requirements of CPS
PLs. Evaluation results show that none of the four VMTSs can capture all the CPS-specific VPs.
SimPL, CVL, CBFM, and FM provide support for 81%, 75%, 50%, and 15% of the total CPS-
specific VP types, respectively.

f’aper-B

CPSPLE Paper-A
Context PLE Configuration
Terminology Process cps [
Modeling Constraint Type VP Type Evaluation of
Domain CPS PLs Classification | | Classification Existing VMTs
Engineering - . . mines constraints
View Type T mines CPLrules——— forCPss
Classification
.. Evaluation of Existing instantiates | ©2PSC L Paper-D | .
Application Configuration Tools VPs Search-Based Rule Mining | 4® Rule Mining
Engineering :] ‘..m_ -
Functionalities of ueses | | | ‘ SBRM l ‘ SBRMt | | Clustering |
Configuration Tool J
recommends deper:ds for
configurations for mining CPL rules uses
/" Paper-E ! ™
(\
uses mined Search-Based Configuration
CPLrules Recommendation (SBCR) Recommends

_
/ Configurations for CPSs

Figure 2: Overall contribution of the thesis

From the domain analysis, we noticed that CPSs have a large number of configurations [31]
and their runtime behavior is dependent on the configurations of communicating products
constituting CPSs as well as information networks [32, 33]. Also, there exist faulty configurations
that can lead to unwanted behavior of CPSs. This requires identifying the patterns of
configurations for these interacting products in the form of configuration rules, which can be
used to improve post-deployment configuration in various contexts (e.g., testing). Manually
specifying configuration rules based on domain knowledge is tedious and time-consuming, and
heavily relies on experts’ knowledge of the domain [34]. Also, certain information (e.g., network
related information such as bandwidth, traffic congestion) is only known at runtime [34], which
makes it impossible to specify these rules manually, merely based on the domain knowledge. This
requires a sophisticated approach to automatically infer the configuration rules.

In [35], Temple et al. proposed a rule mining approach for a PL based on randomly generated
and labeled (faulty or non-faulty) configurations. However, randomly generating configurations
to mine rules is inefficient, as rules with all classes are not equally important (i.e., rules with faulty
classes are more important than non-faulty ones). Thus, we employ search for generating

5

configurations with three search heuristics instead of generating randomly. We proposed an
approach called Search-based Rule Mining (§BRM), which combines multi-objective search with
machine-learning techniques, to mine configuration rules (named as Cross-Product Line (CPL)
rules) in an incremental and iterative way (Paper-C in Figure 2). The three search heuristics aim
to generate configurations that maximally violate high confidence rules with non-faulty classes
and satisfy low confidence rules with non-faulty classes and rules with faulty classes.

@

Product-1

NP EISES By

Product-2 Initial Configuration Generation Rule Mining CPL Rules Search-Based Configuration
H [Randomly generated] [Using C4.5 or Part] Generation
- [Using NSGA-II or NSGA-IIl]
@ Iterative Process H
- J

Product-m

Figure 3: The overall context and scope of SBRM and SBRM*

SBRM has three major components (Figure 3): 1) Initial Configuration Generation: randomly
generating an initial set of configurations for communicating products; 2) Rule Mining: taking the
generated configurations as input along with corresponding system states and applying the
machine learning algorithm to mine CPL rules; and 3) Search-based Configuration Generation: taking
the mined CPL rules as input and generating another set of configurations using multi-objective
search algorithm, which is combined with the previously generated configurations to mine a
refined set of CPL rules. SBRM obtains CPL rules with different degrees of confidence (i.e., the
probability of being correct) with an emphasis on mining rules that can reveal invalid
configurations, i.e., the configurations that may lead to abnormal (i.e., unwanted) system states
[36]. Instead of collecting a large amount of data required for machine learning all at once, we
obtain input data incrementally over multiple iterations. During each iteration, we use rules
mined from the previous iteration to guide the search for generating configurations. Newly
generated configurations are combined with configurations from all the previous iterations to
incrementally refine the aforementioned rules.

We evaluated SBRM using a real-world case study of two VCS products belonging to different
PLs. Note that the systems used for experiments are real; however, the experiments were not
performed in the industrial setting. The performance of SBRM is compared with the Random
Search Based Rule Mining (RBRAM) and Real Data Based Rule Mining (RDBRM) approaches, in
terms of fitness values, Hypervolume (HV), and seven Machine Learning Quality Measurements
(MLQMs). Results show that SBRM significantly outperformed RBRM in terms of fitness values,
HV, and MLQMs. Similarly, in comparison to RDBRM, SBRM performed significantly better in
terms of Failed Precision (18%), Failed Recall (72%), and Failed F-measure (59%).

We further refined SBRM (referred to as SBRM") (Paper 1V in Figure 2), where we made the
following changes: instead of using thresholds to classify the rules, we employed k-Mean
clustering algorithm; integrated a search algorithm NSGA-III and a rule mining algorithm C4.5,
in addition to the existing NSGA-II and PART algorithms; and conducted a thorough empirical
evaluation using two case studies (Cisco and Jitsi) of relatively higher complexity. Note that for
the Cisco case study, the experiments were conducted using real systems but not in the industrial
setting. Evaluation results show that all the SBRM" approaches petformed significantly better

6

than RBRM" approaches in terms of fitness values, six quality indicators, and 17 MLQMs. As
compared to RBRM" approaches, SBRM™ approaches have improved the quality of rules based
on MLQMs up to 27% for the Cisco case study and 28% for the Jitsi case study.

Since CPSs are highly configurable, testing them with all possible configurations is not
possible due to limited available resources. Thus, often these systems are tested with only a few
valid configurations selected randomly, based on expert’s opinions, or based on some coverage
criteria, such as pairwise feature coverage [37-40], which can compromise the quality of
developed systems. Similarly, end-users also suffer from bad post-deployment configuration
experience when proper guidelines are not available. Towards this direction, we proposed an
approach called Search-Based Configuration Recommendation (SBCK) that makes use of
previously mined CPL rules and recommends the most critical faulty configurations for CPSs.
Recommended configurations can be used for testing CPSs and creating guidelines for end-users
to avoid such faulty configurations and improve the post-deployment configuration experience.
In SBCR, we defined four search heuristics based on CPL rules and combined them with six
multi-objective search algorithms to find the best-suited algorithm for the configuration
recommendation problem. We evaluated SBCR with the same two case studies for which we
mined the rules in Paper-D using SBRM". We compared the performance of SBCR with Random
Search-Based Configuration Recommendation (RBCR). Results show that SBCR significantly
outperformed RBCR in terms of the six quality indicators and the percentage of faulty
configurations. Overall, SBCR made up to 22% more accurate recommendations than RBCR.
Among the six variants of SBCR, SBCRspr12 performed the best for the faulty configuration
recommendation problem.

This thesis is divided into two parts:

Part-I. Summary: This part summarizes the research work done for the entire thesis, which
is organized into the following sections: In Section 2, we provide background details required to
understand the thesis, followed by research methods used in Section 3. Section 4 briefly discusses
the contributions of the thesis, whereas, the key results are summarized in Section 5. In Section 0,
we discuss the threats to validity. Section 7 outlines future research directions, and finally, in
Section 8, we conclude the thesis.

Part-II. Papers: This part presents the published or submitted research papers included in
the thesis. Figure 2 gives an overview of the contribution of different papers.

2 Background

In this section, we provide the background knowledge required to understand the rest of the
thesis. Section 2.1 gives a brief overview of PLE followed by an introduction to optimization
problems in Section 2.2. In Section 2.3 and Section 2.4, we introduce multi-objective search and

branch distance heuristic, respectively. Section 2.5 briefly discusses machine learning techniques.

2.1 Product Line Engineering (PLE)

As opposed to traditional software engineering, PLE focuses on developing a family of products
(aka PL) through reuse and mass customization [27, 41, 42]. Subsequently, PLE enhances the
overall quality of produced systems and the productivity of the development process while
reducing the overall engineering effort and time-to-market [27, 43-45]. A product line is a set of

7

similar products having explicitly defined common and variable features while sharing the same
domain architecture. To exploit the common feature of a product line, reusable artifacts (e.g.,
architecture, code, test cases) are developed, which are customized and reused by various
member products of the product line.

PLE has two major activities: domain engineering and application engineering. Domain
engineering enables us to specify and manage reusable artifacts for a product line. To be more
specific, in domain engineering, we capture abstractions as commonalities and variabilities as well
as various types of constraints for the product line, using a VMT (e.g., Feature Model (FM) [2§],
SimPL methodology [18]). The VMT provides well-defined variation points (VPs) and constraint
types to capture different types of variabilities and constraints for the product line. Moreover, the
VMT also supports various views to manage and present abstractions and constraints efficiently.

Application engineering focuses on product configuration to derive the products from a
product line according to the user requirements. Usually, the application engineering is supported
by a configuration tool (e.g., Pure::Variants [20], Zen-Configurator [26]). The configuration tool
provides different types of automated functionalities such as consistency checking [46],

collaborative configuration [47], and decision inference [48].

2.2 PLE Optimization Problems

Various PLE problems such as feature selection, configuration fixing, feature model
construction, and architectural improvements can be formulated as optimization problems. The
purpose of formulating optimization problems is to find the best solution(s) from the set of
possible solutions in terms of one or more measurements (often called objectives) to be
optimized. To formulate a PLE problem as an optimization problem, we need to define: 1) a
problem representation allowing symbolic manipulation, 2) a fitness function with one or more
objective(s) to be optimized, and 3) manipulation operators to change the solutions (i.e., elements
in the search space) [49]. The solution representation is dependent on the nature of the
optimization problem. The quality of a solution is evaluated using a fitness function for guiding
the search to find the optimal solution. Manipulation operators produce new solutions by either
mutating the solution or exchanging parts of two solutions. An optimization problem is defined
as either a minimization or maximization problem to get the minimum or maximum value of the
objectives within the search space.

An optimization problem can be a single objective or multi-objective depending on the
number of objectives to be optimized. Usually, multi-objective optimization problems have
conflicting objectives to be optimized at the same time, thus, require analyzing tradeoffs among
the objectives. Single objective optimization problems have only one optimal solution, whereas,
the multi-objective optimization problems have more than one optimal solution due to tradeoffs
among the objectives. Hence, for a multi-objective optimization problem, a set of solutions with
equivalent quality (aka non-dominated solutions) is produced based on Pareto dominance and Pareto
optimality [50-52].

Let O = {04, 05, ..., 0, } be a set of 7 objectives and F = {f}, f5, ..., fn} be a set of # objectives
functions to measure the # objectives for a multi-objective optimization problem. In case of a
minimization problem, where a lower value of an objective shows better performance, solution A

dominates B (e, A>B) iff Viz12 nfi(A) < fi(B) Ai=12,. nfi(A) < fi(B) . Moreover,

solution A* is Pareto gptimal if no other solution in the feasible region 0 dominates A*, which can
be presented mathematically as: 4 A* > CV C # A* € (1. Note that for Pareto optimal
solutions, objective values cannot be improved simultaneously, which means improving one of
the objectives will worsen the other objective functions [53]. The non-dominated solutions form
Pareto-optimal set, whereas, the corresponding objective vectors (i.e., objectives’ values) make a
Pareto frontier.

The optimization problems with large search space require specific techniques to solve them
in a reasonable time. Search-Based Software Engineering (SBSE) tackles such optimization
problems efficiently by applying various metaheuristics. These metaheuristics combine basic
heuristics approaches in higher-level frameworks to find solutions for combinatorial problems at
an acceptable computational cost [54, 55]. As mentioned eatrlier, the problem-specific fitness
functions are used to guide the search to find optimal solutions from a huge search space.

Most of the PLE problems require optimizing multiple objectives at the same time, which
often conflict with each other. For example, a configuration fixing problem requires dealing with
multiple conflicting objectives such as minimizing the number of fixes and impact of a fix on
other configurations while maximizing the configuration inference [44]. SBSE has been quite
effective to solve these problems in the literature [48, 56-60].

2.3 Multi-Objective Search

Multi-objective search has been widely used in SBSE to address various optimization problems
including test case prioritization, cost estimation, and configuration generation [48, 56-62]. Multi-
objective search algorithms are designed to solve problems where different objectives are
competing with each other and no single optimal solution exists. They aim to find a set of non-
dominated solutions for trading off different objectives. Many search algorithms exist in the
literature that can be applied to solve different software engineering optimization problems. In
Table 1, we present a classification of the search algorithms used in this thesis.

Table 1. Classification of the selected search algorithms

Algorithm category Algorithm
. NSGA-II
Genetic Algorithms (GAs) Sorting based NSGA-III
Cellular based MoCell

Indicator based EA IBEA
Evolutionary Algorithms (EAs) | Strength Pareto EA SPEA2
Evolution Strategies PAES
Swarm Algorithm Particle Swarm Theory | SMPSO

Genetic algorithms (GAs) are the most popular metaheuristic used in SBSE, which are
inspired by the natural selection process and used to optimize one or more objectives. GAs start
with a randomly generated population of solutions, where each individual is a potential solution
for the optimization problem. The quality of each solution is assessed based on its fitness value
calculated using a fitness function. GAs help the population evolve towards better solutions by
generating new solutions using genetic operators (i.e., selection, crossover, and mutation) [63] in each
generation. The mutation operator randomly modifies parts of individual solutions; the crossover

operator recombines pairs of selected individual solutions; and the selection operator selects candidate
solutions for the population.

Non-dominated Sorting Genetic Algorithm (NSGA-II) [64, 65] relies on the Pareto
dominance theory, which yields a set of non-dominated solutions for multiple objectives [64].
NSGA-II sorts candidate solutions (i.e., the population) into various non-dominated fronts using
a ranking algorithm. Afterward, the individual solutions are selected from the non-dominated
fronts. In case, the number of solutions in the non-dominated front exceeds the population size,
the solutions with a higher value of crowding distance are selected to increase the diversity of
solutions. Crowding distance measures the distance between the individual solutions and the rest of
the solutions in the population [606].

NSGA-III [67, 68] is a relatively new multi-objective algorithm that has performed better than
NSGA-II in some contexts [69]. The basic working procedure of NSGA-III is quite similar to
the NSGA-II but with significant changes in its selection operator. As oppose to NSGA-II,
NSGA-IIT’s selection process exploits well-spread reference points to apply the selection
pressure to maintain diversity among population members.

Multi-objective Cellular Genetic Algorithm (MoCell) is based on the cellular model of GAs,
which assumes that an individual only interacts with its neighbors in the population during the
search process [70, 71]. MoCell stores the obtained non-dominated individual solutions in an
external archive. At the end of each generation, a fixed number of randomly selected solutions
are replaced by selecting the same number of solutions from the archive with a feedback
procedure until the termination conditions are met. Note, this replacement only occurs when
newly generated solutions are worse than the solutions in the archive.

Indicator-based Evolutionary Algorithm (IBEA) incorporates an arbitrary performance
indicator (e.g., Hypervolume (HV), Epsilon) into the selection mechanism of a multi-objective
evolutionary algorithm [72]. IBEA uses the quality indicators to guide the search towards optimal
solutions by calculating the fitness of an individual solution as the sum of the indicator values
obtained from pairwise comparisons to all other solutions. As opposed to other multi-objective
search algorithms, IBEA does not use any additional diversity preservation mechanism such as
fitness sharing.

Improved Strength Pareto Evolutionary Algorithm (SPEAZ2) calculates the fitness for each
solution by adding up its raw fitness and density information [73]. The raw fitness is computed
based on the number of solutions it dominates. The density information is calculated based on
the distance between an individual solution and its nearest neighbors to maximize diversity.
SPEA2 starts with an empty archive and fills it with the non-dominated solution from the
population. In the subsequent generations, new populations are created by combining solutions
from the non-dominated solutions of the original population and the archive. Moreover, if the
number of combined non-dominated solutions is greater than the population size, the solution
with the minimum distance to other solutions is selected by using a truncation operator.

Pareto Archived Evolution Strategy (PAES) keeps an archive of non-dominated solutions just
like SPEA2. To find optimal solutions, PAES uses the dynamic mutation operator for exploring
the search space [74, 75]. In the beginning, solutions are added to the archive randomly, which
are then used to generate the offspring solutions. If the newly generated solutions are better than
the parent solutions, then the parent solutions are replaced by newly generated solutions.
Similarly, if the newly generated solutions are better than the solutions in the archive, old

10

solutions are replaced by the new ones. However, if the newly generated solutions are worse than
parent solutions, they are discarded, and new solutions are generated using parent solutions.
Speed-constrained Multi-objective Particle Swarm Optimization (SMPSO) is a metaheuristic
inspired by the social foraging behavior of animals such as bird flocking [76, 77]. It selects the
best solutions based on crowding distance and stores them in an archive just like SPEA2 and
PAES. SMPSO uses a mutation operator to accelerate the convergence and adapts the velocity

constriction mechanism to avoid the explosion of swarms [77]. As a comparison baseline, we
used Random Search (RS).

2.4 Branch Distance Calculation Heuristic

In SBSE, branch distance is a commonly used heuristic that shows to what extent given data
satisfy the predicate (aka condition or clause) of a specific tule/constraint [78-80]. In this thesis,
we also used the branch distance heuristic for our search optimization problems, where we
intend to calculate the distance between a configurable parameter and a predicate in the rule. To
be more specific, we used the branch distance calculation approach presented in [81, 82]. In
Table 2, we present the distance calculation formula for various operations corresponding to
numerical and enumerated data.

Table 2: Branch distance functions [81] *

Predicate type Operation Distance function
. . . a=b 0
Predicates with relational operators A=b 21=b = 0 else nor(|a_b] +1) *k
Predicate with a2 Boolean condition True — 0 else k
Logical connective of two predicates | PriA Pr, Pry + Pr; (sum of branch distances for both predicates)

* £ is a positive constant greater than zero, we used £=1; #or gives a normalized value between zero and one.

2.5 Machine Learning

Machine learning is used for classifying, clustering, and identifying/predicting patterns in data
[83]. It has also been used to infer rules [35, 84]. Machine learning techniques can be categorized
as supervised learning (i.e., for labeled data) and unsupervised learning (i.e., for unlabeled data).
Supervised learning focuses on finding the relations between input data and its outcome.
Unsupervised learning identifies hidden patterns inside input data without labeled responses.
Furthermore, supervised learning makes use of class information from the training instances, as
opposed to unsupervised learning that does not take the class information into account. In this
thesis, we used supervised learning, as we intend to mine the rules based on product
configurations (i.e., input) labeled with system states (i.e., outcome) indicating the success/failure
of the communication among the products. Supervised models can be categorized as regression
and classification models. A regression model maps the input data against a real-valued domain,
whereas, the classification models map the input data against predefined classes [85].

Since we have pre-defined system states, we used classification models. In the classification
models, there are two main methods of rule generation: 1) indirect method that converts decision
trees into rules and prunes them further to get the final set of rules, which is opted by C4.5 [80]);
2) direct method that employs separate-and-conquer rule learning technique to extract rules
directly from the data, which is used by Repeated Incremental Pruning to Produce Error
Reduction (RIPPER) [87].

11

Creating rules from decision trees using the indirect method is computationally expensive in
the presence of noisy data, whereas, the direct method has hasty generalization (i.e., over-
pruning) problem [88]. The Pruning Rule-Based Classification algorithm (PART) [89] avoids
these shortcomings by combining the two methods of rule generation mentioned above. PART
generates partial decision trees, and corresponding to each partial tree, a single rule is extracted
for the branch that covers maximum nodes [88]. In this thesis, we opted for PART due to its
unique characteristics in addition to C4.5, which is the most popular algorithm in the research
community as well as the industry [90].

As oppose to classification, clustering is used when there is no outcome to be predicted
instead input data points are to be combined into natural groups (aka clusters). The main idea
behind clustering is that the data points within a cluster should be similar but different across the
clusters. In this thesis, we used Lloyd’s algorithm [91] for clustering rules, a commonly used 4-
means algorithm. K-means algorithm minimizes the average squared distance among the data
points within the same cluster. In the beginning, it picks £ data points randomly as centers of £
clusters. It uses the Euclidean distance function [92] to compute the distances between each data
point and centers of £ clusters, and assign each data point to its nearest cluster. When all the data
points are assigned to £ clusters, the centers of £ clusters are updated with the average of all the
data points within each cluster. Once centers are updated, it recalculates the Euclidean distance
for all the data points and reassigns them to £ clusters. This process continues until the centers of
k cluster do not change in two consecutive iterations.

3 Research Methods

In this section, we discuss the research methods used for this thesis. The research work was
conducted in the context of a basic research project, Zen-Configurator, funded by the Norwegian
Research Council. The employed research method includes three main steps: problem
identification and formulation (Section 3.1), solution realization (Section 3.2), and solution
evaluation (Section 3.3).

3.1 Problem Identification and Formulation

The thesis started with understanding the requirements for applying PLE on CPSs with
interacting products with the help of real-world case studies. More specifically, we analyzed three
representatives CPS case studies: Material Handling Systems (MHS), Video Conferencing
Systems (VCS), and Subsea Production Systems (SPS). Based on the knowledge collected from
the analysis of CPS case studies and a thorough literature review on PLE methodologies, we
identified the following challenges related to CPS PLE that we addressed in this thesis.
Challenge- 1. Variation Point and Constraint Types are not Well Defined for CPS PLs: One of
the key activities of PLE is to capture various types of variabilities of PLs using well-defined
variation point types to enable reuse of assets (e.g., requirements, code). Unlike traditional
software PLE, CPS PLE involves capturing variabilities for 1) multiple domains (e.g., mechanics,
electronics, software), 2) physical and component properties of CPSs, 3) complex interactions
among different components and subsystems, 4) topologies, and 5) software deployment on
hardware. Moreover, CPS PLs also require identifying the binding time (e.g., design time) for
captured variabilities. This demands identifying and defining different types of CPS specific

12

variation point types systemically. On the other hand, we also need to capture different types of
constraints, which play a crucial role in enabling various types of automation of configuration for
CPS PLs. For example, enabling automated consistency checking [93] and configuration
recommendation [94] for CPS PLE requires capturing consistency constraints [6] and
configuration constraints [34].

Challenge- 2. Configuration Process for CPS PLs is not Well Formulated: The configuration
process employed in CPS PLE is more complex than traditional software PLE. In CPS PLE,
various components (e.g., software, hardware, network) are configured by different domain
experts from different department/organizations during different phases of the product
development lifecycle. This requires defining a configuration process for CPS PLs, which allows
users to perform various configuration tasks sequentially or concurrently in an incremental multi-
stage and multi-step manner [95]. Furthermore, the configuration process has a great impact on
the implementation of various types of configuration automation. Thus, it becomes crucial to
formalize the configuration process for CPS PLs to enable different types of automation of
configuration,

Challenge- 3. Lacking Formal Definitions of 1V arious Types of Automation of Configuration for
CPS PLE: Often the effectiveness of cost-effective PLE is associated with its support for
automation (e.g., consistency checking, collaborative configuration) because manual product
derivation and debugging is time-consuming and error-prone [45]. Existing configuration tools
support some automated functionalities for traditional software PLE, however, they are not well-
suited for CPS PLE because of different configuration process employed and more complex
types of variabilities for multiple domains. For example, in the case of CPS PLE, we need to
propagate configuration decisions across multiple stages and steps which is not the case in
traditional software PLE. This requires identifying and providing precise definitions of various
automated functionalities that can be implemented in a configuration tool for CPS PLE.

Challenge- 4. Existing PLE Methodologies are not Evaluated for CPS PLs: A large number of
PLE methodologies (i.e., both VMTs [10-19] and configuration tools [20-26]) exists in the
literature to support PLE in different contexts. However, to what extent these methodologies can
support the PLE of CPSs is not evaluated.

Challenge- 5. Difficult to Predict Runtime Bebaviors of CPSs for Different Configurations: The
runtime behaviors of CPSs with interacting products are determined by configurations of
products and information networks. Moreover, there exist many faulty configurations that can
lead to unwanted states of CPSs. Thus, we need to identify the patterns of configurations in form
of configuration rules to facilitate the post-deployment configuration in various contexts (e.g., for
testers or end-users).

Challenge- 6. Difficult to Specify Configuration Rules due to High Reliance on Domain Knowledge
and Certain Information Being Available only at Runtime. Manually specifying the configuration rules
based on domain knowledge is tedious and time-consuming, and heavily relies on experts’
knowledge of the domain [34]. Furthermore, certain information (e.g., network related
information such as bandwidth, traffic congestion, and maximum transmission unit size) is only
known at runtime [34], which makes it impossible to specify these rules manually. This requires a
sophisticated approach to automatically infer the configuration rules.

Challenge- 7. A Large Number of Possible Configurations to Test: CPSs are highly
configurable systems and testing these systems with all possible configurations is not feasible due

13

to limited time and resources [37]. This requires a sophisticated method to reduce the number of
configurations to be tested.

Challenge- 8. Difficult to Select the Most Critical Confignrations due to High Reliance on Domain
Expertise: CPSs have a large number of configurations and not all configurations are equally
important for ensuring the high quality of the produced systems within the time budget, which
requires finding the most critical configurations for testing the CPS. To do so, often testers have
to merely rely on their experience and domain knowledge [38, 96]. This motivates for an
approach that can help the testers to make informed rational decisions for selecting
configurations for testing CPSs.

Challenge- 9. Unpleasant Post-Deployment Configuration Experience due to Lack of Guidance:
Usually, end-users configure the products with different configurations at the post-deployment
time using a configuration tool or a user manual [97, 98]. Many configurations can lead to the
unwanted behavior of the system (e.g., failed communication among the products constituting
the CPS), which causes an unpleasant user experience. This requires guiding the users to avoid
faulty configurations to improve the configuration experience.

3.2 Solution Realization

This step focuses on realizing the solutions to address each of the nine challenges described in
Section 3.1. Table 3 gives an overview of how different challenges were addressed in this Ph.D.

thesis.
Table 3. An Overview of solutions for addressing different challenges
No. Challenge Solution Papers
1 Vatriation Point and Constraint Types are not Well Proposed a conceptual Paper-A,
Defined for CPS PLs framework to support PLE for | Paper-B
’ Configuration Process for CPS PLs is not Well CPSs.
Formulated
3 Lacking Formal Definitions of Various Types of

Automation of Configuration for CPS PLE
4 Existing PLE Methodologies are not Evaluated for CPS | Evaluated existing VMT's and

PLs configuration tools
5 Difficult to Predict Runtime Behaviors of CPSs for Proposed a rule mining Paper-C,
Different Configurations approach SBRM and its Paper-D
Difficult to Specify Configuration Rules due to High improved version SBRM*
6 Reliance on Domain Knowledge and Certain
Information Being Available only at Runtime
7 A Large Number of Possible Configurations to Test Proposed a configuration Paper-E
3 Difficult to Select the Most Critical Configurations due | recommendation approach
to High Reliance on Domain Expertise SBCR
9 Unpleasant Post-Deployment Configuration

Expetience due to Lack of Guidance

As shown in Table 3, we proposed a conceptual framework to address Challenge-1-3. More
specifically, we proposed classifications of variation point and constraint types, formalized a
multi-stage multi-step configuration process, and presented a list of 14 functionalities for a
configuration tool along with their formal definitions. For addressing Challenge-4, we evaluated
existing VMTs and configuration tools in terms of their support for CPS PLE. To address
Challenge-5-6, we devised a Search-Based Rule Mining (§BRM) approach and its improved version

14

called SBMR", which make use of machine learning and multi-objective search to capture the
patterns of configurations in form of configuration rules. Similarly, to address Challenge-7-9, we
developed a Search-Based Configuration Recommendation (§BCR) approach, which uses multi-
objective search to recommend configurations based on previously mined configuration rules.

3.3 Solution Evaluation

A fundamental part of the thesis was to evaluate the proposed methodologies in terms of each
research problem. To do so, we performed different case studies (e.g., real-world, and open-
source) and conducted experiments in addition to extensive literature reviews. We also conducted
different types of analyses (e.g., difference analysis, correlation analysis, and trend analysis [99])
and applied rigorous statistical tests such as Vargha and Mann-Whitney U test [100], Delaney
statistics [101], and Spearman’s test [102] to analyze the results. For instance, the completeness of
the proposed conceptual framework was evaluated by performing different case studies and
conducting an extensive literature review (Paper-B). Another example is the evaluation of SBRM*
where we conducted experiments using different case studies and conducted three types of
analyses (Paper-D). The goal of such extensive evaluation is to ensure that the proposed
methodologies are useful and robust, and they improve the current state of the art.

4 Research Contributions

In this section, we report our research contributions made to address different challenges
presented in Section 3.1.

4.1 A Conceptual Framework for CPS PLE (Paper-A and Paper-B)

Based on the knowledge collected from the analysis of CPS case studies, a thorough literature
review on PLE methodologies, and our experience of conducting research in the field of CPS
PLE [103], we proposed classifications for basic and CPS-specific VP types to capture the
variabilities of CPS PLs and several modeling requirements for VMT's (Paper-A).

. 1: Construct a conceptual 2 : Validate data types 3 : Define a taxonomy -
- - model for data types Hwith MARTE and SysML for basic VPs A set of basic VPs
| Data types in mathematics .
5[] ¢ L]
Literature of CPS PLE

4 : Derive a set of A set of modeling requirements [| 8:Evaluate the
modeling requirements . selected VMTs
Experience with CPS PLE I

2
: Deri f e
5 : Construct a conceptual 6 : Derive ?l_set ° | |> A set of CPS specific VPs |
(] CPS specific VPs
model for CPS 9 : Report the work

" 7 : Model the MHS case study with \
MHS requirements l[i[the selected VMTs)

Figure 4: Deriving basic and CPS-specific VP type classification.

As shown in Figure 4, first, we constructed a conceptual model for data types in mathematics
and validated the data types with MARTE [104] and SysML [105] to check their completeness.
Afterward, corresponding to each basic data type, we defined a basic VP type as configuring a VP
always requires assigning a value to a basic type variable. Furthermore, we systematically derived a
set of CPS-specific VP types based on a conceptual model of CPS. Finally, we evaluated four
representative VMTs (i.e., FM, CBFM, CVL, and SimPL) by modeling the MHS case study.

15

Results show that none of the selected VMT's can capture all the basic and CPS-specific VPs and
meet all the modeling requirements.

<<Addition>> <<Addition>> <<Extension>>
CPS PLE Context

PLE Terminology Configuration Process CPS

- - N <<Addition>> <<Extension>> <<Reused>> <<Addition>>
Domain Engineering Modeling CPS PLs || Constraint Type Classification VP Type Classification View Type Classification

— X . <<Addition>> <<Extension>>
e e Evaluation of Existing Configuration Solutions Functionalities of Configuration Solution

Figure 5: An overview of the conceptual framework for CPS PLE

Moreover, we extended our work presented in Paper-A and proposed a complete conceptual
framework for supporting both domain engineering and application engineering of CPS PLs
(Paper-B). As shown in Figure 5, the conceptual framework has three parts as follows:

* To clarify the context of CPS PLE, we formalized PLE based on the PLE ISO/IEC
standard for Product Line Engineering and Management [27], CPSs, and multi-stage and
multi-step configuration process using three conceptual models and a set of OCL
constraints.

®= To support the domain engineering of CPS PLs, we formalized concepts related to
modeling of CPS PLs such as models, model elements. We also presented the
classifications of VP, constraint, and view types. The VP types are from Paper-A, whereas,
for the constraint classification, we extended our previously proposed constraint
classification [6] by adding four new types. We also provided formal definitions of
different types of constraints based on the set theory notation.

® To support the application engineering of CPS PLs, we present 14 possible functionalities
of an automated configuration tool and provide their formal definitions. Five of the 14
functionalities were presented in [0].

We evaluated the completeness of the framework using three real-world case studies of CPS
PLs (i.e., VCS, MHS, and SPS) and an extensive literature review. We evaluated the VP types,
constraint types, and view types using the three case studies. We validated the functionalities and
configuration process using 11 configuration tools and existing literature on the automation of
configuration. Evaluation results based on the case studies suggest that the framework fulfills all
the requirements of the case studies in terms of capturing and managing variabilities and
constraints. The results of the literature review show that the framework has all the
functionalities concerned by the literature, indicating the completeness of the framework in terms
of enabling maximum automation of configuration for CPS PLs.

4.2 Search-Based Rule Mining (Paper-C, Paper-D)

CPL rules describe how configurations of communicating products within/across PLs impact
their runtime interactions via information networks. Such rules are of great importance because
they can be used to identify invalid configurations, where products may fail to interact and
provide support for enabling automated/semi-automated configuration of future products.

16

Manually specifying such rules is tedious, time-consuming, and requires expert knowledge of the
domain and the PLs. To address this challenge, we propose an approach called Search-based
Rule Mining (§BRM) that combines multi-objective search with machine learning to mine rules in
an incremental and iterative fashion (Paper-C). Figure 6 gives an overview of the proposed
approach, where the whole process has seven steps organized into four types of activities
Generation, Excecution, Mining, and Classification.

As a first step, we generate a set of initial configurations randomly for configurable parameters
of interacting products for which we obtain system states indicating the success or failure of
interaction among the products (step 2). In step 3, we apply a rule mining algorithm (e.g., PART
in SBRM) to mine a set of rules using generated configurations (as attributes) and their
corresponding system states (as classes). In step 4, we classify the rules into three categories
based on which we define three search objectives to guide the search for generating
configurations for the next iteration (step 5).

777

Execution

1: Generate -
random 2: Capture system
i states
configurations

Configurations System states

7: Combine the
configurations and
mine rules

5: Generate
configurations using
search

6: Capture system
states for Search
based configurations

No eet stopping._ Yes @

1
1
1
1
1
1
i
1
criteria?)
]
1
1
T
1
1
1
1

|

| Search based configurations ‘
{

End

Figure 6: An overview of SBRM and SBRM+

Generally, system states can be categorized as normal states and abnormal states indicating the
success and failure of interaction among the products, respectively. Thus, CPL rules can also be
classified as normal state rules and abnormal state rules (Category-III). Each rule has a

SPi—V;
~— where SP; and V;
SPi+V;

confidence value between 0 and 1 that can be calculated as: Cf(1;) =

show the support and violation of the rule. Support (violation) represents the number of data
points (configurations in our context) for which the rule holds true (false). Based on confidence,
support, and violation, we classify the normal state rules as high confidence (Category-I) and low
confidence (Category-1II) rules. Based on three categories of rules, we defined three objectives for
SBRM: 1) avoid configuration data satisfying or close to satisfying high confidence rules with
normal states), 2) generate configuration data satisfying or close to satisfying low confidence rules
with normal states, and 3) generate configuration data satisfying or close to satisfying rules with

17

abnormal states. The defined three objectives are integrated with NSGA-II for generating
configurations using search and PART algorithm to mine the rules.

In step 6, we capture the system states for configurations generated with search from step 5.
In step 7, we combine all the configurations generated from steps 1 and 5 along with their
corresponding system states from steps 2 and 6 to mine the refined set of rules. The refined rule
set is used in the next iteration to generate new configurations, which are added into the dataset
from the previous iteration to mine a new set of rules. We repeat the process (step 4 to step 7)
until we meet the stopping criteria, e.g., a fixed number of iterations and/or when the rules
mined from two consecutive iterations are similar. To evaluate the SBRAM, we performed a real
case study of two VCS products with 17 configurable parameters, belonging to two different PLs.
Results show that SBRM performed significantly better than Random Search-Based Rule Mining
(RBRM) in terms of fitness values, HV, and machine learning quality measurements (MLQMs).
When comparing with rules mined with real data, SBRM performed significantly better in terms
of Precision (18%), Recall (72%), and F-measure (59%) corresponding.

In SBRAM, we classify the rules as high confidence and low confidence rules based on a
threshold for confidence and a threshold for the sum of support and violation. In SBRM*, we
improved this classification by applying k-means clustering algorithm instead of using thresholds,
which is more robust (Paper-D). We also integrated one more search algorithm (i.e., NSGA-III)
and a rule mining algorithm (i.e., C4.5). We also conducted a thorough empirical study to evaluate
the performance of SBRM+ using a real-world case study (i.e., Cisco) with three products
belonging to three different PLs and an open-source case study (i.e., Jitsi) with three products
belonging to the same PL. We have 27 and 39 configurable parameters for the Cisco and Jitsi
case studies, respectively. Note that for Cisco case study, the experiments were conducted using
real systems but not in the industrial setting. With the two case studies, we conducted three types
of analyses difference analysis, correlation analysis, and trend analysis. Results show that SBRM*
significantly outperformed RBRM® in terms of fitness values, six quality indicators, and 17
MLQMs. As compared to RBRM*, SBRM" has improved the quality of rules based on MLQMs
up to 27% for the Cisco case study and 28% for the Jitsi case study.

4.3 Search-Based Configuration Recommendation (Paper-E)

Testing CPSs consisting of interacting products is particularly challenging due to a large number
of possible configurations and limited available resources. This requires testing these systems
with specific configurations, where the products will most likely fail to communicate with each
other. To cater this, we proposed a Search-Based Configuration Recommendation (S§BCR)
approach to recommend faulty configurations for SUT based on CPL rules. In SBCR, we defined
four search objectives based on CPL rules (Figure 7): 1) maximizing the violation of normal state
rules, 2) maximizing the conformance of abnormal state rules, 3) maximizing the confidence of
recommended configuration by maximizing the confidence of violated (satisfied) normal
(abnormal) state rules, and 4) maximizing the dissimilarity between configurations being
recommended to already recommended configurations. The defined objectives are combined

with six commonly used search algorithms (Figure 7).

18

A System with Multiple Interacting Products

::__Cc;\f-ig:r;bTe-pa-ra_m—et—er;} | Product Line-1 | | Product Line-2 | | Product Line-n | <::|
le Statevariables !

° |
: e Operations | Belong to
______________ - Tester/Developer

r Product-1 1 (Product-2] (Product-3] (Product—m]
Two or more products ﬁ
communicate via
e ——
Communication Medium) .
Faulty Configurations

SBCR
SBRM+ Search Algorithms Fitness Function
f——
E> CRUJRuIe |:> NSGA-II SPEA2 PAES
Generate CPLRules a Violation-NSR Dissimilarity
IBEA SMPSO MocCell Conformance-ASR Confidence

Figure 7: The overall context and scope of SBCR

To evaluate the six variants of SBCKR (i.e., SBCRnsc1m, SBCRr1, SBCRuucu, SBCRspraz,
SBCRpaes, and SBCRipso), we performed two case studies (Cisco and Jitsi) and conducted
difference analysis. Since we need CPL rules for applying SBCR, we used the same case studies as
we did for SBRM" in Paper-D. Results show that SBCR petrformed significantly better than
Random Search-Based Configuration Recommendation in terms of six quality indicators and the
percentage of faulty configurations for both case studies. Among the six variants of SBCR,
SBCRgpr42 performed the best for recommending faulty configurations for SUT.

5 Summary of Results

In this section, we present a summary and key results of each paper submitted as part of this
thesis.

5.1 Paper-A: Evaluating Variability Modeling Techniques for Supporting
Cyber-Physical System Product Line Engineering

Authors: Safdar Aqgeel Safdar, Tao Yue, Shaukat Ali, and Hong Lu.

Venue: Published in the Proceeding of International Conference on System Analysis and
Modeling (SAM)

Publisher: Springer

Year: 2016.

In this paper, we aim to facilitate domain engineering of CPS PLs. More specifically, we analyzed
the key requirements of CPS PLs in terms of capturing variabilities and constraints. In this
context, we proposed a set of basic and CPS-specific variation point (VP) types and modeling
requirements for CPS-specific VMTs. Furthermore, based on the proposed VP types (basic and
CPS-specific) and modeling requirements, we evaluated four existing VMTs FM, CBFM, CVL,
and SimPL using a real-wotld case study (i.e., MHS) from the logistics domain.

19

The following research questions are addressed in this paper.

RQ1. To what extent can each selected VMT capture the basic VPs?

The results of RQ1 show that SimPL and CVL can capture all the basic VP types, however,
FM and CBFM provide only partial support. FM and CBFM support 3/8 and 7/8 basic VP
types, respectively.

RQ2. To what extent can each selected VMT capture the CPS-specific VPs?

The results of RQ2 show that none of the selected VMTSs can capture all the CPS-specific VP
types. SimPL and CVL support 81% and 75% of the total CPS-specific VP types, respectively.
Similarly, FM and CBFM support only 15% and 50% of the total CPS-specific VP types.

RQ3. To what extent does a selected VMT comply with the modeling requirements?

The results of RQ3 show that SimPL fulfills all modeling requirements except one (i.e.,
binding times for a variation point). FM and CBFM only satisfy one modeling requirement,
whereas, CVL fully or partially meets four out of nine modeling requirements.

5.2 Paper-B: A Framework for Automated Multi-Stage and Multi-Step
Product Configuration of Cyber-Physical Systems

Authors: Safdar Aqgeel Safdar, Hong Lu, Tao Yue, Shaukat Ali, and Kunming Nie.
Venue: Published in the Journal of Software and Systems Modeling (SoSym)
Publisher: Springer

Year: 2020.

This paper is a journal extension of Paper-A that addresses the problem of supporting multi-
stage and multi-step automated configuration of CPS PLs. In this paper, we proposed a
conceptual framework based on the results of our previous works [6, 106], our experience of
working with CPS PLs [103], and a thorough literature review. The framework has three parts as
follows:

o ContextFormalization: We formalized PLE based on the PLE ISO/IEC standard for
Product Line Engineering and Management [27], CPSs, and multi-stage and multi-step
configuration process using UML based conceptual models and OCL constraints.

® DomainEngineering: To support domain engineering of CPS PLs, we 1) presented the
classifications of VP types (i.e., borrow from Paper-A [106]) and constraint types (i.e.,
extended from [6]); 2) formalized concepts related to modeling of CPS PLs (e.g., models,
model-elements, and views) and constraint types using UML models and OCL
constraints; and 3) provided formal definitions of constraint types.

o ApplicationEngineering: 'To support application engineering of CPS PLs, we presented 14
possible functionalities of an automated configuration tool and provided their formal
definitions.

The framework is evaluated by performing three real-world case studies of video conferencing
systems (VCS), material handling systems (MHS), and subsea production systems (SPS) and a
thorough literature review. With the case studies, we evaluated the VP types, constraint types,
and views, whereas, the functionalities and configuration process are validated using existing
configuration tools techniques in the literature.

The following research questions are addressed in this paper.

20

RQ1. To what extent the framework can capture the variabilities of CPS PLs based on the
selected case studies?

The results of RQ1 suggest that the selected three case studies MHS, VCS, and SPS have 476,
1507, and 178 VPs respectively and all of these VPs can be captured using the CPS-specific VP
types provided by the framework. Overall, the three case studies have 2161 VPs in total. The
MHS case study requires all the CPS-specific VP types to capture its VPs, whereas, the other two
case studies (i.e., SPS and VCS) require only 12 out of 16 CPS-specific VP types.

RQ2. To what extent the framework can capture the constraints for CPS PLs based on the
selected case studies?

The results of RQ2 show that case studies MHS, VCS, and SPS have 763, 2897, and 283
constraints respectively and all of them can be captured with the constraint types provided by the
framework. Overall, three case studies have 3943 constraints that can be captured using 6 out of
7 constraint types provided by the framework.

RQ3. To what extent the framework is complete for providing different views for CPS PLs
based on the selected case studies?

The results of RQ3 show that the MHS case study requires 14 views, whereas, VCS and SPS
both need 13 views. For modeling all the views, MHS, VCS, and SPS require 82%, 76%, and 76%
of view types respectively. Overall, three case studies require 40 views and all of them are
supported by the view types provided by the framework.

RQ4. To what extent the framework is complete for providing support for automation of
configuration based on existing literature?

The results of RQ4 show that all the functionalities except RedundancyDetection are supported
by one or more configuration tools (i.e., 92%), which shows that the identified functionalities are
quite consistent with the literature and existing configuration tools. We also observed that none
of the existing tools supports all the functionalities. Furthermore, some functionalities such as
ConsistencyChecking and Decisionlnference are widely considered important, and thus, they have been
mostly implemented. However, the least reported functionalities such as ConflictDetection and

RedundancyDetection are also vital to ensure the correctness of product configuration.

5.3 Paper-C: Mining Cross Product Line Rules with Multi-Objective
Search and Machine Learning

Authors: Safdar Aqgeel Safdar, Hong Lu, Tao Yue, and Shaukat Ali.

Venue: Published in the Proceeding of the Genetic and Evolutionary Computation Conference
(GECCO)

Publisher: ACM

Year: 2017.

This paper focuses on mining the configuration rules (named as CPL rules) for products
within/across PLs communicating with each other via information networks. To do so, we
proposed a Search-based Rule Mining (§BRAM) approach that combines multi-objective search
with machine-learning techniques for mining CPL rules in an incremental and iterative manner.
SBRM obtains CPL rules with different degrees of confidence while emphasizing on mining rules
that can disclose invalid configurations. In SBRM, we defined three search objectives to guide the

21

search and incorporated the most commonly used NSGA-II for generating configurations and

PART algorithm to mine the rules.

We evaluated the SBRM using a real-world case study of two VCS products belonging to
different PLs, communicating (i.e., call) with each other. The performance of SBRM is compared
with RBRM in terms of fitness values, HV, and seven Machine Learning Quality Measurements
(MLQMs). Moreover, we also compared the rules generated using SBRM with the rules mined
based on real data (named as RDBRM) extracted from test case execution logs.

The following research questions are addressed in this paper.

RQ1. Is NSGA-II effective to solve the configuration generation problem as compared to RS?
The results of RQ1 suggest that NSGA-II significantly performed better than RS in terms of
fitness values of three objectives as well as HV. This suggests that NSGA-II is more
effective than RS for solving the configuration generation problem.

RQ2. Does SBRM produce better quality rules than RBRM in terms of machine learning

measurements?

The results of RQ2 show that in the first iteration, SBRM performed better than RBRM in
terms of MLQMs, but not significantly. However, as you move from the first iteration to the
third iteration, SBRM significantly outperformed RBRM. We observed an increasing trend of
improvement in terms of MLQMs against the number of iterations. Overall, SBRM also
significantly outperformed RBRAM in terms of all the MLQM:s.

RQ3. Does SBRM produce better quality rules than RDBRM in terms of machine learning

measurements?

The results of RQ3 show that SBRM performed significantly better than RDBRM in five out
of the seven MLQMs, whereas, RDBRM outperformed SBRAM in terms of only one MLQM (i.e.,
Connected Recall). Thus, we can conclude that SBRM produces better quality rules than RDBRM.
In comparison to RDBRM, SBRAM achieved 18%, 72%, and 59% higher scores for Failed Precision,
Failed Recall, and Failed F-measure, respectively.

5.4 Paper-D: Using multi-objective search and machine learning to infer
rules constraining product configurations

Authors: Safdar Aqgeel Safdar, Tao Yue, Shaukat Ali, and Hong Lu.
Venue: Published in the Journal of Awutomated Software Engineering (ASE)
Publisher: Springer

Year: 2019.

This paper is a journal extension of Paper-C with several additional contributions as follows:
e A significantly improved version of SBRM (named as SBRM") is proposed.

o0 K-means clustering algorithm is used in SBRM" unlike using thresholds in SBRM to
classify rules as high and low confidence rules, which are used for defining search
objectives.

o0 NSGA-II and NSGA-III are incorporated into SBRM", whereas, in SBRM, we used
only NSGA-IIL.

22

o PART and C4.5 are incorporated into SBRM" (teferred to as SBRM*nscau-C45,
SBRM* nseai-C45, SBRM*Nsca-PART, and SBRM*nsoam-PART), whereas, in
SBRM, we used only PART.

e The SBRM" approaches are evaluated using a real-world case study of three
communicating VCS products belonging to three different PLs (Cisco) with 27
configurable parameters and a real-world open-source case study of three products of
Audio/Video Internet Phone and Instant Messenget, belonging to the same PL (Jitsi)
with 39 configurable parameters. The SBRM was evaluated using a case study of two
communicating products with 17 configurable parameters.

e Three types of analyses difference analysis, correlation analysis, and trend analysis are conducted

for both case studies.

o Difference analysis: The performance of NSGA-II and NSGA-III integrated with PART
and C4.5 is compared with RS integrated with PART and C4.5 in terms of fitness
values, six quality indicators (i.e., HV, Inverted Generational Distance (IGD),
Epsilon, Euclidean Distance from the Ideal Solution (ED), Generational Distance
(GD), and Generalized Spread (GS)), and 17 MLQMs. Additionally, the performance
of four SBRM™ approaches is also compared to find the best performing approach. In
Paper-C, we compared the performance of NSGA-II combined with PART with RS
combined with PART using fitness values, HV, and seven MLQMs only.

o Correlation analysis: We studied the correlation of the MLQMs with average fitness
values and quality indicators, which was not done in Paper-C.

o Trend analysis: 'The trend in the quality of rules based on MLQMs across different
iterations of SBRM" is studied, which was not done in Paper-C.

The following research questions are tackled in this paper.

RQ1. Are NSGA-II and NSGA-III effective to generate configurations for mining rules as
compared to RS?

The results of RQ1 show that SBRM" significantly outperformed RBRM" in terms of fitness
values for both case studies. Similatly, SBRM" also performed significantly better than RBRM" in
terms of all quality indicators except GS in 221/240 comparisons for both case studies, whereas,
in terms of GS, RBRM" significantly outperformed SBRM" in 32/48 comparisons. Thus, based
on the results of RQ1, we can conclude that NSGA-II and NSGA-IIT are more effective than
RS.

RQ2. Does SBRM" produce better quality rules in terms of MLQMs than RBRM™?

The results of RQ2 show that for the Cisco case study, SBRM xsgan-C45 (SBRM nscan-C45)
significantly outperformed RBRM'-C45 in 87% (60%) of the total comparisons. Similarly,
SBRM "nscan-PART (SBRM scam-PART) significantly outperformed RBRM*-PART in 75%
(61%) of the total comparisons. For the Jitsi case study, SBRM 'nscan-C45 (SBRM nsgam-C45)
significantly outperformed RBRM*-C45 in 84% (19%) of the total comparisons. Likewise,
SBRM "nscan-PART (SBRM scam-PART) significantly outperformed RBRM'-PART in 86%
(47%) of the total comparisons. Overall, SBRM" approaches significantly outperformed the
RBRM" approach in terms of the majority of MLQMs for both case studies except SBRM nsca-
m-C45 for the Jitsi case study. While comparing SBRM nsoam-C45 with RBRM'-C45 for the Jitsi
case study, neither one of the two approaches dominated the other. Thus, it can be concluded

23

that given the same context SBRM" produces higher quality rules than RBRM". In the worst case,

SBRM" produces rules with the same quality as for RBRM".

RQ3. To what extent the quality of rules improved using SBRM" in comparison to RBRM"
(after the final iteration)?

The results of RQ3 show that for both case studies, SBRM" has significantly improved the
quality of rules in terms of MLQMs as compared to RBRM". For the Cisco case study, we
observed that SBRM" has positive improvements for 85% of the MLQMs with up to 27% of an
average relative improvement (ARI) score. Similarly, for the Jitsi case study, SBRM™ has positive
improvements for 90% of the MLQMs with an ARI of up to 28%. Note that SBRM" has
negative ARIs scores for MQLs only when SBRM" did not produce rules related to a specific
system state due to fewer configurations with the same system state.

RQ4. Which one of NSGA-II and NSGA-III is more effective to generate configurations for
mining rules?

The results of RQ4 show that for both case studies, SBRM*nsca-m-C45 (SBRM* nsca.m-PART)
significantly outperformed SBRM*nscar-C45 (SBRM'nscan-PART) in terms of fitness values.
Similarly, in terms of quality indicators, SBRM nsca.ur-C45 (SBRM* nsca.m-PART) significantly
outpetrformed SBRM*nscar-C45 (SBRM nsca-n-PART) for the Cisco case study. For the Jitsi case
study, SBRM*nscar-C45 (SBRM'nscan-PART) significantly outperformed SBRM nsca-m-C45
(SBRM*nsca-m-PART) in terms of the quality indicators. To summarize, in most of the cases
NSGA-III significantly outperformed NSGA-II in terms of fitness values and quality indicators,
however, in some cases (e.g., for G) we observed otherwise.

RQ5. Which one of PART and C4.5, when combined with NSGA-II and NSGA-III, produces
better quality rules?

Results of RQ5 show that for both case studies, SBRM*xsgau-C45 and SBRM nsan-PART
significantly outperformed SBRM'nscam-C45 and SBRM'nscam-PART, tespectively. In the
comparison of SBRMxscan-C45 and SBRM'xsgau-PART, SBRM'xscau-C45 significantly
outperformed SBRM nscan-PART for Cisco, whereas, for the Jitsi case study, SBRM'xscau-
PART significantly performed better than SBRM nscan-C45. Thus, it can be concluded that
given the default parameter settings for machine learning and search algorithms, SBRM " nscan-
C45 and SBRM'xscau-PART produce better quality rules for the Cisco and Jitsi case studies,
respectively.

RQ6. How is the quality of rules correlated with average fitness values and quality indicators?

Through correlation analysis, we intend to test our hypothesis that the quality of rules based
on MLQMs is positively correlated with average fitness values and quality indicators. The results
of RQG6 show that for the Cisco case study, 23%, 59%, 49%, and 36% of the total correlations
are significant for SBRM*nscan-C45, SBRM* nsca--C45, SBRM Nsca-PART, and SBRM nsca-mr-
PART respectively, where 72%, 37%, 36%, and 78% of significant correlations satisfy our
hypothesis. Likewise, for the Jitsi case study, 60%, 45%, 53%, and 30% of the total correlations
are significant for SBRM*nscan-C45, SBRM ' nsca-u-C45, SBRM Nsca-PART, and SBRM nsca-mr-
PART respectively, where 89%, 79%, 82%, and 57% of significant correlations satisfy our
hypothesis.

RQ7. What is the trend of the quality of rules produced by SBRM" across the iterations?

From the results of RQ7 for both case studies, we noticed an increasing trend of quality of

rules in terms of 81% of the MLQM:s for all SBRM" approaches across the iterations. In only 3%

24

of MLQMs, we noticed a slightly decreasing trend for SBRM® approaches. Thus, we can

conclude that the quality of rules produced using SBRM™ improves across the iterations.

RQ8. Is it feasible to apply SBRM" in practice in terms of time required for employing search
to generate configurations?

Results of RQ8 shows that approaches with NSGA-III took significantly more than others, as
NSGA-III is significantly slower than NSGA-II and RS. Furthermore, the approaches with C4.5
also took more time than approaches with the PART algorithm because C4.5 produced lengthier
rules than PART. Hence, approaches producing lengthier rules have a higher cost of calculating
fitness values and consequently higher execution time. The best performing approach
SBRM s 4.-C45 (SBRM nsc4.i-PART) took 108 (52) minutes to mine CPL rules for the Cisco
(Jitsi) case study, which is acceptable as it is a one-time cost.

5.5 Paper-E: Recommending Faulty Configurations for Interacting
Systems Under Test Using Multi-Objective Search

Authors: Safdar Aqgeel Safdar, Tao Yue, and Shaukat Ali.

Venue: Submitted to the Journal of Transactions on Software Engineering and Methodology
(TOSEM)

Year: 2020.

In this paper, we focus on testing CPSs constituting of interacting products with a large number
of possible configurations. To be more specific, we proposed an approach called Search-Based
Configuration Recommendation (§BCK) to recommend faulty configurations for SUT based on
CPL rules. In SBCR, we defined four search objectives based on CPL rules and combined them
with six commonly used search algorithms.

We evaluated the six versions of SBCR (i.e., SBCRnscan, SBCRisra, SBCRawcu, SBCRspraz,
SBCRpars, and SBCRsupso) using two case studies (i.e., Cisco and Jitsi used in Paper-D) and
conducted difference analysis. The performance of SBCR is compared with Random Search-
Based Configuration Recommendation (RBCK) in terms of six quality indicators (i.e., HV, IGD,
Epsilon, ED, GD, and GS) and the percentage of faulty configurations (PFC). Moreover, we also
compared the performance of six variants of SBCR to find the best performing approach.

The following research questions are addressed in this paper.

RQ1. Is SBCR effective to solve the configuration recommendation problem as compared to RBCR?

Results of RQ1 show that SBCR significantly outperformed RBCK in terms of all the
indicators except GS for both case studies. In terms of GS, RBCR performed significantly better
than SBCR in 5/6 comparisons for both case studies. In the sixth compartison, SBCRpr12
significantly outperformed RBCR in terms of GS for both case studies. Overall, SBCR
significantly outperformed RBCR in 31/36 compatisons for each of the two case studies. Hence,
it can be concluded that SBCR is more effective than RBCR for configuration recommendation
problem.

RQ2. Do SBCR approaches recommend better quality configurations than RBCR?

Results of RQ2 indicate that SBCR significantly outperformed RBCR in terms of PFC for

both case studies. Thus, SBCR recommends better quality configurations as compared to RBCR.

RQ3. Which one of the six SBCR approaches performs the best for the configuration recommendation
problem?

25

Results of RQ3 show that SBCRpra2 is the best performing approach, as it significantly
outperformed others in 87% and 83% of total comparisons for the Cisco and Jitsi case studies,
respectively.

RQ4. Which one of the six SBCR approaches recommends better quality configurations?

Results of RQ4 show that SBCRypr.42 significantly outperformed others in terms of PFC in all
the comparisons for both case studies. This suggests SBCRspr42 recommends better quality
configurations than others.

RQ5. Is it feasible to apply SBCR in practice in terms of the time required for recommending
configurations?

Results of RQ5 show that the average time required to recommend configurations by
different variants of SBCR is quite comparable. All the variants of SBCR except SBCRsapso took
approximately 3 to 6 minutes, whereas, SBCRgypso took 22.3 minutes. Thus, the proposed
approach is feasible in terms of execution cost.

6 Threats to Validity

In this section, we discuss the threats to validity for the entire thesis. In Section 6.1, we discuss
threats to the internal validity followed by threats to the construct validity in Section 6.2. We
discuss threats to the conclusion validity and external validity in Section 6.3 and Section 6.4,

respectively.

6.1 Internal Validity

Threats to internal validity consider the internal factors (e.g., parameter settings) that may influence
the results [107, 108]. The first threat to infernal validity is the selection of approaches for solving
our rule mining and configuration generation/recommendation problems. To address this, we
have combined different techniques from SBSE and machine learning (i.e., multi-objective search
and rule mining algorithms), which have been applied in the literature to solve various software
engineering problems [36, 56, 58, 59, 61, 88, 109]. The second threat to internal validity is the
implementation of the algorithms. To address this, we implemented all the selected algorithms
using the jMetal framework [110, 111] and Weka [112]. The third threat to internal validity is the
selection of parameter settings for the selected search algorithms and rule mining algorithms. To
mitigate this threat, we used default parameter settings for both search algorithms and rule
mining algorithms in SBRM and SBRM", which have exhibited promising results [90, 113, 114].
In SBCR, we tuned mutation and crossover rates using the iRace optimization package [115-119]
and used default settings for other parameters (e.g., archive size) for all the selected search
algorithms. The fourth threat to infernal validity is the selection of the Confidence measure for
calculating fitness values, as there exist other measures (e.g., Liff). We acknowledge that this is a
threat to nternal validity and dedicated experiments are needed for further investigation.

6.2 Construct Validity

Threats to the construct validity exist when the comparison metrics are not comparable for all the
treatments, or the measurement metrics do not sufficiently cover the concepts they are supposed
to measure [54, 58, 107, 120]. To mitigate this threat, we compared different approaches using
the same comprehensive set of measures such as fitness values, quality indicators, and MLQMs,

26

which are commonly used in the literature [90, 109, 121]. Another threat to construct validity is the
use of termination criteria for the search to find the optimal solutions. We used the same
stopping criterion (i.e., the number of fitness evaluations) for all the selected search algorithms.

6.3 Conclusion Validity

Threats to the conclusion validity concern with the factors influencing the conclusion drawn from
the experiment’s results [122, 123]. The first threat to conclusion validity is the evaluation of
configuration tools, which was performed by reading the literature instead of using them. Thus, it
is possible that certain features are available in the tool but not reported in the literature. The
second threat to conclusion validity is due to the random variation inherited in search algorithms. To
minimize this threat, we repeated the experiment multiple times (e.g., 30) to reduce the effect
caused by randomness, as recommended by existing literature on SBSE [111, 124-120].
Moreover, we also applied the Mann-Whitney test to determine the statistical significance of the

results and the Vargha and Delaney A12 statistics as the effect size measure, which are advocated
for randomized algorithms [111, 124, 120].

6.4 External Validity

The external validity concerns the factors affecting the generalization of the experiment results
to other contexts [107, 108]. The first threat to external validity is the selection of case studies for
the evaluation of the proposed conceptual framework, rule mining approaches (SBRM and
SBRM"), and configuration recommendation approach (§BCR). To address this, 1) for evaluating
the framework, we selected three large-scale real-world case studies from three different domains,
as representatives of CPS PLs; and 2) for evaluating SBRM, SBRM*, SBCR approaches, we used
one industrial case study and one open-source case study of different complexity. The second
threat to external validity is the selection of VMTs and configuration tools. To address this, we
selected four representative VMTs and 11 configuration tools, as evaluating all possible VMT's
and configuration tools is infeasible. The third threat to external validity is the completeness of the
framework. To address this, we evaluated the framework using multiple real-world case studies,
modeling standards (i.e., SysML and MARTE), and an extensive literature review. Despite a
thorough evaluation, the completeness of the framework cannot be fully ensured as there might
be some new requirements (e.g., new variation point or constraint types) in the future. The fourth
threat to external validity is the selection of multi-objective search and rule mining algorithms. To
mitigate this threat, we selected several state-of-the-art algorithms (e.g., NSGA-II [64, 65], IBEA
[72], SPEA2 [73], C4.5 [86], PART [89]),
industry [36, 64, 65, 88, 90, 127]. Note, such threats to external validity are quite common in
empirical studies [128, 129].

which have been widely used in the literature and

7 Future Directions

In this section, we discuss the possible future research directions based on the work presented in
this thesis. Future research work can target four research streams as follows:

Modeling CPS PLs: As shown by the results of Paper-A, there does not exist a VMT in the
literature that can cater all the requirements of modeling CPS PLs. Thus, we need to extend an

27

existing VMT or propose a new one to support domain engineering of CPS PLs by following the
guidelines provided in Paper-B.

Configuring CPS' products: The results of Paper-B show that existing tools do not provide all
necessary functionalities for automating the configuration in CPS PLE. Also, these tools are built
on top of existing VMTs, which do not cater all the requirements of CPS PLs. Therefore, we
need to build a configuration tool based on a VMT specific to CPS PLs that support all the
required functionalities, as mentioned in Paper-B.

Automatic post-deployment confignrations for end-users: In Paper-E, we proposed an approach for
recommending faulty configurations for SUT based on CPL rules. Similarly, we need an
approach to recommend non-faulty configurations for interacting products such that end-users
can correct the configurations automatically when the communication fails due to invalid
configurations.

Improving empirical evaluations: The empirical evaluations of the work presented in the thesis can
be improved in vatious aspects: 1) In SBRM"™ (Papetr-D), we used only NSGA-II and NGSA-III
combined with C4.5 and PART with their default parameter settings to mine rules for two case
studies. This can be improved by integrating more algorithms (both search and machine learning
algorithms) with their best parameter settings to mine the rules for more complex case studies. 2)
For both SBRM" (Paper-D) and SBCR (Paper-E), we used only one interestingness measure (i.e.,
the confidence of CPL rules) to define search objectives. This can be improved by conducting an
extensive empirical study to assess the impact of different interestingness measures (e.g., Lift). 3)
The applicability of SBCR (Paper-E) needs to be evaluated using more complex case studies.

8 Conclusion

This thesis proposed a set of methods to address various challenges related to Product Line
Engineering (PLE) of Cyber-Physical Systems (CPSs) with the focus on the post-deployment
configuration. More specifically, we made three main contributions: 1) we conducted a systematic
domain analysis and proposed a conceptual framework for CPS product lines (PLs) in addition to
evaluating existing PLE methodologies; 2) we proposed an approach to capture the patterns of
configurations in form of configuration rules for CPSs consisting multiple interacting products;
and 3) we proposed an approach to recommend configurations for CPSs based on mined rules,
to improve the post-deployment configuration experience for testers and end-users.

To conduct the domain analysis, we analyzed three CPS case studies. Based on the knowledge
collected from the domain analysis and an extensive literature review on PLE, we proposed a
conceptual framework, which 1) formalizes CPS, PLE, and configuration process to clarify the
context of CPS PLE; 2) presents classifications of variation point, constraint, and view types in
addition to different modeling concepts to support domain engineering of CPS PLs; and 3)
formalizes 14 types of automation to tackle application engineering of CPS PLs. We evaluated
the completeness of the framework using three real-world CPS case studies containing 2161 VPs,
3943 constraints, and 40 views, 11 configuration tools, and an extensive literature review. Results
showed that the framework fulfills the requirements of CPS case studies and caters various
aspects concerned by the literature. Moreover, we also evaluated four representative variability
modeling techniques (VMTs) by modeling a CPS case study to assess if they can capture the

28

variabilities of CPS PLs. Results show that none of the four VMTs fulfills the requirements of
CPS PLs.

To capture the configuration patterns in form of configuration rules, we proposed Search-
Based Rule Mining (SBRM") approach, which combines multi-objective search with machine
learning to mine the configuration rules in an incremental and iterative way. We evaluated the
performance of SBRM" using industrial and open-source case studies and compared its
petformance with Random Search Based Rule Mining (RBRM"). Results show that SBRM"
improved the quality of rules based on machine learning quality measurements up to 28%, in
compatison to RBRM".

To improve the post-deployment configuration experience, we proposed a Search-Based
Configuration Recommendation (§BCR) approach. SBCR recommends faulty configurations for
CPSs with interacting products under test based on mined configuration rules. The
recommended configurations can be used to test CPS and create guidelines for end-users to
improve the post-deployment configuration experience of testers and end-users. We evaluated
the SBCR using the same case studies for which we mined the rules using SBRM*. We compared
the performance of SBCR with Random Search-Based Configuration Recommendation (RBCK).
Results showed that SBCR performed significantly better than RBCR, as it made up to 22% more
accurate recommendations than RBCR.

9 References for Summary

L. Derler, P., E.A. Lee, and A.S. Vincentelli, Modeling Cyber—Physical Systems. Proceedings of the IEEE
Special issue on CPS, 2012. 100(1): p. 13-28.

2. Cyber-Physical Systems (CPSs). Available from: http://cyberphysicalsystems.org/.

3. Rawat, D.B., J.J. Rodrigues, and I. Stojmenovic, Cyber-Physical Systems: From Theory to Practice.
2015: CRC Press.

4. Ma, T., S. Ali, and T. Yue, Modeling foundations for executable model-based testing of self-healing
cyber-physical systems. Software & Systems Modeling, 2019. 18(5): p. 2843-2873.

5. Zhang, M., et al., Uncertainty-Wise Cyber-Physical System test modeling. Software & Systems
Modeling, 2017: p. 1-40.

6. Nie, K., et al. Constraints: the core of supporting automated product configuration of cyber-physical

systems. in Proceeding of International Conference on Model-Driven Engineering Languages and
Systems (MODELS). 2013. Springer.

7. Iglesias, A., et al. Product line engineering of monitoring functionality in industrial cyber-physical
systems: A domain analysis. in Proceedings of the 21st International Systems and Software Product
Line Conference-Volume A.2017. ACM.

8. Arrieta, A., et al., Search-Based test case prioritization for simulation-Based testing of cyber-Physical
system product lines. Journal of Systems and Software, 2019. 149: p. 1-34.
9. Wang, S., et al., Automatic selection of test execution plans from a video conferencing system product

line, in VARiability for You Workshop: Variability Modeling Made Useful for Everyone. 2012, ACM:
Innsbruck, Austria. p. 32-37.

10. Chen, L., M. Ali Babar, and N. Ali, Variability management in software product lines: A systematic
review, in 13th International Software Product Line Conference. 2009. p. 81-90.

1. Arrieta, A., G. Sagardui, and L. Etxeberria, A comparative on variability modelling and management
approach in simulink for embedded systems. V Jornadas de Computacion Empotrada, ser. JCE, 2014.

12. Djebbi, O. and C. Salinesi. Criteria for comparing requirements variability modeling notations for
product lines. in 4th International Workshop on Comparative Evaluation in Requirements Engineering.
2006. IEEE.

13. Sinnema, M. and S. Deelstra, Classifying variability modeling techniques. Information and Software
Technology, 2007. 49(7): p. 717-739.

14. Eichelberger, H. and K. Schmid. 4 systematic analysis of textual variability modeling languages. in

Proceedings of the 17th International Software Product Line Conference. 2013. ACM.

29

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

30

Dhungana, D., P. Griinbacher, and R. Rabiser, Domain-specific adaptations of product line variability
modeling, in Situational Method Engineering: Fundamentals and Experiences. 2007, Springer. p. 238-
251.

ClauB3, M. and 1. Jena. Modeling variability with UML. in GCSE 2001 Young Researchers Workshop.
2001. Citeseer.

Ziadi, T., L. Hélouét, and J.-M. Jézéquel, Towards a UML profile for software product lines, in
Software Product-Family Engineering. 2004, Springer. p. 129-139.

Behjati, R., et al., SimPL: a product-line modeling methodology for families of integrated control
systems. Information and Software Technology (IST), 2013.

Haugen, @. and O. @géard, BVR—Better Variability Results, in System Analysis and Modeling: Models
and Reusability. 2014, Springer. p. 1-15.

Pure-Systems. Pure::Variants available at: http://www.pure-systems.com/. 2017].

Rabiser, R., et al. DOPLER, Decision Oriented Product Line Engineering for effective Reuse. Available
from: http://ase.jku.at/dopler/.

Sinnema, M., et al., Covamof: A framework for modeling variability in sofiware product families, in
Software product lines, R.L. Nord, Editor. 2004, Springer Heidelberg. p. 197-213.

Mendonca, M., M. Branco, and D. Cowan. SPLOT: software product lines online tools. in Proceedings
of the 24th ACM SIGPLAN conference companion on Object oriented programming systems languages
and applications. 2009. ACM.

Nohrer, A. and A. Egyed, C20 configurator: a tool for guided decision-making. Automated Software
Engineering, 2013. 20(2): p. 265-296.

Thiim, T., et al., FeatureIDE: An extensible framework for feature-oriented software development.
Science of Computer Programming, 2014. 79: p. 70-85.

Hong, L., Y. Tao, and A. Shaukat. Zen-Configurator: Interactive and Optimal Configuration of Cyber
Physical System Product Lines. [cited 2017 Available from:
https://www.simula.no/research/projects/zen-configurator-interactive-and-optimal-configuration-cyber-
physical-system.

ISO, Software and systems engineering -- Reference model for product line engineering and
management. 2013, ISO.

Berger, T., et al. A survey of variability modeling in industrial practice. in Proceedings of 7th
International Workshop on Variability Modelling of Software intensive Systems. 2013. ACM.
Czarnecki, K., S. Helsen, and U. Eisenecker, Staged configuration using feature models, in Software
Product Lines. 2004, Springer. p. 266-283.

Haugen, 9., A. Wasowski, and K. Czarnecki. CVL: common variability language. in Proceedings of the
16th International Software Product Line Conference-Volume 2. 2012.

Arrieta, A., G. Sagardui, and L. Etxeberria. 4 model-based testing methodology for the systematic
validation of highly configurable cyber-physical systems. in The Sixth International Conference on
Advances in System Testing and Validation Lifecycle. 2014. IARIA XPS Press.

Safdar, S.A., et al., Using multi-objective search and machine learning to infer rules constraining
product configurations. Automated Software Engineering (ASE), 2019. 26(4): p. 1-62.

Safdar, S.A., et al., Mining Cross Product Line Rules with Multi-Objective Search and Machine
Learning in The Genetic and Evolutionary Computation Conference (GECCQO). 2017, ACM: Berlin,
Germany. p. 1319-1326.

Nadi, S., et al., Where do configuration constraints stem from? an extraction approach and an
empirical study. IEEE Transactions on Software Engineering (TSE), 2015. 41(8): p. 820-841.

Temple, P., et al. Using Machine Learning to Infer Constraints for Product Lines. in Proceeding of
International Systems and Software Product Line Conference (SPLC). 2016. ACM.

Frank, E. and .H. Witten. Generating accurate rule sets without global optimization. in Proceeding of
International Conference on Machine Learning (ICML). 1998. University of Waikato, Department of
Computer Science.

Hervieu, A., et al., Practical minimization of pairwise-covering test configurations using constraint
programming. Information and Software Technology, 2016. 71: p. 129-146.

Marijan, D., et al. Practical pairwise testing for sofiware product lines. in Proceedings of the 17th
international software product line conference. 2013.

Cohen, M.B., M.B. Dwyer, and J. Shi, Constructing interaction test suites for highly-configurable
systems in the presence of constraints: A greedy approach. IEEE Transactions on Software
Engineering, 2008. 34(5): p. 633-650.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

S1.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.
64.

65.

31

Perrouin, G., et al. Automated and scalable t-wise test case generation strategies for software product
lines. in 2010 Third international conference on software testing, verification and validation. 2010.
IEEE.

Pohl, K., G. Bockle, and F.J. van Der Linden, Software product line engineering: foundations,
principles and techniques. 2005: Springer Science & Business Media.

ISO13628-6, Petroleum and natural gas industries-Design and operation of subsea production system-
Part 6:Subsea production control systems. 2006.

Lu, H., et al., Model-based Incremental Conformance Checking to Enable Interactive Product
Configuration. Information and Software Technology (IST), 2015. 72: p. 68-89.

Lu, H., et al., Nonconformity Resolving Recommendations for Product Line Configuration, in
International Conference on Software Testing. 2016, IEEE: Chicago, USA. p. 57-68.

Yue, T., S. Ali, and B. Selic, Cyber-Physical System Product Line Engineering: Comprehensive
Domain Analysis and Experience Report, in International Systems and Software Product Line
Conference (SPLC). 2015, ACM. p. 338-347.

Mazo, R., et al. Using constraint programming to verify DOPLER variability models. in Proceedings of
the 5th Workshop on Variability Modeling of Software-Intensive Systems. 2011. ACM.

Mendonga, M., T.T. Bartolomei, and D. Cowan. Decision-making coordination in collaborative
product configuration. in Proceedings of the 2008 ACM symposium on Applied computing. 2008.
ACM.

Yue, T., et al., Search-based decision ordering to facilitate product line engineering of cyber-physical
system, in 4th International Conference on Model-Driven Engineering and Software Development
(MODELSWARD). 2016, IEEE. p. 691-703.

Harman, M. and B.F. Jones, Search-based software engineering. Information and software Technology,
2001. 43(14): p. 833-839.

Zitzler, E., K. Deb, and L. Thiele, Comparison of multiobjective evolutionary algorithms: Empirical
results. Evolutionary Computation, 2000. 8(2): p. 173-195.

Sayyad, A.S. and H. Ammar. Pareto-optimal search-based software engineering (POSBSE): A
literature survey. in Proceedings of the 2nd International Workshop on Realizing Artificial Intelligence
Synergies in Software Engineering. 2013. IEEE.

Srinvas, N. and K. Deb, Multi-objective function optimization using non-dominated sorting genetic
algorithms. Evolutionary Computation, 1994. 2(3): p. 221-248.

Coello, C.A.C., D.A. Van Veldhuizen, and G.B. Lamont, Evolutionary algorithms for solving multi-
objective problems. Vol. 242. 2002: Springer.

Li, Z., M. Harman, and R.M. Hierons, Search algorithms for regression test case prioritization. IEEE
Transactions on Software Engineering, 2007. 33(4): p. 225-237.

Reeves, C.R., Modern heuristic techniques for combinatorial problems. 1993: John Wiley & Sons, Inc.
Lopez-Herrejon, R.E., L. Linsbauer, and A. Egyed, 4 systematic mapping study of search-based
software engineering for software product lines. Information and Software Technology (IST), 2015. 61:
p. 33-51.

Harman, M., et al., Search based software engineering for software product line engineering: a survey
and directions for future work, in International Systems and Software Product Line Conference (SPLC).
2014, ACM. p. 5-18.

Wang, S., S. Ali, and A. Gotlieb, Cost-effective test suite minimization in product lines using search
techniques. Journal of Systems and Software (JSS), 2014. 103: p. 370-391.

Sayyad, A.S., T. Menzies, and H. Ammar, On the Value of User Preferences in Search-Based Software
Engineering: A Case Study in Software Product Lines, in International Conference on Software
Engineering (ICSE). 2013, IEEE. p. 492-501.

Yu, H., et al. Combining constraint solving with different MOEAs for configuring large software
product lines: a case study. in 2018 IEEE 42nd Annual Computer Software and Applications
Conference (COMPSAC). 2018. IEEE.

Sayyad, A.S., et al. Scalable product line configuration: A straw to break the camel's back. in
Proceeding of International Conference on Automated Sofiware Engineering (ASE). 2013. IEEE.

Guo, J., et al., SMTIBEA: A hybrid multi-objective optimization algorithm for configuring large
constrained software product lines. Software & Systems Modeling (SoSyM), 2017. 16(4): p. 1-20.
Brownlee, J., Clever algorithms: nature-inspired programming recipes. 2011: Lulu.

Deb, K., et al., 4 fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation, 2002. 6(2): p. 182-197.

Sarro, F., A. Petrozziello, and M. Harman, Multi-objective software effort estimation, in International
Conference on Software Engineering (ICSE). 2016, ACM. p. 619-630.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.
77.

78.

79.

80.

81.

82.

3.
84.

85.

86.

7.

88.

89.
90.

91.

92.
93.

32

Konak, A., D.W. Coit, and A.E. Smith, Multi-objective optimization using genetic algorithms.: A
tutorial. Reliability Engineering & System Safety (RESS), 2006. 91(9): p. 992-1007.

Deb, K. and H. Jain, An evolutionary many-objective optimization algorithm using reference-point-
based nondominated sorting approach, part I: Solving problems with box constraints. IEEE Trans.
Evolutionary Computation, 2014. 18(4): p. 577-601.

Jain, H. and K. Deb, An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point
Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive
Approach. IEEE Trans. Evolutionary Computation, 2014. 18(4): p. 602-622.

Mkaouer, M.W., et al. High dimensional search-based software engineering: finding tradeoffs among
15 objectives for automating software refactoring using NSGA-III. in Proceedings of the 2014 Annual
Conference on Genetic and Evolutionary Computation. 2014. ACM.

Nebro, A., et al., Design Issues in a Multiobjective Cellular Genetic Algorithm. Evolutionary Multi-
Criterion Optimization, ed. S. Obayashi, et al. Vol. 4403. 2007: Springer Berlin Heidelberg. 126-140.
Nebro, A.J., et al., Mocell: A cellular genetic algorithm for multiobjective optimization. International
Journal of Intelligent Systems, 2009. 24(7): p. 726-746.

Zitzler, E. and S. Kiinzli, Indicator-based selection in multiobjective search, in International
Conference on Parallel Problem Solving from Nature. 2004, Springer. p. 832-842.

Zitzler, E., M. Laumanns, and L. Thiele, SPEA2: Improving the Strength Pareto Evolutionary
Algorithm, in the EUROGEN Evolutionary Methods for Design, Optimization and Control with
Applications to Industrial Problems. 2001. p. 95-100.

Knowles, J. and D. Corne. The pareto archived evolution strategy: A new baseline algorithm for pareto
multiobjective optimisation. in Proceedings of the Congress on Evolutionary Computation. 1999. IEEE.
Knowles, J.D. and D.W. Corne, Approximating the Nondominated Front Using the Pareto Archived
Evolution Strategy. IEEE Transactions on Evolutionary Computation, 2000. 8(2): p. 149-172.
Brownlee, J., Clever Algorithms: Nature-Inspired Programming Recipes. 2012: lulu.com; 1ST edition.
Nebro, A.J., et al., SMPSO: A new PSO-based metaheuristic for multi-objective optimization, in IEEE
symposium on Computational intelligence in multi-criteria decision-making (MCDM) 2009. p. 66-73.
Arcuri, A. and G. Fraser, On Parameter Tuning in Search Based Software Engineering, in International
Symposium on Search Based Software Engineering (SSBSE). 2011, Springer's Lecture Notes in
Computer Science (LNCS)

Arcuri, A., It really does matter how you normalize the branch distance in search - based software
testing. Software Testing, Verification and Reliability, 2013. 23(2): p. 119-147.

Arcuri, A., M.Z. Igbal, and L. Briand, Black-box System Testing of Real-Time Embedded Systems Using
Random and Search-based Testing, in IFIP International Conference on Testing Software and Systems
(ICTSS). 2010. p. 95-110.

McMinn, P., Search-based software test data generation: a survey. Software Testing Verification and
Reliability (STVR), 2004. 14(2): p. 105-156.

Ali, S, et al., Generating test data from OCL constraints with search techniques. IEEE Transactions on
Software Engineering (TSE), 2013. 39(10): p. 1376-1402.

Han, J., M. Kamber, and J. Pei, Data mining: concepts and techniques. 3rd ed. 2012: Elsevier. 703.
Davril, J.-M., et al. Feature model extraction from large collections of informal product descriptions. in
Proceeding of Joint Meeting on Foundations of Sofiware Engineering (FSE). 2013. ACM.

Maimon, O. and L. Rokach, Introduction to knowledge discovery and data mining, in Data Mining and
Knowledge Discovery Handbook. 2009, Springer. p. 1-15.

Quinlan, JR., C4.5: Programming for machine learning. lst ed. 1993, London, UK: Morgan
Kauffmann. 302.

Cohen, W.W. Fast effective rule induction. in Proceeding of International Conference on Machine
Learning (ICML). 1995. Morgan Kaufmann.

Holmes, G., M. Hall, and E. Prank. Generating rule sets from model trees. in Proceeding of
Australasian Joint Conference on Artificial Intelligence (AI). 1999. Springer.

Frank, E. and L.H. Witten, Generating accurate rule sets without global optimization. 1998.

Witten, I.H. and E. Frank, Data Mining: Practical machine learning tools and techniques. 2nd ed.
2005, San Francisco,USA: Diane Cerra. 525.

Lloyd, S., Least squares quantization in PCM. 1IEEE Transactions on Information Theory, 1982. 28(2):
p. 129-137.

Euclidean distance. 2002 2017; Available from: https://wikipedia.org/wiki/Euclidean_distance.
Vierhauser, M., et al., Flexible and scalable consistency checking on product line variability models, in
Proceedings of the IEEE/ACM international conference on Automated software engineering. 2010,
ACM: Antwerp, Belgium. p. 63-72.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

33

Henard, C., et al., Combining multi-objective search and constraint solving for configuring large
software product lines, in 37th International Conference on Software Engineering-Volume 1. 2015,
IEEE Press. p. 517-528.

Czarnecki, K., S. Helsen, and U. Eisenecker, Staged configuration through specialization and
multilevel configuration of feature models. Software Process: Improvement and Practice, 2005. 10(2):
p. 143-169.

Mukelabai, M., et al., Tackling combinatorial explosion: a study of industrial needs and practices for
analyzing highly configurable systems, in 33rd ACM/IEEE International Conference on Automated
Software Engineering. 2018. p. 155-166.

Safdar, S.A., et al., 4 Framework for Automated Multi-Stage and Multi-Step Product Configuration of
Cyber-Physical Systems. Software and Systems Modeling (SoSym), 2020. 19(3).

End-user guide manuals. hitps.//www.cisco.com/c/en/us/support/collaboration-endpoints/telepresence-
mx-series/products-user-guide-list. html. 2020, Cisco Systems.

Wu, J., et al., Assessing the quality of industrial avionics software: an extensive empirical evaluation.
Empirical Software Engineering (EMSE), 2016. 22(4): p. 1-50.

Mann, H.B. and D.R. Whitney, On a test of whether one of two random variables is stochastically
larger than the other. The Annals of Mathematical Statistics, 1947: p. 50-60.

Vargha, A. and H.D. Delaney, A critique and improvement of the CL common language effect size
statistics of McGraw and Wong. Journal of Educational and Behavioral Statistics, 2000. 25(2): p. 101-
132.

Sheskin, D.J., Handbook of Parametric and Nonparametric Statistical Procedures. 3rd ed. 2007,
London,UK: Chapman and Hall, CRC Press. 1776.

Yue, T., S. Ali, and B. Selic. Cyber-physical system product line engineering: comprehensive domain
analysis and experience report. in Proceedings of the 19th International Conference on Software
Product Line. 2015. ACM.

The UML MARTE profile, http-//www.omgmarte.org/.

OMG, Systems Modeling Language (SysML) v1.4, http://sysml.org/. 2015.

Safdar, S.A., et al. Evaluating Variability Modeling Techniques for Supporting Cyber-Physical System
Product Line Engineering. in Proceeding of International Conference on System Analysis and
Modeling (SAM). 2016. Springer.

Runeson, P., et al., Case study research in software engineering: Guidelines and examples. 1st ed.
2012, New Jersey, USA: John Wiley & Sons. 237.

Runeson, P., et al., Case study research in software engineering: Guidelines and examples. 2012: John
Wiley & Sons.

Pradhan, D., et al., Search-Based Cost-Effective Test Case Selection within a Time Budget: An
Empirical Study, in The Genetic and Evolutionary Computation Conference (GECCO). 2016, ACM:
Denver, Colorado, USA. p. 1085-1092.

Durillo, J.J. and A.J. Nebro, jMetal: A Java framework for multi-objective optimization. Advances in
Engineering Software, 2011. 42(10): p. 760-771.

Arcuri, A. and L. Briand. 4 practical guide for using statistical tests to assess randomized algorithms in
software engineering. in Proceeding of International Conference on Software Engineering (ICSE).
2011. IEEE.

Witten, L.H., E. Frank, and M.A. Hall, Data Mining: Practical machine learning tools and techniques.
Third ed. 2011: Morgan Kaufmann.

Arcuri, A. and G. Fraser. On parameter tuning in search based software engineering. in Proceeding of
International Symposium On Search Based Software Engineering (SSBSE). 2011. Springer.

Witten, [.H., E. Frank, and M.A. Hall, Data Mining: Practical machine learning tools and techniques.
4th ed. 2016, Switzerland: Morgan Kaufmann. 734.

Loépez-Ibanez, M., et al., The irace package, iterated race for automatic algorithm configuration. 2011,
Technical Report TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles.

Liao, T., M.A.M. de Oca, and T. Stiitzle, Computational results for an automatically tuned CMA-ES
with increasing population size on the CEC’05 benchmark set. Soft Computing, 2013. 17(6): p. 1031-
1046.

Caceres, L.P., M. Lopez-Ibafiez, and T. Stiitzle, Ant colony optimization on a limited budget of
evaluations. Swarm Intelligence, 2015. 9(2-3): p. 103-124.

Ren, Z., et al., Feature based problem hardness understanding for requirements engineering. Science
China Information Sciences, 2017. 60(3): p. 032105.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

34

Bezerra, L.C., M. Lopez-Ibafiez, and T. Stiitzle, Automatic configuration of multi-objective optimizers
and multi-objective configuration. High-Performance Simulation-Based Optimization. 2020, Cham:
Springer. 69-92.

Kitchenham, B., L. Pickard, and S.L. Pfleeger, Case studies for method and tool evaluation. IEEE
Software, 1995. 12(4): p. 52.

Sokolova, M. and G. Lapalme, 4 systematic analysis of performance measures for classification tasks.
Information Processing & Management (IPM), 2009. 45(4): p. 427-437.

Wohlin, C., et al., Experimentation in software engineering: an introduction. 2000: Kluwer Academic
Publishers. 204.

Wohlin, C., et al., Experimentation in software engineering: an introduction. 2000. 2000, Kluwer
Academic Publishers.

Arcuri, A. and L. Briand, 4 practical guide for using statistical tests to assess randomized algorithms in
software engineering, in 33rd International Conference on Software Engineering. 2011, IEEE. p. 1-10.
Wang, S., et al., 4 Practical Guide to Select Quality Indicators for Assessing Pareto-based Search
Algorithms in Search-Based Software Engineering, in International Conference on Software
Engineering (ICSE). 2016.

Wang, S., et al., A practical guide to select quality indicators for assessing pareto-based search
algorithms in search-based software engineering, in International Conference on Software Engineering
(ICSE). 2016, ACM. p. 631-642.

Wu, X, et al., Top 10 algorithms in data mining. Knowledge and Information Systems (KAIS), 2008.
14(1): p. 1-37.

Wang, S., et al. UPMOA: An improved search algorithm to support user-preference multi-objective
optimization. in Proceedings of the 26th International Symposium on Software Reliability Engineering.
2015. IEEE.

Sarro, F., A. Petrozziello, and M. Harman. Multi-objective software effort estimation. in Proceedings of
the 38th International Conference on Software Engineering. 2016. ACM.

35

Part I1
Papets

36

Paper A

Evaluating Variability Modeling Techniques for Supporting
Cyber-Physical System Product Line Engineering

Satdar Aqgeel Safdar, Tao Yue, Shaukat Ali, Hong Lu

Published in the Proceedings of 9™ International Conference on System Analysis

and Modeling (SAM), 2016.

37

© 2016 Springer
The layout has been revised.

38

Abstract

Modern society is increasingly dependent on Cyber-Physical Systems (CPSs) in diverse domains
such as aerospace, energy and healthcare. Employing Product Line Engineering (PLE) in CPSs is
cost-effective in terms of reducing production cost, and achieving high productivity of a CPS
development process as well as higher quality of produced CPSs. To apply CPS PLE in practice,
one needs to first select an appropriate variability modeling technique (VMT), with which
variabilities of a CPS Product Line (PL) can be specified. In this paper, we proposed a set of
basic and CPS-specific variation point (VP) types and modeling requirements for proposing CPS-
specific VMTs. Based on the proposed set of VP types (basic and CPS-specific) and modeling
requirements, we evaluated four VMTs: Feature Modeling, Cardinality Based Feature Modeling,
Common Variability Language, and SimPL (a variability modeling technique dedicated to CPS
PLE), with a real-world case study. Evaluation results show that none of the selected VMTSs can
capture all the basic and CPS-specific VP and meet all the modeling requirements. Therefore,
there is a need to extend existing techniques or propose new ones to satisfy all the requirements.

Keywords: Product Line Engineering, Variability Modeling, and Cyber-Physical Systems

1 Introduction

Cyber-Physical Systems (CPSs) integrate computation and physical processes and their embedded
computers and networks monitor and control physical processes by often relying on closed
feedback loops [1, 2]. Nowadays, CPSs can be found in many different domains such as energy,
maritime and healthcare. Many CPS producers employ the Product Line Engineering (PLE)
practice, aiming to improve the overall quality of produced CPSs and the productivity of their
CPS development processes [3].

In [4], a systematic domain analysis of the CPS PLE industrial practice is presented, which
focuses on capturing static variabilities and facilitating product configuration at the pre-
deployment phase. The systematic domain analysis identifies the following key characteristics of
CPS PLE: (1) CPSs are heterogeneous and hierarchical systems; (2) the hardware topology can
vary from one product to another; (3) the generic software code base might be instantiated
differently for each product, mainly based on the hardware topology configuration; and (4) there
are many dependencies among configurable parameters, especially across the software code base
and the hardware topology. Various challenges in CPS PLE were also reported in [4] such as
lacking of automation and guidance and expensive debugging of configuration data. In general,
cost-effectively supporting CPS PLE, especially enabling automation of product configuration, is
an industrial challenge.

Cost-effectiveness of PLE is characterized by its support for abstraction and automation.
Generally speaking, abstraction is a key mean that enables reuse. Concise and expressive
abstractions for CPS PLE are required to specify reusable artifacts at a suitable level of
abstraction as commonalities and variabilities. Such abstractions are quite critical and provide the
foundation for automation. To capture variabilities at a high level of abstraction, a number of
variability modeling techniques (VMTS) are available in the literature, including Feature Modeling
(FM) [5], Cardinality Based Feature Modeling (CBFM) [6], a UML-based variability modeling
methodology named SimPL [7], and Common Variability Language (CVL) [8]. These VMT's were
39

proposed for a particular context/domain/purpose. For example, SimPL was designed for the
architecture level variability modeling. It is however no evidence showing which VMT suits CPS
PLE the best.

In this paper, we propose a set of basic variation point (VP) types, CPS-specific VP types, and
modeling requirements of CPS PLE. To define basic VP types, we constructed a conceptual
model for basic data types in mathematics. Corresponding to each basic data type, we defined
one basic VP type (Section 4.1). We also constructed a conceptual model for CPS based on the
knowledge gathered from literature about CPSs and our experience of working with industry [4].
The second and third authors of the paper have experience of working with industrial CPS case
studies and have derived the conceptual model. From the CPS conceptual model, we
systematically derived a set of CPS-specific VP types (Section 4.2). We also derived a set of
modeling requirements based on the literature and our experience in working with industry [4]
(Section 5). Based on the proposed basic and CPS-specific VP types and the modeling
requirements, we evaluated FM [5], CBEFM [6] , CVL [8], and SimPL [7]. FM was selected as it is
the most widely used VMT in industry [9] and CBFM is an extension of FM. CVL is a language
for modeling variability using any domain specific language based on Meta Object Facility
(MOF), which was submitted to Object Management Group for standardization but did not go
through due to Intellectual Property Rights issues. SimPL is a specific VMT dedicated for CPS
PLE and has been applied to address industrial challenges. To evaluate the VMTs, we modeled a
case study (Material Handling System-MHS) with all the VMTSs and evaluated them using the
proposed eight basic and 16 CPS-specific VP types, and nine modeling requirements.

Results of the evaluation show that 1) only SimPL and CVL can capture all the basic VP
types, whereas FM and CBFM provide partial support. None of the four VMTs can capture all
the CPS-specific VP types; 2) SimPL and CVL provide support for 81% and 75% of the total
CPS-specific VP types respectively, whereas CBFM supports 50% and FM supports only 15% of
the total CPS-specific VP types; 3) SimPL satisfies all but one of the modeling requirements, FM
and CBFM only covers one modeling requirement, and CVL fully or partially fulfills four
requirements out of nine requirements. Based on above results, we can conclude that it is
required to either extend an existing technique or propose a new one to facilitate the variability
modeling in the context of CPS PLE. The proposed VP types and modeling requirements can be
also used as evaluation criteria for selecting existing VMT's or defining new ones for a particular
application when necessary.

The rest of the paper is organized as follows: Section 2 presents the related work. Section 3
presents the context of the work. Section 4 presents the proposed VP types. Section 5 presents
the modeling requirements. In Section 0, we report evaluation results. Threats to validity are
given in Section 7. Section 8 concludes the paper.

2 Related Work

This section discusses the existing literature that compares or classifies VMTSs, systematic
literature reviews (SLRs) and surveys of VMTs.

Galster et al. [10] conducted a SLR of 196 papers published during 2000-2011, on variability
management in different phases of software systems. Results show that most of the papers focus
on design time variabilities and a small portion of the papers focus on runtime variabilities. In

40

[11], Chen et al. conducted a SLR of 33 VMTs in software product lines and highlighted the
challenges involved in variability modeling such as evolution of variability, and configuration.
Atrrieta et al. [12] conducted a SLR of variability management techniques, but limited their scope
to techniques for Simulink published after 2008. Berger et al. [9] conducted a survey on industry
practices of variability modeling using a questionnaire, aiming to discover characteristics of
industrial variability models, VMTs, tools and processes. Another industrial survey of feature-
based requirement VMTs was conducted to find out the most appropriate technique for a
company [13]. They evaluated existing techniques based on requirements collected from the
company’s engineers, including readability, simplicity and expressive, types of variability and
standardization.

Eichelberger and Schmid [14] classified and compared 10 textual VMTSs in terms of
scalability. They compared the selected techniques in five different aspects: configurable
elements, constraints support, configuration support, scalability, and additional language
characteristics. Similarly, Sinnema and Deelstra [15] classified six VMTs and compared them
based on key characteristics of VMTs such as constraints, tool support, and configuration
guidance. Czarnecki et al. [16] reported an experience report, in which they compared two types
of VMTs: decision modeling and feature modeling. They compared them in 10 aspects:
application, hierarchy, unit of variability, data types, constraints, modularity, orthogonality,
mapping to artifacts, tool support, and binding time and mode. A comparative study [17] was
reported to compare two VMTs, ie., Kconfig and CDL, in the context of operating systems, in
terms of constructs, semantics, and tool support.

All the above studies classify and evaluate various types of VMTs either in general or for a
particular domain other than CPSs. We however, in this paper, propose a set of basic and CPS-
specific VP types as well as a list of modeling requirements for evaluating VMT's in the context of
CPS PLE, based on which we evaluated four representative VMTs with a non-trivial case study.

3 Context

Section 3.1 and 3.2 introduce the case study and the four VMTs. In Section 3.3, we present the
study procedure.

3.1 Case Study

The case study is a product line of Handling Systems, which consist of various types of sub-
systems such as Automatic Storage Retrieval System (ASRS), Automatic Guided Vehicle (AGV),
Automatic Identification and Data Collection (AIDC) and Warehouse Management System. We
selected three of these systems: AGV, AIDC, and ASRS for the evaluation of the selected VMTs.
AGYV is a fully automatic transport system that uses unmanned vehicles to transport all types of
loads without human intervention. It is typically used within warehouse, production and logistics
for safe movement of goods. AIDC is used to identify, verify, record, and track the products.
Typically, these systems are used in supply chain, order picking, order fulfillment, and
determination of weight, volume, and storage. ASRS is an automated system for inventory
management, which is used to place and retrieve the loads from pre-defined locations in the
warehouse. The descriptive statistics of the MHS case study’s class diagram are given in Table A-

41

1. We modeled the case study (MHS) using the four selected VMTs (i.e., FM, CBFM, SimPL, and
CVL). The case study models corresponding to selected VMTs are available at [18].

Table A-1. Descriptive statistics of the MHS

Element Count
Class 132
Generalization 56
Composition 62
Association 69
Simple attribute 113
Enumerated attribute 82
Enumeration 23
Enumeration Literal 73

3.2 Variability Modeling Techniques

Feature Modeling (FM) is widely applied in practice [9]. A feature model is organized
hierarchically as a tree. The root node of the tree represents the system, whereas the descendent
nodes are functionalities of the system (features). A feature can be mandatory, optional or
alternative. A feature can either be a compound feature that has one or more descendent features
or a leaf feature with no descendent features. Figure A-1 shows an excerpt of the FM model for
AGYV modeled using Pure::Variants [19]. As shown in Figure A-1, AGV Hardware, Sensor, and
Connectivity are mandatory features. The Connectivity feature has three alternative features, i.e.,
Bluetooth, Wifi, and NFC. The Sensor feature has two optional features: MultiRayl EDScanner and
LaserScanner.

v U (F. AGVHardware
v U /F Sensor
? 'F) MultiRayLEDScanner
? 'F LaserScanner
v i

F . Connectivity
&% F Bluetooth
& F) NFC
& F WIfi

Figure A-1. An excerpt of FM for AGV

Cardinality Based Feature Modeling (CBFM) is an extension to FM, which introduces
new concepts such as Feature Cardinalities, Groups and Groups Cardinalities, Attributes, and
References. For Feature Cardinalities, features can be annotated with cardinalities such as <1..*>
whereas alternative features and optional features are special cases with cardinality <1..1> and
<0..1> respectively. A feature group can be or-group with cardinality <1..k> or alternative-group
with cardinality <1..1>. For an alternative-group, one can select only one feature, whereas for or-
group, one can select 1 to &£ number of features where £ is the maximum number of features in
the group. A feature can have one attribute of either String or Integer type. To achieve better
modularization, a special leaf node (i.e., Reference) was introduced to refer to another feature
model. This can be used to divide a large feature model into smaller ones to support
modularization. As shown in Figure A-2 AGU Hardware, Sensor, and Connectivity are mandatory
teatures. AGVHardware and Sensor have feature cardinality <1..10>. Connectivity has an

42

alternative-group that consists of three features: Bluetooth, Wifs, and NFC. The Sensor feature has
an or-group consisting of two features with group cardinality <0..2>.

¥ # [aGVHardware] [1..10] AGVHardware
¥ # [connectivity] Connectivity
v A
O [bluetcoth] Bluetooth
g [nFC] NFC
o [wifi] Wifi
¥ # [sensor] [1..10] Sensor
v A
O [multiRayLEDScanner] MultiRayLEDScanner
O [laserScanner] LaserScanner

Figure A-2. An excerpt of CBFM for AGV

Common Variability Modeling (CVL) is a generic variability modeling language and is
composed of three interrelated models: base model, variability model, and resolution model. The
base model can be defined in UML or any MOF based Domain Specific Language (DSL).
Corresponding to the base model a variability model is defined. The variability model has a tree
structure to specify variabilities. The resolution model specifies configurations of variabilities
corresponding to a particular product. To support CVL, an Eclipse-based plugin CT-CVL is
available [20]. In Figure A-3, rounded rectangles (e.g., AGV Hardware, Sensorlype, Connectivity)
represent Choice elements and a rectangle (e.g., Sensor) represents a ["Classifier element whereas an
ellipse represents a variable. Multiplicity inside the 1/Classifier Sensor (0..10) indicates that the
number of instances of sensors can be between zero to 10 where for each instance one needs to
configure sensor type and model. Connectivity and Sensorlype are Choicel’P with group cardinality
(1..1), which means only one option can be selected from given alternative options.

AGVHardware

(Connectivity) __---"T]
1.1 Sensor
I 0.10
/,, // \\\
(‘Bluetooth) /(NFC)
/

7/
, —
(wifi) (SensorType) odel:String
A [1..1]
/ \\\\

/ ~.
(LaserScanner) (MultiRayLEDScanner)

Figure A-3. An excerpt of CVL for AGV

SimPL is a UML based VMT, which provides notations and guidelines for modeling
variabilities and commonalities of CPS product lines at the architecture and design level. To
support SImPL, several modeling tools [21] (RSA, MagicDraw, and Papyrus) are available. It
captures four types of VPs: Attribute-VP, Type-VP, Topology-VP, and Cardinality-VP. A SimPL
product line model can be specified with a subset of UML structural elements and stereotypes
defined in the SimPL profile. Constraints are specified in the Object Constraint Language (OCL).
SimPL has two major views: SystemDesignView and VariabilityView. SystemDesignView is
composed of HardwareView, SoftwareView, and AllocationView to represent hardware
components, software components and their relationship. VariabilityView is for capturing and

43

structuring variabilities using UML packages and template parameters. Stereotype
«ConfigurationUnit» is applied on UML packages to group relevant variabilities. Variabilities are
defined as template parameters of a package template and can trace back to hardware or software
elements in the SystemDesignView. Figure A-4 presents an excerpt of the Hardwarel iew of MHS,
in which AG1”is a hardware component composed of zero to many Sensors. Sensor can be of two
types: LaserScanner and MultiRayl. EDScanner. AGL” has one Attribute-VP (connectivity) and one
Cardinality-VP (sensors) denoting the number of instances of Sensor. For Sensor, two variabilities
are specified: model (Attribute-VP) and type of sensor (Type-VP). AGV ConfigurationUnit and
SensorsConfigurationUnit are the template packages that are used to organize the variabilities

corresponding to hardware component 4G and hardware Sensor respectively.

«HwComponents [SANSOMS | «HwSensors «“HwSensors
AGV "] sensor |, | MultiRayLEDScanner
- connectivity : Connectivity Type - model : String HWS .
;) LaserScanner
o) i
‘«RelatedConfigUnit« ;'-‘Rétét’ed’Cdnf.gUnn-
connectivity : Property i [model : Property wenumerations.
sensors : Property i | Sensor: Class ConnectivityType
1 1 —
«ConfigurationUnite «ConfigurationUnite ;"'m o
AGVConfigurationUnit SensorsConfigurationUnit N : c .

Figure A-4. An excerpt of SimPL for AGV

3.3 Procedure of the Study

Figure A-5 describes the procedure that we followed to conduct the study. First, we constructed
a conceptual model for defining data types in mathematics and then we validated the data types
with MARTE [22] and SysML [23], as these two standards are often used for modeling
embedded systems and therefore can be used for modeling CPSs. In the third step, we defined a
set of basic VP types (Section 4.1), based on the mathematical basic data types. We used basic
data types for defining the basic VP types, as configuring a VP always requires
assigning/selecting a value to/for a basic type variable. In the fourth step, we detived a set of
modeling requirements (Section 5) based on knowledge collected from the literature and our
experience of conducting industry-oriented research in the field of CPS PLE [4]. In the fifth step,
we constructed a conceptual model for CPS, which is used to systematically derive the CPS-
specific VP types (Step 6, more details in Section 4.2). In Step 7, we modeled the MHS case study
with the selected VMTs, followed by the evaluation of the selected VMTs (Step 8, details in
Section 0), based on the basic VP types, CPS-specific VP types, and the set of modeling

requirements.

44

activity Procedure [@ Procedurey

1: Construct a p

3 : Define a taxonomy

model for data types

| 2 : Validate data types
with MARTE and SysML

for basic VPs

)

A set of basic VPs

L J
|Datatypes in math i I;L

Literature of CPS PLE

4 : Derive a set of
modeling requirements

A set of

o N
g requir |

Experience with CPS PLE |

model for CPS

] 5 : Construct a conceptual

6 : Derive a set of e
CPS specific VPs |]>| A set of CPS specific VPs |

[

q

7 : Model the MHS case study with W
the selected VMTs J

Figure A-5. Procedure of the study

4 Basic and CPS-specific Variation Point Types

4.1 Basic Variation Point Types

Based on the basic data types in mathematics, we constructed a conceptual model to classify
them, as shown in Figure A-6. A Variable can be a VariationPoint or a Non-configurablel ariable,
which represents the configurable and non-configurable variable in CPS PLE. Each ariable has
a Type, which is classified into two categories: Afomic (taking a single value at a given point of
time) and Composite (composed of more than one atomic type, where each atomic type variable
takes exactly one value at a given point in time). Atomic types are further classified into
Quantitative types (taking numeric values) and Quwalitative types (taking non-numeric values).
Quantitative types can be Discrete (taking countable values) or Continuons (taking uncountable
values). Integer is the concrete Discrete type, whereas Real is the concrete Continuons type. Qualitative
types are categorized into S#ing, Binary and Categorical that is further classified into Ordinal and
Nowminal.

- constantElements*®

| VariationPoint | | Non-configurableVariable I
L
variableElementg|,*
Collection Composite Il Variable | | Ordinal ” Nominal |
- maxElements : Integer type
- minElements : Integer v type - -
Type | Atomic | | Categorical |

Pay
—(’1 Array }—D'| Bag |

| Integer Il Quantitative

Qualitative |

)

A
R d
| Sequence

| Orderedset |—D| Set II Relal || Discrete || Contin:ous | | String “ Binary |

Figure A-6. Basic data types

A Composite data type combines several vatiables and/or constants, which is classified as:
Compound and Collection. Compound takes only variables (e.g., complex numbers in SysML
containing two variables realPart and imaginaryPart [23]) whereas Collection takes 1 ariables and /ot
Constants (e.g., collection of colors). Attributes minElements and maxElements of Collection specify
the minimum and maximum numbers of elements in a collection. As shown in Figure A-6, we
have classified Collection into six types (i.e., Bag, Array, Record, Set, OrderedSet and Sequence) based on
three properties: homogeneity, uniqueness and order. The homogeneity, uniqueness, and order

45

properties of each collection type are specified as OCL constraints (Appendix A). Table A-2
summarizes the six types of Collection along with their properties.

Table A-2. Collection types

Collection Hom. Uni. Ord.
Bag No No No
Record No Yes No
Set Yes Yes No
OrderedSet Yes Yes Yes
Array Yes No No
Sequence Yes No Yes

To validate the conceptual model of the basic data types, we mapped the data types defined in
the MARTE Value Specification Language-VSL [22] and SysML [23] to the basic data types
presented in Figure A-6. We used MARTE and SysML for validation because these two modeling
languages can be used for modeling CPSs [24, 25]. During the validation, we do not include the
extended data types provided in MARTE, as they are defined by extending the data types used in
our mapping. In case of SysML we include all the data types. Results of the mapping are
presented in Table A-3, from which one can see that each data type in MARTE and SysML has a
correspondence in our basic data type classification, which suggests that our classification of the
basic data types is complete.

Table A-3. Mapping MARTE and SysML data types to the basic data types

MARTE SysML Basic data types

Integer Integer Integer

UnlimitedNatural UnlimitedNatural Integer

Boolean Boolean Binary

String String String

Real Real Real

DateTime Complex Compound

EnumerationType Enumeration Ordinal/Nominal
ControlValue Nominal/Ordinal

IntervalType UnitAndQuantityKind Compound

TupleType Compound

ChoiceType Compound

CollectionType Collection

In Figure A-7, we present a classification of basic VP types where one basic VP type is
defined corresponding to each basic data type presented in Figure A-6. A VVariationPoint can be a
Compositel'P or an Atomicl’P. An Atomicl’P can come with any of the six concrete types:
Stringl/’P, Binaryl'P, Nominall'P, Ordinall/P, Integerl”P, and Reall”’P corresponding to String, Binary,
Nowminal, Ordinal, Integer, and Real respectively. A Compositel’P can be CompoundV’P or Collectionl/P,
which are defined corresponding to Compound and Collection data types respectively. As shown in
Figure A-7, a Compositel”’P may have several Atomicl’Ps and /ot Compositel”’Ps depending on the
number of variableElements (Figure A-6) involved in the Composite data type. Collection]”’P may have
two additional Integerl’P(s), i.e., lowerLimitl’P and upperlimitl’P corresponding to the minimum
and maximum numbers of the elements in the collection.

46

|{self type. ocllsTypeOf{NomlnaI)] [ﬁ | {self.type. ocIIsTypeOf(Bmary]}[ﬁ | {self.type. ocllsTypeOf(Strlng)} [ﬁ

| NommaIVP || OrdmaIVP || BmaryVP || StringVP || ContinuousVP
0..1], - upperLimitvP (: Y ‘ ’ [Reatve | .

IntegerVP DiscreteVP '_(>| AtomicVP Variable
I g l_Dl I I I | (self.type.ocIlsTypeOf(ReaI]}[ﬁ

- lowerLimitVP | 0..1

CollectionvP I—DI CompositeVP l—Dl VariationPoint | |(se|f,type‘oc||sTypeOf(Ordinal)}lﬁ

Al

|{self.type.ocIIsTypeOf(Integer])lﬁ CompoundVP | Q_—\LammnP_mmJ * ‘j

{self.type.oclAsType(Composite).variableEle
| {self.type.ocllsKindOf(Collection)} | {seIf.type.ocIIsTypeOf(Compound)]Iﬁ ments->size()=self.variationPoints->size()}

Figure A-7. Classification of the basic VP types

4.2 CPS-specific Variation Point Types

In this section, first we present a conceptual model for CPS (Figure A-8), based on which we
then derive a set of CPS-specific VP types (Table A-4). As shown in Figure A-8, a CPS can be
defined as a set of physical components (e.g., human heart, engine), interfacing components (e.g.,
sensort, actuator, network), and cyber components (with deployed software), which are integrated

together to accomplish a common goal.

interact interact

=[1. Al
| ExternalAgent | f Software h ‘ﬁl Topology || PhysicalEnvironment | =

deployed on
updates a3 T CyberPhysicalSystem | 1 PhysicalProperty
=)l - - controls/monitors -
mteract 1.0 - name : String
StateVariable CyberComponent = 2 1.4 -

- type

’l‘ takes inputs of ? J | InterfacingComponent PhysicalComponent || _ nit

interact _ ; .
I CommunicationComponent ComponentProperty | = el Ll

- name : String .
- type
- unit

I ComputationalComponent | MonitoredVariable " ControlledVariable

Figure A-8. A CPS conceptual model

A CPS can have one or more topologies, which define how various components are
integrated. A CPS controls and monitors a set of physical properties. A CyberComponent can either
be a CommunicationComponent or ComputationalComponent, which takes values of Statel ariables as
input and updates their values when needed. Each component in CPS has several component
properties. CPS may interact with PhysicalEnvironment and ExternalAgents (e.g., external systems).
Both PhysicalProperty and ComponentProperty have attributes name, type, and unit to specify the name,
type (e.g., descriptive, numeric, Boolean), and unit of a specific property. Physica/Property has an
extra Boolean attribute #sContinnons to specify either it is a continuous or a discrete type of
property.

In Table A-4, the first column represents the CPS concepts used to derive CPS-specific VP
types and the second column shows the derived CPS-specific VP types. The last column presents
the basic VP type corresponding to a particular CPS-specific VP type.

PhysicalProperty and ComponentProperty: Descriptive-VP, DiscreteMeasurement-VP,
ContinuousMeasurement-VP, BinaryChoice-VP, PropertyChoice-VP, MeasurementUnitChoice-
VP, and MeasurementPrecision-VP are defined for physical properties and/or component
properties of CPS. Descriptive-VP is a S#ingl”’P, which requires setting a value in order to

b

configure it. It can be defined for a textual ComponentProperty such as 1D of a sensor.

47

and ContinuousMeasurement-VP are Integerl’P and Rea/l’P

respectively. Both these two types of VPs can be defined for numeric component properties (e.g.,

DiscreteMeasurement-VP

data transmission interval of a sensor) or physical properties (e.g., length and weight of a physical
component) of CPS. BinaryChoice-VP is a Binaryl”’P, which can be defined for Boolean physical
properties (e.g., the presence of a magnetic field) and component properties (e.g., whether a
sensor keeps the events’ log). PropertyChoice-VP is a Nowinall’P or an Ordinall’P, which
requires selecting one value from a list of pre-defined values. For example, a ComponentProperty
can be connectionType, which can be configured as wired, 3G, or Wi-Fi, which can be captured
as a PropertyChoice-VP. MeasurementUnitChoice-VP is an Ordinal/l’P, which is derived from the
unit of PhysicalProperty and ComponentProperty. For example, one can select meter, centimeter or
millimeter as a unit for length (a PhysicalProperty). MeasurementPrecision-VP is a Rea/l”P, which is
related to the degree of measurement precision for a PhysicalProperty or ComponentProperty.

Table A-4. CPS-specific VP types

CPS Concept CPS-Specific VP Type Basic VP Type
CP Descriptive-VP StringVP
CP, PP DiscreteMeasurement-VP IntegerVP
CP, PP ContinuousMeasurement-VIP Real VP
CP, PP BinaryChoice-VP BinaryVP
CP, PP PropertyChoice-VP NominalVP/Ordinal VP
CP, PP MeasurementUnitChoice-VP Ordinal VP
CP, PP MeasurementPrecision-VP Real VP
CP, PP, COM Multipart/ Compound-VP CompoundVP
COM ComponentCardinality-VP IntegerVP
COM ComponentCollectionBoundary-VP IntegerVP
COM ComponentChoice-VP NominalVP/Ordinal VP
COM ComponentSelection-VP CollectionVP
Topology TopologyChoice-VP Nominal VP
Deployment AllocationChoice-VP NominalVP
Interact InteractionChoice-VP NominalVP
Constraint ConstraintSelection-VIP CollectionVP

*CP=ComponentProperty, PP =PhysicalProperty, COM=Physical, Interfacing, or Physical Component

Component: ComponentCardinality-VP,

ComponentChoice-VP, and ComponentSelection-VP are derived from the different types of

ComponentCollectionBoundary-VP,

CPS components: CyberComponent, InterfacingComponent, PhysicalComponent. ComponentCardinality-
VP is an Integerl’P, which is related to varying number of instances of a CPS component (e.g.,
number of temperature sensors). ComponentCollectionBoundary-VP is an Infegerl’P, which is
related to the upper limit and/or the lower limit of a collection of CPS components. For
example, the maximum and minimum numbers of sensors supported by a controller.
ComponentChoice-VP is a Nominall"P/Ordinall P, which is about selecting a particular type of
CPS component such as selecting a speedometer sensor from several speedometers with various
specifications. ComponentSelection-VP is a Collection]”P, which is about selecting a subset of CPS
components from a collection of CPS components such as selecting sensors for a product from
available sensors.

Multipart/ Compound-VP is a Compoundl’P, which can be specified for a PhysicalProperty,
ComponentProperty, or a component (Physical, Cyber, or Interfacing) that requires configuring
several constituent VPs involved in it. As in the domain of CPS, it is common that different

properties do not give complete meaning unless they are combined together. For example, length

48

is a PhysicalProperty, which is meaningless without a unit. Hence, we need a Compound-VP type,
which involves two VPs including length and its unit. A Compound-VP can also be defined for a
component (e.g., sensor), which contains several other VPs defined for its properties.

Topology: TopologyChoice-VP is a Nominal/l”’P, which is related to selecting a topology from
several alternatives. For example, how CyberComponent (e.g., controller) is connected with
InterfacingComponents (e.g., sensors and actuators).

Deployment: AllocationChoice-VP is a Nominall’P, which is about the deployment of
software on a CyberComponent (e.g., controller). For example, the same version of software can be
deployed on different controllers or different versions of software can be deployed on the same
controller.

Interaction: InteractionChoice-VP is a Nominal/l’P, which is about the interaction (presented
as association named interact in Figure A-8), of two CPS components (e.g., CyberComponent and
InterfacingComponent) or interaction of CPS with an external agent, which can be for example an
external system.

Constraint: ConstraintSelection-VP is a Collection]”’P, which is about selecting a subset of

constraints in order to support the configuration of a specific product, from a set of constraints
defined for the corresponding CPS product line.

5 Modeling Requirements

In addition to capturing different types of VPs, a VMT should also accommodate some modeling
requirements to enable automation of configuring CPS products. These requirements (Table A-5)
are derived from the literature and our experience of working with industry [4].

Table A-5. Modeling requirements

and the base

ID Name Description

Ri | VP binding time Support different binding times for a VP (e.g., pre-deployment, deployment,
and post-deployment phases).

Ry | Linkage between VP Provide a mechanism to relate a VP to the corresponding base model element.

R; | Separation of Provide a mechanism to realize the principle of separation of concerns to
Concerns enable multi-staged and cross-disciplinary configuration of CPS.

R4 | Variability dependency | Capture dependencies between a VP and a variant, two VPs, and two variants.

Rs | Otdering Specify constraints on the order of configuration steps.

R¢ | Inference
R; | Conformance
Rg | Consistency

Specify constraints that can be used to configure VPs automatically.

Specify conformance rules for ensuring the correctness of configuration data.
Specify consistency rules for checking the consistency of the configuration
data and variability models.

Model Software, PhysicalComponent, InterfacingComponent, CyberComponent, and
PhysicalEnvironment elements of CPS.

Ry | Multidisciplinaty

In Table A-5, Ry is related to support different binding times of a VP, as a VP can be
configured at three different phases [20]: the pre-deployment phase, the deployment phase and
the post-deployment phase. Requirements R, focuses on a traceability mechanism to link the
variability model and its base whereas Rs is related to realizing the separation of concerns
principle in the product line model. R4-Rs are relevant to different types constraints that a VMT
should be able to capture for enabling automation of the configuration process in CPS PLE [3].
In [3], a constraint classification was presented and we extended it by adding two more

49

categories: inference and conformance. These constraints are needed to facilitate different
functionalities of an interactive, multi-step and multi-staged configuration solution, such as
consistency checking, decision inferences. Ry is related to modeling different types of
configurable elements of CPSs.

6 Evaluation

The purpose of the evaluation is to compare the selected four VMTs with the aim to help
modelers to select an appropriate VMT or propose a new one if necessary for CPS PLE, which
can capture different types of VPs (Section 4) and meet the modeling requirements (Section 5).
Corresponding to this goal, we pose the following research questions: RQ1: To what extent can
each selected VMT capture the basic VPs? RQ2: To what extent can each selected VMT capture
the CPS-specific VPs? RQ3: To what extent does a selected VMT comply with the modeling
requirements? We answer RQ1, RQ2 and RQ3 in Section 6.1, Section 6.2, and Section 6.3,
respectively.

6.1 Evaluation Based on Basic VP Types (RQ1)

To answer RQ1, we evaluate the selected VMTSs based on the basic VP types. In Table A-6, the
first column represents the basic VP type and the second column indicates if a basic VP type is
required by the MHS case study, whereas columns 3-6 show how each selected VMT supports
each basic VP type.

Table A-6. Evaluation based on the basic VP types (RQ1)

Basic VP MHS VMT
Type FM CBFM SimPL CVL
IntegetVP Yes No One At/F, Attribute-VP, Multiplicity,
G&F Cardinality-VP ParametricVP
Cardinality
RealVP Yes No One At/F Attribute-VP ParametricVP
StringVP Yes No One At/F Attribute-VP ParametricVP
BinaryVP Yes OF, One At/F, Attribute-VP, ChoiceVP (ObjectSubstitution,
Alt. F | OF, Cardinality-VP, | SlotAssignment, ObjectExistence,
Alt. G, Type-VP, SlotValueExistence, LinkExistence),
F-Cardinality | Topology-VP Multiplicity, ParametricSlotAssignment
Nominal VP Yes Alt. G | Alt. G Attribute-VP, Group of SlotAssignment (i.e., ChoiceVP)
OrdinalVP | Yes | Alt G | Al G Type-VP, with group Multiplicity (1,1), -
Topology-VP ParametricObjectSubstitution (i.e.,
ParametricVDP).
CompoundVP | Yes No No Configuration Composite VP, VClassifier with several
Unit Repeatable-VP(s).
CollectionVP | Yes No Alt. G, Catdinality-VP VClassifier with configurable Multiplicity,
OR G group of SlotAssignment (i.e., ChoiceVP).

*F=feature, OF=optional feature, G=group, At=attribute, Alt=Alternative, /= per, &= and

As one can see from Table A-6, modeling the MHS case study requires all the basic VP types.
However, FM supports only three out of eight basic VP types: Binaryl’P, Nowinall’P and
Ordinall”P. Optional feature and alternative-group with two features of FM map to Binaryl’Ps. In
FM, alternative-group corresponds to Nominall”Ps and Ordina/l”Ps, but FM does not differentiate
Nominall’P from Ordinall’P. CBFM provides support for all the basic VP types except for
Compoundl’P. Corresponding to Rea/l’Ps and S#ringl”’Ps, CBFM provides attributes (one attribute
per feature) of Real and String respectively. However, for Integerl”Ps, it offers feature and group

50

cardinalities together with Integer attributes. For Binaryl’P, CBFM has optional features,
alternative-groups, feature cardinalities (0..1), and Boolean attributes. Similar to FM, CBFM also
provides alternative-groups, which map to Nomwinall’Ps and Ordinal/l’Ps and CBFM does not
differentiate these two types. For Collection]”P, CBFM provides alternative-groups and or-groups.

Both SimPL and CVL support all the basic VP types. In SimPL, Attribute-VP defined with
Real and String attributes map to Rea/l”Ps and Stringl’Ps. Integerl”Ps can map to Attribute-VPs
defined on Integer attributes or Cardinality-VP. To support Binaryl’P, SimPL provides Attribute-
VP defined on attributes of the binary type, Cardinality-VP with two options, Type-VP with two
types, and Topology-VP with two topologies. Cardinality-VP, Type-VP, and Topology-VP
offered by SimPL can be mapped to Nominall’Ps and Ordinall”Ps. SimPL does not differentiate
Nominall’P and Ordinal/l’P. To support Compoundl’P, SimPL defines «ConfigurationUnit», which
can be applied on packages, to organize a set of relevant VPs. In SimPL, Collectionl’P
corresponds to Cardinality-VP.

To support Rea/l’P and Stringl’P, CVL provides ParametricVP. For Integerl’P it provides
ParametricVP and cardinalities. For Binaryl’P, CVL has different types of ChoiceVPs (ie.,
ObjectSubstitution, SlotAssignment, ObjectExistence, SlotValueExistence, and LinkExistence)
along with multiplicity and ParametricSlotAssignment (i.e., ParametricVP). In CVL, both
Nominall’Ps and Ordinall’Ps can be mapped to SlotAssignments (i.e., ChoiceVP) with group
multiplicity (1..1) or ParametricObjectSubstitution (i.e., ParametricVP). Similar to all the other
VMTs, CVL does not differentiate Nomina/l’P and Ordinall’P. In CVL, Compoundl”P maps to
CompositeVP and a VClassifier with several RepeatableVP(s) can also be used to model
Compoundl/’Ps. For Collection]’P, CVL has VClassifier with the multiplicity other than (1..1) and a
group of SlotAssignment (i.e., ChoiceVP).

To summarize, both SimPL and CVL support all the basic VP types whereas FM and CBFM
provide partial support. None of the selected four VMTs differentiate NominalVP and
Ordinal VP.

6.2 Evaluation Based on the CPS-Specific VP Types (RQ2)

To answer RQ2, we evaluate the selected four VMTs based on the CPS-specific VP types
(Section 4.2) and VPs modeled for the MHS case study. In Table A-7, the first column represents
the CPS-specific VP types and the second column indicates if a particular CPS-specific VP type is
required by the MHS case study. Columns 3-6 are related to the four VMTs to signify if they
support a particular CPS-specific basic VP type. The seventh column shows the number of VPs
in the MHS case study corresponding to a particular CPS-specific VP type, whereas columns 8-11
show the number of VPs modeled using the four VMTs.

As one can see from Table A-7, our case study (MHS) contains VPs corresponding to all the
CPS-specific VP types. FM does not cater majority of the CPS-specific VP types and only
supports fully or partially three out of 16 CPS-specific VP types: BinaryChoice-VP,
PropertyChooice-VP, and ComponentChoice-VP.

CBFM supports six of 16 CPS-specific VP types: ComponentCardinality-VP,
ComponentCollectionBoundary-VP, MeasurementPrecision-VP, PropertyChoice-VP,
ComponentChoice-VP, and ComponentSelection-VP. It provides partial support for three CPS-
specific VP types (i.e., Descriptive-VP, DiscreteMeasurement-VP, and ContinuousMeasurement-
VP) because CBFM allows adding only one attribute for each feature. BinaryChoice-VP is also

51

partially supported, as it can be captured using optional feature or cardinality but CBFM does not
allows adding Boolean attribute. The remaining six CPS-specific VP types are not supported by
CBFM.

Both SimPLL. and CVL support Descriptive-VP, DiscreteMeasurement-VP,
ContinuousMeasurement-VP, ComponentSelection-VP, ComponentCardinality-VP,
ComponentCollectionBoundary-VP, BinaryChoice-VP, MeasurementPrecision-VP,
MeasurementUnitChoice-VP, PropertyChoice-VP, ComponentChoice-VP, and Compound-VP.
SimPL also supports TopologyChoice-VPs, which cannot be captured using CVL. The remaining
three CPS-specific VP types (ie., AllocationChoice-VP, InteractionChoice-VP, and
ConstraintSelection-VP) are not catered by either SimPL or CVL.

As shown in Table A-7, none of the selected VMTs supports all the CPS-specific VP types.
SimPL supports 81%, FM supports only 15%, CVL caters 75%, and CBFM covers 50% of the
total CPS-specific VP types. Using SimPL and CVL we were able to model 96% and 86%,
whereas with FM and CBFM, we could model only 19% and 55% of total VPs in our case study.

Table A-7. Evaluation of VMT's based on the CPS-specific VP types and VPs (RQ2)

CPS-Specific VP Type VP Types Coverage VP Coverage
MHS | FM | CBFM | SimPL | CVL | MHS | FM | CBFM | SimPL | CVL

Descriptive-VP Yes No Partial | Yes Yes 34 0 4 34 34
DiscreteMeasurement-VP Yes No Partial | Yes Yes 23 0 5 23 23
ContinuousMeasurement-VIP Yes No Partial Yes Yes 51 0 18 51 51
ComponentCardinality-VP Yes No Yes Yes Yes | 42 0 42 42 42
ComponentCollectionBoundary-VP | Yes No Yes Yes Yes | 42 0 42 42 42
MeasurementPrecision-VP Yes No Yes Yes Yes 2 0 2 2 2
BinaryChoice-VP Yes Partial | Partial | Yes Yes 3 0 0 3 3
PropertyChoice-VP Yes Yes Yes Yes Yes | 82 82 82 82 82
ComponentChoice-VP Yes Yes Yes Yes Yes 12 12 12 12 12
TopologyChoice-VP Yes No No Yes No 9 0
AllocationChoice-VP Yes No No No No 3 0 0 0 0
InteractionChoice-VP Yes No No No No 15 0 0 0
MeasurementUnitChoice-VP Yes No No Yes Yes 59 0 18 59 59
ConstraintSelection-VP Yes No No No No 1 0 0 0
ComponentSelection-VP Yes No Yes Yes Yes 42 0 42 42 42
Multipart/Compound-VP Yes No No Yes Yes | 64 0 0 64 26
Total (count) 16 2.5 8 13 12 484 94 267 465 418
Coverage (%) 100% | 15% 50% 81% 75% | - 19% | 55% 96% 86%

6.3 Evaluation Based on the Modeling Requirements (RQ3)

Table A-8 summarizes the results of our evaluation of the four VMTs in terms of modeling
requirements (Section 5) with MHS. In Table A-8, the first two columns are used to identify the
requirements and the third column indicates if a requirement is required by MHS. Columns 4-7
signify if the VMT's support a particular requirement.

None of the selected VMTs except for CVL allows specifying the binding time (R;) of a VP to
enable its configuration in different phases. CVL and SimPL support linking a VP to the
corresponding base model element explicitly (R,), which is however not supported by FM and
CBFM, as they do not have separate base models. FM and CBFM do not support the separation
of concerns (R;) and CVL supports partially as it models variabilities separately from the base
model. SimPL supports Rs as it provides hardware, software and allocation views in addition to
the variability view. For MHS, we captured all the four views defined in SimPL. But, it still
requires a view for specifying environment elements and corresponding VPs.

52

Table A-8. Results for the evaluation of the VMT's based on the modeling requirements (RQ3)

ID Name MHS FM CBFM CVL SimPL
Ry VP binding times Yes No No Yes No
R Linkage between VP and the base | Yes No No Yes Yes
R3 Separation of Concerns Yes No No Partial Yes
R4 Variability dependencies Yes Partial | Partial | Partial Yes
Rs Ordering Yes No No Depends on base | Yes
R Inference Yes No No modeling Yes
Ry Conformance Yes No No language Yes
Rs Consistency Yes No No Yes
Ry Multidisciplinaty Yes No No Partial

R4-Rs are related to capturing different types of constraints to enable automation in CPS PLE.
FM and CBFM provide partial support for capturing variability dependencies such as requires
and excludes, but they are unable to capture other complex constraints such as consistency rules.
In the case of CVL, it uses the Basic Constraint Language [8] for capturing simple propositional
and arithmetic constraints but it is unable to capture all the types of constraints discussed in
Section 5. If the base model is modeled in UML, then OCL can be integrated with CVL, thereby
allowing the specification of all the types of constraints. SimPL is based on UML and OCL,
which makes it possible to capture all the types of constraints.

MHS is a multidisciplinary system, which contains Soffware, CyberComponent, and different types
of PhysicalComponent and InterfacingComponent interacting with Physical/Environment but none of the
selected VMT's explicitly model these multidisciplinary elements of CPS (Ro). SimPL supports all,
except for PhysicalEnvironment elements. In case of CVL, it depends on the DSL used for
modeling the base model, which may or may not have the capability of modeling different
elements of CPS.

7 Threats to validity

One threat to validity of our study is the selection of the VMTs. Since it is not practically feasible
to evaluate all existing VMTSs, we therefore selected four representative VMTs. Another threat to
validity is the completeness of the basic and CPS-specific VP types and modeling requirements.
Note that our approach for deriving the basic VP types is systematic, which to certain extent
ensures their completeness. In addition, we validated them using SysML and MARTE, which are
two existing standards often used for embedded system modeling. We derived CPS-specific VP
types based on thorough domain analyses and our experience in working with industry. We also
verified that the MHS case study covers all the CPS-specific VP types.

8 Conclusion

In this paper, we present a set of basic and CPS-specific VP types that need to be supported by a
VMT in the context of CPS PLE. Moreover, we present a set of modeling requirements, which
need to be catered to enable the automation of configuration in CPS PLE. Based on the
proposed basic and CPS-specific VP types and modeling requirements, we evaluated four VMTs:
feature model, cardinality based feature model, CVL, and SimPL, with a real-world case study.
Results of our evaluation show that the selected four VMTs cannot capture all the VP types and

53

none of the four VMTSs meets all the requirements. This necessitates the extension of an existing
technique or proposal of a new one to facilitate CPS PLE. The proposed VP types and modeling
requirements can be used as evaluation criteria to select a suitable VMT or develop a new one if
necessary.

Acknowledgement

This work was supported by the Zen-Configurator project funded by the Research Council of
Norway (grant no. 240024/F20) under the category of Young Research Talents of the FRIPO
funding scheme. Tao Yue and Shaukat Ali are also supported by the EU Horizon 2020 project
U-Test (http://www. u-test.eu/) (grant no. 645463), the RFF Hovedstaden funded MBE-CR
(grant no. 239063) project, the Research Council of Norway funded MBT4CPS (grant no.
240013/070) project, and the Research Council of Norway funded Certus SFI (grant no.
203461/030).

References

1. Cyber-Physical Systems (CPSs). Available from: http://cyberphysicalsystems.org/.
Rawat, D.B.,].J. Rodrigues, and 1. Stojmenovic, Cyber-Physical Systems: From Theory to Practice. 2015:
CRC Press.

3. Nie, K., et al. Constraints: the core of supporting automated product configuration of cyber-physical

systems. in Proceeding of International Conference on Model-Driven Engineering Languages and Systems
(MODELS). 2013. Springet.

4. Yue, T., S. Ali, and B. Selic. Cyber-physical system product line engineering: comprehensive domain
analysis and experience report. in Proceedings of the 19th International Conference on Software Product
Line. 2015. ACM.

5. Kang, K., Cohen, Sholom., Hess, James., Novak, William., & Peterson, A., Feature-Oriented Domain
Analysis (FODA) Feasibility Study (CMU/SEI-90-TR-021), in Secondary Feature-Otiented Domain
Analysis (FODA) Feasibility Study (CMU/SEI-90-TR-021), Secondary Kang, K., Cohen, Sholom., Hess,
James., Novak, William., & Peterson, A., Editor. 1990. RN. Available From:

6. Czarnecki, K., S. Helsen, and U. Eisenecker, Staged configuration using feature models, in Software
Product Lines. 2004, Springet. p. 266-283.

7. Behjati, R., et al., SimPL: a product-line modeling methodology for families of integrated control systems.
Information and Software Technology, 2013.

8. Haugen, O., Common Variability Language (CVL). OMG Revised Submission, 2012.

9. Berger, T., et al. A survey of variability modeling in industrial practice. in Proceedings of 7th International
Workshop on Variability Modelling of Software intensive Systems. 2013. ACM.

10. Galster, M., et al., Variability in softwate systems-A systematic literature review. IEEE Transactions on
Software Engineering, , 2014. 40(3): p. 282-306.

11. Chen, L., M. Ali Babar, and N. Ali, Variability management in software product lines: A systematic review,
in 13th International Software Product Line Conference. 2009. p. 81-90.

12. Arrieta, A., G. Sagardui, and L. Etxeberria, A comparative on variability modelling and management
approach in simulink for embedded systems. V Jornadas de Computacién Empotrada, ser. JCE, 2014.

13. Djebbi, O. and C. Salinesi. Criteria for comparing requirements variability modeling notations for product
lines. in 4th International Workshop on Comparative Evaluation in Requirements Engineering. 2000.
IEEE.

14. Eichelberger, H. and K. Schmid, A systematic analysis of textual variability modeling languages, in Software
Product Line Conference. 2013, ACM. p. 12-21.

15. Sinnema, M. and S. Deelstra, Classifying variability modeling techniques. Information and Software
Technology, 2007. 49(7): p. 717-739.

16. Czarnecki, K., et al. Cool features and tough decisions: a comparison of variability modeling approaches. in
6th international workshop on variability modeling of software intensive systems. 2012. ACM.

17. Berger, T., et al., Variability modeling in the real: a perspective from the operating systems domain, in
International conference on Automated software engineering. 2010, ACM. p. 73-82.

18. www.zen-tools.com/SAM2016.html. Available from: www.zen-tools.com/SAM2016.html.

19. http://www.pure-systems.com/. Available from: http://www.pure-systems.com.

20. http://modelbased.net/tools/ct-cvl/. Available from: http://modelbased.net/tools/ct-cvl/.

54

21.

22.
23.
24.
25.

26.

Safdar, S.A., M.Z. Igbal, and M.U. Khan, Empirical Evaluation of UML Modeling Tools—A Controlled
Experiment, in European Conference on Modeling Foundations and Applications. 2015, Springer: Italy. p.
33-44,

The UML MARTE profile, http://www.omgmarte.org/.

OMG, Systems Modeling Language (SysML) v1.4, http://sysml.org/. 2015.

Selic, B. and S. Gérard, Modeling and Analysis of Real-Time and Embedded Systems with UML and
MARTE: Developing Cyber-Physical Systems. 2013: Elsevier.

Detler, P., E.A. Lee, and A.S. Vincentelli, Modeling Cyber—Physical Systems. Proceedings of the IEEE
Special issue on CPS, 2012. 100(1): p. 13-28.

Murguzur, A., et al. Context variability modeling for runtime configuration of service-based dynamic
software product lines. in Proceedings of the 18th International Software Product Line Conference:

Companion Volume for Workshops, Demonstrations and Tools. 2014. ACM.

Appendix A: OCL Constraints

Homogeneity: context Array, Set (Sequence, OrderedSet)(self.constantElements-
>size()=0 and self.variableElements->select(a | a.0clIsKindOf(Collection))-
>size()=0 and self.variableElements->forAll(a,b| a.type=b.type))or
(self.variableElements->size()=0 and self.constantElements->forAll(a,b |
a.type=b.type)) or (self.constantElements->size()=0 and self.variableElements-
>size()=self.variableElements->select(a:Variable | a.type.oclls KindOf(Collection))-
>size() and self.variableElements->forAll(vl,

v2| (vl.type.oclAsType(Collection).constant Elements->size()=0 and
v1.type.oclAsType(Collection).variableElements->forAll(v3:Variable | v3.type =
v2.type.oclAsType(Collection).variableElements->asSequence()->first().type)) or
(v1.type.oclAsType(Collection).variableElements->size()=0 and v1.type.oclAs
Type(Collection).constantElements->forAll(v3:Constant |
v3.type=v2.type.oclAsType (Collection).constantElements->asSequence()-

>first().type))))

Uniqueness: context Record (Set, OrderedSet) self.variableElements-
>select (self.variableElements ->forAll(a,b| a=b))->isEmpty() and
self.constant Elements->select (self.constantElements->forAll(a,b| a=b))-
>isEmpty()

Order: context Sequence self.variableElements->asSet()->size() >1
implies self.variableElements->asSequence()->reverse() <>
self.variableElements->asSequence() and self.constantElements->asSet()-
>size() >1 implies self.constantElements->asSequence()->reverse() <>
self.constantElements->asSequence()

context OrderedSet self.vatiableElements->asOrderedSet()->reverse() <>
self.variableElements->asOrderedSet() and self.constantElements-
>asOrderedSet()->reverse() <> self.constantElements->asOrderedSet()

55

56

Paper B

A Framework for Automated Multi-Stage and Multi-Step
Product Configuration of Cyber-Physical Systems

Satdar Aqeel Safdar, Hong Lu, Tao Yue, Shaukat Ali, Kunming Nie

Published in the Journal of Software and Systems Modeling (SoSyM), 2020.

57

© 2020 Springer
The layout has been revised.

58

Abstract

Product Line Engineering (PLE) has been employed to large-scale Cyber-Physical Systems
(CPSs) to provide customization based on users’ needs. A PLE methodology can be
characterized by its support for capturing and managing the abstractions as commonalities and
variabilities and the automation of the configuration process for effective selection and
customization of reusable artifacts. The automation of a configuration process heavily relies on
the captured abstractions and formally specified constraints using a well-defined modeling
methodology. Based on the results of our previous work and a thorough literature review, in this
paper, we propose a conceptual framework to support multi-stage and multi-step automated
product configuration of CPSs, including a comprehensive classification of constraints and a list
of automated functionalities of a CPS configuration solution. Such a framework can serve as a
guide for researchers and practitioners to evaluate an existing CPS PLE solution or devise a novel
CPS PLE solution. To wvalidate the framework, we conducted three real-wotld case studies.
Results show that the framework fulfills all the requirements of the case studies in terms of
capturing and managing variabilities and constraints. Results of the literature review indicate that
the framework covers all the functionalities concerned by the literature, suggesting that the
framework is complete for enabling the maximum automation of configuration in CPS PLE.

Keywords: Cyber-Physical Systems; Product Line Engineering; Automated Configuration; Multi-
Stage and Multi-Step Configuration Process; Constraint Classification; Variability Modeling; Real-
World Case Studies

1 Introduction

Cyber-Physical Systems (CPSs) are highly connected large-scale systems that combine digital
cyber technologies with physical processes where embedded computers and networks monitor
and control physical processes using sensors and actuators [1-5]. These systems are increasingly
becoming an essential part of daily life, which are applied in diverse domains such as
communication, logistics, and healthcare [6, 7]. To cater different needs of users, CPSs require
customizations and thus, many CPS producers opt for Product Line Engineering (PLE)
methodologies [0, 8]. PLE methodologies enhance the reusability and consequently are expected
to improve the overall quality of produced CPSs and the productivity of the development
process, and speed up time-to-market [9-12]. A PLE methodology can be characterized by its
support for capturing and managing the abstractions in the domain engineering phase, and
automation of product configuration for effective selection and customization of reusable
artifacts in the application engineering phase.

A systematic domain analysis of the CPS PLE industrial practices is reported in [13], which
highlights key characteristics of CPS PLE: 1) CPSs are large-scale, heterogeneous, and
hierarchical systems; (2) the hardware topology can vary from one product to another; (3) the
generic software code base might be instantiated and configured differently for each product,
mostly based on the hardware topology; and (4) there are many dependencies among
configurable parameters, particularly across the software code base and the hardware topology.
Several challenges in CPS PLE were also reported in [13] such as lacking automation and

59

guidance for product configuration and expensive debugging of configuration data. In general,
cost-effectively supporting CPS PLE, especially enabling automation of product configuration, is
an industrial challenge.

In CPS PLE, a large number of reusable components (e.g., software, hardware, or network
components) are typically configured by different domain experts in different phases of the
product development lifecycle, working at different organizations or different departments of the
same organization. This demands following a particular configuration process comprising a set of
configuration tasks performed sequentially or concurrently, which allows users to configure a
CPS incrementally in a multi-stage and multi-step manner [14], in the sense that experts from
various domains (e.g., hardware and software engineers) configure a CPS at different stages of a
CPS development process and different steps within a stage. Moreover, the correctness of
product configuration needs to be ensured with well-formedness, conformance, and consistency
checking. Thus, an automated configuration solution with at least these correctness checking
functionalities is highly appreciated. Such a solution heavily relies on a large number of
constraints that should be formally specified with a well-defined constraint specification language
(e.g., Object Constraint Language-OCL [15]) to facilitate, e.g., inferring configuration decisions
automatically and optimization of configuration orders according to user preferences.

|
Conceptual Framework for CPS PLE

ContextFormalization
«Addition» «Extension» «Addition» —
PLE Terminology CPS Configuration Process
@ @ @
A A
«use» «use»

N '

—— '
«<<ISO_IEC_26550>>»

«<<|SO_IEC_26550>>»

DomainEngineerin
9 9 ApplicationEngineering

«Addition» «Resused»
Modeling CPS PLs VP Type Classification <«use»

:Jr) J
«Extension»

Constraint Classification

«Extension»
Functionalities of
Configuration Solutions

I\
3 5

Figure B-1. An overview of the proposed conceptual framework for CPS PLE?

In our previous work [6], we proposed a classification of constraints for supporting CPS PLE,
where we gave a textual description of four types of constraints and discussed how these
constraints can facilitate five types of automation of configuration (i.e., collaborative
configuration, decision inference, reverting decision, decision ordering and consistency checking).
In another work of ours [16], we proposed a classification of variation point (VP) types to
capture variabilities of CPS Product Lines (PLs). In this paper, we extend the above-mentioned
two works [6, 16] and propose a complete conceptual framework to support multi-stage and
multi-step configuration of CPSs based on knowledge collected from the existing literature and

2 Note: All the conceptual models are available at http://zen-tools.com/Framework/ConceptualFramework.html.

60

our experience of conducting industry-oriented research in the field of CPS PLE [13]. To the
best of our knowledge, the proposed framework is the first complete framework that covers
activities in the domain engineering (i.e., capturing constraints and abstractions in form of
commonalities and variabilities) and application engineering (i.e., configuration process and tool
to enable automation of configuration) of CPS PLs. The framework does not only clarify the
problem of supporting multi-stage and multi-step automated configuration of CPSs but also
serves as a guide to researchers and practitioners to evaluate an existing CPS-specific PLE
solution or devise a new one. Figure B-1 provides an overview of the framework, where we use
three stereotypes «Addition», «Extension», and «Reusedy to differentiate this work from our previous
works [0, 10].

The key contributions of the paper are as follow:

o ContextFormalization of the framework has three conceptual models and a set of OCL
constraints used to formalize PLE based on the PLE ISO/IEC standard for Product Line
Engineering and Management [11], CPSs, and multi-stage and multi-step configuration
process.

® DomainEngineering is about supporting domain engineering of CPS PLs where we
formalize concepts related to modeling of CPS PLs such as models, model elements, and
views. We also present the classifications of VP types and constraints. The VP types are
from our previous work [16], whereas for the constraint classification we extend our
previously proposed constraint classification [6] by adding four new types of constraints.

o ApplicationEngineering is for supporting application engineering of CPS PLs where we
present 14 possible functionalities of an automated configuration solution and provide
their formal definitions. Five of the 14 functionalities were presented in [6].

e We evaluate the framework by performing three representative case studies of CPS PLs
and an extensive literature review. With the three case studies, we evaluate the VP types,
constraint types, and views. The functionalities and configuration process are validated
using 11 configuration tools and existing literature reporting configuration automation
techniques.

Evaluation results show that the framework has all the necessary VP, constraint, and view
types required to capture and manage the variabilities and constraints of selected case studies. In
total, three case studies have 2161 VPs, 3943 constraints, and 40 views that can be modeled using
the framework. Furthermore, the results for evaluating the functionalities based on 11
configuration tools and literature on automation of configuration show 92% coverage, which
means 13 out of 14 functionalities are covered by at least one of the existing tools or techniques
in the literature. This demonstrates that the framework covers all the necessary VP types to
capture the variabilities of CPSs, constraint types to capture the constraints essential for enabling
automation of configuration, and view types to manage the inherent complexity of CPSs and
provides support for multi-stage multi-step configuration. Moreover, it also shows that all the
important functionalities of an automated configuration solution are covered by the framework.

The rest of the paper is organized as follows: Section 2 introduces three real-word applications
used for evaluation. Section 3 presents details related to Contextbormalization where we discuss
PLE terminologies, CPSs, and configuration process. In Sections 4 and 5, we present details
related to DomainEngineering and ApplicationEngineering of CPS PLs, respectively. The validation of

61

the framework is presented in Section 6. Section 7 summarizes the literature review and Section 8
concludes the paper.

2 Real-World Applications

In the following sections, we discuss three real-world CPS PLs used for the validation of the
framework for supporting multi-stage and multi-step automated configuration of CPS PLs.

2.1 Material Handling System

The first case study is a PL. of Material Handling Systems (MHSs) developed with the inspiration
when we were collaborating with ULMA Handling System’ in the context of an EU Horizon
2020 project U-Test". ULMA produces a large variety of MHSs wotldwide [17]. It consists of
several sub-systems such as Automatic Guided Vehicle (AGV), Automatic Storage Retrieval
System (ASRS), and Automatic Identification and Data Collection (AIDC). AGV is an automatic
transport system that uses unmanned vehicles to transport different types of loads without
human intervention. It is typically used in warehouse, production, and logistics for the safe
movement of goods to minimize labor cost and material damage. ASRS is an automated system
for inventory management, which is used to place and retrieve the loads from pre-defined
locations in the warehouse. AIDC is used to identify, verify, record, and track products. To
summarize, MHS is an integrated, large-scale, hierarchal, and highly customizable system of
systems where each subsystem of MHS involves a large number of variabilities. Such a complex
system is a representative of CPS PLs, which makes it suitable for this study.

2.2 Video Conferencing System

The second case study is a PL. of commercial Video Conferencing Systems (VCSs) called Sazurn
developed by Cisco Systems’, Norway, which had a long-term collaboration with Simula
Research Laboratory under Certus-SFI [18]. In total, Sazurn consists of 20 subsystems such as
audio and video subsystems. Each subsystem can run in parallel to the subsystem implementing
the core functionality dealing with establishing video conferences. The Sasurn PL consists of
various PLs of hardware codecs (called endpoints®) including C-Series, MX-Series, and SX-Series
and PLs of software’ running on these endpoints (e.g., TC-Series, CE-Series). Both hardware
codec and software PLs consist of several products. For example, C-Series (i.e., a PL of codecs)
have four endpoints C20, C40, C60, and C90 where C20 has minimum hardware and the lowest
performance in the C-Series PL. Similarly, TC-Series (i.e., a software PL) has 10 versions of
software that can be installed on different endpoints, where each software version has hundreds
of configurable parameters (e.g., default protocol and encryption). In summary, Satum is an

3 www.ulmahandling.com

+ www.cordis.curopa.cu/project/id /645463

5 www.cisco.com

¢ https:/ /www.cisco.com/c/en/us/products/collaboration-endpoints/product-listing.html

7 https:/ /software.cisco.com/download/release. html?Pmdfid=286271155&flowid=71282&softwarcid=280886992&rclease=CE-console-
v8.1.0&relind=AVAILABLE&rellifecycle=&reltype=latest

62

integrated, large-scale, and highly customizable system of systems where each subsystem involves
a large number of variabilities.

For the validation purpose, we selected three VCS member products from Sazurn where three
software versions TC 7.0, TC 7.2, and SE 8.0 are installed on C60, MX300, and SX20
respectively. TC 7.0 and TC 7.2 belong to one PL (i.e., TC series of software) whereas SE 8.0
belongs to another PL (i.e., SE series of software). Similarly, C60, MX300, and SX20 belong to
three different PLs. These three products have hundreds of configurable parameters (e.g., call
rate, default protocol), which are to be configured at the post-deployment time.

2.3 Subsea Production System

The third case study is a PL of Subsea Production Systems (SPSs) in which software controls and
monitors the operation of electrical and mechanical instruments. An SPS has hundreds of control
modules and thousands of instruments [13]. In the SPS PL, the hardware topology can vary from
one product to another, with each topology being a specific configuration of the generic family
design. Hardware is configured based on customer requirements, environmental settings, and
different regulations and standards. Different products in the SPS PL share the same software
code base configured differently for each product, mainly based on the hardware topology. For
example, the number of mechanical and electrical instruments as well as their properties (e.g.,
resolution of a sensor) affect the number and values of runtime objects in the software
configured for a specific product. Such dependencies between the hardware and software should
be captured and accounted for during the configuration process. Software and hardware
variabilities occur at different levels of abstraction and are usually resolved by various domain
experts in different phases of the product development lifecycle. For example, high-level
hardware decisions (e.g., the number of wells) are made by domain experts after tendering and
front-end engineering design phases whereas low-level variabilities (e.g., the operating range of a
device) are usually configured by engineers during the configuration, testing, or operation phases.
In summary, SPS is an integrated, large-scale, and highly customizable, thus, an example of CPS
PLs.

3 Context Formalization

In this section, we discuss the PLE terminology in Section 3.1 followed by concepts related to
CPSs in Section 3.2 whereas, in Section 3.3, we formalize the multi-stage and multi-step
configuration process.

3.1 PLE Terminologies

We constructed a conceptual model as shown in Figure B-2 to clarify several key PLE concepts
and their relationships according to the PLE ISO/IEC standard for Product Line Engineering
and Management [11]. Note that, in total, we have used 16 (out of 29) concepts from the
standard. The definitions of the concepts in Figure B-2 are provided in Table B-15 in Appendix
A along with a running example from the SPS case study (Figure B-3), which is modeled with
notations of UML class diagram and the UML profile of the SimPL methodology [19] to capture
the commonalities and variabilities of a PL.

63

«enumeration» has «enumeration» «enumeration»

DevelopmentPhase ‘ 7| «<<ISO_IEC_26550>>» PLEScope AssetType

Asset
Requirement «<<ISO_IEC_26550>>» T AssetT ProductLine Requirement
Design AssetBase #1208 RN Context Architecture
Implementation Application Implementation
1.x Testing [] TestCase
h 1 has
«<<ISO_IEC_26550>>» as «<<ISO_IEC_26550>>» (dervied frol «<<ISO_IEC_26550>>» - «<<ISO_IEC_26550>>»
MemberProduct 1.7 ApplicationAsset N 1.% DomainAsset has ProductLine
has
has | 1 * 1.* 1.”
ConfigurationFile «<<ISO_IEC_26550>>» |~ «<<ISO_IEC_26550>>» «<<ISO_IEC_26550>>» «<<ISO_IEC_26550>>»
— a conforms tg a a S .
) ApplicationArchitecture [DomainArchitecture Variability Commonality
d b! . 1. 1.
I BehavioralModelElement |- represente -
1 caplures
StructuralModelElement | 1. *
I PLEModel «<<ISO_IEC_26550>>»
1x" constrainedElements 1.* ~modelLevel : DevelopmentPhase VariabilityModel
E' @ - scope : PLEScope
onfigurationData _ iahility - N
hasVariability : Boolean ResolutionModel 1%
-) . . - -
configuratign®ata] - isPartiallyResolved : Boolean
onstraint *
1% = | _yp 0.1| «<<ISOIEC_26550>>» has
\ﬁl ConfigurableParameter | — VariationPoint «<<ISO_IEC_26550>>»
i : Variant captures
1.* __instantiatedAs
- selectedVariant T 0.1
Figure B-2. A conceptual model for PLE#
StructuralModelElement
« TreeType > «StructuralModelElement» «StructuralModelElement»
ariantes VXT «Structural » ScatteredSubseaField — SubseaField
«Variant» N
«Variant» HXT TreePrice - «Structurall » type : FieldType 1.4 «StructuralModelElement» dis_tancg g double_
«Variant» Mudline ~ «Structural\ t» cost : Integer *| - «StructuralModelElement» unit : DistanceUnit
Str » - «StructuralN 1t» designPressure : Integer
«Structuralh 1t Structur | ydrauli — .
InstallationVesselType «StructuralModelElement» AllHydrauli - sub: Id - xmasTree |, 1.
- BoreType «StructuralModelElement»
«Variant» Jackup Variant» Ci t | SubseaControlSystem
«Variant» Semisubmersible || «Yariant» Gompac «StructuralMc & Ll
«Variant» Drillship «Variant» FullBore - «StructuralModelElement» treeType : TreeType
- «StructuralModelElement» waterDepth : Integer
«StructuralModelElement» «StructuralModelElement» «StructuralModelElement» - «StructuralModelElement» installType : InstallationVesselType
FieldType DistanceUnit SubseaControlSystem - «Structural\ 1t» max e : Integer
«Variant» Gas «Variant» Mile - «StructuralModelElement» maxPressure : Integer - «StructuralModel|Element» boreType : BoreType
«Variant» Oil «Variant» KM + «Bahavior monitorPressure () - «StructuralMod 1t» minTemperature : Integer
a «BaseModel»
InstallationVesselType TreeType
“ariant» Jackup Variant» VXT ——— . «Constraint, ConsistencyConstraint» StructuralModelElement
«ariant» Semisubmersible || «Variant» HXT TN SO DR S D C A {self.subseaField->forAl(x:SubseaFeld] e istanceunit
«Variant» Drillship «Variant» Mudline iationPol Sy A IR U8 ey self.maxPressure<=(x.designPressure
Bl «VariationPoint» SubseaField : Class +(0.05*x.designPressure))) «ariant> Mile
«StructuralModelElement» ! ELRE T fati xmasTree : Property «Variant» KM
oreType ‘ installType : Property T
s Commast S «Variability» «StructuralModelElement» «StructuralModelElement»
«Variant» F.,,‘Bf,,e xm_sr,e::;ﬁi;:‘f:ﬁn"u"“ subseaFieldConfigurationUnit SubseaControlSystem AllElectricSystem
| i maxPressure : Integer |
Faidtype e e T Anysrauicsysim
- «Constraint, VariabilityDependencyConstraint» —
«Variant» Oil FieldType::0il implies x.treeType<>TreeType:VXT)} scatteredSubseaField ElectrohydraulicSystem
RelatedConfUnits
’ | o »
«StructuralModelElement» XTESITE] L Y x| - subsearield Felefedconfunit
SubseaControlSystem e e «VariationPoint» SubseaControlSystem : Class |
«StructuralModelElement» treeType : TreeType RSURC ;"ah °: I:’“e“” iationPoi + Property
-{ «StructuralModelElement» waterDepth : Integer | 5 e u s"d'a e 'Vaﬁab"iw
e opar i m m «StructuralModelElement» distance : double « »
e SUtbreCTbRRared = unit : DistanceUnit SubseaControlSystemConfigurationUnit ‘
«StructuralModelElement» boreType : BoreType [type : FieldType | IElement> : Integer |
i : Integer
«Canstraint, OptimizationCanstraint» «Constraint,
«Constraint, ConfigurationConstraint» seltboreType= Set (BoreType::Compact, BoreTyper:FullEore)- implies sel. andx
12000 and >1000)

b «VariabilityModel»

Figure B-3. Running example (an excerpt of the SPS case study modeled using UML class diagram and
SimPL methodology) *

* ConfigUnits with template parameters (in dark grey color) show captured vatiabilities. Variabilities corresponding to attributes and cardinalities are
represented as “Property” type template parameters and “Class” type template parameters for variabilities related to subclasses.

AssetBase is a repository containing a set of DomainAssets and ApplicationAssets where an Asset
can be of four types: Requirement, Architecture, Implementation, and TestCase. A Productl ine has
DomainAssets whereas a MemberProduct has ApplicationAssets. DomainArchitecture is a DomainAsset

8 C1-C5 are OCL constraints provided in Appendix B.

64

and ApplicationArchitecture is an ApplicationAsset. Both DomainArchitecture and ApplicationArchitecture
are represented by one or more PLLEModels. PL.EModel is characterized by modell evel to indicate
the phase of development life cycle (i.e., Reguirement, Design, Implementation, and Testing) to which
PILEModel belongs. PL.EModel is also characterized by scope and basl ariability to indicate different
scopes (i.e., Productline, Application, and Context) and the presence of Variability in PLEModel.
Context represents the environment in which the system operates and it consists of external
agents (i.e., users, external systems and/or cloud services) and physical environment [3]. A
PI.EModel can be of three types: BaseModel, 1 ariabilityModel, and ResolutionModel. ResolutionModel is
characterized by isPartiallyResolved to indicate if the ResolutionModel has unresolved variabilities. A
Productl iine has Commonality and 1 ariability, which are captured and managed using BaseMode/ and
VariabilityModel respectively. A PLLEModel representing the DomainArchitecture of a ProductLine is
cither BaseMode! or 1/ ariabilityModel whereas a PLLEModel representing the Application Architecture of
a MemberProduct is ResolutionModel. A PLLEModel is composed of one or more ModelElements where
a ModelE/lement can be StructuralModelElement, BebavioralModelE lement, | ariationPoint, V ariant, ot
Constraint. A ConfigurableParameter may have one ConfigurationData, which represents the
configuration decision made to configure a ConfigurableParameter. A MemberProduct has one or
more ConfigurationFiles where each ConfigurationFile contains one or more ConfigurationData.

3.2 Cyber-Physical System

Figure B-4 presents a conceptual model for CPS and the definitions of the concepts presented in
Figure B-4 are provided in Table B-16 in Appendix A. As shown in Figure B-4, a CPS constitutes
a set of PhysicalComponents, CyberComponents with deployed Software, and InterfacingComponents,
which are combined using a particular Topology to achieve a common goal. A CPS monitors and
controls a set of PhysicalProperty. A CyberComponent can either be a ComputationalComponent or a
CommmunicationComponent, which takes values of Statel ariables as input and updates their values if
required. Both CyberComponent and InterfacingComponent can have several ComponentProperty.
Similarly, a PhysicalComponent can have several PhysicalProperty. Both PhysicalProperty and
ComponentProperty have attributes name, tjpe, and unit to specify the name, type (e.g., String, Integer,
Binary), and unit of a specific property. PhysicalProperty has an extra Boolean attribute isContinuous
to specify whether it is a continuous or a discrete type of property.

1.%
interact |_Topology h
«(v -
int t = = «enumeration»
| ExternalAgent I 1..;] Software 15"w * CPS m‘ PhysicalEnvironment |‘_:|/ 1% DataType
deployed on isSmart : Boolean 1. = Integer
updates piey environmentType : Environment - LV EICAIGEOPOTEY) Real
P l1 s g controls/monitors " [_name : String Binar
- - ina
= interact H [#* - type : DataType Stri 4
’ Statevariabie || CyberC 8 + 1. interact 1. - unit : String E e ti
1..[takes inputs of ? I InterfacingComponent !\ PhysicalComponent | - IsContinuous : Boolean numeration
— 1. «enumeration»
| CommunicationComponent | . COmponer{tProperty * 1.% T DR Environment
I - IComp " I - name : String - Open
— - type : DataType ControlledVariable [~ Closed
- unit : String

Figure B-4. A conceptual model for CP [16]

A CPS may interact with PhysicalEnvironment and ExternalAgents. PhysicalEnvironment has at least
one PhysicalProperty. A CPS can be implemented with the assumption of a closed world where
everything is predefined and fixed or an open wotld whete new [Variants and/otr VVariationPoints
can be added or removed at any time. This characteristic of CPS is specified using an enumerated

65

attribute environmentIype with two possible values Closed and Open. A CPS can also have
autonomous behavior, which makes it “smart”. This characteristic is specified by a Boolean
attribute zsSmart. Considering the above-mentioned two aspects, we can classify CPSs into four
categories: smart closed CPSs, smart open CPSs, typical closed CPSs, and typical open CPSs. In
this study, we focus on typical closed CPSs, which are referred as CPSs in the rest of the paper
for the sake of simplicity.

3.3 Configuration Process

In Figure B-5, we present a conceptual model for the configuration process. The definitions of
the concepts in the conceptual model are provided in Table B-17 in Appendix A.

As shown in Figure B-5, ConfigurationSolution enforces a ConfigurationProcess to perform
ProductConfignration. ProductConfignration can be performed at pre-deployment, deployment, and/or
post-deployment time. ConfigurationProcess has one or more ConfigurationStages where each
ConfigurationStage has at least one ConfigurationStep. ConfigurationProcess is characterized by
IsMultiStage, IsInteractive, and islncremental to show it the ConfigurationProcess is a multi-stage,
interactive (L.e., requires input from the Szakebolders and provides feedback to the Stakebolders),
and incremental (i.e., the configuration is performed incrementally in multiple ConfigurationStages)
process. ConfigurationStage has a Boolean attribute IsMultiStep to indicate if a ConfignrationStage
contains more than one ConfignrationStep. For each ConfigurationStage, there is at least one
Stakeholder who gives input to its ConfigurationSteps for making ConfigurationDecisions and gets
teedback. A ConfigurationStep has one or more ConfigurationDecisions where each ConfigurationDecision

is either inferred automatically (isluferred) or made manually by the Stakebolders.
ConfigurationDecisions are represented as ConfigurationData. ConfigurationData has attributes

isAutoGenerated, status, type, value, and parameterlD to specify if the data is generated automatically,
its evaluation status (L.e., Valid, Invalid, Unknown), type (e.g., Integer, Real, Boolean), value (i.e.,
assigned/selected variant), and unique identifier for the corresponding ConfigurableParameter.

«enumeration»
ConfigurationType

ConfigurationProcess
- isMultiStage : Boolean

Confi ationS

Stakeholder

g

PredeploymentConfiguration
DeploymentConfiguration
PostDeploymentReconfiguration

- isInteractive : Boolean

- automation : AutomationType [

- isincremental : Boolean
J

- IsMultiStep : Boolean

+ |- stakeholders

«enumeration»
IntegralityType
Complete

«enumeration»
EvaluationStatus

1

direc\{edBy

«enumeration» enfortes X 1.#| Partial vaid
— - AutomationType ConfigurationStep gives input 1nvalid
— - e Manual = = - gives feedback Unknown
- type : ConfigurationType | | semiAutomated | ConfigurationSolution | 1.%

«enumeration»
ConfigurationDataType

ConfigurationDecision
- isInferred : Boolean

ConfigurationData
- isAutoGenerated : Boolean

ConfigurationFile Boolean

FullyAutomated
ha {C8} El

- level : DevelopmentPhase |-| {C7} & - status : EvaluationStatus Integer
» |- " K represented as it 9
1.* | - integrality : IntegralityType P P 1.* | - type : ConfigurationDataType | | Real
- value : String String

produces 1.*

Enumeration

- parameterlD : Integer

Figure B-5. A conceptual model for the configuration process’

CPS PLs involve various components from multiple domains (e.g., Mechanics, Software, and
Electronics) and different domain experts (i.e., S7akeholders) are responsible for configuring these
components. Thus, ConfigurationDecisions for various domains are divided into multiple
ConfigurationStages to facilitate different domain experts. In most of the cases, ConfignrationDecisions

9 C6-C8 are OCL constraints provided in Appendix B.

66

for a particular domain (e.g., Software) are made at various points in time by one or more
Stakeholders collaborating together. Therefore, ConfigurationDecisions within one ConfignrationStage
can be divided into multiple ConfigurationSteps. In Figure B-6, we have provided a simplified
example of the multi-stage and multi-step configuration process for the running example
presented in Figure B-3.

cd1 : ConfigurationDecision |ﬁl d1 : ConfigurationData I(—

DE1 : Stakehol
[—m cd2 : ConfigurationDecision |—)| d2 : ConfigurationData](—
cd3 : ConfigurationDecision |—)| I(—

fi tionDat:
| Stage-1 : ConfigurationStage Step-1.1: ConfigurationStep d3: ConfigurationData

cd4 : ConfigurationDecision |H| d4 : ConfigurationData

| MSMS : ConfigurationProcess I Step-1.2: COnﬂgurahonSteg H cd5 : ConfigurationDecision H d5 : ConfigurationData

cd6 : ConfigurationDecision I—)| d6 : ConfigurationData

k—
|
H cd7 : ConfigurationDecision H d7 : ConfigurationData |(—~
k—
k—

H cd8 : ConfigurationDecision I—>| d8 : ConfigurationData
H cd9 : ConfigurationDecision I—)I d9 : ConfigurationData

SubseaConfigFile : ConfigurationFile l.—

Figure B-6. Exemplifying multi-stage and multi-step configuration process for running example (UML
object diagram for the conceptual model of the configurationprocess) *

*Note that two different colors are used to show two different configuration stages.

In Figure B-6, MSMS is a ConfigurationProcess containing two ConfigurationStages (Stage-1 and Stage-2)
for configuring hardware and software of the subsea system presented in Figure B-3. $7age-7 has
two ConfigurationSteps Step-1.1 and Step-1.2 whereas Stage-2 has only one ConfigurationStep Step-2.1.
Stakeholders DET and DE2 are two domain experts who make ConfigurationDecisions cd1-cd4 and
ed5-cd9 in Step-1.1 and Step-1.2 respectively. Similarly, Stakebolder DE3 makes ConfigurationDecisions
ed10-¢d1T in Step-2.1 of Stage-2. In total, we have 11 ConfigurationDecisions in the MSMS for the
running example, as we have 11 wvariabilities in the example (Figure B-3). All the
ConfigurationDecisions (cd1-¢d17) are represented as ConfigurationData (d1-d17) in a ConfigurationFile
(i.e., SubseaConfigtile in Figure B-6). Note that in Figure B-6, we did not instantiate the attributes
of different concepts (e.g., ConfigurationData, ConfigurationProcess) for the sake of simplicity.

4 Domain Engineering of CPS Product Lines

We present concepts related to the modeling of CPS PLs in Section 4.1 and a classification of
VariationPoint types in Section 4.2 to capture various types of variabilities in CPS PLE. In Section
4.3, we present a classification of constraints in CPS PLE.

4.1 Modeling CPS Product Lines

Figure B-7 presents a conceptual model used to discuss the concepts related to the modeling of
CPS PLs for capturing and managing the commonalities and variabilities of CPS PLs to support
multi-stage and multi-step automated configuration of CPSs. The conceptual model is
constructed as a UML class diagram and formalized using OCL constraints. The definitions of
the concepts presented in Figure B-7 are provided in Table B-18 in Appendix A.

As shown in Figure B-7, a Modelingl angnage has a set of MetaModelElements defining the
Modelingl_angnage. PLLEModels are developed using a Modelingl angnage where a PLEModel is
composed of one or more ModelElements of type Constraint, StructuralModelElement,
BehavioralModelElement, 1 ariationPoint, or 1V ariant. StructuralModelElements trepresent structural

67

elements of CPSs (e.g., sensor, actuator, software component, or property), which can be of three
types: SoftwareS tructuralModelE lement, HardwareS tructuralModelE: lement, and
ContextStructuralModelElement. BebhavioralModelElement represents behavioral elements of CPSs
corresponding to which behavioral variabilities can be defined. For example, [arability
corresponding to Interaction. Interaction is a type of BebavioralModelE lement, which describes how
two or more components (i.e., source and target components) interact or communicate with each
other [20]. Interaction is characterized by #sDirect, isHomogeneous, and direction. isDirect indicates
whether the Inferaction is direct between the source and target components or it involves
intermediate components. zsHomogeneons shows if all interacting components are of the same type
and direction indicates if the communication between the source and target components is
Unidirectional or Bidirectional. According to [5, 21], CPS has three logical levels, i.e., application
level, infrastructure level, and integration level. Based on these three levels we have classified the
Interactions into three categories (i.e., Applicationl evellnteraction, Infrastructurel evellnteraction, and
Integration] evellnteraction) as shown in Figure B-7.

| InfrastructureLevellnteraction | Interaction . (€15} «<<ISO_IEC_26550>>» 1f~ ResolutionModel
" " - isDirect : Boolean [has__ | VariabilityModel
| IntegrationLevellnteraction | - isHomogeneous : Boolean — —— T {C16} . di
: expressed in
Annlicati : L - direction : DirectionType PLEModel 1?*

| l»target -sourcel | Behavi;]]ralModelElement | 1“*J ? ConfigurationFile

| SoftwareStructuralModelElement |_1 >| ‘1"k 41.!;lement | Mod:I]Element 1. m pgd using has 10} 5
I ContextStructuralModelElement | I < - views 1*

| HardwareStructuralModelElement | 0.1] a ﬂ -

| - discipline : Discipline | «<<ISO_IEC_26550>>» 1.x ~view
VariationPoint i i

pnstraining S—— S
T «<<ISO_IEC_265650>>» bindingTime : BindingTime |. [ApplicationVariabilityView |)

: (P VariabilityView
«enumeration» «enumeration» - scope : PLEScope |(c12} Bl | ContextVariabilityView | ty {
PLEScope BindingTime - namft'e : St;!ngst nt ~| 11} I} [—]‘
- configurationStage : Integer i iabilityVi i
ProductLine PreDeployment]] g DomainVariabilityView | : ContextView
Application PostDeployment 0.1 3
— «<<ISO_IEC_26550>>» ‘ﬁ{ InteractionVariabilityView | InteractionView [
« » h * 9
ConfigurationStatus . . — Vér'a"' | Constraint | LI AllocationVariabilityView | ‘
Configured - optimizationMeasure [*] _ 1.4 g - —
: H ” iabilityVi locationView |-
Unconfigured i 0..1°- selectedVariant *ﬁ| HardwareVariabilityView |
- i D |(C13> Iﬁ [MechanicalVariabilityView |
«enumeration» ConfigurableParameter |....| MechanicalVi o
Discipline - id : Integer - | ElectronicsVariabilityView it
Mechanical - name : String «s:-num.eratlon» = —— ElectronicsView
Electronics - status : ConfigurationStatus Dl.re.ctlo.nType ElectricalVariabilityView
Electrical - configurationStep : Integer Unidirectional | HydraulicsVariabilityView ElectricalView
Hydraulics - type : VariationPoint Bidirectional
1 .T HydraulicsView

Figure B-7. A conceptual model for modeling CPS product lines!?

VariationPoint is used to capture the [Variability corresponding to a StructuralModelElement or a
BehavioralModelElement where an instance of [VarationPoint, i.e., ConfigurableParameter can be
configured with more than one Variants. 1 ariationPoint is characterized by #pe, scope, and
bindingTime. Scope indicates the scope of the VVariationPoint (i.e., ProductLine, Product, and Contexi)
whereas #pe represents the type of the VariationPoint. Types of the VVariationPoint are discussed in
detail in Section 4.2.

BindingTime specifies the time to resolve a VariationPoint by binding its instance with one of its
Variants. Since in CPS PLE, ConfigurationDecisions are made during the design/development phase
(e.g., hardware designs, software features), at deployment time (e.g., hardware/software
topologies software parameterization, deployment of software components to specific hardware),
and after deployment (e.g., software parameterization at startup or runtime,

10°.C9-C18 are OCL constraints provided in Appendix B.

68

activation/deactivation of softwate features). Thus, we have classified the bindinglime into
PreDeployment, Deployment, and PostDeployment, independent of the technologies and approaches
used. Several existing studies [22, 23] discuss various binding times specific to the software
development lifecycle such as compile time, link time, load time, initialization time, and runtime
that can be mapped to our generic binding times. Most of them except runtime can be mapped
to Deployment whereas runtime can be mapped to PostDeployment.

A finite set of [Variants corresponding to a [ariationPoint can be specified as a pre-defined list
whereas the infinite number of Variants (e.g., for a VariationPoint corresponding to a Real type
variable) can be denoted by specifying the UpperLimit and LowerLimit. ConfigurableParameter is
characterized by id, name, status (i.e., Configured, Unconfigured), configurationStep, and tjpe (i.e., type of
VariationPoin?). Optionally, a [Variant can also be characterized by optimizationMeasures (e.g., cost,
performance, energy consumption) that assist the configuration optimization. Different types of
Constraint are discussed in Section 4.3.

Separation of concerns is considered as an important aspect of software engineering. It
becomes more important in the case of complex, highly hierarchal, large-scale, and multi-
disciplines CPSs that involve different Stakebolders from diverse domains such as Mechanics,
Electronics, and Software. To support the separation of concerns and handle the CPSs more
efficiently, modeling CPSs requires multi-views, which can also help in reducing the
configuration complexity [24].

As shown in Figure B-7, PLEMode/ can have one or more I7ews showing different
ModelElements and their relationships. A zew can be Systenliew to show the commonalities of
CPS PL or Variabilityl iew to represent variabilities of CPS PL. Systerz] iew is a composite view
containing one Softwarel’iew, one to four Hardwarel iews, one _Allocationl iew, and one
InteractionView. Hardwarel iew is an abstract view, which can be Mechanicall iew, Electricall iew,
ElectroniesV'iew, or HydranlicsView. A View can also be ContextView to show the
ContextStructuralModelElements and their relationships. A Variabilityl iew is an abstract view, which
can be Softwarel ariabilityl iew, HardwareV ariabilityV iew, Allocation) ariabilityV iew,
Interaction ariabilityliew, Domain) ariabilityV iew, ContexctV ariabilityliew, and
ApplicationV ariabilityView. DomainV ariabilitylView 1s a composite view containing one
Softwarel ariabilityView, one to four Hardwarelariabilityliew, and optionally one
Allocation ariabilityV iew and InteractionV ariabilityView. A Hardwarel ariabilityliew is an abstract
view, which can be Mechanicall ariabilityV iew, Electrical) ariabilityV iew, Electronies\ ariabilityl iew, or
HydranlicsV ariabilitylView. ~ Note that for each concrete VariabilityView (e.g.,
Mechanicall ariabilityl iew), we have one ConfigurationStage to resolve the variabilities in one or more
ConfigurationS'teps.

4.2 Classification of Variation Point Types

In Section 4.1, we present a set of basic VP types, followed by the discussion on CPS-specific VP
types in Section 4.2.2.

4.2.1 Basic Variation Point Types

Based on the basic data types in mathematics, we constructed a conceptual model to classify
them, as shown in Figure B-8. A 1Variable can be a VVariationPoint or a Non-configurable ariable,
which represents the configurable and non-configurable variables in CPS PLE. Each Variable has

69

a Type, which is classified as Azomic and Composite. A 1V ariable of Atomic Thpe takes a single value at
a given point in time whereas a [ariable of Composite Type is composed of more than one Azomic
Type Variables. Atomic Type is further classified as Quantitative and Qualitative where they take
numeric and non-numeric values, respectively. A Quantitative Type can be Discrete taking countable
values or Continnons taking uncountable values. Integer is the concrete Discrete type and Real is the
concrete Continnous type. Qualitative Type is classified as Sting, Binary, and Categorical that is further

classified into Ordinal and Nowinal.
- constantElements *

«<‘I,i%'alfﬁ‘ﬁzpsjig>» | Non-configurableVariable |

8
‘ - variableElements | * v

Collection > Composite | | Variable || | Ordinal || Nominal |
- maxElements : Integer - type

- minElements : Int v__-type
{c19) 5 minElements : Inteqer Atomic_| | Cm?"'ﬂ’ |
| Integer || Quantitative '_i—‘ Qualitative |
v

A

Set || Real H Discrete || Continuous | I String || Binary I

| Orderedset |—o|

Figure B-8. Basic data types [16]1

A Variable of Composite Type combines several [ariables and/otr Constants, which is classified as
Compound and Collection. Compound takes only ariables, e.g., complex numbers in SysML
containing two Variables realPart and imaginaryPart [25], whereas Collection takes 1 ariables and/ ot
Constants, e.g., a collection of colors. Attributes minElements and maxElements of Collection specify
the minimum and maximum numbers of elements in a collection. As shown in Figure B-8, we
have classified Collection into six types Bag, Array, Record, Set, OrderedSet, and Sequence based on
three properties: homogeneity, uniqueness, and order. The homogeneity, uniqueness, and order
properties of each Collection type are specified as OCL constraints (Appendix B). Table B-1
summarizes the six types of Collection along with their properties.

Table B-1. Collection types [16]

Collection Type Homogeneity | Uniqueness | Order
Bag No No No
Array Yes No No
Record No Yes No
Set Yes Yes No
OrderedSet Yes Yes Yes
Sequence Yes No Yes

To validate the conceptual model of the basic data types, we mapped the data types defined in
the MARTE Value Specification Language-VSL [26] and SysML [25] to the basic data types
presented in Figure B-8. We used MARTE and SysML for validation because these two modeling
languages can be used for modeling CPSs [1, 27]. During the validation, we do not include the
extended data types provided in MARTE, as they are defined by extending the data types used in

1 C19-C22 are OCL constraints provided in Appendix B.

70

our mapping. In case of SysML, we include all the data types. Results of the mapping are given in
Table B-2, where one can see that each data type in MARTE and SysML has a correspondence in
our basic data type classification, which suggests that our classification of the basic data types is
complete.

Table B-2. Mapping MARTE and SysML data types to the basic data types [16]

MARTE SysML Basic Data Types
Integer Integer Integer
UnlimitedNatural UnlimitedNatural Integer
Boolean Boolean Binary
String String String
Real Real Real
DateTime Complex Compound
EnumerationType Enumeration Ordinal/Nominal

- ControlValue Ordinal/Nominal
IntervalType UnitAndQuantityKind Compound
TupleType - Compound
ChoiceType - Compound
CollectionType - Collection

In Figure B-9, we present a classification of basic VP types where one basic VP type is defined
corresponding to each basic data type presented in Figure B-8. A VVariationPoint can be a
Compositel'P or an Atomicl’P. An Atomicl’P can come with any of the six concrete types:
Stringl’P, Binaryl’P, Nominall’P, Ordinall’P, Integerl’P, and Rea/l’P corresponding to S#ing,
Binary, Nominal, Ordinal, Integer, and Real respectively. A Compositel’P can be Compoundl’P or
Collection]”P, which are defined corresponding to Compound and Collection data types respectively.
As shown in Figure B-9, a Compositel’P may have several Atomicl’Ps and/otr Compositel Ps
depending on the number of variableElements (Figure B-8) involved in the Composite data type.
Collection]’P may have two additional Integerl’Ps, i.e., JowerLimitl’P and wupperlimitl’P
corresponding to the minimum and maximum numbers of the elements in the collection.

|
|{se|f type. ocllsTypeOf(NommaI)}[ﬁ |{self type. ocllsTypeOf(Bmary)}% | {self.type. ocIIsTypeOf(Stnng)}B|

| NommalVP || OrdmaIVP || BlnaryVP H StrmgVP || ContinuousVP Iq_i RealVP |
- upperLimitVvP -

| {self.type. ocllsTypeOf(Real)}BI

IntegerVP |—(>| DiscreteVP l—‘>| AtomicVP | | Variable |

- lowerLimitVP l 0..1 =

| CollectionVP |— CompositeVP |_(> «<<ISO J_E(_:_zes_so»»
T VariationPoint

T - variationPoints

| {self.type. ocusTypeOf(Ordmal))‘ﬁ

|{self.type.ocllsTypeOf(Integer)}lﬁ| CompoundVP |

i {self.type.oclAsType(Composite).variableEle
| {self.type.oclisKindOf(Collection)} | {self.type.oclIsTypeOf(Compound)}[ﬁ ments->size() =self.variationPoints->size()}

Figure B-9. Classification of the basic VP types [16]

4.2.2 CPS-specific Variation Point Types

Based on the conceptual model of CPS presented in Figure B-4, we derive a set of CPS-specific
VP types (Table B-3). In Table B-3, the first column represents the CPS concepts used to derive
CPS-specific VP types and the second column shows the derived CPS-specific VP types. The last

71

column presents the basic VP type corresponding to a particular CPS-specific VP type. The
precise definitions of CPS-specific VP types are provided in Table B-19 in Appendix A.

Table B-3. CPS-specific VP types [16]

CPS Concept CPS-Specific VP Type Basic VP Type
CP Descriptive-VP StringVP
CP, PP DiscreteMeasurement-VP IntegerVP
CP, PP ContinuousMeasurement-VIP Real VP
CP, PP BinaryChoice-VP BinaryVP
CP, PP PropertyChoice-VP NominalVP/Ordinal VP
CP, PP MeasurementUnitChoice-VP Ordinal VP
CP, PP MeasurementPrecision-VP RealVP
CP, PP, COM Multipart/ Compound-VP CompoundVP
COM ComponentCardinality-VP IntegerVP
COM ComponentCollectionBoundary-VP IntegerVP
COM ComponentChoice-VP NominalVP/Ordinal VP
COM ComponentSelection-VP CollectionVP
Topology TopologyChoice-VP Nominal VP
Deployment AllocationChoice-VP NominalVP
Interact InteractionChoice-VP NominalVP
Constraint ConstraintSelection-VP CollectionVP

*CP=ComponentProperty, PP=PhysicalProperty, COM= CyberComponent, InterfacingComponent, ot PhysicalComponent

As shown in Table B-3, seven VP types: Descriptive-VP, DiscreteMeasurement-VP,
ContinuousMeasurement-VP, BinaryChoice-VP, PropertyChoice-VP, MeasurementUnitChoice-
VP, and MeasurementPrecision-VP are defined to capture the variabilities corresponding to
PhysicalProperty ComponentProperty of CPS. ComponentCardinality-VP,
ComponentCollectionBoundary-VP, ComponentChoice-VP, and ComponentSelection-VP are

and/or Similarly,
defined to capture the variabilities related to CyberComponents, InterfacingComponents, and
PhysicalComponents. Multipart/ Compound-VP can be PhysicalProperty,
ComponentProperty, — CyberComponent, InterfacingComponent, ot PhysicalComponent ~ that — requires
configuring several constituent VPs involved in it. This is very useful when different properties

specified for a

do not give complete meaning unless they are combined together. For example, length is a
PhysicalProperty, which is meaningless without a unit. Hence, we need a Compound-VP type,
which involves two VPs length and its unit. A Compound-VP can also be defined for a
component (e.g., sensor), which contains several other VPs defined for its properties.
TopologyChoice-VP, AllocationChoice-VP, and InteractionChoice-VP are defined to capture the
variabilities related to Topology of CPSs, Software deployment, and Interaction. ConstraintSelection-
VP is defined to select a subset of constraints.

4.3 C(lassification of Constraints in PLE

Constraints play a crucial role in the ConfigurationProcess of CPS PLE. To enable the automation of
configuration for CPS PLs, we need to capture different types of constraints. In our previous
work [6], we proposed a classification of constraints in PLE that we extend further in this paper
by adding four new types of constraints (i.e., WelFormednessConstraint, ConformanceConstraint,
DecisionlnferenceConstraint, and OptimizationConstraint) as shown in Figure B-10. The rationale
behind extending the constraint classification is to differentiate between different constraints and
support an automated configuration solution enriched with more functionalities compared with
previous work [6]. For example, we added WelFormednessConstraint, ConformanceConstraint, and

72

OptimizationConstraint, ~which facilitate ~ WellFormednessChecking, — ConformanceChecking, — and
ConfigurationOptimization respectively. Moreover, we also added DecisionlnferenceConstraint to the
classification to differentiate between the VariabilityDependencyConstraints that support and do not
support Decz'xz'onlﬂfereme.

(C24} k «enumeration»

Source
UserDefined «enumeration» «enumeration» «enumeration»
DerivedFromSystemSpecifications | | OptimizationType ConstrainingView RelationType
Er_\forcedByDeveIopmentProcess Minimization WithinView Requires
WellFormednessConstraint M'"f*d . Maximization CrossView Excludes
DerivedFromModelingLanguage
- level : WeIIFormednessConstra|ntLeveI - -
B «enumeration» «enumeration»
{C26} 1 ConformanceConstraint |— Constraint WellFormednessConstraintLevel ConstrainingModel
- SUELMETERESI | Eelise MetaModelOfDSMLOrUML InterModel
- isHardConstraint : Boolean Profile IntraModel
= SeUiEs S Source VariabilityModel
- owningPhase : DevelopmentPhase
+ evaluate () «enumeration»
. «enumeration» DevelopmentPhase
spesifies VariabilityDependencyType Reqf_urement
VP-VP Design
OptimizationConstraint . 1 VP-VA Implementation
- type : OptimizationType | ConstraintSpecificationLanguage I VA-VA Testing

Figure B-10. Constrain classification!?

As shown in Figure B-10, Constraint is a general concept characterized by evaluationResult, and
owningPhase (1.e., Requirement, Design, Implementation, and Testing). A Constraint is either a hard
constraint or a soft constraint [28], which is specified by a Boolean attribute zHardConstraint.
Hard constraints cannot be false for a valid MemberProduct whereas, on the other hand, soft
constraints can be true or false. Furthermore, based on the source of the Constraint, a constraint
can be: 1) UserDefined where the constraint is defined by a domain expert, 2)
DerivedEromSystemSpecifications where the constraint is derived from requirements of the system, 3)
EnforcedByDevelopmentProcess where the constraint is enforced by the development process used by
a particular organization, for example, hardware components should be configured before
corresponding software components, 4) Mined where the constraint is inferred using machine
learning, or 5) DerivedFromModelingl angnage where the constraint is derived from the syntax of the
modeling language, for example, the constraint imposed due to mandatory feature in the feature
model. A Constraint can be ConfigurationConstraint, 1 ariabilityDependencyConstraint,
WelltormednessConstraint, — ConformanceConstraint, — ConsistencyConstraint, — DecisionOrderingConstraint,
DecisionlnferenceConstraint, or OptimizationConstraint. These constraints can be specified using
different ConstraintSpecificationl anguages such as OCL. In the rest of this section, we discuss the
above-mentioned eight types of Conmstraint in detail. Additionally, we have provided a precise
definition of each Constraint type using mathematical notations based on set theory, which can be
found in Appendix C.

ConfigurationConstraints: ConfigurationConstraints are defined on the VariationPoints, which
can be used to configure the ConfignrableParameters with corresponding valid Variants to derive a
valid MemberProduct trom a ProductLine [20, 29]. As shown in Figure B-10, ConfigurationConstraints
can be hard constraints (e.g., constraints defined by domain experts) as well as soft constraints
(e.g., mined constraints [20, 30]) [28], which can come from four different sources: UserDefined,

12 C22-C30 are OCL constraints provided in Appendix B. Also, Constraint types presented in dark grey are borrowed from our previous
work.

73

DerivedEromSystemSpecifications, — EnforcedByDevelopmentProcess, ~ and ~ Mined. ~ Furthermore,
ConfigurationConstraints can also belong to different phases of the development cycle: Requirement,
Design, Implementation, and Testing. For example, in the context of the SPS case study (Section 2.3),
ProductConfignration starts while requirement specification of a MemberProduct during which high-
level ConfigurationDecisions are often made, e.g., the number of subsea control modules to deploy
according to the number of wells to exploit as well as ranges of temperature sensors.

A ConfigurationConstraint can be specified for a Productline, a MemberProduct, or Context
depending on the segpe (Figure B-7) of VariationPoint being constrained. ConfigurationConstraints
constraining the VariationPoint with the scope (Figure B-7) of Productl ine are enforced during the
pre-deployment time configuration of each MewberProduct whereas the ones with the scope (Figure
B-7) of MemberProduct are enforced during the deployment or post-deployment time configuration
of a MemberProduct. For example, in the VCS case study (Section 2.2), users need to configure
several ConfigurableParameters of a MemberProduct at the post-deployment time (e.g., call rate and
network protocol of C20). To perform the post-deployment time configuration of these
ConfigurableParameters, several ConfigurationConstraints need to be specified for the MemberProducts.
ConfigurationConstraints constraining the VariationPoint with the scope (Figure B-7) of Context are
enforced while resolving the variabilities related to the Context of CPS.

context XmasTree inv Exp-1:
self-waterDepth <12000 and self.-waterDepth >1000

context C20 inv Exp-2:
self.callRate >63 and self.callRate <6000

Listing 1: Examples of ConfigurationConstraints

The constraint Exp-1 in Listing 1 is a ConfigurationConstraint from the SPS case study defined
on XmasTree class in Figure B-3, which is constraining a [ariationPoint named waterDepth with the
scope of ProductLine. 1t states that waterDepth can be configured with a value smaller than 12, 000
and larger than 1,000. Similarly, Exp-2 is another ConfignrationConstraint from the VCS case study,
which is defined for a MemberProduct C20 to specity the range for callRate.

VariabilityDependencyConstraints: [ariabilityDependencyConstraints are implied restrictions
on the relationship (e.g., Reguires and Excludes) of different 1V ariationPoints and their Variants |31,
32]. As shown in Figure B-10, VVariabilityDependencyConstraints can be of three types "P-1"P, 17P-
VA, and 1VA-1VA [33]. VP-1'P implies configuring a 1V ariationPoint vp; requires configuring
another VVariationPoint vp, first. 'P-1”A implies that if one [ariationPoint is resolved, then
another ariationPoint should be resolved by binding one specific Variant. 17.A4-1"A implies if one
VariationPoint is resolved by binding one of its Variants, then another [VariationPoint should be
resolved by binding one of its Variants. VariabilityDependencyConstraints originate from four
different sources (i.e., UserDefined, DerivedFromSystemSpecifications, DerivedFromModelingl anguage,
Mined) and different phases (i.e., Requirement, Design, Implementation, Testing) of the development
cycle (Figure B-10). VariabilityDependencyConstraints can be hard constraints (e.g., constraints
defined by domain experts) as well as soft constraints (e.g., mined constraints [20, 30, 34]). As
discussed earlier, ProductConfignration starts by making high-level ConfigurationDecisions (e.g., the
number of subsea oil and gas wells to exploit for an SPS product) at requirements engineering
phase and then proceeds to the design and implementation phases by configuring
ConfigurableParameters (e.g., an engineering unit of a sensor and post-deployment

74

ConfigurableParameters of deployed software). [VariationPoints exist in all the development phases,
thus, VariabilityDependencyConstraints among them need to be captured.

context ScatteredSubseaField inv Exp-3:

self xmasTree->forAll(x:XmasTree | self.type= FieldType::Oil implies x.treeType<>TreeType: VXT)

Listing 2: An Example of VariabilityDependencyConstraint

The constraint Exp-3 in Listing 2 is an example of 1VA-1"A4 type and Exc/udes relation
VariabilityDependencyConstraint from the SPS case study (Figure B-3). It shows an implied
relationship between two Variants (i.e., O and 1VXT) corresponding to two VariationPoints (i.e.,
type of ScatteredSubsealield and treeType of xmasTree). The constraint implies that for all xwmasTree of
ScatteredSnbsealield if type is Oil then treeType should not be 1VXT.

WellFormednessConstraints: Generally speaking, We/lFormednessConstraints ensure that
models are well-formed such that they conform to its modeling language’s syntax and additionally
defined constraints [35]. In the context of CPS PLE, We//lFormednessConstraints can be defined for
VariabilityModel, BaseModel, and ResolutionModel. Usually, these models are developed either using a
Domain-Specific Modeling Language (DSML) [36-38] or a UML profile [32] where
WellFormednessConstraints are defined on meta-model elements of DSML/UML or/and
stereotypes defined in UML profile and validated at one lower level of abstraction. Well-
formedness of ariabilityModel and BaseModel is ensured by modeling tools, however, the well-
formedness of ResolutionModel needs to be ensured by the configuration engineers, as they
develop the ResolutionModel by instantiating the VariationPoints during the ConfigurationProcess.
Thus, we are interested in WellFormednessConstraints for ResolutionModel. W ellFormednessConstraints
are hard constraints, which can be UserDefined or DerivedFromModelingl angnage.

context ConfigurableParameter inv Exp-4:
self.name<>null and self.type<>null

Listing 3: An Example of WellFormednessConstraint

The constraint Exp-4 in Listing 3 is an example of We/[FormednessConstraint, which ensures that
name and type of a ConfigurableParameter are not null.

ConformanceConstraints: ConformanceConstraints are defined on the VVariationPoints to ensure
that ConfigurableParameters are configured correctly with appropriate [Variants from their sets of
Variants |9, 10, 39]. In other words, ConformanceConstraints ensure that ConfigurationData
representing the ConfigurationDecisions conform to a set of pre-defined rules. Thus, these
constraints eventually enable the configuration engineers to configure a valid MemberProduct from
the ProductLine. ConformanceConstraints are hard constraints, which can be UserDefined
DerivedEromSystemSpecifications, or DerivedtromModelingl .angnage, belonging to different phases (i.e.,
Reguirement, Design, Implementation, Testing) of the development cycle (Figure B-10).

context SubseaControlSystem inv Exp-5:
217=< self. maxPressure <=725

Listing 4: An Example of ConformanceConstraint

Exp-5 in Listing 4 is a ConformanceConstraint from the SPS case study defined on class
SubseaControlSystem (Figure B-3), stating that the maxPressure of a SubseaControlSystem can be great
ot equal to 217 bar(g), and less or equal to 725 bar(g).

75

ConsistencyConstraints: ConsistencyConstraints are defined on the VariationPoints to ensure
that certain conditions are met across different artifacts (e.g., across software and hardware views,
across different models) [32, 40, 41]. As shown in Figure B-10, ConsistencyConstraint is
characterized by atModel and atliew. atModel indicates whether constraint is defined on
VariationPoints belonging to same model (i.e., IntraModel) or different models (InterModel) whereas
atView shows VariationPoints belong to one View (ie., Withinliew) or multiple @iews (ie.,
CrossView). ConsistencyConstraints are hard constraints, which can be either UserDefined or
DerivedEromSystemSpecifications. Note that ConsistencyConstraints ensure a certain property across
different artifacts (e.g., two variation points belonging to same/different views/models) and
ConformanceConstraints focus on the correctness of ConfigurationData corresponding to the
ConfigurableParameters of a particular VVariationPoint. Thus, it is possible that a ConfigurableParameter
is configured with a variant that conforms to the ConformanceConstraints but violates one or more
ConsistencyConstraints.

context XmasTree inv Exp-6:
self.subseaField->forAll(x:SubseaField | self. maxPressure <=(x.designPressure + (0.05*x.designPressure)))

Listing 5: An Example of ConsistencyConstraint

The constraint Exp-6 in Listing 5 is an example of IntraMode! Cross\ iew ConsistencyConstraint
from the SPS case study (Figure B-3), as the constrained elements belong to two different [zews
(i.e., maxPressure and designPressure are software and hardware properties respectively) and same
design model. It states that maxPressure of a SubseaControlSystemr can be maximum of 5% more
than designPressure of any subseal'ield of the SubseaControlSystem.

DecisionOrderingConstraints: DecisionOrderingConstraints are hard constraints defined to
enforce a particular configuration order for the VariationPoints, which can be UserDefined,
DerivedEromSystemSpecifications, or DerivedFromModelingl angnage (Figure B-10).

context subseaField inv Exp-7:

self.designPressure>5 implies self xmasTree->forAll(x:XmasTree | x.waterDepth>400 and

x.installType=InstallationVessel Type:Semisubmersible)

Listing 6: An Example of DecisionOrderingConstraint and DecisionInferenceConstraint

The constraint Exp-7 in Listing 6 has an implied order of configuring three 1ariationPoints,
1.e., designPressure of subsealield and installType and waterDepth of XmasTree, which can be derived
from their dependencies (Figure B-3). Due to implied relationship we need to configure
designPressure 1 ariationPoint first and then nstalllype and waterDepth. This will enable configuring
the InstallType 1 ariationPoint automatically.

DecisionInferenceConstraints: DecisionlnferenceConstraints are hard constraints defined on the
VariationPoints to infer ConfigurationDecisions automatically for one or more VariationPoints |9, 10,
32]. Inferring ConfigurationDecisions is only possible when the [VariationPoints can be configured
with only one Variant satistying the DecisionlnferenceConstraints, otherwise, they need to be
configured manually. DecisionlnferenceConstraints can be UserDefined, DerivedFromSystemSpecifications,
ot DerivedtromModelingl angnage, belonging to different phases of the development cycle (Figure
B-10).

The constraint Exp-7 in Listing 6 is also a DecisionlnferenceConstraint. 1f we have configured
designPressure of subsealijeld with a value greater than 5 then zustal/lype can be configured

76

automatically with Semsubmersible. We cannot configure the waterDepth as it has more than one
Variants (i.e., all values greater than 400) satisfying the constraint.

OptimizationConstraints: OptimizationConstraints are soft constraints defined on
VariationPoints to configure ConfigurableParameters with —optimal VVariants in terms of
optimizationMeasures (e.g., cost, performance, energy consumption). An OptimizationConstraint can
be defined on one VVariationPoint (e.g., selecting a temperature sensor with the highest accuracy)
or several VariationPoints (e.g., selecting different sensors with the lowest overall cost).
OptimizationConstraint can be UserDefined or DerivedEromSystemSpecifications, which belong to
different phases of the development cycle (Figure B-10).

context SubseaControlSystem inv Exp-8:

self.boreType=Set{BoreType:Compact,BoreType::FullBotre}->sortedBy(x:BoreType |x.treePrice.cost)->first()

Listing 7: An Example of OptimizationConstraint

For example, in the case of the vertical deep-water tree (IVXT XmasTree) technical Stakeholders
are interested that tree should 10,000 feet in water (i.e., waterDepth=10000) and be able to operate
under 350 F temperature (i.e., maxTemperature=350). They have a choice between Compact and
FullBore XmasTree (Figure B-3). Both Compact and FullBore XmasTree support the technical
specifications but Fu//Bore XmasTree has a higher cost as compared to Compact XmasTree. There is
an OptimizationConstraint enforced by business Stakeholders constraining the VariationPoint boreType,
which implies selecting a low cost XwasTree. 1 ariationPoint borelype can be configured with
Compact or FullBore but Compact is an optimized configuration of borelype 1V ariationPoint, which
satisfies the OpzzmizationConstraint (i.e., low cost as shown in Listing 7).

5 Application Engineering of CPS Product Lines

This section discusses the third part of the framework (i.e., ApplicationEngineering in Figure B-1).
Section 5.1. presents various functionalities of a ConfigurationSolution, followed by the relationships
among functionalities and constraints in Section 5.2.

5.1 Functionalities of the Configuration Solutions

Based on the literature and our experience of conducting industrial research in the field of CPS
PLE, we constructed a conceptual model for a ConfigurationSolution, as presented in Figure B-11.
ConfigurationSolution has 14 functionalities: Decisionlnference, DecisionOrdering, RevertingDecision,
WellFormednessChecking, ConformanceChecking, ConsistencyChecking, Resolvingl iolation,
CollaborativeConfiguration, ImpactAnalysis, ConflictDetection, ConstraintSelection, ConfigurationOptimization,
RedundancyDetection, and IncompletenessDetection. Note that in Figure B-11, we do not show the
relationship among the functionalities, which we discuss in Section 5.2. In this section, we
provide textual descriptions of the 14 functionalities, whereas their precise definitions are
provided in Appendix D.

DecisionInference: During the ConfigurationProcess, various ConfigurationDecisions can be made
automatically based on previously made ConfigurationDecisions and DecisionlnferenceConstraints |32].
Decisionlnference functionality enables such automatic inference of ConfigurationDecisions by
evaluating and solving DecisionlnferenceConstraints. It reduces the manual configuration effort and

77

errors in ConfigurationData caused by human [12, 32] and consequently improves the overall

productivity of the ConfigurationProcess.

finds = Violation
- violationType : ConstraintType

(C32} L - causingParameters : ConfigurableParameter [*]

- violatedConstraints : Constraint [1..*]

N .
{C33 resojves «enumeration»

RedundancyDetectionScope

IntraConfigurationFile
InterConfigurationFiles

Constraint

ConstraintSelection selects *

ConfigurationOptimization

RevertingDecision

{C39} l OptimizationConstraint

........ .

DecisioninferenceConstraint | [

DecisionOrdering 1.%

I DecisionOrderingConstraint |

ResolvingViolation

1.%

Debugging

ConflictDetection

ConformanceChecking

r —-(cas) N

| ConformanceConstraint

|WeIIFormednessConstraint = WellFormednessChecking

ConfigurationSolution canh A - -
fesn | ConsistencyConstraint |<\: ConsistencyChecking
AN

. AN
CollaborativeConfiguration b {cae}

N) "
ConfigurationConstraint | {C38} " RedundancyDetection

- scope : RedundancyDetectionScope

«enumeration» «enumeration» "
N IncompletenessDetection
ConstraintType ChangeType | targetChanges

Change

WellFormednessConstraint | | Add ~ype: ChangeType “analyzes ImpactAnalysis
ConsistencyConstraiqt Remove - model : PLEModel |1..* causes - sourceChange : Change
ConformanceConstraint Update — -~ 1.+

ConflictingConstraints Move "] VariabilityDependencyConstraint |

Figure B-11. A conceptual model for the functionalities of a configuration solution!3

DecisionOrdering: During the ConfigurationProcess, the DecisionOrdering functionality guides the
users in which order the ConfigurationDecisions should be made to derive a valid MemberProduct
from a Productl ine. 1t makes use of DecisionOrderingConstraints to suggest an optimal order of
ConfigurationDecisions such that the total number of manual ConfigurationDecisions is minimized and
conflict among ConfigurationDecisions can be avoided [42]. Thus, this will improve the productivity
of ConfigurationProcess and consequently reduce the configuration cost.

RevertingDecision: In practice, users often modify previously made ConfignrationDecisions
during a ConfigurationProcess. Functionality RevertingDecision enables users to make these changes on
any part of the configuration history. This is not trivial as several ConfigurationDecisions are made
automatically using Decisionlnference, thus, rolling back a ConfigurationDecision requires re-evaluating
and re-solving DecisionlnferenceConstraints ~ without violating other constraints (e.g.,
ConsistencyConstraints).

WellFormednessChecking: We/lFormednessChecking ensures the correctness of PLLEModels by
checking their well-formedness against the abstract syntax of Modelingl angnage and additionally
defined WellFormednessConstraints. As discussed earlier in Section 4.3, modeling tools ensure the
well-formedness of BaseModel and VariabilityModel, however, the well-formedness of
ResolutionModel needs to be ensured during the ConfigurationProcess, as it created by instantiating the
VariationPoints and configuring them by selecting/assigning the [Variants. Thus, the
ConfigurationSolution needs to provide WellFormednessChecking tor ResolutionModels.

ConformanceChecking: ConformanceChecking ensures the correctness of ConfigurationDecisions

made to derive a valid MemberProduct from a Productline according to the user requirements. To

13 C31-C41 are OCL constraints provided in Appendix B.

78

do so, it checks whether each configured ConfigurableParameter is configured correctly with a valid
Variant while conforming to a set of predefined ConformanceConstraints |9, 39].

ConsistencyChecking: ConsistencyChecking verifies certain conditions and properties across
various artifacts (e, PLEModels and 17ews) by evaluating a set of pre-defined
ConsistencyConstraints with four different scopes (i.e., IntraModel Withinl iew, IntraModel Cross1 iew,
InterModel Withinliew, and InterModel Cross1 zew).

CollaborativeConfiguration: CPSs are composed of several subsystems, which involve
components from diverse disciplines (e.g., Software. Mechanic, Electronics). Typically, these
subsystems and components are developed and configured by different domain experts.
CollaborativeConfiguration allows users to configure the system part by part and coordinates the
ConfigurationProcess to derive valid MemberProducts from the Productline in a multi-stage and multi-
step manner [14, 37|. CollaborativeConfiguration has three main tasks [44]: 1) splitting the
ConfigurableParameters into different groups and assigning them ConfigurationStages and
ConfigurationSteps such that a group of related ConfigurableParameters can be configured in a
ConfigurationStep within a ConfigurationStage by specific Stakeholders, 2) performing multiple
ConfigurationDecisions to interactively configure the ConfignrableParameters in each ConfigurationStep,
and 3) merging ConfigurationData trom different ConfigurationSteps and ConfigurationStages while
maintaining the consistency [45].

ConflictDetection: Since the automation of configuration heavily relies on the constraints, it
is necessary to ensure the quality of the constraints by identifying the conflicts among different
constraints before actual ConfigurationProcess starts. Conflicting constraints may lead to ill-formed,
incomplete, invalid, and inconsistent MemberProducts. ConflictDetection functionality finds
conflicting constraints in a given set of constraints by checking if two or more hard constraints
are constraining a Mode/Element (e.g., 1 ariationPoini) that can never be true at the same time.

ResolvingViolation: We/[FormednessConstraints, ConformanceChecking, ConsistencyChecking, and
ConflictDetection can identify four types of [Zolations due to violation of WellFormednessConstraint,
ConformanceConstraint, ConsistencyConstraint, and ConflictingConstraints (Figure B-11). Resolvingl iolation
functionality resolves these [7Zolations automatically where possible [10]. If certain [Zolations
cannot be resolved automatically (e.g., ConflictingConstraints), Resolvingl iolation can guide the users
to fix them manually.

ImpactAnalysis: ImpactAnalysis is crucial as it helps the Szakebolders to assess the consequence
of making certain Changes into the Productl ine, which will consequently help the Stakebolders in
decision making [12]. In Figure B-11, Impact represents the consequence of a sourceChange, which
can be measured in terms of ZargetChanges. A Change can be of four types (i.e., Add, Remove, Update,
and Move), which can occur in a PLEModel. ImpactAnalysis functionality checks the Impact of a
sourceChange corresponding to a ModelElement in a PLLEMode/ on other Model/Elements in the same
or/and different PL.LEModels.

ConstraintSelection: Usually Productl ines have a large number of constraints and only a
subset of constraints is required at a given time. For example, to determine the configuration
order of two VariationPoints Vp, and vp,, we need only a subset of DecisionOrderingConstraints
constraining at least one of vp; and vp,. Checking all the DecisionOrderingConstraints is a wastage
of resources (e.g., memory and computation) and can decrease the efficiency and productivity of
the ConfigurationProcess. Similarly, a subset of constraints for a MemberProduct needs to be selected
to configute the ConfigurableParameters at deployment or/and post-deployment time.

79

ConstraintSelection functionality selects a subset of constraints related to specific [ariationPoints and
ConfigurableParameters to improve the efficiency and productivity of the ConfigurationProcess.

ConfigurationOptimization: In practice, valid configurations do not always mean optimized
configurations. For example, selecting a temperature sensor that meets the technical user
requirements (e.g., certain temperature range) is a valid configuration but not necessarily optimal
in terms of energy consumption. Often, configurations need to be optimized in terms of
optimizationMeasures such as cost, performance, and energy consumption according to pre-defined
OptimizationConstraints. ConfignrationOptimization functionality selects optimal [Variants in terms of
optimizationMeasures from a set of valid Variants corresponding to a set of ConfigurableParameters
such that the maximum OpzzmizationConstraints are satisfied.

RedundancyDetection: RedundancyDetection checks whether multiple ConfigurationData are
associated with a ConfigurableParameter within two scopes, ie., IntraConfigurationfile and
InterConfigurationFiles. In the case of IntraConfigurationFile, it checks within one ConfigurationFile
representing a ResolutionModel of a MemberProduct whereas in the case of InterConfigurationFiles it
checks multiple ConfigurationFiles representing a ResolutionModel of a MemberProduct. 'This
functionality is particularly useful when existing ConfigurationFiles are used to derive a
MemberProduct by completing or modifying the existing configurations. Redundant
ConfigurationData may lead to inconsistent and invalid MewberProducts.

IncompletenessDetection: IncompletenessDetection checks whether a ConfigurationFile has
ConfigurationData with null values for certain ConfigurableParameters or un-configured
ConfigurableParameters, i.e., a Variant is not assigned. Confignrationtiles with incomplete
ConfigurationData can lead to incomplete, inconsistent, and invalid MewberProducts.

5.2 Relationships among the Functionalities of Configuration Solution and
Constraints

As shown in Table B-4 and Figure B-11, all the functionalities of a ConfigurationSolution except
RedundancyDetection and IncompletenessDetection need to perform different operations (i.e., query,
evaluate, and solve [40]) on the different types of constraints. Decisionlnference and
ConfigurationOptimization query, evaluate, and solve DecisionlnferenceConstraints — and
OptimizationConstraints respectively. DecisionOrdering, WellFormednessChecking, ConformanceChecking,
ConsistencyChecking, and ImpactAnalysis query and/or evaluate the DecisionOrderingConstraints,
WellFormednessConstraints, ConformanceConstraints, ConsistencyConstraints, and
VariabilityDependencyConstraints -~ respectively. Similatly, RevertingDecision also queties and/or
evaluates DecisionlnferenceConstraints for reverting the automatically inferred ConfigurationDecisions.
ResolvingViolation queties and/or evaluates WellFormednessConstraints and queties, evaluates, and/or
solves ConformanceConstraints and ConsistencyConstraints — causing — inconsistencies whereas
CollaborativeConfiguration solves and/or queties and evaluates ConfigurationConstraints and
VariabilityDependencyConstraints. ConflictDetection queries, evaluates, and solves to find the conflicts
among different hard constraints whereas ConstraintSelection searches the constraints and selects a
relevant subset of constraints.

Table B-5 shows the relationships among different functionalities of the ConfigurationSolution
where a particular value indicates if the functionality presented in a row uses the functionality
presented in the column. DecisionOrdering, RevertingDecision, and CollaborativeConfiguration are related
to DecisionInference. Decisionlnference can be used to get the significance (or importance) of a

80

ConfigurationDecision that shows the impact of configuring a ConfigurableParameter on the automated
resolution of other ConfigurableParameters based on DecisionlnferenceConstraints. Hence,
DecisionOrdering is related to Decisionlnference as the importance degree of ConfigurationDecisions can
be used to determine an optimal order. RevertingDecision is related to Decisionlnference, as reverting a
ConfigurationDecision may also require undoing its subsequent automatically inferred
ConfigurationDecisions. CollaborativeConfignration — uses Decisionlnference, DecisionOrdering, —and
RevertingDecision to infer the ConfigurationDecisions automatically based on DecisionlnferenceConstraints
and ConfigurationDecision propagation, to get an optimal order of ConfigurationDecisions, and to roll
back certain ConfigurationDecisions.

Table B-4. Applicability of constraints*

E/C Cc Cyp Cyr Cer Ces Cpo Cp; Cop

DecisionInference Q,E,

. - . . - - s -
DecisionOrdering Q&

E

RevertingDecision - - - - - - Q&E -
WellFormednessChecking - - Q&E - - - - -
ConformanceChecking - - - Q&E - - - -
ConsistencyChecking - - - - Q&E - - -
ResolvingViolation Q&E Q,E, Q,E,

i i &S &S i i i

CollaborativeConfiguration These ate used indirectly because

QL Q& E | CollaborativeConfiguration uses other functionalities (e.g.,

&S WellFormednessChecking, ConformanceChecking).
ImpactAnalysis - Q&E - I -
ConflictDetection Q,E, &S -
ConstraintSelection Select a subset
ConfigurationOptimization - - - - - - - Q,E, &S

RedundancyDetection - - = = - - - _
IncompletenessDetection - - - - - - - -
* Cc =ConfignrationConstraints, ~ Cyp =V ariabilityDependencyConstraints, ~ Cyp =WellFormednessConstraints, — Ccp = ConformanceConstraints,

Ccs =ConsistencyConstraints, Cpo =DecisionOrderingConstraints, Cpy =DecisionlnferenceConstraints, Cop =OptimizationConstraints, Q=Query, E= Evaluate,
$=Solve

Decisionlnference and CollaborativeConfiguration use WellFormednessChecking, ConformanceChecking,
ConsistencyChecking, ImpactAnalysis, and Resolvingl7olation to ensure that VariationPoints are correctly
instantiated and configured. ConfigurationOptimization ~ also uses ConformanceChecking,
ConsistencyChecking, — ImpactAnalysis, and Resolvingl'iolation to ensure that none of the
ConformanceConstraints and/otr ConsistencyConstraints is violated due to ConfigurationOptimization.
Similarly, RevertingDecision can also use ConsistencyChecking, ImpactAnalysis, and Resolvingl iolation, as
reverting a ConfigurationDecision may lead to inconsistent configurations, which need to be fixed
using Resolvingliolation. ConstraintSelection is used by all the functionalities except
RedundancyDetection and IncompletenessDetection, for selecting a subset of constraints. ConflictDetection,
ConfigurationOptimization, ~RedundancyDetection, and IncompletenessDetection are used by only
CollaborativeConfiguration to detect the conflicts among constraints at the start of the
ConfigurationProcess, optimize the configuration, and detect redundancy and incompleteness in
ConfigurationFiles. Please note that specifying the exact order in which a functionality uses others is
difficult to predict as it depends on the methodology to select the optimized order of
functionalities and the context in which they are being used. For example, after every

81

oqeardde 10U=Y N ‘Pa1¥[oF 10U I¢ SINLUONIUN] OM]

=

‘uwn[od oy} ul ATeUoNdUNJ 9 asn AeW MOI & UT [EUONIUNT =S 4

VN | - - - - - - - - - - - - - () vonoaa(yssauaadwoouy
- [vyw | - - - - - - - - - - - - () vonoashouepunpay
- - wN [sex | - [sex | - | sox | sox | sox - - - - (OD) vonezrunduonemsyuon)
- - - VN | - - - - - - - - - - (SD) ToN2PGIUTENSTOY)
- - - | X VN | - - - - - - - - - (D) vond2PIFuo)
- - - ok | - [vN | - - - - - - - - (VD sisfeuyaoedwy

SOK | Sox | sox | sox | sox | sox | VN | oK | sox | sox | sox | sox | sox | sox | (D)D) uonemmSyuoyoaneioqe[or)
= = - | sk | - | sex | - | VN | SPA = = = = = (AY) vone[oIASuIA[OSY
- - - | sex | - - - | sox | VN - - - - - (DSD) SUR[PaYHAOUISISTO))
- - - ™A - - - - - | VN - - - - (04D) SuppayHUTWIOUOY)
- - - [sax | - - - - - - VN - - - | (DA SURPaY)SSOUPIWIO TP A\
- - - [sax | - [sex | - [sex | sex = = VN | - | 9K () vorspPa(q3uniardy
- - - [sax | - - - - - - - - | VN | $oK (OQ) SuEapIOUOISI(T
- - - | sax | - | sk | - | Sof | Sox | SOx | S9X - - | VN (1) 22U232JUTUOISIA(]

dal | a4 00| SO | @ | VI |20 | AY¥ 2SO |DdD | 04AM | Q¥ | Oa | 1d Lrevonoung

sanIeEUoOnOUNy SUoWE SUONE[I 3S() “G-¢ S[qe,L,

(4]

ConfigurationDecision, ConformanceChecking and ConsistencyChecking should be invoked, however in
which order it depends on the methodology used to implement the ConfigurationSolution. Similarly,
what functionality should be used next depends on if an inconsistency is found or not.

6 Evaluation

Section 6.1 presents the evaluation design followed by evaluation results in Section 6.2. We
provide a discussion based on the evaluation results in Section 6.3 and threats to validity in
Section 6.4.

6.1 Evaluation Design

Section 6.1.1 presents the overall goal of the evaluation and formulates research questions.
Section 6.1.2 presents the evaluation tasks along with the evaluation metrics corresponding to the

research questions defined in Section 6.1.1.

6.1.1 Research Questions

The overall objective of the evaluation is to investigate the capabilities of the framework in terms
of providing support for domain engineering and application engineering of CPS PLs. More
specifically, we intend to assess if the framework provides the support for capturing and
managing commonalities, variabilities, and constraints in the domain engineering phase as well as
the support for automation of configuration in the application engineering phase. The objective
can be achieved by answering the following research questions:
RQ1. To what extent the framework can capture the variabilities of CPS PLs based on the selected case
studies?
RQ2. To what extent the framework can capture the constraints for CPS PLs based on the selected case
studies?
RQ3. To what extent the framework is complete for providing different views for CPS PLs based on
the selected case studies?
RQ4. To what extent the framework is complete for providing support for automation of configuration
based on existing literature?

The first three research questions (RQ1-RQ3) are related to the domain engineering and the
fourth (RQ4) is related to the application engineering of CPS PLs. With RQ1 and RQ2, we assess
whether the framework fulfills the requirements of the case studies (Section 2) for capturing the
variabilities and constraints. RQ3 assesses if the framework provides enough [IZew types for
managing the ModelElements (e.g., VariationPoints, 1 ariants, Constraints, Interactions) for the case
studies. RQ4 aims to assess to what extent the framework provides support for different types of

automation for ProductConfiguration based on existing literature (both tools and techniques).

6.1.2 Evaluation Tasks and Metrics

As shown in Table B-6, we designed four tasks (T}-Ty) for addressing RQ1-RQ4. Table B-6 also
shows 19 evaluation metrics and their definitions used to answer the research questions (RQ1-
RQ4). To answer RQ1, we report the total number of VPs in a case study, the percentage of VPs
that can be captured using [ariationPoint types provided in the framework (Section 4.2.2), and the
percentage of [ariationPoint types required to capture all the VPs in the case study. Similatly, for

83

RQ2, we present the total number of constraints in a case study, the percentage of constraints
that can be captured using Conmstraint types provided in the framework (Section 4.3), and the
percentage of Constraint types required to capture all the constraints in the case study. For RQ3,
we also report the total number of views required by a case study, the percentage of views
supported by the framework, and the percentage of 17w types required to model all the views in
the case study. Note that corresponding to RQ1-RQ3, we report the above-mentioned metrics
for the three case studies individually as well as combined. To answer RQ4, we calculate the
percentage of functionalities covered by the existing literature (i.e., tools and techniques).

It is essential to mention the sources used to collect data for calculating the metrics
corresponding to RQ1-RQ3. For RQ1, the data were collected from two sources: 1)
VariabilityModels for VCS, SPS, and MHS case studies that we developed eatlier and 2)
documents available on the websites of our industry partners (e.g., for the VCS case study). The
VariabilityModels were developed based on the domain knowledge gained by reading documents.
Similarly, for RQ2, some of the data were directly collected by counting the number of
constraints specified using OCL as part of the PLLEModels (e.g., feature models, architecture and
design level variability models) that we developed earlier while others were collected as English
sentences from publicly available documents (i.e., system specifications, user manuals) and were
not formally specified using any particular ConstraintSpecificationl anguage. Moreover, some of the
data for constraints were also directly collected from the documents provided by the industry
partners (e.g., for VCS). For RQ3, we collected data based on types and disciplines of the
ModelE lements available in the case studies.

Table B-6. Evaluation tasks and metrics*

RQ Task Metric Metric Definition
1 | T Counting the total | VP, | The total number of VPs in i** case study.
number of VPs, VPs | VPC; | The percentage of VPs captured in the it" case study using the

that can be 'ca'pturc?d VariationPoint types provided by the framework:
UG .the VariationPoint # of VPs that can be captured for i*" case study
types in the framework, VPC; = VP,

L

h ationPoint T : ; ;
and the VariationPoin VPTR; | The petcentage of VariationPoint types required by the ith case

requit
types cqui ed o studv: VPTR, = # of VariationPoint types required by it" case study
capture all the VPs for y: U™ Total # of VariationPoint types in the framework

the case studies and VP The total number of VPs in the three case studies.
calculating the values VPC
for the corresponding

The percentage of VPs captured in the three case studies using the
: VariationPoint types provided by the framework:
metrics. __ #of VPs that can be captured for three case studies

VPC
VP
VPTR | The percentage of VariationPoint types requited by the three case

studies: VPTR =

UiZ3variationPoint types required by ith case study
i=1

Total # of VariationPoint types in the framework

2 | T» Counting the total C; The total number of constraints in the i" case study.
number of constraints, CC; The percentage of constraints captured for the i*" case study
constraints that can be using Constraint types provided by the framework:
captured using the # of constraints that can be captured for it" case study
Constraint types in the CC = C

framework, and the " pp
Constraint types required ‘
to capture all the CTR; =
constraints for the case

The percentage of Constraint types required by the i** case study:
of Constraint types required by it" case study

Total # of Constraint types in the framework

studies and calculating c The total number of constraints in the three case studies.
e values o e cc The percentage of constraints captured in the three case studies
corresponding mettics. using the Constraint types provided by the framework:

84

cc
of constraints that can be captured for three case studies

C
CTR The percentage of Constraint types required by the three case
studies:
_ |{U§:i Constraint types required by it" case study}|
CTR = Total # of Constraint types in the framework
3 | T Counting the total Vi The total number of views required in the i*" case study.

views requited, Views | VM; | The percentage of views modeled for the i*" case study with the
that can be modeled View types provided by the framework:
using the 17w types in # of views that can be modeled for i*" case study
the framework, and the VM; =

Vi
The percentage of iew types required by the it" case study:

View types rquired t© [TyTR,
model all the views for

e ese sudics aad VTR, = # of View types required by i*" case study
calculating the values ‘ Total # of View types in the framework

for the corresponding |4 The total number of views required in the three case studies.
metrics. VM The percentage of views modeled for the three case studies using

the 7ew types provided by the framework:
VM = # of View types required by three case studies

174
VTR | The percentage of 7ew types required by the three case studies:

_ |{U§:i View types required by i*" case study}|

VTR =
Total # of View types in the framework
4 | Tx Counting the FC Percentage of functionalities covered by the literature:
number of # of functionalities covered by literature
. . FC = - —
functionalities covered Total # of functionalities in the framework

by the literature and
calculating the value for
the corresponding
mettic.

* All the metrics (except FC) with the subscript

2
1

are for individual case studies whereas without subscript are for the three case studies
combined. VP= Total number of VPs, VPC= The percentage of VPs can be captured, VPTR= The percentage of VVariationPoint types required,
C= Total number of constraints, CC= The percentage of constraints can be captured, CTR= The percentage of Constraint types required, V=
Total number of views, VM= The percentage of views can be modeled, VIR= The percentage of Iew types required, FC= Functionality

C()Verage.

6.2 Evaluation Results

In this section, we present the results of our evaluation and answer the research questions (RQ1-
RQ4) defined in Section 6.1.1.

6.2.1 Results for RQ1

Table B-7 summarizes the results of RQ1 based on the evaluation metrics defined in Table B-6.
As shown in Table B-7, the three case studies MHS, VCS, and SPS have 476, 1507, and 178 VPs
respectively and all of these VPs can be captured using the CPS-specific VP types provided by
the framework (Section 4.2.2). Overall the three case studies have 2161 VPs in total. The MHS
case study requires all the CPS-specific VP types to capture its VPs (i.e., [’PTR,=100%) whereas
the other two case studies (i.e., SPS and VCS) require only 12 out of 16 CPS-specific VP types
(i.e., VPTR,=75% and I"PTR;=75%).

The distribution of VPs across different CPS-specific VP types for the case studies are given
in Table B-8. From Table B-8, one can notice that for PropertyChoice-VP, BinaryChoice-VP,
Descriptive-VP, and DiscreteMeasurement-VP, we have significantly more VPs than other VP
types (Table B-8), which is expected as a CPS has a large number of properties (ie.,

85

PhysicalProperty and ComponentProperty). Furthermore, it is worth mentioning that not all the case
studies have VPs corresponding to all CPS-specific VP types. This can be explained by the fact
that all CPSs do not have the same business requirements, complexity, and size. For example, the
VCS case study does not have continuous and compound properties; therefore, it does not have
VPs corresponding to Continuous-VP and Compound-VP. Similarly, SPS does not have
different interaction mechanisms; therefore, it does not need InteractionChoice-VP type. Based
on the results of RQ1 (Table B-7 and Table B-8), all the VPs of the case studies can be captured
using the CPS-specific VP types provided in the framework. This indicates that the framework
has all the necessary VP types required to capture the variabilities of CPS PLs.

Table B-7. Evaluation results for RQ1

. Individual Case Study | Overall (Combined All the Three Case Studies)
Case Study/Metric
VP; | VPC; | VPTR; VP VPC VPTR

MHS 476 | 100% | 100% 2161 100% 100%
VCS 1507 | 100% 75%
SPS 178 | 100% 75%

Table B-8. The distribution of VPs across CPS-specific VP types for three case studies

) Number of VPs in the Case Studies

CPS-Specific VP type MEIS VCS SPS All
Descriptive-VP 34 206 8 248
DiscreteMeasurement-VP 23 146 37 206
ContinuousMeasurement-VIP 51 0 3 54
ComponentCardinality-VP 42 25 7 74
ComponentCollectionBoundary-VP 42 25 7 74
MeasurementPrecision-VIP 2 0 4 6
BinaryChoice-VP 3 554 3 560
PropertyChoice-VP 82 454 31 567
ComponentChoice-VP 12 62 13 87
TopologyChoice-VP 9 1 0 10
AllocationChoice-VP 5 3 0 8
InteractionChoice-VP 1 5 0 6
MeasurementUnitChoice-VP 59 0 28 87
ConstraintSelection-VIP 5 1 0 6
ComponentSelection-VP 42 25 7 74
Multipart/ Compound-VP 64 0 30 94
Total 476 1507 178 2161

6.2.2 Results for RQ2

In Table B-9, we present the results of RQ2 based on the evaluation metrics defined in Table B-
6. As one can observe from Table B-9 that case studies MHS, VCS, and SPS have 763, 2897, and
283 constraints respectively and all of them can be captured with the Constraint types of the
framework (Section 4.3). Overall, all the case studies have 3943 constraints and require 6 out of 7

Constraint types to capture all the constraints (i.e., CIR=86%).
Table B-9. Evaluation results for RQ2

86

Case Studv/Metri Individual Case Study | Overall (Combined All the Three Case Studies)
ase Study/Metric - rp. C cc CTR

MHS 763 100% | 86%

VCS 2897 | 100% | 86% 3943 100% 86%

SPS 283 100% | 86%

In Table B-10, we present the distribution of constraints across different Constraint types for
the selected case studies. As shown in Table B-10, corresponding to each Constraint type except
OptimizationConstraint and WellFormednessConstraints, there exist one or more constraints in all three
case studies. WellFormednessConstraints are not specific to any case study, indeed they are defined
as part of modeling methodologies and ConfigurationSolutions tor facilitating WellFormednessChecking
to ensure the well-formedness of PLEModels (e.g., ResolutionModel). The importance of
WelltormednessConstraints can be depicted by the existing tools and techniques supporting
WellFormednessChecking [35, 47-49]. The case studies do not contain any instance of
OptimizationConstraints, as usually they are defined by the business S7akebolders based on the user
requirements, standards, and rules and regulations enforced by the governing bodies and we do
not have such information. However, these constraints are necessary for ConfigurationOptimization,
which is supported by existing ConfigurationSolutions [50-52]. Based on the results of RQ2 (Table
B-9 and Table B-10) and the above discussion, we can conclude that the framework has all the
essential Constraint types required to capture the constraints for CPS PLs.

Table B-10. The distribution of constraints across CPS-specific VP types for the three case studies

. Number of Constraints in the Case Studies

Constraint Type

MHS VCS SPS All
ConfigurationConstraint 74 876 41 991
VatiabilityDependencyConstraint 227 424 49 700
WellFormednessConstraint WellFormednessConstraints are not specific to the case studies
ConformanceConstraint 108 1129 49 1286
ConsistencyConstraint 94 424 54 572
DecisionOrderingConstraint 166 22 45 233
DecisionInferenceConstraint 94 22 45 161
OptimizationConstraint 0 0 0 0
Total 763 2897 283 3943

6.2.3 Results for RQ3

Table B-11 presents the results of RQ3 based on the evaluation metrics defined in Table B-6. As
shown in Table B-11, the MHS case study requires 14 views whereas VCS and SPS both require
13 views. One can observe from Table B-11 that to model all the views, MHS, VCS, and SPS
require 82%, 76%, and 76% of iew types respectively. In total the three case studies require 40
views and all of them are supported by the [7Zew types provided by the framework (Section 4.1).

Table B-11. Evaluation results for RQ3

. Individual Case Study | Overall (Combined All the Three Case Studies)
Case Study/Metric
V; VM; VTR; |4 VM VTR
MHS 14 100% 82%
VCS 13 100% 76% 40 100% 100%
SPS 13 100% 76%

Furthermore, in Table B-12, we present the distribution of views across [Zew type for the
three case studies. Corresponding to all the [Zew types, we have one or more views required by
the case studies (Table B-12). Note that not all the case studies require all [zew types because all
CPSs do not have elements from all the domains (e.g., Hydraulics, Mechanics, Electronics). Thus,
depending on the constitution of a CPS, a case study might require various 7w types. For
example, VCS does not have elements from the Mechanics and Hydraulics domains, therefore, it

87

does not require [Zew types related to these domains (Table B-12). As per the results of RQ2

(Table B-11), all the views required by the case studies are supported by the framework (Table B-

11), which suggests that our framework has all the necessary [zew types.

Table B-12. The distribution of views across view types for three case studies

View Type

Number of Views Required by the Case Studies

MHS VCS SPS All

ContextView

—_

SoftwareView

InteractionView

AllocationView

Mechanical View

ElectricalView

ElectronicsView

HydraulicsView

ContextVariability View

ApplicationVatiability View

SoftwareVariabilityView

InteractionVariability View

AllocationVariability View

Mechanical Variability View

Electrical Variability View

ElectronicsVariability View

HydraulicsVariabilityView

e N N N e Yl Rl I Y Kol TN NS SN N SN N N
e N s) N N N N N L=l T e Rl Y SN SN N
N e =l N =l Y Rl [N SN N N S NN R B N
el LS EES R NS R SR RS OV R IE S ROV R UGB (SR ECTE N (O R ECTHEON)

Metric Value

—
EN
—
(S8}
—
(S8}
EeY
(=}

6.2.4 Results for RQ4

To answer RQ4, we validate the functionalities of ConfigurationSolution (Section 5.1) based on

existing literature on the automation of configuration. For this, we reviewed 11 mostly-reported
configuration tools: Pure::Variants [53], DOPLER [50], Covamof [54], SPLOT [55], Kumbang
Configurator [47], FMP [48, 50], Quaestio [49], Zen-Configurator [57], FeatureIlD [58], C20
Configurator [59], and Gears Tool [60]. Several of these tools (e.g., DOPLER [50], Gears Tool
[60], Zen-Configurator [57] that is developed by the authors of this paper) are used in the context

of CPS PLE such as communication systems, intelligent traffic systems, industrial automation

systems, and aerospace industry. In addition to the above-mentioned tools, we have also referred

to the research papers presenting approaches to facilitate different functionalities of an

automated configuration solution. Most of these approaches are implemented as part of the
above-mentioned 11 tools. Table B-13 summarize the results of RQ4.

Table B-13. Existing tools and techniques related to automation of configuration (RQ4) *

. Functionality

Tool /Technique DI | DO | RD | WFC | CFC | CSC | RV | CC|TA | CD | CS | cO | RD | ID
Configuration Tools

Pure::Variants [53] %} - M - M | M | M| - - - - - -
DOPLER [50] o4 | | - [[M M| M| - M| M - -
Covamof [54] ™ M - - M | - - - - - - - -
SPLOT [55] v -] - M 2 | & - |&] - | -] - - | &
Kumbang | 4} | 4} | - - - - - - - |
Configurator [47]
FMP [48] o] - | | | 4| M| - | M| - - - - -
Quaestio [49] ™ M M ™ M ™ - - M| - - - -
Zen-Configurator [57] | M - - [[4] - - M| - - -
FeaturelD [58] ™ - M - M | = = = = = = =

88

C20 Configurator [39] | M | ® | - -

NN
(N

Gears Tool [60] Products are -
configured
automatically based on
feature profiles.

Existing Approaches Related to Automation of Configuration

Matcilio et al. [44, 45, - - - - - = = M - - - - - _
61]

Zhou et al. [52] - - - - - - - - - - - ™ - -

Alférez et al. [62]

Heider et al. [63] | - - - - - M - - - - _ _ _
Yue et al. [64] %}

Luetal. [9, 39] - - - - | - - - - - - - - R

Lu etal. [10] - = = = = - M - - _ _ _ _ _

Vierhauser et al. [40] - - - - - 4] - - - - ™ - - -

Rabiser et al. [65] - - - = = = = ™M - - - - _ _

Lettner et al. [51] - - - - - - - - - - - ™ - -

Maszo et al. [66] - - = - ™ | - - - _ _ _ _ _

Heider et al. [67] - - - - - - - - ™ - - - - -

Czarnecki et al. [35] - - - ™ - - - = s = = B } -

Hwan et al. [68] - - - - - M - - - - - _ _ _

Heidenreich [43] - - - ™ - - - = S - - _ _ _

Metric Value (FC) 92%

*“f= Partially/Fully Supported, “’= Not Supported, DI= Decsionlnforence, DO= DecisionOrdering RD=RevertingDecision, WEC=
WellFormednessChecking, CEC= ConformanceChecking CSC= ConsistencyChecking, RN'=' Resohvingliolation, CC= CollaborativeConfiguration, 1A=
ImpactAnalysis, CD=ConflictDetection, CS= ConstraintSelection, CO=ConfignrationOptimization, RD="RedundancyDetection, 1D="IncompletenessDetection,
FC= Functionality coverage.

DecisionInference: As shown in Table B-13, most of the configuration tools (ie.,
Pure::Variants [53], DOPLER [50, 63, 66, 69], Covamof [54, 70], SPLOT [55], Kumbang
Configurator [47, 71], FMP [48], Quaestio [49], Zen-Configurator [57, 72|, FeatureID [58], and
C20 Configurator [59]) provide support of Decisionlnference for making automatic
ConfigurationDecisions based on DecisionlnferenceConstraints. 'To provide support for Decisionlnference,
these tools use various solvers (e.g., SAT Solvers, SModelS, and /parse). Moreover, some
configuration tools (e.g., DOPLER [50]) reuse previously made ConfigurationDecisions to derive
new products, in case the variability model is evolved (e.g., new variabilities are introduced) over
the time [63]. Similarly, Yue et al. [64] proposed a search-based approach in which
ConfigurationDecisions are performed in an optimal order such that maximum decisions can be
inferred, which is implemented in Zen-Configurator.

DecisionOrdering: Table B-13 shows that five configuration tools DOPLER [50, 73],
Covamof [54, 70], Quaestio [49], Zen-Configurator [57, 64], and C20 Configurator [59] provide
support of DecisionOrdering to allow the users to make ConfigurationDecisions in an optimized
manner. These tools provide support for DecisionOrdering by showing the relevant configuration
options at any given time while disabling others such that there is no inconsistency or conflict
while reducing the manual configuration efforts and increasing the possibility of
ConfigurationDecision inference. These tools use different approaches such as multi-objective search
algorithms and constraint solvers to provide support for DecisionOrdering. Usually, configuration
tools (e.g., Pure:Variants [53], SPLOT [55], FMP [48]) supporting feature-oriented notations
allow users to configure a product in any arbitrary order. Yue et al. [64] proposed a multi-
objective search-based DecisionOrdering approach to support CPS PLE, which is implemented in
Zen-Configurator.

RevertingDecision: From Table B-13, we can notice that all the configuration tools except
Covamof [54], Zen-Configurator [57], and C20 Configurator [59] support RevertingDecision.

89

DOPLER [50, 73] and SPLOT [55] support RevertingDecision by maintaining the history of
ConfigurationDecisions made and allowing them to revert step by step using undo or directly go to
the un-configured stage using the reset option. Kumbang Configurator [47, 71] and Quaestio [49]
allow reverting the last ConfigurationDecision made by the user and corresponding inferred
ConfigurationDecisions. Generally, configuration tools (e.g.,, Pure:Variants [53], FMP [48],
FeatureID [58]) supporting feature-oriented notations allow users to select/unselect any feature
at the given time, however, they do not revert the automatically made ConfigurationDecisions, unless
there is an inconsistency.

WellFormednessChecking: All the variability modeling/configuration tools supportt
WellFormednessChecking to ensure the well-formedness of variability models, however, not all the
tools support WellFormednessChecking for product models (ResolutionModels). As shown in Table B-
13, Kumbang Configurator [47, 71], FMP [35, 48], and Quaestio [49] provide support for
WelltormednessChecking for product models (ResolutionModels). These tools ensure the well-
formedness against the WellFormednessConstraints using constraint solvers and evaluators (e.g.,
OCL solver EsOCL and OCL evaluator Dresden can be used for OCL constraints). In [35],
Czarnecki et al. proposed an approach for checking the well-formedness of feature model
templates against OCL constraints. Similarly, Heidenreich [43] also checks the well-formedness
of different PLEModels constructed using feature models against the defined
WellEormednessConstraints.

ConformanceChecking: As shown in Table B-13, all the configuration tools provide
support for ConformanceChecking to ensure that ConfigurableParameters are configured correctly
according to ConformanceConstraints, such that a valid product can be derived. Usually, these tools
check the conformance on the fly (i.e., after every ConfigurationDecision is made). In case a non-
conformity is detected, some tools do not let the user go to the next ConfigurationDecision (e.g.,
Quaestio [49]) whereas others allow users to make ConfigurationDecisions while showing the non-
conformity (e.g., SPLOT [55]). In [9, 39], Lu et al. proposed a model-based approach for
incremental ConformanceChecking, which is implemented in Zen-Configurator. Similarly, Maszo et
al. [66] and Hwan et al. [68] also proposed two approaches for ConformanceChecking, which are
implemented in DOPLER and FMP respectively.

ConsistencyChecking: Table B-13 indicates that all the configuration tools provide support
tor ConsistencyChecking with different scopes based on ConsistencyConstraints. All the configuration
tools check consistency within and across models (i.e., IntraModel and InterModel), however, some
of the configuration tools (e.g., DOPLER [40, 50, 66, 69, 73, 74]) also check the consistency
within or across the views. Usually, these tools provide support for ConsistencyChecking on the fly
and give feedback to users about detected inconsistencies. Furthermore, FMP [48] ensures
consistency across the feature model and existing product configurations given the feature model
is evolved [68]. FMP [48] also checks if at least one valid product can be derived from the feature
model [75]. Alférez et al. [62] proposed an approach to check the consistency between feature
models and use case scenarios. In the context of the DOPLER tool, Vierhauser et al. [40]
proposed an approach for incremental ConsistencyChecking within variability models and across
variability models and code. Similarly, Maszo et al. [66] proposed a constraint programming
based approach to check the consistency of DOPLER variability models.

ResolvingViolation: All the configuration tools provide support for Resolvingl iolation to some
extent for resolving the inconsistencies. Some of these tools (e.g., Covamof [54, 70], Kumbang

90

Configurator [47], Quaestio [49], Pure::Variants [53]) report inconsistencies to the users and get
their feedback to resolve the inconsistencies manually whereas others (e.g., SPLOT [55], Zen-
Configurator [10, 57], FMP [48, 75], DOPLER [50, 63, 74]) attempt to resolve them
automatically if possible, otherwise report them to users. To resolve inconsistencies
automatically, these tools use either solvers (e.g., SPLOT [55] uses SAT Solver) or Multi-
objective search algorithms (e.g., Zen-Configurator [10, 57]). Some of the configuration tools
(e.g., FMP [48, 75], DOPLER [50]) provide an option of auto-complete, which resolves the
inconsistencies automatically. Furthermore, DOPLER [50] automatically resolves the
inconsistencies due to the evolution of variability models [63].

CollaborativeConfiguration: From Table B-13, we can see that three configuration tools
Pure::Variants [53], DOPLER [50, 65], and Gears Tool [60] support CollaborativeConfignration.
Pure::Variants [53] allows multiple users to configure a product simultaneously. DOPLER [50,
65] and Gears Tool [60] support role-based CollaborativeConfignration, which allows users with
different roles (e.g., business Stakeholders, technical Stakeholders) to configure the products.
Moreover, Marcilio et al. [44, 45, 061] also proposed an approach to support
CollaborativeConfiguration for the product lines modeled using feature model.

ImpactAnalysis: Table B-13 shows that five configuration tools DOPLER [50, 67, 73],
SPLOT [55], FMP [48, 75], Quaestio [49], and C20 Configurator [59] provide support for
ImpactAnalysis in different capacities. DOPLER [50] analyzes the impact of each
ConfigurationDecision made on existing ConfigurationDecisions as well as on business values (e.g., in
terms of cost) [73]. Moreover, DOPLER also analyzes the impact of changes in the variability
model (e.g., adding or replacing a feature) on existing products [67]. SPLOT [55] analyzes the
impact of user made ConfignrationDecisions, in terms of ConfigurationDecisions inferred, the number
of checks performed by SAT solver to check the consistency, and time used by the solver. FMP
[48] analyzes the impact of a ConfigurationDecision on total possible valid configurations left [75].
Quaestio [49] supportts ImpactAnalysis by showing the impact level (i.e., showing the impact on
variability model) for each ConfignrationDecision in Fact-Inspector Window. Similarly, C20
Configurator [59] measures the impact of a ConfigurationDecision on existing ConfigurationDecisions.

ConflictDetection: As shown in Table B-13, none of the configuration tools supports
ConflictDetection except Quaestio [49]. Quaestio [49] provides support for ConflictDetection to
discover conflicting constraints. Usually, the configuration tools detect the conflict among the
ConfigurationDecisions based on the defined constraints, they do not find the conflicting
constraints.

ConstraintSelection: None of the reviewed configuration tools except DOPLER [50] and
Zen-Configurator [57] provides support of ConstraintSelection (Table B-13). DOPLER [50] has
ConstraintSelection functionality that is used to select a subset of constraints constraining the
relevant VVariationPoints at a given time, which are further used in ConsistencyChecking [40]. This
helps to improve the performance of the tool in terms of memory consumption as well as
computation cost. Similarly, Zen-Configurator [57] uses ConstraintSelection for different
functionalities (e.g., ConformanceChecking, Non-Conformity resolving).

ConfigurationOptimization: None of the reviewed configuration tools except DOPLER
[50] provides support for ConfigurationOptimization (Table B-13). DOPLER [50] support
ConfigurationOptimization by providing calculated business value in terms of optimization measures
(e.g., cost, return on investment) and then let users select the appropriate configurations [51].

91

Similarly, Zhou et al. [52] proposed an approach that uses multi-objective search algorithms to
get optimized product configurations in terms of cost.

RedundancyDetection: Table B-13 shows that none of the reviewed configuration tools
provides support for RedundancyDetection to check the redundancy in configuration files, however,
FeaturelD [58] checks the redundant constraints.

IncompletenessDetection: As shown in Table B-13, none of the reviewed configuration
tools except SPLOT [55] and Kumbang Configurator [47] provides support for
IncompletenessDetection. SPLOT [55] shows the percentage of configured ConfigurableParameters at a
given time whereas Kumbang Configurator [47, 71] indicates if the configuration is complete or
incomplete as a Boolean option.

In summary, all the functionalities except RedundancyDetection are supported by one or more
configuration tools (i.e., FC=92%). This indicates that the identified functionalities based on our
experience of working with CPS PLs, are quite consistent with what has been reported in the
literature and what has been implemented in the tools. However, we noticed that none of the
existing tools provide support for all the functionalities. This is because the tools were proposed
with specific objectives of the authors. Some functionalities (e.g., ConformanceChecking,
ConsistencyChecking, and DecisionInference) are widely considered important, and therefore they have
been mostly implemented. However, the least reported functionalities also play an important role
in the configuration process of CPS PLE. For example, ConflictDetection, RedundancyDetection, and
IncompletenessDetection are important to ensure the correctness of product configuration. Similarly,
ConfigurationOptimization is important because it helps to achieve business goals (e.g., lower cost,
environment friendly products).

Table B-14. Existing configuration tools and their support for multi-stage and multi-step configuration

process

Configuration Tool Support for Multi-Stage and Multi-Step Configuration Process

Pure::Variants [53] Allows multiple users to configure simultaneously but with explicitly
defined stages/steps

DOPLER [50] Multiple stages based on various roles (business, technical)
Covamof [54] No
SPLOT [55] No
Kumbang Configurator [47] No
FMP [48] No
Quaestio [49] No
Zen-Configurator [57] No
FeaturelD [58] No
C20 Configurator [59] No
Gears Tool [60] Multiple stages based on vatious roles (business, technical)

Furthermore, we have also assessed the existing configuration tools in terms of their support
for the multi-stage and multi-step configuration process in Table B-14. As shown in Table B-14,
several existing tools provide some support for configuring the products using multiple stages.
For example, DOPLER [50, 65] and Gears Tool [60] support role-based configuration where
different stakeholders (e.g., business Stakeholders, technical Stakeholders) perform configuration in
various stages and steps. Similarly, Pure::Variants [53] allows multiple users to configure a
product at the same time, however, it does not explicitly divide the ConfigurationDecisions into
multiple stages and steps.

92

6.3 Discussion

In this section, we provide a discussion based on the results presented in Section 6.2. As we
discussed eatlier in Section 6.2 that the framework contains all the VP types (Section 4.2)
required to capture the variabilities of CPS PLs and ["Zew types (Section 4.1) to manage them
efficiently. It also covers the Constraint types (Section 4.3), which are essential for enabling
different types of automation of configuration for CPS PLE. Furthermore, it specifies different
functionalities of a ConfigurationSolution to support multi-stage and multi-step automated
configuration of CPSs. The framework is comprehensive in the sense that it provides support for
1) domain engineering of CPS PLs to capture abstractions through well-defined VP and
Constraint types and manage the captured abstractions using various |7ew types, and 2) application
engineering of CPS PLs by supporting different types of automation for ProductConfiguration using
a multi-stage and multi-step configuration process. We proposed a generic conceptual framework
independent of any modeling methodology or notation (e.g., feature model) and we do not
propose any concrete solution (i.e., modeling methodology and ConfigurationSolution). However,
the framework has several benefits, for example, the framework clarifies the problem of
supporting multi-stage and multi-step automated configuration of CPSs. It also serves as a guide
to researchers and practitioners for 1) evaluating an existing PLE solution (i.e., modeling
methodology and ConfigurationSolution) specific to CPSs, 2) devising a new PLE solution for CPSs,
and 3) devising a new PLE solution for the new domain other than CPS.

Figure B-12 presents a step-by-step procedure showing how the framework can be used to
evaluate an existing PLE solution or propose a new one. For evaluating an existing PLE solution,
the first two steps are to evaluate the capabilities of modeling methodology to capture the
variabilities of CPSs and constraints based on VP types (Section 4.2) and Constraint types (Section
4.3) in the framework respectively. The third step is to evaluate the modeling methodology based
on the Izew types (Section 4.1) required to manage the captured variabilities and constraints. The
fourth step is to evaluate the ConfigurationSolution based on all the functionalities (Section 5.1) and
multi-stage and multi-step ConfigurationProcess (Section 3.3). For the first three steps, we simply
need to check if VariationPoint types (Section 4.2), Constraint types (Section 4.3), iew types
(Section 4.1) are supported by the modeling methodology being evaluated. For step 4, we need to
check if the ConfigurationSolution supports all automated functionalities presented in Section 5.1 in
addition to allowing product configuration in a multi-stage and multi-step manner.

To devise a new PLE solution for CPS, the first two steps are related to developing a
modeling methodology. The first step is to develop (or select/update an existing) a
Modelingl_angnage, which allows capturing the variabilities of CPSs and managing them into
different views based on VP types and [7Zew types specified in the framework. The second step is
to develop or select an existing ConstraintSpecificationl_angnage and update it to provide support for
capturing constraints based on the Constraint types specified in the framework. The final step is to
develop a ConfigurationSolution based on the devised modeling methodology, which supports all
the functionalities provided in Section 5.1 as well as multi-stage and multi-step ConfigurationProcess.

To develop a new PLE solution for a new domain other than CPSs, the framework needs to
be updated by updating VP types, Constraint types, VView types, functionalities, and the
ConfigurationProcess according to the requirements of the new domain. Once the framework is

93

updated, the rest three steps are the same as for developing a modeling methodology and a
ConfigurationSolution for CPSs.

Start
Develop a new PLE solution Evaluate Existing PLE

for CPS domain solution
Purpose

Develop a new PLE solution for a new domain

update VP types, constraint types, view
types, functionalities, and configuration

process for new domain [. !
Evaluate the modeling
[} I methodology based on VP
types

- J
Develop a new or select and VP types
update an existing variability \L
modeling language R e
peitypes ST Evaluate the modeling

methodology based on
constraint types

A J
~
Develop a new or select and
update an existing constraint [. o,
specification language SRR 0 Evaluate the modeling
_ methodology based on view
types
J
) . ¢

Develop a configuration

solution supporting all Evaluate the configuration

solution based on

functionalities and Mo — > Automated functionalities e d
configuration process CLUSUELE LIS e
\ Wy configuration process
— " .
5# Configuration process

End

Figure B-12. Using the framework as a guide to evaluate or propose a PLE solution

6.4 Threats to Validity

Generalization of the results can be questioned with regards to the selection of case studies and
configuration tools for the evaluation. To address this, we selected three large-scale real-world
case studies as representatives of CPS PLs and evaluated the framework in terms of providing
support for domain engineering of CPS PLs (RQ1-RQ3). Similarly, we selected 11 well-known
existing configuration tools and existing literature on the automation of configuration to evaluate
the framework in terms of providing support for application engineering of CPS PLs (RQ4). The
evaluation was performed by reading the literature instead of using all the tools. Thus, it is
possible that a certain feature is available in the tool but not reported in the literature. Despite a
thorough evaluation, the completeness of the framework cannot be fully ensured as there might
be some new requirements (e.g., new VP types or Constraint types) in the future. We can only
assess the completeness of the framework by evaluating it based on the knowledge collected
from existing literature (tools and techniques), real-world case studies, and our experience of
conducting industry-oriented research in the field of CPS PLE [13], as we did.

The framework does not provide a concrete modeling methodology or ConfigurationSolution;
however, it does clarify the problem and lists the requirements for a CPS PLE methodology and
ConfigurationSolution. Furthermore, several decisions regarding the implementation of

94

ConfigurationProcess (e.g., dividing the ConfigurableParameters into stages and steps, stages can be
defined based on views or based on the phases of development lifecycle, configuring different
stages in parallel or a sequence, multiple stakeholders configuring a stage at the same time) are
left to the researcher/practitioner designing the configuration solution. This will give the
flexibility to the practitioners to implement a ConfigurationSolution as per the needs of a given
context.

7 Related Work

In this section, we present existing studies on domain and application engineering of product
lines, formalizing different aspects of PLE such as configuration process, variability modeling
technique, functionalities of a configuration solution.

7.1 Domain Engineering of Product Lines

We discuss existing studies on the domain engineering of PLs in Section 7.1.1 and involved
challenges in Section 7.1.2.

7.1.1 Modeling Approaches

To model the commonalities and variabilities of PLs, a large number of variability modeling
techniques (VMTSs) are available in the literature [76-80]. These VMTSs can be categorized into
four categories: 1) feature-based VMTs (e.g., [36, 37, 81]), 2) UML based VMTs (e.g., [32, 82,
83]), 3) textual VMTs (e.g., [84]), and 4) other notation (other than UML and feature modeling
notation) based VMTs (e.g., [38, 85, 80]). Corresponding to each category, we have discussed
some of the VMTs.

Feature-based VMTs are most widely used in industry [87]. A number of tools (e.g,
Pure::Variants [53], SPLOT [55], EMP [48], FeaturelD [58], Gears Tool [60]) are available to
support feature-based VMTSs and product configuration. These tools use either basic feature
model (FM) [36] or a variation of feature model (e.g., cardinality based feature model (CBFM)
[37], Multi-Product Line Feature model [81]). In FM, commonalities are captured as Mandatory
features and variabilities as Optional features and _Alternative features. Dependencies among
features are captured as Reguires and Excludes relationship restrictions. CBFM is the most popular
extension of FM, which introduces new concepts such as Feature Cardinalities, Groups and Groups
Cardinalities, Attributes, and References. Multi-Product Line Feature model [81] is an approach
proposed to model variability for multiple PLs and their context (e.g., external systems and cloud
services) using CBFM notation. Other variations of FM or CBFM (e.g., supported by
Pure::Variants [53]) have minor differences (e.g., the number of attributes supported, default
values for the attributes).

UML based VMTs use a subset of UML and UML profiles to capture commonalities and
variabilities. For example, SimPL is a UML based VMT, which provides notations and guidelines
for modeling variabilities and commonalities of integrated control systems (ICS) at the
architecture and design level. Several UML modeling tools [88] (e.g., RSA, MagicDraw, and
Papyrus) are available for variability modeling with SImPL (or other UML based VMTSs) whereas
products can be configured using Zen-Configurator [57]. SiImPL captures four types of variation
points: Attribute-VP, Type-VP, Topology-VP, and Cardinality-VP. Different types of constraints

95

are specified using OCL. Similarly, Claul3 [82, 89] proposed a UML profile based on UML class
diagram to support variability modeling of PLs and their context (i.e., external agents, systems,
and services) at the feature level. The proposed profile supports all the constructs (e.g., Mandatory,
Optional, and Alternative, Requires and Excludes dependencies, Cardinality) provided by feature-based
VMTs with the help of stereotypes defined in the profile. Additionally, the proposed profile has a
stereotype “external” to model external features (i.e., that is not part of the system). It also allows
specifying binding time for the variation points. Ziadi et al. [83] proposed another UML profile
containing three stereotypes for UML class diagram and five stereotypes for UML sequence
diagram. It allows capturing variabilities corresponding to components and their interactions.

Textual VMTSs capture the variabilities in the form of text. Dhungana et al. [84] proposed a
VMT DOPLER that is independent of any particular domain. It is based on a general variability
meta-model that consists of assets and decisions about selecting assets. To apply in a particular
domain, the meta-model requires to be extended according to the needs. The meta-model is
supported by a meta-tool DecisionKing, which is a part of the DOPLER toolkit. The tool
provides support for customization; its implementation can be replaced with domain-specific
implementation using plugins. It also provides a model API that can be used in any general tool
to create and manipulate models. Similarly, La Rosa et al. [49] also proposed a question-based
VMT, which is supported by the Quaestio tool. Several textual notations for feature model (e.g.,
Feature Description Language [90], Batory [91], Variability Specification Language [92],
FAMILIAR [93], Text-based Variability Language [94]) exists in the literature to capture the
variabilities in the form of features and groups but using textual notations instead of graphical
notations. Some of these textual VMTs (e.g., Batory [91]) support the constructs offered by
CBFM whereas others support FM’s constructs.

Other notation based VMTSs use a completely new notation (e.g., [38, 85, 86]) for capturing
variabilities. Common Variability Language (CVL) [38] is a generic VMT that is independent of
any domain. CVL defines the orthogonal variability model, i.e., a separate variability model from
the base model. The base model can be defined in any Meta-Object Facility (MOF) based
language such as MOF based Domain-Specific Language (DSL) or UML corresponding to which
variability is defined. An Eclipse-based CVL tool is available that supports CVL partially. Haugen
and Dgard [86] have proposed another variability modeling technique for the safety domain,
called the Base Variability Model (BVR). BVR is built on the CVL. In BVR some new constructs
are added such as Note, Reference, Comment, and ChoiceOccurrence, for better expressiveness. An
Eclipsed-based BVR tool [95] is available to support BVR VMT. Sinnema et al. [85] proposed
COVAMOF to capture variabilities at three levels of abstraction: feature, architecture, and code.
COVAMOPF offers two views, i.e., the variation point view to give an overview of variabilities in
all the abstraction levels of a PL and the dependency view to show the dependencies among
variabilities. It captures five types of variation points: Optional variation points (selecting zero or
one variant), Alternative variation points (selecting only one variant), Optional 1 ariant variation
points (selecting zero or more variant), [“ariant variation points (selecting one or more variant),
and VValue variation points (selecting a value from pre-defined range). Each variation point has
two states open and closed. In the case of the open state new variants can be added in the next
development phase but a close variation point does not allow adding new variants. It captures
logical, numerical, and nominal dependencies among the variabilities. Bithne et al. [90] presented
a VMT for requirement engineering that has a tree-like structure similar to the feature model. It

96

captures three types of features, i.e., Optional, Mandatory, and Alternative as well as two types of
dependencies, i.e., Reguires and Excludes. Additionally, a concept of assigned requirement artifact
is introduced to enable tracking variability through different artifacts.

To summarize, all the feature-based VMTs (e.g., [36, 37, 81]) capture the variabilities such as
Optional and Alternative teatures, Cardinality, and Attributes. Most of these approaches capture the
VariabilityDependencyConstraints only, however, some approaches may also allow specifying
ConformanceConstraints by specifying the domain of the attributes. Furthermore, there are several
textual VMTs (e.g., [90] [91-94]) to capture the variabilities as text, which support the constructs
supported by FM and CBFM whereas others capture the variabilities using questionnaires (e.g.,
[49, 84]). UML based VMTs (e.g., [32, 82, 83]) can capture structural and behavioral variabilities
whereas the constraints are captured using OCL. There are also several VMTs (e.g., [38, 85, 80]),
which have their own notations to capture the variabilities and constraints.

7.1.2 Key Challenges in Domain Engineering of CPS PLs

On a high level, there are three key challenges in the domain engineering of CPS PLs: capturing
abstractions as commonalities and variabilities, specifying constraints, and managing the captured
abstractions and constraints efficiently.

Capturing Abstractions: As discussed earlier (Sections 1 and 2), CPSs are large-scale, highly
hierarchical, and hybrid systems with complex interactions among different components [1-5].
Thus, unlike traditional software PLs, CPS PLs require capturing variabilities for 1) various
domains (e.g., Software, Mechanics, Electronics, Hydraulics), 2) continuous and discrete
properties of CPSs, 3) complex interactions among different components, 4) topologies, and 5)
software deployment on hardware. Additionally, CPS PLs also require identifying the binding
time (e.g., design time) for captured variabilities. This means modeling CPS PLs requires a
sophisticated approach that can capture CPS specific variabilities. As discussed in Section 7.1.1,
none of the existing modeling approaches can capture all types of variabilities specified in our
framework. As discussed in [10], the SimPL methodology [32] can capture more types of
variabilities for CPS PLs than any other modeling approach but not all.

Capturing Constraints: To enable the automation of configuration to support application
engineering of CPS PLs, various types of constraints (Section 4.3) need to be captured [9, 97]. As
discussed in Section 7.1.1, most of the existing modeling approaches only capture
VariabilityDependencyConstraints. Some approaches also allow specifying ConformanceConstraints by
specifying the possible values of the attributes. UML based approaches (e.g., [32, 82, 83]) capture
constraints using OCL, which can capture complex constraints to support CPS PLE.

Managing Abstractions and Constraints: Since CPS PLs are hybrid systems with multiple
stakeholders, which often contain a large number of variabilities and constraints (Table B-8 and
Table B-10). Thus, they need to be managed efficiently in multiple views to deal with the inherent
complexity of the CPS domain and cater multiple stakeholders. None of the existing modeling
approaches explicitly support all the views specified in our framework. There are a few modeling
approaches that support more than one view. For example, SimPL [32] provides separate views
for software, hardware, and the allocation of software to hardware.

The proposed framework addresses the challenges mentioned above by providing various VP
types to capture variabilities (Section 4.2), constraint types to capture constraints (Section 4.3),

and view types to manage captured variabilities and constraints (Section 4.1).

97

7.2 Application Engineering of Product Lines

As in RQ4 (Section 6.2.4), we already covered the literature (both tools and techniques) on
automation of configuration to support application engineering in general, therefore, we will not
discuss it again to avoid repetition. In Section 7.2.1, we present the literature discussing multi-
stage and multi-step configuration process and in Section 7.2.2, we discuss the key challenges in
the application engineering of CPS PLs.

7.2.1 Configuration Process

Czarnecki et al. [37] introduced the concept of staged configuration for feature models, which
can be achieved by stepwise specialization of feature models. This allows various stakeholders to
collaborate and derive a product in multiple stages. Furthermore, in [14], Czarnecki et al.
proposed to create separate feature models to capture variabilities in each stage to cater different
stakeholders. They also discuss the need for decomposing and merging feature models for
various stages of the configuration process. Classen et al. [98] formalized the multi-level staged
configuration process for feature model notation.

In [99, 100], Chavarriaga et al. proposed to capture variabilities using multiple features models
and resolve variabilities using a multi-stage configuration process. Their proposed approach
makes use of feature solution graphs (FSGs) to detect and report conflicting configuration
decisions in a multi-stage configuration process. In FSGs, feature models for various stages are
arranged into pairs. For each pair, configuration decisions made in one stage are propagated into
other to evaluate the possible configuration decisions. If certain configuration decisions in one
stage do not allow making any configuration decision in the latter stage, configuration decisions
causing the problem are marked as conflicting decisions. The article also provides formal
semantics for feature models and FSGs. Urli et al. [101] proposed SpineFM for capturing
variabilities in the form of multiple feature models and configuration is performed in multiple
stages. The tool of SpineFM ensures configuration consistency at each step and propagates
configuration decisions to infer other configuration decisions when possible. SpineFM was
evaluated with an industrial case study.

Abbasi et al. [102] proposed to divide features of a feature model into multiple subsets to cater
multiple stakeholders. Each subset is presented in a view for specific stakeholders to facilitate
configurations decisions. To do so, the SPLOT tool [55] was extended to incorporate multiple
views. The approach was evaluated with a case study from the aerospace industry.

Schroeter et al. [103] proposed a conceptual configuration management solution to support
dynamic multi-stage configuration of cloud-based multi-tenant aware applications. The proposed
solution enforces an adaptive staged configuration process that can add and remove stakeholders
dynamically and allow reconfiguration of variants when stakeholders’ objectives change.
Variabilities of functionality and service qualities (i.e., availability, performance, security) of cloud
applications are captured with extended feature models. Different aspects of the proposed
solution were exemplified using a running example.

Hubaux et al. [104] proposed a textual approach to specify different concerns for various
stakeholders corresponding to feature model diagrams. Based on the defined concerns, different

98

views can be generated to present concern-specific configuration options to the stakeholders.
The goal is to define criteria to split feature models into different views for various stakeholders
to perform configuration in multiple stages. The article proposed three visualizations and
illustrated them using an open-source web-based meeting management system. A tool was also
developed on top of SPLOT [55].

In [105, 106], White et al. formalized multi-step configuration problems and proposed
MUSCLE, which transforms multi-step feature configuration problems into constraint
satisfaction problems (CSPs) and generates configurations that meet multi-step constraints with a
constraint solver. Furthermore, the authors also discussed mechanisms for optimally deriving
configurations that minimize or maximize a property of the configuration process (e.g., cost).

To summarize, several studies exist in the literature that advocate using the multi-stage
configuration process where a stage is defined for a particular stakeholder. Furthermore, all these
studies discussing the multi-stage configuration process rely on feature model-based notations
(e.g., CBFM). Our framework, however, covers concepts of the multi-stage and multi-step
configuration process where configuration stages are defined to cater various domain experts
(e.g., software engineers) and steps for different phases of a CPS development lifecycle.

7.2.2 Key Challenges in Application Engineering of CPS PLs

CPS PLs involve various domains and stakeholders that require the multi-stage and multi-step
configuration process. This makes application engineering of CPS PLs more complex due to, 1) it
requires splitting and merging variabilities into various stages and steps to allow collaborative
configuration performed by various stakeholders; 2) ensuring a valid product is derived becomes
more difficult as it requires detecting different types of inconsistencies emerged due to
configuration decisions made in different configuration stages and steps; 3) Inferring
configuration decision becomes difficult, as it requires propagating the configuration decisions in
multiple configuration stages for every single configuration decision in a specific configuration
stage. 4) reverting decisions is more complex, as undoing one configuration decision may require
rolling back all inferred decisions in multiple configuration stages; and 5) resolving
inconsistencies is more difficult as it requires defining priorities for different domains (or
stakeholders) such that stakeholders can change the configuration decisions for low priority
domains (e.g., usually software is configured according to hardware configurations) to fix
inconsistencies. Overall implementing various kinds of automated functionalities in a
configuration solution that supports the application engineering of CPS PLs becomes more
challenging.

7.3 Formalization in the Context of PLE

This section presents the existing studies focusing on the formalization of different aspects of
PLE such as variability modeling, configuration process, constraints in PLE, and functionalities
of a configuration solution, which are discussed as follow:

Several studies exist in the literature that focus on the formalization of, e.g., different
functionalities of a configuration solution, semantics of variability modeling language, different
types of variabilities, and configuration process. However, all these formalisms focus on specific
modeling methodologies (e.g., feature model, SimPL methodology), unlike our work in which we
formalize independent of any modeling methodology or notation. Moreover, there does not exist

99

a single study, which covers all aspects, e.g., the configuration process, variation point types,
constraint types, models, views, and most importantly the functionalities of a configuration
solution.

Several studies formalized feature models and their extensions (e.g., cardinality-based feature
model). Czarnecki et al. [107] formalized Cardinality-based feature models by translating feature
models into context-free grammar. Moreover, they also formalized the multi-stage configuration
process using mathematical notations such as set theory. Similarly, Deursen and Klint [90]
formalized the textual notation based feature model using algebraic specifications. In [108],
Janota and Kiniry formalized the feature modeling using higher-order logic. In [109], another
formalism is presented, where thorough formal semantics for extended feature models and the
notion of consistency are provided. The formalism focuses on multi-view and multi-staged
feature-based configuration.

Behjati et al. [19] formalized different concepts of SimPL modeling methodology such as
reference architecture for a PL, member product, components types, four types of variabilities
(ie., Attribute-VP, Cardinality-VP, Type-VP, and Topology-VP), and configuration process
specific to SimPL. The focus of the work [19] is interactive and iterative architecture-level
configuration where the authors describe how the configuration state changes as a result of
resolving the above-mentioned four types of variabilities. They also proposed a configuration
algorithm and implemented it using constraint satisfaction techniques for supporting a semi-
automated configuration of CPSs.

Various studies formalized different functionalities of a configuration solution. For example,
Lu et al. [9] formalized the conformance checking, decision inference, and decision ordering
using OCL constraints for the variability models developed using SimPL modeling notation.
Behjati et al. [19] formalized the consistency checking functionality for SimPL modeling
methodology based PL and product models. In [35], Czarnecki et al. formalized the well-
formedness checking feature models against well-formedness constraints specified using OCL
constraints. Similarly, Marcilio et al. [44] formalized the collaborative configuration functionality

for feature models.

8 Conclusion

Enabling Product Line Engineering (PLE) for Cyber-Physical Systems (CPSs) is very challenging
due to large-scale, intrinsic complexity, and the existence of numerous variabilities and
constraints, which requires well-defined modeling methodologies to capture the variabilities and
constraints as well as automation of configuration process to derive valid CPS products. In this
paper, we present a conceptual framework for supporting the multi-stage and multi-step
automated configuration of CPSs. More specifically, we present a classification of constraints and
variation points using a UML and OCL based conceptual models. We also presented 14 possible
functionalities of an automated configuration solution and provided their formal definitions using
mathematical notations and a UML and OCL based conceptual model, independent of any
modeling methodology or notation. Furthermore, we also formalized the context of the study
(i.e., CPS, general PLE concepts, multi-stage and multi-step configuration process) and different
concepts related to modeling of CPS product lines such as models in PLE, model elements, and
views. For validation of the framework, we present the results from three real-world case studies

100

and an extensive literature review showing the coverage of variation point types, constraints
types, views, and functionalities to facilitate CPS PLE. Such a conceptual framework aims to
provide insights to researchers and practitioners from our experience that can help them to
systematically devise new modeling methodologies and automated configuration solution for CPS
PLE.

Acknowledgement

Safdar Aqeel Safdar and Hong Lu are supported by the Zen-Configurator project funded by the
Research Council of Norway (grant no. 240024/F20) under the category of Young Research
Talents of the FRIPO funding scheme. Tao Yue and Shaukat Ali are supported by the Co-
evolver project (No. 286898/F20) funded by the Research Council of Norway under the
FRIPRO program.

References

1. Detler, P., E.A. Lee, and A.S. Vincentelli, Modeling Cyber—Physical Systems. Proceedings of the IEEE
Special issue on CPS, 2012. 100(1): p. 13-28.

2. Cybet-Physical Systems (CPSs). Available from: http://cyberphysicalsystems.org/.

3. Rawat, D.B.,].J. Rodrigues, and 1. Stojmenovic, Cyber-Physical Systems: From Theory to Practice. 2015:
CRC Press.

4, Ma, T., S. Ali, and T. Yue, Modeling foundations for executable model-based testing of self-healing cyber-
physical systems. Software & Systems Modeling, 2019. 18(5): p. 2843-2873.

5. Zhang, M., et al., Uncertainty-Wise Cyber-Physical System test modeling. Software & Systems Modeling,
2017: p. 1-40.

6. Nie, K., et al. Constraints: the core of supporting automated product configuration of cyber-physical

systems. in Proceeding of International Conference on Model-Driven Engineering Languages and Systems
(MODELS). 2013. Springet.

7. Iglesias, A., et al. Product line engineering of monitoring functionality in industrial cyber-physical systems:
A domain analysis. in Proceedings of the 21st International Systems and Software Product Line
Conference-Volume A. 2017. ACM.

8. Atrrieta, A, et al., Search-Based test case prioritization for simulation-Based testing of cyber-Physical system
product lines. Journal of Systems and Software, 2019. 149: p. 1-34.

9. Lu, H., et al, Model-based Incremental Conformance Checking to Enable Interactive Product
Configuration. Information and Software Technology (IST), 2015. 72: p. 68-89.

10. Lu, H., et al, Nonconformity Resolving Recommendations for Product Line Configuration, in
International Conference on Software Testing. 2016, IEEE. p. 57-68.

11. ISO, Software and systems engineering -- Reference model for product line engineering and management.
2013, ISO.

12. Yue, T., S. Ali, and B. Selic. Cyber-Physical System Product Line Engineering: Comprehensive Domain

Analysis and Experience Report. in Proceeding of International Systems and Software Product Line
Conference (SPLC). 2015. ACM.

13. Yue, T., S. Ali, and B. Selic. Cyber-physical system product line engineering: comprehensive domain
analysis and experience report. in Proceedings of the 19th International Conference on Software Product
Line. 2015. ACM.

14. Czarnecki, K., S. Helsen, and U. Eisenecker, Staged configuration through specialization and multilevel
configuration of feature models. Software Process: Improvement and Practice, 2005. 10(2): p. 143-169.

15. OCL, Object Constraint Language Specification, Version 2.2. 2011, Object Management Group (OMG).

16. Safdar, S.A., et al. Evaluating Variability Modeling Techniques for Supporting Cyber-Physical System

Product Line Engineering. in Proceeding of International Conference on System Analysis and Modeling
(SAM). 2016. Springet.

17. ULMA Handling Systems. 2002; Available from: http://www.ulmahandling.com.

18. Alj, S., et al. Empowering Testing Activities with Modeling-Achievements and Insights from Nine Years of
Collaboration with Cisco. in Proceeding of International Conference on Model-Driven Engineering and
Software Development (MODELSWARD). 2017. Springer.

19. Behjati, R., S. Nejati, and L.C. Briand, Architecture-level configuration of large-scale embedded software
systems. ACM Transactions on Software Engineering and Methodology (TOSEM), 2014. 23(3): p. 25.

101

20.

21.
22.
23.
24.
25.
26.
27.

28.

29.
30.
31
32.

33.

34.

35.

36.

37.
38.
39.

40.

41.
42.
43

44,
45,

46.

47.

102

Safdar, S.A., et al. Mining Cross Product Line Rules with Multi-Objective Search and Machine Learning in
Proceeding of The Genetic and Evolutionary Computation Conference (GECCO). 2017. Betlin, Germany:
ACM.

Zhang, M., et al. Understanding uncertainty in cyber-physical systems: a conceptual model. in European
Conference on Modelling Foundations and Applications. 2016. Springer.

Chakravarthy, V., J. Regehr, and E. Eide. Edicts: implementing features with flexible binding times. in
Proceedings of the 7th international conference on Aspect-oriented software development. 2008. ACM.
Beuche, D. and J. Weiland. Managing flexibility: Modeling binding-times in simulink. in European
Conference on Model Driven Architecture-Foundations and Applications. 2009. Springer.

Hotz, L., et al. Evaluation across multiple views for variable automation systems. in Proceedings of the 19th
International Conference on Software Product Line. 2015. ACM.

OMG, Systems Modeling Language (SysML) v1.4, http://sysml.org/. 2015.

The UML MARTE profile, http://www.omgmatte.org/.

Selic, B. and S. Gérard, Modeling and Analysis of Real-Time and Embedded Systems with UML and
MARTE: Developing Cyber-Physical Systems. 2013: Elsevier.

Bagheri, E., et al. Configuring software product line feature models based on stakeholders’ soft and hard
requirements. in Proceeding of International Systems and Software Product Line Conference (SPLC). 2010.
Springer.

Nadi, S., et al., Where do configuration constraints stem from? an extraction approach and an empirical
study. IEEE Transactions on Software Engineering (TSE), 2015. 41(8): p. 820-841.

Czarnecki, K., S. She, and A. Wasowski. Sample spaces and feature models: There and back again. in
Proceeding of International Systems and Software Product Line Conference (SPLC). 2008. IEEE.

Bécan, G., et al. Synthesis of attributed feature models from product descriptions. in Proceeding of
International Systems and Softwate Product Line Conference (SPLC). 2015. ACM.

Behjati, R., et al., SimPL: a product-line modeling methodology for families of integrated control systems.
Information and Software Technology, 2013.

Jaring, M. and]. Bosch. A taxonomy and hierarchy of variability dependencies in software product family
engineering. in Computer Software and Applications Conference, 2004. COMPSAC 2004. Proceedings of
the 28th Annual International. 2004. IEEE.

Safdar, S.A., et al., Using multi-objective search and machine learning to infer rules constraining product
configurations. Automated Software Engineering, 2019. 27(1): p. 1-62.

Czarnecki, K. and K. Pietroszek, Verifying feature-based model templates against well-formedness OCL
constraints, in Proceedings of the 5th international conference on Generative programming and
component engineering. 2006, ACM: Portland, Oregon, USA. p. 211-220.

Kang, K., Cohen, Sholom., Hess, James., Novak, William., & Peterson, A., Feature-Oriented Domain
Analysis (FODA) Feasibility Study (CMU/SEI-90-TR-021), in Secondary Feature-Oriented Domain
Analysis (FODA) Feasibility Study (CMU/SEI-90-TR-021), Secondary Kang, K., Cohen, Sholom., Hess,
James., Novak, William., & Peterson, A., Editor. 1990. RN. Available From:

Czarnecki, K., S. Helsen, and U. Eisenecker, Staged configuration using feature models, in Software
Product Lines. 2004, Springet. p. 266-283.

Haugen, O., Common Variability Language (CVL). OMG Revised Submission, 2012.

Lu, H,, et al, Zen-CC: An Automated and Incremental Conformance Checking Solution to Support
Interactive Product Configuration, in 25th International Symposium on Software Reliability Engineering,.
2014, IEEE. p. 13-22.

Vierhauser, M., et al., Flexible and scalable consistency checking on product line variability models, in
Proceedings of the IEEE/ACM international conference on Automated software engineering. 2010, ACM:
Antwerp, Belgium. p. 63-72.

Gomaa, H. and M.E. Shin. A multiple-view meta-modeling approach for variability management in
software product lines. in International Conference on Software Reuse. 2004. Springer.

El-Sharkawy, S. and K. Schmid. Supporting the effective configuration of software product lines. in
Proceedings of the 16th International Software Product Line Conference. 2012. ACM.

Heidenreich, F. Towards systematic ensuring well-formedness of software product lines. in Proceedings of
the First International Workshop on Feature-Oriented Software Development. 2009. ACM.

Mendonga, M., et al., Collaborative Product Configuration. Journal of Software, 2008. 3(2): p. 69.
Mendonga, M., T.T. Bartolomei, and D. Cowan. Decision-making coordination in collaborative product
configuration. in Proceedings of the 2008 ACM symposium on Applied computing. 2008. ACM.

Ali, S., et al. Insights on the use of OCL in diverse industrial applications. in International Conference on
System Analysis and Modeling. 2014. Springer.

Mylldrniemi, V., et al. Kumbang configurator—a configuration tool for software product families. in 19th
International Joint Conference on Attificial Intelligence. 2005. Citeseet.

48.
49.
50.
51.
52.
53.
54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.
66.

67.

68.
69.
70.
71.
72.

73.

103

Czarnecki, K., et al. fmp and fmp2rsm: eclipse plug-ins for modeling features using model templates. in
OOPSLA '05 Companion. 2005. ACM.

La Rosa, M., et al., Questionnaire-based variability modeling for system configuration. Software & Systems
Modeling, 2009. 8(2): p. 251-274.

Rabiser, R., et al. DOPLER, Decision Oriented Product Line Engineering for effective Reuse. Available
from: http://ase.jku.at/doplet/.

Lettner, D., et al. Supporting end users with business calculations in product configuration. in Proceedings
of the 16th International Softwatre Product Line Conference-Volume 1. 2012. ACM.

Zhou, C., Z. Lin, and C. Liu, Customer-driven product configuration optimization for assemble-to-order
manufacturing enterprises. The International Journal of Advanced Manufacturing Technology, 2008. 38(1):
p. 185-194.

Pure-Systems. Pure::Vatiants available at: http://www.pute-systems.com/. 2017].

Sinnema, M., et al., Covamof: A framework for modeling variability in softwate product families, in
Software product lines, R.L. Nord, Editor. 2004, Springer Heidelberg. p. 197-213.

Mendonca, M., M. Branco, and D. Cowan. SPLOT: software product lines online tools. in Proceedings of
the 24th ACM SIGPLAN conference companion on Object oriented programming systems languages and
applications. 2009. ACM.

Antkiewicz, M. and K. Czarnecki. FeaturePlugin: feature modeling plug-in for Eclipse. in Proceedings of
OOPSLA, workshop on eclipse technology eXchange. 2004. ACM.

Hong, L., Y. Tao, and A. Shaukat. Zen-Configurator: Interactive and Optimal Configuration of Cyber
Physical System Product Lines. [cited 2017, Available from:
https:/ /www.simula.no/research/projects/zen-configurator-interactive-and-optimal-configuration-cybet-
physical-system.

Thiim, T., et al., FeatureIDE: An extensible framework for feature-otiented software development. Science
of Computer Programming, 2014. 79: p. 70-85.

Néhrer, A. and A. Egyed, C20 configurator: a tool for guided decision-making. Automated Software
Engineering, 2013. 20(2): p. 265-296.

Krueger, C.W. Biglever software gears and the 3-tiered spl methodology. in Companion to the 22nd ACM
SIGPLAN conference on Object-oriented programming systems and applications companion. 2007. ACM.
De Mendonga, MLF., Collaborative Feature-Based Product Configuration in Software Product Lines. 2007.
Alférez, M., et al., Supporting Consistency Checking between Features and Software Product Line Use
Scenarios, in Top Productivity through Software Reuse, K. Schmid, Editor. 2011, Springer Betlin
Heidelberg. p. 20-35.

Heider, W., R. Rabiser, and P. Grinbacher, Facilitating the evolution of products in product line
engineering by capturing and replaying configuration decisions. International Journal on Software Tools for
Technology Transfer (STTT), 2012. 14(5): p. 613-630.

Yue, T., et al. Search-based decision ordering to facilitate product line engineering of cyber-physical system.
in Model-Driven Engineering and Software Development (MODELSWARD), 2016 4th International
Conference on. 2016. IEEE.

Rabiser, R., P. Grinbacher, and G. Holl, Improving awareness during product derivation in multi-user
multi product line environments. 2010.

Mazo, R., et al. Using constraint programming to verify DOPLER variability models. in Proceedings of the
5th Workshop on Variability Modeling of Software-Intensive Systems. 2011. ACM.

Heider, W., et al. Using regression testing to analyze the impact of changes to variability models on
products. in Proceedings of the 16th International Software Product Line Conference-Volume 1. 2012.
ACM.

Hwan, C., P. Kim, and K. Czarnecki. Synchronizing cardinality-based feature models and their
specializations. in Model Driven Architecture—Foundations and Applications. 2005. Springer.

Dhungana, D., P. Grinbacher, and R. Rabiser, The DOPLER meta-tool for decision-oriented variability
modeling: a multiple case study. Automated Software Engineering, 2011. 18(1): p. 77-114.

Sinnema, M., S. Deelstra, and P. Hoekstra, The COVAMOF derivation process. Reuse of Off-the-Shelf
Components, 2006: p. 101-114.

Mylldrniemi, V., Kumbang Configurator—a tool for configuring software product families. 2005, Master’s
thesis, Helsinki University of Technology, Department of Computer Science and Engineering,.

Nie, K., T. Yue, and S. Ali. Towatrds a Search-based Interactive Configuration of Cyber Physical System
Product Lines. in Demos/Posters/StudentResearch@ MoDELS. 2013.

Rabiser, R., P. Grunbacher, and M. Lehofer. A qualitative study on user guidance capabilities in product
configuration tools. in Automated Software Engineeting (ASE), 2012 Proceedings of the 27th IEEE/ACM
International Conference on. 2012. IEEE.

74,
75.
76.
77.

78.

79.
80.

81.

82.
83.
84.
85.
86.
87.

88.

89.
90.

91.
92.

93.

94.

95.
96.

97.

98.

99.

100.

104

Dhungana, D., P. Griinbacher, and R. Rabiser, DecisionKing: A Flexible and Extensible Tool for
Integrated Variability Modeling. VaMoS, 2007. 2007: p. 01.

Czarnecki, K. and C.H.P. Kim. Cardinality-based feature modeling and constraints: A progress report. in
International Workshop on Software Factories. 2005.

Chen, L., M. Ali Babar, and N. Ali, Variability management in software product lines: A systematic review,
in 13th International Software Product Line Conference. 2009. p. 81-90.

Arrieta, A., G. Sagardui, and L. Etxeberria, A comparative on variability modelling and management
approach in simulink for embedded systems. V Jornadas de Computacién Empotrada, ser. JCE, 2014.
Djebbi, O. and C. Salinesi. Criteria for comparing requirements variability modeling notations for product
lines. in 4th International Workshop on Comparative Evaluation in Requirements Engineering. 2000.
IEEE.

Sinnema, M. and S. Deelstra, Classifying variability modeling techniques. Information and Software
Technology, 2007. 49(7): p. 717-739.

Eichelberger, H. and K. Schmid. A systematic analysis of textual variability modeling languages. in
Proceedings of the 17th International Software Product Line Conference. 2013. ACM.

Hartmann, H. and T. Trew. Using feature diagrams with context variability to model multiple product lines
for software supply chains. in Proceeding of International Systems and Software Product Line Conference
(SPLC). 2008. IEEE.

ClauB3, M. and 1. Jena. Modeling variability with UML. in GCSE 2001 Young Researchers Workshop. 2001.
Citeseet.

Ziadi, T., L. Hélouét, and J.-M. Jézéquel, Towards a UML profile for software product lines, in Software
Product-Family Engineering. 2004, Springer. p. 129-139.

Dhungana, D., P. Griinbacher, and R. Rabiser, Domain-specific adaptations of product line variability
modeling, in Situational Method Engineering: Fundamentals and Experiences. 2007, Springer. p. 238-251.
Sinnema, M., et al. Covamof: A framework for modeling variability in software product families. in
International Systems and Softwatre Product Line Conference (SPLC). 2004. Springer.

Haugen, @. and O. OQgard, BVR—Better Variability Results, in System Analysis and Modeling: Models and
Reusability. 2014, Springer. p. 1-15.

Berger, T., et al. A survey of vatiability modeling in industrial practice. in Proceedings of 7th International
Workshop on Variability Modelling of Software intensive Systems. 2013. ACM.

Safdar, S.A., M.Z. Igbal, and M.U. Khan, Empirical Evaluation of UML Modeling Tools—A Controlled
Experiment, in European Conference on Modeling Foundations and Applications. 2015, Springer: Italy. p.
33-44.

ClauB3, M. Generic modeling using UML extensions for variability. in Workshop on Domain Specific Visual
Languages at OOPSLA. 2001.

Van Deursen, A. and P. Klint, Domain-specific language design requires feature descriptions. CIT. Journal
of computing and information technology, 2002. 10(1): p. 1-17.

Batory, D. Feature models, grammars, and propositional formulas. in SPLC. 2005. Springer.

Abele, A., et al, The CVM Framework-A Prototype Tool for Compositional Variability Management.
VaMos, 2010. 10: p. 101-105.

Acher, M., et al., Familiar: A domain-specific language for large scale management of feature models.
Science of Computer Programming, 2013. 78(6): p. 657-681.

Boucher, Q., et al. Introducing TVL, a text-based feature modelling language. in Proceedings of the Fourth
International Workshop on Variability Modelling of Software-intensive Systems (VaMoS’10), Linz, Austria,
January. 2010.

BVR Eclipse Based Tool. Available from: https://github.com/SINTEF-9012/bvt.

Biihne, S., K. Lauenroth, and K. Pohl. Why is it not sufficient to model requirements variability with
feature models. in Proceedings of Workshop: Automotive Requirements Engineering (AUREO4), Los
Alamitos. 2004. Citeseet.

Kunming Nie, T.Y., Shaukat Ali., Towards a Search based Interactive Configuration of Cyber Physical
System Product Lines, in Demos/Posters/StudentResearch@ACM/IEEE 16th International Conference
on Model Driven Engineering Languages and Systems. 2013. p. 71-75.

Classen, A., A. Hubaux, and P. Heymans, A Formal Semantics for Multi-level Staged Configuration.
VaMoS, 2009. 9: p. 51-60.

Chavarriaga, J., et al, Supporting Multi-level Configuration with Feature-Solution Graphs Formal
Semantics and Alloy Implementation, in Secondary Supporting Multi-level Configuration with Feature-
Solution Graphs Formal Semantics and Alloy Implementation, Secondary Chavarriaga, J., et al., Editors.
2013. RN. Available From:

Chavarriaga, J., et al. Propagating decisions to detect and explain conflicts in a multi-step configuration
process. in International Conference on Model Driven Engineering Languages and Systems. 2014. Springer.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

Utli, S., M. Blay-Fornarino, and P. Collet. Handling complex configurations in software product lines: a
tooled approach. in Proceedings of the 18th International Software Product Line Conference-Volume 1.
2014.

Abbasi, E.K., A. Hubaux, and P. Heymans. A toolset for feature-based configuration workflows. in 2011
15th International Software Product Line Conference. 2011. IEEE.

Schroeter, J., et al. Dynamic configuration management of cloud-based applications. in Proceedings of the
16th International Software Product Line Conference-Volume 2. 2012.

Hubaux, A., et al., Supporting multiple perspectives in feature-based configuration. Software & Systems
Modeling, 2013. 12(3): p. 641-663.

White, J., et al., Evolving feature model configurations in softwatre product lines. Journal of Systems and
Software, 2014. 87: p. 119-136.

White, J., et al. Automated reasoning for multi-step feature model configuration problems. in Proceedings
of the 13th International Software Product Line Conference. 2009. Carnegie Mellon University.

Czarnecki, K., S. Helsen, and U. Eisenecker, Formalizing cardinality-based feature models and their
specialization. Software process: Improvement and practice, 2005. 10(1): p. 7-29.

Janota, M. and J. Kiniry. Reasoning about feature models in higher-order logic. in Software Product Line
Conference, 2007. SPLC 2007. 11th International. 2007. IEEE.

Hubaux, A., Feature-based configuration: Collaborative, dependable, and controlled. University of Namur,
Belgium, 2012.

Cisco C-Series Video Conferencing Systems. 2012, Available
https:/ /www.cisco.com/c/en/us/products/collaboration-endpoints/ telepresence-integratot-c-
series/index.html.

from:

9 Appendix A: Concepts Definitions and Examples

Table B-15. Concept definitions of the PLE conceptual model

Concept Definition and Example

D1: ProductLine

Productline represents a set of products that share common and variable features
while relying on the same domain architecture. For example, C-Series video
conferencing systems produced by Cisco Systems [110].

D2: MemberProduct

A particular product belonging to a ProductLine is called MemberProduct. For
example, product C60 from C-Series produced by Cisco Systems [110].

D3: Asset

Asset represents an output produced from a domain or an application engineering
process. For example, a particular test case.

D4: DomainAsset

DomainAsset represents the output of domain engineering processes. For
example, all the test cases corresponding to a ProductLine.

D5: ApplicationAsset

ApplicationAsset represents the output of the application engineering process of a
particular MemberProduct. For example, a subset of test cases selected for a
MemberProduct.

D6: AssetBase

AsserBase is a repository containing a set of DomainAssets and ApplicationAssers.

D7: DomainArchitecture

DomainArchitecture represents the reference architecture for a Productline that
includes architectural structure and common constraints applicable to all the
MemberProducts.

D8:
ApplicationArchitecture

ApplicationArchitecture represents the reference architecture for a MemberProduct
that includes architectural structure and constraints applicable to a MemberProduct.

D9: Commonality

Commonality represents a set of features (functional and non-functional) shared by
all the MemberProducts within a Productline. For example, in Figure B-3,
SubseaControlSystem is shared by all the MemberProducts.

D10: Variability

Variability represents a set of features that may vary across the MemberProducts
within a ProductLine. For example, in Figure B-3, the concrete type of
SubseaControlSystem is variable across the MemberProducts.

D11: PLEModel

PIEModel is a general concept that represents a system at an abstract level, which
is composed of different elements. For example, Figure B-3 (a) And Figure B-3
(b) present two PLLEModels.

D12: BaseModel

BaseModel is constructed to capture the commonalities corresponding to a
ProductLine. For example, Figure B-3 (A) presents a BaseModel.

105

D13: VatiabilityModel

VariabilityModel is developed corresponding to a BaseModel for capturing the
variabilities for the Productline. For example, Figure B-3 (b) presents a
VariabilityModel corresponding to the BaseModel presented in Figure B-3 (a).

D14: ResolutionModel

ResolutionModel is developed corresponding to a VariabilityModel by resolving the
variabilities for a particular MemberProduct. For example, the model produced by
resolving the variabilities of the model shown in Figure B-3 (b).

D15: ModelElement

Elements constituting a PLLEMode/ representing the structure or behavior of the
system are called Mode/Elements. For example, XmasTree in Figure B-3 (a).

D1ie6: StructuralModelElement is a ModelElement representing a structural component or a
StructuralModelElement | property of the system. For example, XwasTree in Figure B-3 (a).

D17: BebavioralModelElement is a ModelElement tepresenting the behavior of the system.
BehavioralModelElement | For example, operation monitorPressure() in Figure B-3 (a).

D18: VariationPoint

VariationPoint is a ModelElement representing a Variability corresponding to a
DomainAsset or an ApplicationAsser within the context of a ProductLine. For
example, #reeType in Figure B-3 (b).

D19: ConfigurableParameter is an instance of VariationPoint. For example, an instance of
ConfigurableParameter treeType (Figure B-3 (b)).

D20: Variant

Variant (174) tepresents an alternative that can be used to configure a
ConfigurableParameter. For example, in Figure B-3 (b), IVXT, HXT, and Mudline are
three Variants of treeType.

D21: Constraint

Constraint is a ModelElement, which imposes certain conditions and limitations on
other ModelElements. E.g., in Figure B-3 (b), a constraint is defined on XwasTree,
which is constraining the values of waterDepth.

D22: ConfigurationData

ConfigurationData represent configuration decisions made to configure a
ConfigurableParameter.

D23: ConfigurationFile

ConfigurationFile tepresents a set of ConfigurationData cotresponding to a
MemberProduct.

Table B-16. Concept definitions of the CPS conceptual model

Concept

Definition and Example

D24: CPS

CPS is a system of systems (e.g., different physical units) that combines
digital cyber technologies with physical processes where embedded
computers and networks monitor and control physical processes using
sensors and actuators often relying on closed feedback loops [1-3].

D25: Software

Software represents a software component of a CPS. For example, a
software driver controlling a patticular hardware device.

D26: CyberComponent

CyberComponent is a component on which a Software is deployed. For example,
a controller or a computer.

D27:
Computational Component

ComputationalComponent is a CyberComponent tresponsible for performing
computations. For example, a controller.

D28:

CommunicationComponent

CommmunicationComponent is a CyberComponent responsible for communication
among different components. For example, network devices sending and
receiving data.

D29: InterfacingComponent

InterfacingComponent is a component used to interact (monitor or manipulate)
with the environment in which CPS is operating. For example, a sensor or an

actuatof.

D30: PhysicalComponent PhysicalComponent tepresents a physical entity such as an engine or a human
heart.

D31: Topology Topology specifies how different components (e, CyberComponents,

InterfacingComponents, PhysicalComponents) are integrated.

D32: StateVariable

StateV ariable is a vatriable showing the state of the CPS. For example, a
variable representing the room temperature.

D33: External Agent

ExternalAgent represents an external entity such as a human, an external
service or an external system.

D34: PhysicalEnvironment

PhysicalEnvironment represents the environment in which CPS operates.

D35: PhysicalProperty

PhysicalProperty is a property of a PhysicalComponent constituting the
PhysicalEnvironment of the CPS. For example, temperature and humidity level.

D36: ControlledVariable

ControlledV ariable is a PhysicalProperty being controlled. For example,
thermostat’s temperature.

106

D37: MonitoredVariable

MonitoredV ariable is a PhysicalProperty being monitored. For example, room
temperature.

D38: ComponentProperty

ComponentProperty is a property of an InterfacingComponent or a CyberComponent.
For example, the accuracy of a sensor.

Table B-17. Concept definitions of the configuration process conceptual model

Concept Definition and example
D39: ProductConfignration is an activity to detive a MemberProduct trom a ProductLine.
ProductConfiguration
DA40: ConfigurationProcess is a process followed during the ProductConfignration.
ConfigurationProcess
D41: ConfignrationSolution trepresents a configuration tool that assists to petform
ConfigurationSolution ProductConfignration.

D42: ConfigurationStage

ConfignrationStage represents a stage in which a set of related ConfigurableParameters
are configured by specific Stakeholders.

D43: ConfigurationStep

ConfignrationStep represents a step in which one or more ConfigurationDecisions are
made to configure a particular ConfignrableParameter.

D44:
ConfigurationDecision

ConfignrationDecision represents a decision about selecting/assigning a 1Variant to
configure a particular ConfigurableParameter.

D45: Stakeholder

Stakeholder represents a person or a group of persons concerning one or more
ConfigurationDecisions.

Table B-18. Concept definitions for the conceptual model for modeling CPS product lines

Concept

Definition and example

D46: Modelinglanguage

Modelingl angnage tepresents a modeling language used to develop
PILEModels. For example, a Domain-Specific Modeling Language
(e.g., Feature model [36]) or UML profiles (e.g., SimPL [19]).

D47: MetaModelElement

MetaModelElement is a ModelElement constituting the meta-model of a
Modelingl .angnage. For example, a ModelElement representing an
optional feature in the meta-model of feature model.

DA48: SoftwareStructuralModelElement | SofwareStructuralModelElement represents a software component (e.g.,

a software driver for a particular device) or its property (e.g., an
attribute).

D49: HardwareStructuralModelElement | HardwareStructuralMode/lElement tepresents a hardware component

(e.g., network device, sensor, actuator) or its property (e.g., the
accuracy of a sensor).

D50: ContextStructuralModelElement ContextStructuralModelElement — represents an ExternalAgent, a

PhysicalComponent ot a PhysicalProperty ~ constituting the
PhysicalEnvironment with which CPS interacts.

D51: Interaction

Interaction is BebavioralModelElement, which specifies how different
components (e.g., software component, CyberComponent,
InterfacingComponent, PhysicalComponent) interact/communicate with
each other or how CPS interacts with ExternalAgents and
PhystcalEnvironment [20].

D52: ApplicationLevellnteraction Application]_evellnteraction tepresents the Inferaction between

ContextStructuralModelElements and SoftwareS tructuralModelElements or
among SoftwareStructuralModelElements belonging to one physical unit
of CPS. For example, the Interaction of human with a software
application for smart buildings.

D53: InfrastructureLevellnteraction Infrastructurel evellnteraction represents the Inferaction — among

HardwareStructuralModelElements with a direct physical connection
among them. For example, the Interaction of two InterfacingComponents
connected through a network cable.

D54: Integrationlevellnteraction Integrationl evellnteraction trepresents the Inferaction among

107

SoftwareStructuralModelElements, HardwareStructuralModelElements, and
ContextStructuralModelElements where these components either belong
to different physical units of CPS or communicating through
information netwotks. For example, the Inferaction of software
installed on two different InterfacingComponents communicating
through the Internet.

D55: View

View shows one aspect of the PLEMode/ by displaying the related
ModelElements and their relationships.

D56: ContextView

ContextView shows the ContextStructuralModelElements and their
relationships.

D57: SoftwareView

Softwareliew shows the SoftwareStructuralModelElements and their
relationships.

D58: InteractionView

InteractionView shows the Interactions specifying how different
components are interacting or how the CPS is interacting with
ExternalAgents and PhysicalEnvironment.

D59: AllocationView

AllocationView shows the deployment of a Software on
CyberComponents.

D60: SystemView

SystemV7ew is a composite view, which is composed of one
Softwareliew, one to four Hardwareliews, one AllocationView, and one
InteractionV iew.

D61: HardwareView

HardwarelView is an abstract view with four concrete views
MechanicalView, Electricall iew, ElectronicsView, and HydranlicsView to
show the commonalities cotresponding to the
HardwareStructuralModelElements belonging to different disciplines of
CPs.

D62: MechanicalView

Mechanicalliew shows the HardwareStructuralModelElements belonging
to mechanical discipline and their relationships.

D63: ElectricalView

Electricall iew shows the HardwareStructuralModelElements belonging to
electrical discipline and their relationships.

D64: ElectronicsView

ElectroniesView shows the HardwareStructuralModelElements belonging
to electronics discipline and their relationships.

D65: HydraulicsView

HydranlicsView shows the HardwareStructuralModelElements belonging
to hydraulics discipline and their relationships.

D66: VariabilityView

VariabilityView is an abstract view, which can be

Softwarel ariabilityV iew, Hardwarel/ ariabilityView,
AllocationV ariabilityl Gew, InteractionV ariabilityV iew,
DomainVariabilityl iew, ContextVV ariabilityView, or

ApplicationV ariabilityl iew.

D67: ContextVariability View

Contextariabilityliew shows the variabilities corresponding to the
ContextStructuralModelElements that can be resolved at pre-
deployment, deployment, or post-deployment time.

D68: ApplicationVatiabilityView

ApplicationV ariabilityl iew shows the vatiabilities corresponding to a
MemberProduct that can be tesolved at deployment or post-
deployment time only.

D69: SoftwateVariabilityView

Softwarel/ ariabilityliew shows the variabilities corresponding to
Software of CPS that can be resolved at pre-deployment, deployment,
or post-deployment time.

D70: InteractionVariability View

InteractionV ariabilityl iew shows the variabilities corresponding to the
Interaction that can be resolved at pre-deployment time.

D71: AllocationVatiabilityView

AllocationV ariabilityl iew shows the vatiabilities corresponding to the
deployment of a Software on a CyberComponent, which can be resolved
at pre-deployment or deployment time.

108

D72: HardwateVariability View

Hardwarel/ ariabilityView is an abstract view with four concrete views
Mechanicall ariabilityl iew, Electricall ariabilityV iew,
ElectronicsV ariabilityV'iew, and HydraulicsV ariabilityl iew to show the
variabilities cortesponding to the HardwareStructuralModelElements
belonging to different disciplines of CPS.

D73: MechanicalVariabilityView

Mechanicall ariabilityView shows the variabilities corresponding to the
HardwareStructuralModelElements belonging to mechanical discipline
that can be resolved at pre-deployment time.

D74: Electrical Variability View

Electricall ariability) e shows the variabilities corresponding to the
HardwareStructuralModelElements belonging to electrical discipline that
can be resolved at pre-deployment time.

D75: ElectronicsVariabilityView

ElectronicsV ariabilityl iew shows the variabilities corresponding to the
HardwareStructuralModelElements belonging to electronics discipline
that can be resolved at pre-deployment time.

D76: HydraulicsVariability View

Hydranlics\ ariabilityl 7ew shows the variabilities cotresponding to the
HardwareStructuralMode/Elements belonging to hydraulics discipline
that can be resolved at pre-deployment time.

D77: DomainVariability View

Domain\V ariabilitylView is a composite view, which is composed of
one Softwarel ariabilityl 7w, one to four Hardwarel ariabilityl 7ew, and
optionally one AlocationV ariabilityl iew and Interaction ariabilityl 7ew.

Table B-19. Definitions of CPS-specific VP types

CPS-Specific VP Type

Definition and Example

D78: Descriptive-VP

Descriptive-VP is a S#ingl P, which requites setting a value in order to
configure it. It can be defined for a textual ComponentProperty such as
ID of a sensor or IP address of a sensor.

D79: DiscreteMeasurement-VP

DiscreteMeasurement-VP is an Integer]l’P, which can be defined for a
discrete numeric ComponentProperty (e.g., data transmissions per second
for a sensor) or PhysicalProperty (e.g., the number of heartbeats per
second) of CPS.

D80: ContinuousMeasurement-VP

ContinuousMeasurement-VP is a Rea/l”P, which can be defined for a
continuous numetic ComponentProperty (e.g., error in the measurement
of a sensor) ot PhysicalProperty (e.g., length and weight of a
PhysicalComponent) of CPS.

D81: BinaryChoice-VP

BinaryChoice-VP is a Binaryl”P, which can be defined for a Boolean
ComponentProperty (e.g., whether a sensor keeps the events’ log) or
PhysicalProperty (e.g., the presence of a magnetic field) of CPS.

D82: PropertyChoice-VP

PropertyChoice-VP is a Nowina/l’P or an Ordina/l’P that requires
selecting one value from a list of pre-defined values. PropertyChoice-
VP can be defined for a ComponentProperty (e.g., connectionType with
three possible values wired, 3G, and Wi-Fi) or a PhysicalProperty (e.g.,
different ranges for humidity level) of CPS.

D83: MeasurementUnitChoice-VP

MeasurementUnitChoice-VP is an Ordinal/l P, which is detived from
the unit of PhysicalProperty and ComponentProperty. For example, one can
select meter, centimeter or millimeter as a unit for length.

D84: MeasurementPrecision-VP

MeasurementPrecision-VP is a Rea/l’P, which is related to the degree
of measurement precision for a PhysicalProperty or a ComponentProperty.

For example, £0.0001 is an error in the measurement of a sensor.

D85: Multipatt/ Compound-VP

Multipart/Compound-VP is a Compoundl/P, which can be specified
for a PhysicalProperty, ComponentProperty, CyberComponent,
InterfacingComponent, or PhysicalComponent that requites configuring
several constituent [VariationPoints involved in it. For example, a
Compound-VP with two VariationPoints length and its unit.

D86: ComponentCardinality-VP

ComponentCardinality-VP is an Integerl P, which is related to varying

109

the number of instances of a CyberComponent, InterfacingComponent, ot
PhysicalComponent. For example, the number of temperature sensors.

D87: ComponentCollectionBoundary-
VP

ComponentCollectionBoundary-VP is an Inzegerl P, which is related to
the upper limit and/or the lower limit of a collecton of
CyberComponent, InterfacingComponent, and/or PhysicalComponent. Fot
example, the maximum and minimum numbers of sensors supported
by a controller.

D88: ComponentChoice-VP

ComponentChoice-VP is a Nominal/l’P or an Ordinal/l’P, which is
about selecting a particular type of CyberComponent, InterfacingComponent,
ot PhysicalComponent. For example, selecting a speedometer sensor
from several speedometers with various specifications.

D89: ComponentSelection-VP

ComponentSelection-VP is a Collection]”P, which is about selecting a
subset of CyberComponent, InterfacingComponent, ot/and PhysicalCongponent
from a collection of components. For example, selecting sensors for a
MemberProduct from available sensors.

D90: TopologyChoice-VP

TopologyChoice-VP is a Nominall’P, which is related to selecting a
Topology from several alternatives. For example, how controllers are
connected with different sensors and actuators.

DI91: AllocationChoice-VP

AllocationChoice-VP is a Nominal/l P, which is about the deployment
of Software on a CyberComponent (e.g., controller). For example, the
same version of Soffware can be deployed on different controllers or
different versions of Soffware can be deployed on the same controller.

D92: InteractionChoice-VP

InteractionChoice-VP is a Nominall’P, which is about selecting an
alternative for the Interaction specifying how different components
involved in the Inferaction will interact/communicate with each other.

D93: ConstraintSelection-VP

ConstraintSelection-VP is a Collection]’P, which is about selecting a
subset of constraints for a specific MemberProduct from a set of
constraints defined in the ProductLine.

10 Appendix B: OCL Constraints

Table B-20. OCL constraints for conceptual model of PLE (Figure B-2)

Cl: context ApplicationArchitecture inv:
self.plLEModels->forAll (a:PLEModel |a.scope=PLEScope: :Application or
a.scope=PLEScope::Context) and self.type=AssetType::Requirement implies self.pLEModels-
>forAll (a:PLEModel |a.modelLevel=DevelopmentPhase: :Requirement) and
self.type=AssetType::Architecture implies self.pLEModels-

>forAll (a:PLEModel |a.modelLevel=DevelopmentPhase: :Design) and
self.type=AssetType::Implementation implies self.pLEModels-

>forAll (a:PLEModel |a.modelLevel=DevelopmentPhase: :Implementation) and
self.type=AssetType::TestCase implies self.pLEModels-

>forAll (a:PLEModel |a.modelLevel=DevelopmentPhase: :Testing) and self.pLEModels-

>forAll (a:PLEModel |a.oclIsTypeOf (ResolutionModel))

Description: The scope of a PLE model representing application architecture should be application and/or context. Also, all the model
elements in the PLE model belong to the same development phase (e.g., requirements) as the application architecture.

C2: context DomainArchitecture inv:
self.plLEModels->forAll (a:PLEModel |a.scope=PLEScope: :ProductLine or
a.scope=PLEScope::Context) and self.type=AssetType::Requirement implies self.pLEModels-
>forAll (a:PLEModel |a.modelLevel=DevelopmentPhase: :Requirement) and
self.type=AssetType::Architecture implies self.pLEModels-

>forAll (a:PLEModel |a.modelLevel=DevelopmentPhase: :Design) and
self.type=AssetType::Implementation implies self.pLEModels-

>forAll (a:PLEModel |a.modelLevel=DevelopmentPhase: :Implementation) and
self.type=AssetType::TestCase implies self.pLEModels-

>forAll (a:PLEModel |a.modelLevel=DevelopmentPhase: :Testing) and self.pLEModels-

>forAll (a:PLEModel |a.oclIsTypeOf (VariabilityModel) or a.oclIsTypeOf (BaseModel))
Description: The scope of a PLE model representing domain architecture should be product line. Also, all the model elements in the PLE
model belong to the same development phase (e.g., requirements) as the domain architecture.

C3: context ResolutionModel inv:

self.isPartiallyResolved implies self.hasVariability and not self.isPartiallyResolved
implies not self.hasVariability and not self.isPartiallyResolved implies
self.configurationFiles->forAll (a:ConfigurationFile|a.integrality=IntegralityType::Complete)
and self.configurationFiles->forAll (a:ConfigurationFilela.level=self.modellevel)

110

Description: A partially resolved resolution model has unresolved variabilities whereas a fully resolved resolution model has no unresolved
variabilities. Furthermore, configuration files for a fully resolved resolution model should be completed and belong to the same development
phase as the resolution model itself.

C4: context PLEModel inv:

self.oclIsTypeOf (BaseModel) implies not self.hasVariability and

self.oclIsTypeOf (VariabilityModel) implies self.hasVariability and
(self->selectByKind(VariabilityModel)->size () =self-

>selectByKind (BaseModel) .variabilityModel->size ())and (self->selectByKind (ResolutionModel) -
>size ()=self->selectByKind (VariabilityModel) .resolvedModel->size())

Description: In a product line, variability models are defined for a base model whereas resolution models are defined for variability models.

The variabilities are defined in variability models only.

C5: context VariationPoint inv:

((self.type.oclIsTypeOf (Integer) or self.type.oclIsTypeOf (Real) or
self.type.oclIsTypeOf (String)) implies self.variants->size()=0) and (not
(self.type.oclIsTypeOf (Integer) or self.type.oclIsTypeOf (Real) or
self.type.oclIsTypeOf (String)) implies self.variants->size()>0)

Description: A list of variants is defined for all variation points except for Integer, Real, and String type variation points.

Table B-21.0CL constraints for conceptual model of configuration process (Figure B-5)

C6: context ConfigurationProcess inv:

self.isMultiStage implies self.configurationStage->size()>1 and self.islInteractive implies
self->exists (self.configurationStage->exists (self.configurationStage.configurationStep-
>exists (self.configurationStage.configurationStep.stakeholders->size()>0))) and
(self.automation=AutomationType: :Manual implies self.productConfiguration.configurationData-
>forAll (d:ConfigurationDatal|not d.isAutoGenerated)) and

(self.automation=AutomationType: :FullyAutomated implies
self.productConfiguration.configurationData->forAll (d:ConfigurationData|d.isAutoGenerated))
and (self.automation=AutomationType::SemiAutomated implies
(self.productConfiguration.configurationData->select (d:ConfigurationData|not
d.isAutoGenerated)->size () >0 and self.productConfiguration.configurationData-

>select (d:ConfigurationData|d.isAutoGenerated)->size()>0)) and self.isInteractive implies
(self.automation=AutomationType: :Manual or self.automation=AutomationType::SemiAutomated)
and self.isIncremental implies self.configurationStage->size()>1

Description: An interactive and incremental multi-stage configuration process has more than one stage and at least one stakeholder where the
configuration is performed manually or semi-automatically. In a fully automated (manually) configuration process, all configuration decisions
are made automatically (manually) whereas in a semi-automated configuration process some configuration decisions are made manually and
others automatically.

C7: context ConfigurationFile inv:

self.integrality=IntegralityType::Partial implies self.configurationData-
>exists(a:ConfigurationData|a.value=null) and self.integrality=IntegralityType::Complete
implies self.configurationData->forAll (a:ConfigurationDatala.value<>null)

Description: A partially completed configuration file has configuration data with null values whereas competed ones do not have configuration

data with null values.

C8: context ConfigurationDecision inv:

self.isInferred implies self.configurationData-

>forAll (a:ConfigurationDatala.isAutoGenerated) and not self.isInferred implies
self.configurationbData->forAll (a:ConfigurationData|not a.isAutoGenerated)
Description: The configuration data for inferred configuration decisions are automatically generated only.

Table B-22. OCL constraints for conceptual model for modeling CPS product lines (Figure B-7)

C9: context PLEModel inv:
(self.oclIsKindOf (VariabilityModel) or self.oclIsKindOf (ResolutionModel) or
self.oclIsKindOf (BaseModel)) implies self.modelElements-
>selectByType (WellFormednessConstraint)->size ()=0 and
self.modelElements->selectByType (MetaModelElement)->size ()=0 and
self.oclIsTypeOf (VariabilityModel) implies self.views-
>forAll (ala.oclIsTypeOf (VariabilityView)) and self.oclIsTypeOf (BaseModel) implies self.views-
>forAll (b|not b.oclIsTypeOf (VariabilityView)) and (self.modelElements-
>selectByKind (SoftwareStructuralModelElement)->size () >0 implies self.views-
>selectByKind (SoftwareView)->size () >0) and (self.modelElements-
>selectByKind (HardwareStructuralModelElement)->size () >0 implies self.views-
(
(

>selectByKind (HardwareView) ->size () >0) and (self.modelElements-

>selectByKind (ContextStructuralModelElement)->size () >0 implies self.views-

>selectByKind (ContextView) ->size () >0) and (self.modelElements->selectByKind(Interaction)-
>size () >0 implies self.views->selectByKind(InteractionView)->size()>0) and
(self.modelElements->selectByKind (SoftwareStructuralModelElement) -

>one (s:SoftwareStructuralModelElement |s.VP->size () >0) implies self.views-

>selectByKind (SoftwareVariabilityView)->size ()>0) and (self.modelElements-

>selectByKind (HardwareStructuralModelElement) ->one (s:HardwareStructuralModelElement |s.VP-
>size ()>0) implies self.views->selectByKind(HardwareVariabilityView)->size()>0) and
(self.modelElements->selectByKind (ContextStructuralModelElement) -

>one (s:ContextStructuralModelElement|s.VP->size () >0) implies self.views-

>selectByKind (ContextVariabilityView)->size()>0) and (self.modelElements-

>selectByKind (Interaction)->one(s:Interaction|s.VP->size()>0) implies self.views-

111

>selectByKind (InteractionVariabilityView)->size ()>0) and (self.modelElements-

>one (s:ModelElement|s.VP->size () >0 and s.VP.scope=PLEScope::Application) implies self.views-
>selectByKind (ApplicationVariabilityView)->size ()>0)

Description: A PLE model can be a base model, variability model, or resolution model and these models have no well-formedness constraints or
meta-model elements. The variability model has variability views and the base model has other non-variability views. If a PLE model has a specific
type of model elements (e.g., SoftwareStructuralModelElement, Interaction) then the model should have corresponding views (SoftwareView,
InteractionView). Similarly, if we have variation points corresponding to a specific model element then the model should have variability views
(e.g., SoftwareVariabilityView, InteractionVariabilityView).

Cl0: context View inv:

self.oclIsKindOf (ContextVariabilityView) implies (self.modelElements-

>forAll (ala.oclIsKindOf (VariationPoint)) and self.modelElements->selectByKind (VariationPoint) -
>forAll (a:VariationPoint|a.modelElement.oclIsKindOf (ContextStructuralModelElement))) and
(self.oclIsKindOf (ApplicationVariabilityView) or self.oclIsKindOf (SoftwareVariabilityView))
implies (self.modelElements->forAll (ala.oclIsKindOf (VariationPoint)) and self.modelElements-
>selectByKind (VariationPoint) -

>forAll (a:VariationPoint|a.modelElement.oclIsKindOf (SoftwareStructuralModelElement))) and
self.oclIsKindOf (InteractionVariabilityView) implies (self.modelElements-

>forAll (a]la.oclIsKindOf (VariationPoint)) and self.modelElements->selectByKind (VariationPoint) -
>forAll (a:VariationPoint|a.modelElement.oclIsKindOf (Interaction))) and

self.oclIsKindOf (HardwareVariabilityView) implies (self.modelElements-

>forAll (ala.oclIsKindOf (VariationPoint)) and self.modelElements->selectByKind (VariationPoint) -
>forAll (a:VariationPoint|a.modelElement.oclIsKindOf (HardwareStructuralModelElement))) and
self.oclIsKindOf (AllocationVariabilityView) implies (self.modelElements-

>forAll (ala.oclIsKindOf (VariationPoint)) and self.modelElements->selectByKind (VariationPoint) -
>forAll (a:VariationPoint|a.modelElement.oclIsKindOf (HardwareStructuralModelElement) or
a.modelElement.oclIsKindOf (SoftwareStructuralModelElement))) and

self.oclIsKindOf (DomainVariabilityView) implies self.modelElements->size()=0 and

not self.oclIsKindOf (VariabilityView) implies self.modelElements->forAll (a|not

a.oclIsKindOf (VariationPoint)) and self.oclIsKindOf (ContextView) implies self.modelElements-
>forAll (ala.oclIsKindOf (ContextStructuralModelElement)) and self.oclIsKindOf (InteractionView)
implies self.modelElements->forAll (a|a.oclIsKindOf (BehavioralModelElement) or

a.oclIsKindOf (StructuralModelElement)) and self.oclIsKindOf (SoftwareView) implies
self.modelElements->forAll (ala.oclIsKindOf (SoftwareStructuralModelElement)) and
self.oclIsKindOf (HardwareView) implies self.modelElements-

>forAll (ala.oclIsKindOf (HardwareStructuralModelElement)) and self.oclIsKindOf (MechanicalView)
implies self.modelElements-

>forAll (ala.oclAsType (HardwareStructuralModelElement) .discipline=Discipline::Mechanical) and
self.oclIsKindOf (ElectricalView) implies self.modelElements-

>forAll (ala.oclAsType (HardwareStructuralModelElement) .discipline=Discipline::Electrical) and
self.oclIsKindOf (ElectronicsView) implies self.modelElements-

>forAll (ala.oclAsType (HardwareStructuralModelElement) .discipline=Discipline::Electronics) and
self.oclIsKindOf (HydraulicsView) implies self.modelElements-

>forAll (ala.oclAsType (HardwareStructuralModelElement) .discipline=Discipline: :Hydraulics) and
self.oclIsKindOf (MechanicalVariabilityView) implies (self.modelElements-

>forAll (ala.oclIsKindOf (VariationPoint)) and self.modelElements->selectByKind (VariationPoint) -
>forAll (a:VariationPoint|a.modelElement.oclAsType (HardwareStructuralModelElement) .discipline=D
iscipline::Mechanical)) and

self.oclIsKindOf (ElectricalVariabilityView) implies (self.modelElements-

>forAll (ala.oclIsKindOf (VariationPoint)) and self.modelElements->selectByKind (VariationPoint) -
>forAll (a:VariationPoint|a.modelElement.oclAsType (HardwareStructuralModelElement) .discipline=D
iscipline::Electrical)) and

self.oclIsKindOf (ElectronicsVariabilityView) implies (self.modelElements-

>forAll (ala.oclIsKindOf (VariationPoint)) and self.modelElements->selectByKind (VariationPoint) -
>forAll (a:VariationPoint|a.modelElement.oclAsType (HardwareStructuralModelElement) .discipline=D
iscipline::Electronics)) and

self.oclIsKindOf (HydraulicsVariabilityView) implies (self.modelElements-

>forAll (ala.oclIsKindOf (VariationPoint)) and self.modelElements->selectByKind (VariationPoint) -
>forAll (a:VariationPoint|a.modelElement.oclAsType (HardwareStructuralModelElement) .discipline=D
iscipline::Hydraulics)) and self.oclIsTypeOf (ApplicationVariabilityView) implies
self.modelElements->selectByKind (VariationPoint) -

>forAll (a:VariationPoint|a.VP.scope=PLEScope: :Application and

a.VP.bindingTime<>BindingTime: :PreDeployment) and self.oclIsKindOf (AllocationView) implies
self.modelElements->forAll (ala.oclIsKindOf (HardwareStructuralModelElement) or

a.oclIsKindOf (SoftwareStructuralModelElement))

Description: It ensures that correct (with respect to domain, PLE scope, and variability) type of model elements are presented in the views. For
example, ContextVariabilityView should have only variation points defined corresponding to ContextStructuralModelElements. Abstract views
(e.g., DomainVariabilityView) should not have model elements.

Cll: context SystemView inv:

self.hardwareView->selectByType (MechanicalView)->size ()<2 and self.hardwareView-
>selectByType (ElectronicsView) ->size () <2 and self.hardwareView->selectByType (ElectricalView) -
>size ()<2 and self.hardwareView->selectByType (HydraulicsView)->size ()<2

Description: System view can have a maximum of one view for each domain (e.g., Electronics, Hydraulics).

Cl2: context DomainVariabilityView inv:
self.hardwareVariabilityView->selectByType (MechanicalVariabilityView)->size ()<2 and
self.hardwareVariabilityView->selectByType (ElectronicsVariabilityView)->size()<2 and

112

self.hardwareVariabilityView->selectByType (ElectricalVariabilityView)->size ()<2 and
self.hardwareVariabilityView->selectByType (HydraulicsVariabilityView)->size ()<2
Description: Domain variability view can have a maximum of one vatiability view for each domain (e.g., Electronics, Hydraulics).

Cl3: context VariationPoint inwv:

self.scope=PLEScope::Context implies

self.modelElement.oclIsKindOf (ContextStructuralModelElement) and

self.scope=PLEScope: :Application implies

self.modelElement.oclIsKindOf (SoftwareStructuralModelElement) and

(self.type.oclIsTypeOf (Integer) or self.type.oclIsTypeOf (Real)) implies (self.lowerLimit-
>size ()=1 and self.upperLimit->size()=1) and (not (self.type.oclIsTypeOf (Integer) or
self.type.oclIsTypeOf (Real))) implies (self.lowerLimit->size()=0 and self.upperLimit-
>size ()=0)

Description: The PLE scope (i.e., context, application, product line) of the variation points should be the same as the corresponding model
elements. For integer and real type variation points only, lower and upper limits must be defined.

Cl4: context Interaction inwv:

self.isHomogeneous implies ((self.source-

>forAll (a]la.oclIsKindOf (SoftwareStructuralModelElement)) and self.target-

>forAll (ala.oclIsKindOf (SoftwareStructuralModelElement))) or (self.source-

>forAll (ala.oclIsKindOf (HardwareStructuralModelElement)) and self.target-

>forAll (ala.oclIsKindOf (HardwareStructuralModelElement)) and self.source-

>collect (ala.oclAsType (HardwareStructuralModelElement) .discipline)->asSet ()=self.target-
>collect (ala.oclAsType (HardwareStructuralModelElement) .discipline)->asSet ()and self.source-
>collect (ala.oclAsType (HardwareStructuralModelElement) .discipline)->asSet () ->size()=1) or
(self.source->forAll (ala.oclIsKindOf (ContextStructuralModelElement)) and self.target-
>forAll (ala.oclIsKindOf (ContextStructuralModelElement)))) and not self.isDirect implies
self.interaction->size()>0 and self.isDirect implies self.interaction->size()=0 and
self.oclIsTypeOf (ApplicationlLevellInteraction) implies ((self.source-

>forAll (ala.oclIsKindOf (SoftwareStructuralModelElement) or

a.oclIsKindOf (ContextStructuralModelElement))) and (self.target -
>forAll (ala.oclIsKindOf (SoftwareStructuralModelElement) or
a.oclIsKindOf (ContextStructuralModelElement))) and (self.source->union (self.target)-

>includes (SoftwareStructuralModelElement)))and

self.oclIsTypeOf (InfrastructurelLevelInteraction) implies ((self.source-

>forAll (ala.oclIsKindOf (HardwareStructuralModelElement))) and (self.target -

>forAll (ala.oclIsKindOf (HardwareStructuralModelElement))) and (self.isDirect)) and
self.oclIsTypeOf (IntegrationLevelInteraction) implies ((self.source-

>forAll (ala.oclIsKindOf (SoftwareStructuralModelElement) or

a.oclIsKindOf (HardwareStructuralModelElement) or

a.oclIsKindOf (ContextStructuralModelElement))) and (self.target -

>forAll (ala.oclIsKindOf (SoftwareStructuralModelElement) or

a.oclIsKindOf (HardwareStructuralModelElement) or

a.oclIsKindOf (ContextStructuralModelElement))))

Description: A homogenous interaction means that both source and target elements are of the same type. Direct interactions do not have
intermediate interactions. In application-level interaction, the source and target elements are software or contextual structural elements whereas in
infrastructure level interaction they can be only hardware elements. Furthermore, infrastructure level interactions are always direct. In the case of
integration level interactions, source and target elements can be software, hardware, or contextual structural elements.

Cl5: context VariabilityModel inv:

self.scope=PLEScope: :ProductlLine implies self.modelElements-

>forAll (ala.oclAsType (VariationPoint) .scope=PLEScope: :ProductLine) and

self.scope=PLEScope: :Application implies self.modelElements-

>forAll (ala.oclAsType (VariationPoint) .scope=PLEScope: :Application) and
self.scope=PLEScope::Context implies self.modelElements-

>forAll (ala.oclAsType (VariationPoint) .scope=PLEScope: :Context)

Description: All the variation points in a variability model should have the same scope as the variability model itself (e.g., product line,
application or context)

Cl6: context ResolutionModel inv:

self.isPartiallyResolved implies self.hasVariability and not self.isPartiallyResolved implies
not self.hasVariability and self.isPartiallyResolved implies self.configurationFiles-

>exists (a:ConfigurationFile|a.integrality=IntegralityType::Partial) and not
self.isPartiallyResolved implies self.configurationFiles-

>forAll (a:ConfigurationFile|a.integrality=IntegralityType::Complete) and
self.configurationFiles->forAll (a:ConfigurationFile|a.level=self.modellevel)

Description: Partially resolved resolution model must have unresolved variabilities and at least one configuration file that is not complete. Also,
all configuration files and resolution model should belong to the same phase of the development lifecycle.

Cl7: context ConfigurableParameter inv:

self.status=ConfigurationStatus::Configured implies (self.selectedVariant->size()=1 and
self.configurationData->size()=1) and self.status=ConfigurationStatus::Unconfigured implies
(self.selectedVariant->size ()=0 and self.configurationData->size ()=0)

Description: Only a configurable parameter that is configured must have one selected variant and one configuration data.

Cl8: context Constraint inv:

self.constrainedElements->forAll (a:ModelElement |not a.oclIsKindOf (Constraint)) and
self.oclIsTypeOf (WellFormednessConstraint) implies self.constrainedElements-
>forAll (a:ModelElement |a.oclIsKindOf (MetaModelElement)) and

not self.oclIsTypeOf (WellFormednessConstraint) implies self.constrainedElements-
>forAll (a:ModelElement |not a.oclIsKindOf (MetaModelElement))

113

Description: All constraints except well-formedness constraints are defined on model elements (except constraint and meta-model elements)
whereas well-formedness constraints are defined on meta-model elements.

Table B-23. OCL constraints for conceptual model of basic data types (Figure B-8) [16]

Cl9: context Array, Set (Sequence, OrderedSet) inv:

(self.constantElements->size ()=0 and self.variableElements-

>select (ala.oclIsKindOf (Collection))->size ()=0 and self.variableElements-

>forAll (a,bla.type=b.type)) or (self.variableElements->size()=0 and self.constantElements-
>forAll (a,bla.type=b.type)) or (self.constantElements->size()=0 and self.variableElements-
>size ()=self.variableElements->select (a:Variable|a.type.oclIsKindOf (Collection))->size ()and
self.variableElements->forAll (vl, v2| (vl.type.oclAsType (Collection).constant Elements-
>size ()=0 and vl.type.oclAsType (Collection) .variableElements->forAll (v3:Variable
|v3.type=v2.type.oclAsType (Collection) .variableElements->asSequence () ->first () .type)) or
(vl.type.oclAsType(Collection).variableElements->size()=0 and
vl.type.oclAsType (Collection) .constantElements-

>forAll (v3:Constant |v3.type=v2.type.oclAsType (Collection) .constantElements->asSequence () -
>first().type))))

Description: The elements in the array, set, sequence, and ordered set are homogenous and they can be vatiables, constants, or collections.
C20: context Record (Set, OrderedSet) inv:

self.variableElements->select (self.variableElements->forAll (a,bla=b))->isEmpty()and
self.constantElements->select (self.constantElements->forAll (a,bla=b))->isEmpty ()

Description: The elements in the record, set, and ordered sets are unique.

C21: context Sequence inv:

self.variableElements->asSet () ->size()>1 implies self.variableElements->asSequence () -
>reverse () <> self.variableElements->asSequence ()

Description: The elements in the sequence are not unique but they have a specific order.

C22: context OrderedSet inv:

self.variableElements->asOrderedSet () ->reverse () <> self.variableElements->asOrderedSet ()and
self.constantElements->asOrderedSet () ->reverse () <> self.constantElements->asOrderedSet ()
Description: The elements in the ordered set are unique and have a specific order.

Table B-24. OCL constraints for constraints classification (Figure B-10)

C23: context Constraint inv:

self.isHardConstraint implies self.evaluationResult and
self.source=InternalTypes::Source: :Mined implies not self.isHardConstraint and
self.source=InternalTypes::Source: :EnforcedByDevelopmentProcess implies
self.isHardConstraint and self.constrainedElements-

>forAll (ala.oclIsTypeOf (VPClassification::VPTypes::VariationPoint) or
a.oclIsTypeOf (PLE: :Variant) or a.oclIsTypeOf (Modeling::MetaModelElement)) and
self.oclIsTypeOf (WellFormednessConstraint) implies self.constrainedElements-

>forAll (a]la.oclIsKindOf (Modeling: :MetaModelElement)) and

not self.oclIsTypeOf (WellFormednessConstraint) implies self.constrainedElements-

>forAll (a|not a.oclIsKindOf (Modeling::MetaModelElement))

Description: A hard constraint must be true. Mined constraints are soft constraints whereas constraints enforced by the development process
are hard constraints. Well-formedness constraints are defined on meta-model elements whereas other types of constraints are defined on
variations points and their variants.

C24: context ConfigurationConstraint inv:

not self.source<>Source: :DerivedFromModelingLanguage

Description: ConfigurationConstraints can be originated from different sources (e.g., user defined, mined, detived from system
specifications) except for the modeling language.

C25: context WellFormednessConstraint inv:

(self.source=Source: :UserDefined or self.source=Source::DerivedFromModelingLanguage) and
self.owningPhase->size ()=0 and self.level=WellFormednessConstraintLevel::VariabilityModel
Description: WellformednessConstraints are hard constraints derived from the modeling language. Such constraints are applied on variability
model and they do not belong to a particular phase of development lifecycle.

C26: context ConformanceConstraint inv:

(self.source=Source: :UserDefined or self.source=Source::DerivedFromSystemSpecifications or
self.source=Source: :DerivedFromModelingLanguage) and self.isHardConstraint

Description: ConformanceConstraints are hard constraints which can be either user defined or derived from system specifications and the
modeling language.

C27: context ConsistencyConstraint inv:

self.isHardConstraint and (self.source=Source::UserDefined or

self.source=Source: :DerivedFromSystemSpecifications) and self.owningPhase->size()=0 and
self.atView=ConstrainingView: :WithinView implies self.constrainedElements-

>forAll (a:ModelElement, b:ModelElement|a.view=b.view) and
self.atView=ConstrainingView::CrossView implies (self.constrainedElements-

>exists (a:ModelElement, b:ModelElement|a.view<>b.view)) and

self.atModel=ConstrainingModel: :IntraModel implies self.constrainedElements-

>forAll (a:ModelElement, b:ModelElement|a.pLEModel=b.pLEModel) and self.
atModel=ConstrainingModel: :InterModel implies self.constrainedElements-

>exists (a:ModelElement, b:ModelElement|a.pLEModel<>b.pLEModel)

Description: ConsistencyConstraints are hard constraints which are either user defined or derived from system specifications and they do not

belong to a particular phase of development lifecycle. Furthermore, the scope of the consistency constraints can be specified based on two

114

properties ConstrainingView and atModel.

C28: context DecisionOrderingConstraint inwv:

self.isHardConstraint and self.owningPhase->size ()=0

Description: DecisionOrderingConstraints are hard constraints which do not belong to a particular phase of development lifecycle.

C29: context DecisionInferenceConstraint inv:

(self.source=Source: :EnforcedByDevelopmentProcess) and self.isHardConstraint

Description: DecisionInferenceConstraints are hard constraints enforced by the development process.

C30: context OptimizationConstraint inv:

not self.isHardConstraint and (self.source=Source::UserDefined or self.source=Source::Mined
or self.source=Source::DerivedFromSystemSpecifications)

Description: OptimizationConstraints are soft constraints and they are either user defined, mined, or derived from the system specifications.

Table B-25. OCL constraints for functionalities (Figure B-11)

C31: context ConflictDetection inwv:

self.constraints->forAll (alnot a.oclIsKindOf (OptimizationConstraint)) and self.constraints-
>forAll (a:Constraint|a.isHardConstraint) and self.debugging.violations -

>forAll (a:Violation|a.violationType=ConstraintType::ConflictingConstraints)

Description: ConflictingConstraints type violation will occur if there is a conflict only when all the constraints are hard constraints and none of
them is OptimizationConstraint.

C32: context Violation inv:

self.violationType=ConstraintType::ConflictingConstraints implies self.violatedConstraints-
>size ()>1 and self.violationType<>ConstraintType::ConflictingConstraints implies
self.violatedConstraints->size ()=1 and
self.violationType=ConstraintType::ConflictingConstraints implies self.causingParameters-
>size ()=0 and self.violationType<>ConstraintType::ConflictingConstraints implies
self.causingParameters->size () >0

Description: ConflictingConstraints type violation involves more than one constraint and no configurable parameter whereas other types of
violations involve one constraint and at least one configurable parameter causing the violation.

C33: context ResolvingViolation inv:
self.violations->forAll (a:Violation|a.violationType<>ConstraintType::ConflictingConstraints)
Description: ResolvingViolation ensures that there are no conflicting constraints.

C34: context ConformanceChecking inv:

self.debugging.violations-

>forAll (a:Violation|a.violationType=ConstraintType::ConformanceConstraint)
Description: ConformanceChecking checks only violations related to conformance constraints.

C35: context WellFormednessChecking inv:

self.debugging.violations-

>forAll (a:Violation|a.violationType=ConstraintType: :WellFormednessConstraint)
Description: WellFormednessChecking checks only violations related to well-formedness constraints.

C36: context ConsistencyChecking inv:

self.debugging.violations-

>forAll (a:Violation|a.violationType=ConstraintType: :ConsistencyConstraint)
Description: ConsistencyChecking checks only violations related to consistency constraints.

C37: context RedundancyDetection inv:
self.scope=RedundancyDetectionScope::InterConfigurationFiles implies
self.configurationFiles->size()>1 and
self.scope=RedundancyDetectionScope::IntraConfigurationFile implies self.configurationFiles-
>size ()=1

Description: RedundancyDetection checks redundancy within one configuration file if scope is IntraConfigurationFile otherwise within more

than one configuration files.

C38: context Change inv:
self.model.oclIsKindOf (VariabilityModel) or self.model.oclIsKindOf (ResolutionModel)
Description: A change occurs either in the variability model or resolution model.

C39: context RevertingDecision inwv:

self.debugging.wellFormednessChecking->size ()=0 and self.debugging.conformanceChecking-
>size ()=0 and

self.debugging.conflictDetection->size ()=0 and self.debugging.redundancyDetection->size ()=0
and self.debugging.incompletenessDetection->size ()=0

Description: Reverting a configuration decision should not cause any violation (e.g., related to incompleteness, conformance,
wellformedness, redundancy, conflicts).

C40: context DecisionInference inv:

self.debugging.resolvingViolation->size ()=0 and self.debugging.conflictDetection->size ()=0
and self.debugging.redundancyDetection->size()=0 and self.debugging.incompletenessDetection-
>size ()=0

Description: Inferred configuration decisions should not cause any violation (e.g., related to incompleteness, redundancy, conflicts).

C41l: context ConfigurationOptimization inwv:

self.debugging.wellFormednessChecking->size ()=0 and self.debugging.resolvingViolation-

>size ()=0 and self.debugging.conflictDetection->size ()=0 and
self.debugging.redundancyDetection->size ()=0 and self.debugging.incompletenessDetection-
>size ()=0

Description: Configuration optimization should not cause any violation (e.g., related to incompleteness, well-formedness, redundancy,
conflicts).

115

11 Appendix C: Formal Definitions of Constraints

In this section, we present the formal definitions of eight types of Constraint presented in Section 4.3. To formalize
each type of the Constraint in Appendix C and functionalities of an automated ConfignrationSolution in Appendix D, we
define some basic notations corresponding to the concepts (classes, attributes, and roles) presented in Figure B-2,
Figure B-5, and Figure B-7, as follow:

First, we clarify the notations that we used to access the different concepts presented in the conceptual models
(Figure B-2, Figure B-5, and Figure B-7) and then we define the notations used to formalize Constraint types (and
functionalities of ConfignrationSolution). Let C; and C, be two classes in the conceptual model, where C; has a
relationship (i.e., bidirectional association, unidirectional association, composition, and aggregation) with C, with role
name 7. Class C; and C, have attribute a; and a, respectively. Then, to access a,, 7, and a, from class C;, we use
notations (C;.a,), (C;.1), and (C;.7.a,) respectively. Notation A := B represents an assignment operation whete
B is assigned to A. Similarly, A = B represents equality operation (i.e., A is equal to B) and A - B shows implies
relationship where A implies B.

Let PL be a Producfline containing nvp VariationPoints, VP = {vp1,Vpy,.., VPpyp} . For each vp; ,
VA; = {Vi1,Viz) -+, Viny } is a set of possible Variants and cpyj is a ConfigurableParameter (i.e., an instance of
VariationPoint vp;). CPyc = {cPi1, CPis -, COine } is a set of configured ConfigurableParameters for vp; such that
V cp;j € CPyc, (cp;j- status = Configured A (cp;;. selectedVariant = vi) A (vs € VA A
(cpjj- cd. status = Valid)), where cp;;.cd represent the ConfigurationData corresponding to cp;jand vy is the
Variant assigned/selected to configure ¢p;; . CPyyc = {CPpic+1, CPnic+2s++» CPinuc} is a set of un-configured
ConfigurableParameters for vp; such that V cpy, € CPyy¢, (cpy. status = Unconfigured). If vp; is not instantiated
yet, then |CPi;| =|CPyyc|l =@ . Let Instance(vp;) be a function that instantiates Up; and returns a
ConfigurableParameter Cpy;.

Let P be a partially configured MemberProduct of PL and RM 1is the ResolutionMode! corresponding to
MenberProduct P containing ncp ConfignrableParameters such that RM = {CP. U CPy; }, where CP; = {CP,;; U
CPyc U ..U CPyypc} and CPyc = {CPyyc U CPyyc U ..U CPpyypyc}. Corresponding to CPp, CD is a set of
ConfignrationData such that |CP¢| = |CD|. F; is a ConfignrationFile representing a partial or complete ResolutionModel
RM cottesponding to a MemberProduct P, which contains in ConfigurableParameters CP; = {cpy, cpy, .., CPin} and the
cotresponding ConfignrationData CD; = {cp,.cd, cp,.cd, .., cpy. cd}. Let C = {cy, €y, .., Cpc} be a set of Constraints
in the context of PLE, where each Constraint ¢; is defined over one ot mote VariationPoints (or MetaModelElemenets in
case of WellFormednessConstrain). Let VAR(c;) be a function that gives a set of elements (e.g., VariationPoints,
MetaModelE lemenets) constrained by ¢; and VAL(c;) be a function that gives a set of possible values (e.g., a subset of
Variants corresponding to a VariationPoinf(s), configuration order for certain ariationPoints) that satisfy the

constraint ;.

VcEC
(VP;:=VAR(c)) A (VA := VAL(c))
Vvp; E VP,

(cpij = Instance(vp,-) A (CPi,,C = (CP,-UC U cp,-j))

c.evaluationResult = True - (Elvisl (vis € VAR A (05 € VAY) A (cpij.status = Configured) A

R

(cpij- selectedVariant = vi) A (CPyc = (CPiC U cp,-l-)) A (CPyc = (CP,-UC\cp,-l-)) A
(CD = (CD U cpyj. cd))))| (A Pyl ((cpxy € CPC) A (cpxy. cd.status = Im)alid)))

Listing 8: Formal definition of DecisionInferenceConstraints

1. VYc€Cy,
2 (VP¢ :=VAR(c)) A (VA = VAL(c))
IF: (c.type = VP — VP A c.relation = Requires) THEN: c. evaluationResult = True — (3 vp;, vp;| (vp;, vp; € VP) A

&

116

((cpix- status = Configured — cpj.status = Configured)|(cpy € CPc) A (cpji € CPj())))

4. IF: (c.type = VP — VP A c.relation = Excludes) THEN: c.evaluationResult = True — (3 vp;, vp;| (vp;, vp; € VP() A
((cpix- status = Configured — cpj.status ¥ Configured)|(cpy € CPic) A (cpj; € CPjc))))
59 IF: (c.type = VP — VA A c.relation = Requires) THEN: c.evaluationResult = True — (3 vp;, vp;, vjs| (vp;, vp; €
VPc) A
(vjs EVA) A (vjs € VA,-) A ((cpi. status = Configured — cpji- selectedVariant = v,-s)|(cp,-k ECPic) A (cp,-, € CP,-C))))
6. IF: (c.type = VP — VA A c.relation = Excludes) THEN: c. evaluationResult = True - (3 vp;, vp;, vjs| (vp;, vp; €
VPc) A
(vjs € VAc) A (0js € VAj) A ((cpu- Status = Configured — cpj.selectedVariant # vj)|(cpi € CPic) A (cpji € CPj())))
7. IF: (c.type = VA — VA A c.relation = Requires) THEN: c. evaluationResult = True - (3 vp;, vpj, Vi, Vjs| (vpi, vD; €
VP¢)

A (Vis, vjs € VA) A (vis € VA A (05 € VA)) A ((cpu- selectedVariant = v;; — cpj. selectedVariant = vj,)|(cpi € CPic) A
(cpji € CPjc))))
8. IF: (c.type = VA—VA A c.relation = Excludes) THEN: c. evaluationResult = True - (3 vp;, vpj, Vi, Vjs| (VP vD; €
VPy)
A (vis EVAR) A (vjs € VAL) A (Vi € VA A (Vs € VAj) A ((cpir- selectedVariant = v, — cpj. selectedVariant * vjy)|

(cpik € CPic) A (cpj; € CPj(r))))

Listing 9: Formal definition of VariabilityDependencyConstraints

1. Vc€Cyy,
2. (MME. = VAR(c))
3. VvV mme; € MME_,
4. (mei]- = Instance(mmei))
5. c- (55 me,-ilc. evaluationResult = False)
Listing 10: Formal definition of WellFormednessConstraints (New Definition)
1. Vc€ECg,
2. (VP :=VAR(c)) A (VA := VAL(c))
3. Vvp; EVP,
4. c.evaluationResult = True - (A cp;j|((cpy; € CPic) A (cpy;. selectedVariant & VA) A
(cpyj- cd. status = Invalid)))
Listing 11: Formal definition of ConformanceConstraints
1. VYc€eCg,
2. (VP¢ = VAR(0)) A (I[VP¢| = 2) A (VA¢ == VAL(c))
3. vV vp;, vpj € VP,
4. IF: (c.atModel = IntraModel A c.atView = WithinView)THEN: c. evaluationResult = True —
(ﬂ CPik ijl|
((cpix € CPic) A (cpji € CPjc) A (cpy-selectedVariant ¢ VAc) A (cpji. selectedVariant & VAc) A
(cpi- cd. status = Invalid) A (cpj. cd. status = Invalid) A\ (vp;, vpj belong to the same PLEModel and View)))
5. IF: (c.atModel = IntraModel A c.atView = CrossView)THEN: c. evaluationResult = True —
(ﬂ CPik, ijl|
((cpix € CPic) A (cpji € CPjc) A (cpy-selectedVariant ¢ VAc) A (cpji. selectedVariant & VAc) A
(cpir- cd. status = Invalid) A (cpj. cd. status = Invalid) A\ (vp;, vp; belong to same PLEModel but different Views)))
6. IF: (c.atModel = InterModel A c.atView = WithinView)THEN: c. evaluationResult = True —

(ﬂ CPik ijl|
((cpix € CPic) A (cpji € CPjc) A (cpy-selectedVariant ¢ VAc) A (cpj;. selectedVariant & VAc) A
(cpir- cd. status = Invalid) A (cpjy. cd. status = Invalid) A\ (vp;, vp; belong o different PLEModels but same View)))

117

IF: (c.atModel = InterModel A c.atView = CrossView)THEN: c. evaluationResult = True —

(ﬂ CPik, ijl|

((cpix € CPic) A (cpji € CPjc) A (cpy-selectedVariant ¢ VAc) A (cpji. selectedVariant & VAc) A
(cpik- cd. status = Invalid) A (cpj. cd. status = Invalid) \ (vp;, vpjbelong to different PLEModels and Views)))

Listing 12: Formal definition of ConsistencyConstraints

g B

V¢ € Cpo,

(VP;:=VAR(c)) A (VA := VAL(c))

Vvp;, vp; € VP,
IF: ¢ > Instance(vp;).configurationStep < Instance(vpl-).configurationStep
THEN: c.evaluationResult = True - (ﬂ Pik cpﬂl((cp,-k. status = Unconfigured) A
(cpji- status = Configured)))

Listing 13: Formal definition of DecisionOrderingConstraints

N

Vc€ECy,

(VP;:=VAR(c)) A (VA := VAL(c))
Jvp; € VP |(IVA; N VA = 1),
(cpij i= Instance(vp,-) A (CPiuc = (CP,-UC U cp,-j))
c.evaluationResult = True - (Elvisl (vis € VAR A (05 € VAY) A (cpi}-.status = Configured) A
(cpij- selectedVariant = vi) A (CPyc = (CPiC U cp,-l-)) A (CPyc = (CP,-,,C\cp,-l-)) A
(cpij. cd.isAutoGenerated = True) A(CD = (CD U cpy;. cd))))| (@ cpyl ((cpj,Ey € CPC) A
(cpxy. cd.status = Im]alid)))

Listing 14: Formal definition of DecisionInferenceConstraints

N R

VcEC

(VP; == VAR(c)) A (VA = VAL(c))
IF: |VP;| = 1 THEN:
IF: c.type = Minimization THEN: c. EvaluationResult = True - VYcp;; € CPy,
(cpij- selectedVariant. optimizationMeasure, < Vv, € VA;, v;. optimizationMeasurey)) A
((2 cpyy| ((cDxy € CP() A (CPy,y- cd. status = Invalid)))
IF: c.type = Maximization THEN: c. EvaluationResult = True — Vcp;; € CPy,
(cpij- selectedVariant. optimizationMeasure, = Vv, € VA;, v;. optimizationMeasurey)) A
((2 cpyy| ((cDxy € CP() A (CPy,y- cd. status = Invalid)))
IF: |VP;| > 1 THEN:
IF: c.type = Minimization THEN: c. EvaluationResult = True - VY vp; € VP, (V v; € VA,,

i=|VPc| vji=ICPicl q oL
(O Z].:l “ cp;;. selectedVariant. optimizationMeasure; <

Z:::;vmg:;cpid vy optimizationMeasure,) A (A cpyy| ((cPxy € CP¢) A (€Pyy. cd. status =

Invalid))))

IF: c.type = Maximization THEN: c. EvaluationResult = True - VY vp; € VP, (V v; € VA,,

i=|VPc| vji=ICPicl q oL
(O Z].:l “ cp;;. selectedVariant. optimizationMeasure; =

Zi=|Vl’c| Zi=|CPic|

i1 j=1 Vil optimizationMeasure;) A ((2 cpyy| ((cPxy € CP() A (CPyy-cd. status =

Invalid))))

where optimizationMeasure,, is a particular optimization measure constrained by c.

118

Listing 15: Formal definition of OptimizationConstraints

12 Appendix D: Formal Definitions of Functionalities

In this section, we present the formal definitions of 14 functionalities of the ConfignrationSolution presented in Section
5.1. To formally define each functionality, we use the following template.

= Inputs: The inputs of the function.

= Qutputs: The outputs of the function.

= Definition: A concise and precise definition of the functionality using mathematical notations based on set

theory.
1.1 DecisionInference

Inputs: Sets of configured ConfigurableParameters CP, un-configured ConfignrableParameters CPy, ConfigurationData CD,
and DecisionInferenceConstraints Cpy.

Outputs: Updated sets of configured ConfigurableParameters CP , un-configured ConfigurableParameters CPy¢ , and
ConfignrationData CD.

1. DI(CP¢, CPyc, CD,Cpy) CP¢, CPyc, CD

2. VceCp,
3. (VP; =VAR(c)) A (VA; = VAL(c))
4. Vvp; €E VP,V cpyj € CPyyc
59 (cpjj. status = Configured) A (cp;;. selectedVariant := vy |(vis € VAc) A (Vs € VA;)) A (A Pyl ((cpxy €
CPc) A
(cPay- cd. status = Invalid))) A (CPyc = (CPyc\cpy;)) A (CP¢ = (CP¢ U cpy)) A
(cpjj. cd.isAutoGenerated = True) A (CD = (CD U cpy;. cd)) A
6. (IF: cp;j.type € {ComponentCardinality — VP, ComponentCollectionBoundary —

VP,ComponentChoice — VP
,ComponentSelection — VP,TopologyChoice — VP, AllocationChoice — VP, InteractionChoice — VP}
THEN: (CPyc = (CPyc Y CPyc—aaditonat))))

where CPyc_additonal i 2 set of additional un-configured ConfigurableParameters added due to the configuration of cp;;.

Listing 16: Formal definition of DecisionInference
1.2 DecisionOrdering

Inputs: Sets of un-configured ConfignrableParameters CPy¢ and DecisionOrderingConstraints Cpq.
Outputs: A sequence of un-configured ConfigurableParameters CPy¢ in which they should be configured.

1. DO(CPyc, Cpo) & Sequence(CPyc)| (Acpu cpjil ((cpik, cp;i € Sequence(CPUC)) A

(3 c € Cpol((c. evluationResult = False) A
(vp; € VAR(0)) A (vp; € VAR(C))))))

Where Sequence(CPyc) returns a sequence of elements in CPy¢.

Listing 17: Formal definition of DecisionOrdering
1.3 RevertingDecision

Inputs: A ConfigurableParameter cpy,to be reverted and sets of configured ConfignrableParameters CP., un-configured
ConfigurableParameters CPy ¢, ConfigurationData CD, and DecisionInferenceConstraints Cpy.

Outputs: Updated sets of configured ConfigurableParameters CP , un-configured ConfigurableParameters CPy¢ , and
ConfignrationData CD.

119

RD(cpix, CP¢,CPyc, CD,Cp;) & CP,CPyc, CD
Vc€ECy,
(VP;:=VAR(c)) A (VA := VAL(c))| vp; € VAR(c)
VY vp; E VP,V cpj € CP¢|((cpj. cd. isAutoGenerated = True) A (vpl- € VPC))
RD(Cp]-,, CP;,CPy., CD,C Dl)) Recursively reverting ConfigurationDecisions.

R i

IF: cp;,.type €
{ ComponentCardinality — VP, ComponentCollectionBoundary — VP, ComponentChoice — VP, }
ComponentSelection — VP,TopologyChoice — VP, AllocationChoice — VP, InteractionChoice — VP

THEN:V cp,, € CP gqq4itionat,
s IF: (cpy,. status = Configured) THEN: CD := (CD\cpxy. cd) A (CP; = (CPC\cpxy))
8. IF: (cpy,. status = Unconfigured) THEN: CPy¢ = (CP,,C\cpxy)
9. (€D = (CD\cpy- cd)) A (cpy. status = Unconfigured) A (cpy. selectedVariant := null) A (CP =
(CPc\epu)) A
(CPyc = (CPyc VU cpy))

Where CP gq4itionar is 2 set of additionally added ConfigurableParameters due to the configuration of cpjy

Listing 18: Formal definition of RevertingDecision
1.4 WellFormednessChecking

Inputs: A set of ModelElements ME (e.g., ConfignrableParameters) corresponding to a ResolutionMode/ and a set of
WellFormednessConstraints Cyyp.
Outputs: A set of ill-formed Model/Elements ME, .

@, |ME;g| =0
MEg, |ME ;| > 0

2. ME;= {U(Vmeij € ME, (meijl (3 ci|((cx € Cyr) A (cy. evaluationResult = False) A (mme; € VAR(c))))))}

1. WEFC (ME,Cyyp) {

Listing 19: Formal definition of WellFormednessChecking
1.5 ConformanceChecking

Inputs: A set of configured ConfigurableParameters CP¢ and a set of ConformanceConstraints Cep.

Outputs: A set of ConfignrableParameters CPy, violating one or more ConformanceConstraints
?,|CPy| =0
CP,,|CP,| > 0
2. CPy= {U(VCPU € CP, (cp,-il (EI ck| ((ck € Ccp) A (¢ evaluationResult = False) A (vp; € VAR(C,))))))}

1. CFC (CP,Ccp) {

Listing 20: Formal definition of ConformanceChecking
1.6 ConsistencyChecking

Inputs: A set of configured ConfignrableParameters CP¢ and a set of ConsistencyConstraints Ceg.
Outputs: A set Cjc containing sets of inconsistent ConfigurableParameters (i.e., violating one or more
ConsistencyConstraints).

@,|CPic| =0
CP:, |CPic| >0

2. CPi= {U(VCpii € CP, (cpijl (EI ck| ((ck € Ccs) A (ck- evaluationResult = False) A (vp; € VAR(C,))))))}

1. CSC(CP Cgy) {

Listing 21: Formal definition of ConsistencyChecking
1.7 ResolvingViolation

Inputs: A set of Violations VL = {vly,vl,,..,vly;} identified where Vvl € VL, vl;. violationType €
{WellFormednessConstraint, ConformanceConstraint, ConsistencyConstraint} and sets of configured
ConfignrableParameters CP., un-configured ConfignrableParameters CPy, and ConfignrationData CD.

120

Outputs: A set of unresolved V7olations VL and updated sets of configured ConfigurableParameters CP., un-configured
ConfigurableParameters CPy ¢, and ConfignrationData CD.

2. VuleVl,
3. IF:vl.violationType = WellFormednessConstraint
4. THEN:V cpj; € vl. causingParameters, (CPyc = (CPyc\cpyj)) A (cpy = Instance(wp,)) A (CPyc = (CPyc U cpy)) A

(vp; € VAR(vl.violatedConstraints[0])))

59 IF:vl.violationType = ConformanceConstraint
6. THEN:V cp;; € vl.causingParameters, ((CD := (CD\cp,-]-. cd)) A (cpyj. selectedVariant = Replace (v, vy)|((vis #
Vi) A

(Vi € VA)) A (v, € VAL(vl. violatedConstraints[0])))) A (CD = (CD U cpy;. cd)) A
(vp; € VAR(vl.violatedConstraints[0])))
7. IF:vl.violationType = ConsistencyConstraint

8. THEN:Y cp;j, cpy € vl.causingParameters, (((CD = (CD\cpi,-. cd)) A (cpy- selectedVariant := Replace (v, vy)|
((vis # Vi) A (Vi € VA) A (i € VAL(vl. violatedConstraints[0])))) A (CD = (CD U cp;;. cd)) A

(vp; € VAR(vl.violatedConstraints[0]))) V ((CD = (CD\cpy,. cd)) A (cpy. selectedVariant := Replace(Vyg, Vi) |
((v,“ # Vim) A Wsm € VAR) A (Vpam € VAL(vl.violated(.‘onstraints[0])))) A (€D = (CD U cpy. cd)) A
(vpx € VAR(vl. violatedConstraints[0]))))

9. IF: vl.violatedConstraints[0]. evaluate() = True

10. THEN: VL = (VL\vl)

Listing 22: Formal definition of ResolvingViolation
1.8 CollaborativeConfiguration

Inputs: A set of VariationPoints VP and sets of eight types of constraints (i.e., Cpo, Cyr, C¢, Cyp, Cpp, Cop, Ceps Ces)-
Outputs: A valid configured MemberProduct P containing a set of ConfigurableParameters CP and ConfigurationData CD.

1. CC(VP,Cpo, Cyr, Cc,Cyp,Cpy, Cop, Ccp, Ces) & (P| P is a configured MemberProduct)

2. Split(VP) & VPs| (VPs = {VPs,VPs,,..,.VP,}) A(ns = 2) A(V VP EVPs, VP SVP) A ([{VPs; UVP, U..UVP,}| = [VP|) A
(Y VP, VP, € VP, ((VPS,- n Vst) = 0)) A (Y vp;, vp; € VP, vp;. configurationStage = vp;.configurationStage) A
(ﬂ vp, € VP, vp, € VPs]-|vpx. configurationStage = vp,.configurationStage))

3. Configure(VPs, Cpp, Cyr, Cc, Cyp, Cpy, Cop, Cer, Ccs) & CPs, CDg| ((CPs = {CPgy,CPyy,..,CP,}) A(CDg =
{€D1,CDg;,..,CD,Y)),

where CPg is a set containing sets of ConfigurableParameters (configured or/and un-configured) for each stage and CDy is a set containing sets of

ConfigurationData (for configured ConfigurableParameters) for each stage. Note that Configure(VPs, Cpo, Cyr, Cc, Cyp, Cpy, Cop, Ccr, Ccs) uses all the

other functionalities (e.g., Decisionlnference, DecisionOrdering, ConformanceChecking) to configure different [ariationPoints during different stages.

4. Merge(CPs,CDs,Ccs) & CP,CD| ((CP = {CPs; U CPs, V..U CP,}) A(CD = {CDg U CDg, U..U CD,}) A(Ac €
Ccs|c.evaluationResult = False))

whete CP and CD are ConfignrableParameters and ConfigurationData cotresponding to MemberProduct P. Note that Merge(CPg, CDg, C¢s) maybe use

ConsistencyChecking to ensure the consistency across the ConfigurationDecisions made during different ConfignrationStages.

Listing 23: Formal definition of CollaborativeConfiguration
1.9 ImpactAnalysis

Inputs: A sourceChange chg for which Impact I needs to be assessed and sets of configured ConfigurableParameters CPg,
un-configured ConfigurableParameters CPyc, 1V ariationPoints VP, and 1V ariabilityDependencyConstraints Cyp.
Outputs: Impact I with a set of target Changes CH (i.e., Inmpaci).

1. 1A (chy,VP,CP,CPyc Cyp) & I|I.targetChanges = {chy,ch,,..,ch, .}

2. Vch; € l.targetChanges

3. IF: (ch;. model = ResolutionModel) THEN:

121

4. IF: (ch,.type = Remove) THEN: ((ch;.type = Remove V ch;.type = Update) A
(ch;.model = ResolutionModel) A (ch; » CP; := Change(CP,Cyp)) A (ch; - CPy; := Change(CPy¢, Cyp))
5. IF: (chg.type = Add V ch,.type = Update) THEN: ((ch;.type = Add V ch;.type = Remove V
ch;. type = Update) A (ch;. model = ResolutionModel) A (ch; - CP; := Change(CP, Cyp)) A
(ch; - CPyc = Change(CPyc, Cyp)))
6. IF: (chg.type = Move) THEN: ((ch;.type = Move V ch;.type = Remove V ch;. type = Update) A
(ch;.model = ResolutionModel) A (ch; » CP; := Change(CP,Cyp)) A (ch; = CPy¢ =
Change(CPyc, Cvp)))

Vo IF: (chg. model = VariabilityModel) THEN:
8. IF: (ch,.type = Remove) THEN: ((ch;.type = Remove V ch;.type = Update) A (ch;. model =
VariabilityModel A

ch;. model = ResolutionModel) A (ch; » CP; := Change(CP¢, Cyp)) A (ch; > CPy; =
Change(CPyc, Cyp)) A
(ch; - VP := Change(VP, Cyp)))
9. IF: ((ch,.type = Add V ch,.type = Update) THEN: ((ch;. model = VariabilityModel A
ch;. model = ResolutionModel) A (ch; » CP; = Change(CP¢, Cyp)) A (ch; > CPy =
Change(CPyc, Cyp)) A
(ch; » VP := Change(VP, Cyp)))
10. IF: (chg.type = Move) THEN: ((ch;.type = Move V ch;.type = Remove V ch;.type = Update) A
(ch;.model = VariabilityModel A ch;. model = ResolutionModel) A (ch; - CP; = Change(CP, Cyp)) A
(ch; = CPy¢ := Change(CPy¢, Cyp)) A (ch; = VP := Change(VP, Cyp)))

Listing 24: Formal definition of ImpactAnalysis
1.10 ConflictDetection

Inputs: A set of hard constraints C of any type defined in Section 4.3 except OptimizationConstraints corresponding to a
ProductLine for which conflicting constraints are to be detected.
Outputs: A set of pairs of conflicting constraints S.

@, =0
S|s|>0

2. IF:C is a set of DecisionOrderingConstraints
3. THEN:S = { ;‘il‘Fz(Pair(cx, cy)| (3 i cp}-,| (((cx A cy) = False) A (vp; € VAR(CX)) A (vp]- € VAR(cy)) A

1. cu(c)g{

(cJr - Cpy-configurationStep < cpj;. configurationStep) A (cy - cpji.configurationStep <
CPik- configurationStep)))}

4. IF:C is a set of WellFormednessConstraints

5. THEN:S = { ;‘il_y=z(Pair(cx, cy)| €E! cp,-l-| (((c)r A cy) = False) A (vp; € VAR(cx)) A (vp,- € VAR(cy))))}
IF: C is a set of ConfigurationConstraints, ConformanceConstraints, or ConsistencyConstraints
THEN:S = {U}'il_y=z(Pair(cx, cy)| (E CPik cpﬂ|((cpik.status = Configured) A (cpj,. status = Configured) A
(cpix- cd. status = Valid) A (cpj;;. cd. status = Valid) A (¢c,. isHardConstraint = True) A (c,.isHardConstraint =
True) A ((cx A cy) = True) A (vp; € VAR(CX)) A (vpl- € VAR(cy))))}

8. IF:C is a set of VariabilityDependencyConstraints

9. THEN:S = {U;‘il_Fz(Pair(cx, cy)| (E CPir, cpl-,|((cx. type = c,.type) A (cy.relation # c,.relation) A (VAR(c,) =
VAR(cy)) A (vp; € VAR(c,)) A (vpi € VAR(cy)))) vV (2 cpi cpﬂ|((cx. type = VP —VP) A (c,.type = VP —VP) A
(cy-relation = cy.relation) A ((c; A cj) = True) A (vp; € VAR(c,)) A (vpl- € VAR(cy)))) \Y (B CDik CDj1, vl-s|((cx. type =
VP —VA) A (c,.type = VP — VA) A (c.Telation = c,.relation) A ((c; A c;) = True) A (vp; € VAR(c,)) A (vpl- €
VAR(cy)) A (v,-s € VAL(cy)))) \Y (55 CDik, CPj1 Vis, vjs|((cx. type = VA —VA) A (c,.type = VA — VA) A (c,.Telation =
cy.relation) A ((c; A cj) = True) A (vp; € VAR(c,)) A (vpj € VAR(cy)) A (v € VAL(c,)) A (v}-s € VAL(cy)))))}

Listing 25: Formal definition of ConflictDetection

122

1.11 ConstraintSelection

Inputs: A set of VariationPoints VP, a set of ConfigurableParameters CP, and a set of constraints C = {cy, Cy,.., Cpc} 0f 2
patticular type (e.g., DecisionlnferenceConstraints) corresponding to which a subset of constraints needs to be selected.
Outputs: A subset of selected constraints.

‘ CS (VP,CP,C) £ V cp;; € CP, ({URZ; ¢ |((cx € C) A (p; € VP) A ((vp; € VAR(cy)) V (cp;;. selectedVariant € VAL(cy))))}) ‘

Listing 26: Formal definition of ConstraintSelection
1.12 ConfigurationOptimization

Inputs: A set of ConfigurableParameters CP¢ and a set of OptimizationConstraints Cop.
Outputs: Updated set of ConfignrableParameters CPp with optimal Variants assigned.

CO(CP¢, Cop) & Vcpyj € CP, (cpy. selectedVariant = v|(vy € VA;) A (Y vy
nc
€ VA, |(U ((ck-evulationResult = True) A (cp;;. selectedVariant = v;) A (vp; € VAR(cy))))|
k=1

nc
= I(U((ck. evulationResult = True) A (cpy;.selectedVariant = vy) A (vp; € VAR(cy))))|)))
k=1

Listing 27: Formal definition of ConfigurationOptimization
1.13 RedundancyDetection

Inputs: Two ConfigurationFiles F; and F, (or only one) representing a ResolutionModel corresponding to a MemberProduct
P containing a set of n ConfigurableParameters CP = (CP; U CP,), whete CP; = {cpy,cpy,.., Py } and CP, =
{cDms1, COma2s-- €Oy} are ConfigurableParameters corresponding to F; and F, respectively. CD; =
{cpy.cd, cpy.cd, .., cpp.cd } and CD, = {cPpyyq.€A, CPpmyr-CA, .., CPy.cd } are two sets of ConfigurationData
corresponding to Fy and F, respectively.

Outputs: A set of duplicate ConfigurationData.

IF: (scope = IntraConfigurationFile)

THEN:RD (F,) & Ui=1,j=2(cp;. cd, cpj. cd|((cp;. cd, cpj. cd € CD1) A (cp;. cd. parameterID = cp;. cd. parameterID)))
IF: (scope = InterConfigurationFiles)

THEN: RD (Fy,F,) & U:::'g:"(cp,-. cd, cp;. cd|((cp;.cd € CD1) A (cpj.cd € CD,) A (cp;.cd.parameterID =

N

cpj. cd.parameterlD)))

Listing 28: Formal definition of RedundancyDetection

Note that if a ResolutionModel is represented in more than two ConfignrationFiles, then RedundancyDetection can be
applied multiple times on each pair of ConfignrationFiles.

1.14 IncompletenessDetection

Inputs: A ConfignrationFile F representing a ResolutionModel corresponding to a MemberProduct P containing a set of n
ConfigurableParameters CP = {cpq, cp,, .., cpp } and ConfigurationData CD = {cp,.cd, cp,.cd, .., cp,.cd } representing
the ConfigurationDecisions made to configure n ConfigurableParameters.

Outputs: A set of un-configured ConfigurableParameters.

ID (F) & U cp;|((cp; € CP) A (cp;.cd € €D) A ((cp;. cd.value = null) vV (cp;. selectedVariant = null))))
i=1

Listing 29: Formal definition of IncompletenessDetection

123

124

Paper C

Mining Cross Product Line Rules with Multi-Objective Search

and Machine Learning

Satdar Aqgeel Safdar, Hong Lu, Tao Yue, Shaukat Ali

Published in the Proceedings of The Genetic and Evolutionary Computation
Conference (GECCO), 2017.

125

© 2017 ACM
The layout has been revised.

126

Abstract

Product Line Engineering (PLE) is a well-acknowledged paradigm to improve the productivity of
developing products with higher quality and at a lower cost. By benefiting from PLE, more and
more systems are developed by integrating products, which belong to different product lines, and
communicate and interact with each other through information networks [1, 2]. Examples of
such systems include video conferencing systems (VCSs) [3] and material handling

Nowadays, an increasing number of systems are being developed by integrating products
(belonging to different product lines) that communicate with each other through information
networks. Cost-effectively supporting Product Line Engineering (PLE) and in particular enabling
automation of configuration in PLE is a challenge. Capturing rules is the key for enabling
automation of configuration. Product configuration has a direct impact on runtime interactions
of communicating products. Such products might be within or across product lines and there
usually don’t exist explicitly specified rules constraining configurable parameter values of such
products. Manually specifying such rules is tedious, time-consuming, and requires expert’s
knowledge of the domain and the product lines. To address this challenge, we propose an
approach named as SBRM that combines multi-objective search with machine learning to mine
rules. To evaluate the proposed approach, we performed a real case study of two communicating
Video Conferencing Systems belonging to two different product lines. Results show that SBRM
performed significantly better than Random Search in terms of fitness values, Hyper-Volume,
and machine learning quality measurements. When comparing with rules mined with real data,
SBRM performed significantly better in terms of Fazled Precision (18%), Failed Recall (72%), and
Failed F-measure (59%).

Keywords: Product Line; Configuration; Rule Mining; Multi-Objective Search; Machine
Learning; Interacting Products

1. Introduction

Product Line Engineering (PLE) is a well-acknowledged paradigm to improve the productivity of
developing products with higher quality and at a lower cost. By benefiting from PLE, more and
more systems are developed by integrating products, which belong to different product lines, and
communicate and interact with each other through information networks [1, 2]. Examples of
such systems include video conferencing systems (VCSs) [3] and material handling systems [4].
Such systems are highly configurable by presenting the users with configuration options.
Consequently, at runtime, several products belonging to multiple product lines communicate
(e.g., via information networks) with each other [1, 2] under various configurations. Thus, the
runtime behavior of such systems not only depends on the configuration of these communicating
products but is also influenced by the communication medium. Note that the configuration in
our context indicates numerous configurable parameters exposed to users after the system is
deployed.

Cost-effective PLE is challenging mainly because of the lack support of automation of the
configuration process [5, 6]. Capturing rules is the key to enabling automation of various
configuration functionalities (e.g., consistency checking, decision propagation, and decision

127

ordering) [7-11]. In our context, such rules describe how configurations of communicating
products belonging to different product lines influence their runtime interactions via information
networks.

We name rules constraining configurations (values assigned to configurable parameters) of
products belonging to different product lines as Cross Product Lines (CPL) rules. CPL rules are
of significant importance for mainly two reasons. First, CPL rules can be used to identify invalid
configurations where products may fail to interact with a confidence level due to, e.g,
dependencies on external libraries and/or platforms. Identified invalid configurations can help
developers to maintain current products or evolve future products. Second, CPL rules can
provide support to enable (automated or semi-automated) configuration of products of future
deployments. However, the literature does not provide sufficient support to mine such rules, as
current practice mainly focuses on mining rules constraining product configurations within a
single product line [6, 12].

CPL rules need to be captured by running the system due to the information only known at
runtime, e.g., dependencies on external libraries and/or platforms. As mentioned in [13], rules
that ensure correct runtime behaviors can be identified from either domain knowledge or testing
of the system. Manually specifying such rules based on domain knowledge is tedious and time-
consuming, and heavily relies on expert’s knowledge of the domain and the product lines.
Identifying CPL rules via testing has its own challenges, as the configuration space is typically
very large and testing candidate configurations is often infeasible. Besides, in practice testers
often use valid configurations to test the system [13]. Therefore, identifying CPL rules requires a
dedicated approach that automatically obtains rules without exploring all possible configurations
of the communicating products belonging to different product lines.

In [12], a rule mining approach is proposed that mines rules for a product line where product
configurations belonging to one product line are generated randomly and labeled as faulty and
non-faulty. Labeled product configurations are inputted to the classification algorithm of j48 [14]
to mine rules. However, randomly generating configurations to mine rules is a brute-force way
and time-consuming. In this work, we advance one step further by employing search to generate
product configurations intelligently using three heuristics (Section 3.2), instead of randomly
generating product configurations.

We propose an approach, named as Search-based Rule Mining (SBRM), which combines
multi-objective search with machine-learning techniques, to mine CPL rules in an incremental
and iterative way. SBRM obtains CPL rules with different degrees of confidence (i.e., the
probability of being correct) with an emphasis on mining rules that can reveal invalid
configurations [15]. Instead of collecting a large amount of data required for machine learning all
in once, we obtain the input data incrementally with multiple iterations. During each iteration, we
use the rules mined from the previous iteration to guide the search for generating configuration
data for the current iteration. The generated configuration data are combined together with those
from all the previous iterations in order to incrementally refine the aforementioned rules. SBRM
is validated using a real world case study of VCSs, where two products belonging to different
product lines communicate (i.e., call) with each other.

We summarize the key contributions of the paper below:

e SBRM to mine CPL rules constraining configurations of communicating products across
product lines.

128

e Three objectives to guide the search for generating configuration data in order to refine CPL

rules.

e Evaluating SBRM by performing a real-world case study of two communicating VCSs
belonging to different product lines. With the case study, we compared the performance of
NSGA-II with Random Search (RS) using fitness values, Hyper-Volume (HV), and machine
learning quality measurements. Additionally, we compared the rules mined using SBRM with
the rules mined with real data extracted from test case execution logs.

Evaluation results show that SBRM is effective to produce high-quality rules as compared to
RS based rule mining approach (i.e., called RBRM). Results also indicate that SBRM produces
better rules as compared to the rules mined based on real data extracted from test case execution
logs.

The rest of the paper is organized as follows: In Section 2, we give an overview of SBRM
followed by the search-based approach for generating configuration data in Section 3. In Section
4, we present the experiment design, execution, and results. Section 5 summarizes the literature

review and finally, in Section 6, we conclude the work.

2. Overview

Figure C-1 presents an overview of our proposed approach (SBRM), which relies on machine
learning and multi-objective search to mine CPL rules. At the first step, an initial set of
configuration data is generated randomly for the selected products belonging to different product
lines. At the second step, selected products are configured with the randomly generated
configuration data, and certain functionalities of the products are executed such that the selected
products interact with each other via information networks (e.g., the Internet), and the states of
the system are captured to know if they interact via communication network successfully. An
interaction, in our context, can be defined as an action in which two or more objects (e.g.,
system, product, or component) are collaborating, communicating, or influencing each other.
There does not exist a generic way of enabling interactions among various products of a system
via communication networks as well as capturing the system states as it depends on the
application domain of the system under study and its involved functionalities.

Y (
1: Generate random configuration data ’ﬁccmbine the data and mine rules

g Meet
v Je—— stopping
p - - criteria?
2: Capture system states] I System states for search based configuration data |
No
[conturaion dea [L{ = Co0t o omtgwions
J

Refined set of rul }j
| etined set of rules | Search based configuration data

Initial set of rules

4: Generate configuration data using search

Figure C-1. Overview of the proposed approach (SBRM)

In step 3, we feed the set of generated configuration data (as Attributes) and their
corresponding system states (as Classes) to Weka [14] as the initial input and apply the Pruning
Rule-Based Classification algorithm (PART) [15] to mine the initial set of rules, which are

129

consequently fed to NSGA-II for generating configuration data for the next iteration in step 4.
Though C4.5 and RIPER are the two well-known algorithms, which generate rules based on
decision trees [14, 15], C4.5 is expensive in terms of computation time since the process of
generating/pruning rules is complex and requitres global optimization. In the case of RIPPER, it
suffers from over-pruning (hasty generalization) problem [16]. PART [15] combines these two
paradigms while avoiding their shortcomings by generating partially pruned decision trees and
inducing one rule corresponding the longest branch of each partial tree. In step 5, we repeat step
2 but take the configuration data generated from the search instead of the random one. In step 6,
we combine all the configuration data generated from steps 1 and 4 and collected system states
captured from steps 2 and 5, and feed all the data to Weka to mine a refined set of rules. This
rule set is then used in the next iteration (starting from step 4) to generate more configuration
data and further refine the rules.

In each iteration, newly generated configuration data with collected system states are added to
the dataset from the previous iteration to mine a new set of rules. We repeat the process until we
meet the stopping critetia, e.g., a fixed number of iterations and/or when the rules generated
from two consecutive iterations are similar. Fixed number of iterations is useful when we have
limited available resources for mining rules. Getting similar rules from consecutive iterations
indicates that it is very unlikely to refine the rules further. We consider step 4, i.e., using search to
generate configuration data, as the innovative part of the whole approach, i.e., SBRM. This is
because using Weka to mine rules is a simple application of the PART algorithm and applying
search requires carefully designing a fitness function. Therefore, in Section 3, we present how
search is used for generating configuration data (step 4) and the evaluation of SBRM is presented
in Section 4.

3. Search-Based Approach

Sections 3.1 presents definitions required to define the configuration data generation problem.
Section 3.2 presents the objectives and measures, followed by the fitness function defined in
Section 3.3.

3.1 Definition and Problem Representation

CP = {cp1,CPz, .-, CPncp) represents a set of configuration parameters with the total number

being ncp. For each cp;<ie in CPV;LFF: represents a set of possible values: Mgy is the total

number of unique values (i.e., configuration space) for all the configuration parameters, which
ncp
i=1
parameters (cpl-cp4) from our case study. For example, cpl represents the protocol (e.g., related

can be calculated as: ncpv = |(U CPVi)|. Figure C-2 shows four sanitized configuration

to video conference over IP networks) of product P1, which can be configured with four
different values (e.g., Pro-1).

130

cpl: P1_Protocol {Pro-1, Pro-2, Pro-3, Pro-4}

cp2: P1_Encryption {Enc-1, Enc-2, Enc-3}

cp3: P2_Encryption {Enc-1, Enc-2, Enc-3}

cp4: P2_ListenPort {LP-1, LP-2}

r1: P1_Protocol = Pro-2 AND P2_ListenPort = LP-2: Failed

r2: P1_Protocol = Pro-3 AND P2_Encryption = Enc-3: Connected
r3: P1_Encryption = Enc-1 AND P2_Encryption = Enc-2: Failed

Figure C-2. Examples of sanitized configuration parameters and CPL rules

RN = {rn1, 'n2, 'n3,) Fnnr} tepresents nnr rules associated with normal states of the system,
where the selected products interact as intended. Ry = {ra1, Iaz, Fa3, -) Fnar) represents nar
rules related with abnormal states of the system where interactions between the selected products

interact unexpectedly (Category-IIT). Cf(r;) represents the confidence of rj, which is between 0
SPi—Vj
SPi+ V;’

and 1. Confidence for a rule can be calculated as Cf(r;) = where SP; represents the

number of instances for which rj holds true (i.e., support) and V; represents the number of
instances that violate rj (i.e., violation). An instance represents a set of values for configurable
parameters of the selected products and corresponding system states. Based on confidence,
support, and violation we further classify the Ry into two categories using two thresholds: High
confidence rules (Category-I) where Cf(r;) > TH1 and (SP, + V;) > TH2 and Low confidence
rules (Category-II) where Cf(r;) < TH1 or (SP, +V;) < TH2. Note that we used 0.9 (TH1) and
10 (TH2) for our experiment to classify CPL rules. Analyzing the effect of these thresholds on
the performance of SBRM requires further investigation. In Figure C-2, we present three
sanitized CPL rules (r1-r3) mined for the case study. For example, r3 describes that if the
encryptions of products P1 and P2 are set to Enc-1 and Enc-2 respectively, the call will fail. S =
{S1, 82, -, Sns} represents potential configuration solutions, where ns = [[;F (CPV;), which is
approximately 1.03°” for our case study. Each solution sjhas a set of configuration values for ncp
configuration parameters such that s; = {CPVSjq, ..., CDVSjnep}- Ej = {€1, €5, ..., €ne} is a set of
effectiveness measures for evaluating solution s;.

We can then formulate the configuration generation problem as searching a non-dominant
solution set Sg from ns solutions to obtain the highest effectiveness.

Vs.esg Vi=1tons Vj=1tone 3 Effect(sy, e;) > Effect (s;, ;)
Asi€ Sy (1

Effect (s;, ;) refers to the | effectiveness measure of solution s;.

3.2 Objectives and Effectiveness Measures

The objectives are defined based on the three categories of rules (Section 3.1). Before presenting
the objectives and effectiveness measures, we first define the distance function that is used to
assess the effectiveness measures. The distance function indicates to what extent a configuration
solution conforms to a rule.

_XEE d(el, cpvy)
D(rj,s) = Y 2

where D(13,5) calculates the distance between rule 1j and solution s. In equation (2),
d(cl;, cpv;) calculates the branch distance between a clause cl; from rule 1j and corresponding

configuration value cpv; from solution s. MCL is the maximum number of clauses in all the rules.

131

To calculate the distance between cl; and cpv; as a branch distance, we use the distance

calculation formula provided in [17, 18].

3.2.1 Avoid configuration data satisfying or close to satisfying high confidence
rules with normal states
This objective is to avoid generating configuration data that completely or close to satisfy the
tules in Category-1. The effectiveness measure (AHNS) corresponding to this objective can be
calculated as:
AHNS(Ry, s) = Y21 Cf(r;) * D(xj,s) | Cf(r;) > TH1 && (SP, + V;) > TH2 3)

where AHNS(Ry;, s) takes Ry (the set of rules related to the normal states) and one solution s
as input and gives the effectiveness measure as output. To determine AHNS, we calculate the
sum of weighted distances for all rules in Category-I, where the confidence of each rule is greater
than threshold TH1 (i.e., 90%) and the sum number of support and violation instances for each
rule is more than TH2 (i.e., 10). Weighted distance of rj is calculated by multiplying Cf(r;) with
D(r;, s).

3.2.2 Generate configuration data satisfying or close to satisfying low confidence
rules with normal states

This objective is to generate configuration data within the configuration space that satisfy
Category-II as well as its nearby space. The nearby space contains configuration data for which
the distance to the rules in Category-1I is close to 0 but not exactly 0. These configuration data
might help to either improve the confidence of correct rules by increasing their support or filter
out incorrect ones by increasing their violation and hence reducing their confidence. The

effectiveness measure (NLNS) related to the second objective can be calculated as:
nnr

NLNS(Ry,s) = X, _ Cf(r;) * (1 = D(ry,s)) | Cf(r;) < TH1 || (SP, + V;) < TH2 (4)

where NLNS(Ry;,) takes Ry (the set of rules associated with the normal states) and solution
s as input and outputs NLNS. Since we want to explore the configuration space near the
configuration data satisfying the rules in Category-11I, configuration data with a smaller distance to
the rules in Category-1I is preferred. Therefore, we use (1 — D(rj,s)) in the NLNS(Ry, s). To
calculate NLNS, we calculate the sum of the weighted distance (i.c., calculated by multiplying
Cf(r;) with (1 — D(rj,5))) of a solution to all the rules in Category-II, where the confidence of
each rule is less than or equals to TH1 (i.e., 90%) or the sum number of support and violation
instances for each rule is less or equal to TH2 (i.e., 10).

3.2.3 Generate configuration data satisfying or close to satisfying rules with
abnormal states

This objective is to generate configuration data within the configuration space that satisfy
Category-I1I and its nearby space. The rules in Category-11I are of high interest in our context
because they indicate situations where interactions of the selected products fail. The effectiveness

measure (NAS) for this objective can be calculated as:
nar

NAS(Rp,s) =) _ Cf(r)) * (1-D(ry,s)) ()
where NAS(R,, s) takes rule set Ry (related to the abnormal states) and solution s as input. To
calculate NAS, we calculate the sum of weighted distances for all the rules in Ry (Category-111).

132

Table C-1. Overview of the experiment design*

RQ | Tasks Description Evaluation metrics Algorithm’s Parameters Statistical
tests
RQ1 | Ty Compating fitness —Individual objectives | —Population size = 200 Man-Whitney
values and HV and Overall Fitness — sndBvalmions = 20K U-test and
—HV — Crossover rate = 0.9 Vagle s
RQ2 | T Comparing rule sets | — Accuracy (%) —Mutation rate =1/(Total Delaney 4,
based machlr}e— —F/C Precision (%) number of configuration
RQ3 | T learning quality —F/C Recall (%) parameters)
measurements —F/C F-Measurement | — Total runs = 10

* F= Failed (Abnormal state), C=Connected (Normal state)

3.3 Fitness Function
F(X)=Fmin
Fmax—Fmin

is an effectiveness measure function, Fi,,x and Fi iy are the maximum and minimum values of

We first normalize the three effectiveness measures with nor(F(X)) = (), where F(x)

the effectiveness measure. For AHNS, F;, is 0 when the distance between all the rules in
Category-1 and solution s is 0. Fj .4 can be calculated as);ity Cf(r;) where the distance between
all the rules in Category-I and solution sis 1. For NLNS and NAS, F i, is 0 when the distance
between all the rules in the corresponding category and solution s is 1. Corresponding to NLNS
and NAS, Fy,,.x can be calculated as Y30y Cf(r;) and X;8] Cf(r;) respectively, where the distance
between all the rules and solution s is 0.

With the three effectiveness measures, we define the fitness function based on the three
objectives as follow:

F(0;) = 1 — Nor (AHNS(Ry;, s)) (6)
F(0,) =1 — Nor (NLNS(Ry;, s)) (7
F(O3) =1 — Nor (NAS(R,, s) (8)

Note that, in the above equations, we define our search problem as a minimization problem
by subtracting each normalized effectiveness measure from 1 to ensure that a solution with a
value closer to 0 is better.

The fitness function with the three objectives is combined with NSGA-II to address the
optimization problem. We implemented our problem in jMetal by encoding all the configuration
parameters in the solution S as integer variables, where a variable cp; holds a value cpvj; such
that cpvj; € CPV;. Initially, all variables in s are initialized with random values. During the search,
SBRM generates optimized solutions guided by the fitness function.

4. Evaluation

We present experiment setup in Section 4.1, execution in Section 4.2, and results in Section 4.3.
In Section 4.4, we present overall discussion and Section 4.5 presents threats to validity.

4.1 Experimental Setup

First, we present the experiment design including research questions (Section 4.1.1) followed by
the case study (Section 4.1.2) and evaluation metrics (Section 4.1.3). Lastly, we present evaluation
tasks, parameter settings, and statistical tests used for analysis (Section 4.1.4).

133

4.1.1 Research Questions

In SBRM, we apply commonly used NSGA-II [19-21] for generating configuration data as
NSGA-II has proven to be effective for solving various software engineering problems such as
test case prioritization and cost estimation [20, 22].

The goal of the evaluation is to assess if combining machine learning with NSGA-II in the
rule mining process can improve the quality of rules. As RS is typically used as the comparison
baseline [22, 23]; therefore, we investigate if NSGA-II is effective to solve the configuration
generation problem and then compare the quality of rules produced from SBRM (with NSGA-II)
with rules mined by RS based approach (i.e., called RBRM). To further assess the effectiveness of
SBRM, we also compare rules mined from SBRM with rules mined from real data extracted from
test case execution logs (i.e., called RDBRM). Thus, the evaluation is designed to answer the
following three research questions:

RQ1. Is NSGA-II effective to solve the configuration generation problem as compared to RS?

RQ2. Does SBRM produce better quality rules than RBRM in terms of machine learning
measurements?

RQ3. Does SBRM produce better quality rules than RDBRM in terms of machine learning
measurements?

4.1.2 Case Study

Cisco Systems, Norway provides a variety of VCSs to facilitate high-quality virtual meetings [23].
Cisco has developed several product lines for VCS including C-Series, MX-Series, and SX-Series
[3]. Each product from these different product lines has a large number of configuration
parameters (e.g., Protocol and Encryption), which need to be configured before making calls. For
each VCS we have a set of state variables representing the state of VCS (e.g., call status, camera
connection status) that varies according to different hardware and software configurations. For
our experiment, we used two real products C60 and MX300 developed by Cisco, which belong to
C-series and MX-series, respectively. Simula Research Laboratory has a long-term collaboration
with Cisco, Norway under Certus-SFI14. As part of our collaboration, we have access to several
VCSs at our lab and thus we used these systems for our experiments. Therefore, our case study is
real, but the experiment wasn’t performed in the real industrial setting of Cisco.

For comparing the quality of rules produced using SBRM with ones mined by RDBRM, we
obtained 9,989 test case execution logs from Cisco. Each test log contains a test case script and
configurations and statuses representing the system states for all the products involved in the test
case. The configurations and their corresponding system states (i.e., statuses) contained in the
execution logs can be used to mine the rules. To extract the data, first, we obtained 3963 relevant
(i.e., invoking the Dial command) logs from 9,989 test execution logs automatically, where the
testing scenario is about making a call from one product to another. Second, corresponding to all
relevant execution logs, we extracted configurations and statuses for the products involved in the
test cases corresponding to execution logs. Finally, we use the extracted configurations and
corresponding statuses to mine the rules.

4.1.3 Evaluation Metrics
To answer RQ1, we compared NSGA-II with RS in terms of the three objectives, and the overall
fitness. Additionally, we also compared NSGA-II with RS in terms of HV, which is commonly

14 www.certus-sfi.no

134

used to measure the overall performance of multi-objective search algorithms (e.g., NSGA-II)
[24]. HV is for obtaining the volume in the objective space covered by members of Pareto fronts
for measuring both convergence and diversity [25].

To answer RQ2 and RQ3, we compared SBRM with RBRM and SBRM with RDBRM
respectively, based on four machine-learning quality measurements (MLQMs): Accuracy of the
classifier, Precision, Recall, and F-measure for each class (i.e., call status in our case), which are
calculated with 10 times 10-fold cross-validation [26]. Accuracy indicates the overall performance
of PART by specifying the percentage of instances that conforms to the mined rules [27], where
one instance contains one specific set of configurations and its corresponding system states.

Precision represents the percentage of instances that are correctly classified divided by the total
number of instances covered by rules associated with a specific system state (e.g., connected or
failed in our case) [27]. For example, 98% Precision for the failed state means that, according to
the mined rules, there are 2% of instances whose configurations are identified as invalid ones,
which led to the failed state. But actually, they lead to the connected state. The Reca// represents
the percentage of instances that are correctly classified divided by the total number of instances
corresponding to a particular system state [27]. For example, 90% Recal/ for the failed state means
that configurations of 10% instances are not associated with the failed state according to the
mined rules, but these instances actually lead to the failed state. F-measure is the harmonic mean of
Precision and Recall |27].

4.1.4 Experimental Tasks, Parameter Settings, and Statistical Analysis

As shown in Table C-1, we designed three tasks (T1-T3) for addressing RQ1-RQ3. T1 is to
compare NSGA-II with RS in terms of HV, the three individual objectives, and the overall
fitness. T2 and T3 are for comparing the quality of rules produced from SBRM with RBRM and
RDBRM respectively, evaluated based on machine-learning quality measurements.

As shown in Table C-1(column 5), we used the default settings for NSGA-II as implemented
in jMetal [28], which are typically recommended [29]. The single point crossover and bit-flip
mutation, implemented in jMetal, were applied as crossover and mutation operators, respectively.
The total number of configuration parameters is 17 for our case study. We used a population size
of 200 where we select all the Pareto Non-dominated solutions for mining the rules. Since
selecting the best set of parameters is application dependent [12], we used the default settings
provided by Weka [14] for SBRM, RBRM, and RDBRM, which have been used in various
contexts for applying the machine learning techniques [12, 30].

To compare SBRM (with NSGA-II) with RBRM and RDBRM, we use the non-parametric
Mann-Whitney U-test as recommended in [31] using a = 0.05 and the Vargha and Delaney’s A,

statistics as an effect size measure [32]. For all MLQMs and HV, if A,, is less than 0.5, SBRM is
better than RBRM/RDBRM, and a value greater than 0.5 means vice versa. Similatly, in the case
of fitness values, if Klz is greater than 0.5, SBRM is better than RBRM otherwise RBRM is better
than SBRM.

4.2 Experimental Execution

We selected the call status as the system state to classify the configurations. A failed call status
represents the abnormal state and a connected call status represents a normal state. We selected
the call functionality and its associated call status as it is the main functionality of a VCS and
other functionalities depend on it.

135

To mine the initial set of the rules we randomly generate a set of 500 configurations
corresponding to two selected products (i.e., C60 and MX300). To get the system state, we
configure the two products with the generated configurations and make a call from product A to
B for 20 seconds. We made the call for 20 seconds in order to give sufficient time for
establishing the call connection. After waiting for 20 seconds, we capture the call status and
disconnect the call. We input these 500 configurations along with their corresponding system
states to Weka [14] and apply PART [15] to mine the initial set of rules. To refine the rules, we
use the initial set of rules to guide the search to generate 200 more configurations. To mine the
refined set of rules we repeat the same process (i.e., configuring the products and making the call)
to get the call status and mine a new set of rules based on 700 configurations (combining all the
configurations generated so far) and corresponding system states. We repeat this incremental and
iterative process for three iterations and mine the final set of rules based on a dataset containing
1100 configurations and their call statuses. We used three iterations as a stopping criterion. We
also got more than 90% identical rules in the second and third iteration.

4.3 Results and Analysis

In this section, we present the results of our evaluation and answer the research questions.

4.3.1 Effectiveness of search (RQ1)

To answer RQ1, from the results of the Man-Whitney U-test, we notice that p-values
corresponding to all fitness values and HV are less than 0.05 showing a significant difference
between NSGA-IT and RS. 1412 values corresponding to the three objectives are all greater than
0.5 and are less than 0.5 in the case of HV, which suggests that NSGA-II is significantly better
than RS.

4.3.2 Comparing SBRM with RBRM (RQ2)

To answer RQ2, we compared SBRM and RBRM in terms of MLQMs based on rules from each
iteration as well as overall (i.e., combined the results for all the three iterations) based on MLQMs
(Section 4.1.3).

As shown in Table C-2, for the first iteration, although all the Alz values indicate that SBRM
has better performance for all the MLQMs, the p values show that the superiority of SBRM is not
significant for all the MLQMSs except for Failed Recall. In iteration-2, SBRM performed
significantly better than RBRM with respect to Accuracy, Failed Precision, Failed Recall, and Failed F-
measure. The results corresponding to iteration-3 and overall (Table C-2) show that SBRM has
performed significantly better than RBRM in terms of all the MLQMs. So, as moving from
iteration-1 to iteration-3, SBRM starts to perform better than RBRM, which leads to the
conclusion that SBRM produces better rules as compared to RBRM with respect to the MLQMs.

4.3.3 Comparing SBRM with RDBRM (RQ3)
To answer RQ3, we compared SBRM with RDBRM iteration-wise as well as overall (ie.,
combined the values for all the three iterations) based on MLQMs (Section 4.1.3).

Table C-2. Comparing the quality of rules produced with SBRM and RBRM — A, and p-values for (RBRM

VS SBRM)
Evaluation metric Iteration-1 Iteration-2 Iteration-3 Overall Overall Average
p-value 212 p-value A 12 p-value 212 p-value 212 RBRM | SBRM
Accuracy 0.104 | 028 | 0.010 | 0.16 | 0.002 | 0.10 | <0.001 | 0.19 | 95.7% | 97.2%
Connected Precision 0.161 | 0.31 | 0.054 | 024 | 0.026 | 0.20 | 0.002 | 0.27 | 0.945 0.957

136

Connected Recall 0.173 | 032 | 0150 | 031 | 0.041 | 0.23 | 0.002 | 0.27 | 0.955 0.971
Connected F-Measure | 0.186 | 0.32 | 0.088 | 0.27 | 0.025 | 0.20 | 0.001 | 0.25 | 0.950 0.964

Failed Precision 0.063 | 025 | 0.012 | 0.17 | 0.001 | 0.07 | <0.001 | 0.19 | 0.966 0.982
Failed Recall 0.041 | 0.23 | 0.003 | 0.11 | 0.001 | 0.07 | <0.001 | 0.16 | 0.965 0.978
Failed F-Measure 0.104 | 0.28 | 0.005 | 0.13 | 0.001 | 0.04 | <0.001 | 0.18 | 0.966 0.980

As shown in Table C-3, the results related to all the MLQMs except for Connected Recall and
Connected F-measure for all the iterations as well as overall show that SBRM performed significantly
better than RDBRM. Results for Connected Recall corresponding to all the iterations as well as
overall indicate that RDBRM performed significantly better than SBRM. In iteration-1, iteration-
2, and overall there is no significant difference between SBRM and RDBRM in terms of Connected
F-measure whereas in iteration-3 SBRM outperformed RDBRM. Since for five out of the seven
MLQMs, SBRM has performed significantly better than RDBRM whereas RDBRM
outperformed SBRM in terms of Connected Recall only, it can be concluded that SBRM produces
better rules than RDBRM.

Table C-3. Comparing the quality of rules produced with SBRM and RDBRM - A, and p-values for

(RDBRM VS SBRM)
Evaluation metric Iteration-1 Iteration-2 Iteration-3 Overall Actual values
p-value | 4,, | p-value | 4,, | p-value | 4;, | p-value | 4,, RDBRM
Accuracy <0.001 | 0.00 | <0.001 | 0.00 | <0.001 | 0.00 <0.001 | 0.00 92.96%
Connected Precision 0.001 0.10 | <0.001 | 0.00 | <0.001 | 0.00 <0.001 | 0.03 0.934
Connected Recall <0.001 | 1.00 | <0.001 | 1.00 | <0.001 1.00 <0.001 | 1.00 0.994
Connected F-Measure 0.418 0.40 0.418 0.60 0.012 0.200 0.135 0.400 0.963
Failed Precision <0.001 | 0.00 | <0.001 | 0.00 | <0.001 | 0.00 <0.001 | 0.00 0.796
Failed Recall <0.001 | 0.00 | <0.001 | 0.00 | <0.001 | 0.00 <0.001 | 0.00 0.260
Failed F-Measure <0.001 | 0.00 | <0.001 | 0.00 | <0.001 | 0.00 <0.001 | 0.00 0.392

4.4 Overall Discussion
For RQ1, we noticed that NSGA-II has outperformed RS in terms of HV, the three objectives as
well as the combined. This suggests that our problem is not trivial and requires the search.

For RQ2 and RQ3, we observed that SBRM performed significantly better than RBRM and
RSBRM for most of the MLQMs. This is because we guide the search using previously mined
rules and generate specific configuration data that tend to either increase or decrease the
confidence of a rule. In this way, SBRM converges more rapidly than RBRM to obtain high
confidence rules. To further investigate the performance differences of SBRM with RBRM and
RDBRM, we calculated the relative improvement (RI) due to SBRM for all MLQMs, across

iterations. We calculated the RI with respect to RBRM as RI(S(Xi]-), R(Xij)) = (S(Xi]-) — R(Xi]-)),
where S(Xi]-) and R(Xjj) give the average values corresponding to the ith MLQM and jth
iterations for SBRM and RBRM, respectively. Similarly, to calculate RI with respect to RDBRM,
we applied a similar formula as: RI(S(Xi]-), RD(Xi)) = (S(Xi]-) - RD(Xi)), where RD(X;) gives
the value of the ith MLQM for RDBRM. Figure C-3 and Figure C-4 show the relative
improvement in MLQMs due to SBRM in comparison to RBRM and RDBRM, respectively.
From Figure C-3, one can observe that compared with RDBRM, the relative improvements of
SBRM in terms of Failed Precision, Failed Recall, and Failed F-measure are much larger than the
relative improvements of the other MLQMs, whereas it is negative in terms of Connected Recall.
This can be justified by the fact that in SBRM we generate configurations that maximally

137

conform to the rules with the abnormal state (i.e., the failed state). Also, we avoid generating
configurations that conform to the high confidence rules with the normal state (ie., the
connected state), which justifies the negative RI value for Connected Recall.

80% - 71.8%
0,
71% 72.5%
70% - 58.9%
Iteration 1
60% 1 58% 59.5%
0 u Iteration 2
50% - H [teration 3
40%
30% - 18.7%
17.8% 19.20
20% - L
3.64% -2.5%
10% | 7 4 240 M0 22% 24% 400 19% 0%
' 2.2% . 0% 0.4%
0% - | o —
Accuracy Connected Connected Connected F- Failed Failed Recall Failed F-
-10% - Precision Recall Measure Precision Measure

Figure C-3. Relative improvement by SBRM in comparison to RDBRM

Figure C-4 shows that the relative improvement in MLQMs for SBRM as compared to RBRM
is not large as it is in comparison to RDBRM, which is probably because the sample size used for
mining the rules in SBRM and RBRM is small (i.e., 700, 900, and 1100 for iteration-1, iteration-2,
and iteration-3, respectively). Moreover, in these small datasets, 500 initial configurations were
the same across the datasets used for SBRM and RBRM, and only maximum 600 (ie., in
iteration-3) configurations were different. On the other hand, the relative improvement for
SBRM with respect to RDBRM is large because the datasets used for RDBRM and SBRM were
different. Also, the size of the dataset used for RDBRM was large (i.e., 3963). However, from
Figure C-4, we can observe an increasing trend of the relative improvement across the three
iterations, suggesting that increasing the sample size can increase the relative improvement.

2.5% 1 2.3%
2.1%
2% 1.9%
2.0% pad 1.8%
1.7%
0,
1.5% Lovo 1.5% 1.5% Iteration 1
o 1.4% 1.4%
1.5% 1.3% 1.3% 1.3%
1.1% 1.1%
1% nlt i
eration 2
1.0% T 0.8% 0.8%
0,
0.59 0.5% m Iteration 3
.5%
0.0% T T T T T
Accuracy Connected Connected Connected Failed Failed Failed F-
Precision Recall F-Measure Precision Recall Measure

Figure C-4. Relative improvement by SBRM in comparison to RBRM

4.5 Threats to Validity
The threat to internal validity of our study is the selection of parameter settings for the selected
search algorithm, which may affect the performance of the algorithm. To mitigate this threat, we

138

used default parameter settings, which have exhibited promising results [33]. Similarly, for the
machine-learning algorithm, we also used default parameters settings, as selecting parameter
settings is application dependent [12]. The threat to construct validity is the use of termination
criteria for the search. We used the same stopping criterion (i.e., the number of fitness
evaluations) for both NSGA-II and RS to find the optimal solutions. Another threat can be a
selection of stopping criteria for the number of iterations and sample size used for mining the
rules. We used three iterations and during each iteration added 200 more configurations to the
dataset from the previous iteration due to practical challenges (i.e., the overall cost of the whole
process was high particularly on executing configurations and getting corresponding call statuses,
which was 50 seconds per configuration). To assess the effect of the sample size, the number of
iterations, and different values for the thresholds used to classify the CPL rules, we plan to
conduct dedicated empirical studies in the future.

The threat to conclusion validity is due to the random variation inherited in search algorithms.
To minimize this threat, we repeated the experiment 10 times to reduce the effect caused by
randomness, as recommended in [24, 29]. Moreover, we also applied the Mann-Whitney test to

determine the statistical significance of the results and the Vargha and Delaney A, statistics as
the effect size measure, which are recommended for randomized algorithms [29]. The first threat
to external validity is the selection of search algorithm for our study. To reduce this, we selected
the most widely used NSGA-II algorithm that has shown promising results in different contexts
[20, 22]. The second threat to external validity is the selection of algorithms for rule mining. To
tackle this threat, we selected PART, which has proven to be more effective as compared to
other well-known algorithms [15, 34|. The third threat to external validity is that we evaluated our
approach using only one case study. To mitigate this, we used a real case study, the Cisco Video
Conferencing Systems, which contains typical communicating products across multiple product
lines. However, a generalization of the results requires additional experiments. In future, we plan
to conduct an empirical study using several case studies to evaluate different search algorithms
and machine-learning algorithms.

5. Related Work

Search algorithms have been used to solve many problems in the context of PLE [35-37]. Since
we are focusing on rule mining; therefore, we only discuss existing studies related to rule mining
using machine-learning techniques in the context of PLE. In Section 5.1, we discuss dedicated
approaches that focus on mining rules from different artifacts (e.g., source code, configuration
file, feature model). In Section 5.2, we discuss approaches such as feature extraction, feature
construction and feature recommendation, which mine crosstree constraints.

5.1 Dedicated Rule Mining Approaches

The work in [12] applies Binary Decision Tree-J48 (machine learning algorithm) to infer the
constraints from a set of randomly generated product configurations. To classify the
configurations as faulty and non-faulty, a computer vision algorithm was used as an oracle. To
validate the approach, it was applied to an industrial video generator product line. Rules were
evaluated based on expert’s opinion and machine-learning measurements such as Precision and
Recall. Results show that on average 86% Precision and 80% Recall rate can be achieved using the
proposed approach.

139

In [38], Yi et al. proposed an approach to mine the crosstree binary constraints (i.e., requires,
excludes) corresponding to a feature model. The approach takes a feature model as input
containing the features, their descriptions, and some known crosstree binary constraints. First, it
trains LIBSVM classifier (an extension of support vector machine) with existing crosstree binary
constraints where the parameters of the classifier are optimized using the genetic algorithm to
minimize the error rate of the classifier. Second, it extracts all the feature pairs, and finally, the
optimized classifier finds the candidate features of binary constraints. The approach was
validated using two feature models collected from SPLOT repository. Results show that rules
with high Recal/ (i.e., close to 100%) and the variable low Precision (on average 42%) can be
achieved using proposed approach.

In [39], another approach is presented for mining the crosstree constraints. It constructs
configuration matrix (i.e., product-features matrix) from configuration files and extracts crosstree
constraints using an association rule mining technique (i.e., Apriori algorithm). Rules are pruned
using minimum support and minimum confidence thresholds. The approach was evaluated using
a large-scale industrial software product line for embedded systems. The evaluation shows that a
large number of rules with variable support (i.e., 80% to 99%) and confidence (i.e., 90% to
100%) can be identified. The majority of the rules were identified with support ranging from
80% to 85%.

In [40], an approach is presented to extract configuration constraints from existing C
codebases using static analysis. It uses build time errors (e.g., pre-processor, parser, type, and link
errors) as the oracle to classify the low-level system configurations (i.e., build and code files) and
mine the constraints. To assess the accuracy of extracted rules, they were compared with the
existing constraints specified in developer’s created variability models. The approach was
validated using four open source case studies (uClibc, BusyBox, eCos, and the Linux kernel).
Results show that up to 19% of the total constraints can be recovered automatically from the
source code, which assures successful build with the accuracy of 93%. In [13], an extension of
[40] is presented in which the authors improved the static analysis and increased the
recoverability rate by 9%. Additionally, an empirical study is also presented that identifies the
sources of constraints.

5.2 Non-Dedicated Rule Ming Approaches

In [41], Czarnecki et al. proposed an extension of feature model called probabilistic feature
model. To extract crosstree constraints from existing formally defined products, a rule mining
process is presented that uses association-mining techniques to mine the constraints. The
proposed mining process was applied on a small case study of Java Applets. Rules were evaluated
based on machine-learning measurements (i.e., support and confidence).

In [42], an approach is proposed to model and recommend product features for any particular
domain based on the product description provided by the domain expert. To mine association
rules between product features, association rule mining techniques are applied to configuration
matrix (i.e., product-features matrix). The proposed approach was validated with 20 different
product categories using product descriptions available at SoftPedia [43]. Hariri et al. [44] extend
the work presented in [42]. In [44], different clustering algorithms used to cluster the features and
construct products by feature matrix were compared. The evaluation was also improved by
applying the approach on diverse domains as well as a large project of a software suite for remote

140

collaboration. Results show that rules with different Precision and Recal/ rates can be mined
according to the threshold set for the confidence.

The work in [0] presents an approach to synthesize attributed feature models (AFM) from a
set of product descriptions in the form of tables (i.e., configuration matrix). An algorithm is
proposed that uses implication graph and mutex graph constructed from configuration matrix to
extract the crosstree constraints. For extracting the relational constraints defined on values of
attributes, the algorithm uses domain knowledge or selects the boundary values of attributes
randomly when domain knowledge is not provided. The approach was validated using random
configuration matrices as well as a real-world case study. Results show that the proposed
algorithm can be used to mine a large number of rules for large-scale case studies.

Davril et al. [45] proposed an approach to construct a feature model automatically from
informal product descriptions available over the Internet. To mine the implication rules of
features, CFP-growth algorithm and Apriori algorithm are applied on configuration matrix (i.e.,
product-features matrix). The proposed approach was applied to a case study of antivirus
software using the product descriptions available at SoftPedia [43].

5.3 Summary

All the approaches discussed above focus on mining binary crosstree constraints (requires and
excludes) between different features of a product line or constraints on features’ attributes. In our
study, we focus on mining rules between configuration parameters and system behaviors of
interacting products across product lines. Additionally, we defined three objectives (Section 3.2)
for generating configuration data, which are fed to the machine-learning tool in order to refine
rules. To evaluate the quality of rules, all the approaches discussed above have used machine-
learning quality measurements (e.g., Precision). We also evaluated the quality of constraints based
on machine-learning quality measurements. Additionally, we also compared the rules produced
using SBRM with the rules mined based on real data.

6. Conclusion

We presented an incremental and iterative approach (named as SBRM) for mining rules for
configurations of communicating products belonging to different product lines. To mine rules,
we combine multi-objective search with machine learning techniques. To use the search in the
rule mining process, we defined three objectives and integrated them with the widely used multi-
objective optimization algorithm—NSGA-II. We compared SBRM with RS based approach
(RBRM) in terms of the three objectives, HV, and machine learning quality measurements. The
results of the statistical tests show that SBRM performed significantly better than RBRM for all
the three objectives, HV, and machine learning quality measurements. In comparison with the
rules mined based on real data (RDBRM), SBRM has performed significantly better particularly
tor Failed Precision, Failed Recall, and Failed F-measure where SBRM improved them by 18%, 72%,
and 59% respectively, when compared with RDBRM.

Acknowledgement

This work was supported by the Zen-Configurator project funded by the Research Council of
Norway (grant no. 240024/F20) under the category of Young Research Talents of the FRIPO
funding scheme. Tao Yue and Shaukat Ali are also supported by RCN funded MBT4CPS project,

141

RFF Hovedstaden funded MBE-CR project, EU Horizon 2020 funded U-Test project, RCN
funded Certus SFI, and the EU COST action MPM4CPS.

References

1. Holl, G., P. Grinbacher, and R. Rabiser, A systematic review and an expert survey on capabilities
supporting multi product lines. Information and Software Technology (IST), 2012. 54(8): p. 828-852.

2. Rosenmiiller, M. and N. Siegmund. Automating the Configuration of Multi Software Product Lines. in
Proceeding of International Workshop on Variability Modelling of Software-intensive Systems (VaMoS).
2010. Elseviet.

3. Video Conferencing Systems Available from: http://www.cisco.com/.

4. ULMA Handling Systems. Available from: http://www.ulmahandling.com.

5. Yue, T., S. Ali, and B. Selic. Cyber-Physical System Product Line Engineering: Comprehensive Domain
Analysis and Experience Report. in Proceeding of International Systems and Software Product Line
Conference (SPLC). 2015. ACM.

6. Bécan, G., et al. Synthesis of attributed feature models from product descriptions. in Proceeding of
International Systems and Softwate Product Line Conference (SPLC). 2015. ACM.

7. Nie, K., et al. Constraints: the core of supporting automated product configuration of cyber-physical
systems. in Proceeding of International Conference on Model-Driven Engineering Languages and Systems
(MODELS). 2013. Springet.

8. Safdar, S.A., et al. Evaluating Variability Modeling Techniques for Supporting Cyber-Physical System
Product Line Engineering. in Proceeding of International Conference on System Analysis and Modeling
(SAM). 2016. Springer.

9. Lu, H., et al, Model-based Incremental Conformance Checking to Enable Interactive Product
Configuration. Information and Software Technology (IST), 2015. 72: p. 68-89.

10. Lu, H., et al, Nonconformity Resolving Recommendations for Product Line Configuration, in
International Conference on Software Testing. 2016, IEEE. p. 57-68.

11. Lu, H,, et al, Zen-CC: An Automated and Incremental Conformance Checking Solution to Support
Interactive Product Configuration, in 25th International Symposium on Software Reliability Engineering.
2014, IEEE. p. 13-22.

12. Temple, P., et al. Using Machine Learning to Infer Constraints for Product Lines. in Proceeding of
International Systems and Softwate Product Line Conference (SPLC). 2016. ACM.

13. Nadi, S., et al., Where do configuration constraints stem from? an extraction approach and an empirical
study. IEEE Transactions on Software Engineering (TSE), 2015. 41(8): p. 820-841.

14. Witten, I.H., E. Frank, and M.A. Hall, Data Mining;: Practical machine learning tools and techniques. Third
ed. 2011: Morgan Kaufmann.

15. Frank, E. and 1.H. Witten. Generating accurate rule sets without global optimization. in Proceeding of
International Conference on Machine Learning (ICML). 1998. University of Waikato, Department of
Computer Science.

16. Satti, A., N. Cercone, and V. Keselj, Experiments in Web Page Classification for Semantic Web, in
Workshop on Web-based Support Systems. 2004. p. 137-141.

17. McMinn, P., Search-based software test data generation: a survey. Software Testing Verification and
Reliability (STVR), 2004. 14(2): p. 105-156.

18. Ali, S., et al., Generating test data from OCL constraints with search techniques. IEEE Transactions on
Software Engineering (TSE), 2013. 39(10): p. 1376-1402.

19. Deb, K., et al., A fast and elitist multiobjective genetic algorithm: NSGA-II. Evolutionary Computation,
IEEE Transactions on, 2002. 6(2): p. 182-197.

20. Sarro, F., A. Petrozziello, and M. Harman. Multi-objective software effort estimation. in Proceeding of
International Conference on Software Engineering (ICSE). 2016. ACM.

21. Pradhan, D., et al., Search-Based Cost-Effective Test Case Selection within a Time Budget: An Empirical
Study, in Genetic and Evolutionary Computation Conference. 2016, ACM. p. 1085-1092.

22, Pradhan, D., et al. STIPI: Using Seatch to Prioritize Test Cases Based on Multi-objectives Derived from
Industrial Practice. in Proceeding of International Conference on Testing Software and Systems (ICTSS).
2016. Springer.

23. Wang, S., et al. Multi-objective test prioritization in software product line testing: an industrial case study. in
Proceeding of International Systems and Software Product Line Conference (SPLC). 2014. ACM.

24, Wang, S., et al., A Practical Guide to Select Quality Indicators for Assessing Pareto-based Search

142

Algorithms in Search-Based Software Engineering, in International Conference on Software Engineering
(ICSE). 2016.

25.
26.

27.
28.

29.
30.
31

32.

33.
34.
35.

36.

37.
38.

39.

40.
41.
42.

43,
44,

45.

143

Nebro, AJ., et al, AbYSS: Adapting scatter search to multiobjective optimization. Evolutionary
Computation, IEEE Transactions on, 2008. 12(4): p. 439-457.

Sokolova, M. and G. Lapalme, A systematic analysis of performance measures for classification tasks.
Information Processing & Management (IPM), 2009. 45(4): p. 427-437.

Han, J., J. Pei, and M. Kamber, Data mining: concepts and techniques. 2011: Elsevier.

Durillo, J.J. and A.J. Nebro, jMetal: A Java framework for multi-objective optimization. Advances in
Engineering Software, 2011. 42(10): p. 760-771.

Arcuri, A. and L. Briand, A practical guide for using statistical tests to assess randomized algorithms in
software engineering, in 33rd International Conference on Software Engineering. 2011, IEEE. p. 1-10.

Ali, S. and K.A. Smith, On learning algorithm selection for classification. Applied Soft Computing, 2006.
6(2): p. 119-138.

Mann, H.B. and D.R. Whitney, On a test of whether one of two random variables is stochastically larger
than the other. The Annals of Mathematical Statistics, 1947. 18(1): p. 50-60.

Vatgha, A. and H.D. Delaney, A critique and improvement of the CL common language effect size
statistics of McGraw and Wong. Journal of Educational and Behavioral Statistics (JEBS), 2000. 25(2): p.
101-132.

Arcuri, A. and G. Fraser. On parameter tuning in search based software engineering. in Proceeding of
International Symposium On Search Based Software Engineering (SSBSE). 2011. Springer.

Holmes, G., M. Hall, and E. Prank. Generating rule sets from model trees. in Proceeding of Australasian
Joint Conference on Artificial Intelligence (Al). 1999. Springer.

Lopez-Herrejon, R.E., L. Linsbauer, and A. Egyed, A systematic mapping study of search-based software
engineering for software product lines. Information and Software Technology (IST), 2015. 61: p. 33-51.
Harman, M., et al. Search based software engineering for software product line engineering: a survey and
directions for future work. in Proceeding of International Systems and Software Product Line Conference
(SPLC). 2014. ACM.

Wang, S., S. Ali, and A. Gotlieb, Cost-effective test suite minimization in product lines using search
techniques. Journal of Systems and Software (JSS), 2014. 103: p. 370-391.

Yi, L., et al. Mining binary constraints in the construction of feature models. in Proceeding of International
Requirements Engineering Conference (RE). 2012. IEEE.

Zhang, B. and M. Becker. Mining complex feature correlations from softwate product line configurations.
in Proceeding of International Workshop on Vatiability Modelling of Software-intensive Systems (VaMoS).
2013. ACM.

Nadi, S., et al. Mining configuration constraints: Static analyses and empirical results. in Proceeding of
International Conference on Software Engineering (ICSE). 2014. ACM.

Czarnecki, K., S. She, and A. Wasowski. Sample spaces and feature models: There and back again. in
Proceeding of International Systems and Software Product Line Conference (SPLC). 2008. IEEE.

Dumitru, H., et al. On-demand feature recommendations detived from mining public product descriptions.
in Proceeding of International Conference on Software Engineering (ICSE). 2011. IEEE.

Softpedia. Available from: http://www.softpedia.com.

Hariri, N., et al., Supporting domain analysis through mining and recommending features from online
product listings. IEEE Transactions on Software Engineering (TSE), 2013. 39(12): p. 1736-1752.

Davril, J.-M., et al. Feature model extraction from large collections of informal product descriptions. in
Proceeding of Joint Meeting on Foundations of Software Engineering (FSE). 2013. ACM.

144

Paper D

Using Multi-Objective Search and Machine Learning to Infer

Rules Constraining Product Configurations

Satdar Aqgeel Safdar, Tao Yue, Shaukat Ali, Hong Lu

Published in the Journal of Automated Software Engineering (ASE), 2019.

145

© 2019 Springer
The layout has been revised.

146

Abstract

Modern systems are being developed by integrating multiple products within/across product
lines that communicate with each other through information networks. Runtime behaviors of
such systems are related to product configurations and information networks. Cost-effectively
supporting Product Line Engineering (PLE) of such systems is challenging mainly because of
lacking the support of automation of the configuration process. Capturing rules is the key for
automating the configuration process in PLE. However, there does not exist explicitly-specified
rules constraining configurable parameter values of such products and product lines. Manually
specifying such rules is tedious and time-consuming. To address this challenge, in this paper, we
present an improved version (named as SBRM") of our previously proposed Search-based Rule
Mining (SBRM) approach. SBRM" incorporates two machine learning algorithms (i.e., C4.5 and
PART) and two multi-objective search algorithms (i.e., NSGA-II and NSGA-III), employs a
clustering algorithm (i.e., k-means) for classifying rules as high or low confidence rules, which are
used for defining three objectives to guide the search. To evaluate SBRM" (i.e., SBRM nscan-
C45, SBRM *nseam-C45, SBRM "nscan-PART, and SBRM *nseam-PART), we petformed two case
studies (Cisco and Jitsi) and conducted three types of analyses of results: difference analysis,
correlation analysis, and trend analysis. Results of the analyses show that all the SBRM*
approaches performed significantly better than two Random Search-based approaches (RBRM-
C45 and RBRM™-PART) in terms of fitness values, six quality indicators, and 17 machine
learning quality measurements (MLQMs). As compared to RBRM® approaches, SBRM*
approaches have improved the quality of rules based on MLQMs up to 27% for the Cisco case
study and 28% for the Jitsi case study.

Keywords: Product Line; Configuration; Rule Mining; Multi-Objective Search; Machine
Learning; Interacting Products

1 Introduction

Product Line Engineering (PLE) is a well-acknowledged paradigm to improve the productivity of
developing products with higher quality and at a lower cost. By benefiting from PLE, more and
more systems are developed by integrating different products, which often belong to different
product lines, and communicate and interact with each other through information networks [27,
28]. An example of such systems is video conferencing systems [71] (VCSs). These systems are
highly configurable as each product has a large number of configurable parameters (e.g., a VCS
product developed by Cisco15 can have more than 120 configurable parameters) offering
different configuration options to users (Figure D-1). For example, in case of VCSs, users can
select different protocols for making a call. Each product has a set of operations that enable it to
communicate/interact with other products (Figure D-1). Each product has state vatiables for
defining system states. At runtime, configured products belonging to multiple product lines
communicate (e.g., via information networks) with each other [27, 28] (Figure D-1). Thus,
runtime behaviors of such systems not only depend on the configuration of these communicating

15 www.cisco.com/c/en/us/products/collaboration-endpoints/index.html

147

products but are also influenced by information networks (also named as communication
medium). Note that configuration in our context is about assigning a set of values to configurable
parameters (Le., including communication medium specific) of communicating products.

Cost-effective PLE is challenging mainly because of the lack of the support for automation of
the configuration process [31, 32]. Capturing rules is the key to enabling automation of various
configuration functionalities (e.g., consistency checking, decision propagation, and decision
ordering) [3, 34, 72, 73]. In our context, such rules describe how configurations of
communicating products within/across product lines impact their runtime interactions via
information networks. We name such rules as Cross Product Lines (CPL) rules. CPL rules are
important for two reasons. First, they can be used to identify invalid configurations where
products may fail to interact due to, for example, violated dependencies among features of
interacting products [38]. Identified invalid configurations can help developers to maintain
current product lines or develop future product lines. Second, CPL rules can provide support for
enabling (automated or semi-automated) configurations of products of future deployments.
However, the literature does not provide sufficient support to mine such rules, as it mainly
focuses on mining rules constraining product configurations within a single product line [32, 37].

As mentioned in [38], rules (i.e., configuration constraints) can be identified from either
domain knowledge or testing of the system. Manually specifying such rules based on domain
knowledge is tedious and time-consuming, and heavily relies on experts’ knowledge of the
domain. Moreover, certain information is only known at runtime (e.g., network related
information such as bandwidth, traffic congestion , and maximum transmission unit (MTU) size)
[38], which makes CPL rules only possible to be captured at runtime. Identifying CPL rules via
testing has its own challenges, as the configuration space is typically very large and testing all
possible configurations is infeasible. Besides, in practice, testers often use valid configurations to
test a system [38]. Therefore, identifying CPL rules requires an automated approach without
exhaustively exploring all possible configurations of communicating products within/across
product lines.

In [37], a rule mining approach was proposed to mine rules for a product line where product
configurations are generated randomly and labeled as faulty or non-faulty. Labeled product
configurations are the input to the classification algorithm of J48 [74] to mine rules. However,
randomly generating configurations to mine rules is inefficient, as rules with all classes are not
equally important (i.e., rules with faulty classes are more important than non-faulty ones). We
advanced one step further by employing search to generate product configurations with three
heuristics and our initial investigation was presented in our previous work [75], where we
proposed an approach, named as Search-based Rule Mining (§BRM), combining multi-objective
search with machine-learning to mine CPL rules. The three heuristics aim to generate
configurations maximally violating high confidence rules with non-faulty classes and satisfying
low confidence rules with non-faulty classes and rules with faulty classes). SBRM has three major
components (Figure D-1): 1) Initial Configuration Generation: randomly generating an initial set of
configurations for communicating products; 2) Rule Mining: taking the generated configurations
as input along with corresponding system states and applying the machine learning algorithm to
mine CPL rules; and 3) Search-based Configuration Generation: taking the mined CPL rules as input
and generating an another set of configurations using multi-objective search algorithm, which are
combined with the previously generated configurations to mine a refined set of CPL rules. SBRM

148

obtains CPL rules with different degrees of confidence (i.e., the probability of being correct) with
an emphasis on mining rules that can reveal invalid configurations by specifying the
configurations that may lead to abnormal (i.e., unwanted) system states [40]. Instead of collecting
a large amount of data required for machine learning all at once, we obtain input data
incrementally with multiple iterations. During each iteration, we use rules mined from the
previous iteration to guide the search for generating configurations. Newly generated
configurations are combined with those from all the previous iterations to incrementally refine

the aforementioned rules.

. | Product Line-1 I I Product Line-2 | | Product Line-n |
e Configurable parameters
e State variables
e Operations Belong to

(Product-1] [Product-2] [Product-3] (Product-m1

Two or more products @ @ @
communicate via

| Communication Medium

Initial Configuration Rule Mining Search-Based
Generation Configuration Generation
>
: E> E> Using E> Using multi-objective
Randomly generated C4.5 or PART NSGA-II

% Iterative process I

Figure D-1. The overall context and scope of SBRM and SBRM*

In our previous investigation [75], we applied the PART algorithm as the learning algorithm
and NSGA-II as the search algorithm in SBRM. We validated the approach using a relatively
small-sized real-world case study of two communicating VCS products belonging to two
different product lines with 17 configurable parameters. In this paper, we extend the prior work
by making several additional contributions:

e A significantly improved version of SBRM (called SBRM") is proposed for mining CPL rules
constraining configurations of communicating products across/within product lines.

o A clustering algorithm (i.e., £-means) is employed in SBRM" (as compated to using
thresholds in SBRM) for classifying rules as high and low confidence rules, which are
used for defining the three heuristics/objectives.

o Two multi-objective search algorithms NSGA-II and NSGA-III are integrated into
SBRM", whereas in SBRM, we used only NSGA-II.

o Two decision tree based rule mining algorithms PART and C4.5 are integrated into
SBRM" (teferred as SBRM*nscau-C45, SBRM* nscam-C45, SBRM nseau-PART, and
SBRM* nsc4m-PART in the rest of the paper), whereas in SBRM, we used only PART.

e The SBRM" approaches were evaluated by performing a real-world case study of three
communicating VCS products belonging to three different product lines (Cisco) with 27
configurable parameters and a real-world open source case study of three products of

149

Audio/Video Internet Phone and Instant Messenger, belonging to the same product line
(Jitsi) with 39 configurable parameters. Note that evaluation results presented in this paper
are based on new experiments conducted using two relatively larger case studies (with 27 and
39 configurable parameters) of three communicating products and no results were taken
from our previous work [75].

e We conducted three types of analyses of results for both case studies: difference analysis,
correlation analysis, and trend analysis.

o We conducted difference analysis to compare the performance of NSGA-II and NSGA-
IIT combined with PART and C4.5 with Random Search (RS) combined with PART
and C4.5 in terms of fitness values, six commonly used quality indicators (i.e., Hyper
Volume (H1'), Inverted Generational Distance (IGD), Epsilon (€), Euclidean Distance
from the Ideal Solution (ED), Generational Distance (GD), and Generalized Spread
(GS)), and 17 machine learning quality measurements (MLQMs), in comparison with
the prior work where we evaluated NSGA-II and RS using fitness values, HI, and
six MLQMs. Furthermore, we have also compared the performance of the four
SBRM" approaches in terms of the 17 MLQMs to identify the best-suited approach
for mining CPL rules.

o We conducted correlation analysis to study the correlation between the quality of rules
in terms of MLQMs and average fitness values and quality indicators, which was not
performed in our prior work.

o We conducted #rend analysis to see the trend in the quality of rules based on MLQMs
across different iterations of SBRM" (also not performed in the prior work).

e We also significantly extended the related work.

Evaluation results show that SBRM" is effective to produce high-quality rules as compared to
RS based rule mining approach (i.e., RBRM"), as in 7 out of 8 comparisons for the two case
studies, the SBRM" approaches significantly outperformed the RBRM" approaches in terms of
the majority of MLQMs. In eighth comparison, neither one of the two approaches dominate
other. Among the four SBRM" approaches, SBRM*nsca.u-C45 produced the highest quality rules
based on MLQMs for the Cisco case study and SBRM'nscan-PART for the Jitsi case study.
Correlation analysis suggests that in most of the cases lower average fitness values, lower values of
quality indicators (except for H1”) and higher H]” values mean overall higher quality rules in
terms of MLQMSs. Moreover, #rend analysis shows an increasing trend of the quality of rules in
terms of MLQM:s for all the four SBRM" approaches across the five iterations.

The rest of the paper is organized as follows: Section 2 provides the background knowledge.
In Section 3, we give an overview of SBRM" followed by the search-based approach for
generating configurations in Section 4. In Section 5, we present experiment design and execution.
In Section 4.3, we present results and analyses, followed by the overall discussion and threats to
validity. Section 5 summarizes the literature review, and finally, in Section 8, we conclude the

paper.

150

2 Background

In this section, we briefly introduce relevant knowledge on multi-objective search (Section 2.1),
machine learning techniques for rule mining and clustering (Section 2.2), and branch distance
calculation heuristic (Section 2.3).

2.1 Multi-objective Search

Multi-objective search has been widely applied to address different software engineering
optimization problems such as test case prioritization, cost estimation, and configuration
generation [60, 61, 76, 77]. Multi-objective search algorithms are designed to solve problems
where various objectives are competing with each other, and no single optimal solution exists.
They aim to find a set of non-dominated solutions for trading off different objectives.

To address our problem, we selected the most commonly used Non-dominated Sorting
Genetic Algorithm (NSGA-II) [45, 78], which has proven to be effective for solving various
software engineering problems such as test case prioritization and cost estimation [45, 47].
NSGA-II relies on the Pareto dominance theory, which yields a set of non-dominated solutions
for multiple objectives [78]. At first, candidate solutions (i.e., the population) are sorted into
various non-dominated fronts using a ranking algorithm. Then, individual solutions are selected
from non-dominated fronts based on the crowd distance, which measures the distance between
the individual solutions and the rest of the solutions in the population [79]. If two solutions
belong to the same non-dominated front, then the solution with a higher crowd distance will be
selected to increase the diversity of solutions.

We also selected a relatively new multi-objective algorithm NSGA-III [80, 81], which has
shown to perform better than NSGA-II in several contexts [82]. The basic working procedure of
NSGA-III is quite similar to the NSGA-II but with significant changes in its selection operator.
Unlike NSGA-II, NSGA-III’s selection process utilizes well-spread reference points to apply the
selection pressure to maintain the diversity among population members. We use Random Search
(RS) as the comparison baseline.

2.2 Machine Learning

Machine learning is typically used for classifying, clustering, and identifying/predicting patterns in
data [83]. It has also been used for inferring rules [37, 70]. Machine learning techniques can be
classified into supervised learning (i.e., for labeled data) and unsupervised learning (i.e., for
unlabeled data). Supervised learning aims to find relations between input data and its outcome
whereas unsupervised learning is for identifying hidden patterns inside input data without labeled
responses. We adopted supervised learning in our approach, as we aim to find rules between
product configurations (i.e., input) and system states indicating the states of products’ interaction
(i.e., outcome).

There are two major paradigms of rule generation: 1) creating rules from decision trees,
converting the trees into rules and pruning them as opted by C4.5 [84]; 2) employing the
separate-and-conquer rule learning technique used by Repeated Incremental Pruning to Produce
Error Reduction [85]. Creating rules from decision trees is computationally expensive in the
presence of noisy data, and the separate-and-conquer rule learning technique has the over

151

pruning (hasty generalization) problem [59]. The Pruning Rule-Based Classification algorithm
(PART) combines the two paradigms mentioned above of rule generation while avoiding their
shortcomings. PART generates partial decision trees, and corresponding to each partial tree, a
single rule is extracted for the branch that covers maximum nodes [59]. Therefore, in our
previous study [75], we opted for PART. In this study, we also included C4.5, as it is the most
popular algorithm in the research community as well as industry [86].

We used Lloyd’s algorithm [87] for clustering rules, a commonly used £-means algorithm,
which minimizes the average squared distance between points within the same cluster. Initially, it
selects £ data points randomly as centers of £ clusters. Furthermore, it uses the Euclidean
distance function [88] to calculate the distances between each data point and centers of £ clusters,
and assign each data point to its nearest cluster. After assigning all the data points to £ clusters, it
updates the centers of £ clusters by calculating the mean of all the data points within each cluster.
Once centers are updated, it recalculates the Euclidean distance for all the data points and
reassigns them to £ clusters. This process continues until the centers of £ cluster do not change
in two consecutive iterations.

2.3 Branch Distance Calculation Heuristic

Branch distance is a heuristic used in search-based software engineering, which indicates to what
extent the given data satisfy the predicate (aka condition or clause) in the rule/constraint. For
measuring the branch distance between a configuration of a configurable parameter and a
predicate in the rule, we opted the branch distance calculation approach provided in [42, 43]. In
Table D-1, we summarize the distance calculation formula corresponding to different operations
for numerical and enumerated data.

Table D-1. Branch distance functions [42] *

Predicate type Operation Distance function
a=b 0
Predi b relati
redicates with relational operators A= al=b > 0 else nor([a—b| +1) *k
Predicate with a Boolean condition True = 0 else k
Logical connective of two predicates PriA Pr; Pry + Pra (sum of branch distances for both predicates)

* £ is a positive constant greater than zero, we used £=1; nor gives a normalized value between
zero and one.

3 Overview

Figure D-2 presents an overview of SBRM', which relies on machine learning and multi-
objective search to mine CPL rules in an iterative and incremental process. As shown in Figure
D-2, the whole process consists of seven steps, which are organized into four types of activities:
Generation, Execution, Mining, and Clustering. Generation related steps (i.e., Steps 1 and 5) about
generating configurations for the selected products within/across product lines, using a search
algorithm (e.g., NSGA-II) or RS. Execution-related steps (i.e., Steps 2 and 6) configure the selected
products with generated configurations and obtaining their consequent system states to label the
configurations. Mining-related steps (i.e., Steps 3 and 7) combine all generated configurations with
system states and apply machine learning algorithms (e.g., PART) to mine rules. Clustering Step 4
clusters and classifies the mined rules into categories with a clustering algorithm (e.g., £-means).

152

Based on the categories, we defined three search objectives for guiding the search for generating
configurations (Step 5).

As shown in Figure D-2, in the first step, an initial set of configurations is randomly generated
for configurable parameters of the selected products within/across product lines. The second
step obtains the system states indicating the states of interaction among selected products.
During the second step, we configure the selected products with randomly generated
configurations, execute certain functionalities to enable the communication among the selected
products, and capture the system states to know if the products communicated successfully (as
intended). In our context, an snferaction can be defined as a communication between two or more
products communicating via a communication medium. An interaction can be enabled by
executing certain functionalities (i.e., a sequence of operations) of the communicating products to

make them communicate with each other.

Generation Execution Mining Clustering

1: Generate
random
configurations

4: Cluster and
classify rules

2: Capture

system states 3: Mine rules

Classified rules

Configurations

7: Combine the
configurations and
mine rules

5: Generate
configurations
using search

6: Capture system
states for Search
based configurations

[

ations I I Sy states for search based configurations]

I Search based I Refined set of rules

C

Meet

Yes >©

pping
criteria? End

Figure D-2. Overview of the proposed approach (SBRM)

In step 3, we feed the set of generated configurations (as Attributes) and their corresponding
system states (as Classes) to Weka [74] as the initial input and apply a rule mining algorithm (e.g.,
PART or C4.5) to mine the initial set of rules. Normally, a classifier (e.g., C4.5 and PART) trains
a model using a training dataset and then validates the model using a test dataset. In our case, the
input configurations are used as the training dataset. For validation, we used 10 times 10-fold
stratified cross-validation as it presents all classes (approximately) equally across each test fold
[51, 86]. This means both PART and C4.5 use 10% of the training data (i.e., generated
configurations with corresponding system states provided as input) in each test fold to validate
the model. Note, PART gives a set of rules as the outcome. However, C4.5 gives a decision tree,
where a non-leaf node in a branch represents a predicate specifying the configuration value for a
particular configurable parameter and the leaf node represents the predicted Class (e.g., the call
status ConnectedConnected in our context). From each branch of a generated tree, we extract a rule
by joining all non-leaf nodes in the branch with the AND operator to form the antecedent of the

153

rule and using the leaf node as its consequent. We provide the code for extracting the rules from
the tree in the Bitbucket repository'.

In step 4, the mined rules are clustered using the 4-means clustering algorithm (Section 2.2)
and classified into different categories. The classified rules are fed to NSGA-II or NSGA-III for
generating configurations for the next iteration in step 5. In step 6, we repeat step 2 but take the
configurations generated from the search instead of the random one. In step 7, we combine all
the configurations generated from steps 1 and 5 and collected system states captured from steps
2 and 6, and feed all the data to Weka to mine a refined set of rules. This rule set is then used in
the next iteration (starting from step 4) to generate more configurations and further refine the
rules.

In each iteration, newly generated configurations with collected system states are added to the
dataset from the previous iteration to mine a new set of rules. We repeat the process (step 4 to
step 7) until we meet the stopping critetia, e.g., a fixed number of iterations and/or when the
rules mined from two consecutive iterations are similar. We used a fixed number of iterations in
our experiments, as we have limited available resources for mining rules. Getting similar rules
from consecutive iterations indicates that it is very unlikely to refine the rules further. All the
iterations (e.g., five iterations in our experiment) used for refining the rules and repeated before
meeting the stopping criteria make a complete cycle. We consider step 4 (i.e., classification of
rules) and step 5 (i.e., using search to generate configurations), as the innovative part of the whole
approach, i.c., SBRM". This is because using Weka to mine rules is an application of the rule
mining algorithm (e.g., PART or C4.5), but applying search requires carefully designing a fitness
function. Similarly, classification of rules requires applying the A-means clustering algorithm
based on certain attributes, ranking the clusters using specific formula and classify the rules into
different categories, which are consequently fed to the search algorithm (e.g., NSGA-III) to
generate configurations. Both steps 4 and 5 are discussed in detail in the following section.

Pseudocode 1 is the pseudocode of SBRM', where in L1, we encode the configuration
generation problem by representing all the configurable parameters as numerical variables
(Integer or Real) and restricting their domains by defining their upper and lower limits. In L2-L.5
(i.e., Zero-Iteration), we generate the initial set of configurations randomly, decode them, and
mine the initial set of rules. Similarly, in 1.6-L.19, we cluster and classify the rules (L7), generate
configurations (L8) using the search (e.g., NSGA-II), decode the configurations (L9), and mine
the refined set of rules (L10-L11). Note, encoding and decoding are discussed in detail in Section
4.3, whereas the mining and clustering are introduced in Section 4.2.

Input: A set of n configurable parameters CP = {cpy,cp,,..,cp,} with their sets of possible values CPV =
{CPV,,CPV,,..,CPV,}, Number of intial randomly generated configurations NCr;, Number of iterations NI, and
Number of configurations to be generated per iteration NCpy, a set of parameters for search algorithm Pgy
Output: A set of rules RRS
Begin
o Encoding Configuration Generation Problem
L1. ECP, UpperLimits, LowerLimits <— Encode_Configurations_Generation_Problem (CP, CPV)

S Generating Initial Set of Rules based on Randomly Generated Configurations.......
L2. I:=0 # Zero-Iteration where we use configurations generated randomly

16 https://bitbucket.org/safdarageel/ase-ruleextraction

154

L3. ECgrs < Generate_Configurations_Randomly (ECP, UpperLimits, LowerLimits, NCgg)
L4. DCgrg < Decode_Configurations (ECrg, UpperLimits, LowerLimits)
L5. RSinitiai < Mine_Initial_RuleSet (DCgg)

... Generating Refined Set of Rules Based on Configurations Generated Using Search Algorithm...
16. 1:=1+1 # First iteration where we use configurations generated by search algorithms
L7. CRSpnitiar < Cluster_And_Catergotize_Rules(RS;pitiar)
L8. ECsp; < Generate_Configurations_Using Search (ECP, UpperLimits, LowerLimits, NCp;, CRSnitia1,
Psy)
L9. DCspg < Decode_Configurations (ECsp;, UpperLimits, LowerLimits)
L10. DCrg+spg < Combine_Configurations (DCr¢, DCspg)
L11. RSgefinea < Mine_Refine_RuleSet (DCspgre)

L12.while (I < NI) do

L13. I:=1+1

L14. CRSpefinea < Cluster_And_Classify_Rules(RSgefinea)

L15. ECsp; < Generate_Configurations_Using Seatch (ECP , UpperLimits , LowerLimits , NCp, ,
CRSRefined> PSA)

L16. DCspe < Decode_Configurations (ECsp;, UpperLimits, LowerLimits)

L17. DCrgispe < Combine_Configurations (DCrg 4556, DCspe)

L18. RSgefinea < Mine_Refine_RuleSet (D Crg4556)

L19.return RSgefineq

Pseudocode 1: Search Based Rule Mining (SBRM*)

4 Search-Based Configuration Generation Approach

Sections 3.1 presents formal definitions required to define the configuration generation problem.
In Section 3.2, we present details about the classification of CPL rules. Section 4.3 presents the

objectives and effectiveness measures, followed by the fitness function in Section 3.3.

4.1 Formalization of Configuration Generation Problem

We formalize relevant concepts and exemplify them with an example of three communicating
VCS products belonging to two different product lines (Figure D-4). The definitions, formal
representations, and examples of the concepts related to the product lines and rule mining are
presented in Table D-2. Moreover, we also constructed a class diagram shown in Figure D-3 to
conceptually describe how the defined concepts are related to each other.

As shown in Figure D-3, each product line has two or more products, which are
communicating via a communication medium (e.g., Wired Internet, Wireless Internet, Bluetooth).
A product has one or more configurable parameters, state variables, and operations. Each
configurable parameter has two or more configurable parameter values. Similarly, each state
variable has two or more state values. An operation can take zero or more operation parameters
as input, where each operation parameter has two or more operation parameter values. The
operation parameter values assigned to the operation parameters of the operation may affect the
behavior of the operation. Different products can communicate with each other by enabling a
particular interaction. Enabling a particular interaction requires executing a sequence of
operations belonging to one or more communicating products. State rules defined on state
variables of the communicating products can be used to define the system states, which indicate
whether products interact/communicate successfully (as intended). The configurable parameter
155

values assigned to the configurable parameters of the communicating products determine the
success of the interaction. Moreover, the communication medium may also influence the
interaction. An interaction has at least one source product and one or more target products. An
interaction is homogeneous if the communicating products belong to the same product line
otherwise heterogeneous. The communication between products enabled by an interaction can
be unidirectional or bidirectional.

In Figure D-4, IVCS-PL7 and IVCS-PL2 are two VCS product lines. I'CS7, I’'CS2, and 'CS3
are three products communicating through Wiredlnternet, where 1’CS7 and 1V'CS2 belong to 'CS-
PL7, and 17CS3 belongs to IVCS-PL2. 1’CS7 has three configurable parameters (e.g.,
V'CS1.defanltProtocol), three state variables (e.g., V'CS7.callStatus), and five operations (e.g.,
V'CS1.dial()). Similarly, 1”CS2 has three configurable parameters, one state variable, and three
operations whereas [”CS3 has four configurable parameters, one state variables, and three
operations. dial() operation of all three VCS products has three operation parameters including

protocol, callRate, and callType.

Table D-2. Formalization of concepts*

Def# Concept Definition and formal representation with examples

A product line can be defined as a set of products sharing explicitly defined and
managed common and variable features and relying on the same domain architecture. A
1 Product line | set of npl product lines for a particular application domain can be presented as: PL =
{rl,ply, .., plyp }, where pl; represents the 7 product line. For example, {I/CS-PL1,
I/CS-PL2} is a set of two product lines.

A product can be defined as a triplet (CP, SV, OP), where CP, SV, and OP are sets of
configurable parameters, state variables, and operations. A set of inp products for a
product line pl; can be presented as: P; = {p;1, Diz, -+ Dinp > Where pjjrepresents the
product of pl;. For example, {1/CS1, 1’'CS2} represent a set of products for VCS-PL1.
A configurable parameter is a numerical (e.g., integer, real) or non-numerical (e.g., binary,
ordinal, nominal) type variable, which can take different values [33]. The possible values
of a numerical type configurable parameter can be specified by defining the constraints
on its upper and lower limits whereas, for a non-numerical type configurable parameter,

2 Product

Configurable | they can be specified as a set of predefined values. A set of incp configurable parameters
parameter for a product p; can be presented as: CP; = {cP;1,CDiz) -+, CPincp §>» Where cp;;j
represents the / configurable parameter of p;. For example, {defauitProtocol, encryption,
defanltCallRate} is a set of configurable parameters of product IVCS7, whete defaultProtocol
and encryption are non-numerical and defaultCallRate a numerical type configurable
patameters.

A configurable parameter value is a value that can be assigned to a configurable

parameter. A set of incpv configurable parameter values for each ¢p; can be presented
Configurable | as: CPV; = {cpv;y, CDVjz, .., CDVincpy §> Where cpv;; represents the 7 value of cp;. For
4 parameter a real type configurable parameter, incpv will be infinity because such configurable
value parameter can take infinite values between its upper and lower limits. For example,
defaultProtocol can be configured with SIP, H323, and AIM whereas defanitCallRate can
take a value between 64 to 6000.

State variables are vatiables used to describe the state of the system. A set of insv state
variables for a product p; can be presented as SV; = {sv;1, SV;, .., SVjnsp}, where SV;;

5 State variable)
represents the / state vatiable for the product p; . For example, {w/iStatus,

nuniberOfActiveCalls, isPresentationShared} is a set of state vatiables of 1/CS7.
A state value is a possible value of a state variable, specific to one product. A set of inv

6 State value possible state values for a state variable sv;, can be presented as V; = {v;y, Vo, .., Vi },
where v;; represents the 7 state value of sv;. For example, {Connected, Failed} represents
a set of state values for ca/lStatus of 1'CS1.

An operation is a function implemented in a product. A set of inop operations for a

product p; can be presented as: OP; = {0p;1, 0Piz, - -» OPinop }, Where 0p;; represents

7 Operation

156

the /* operation of p;. For example, {dial(), accept(), disconnect(), startPresentation(),
stopPresentation()} is a set of operations for [/CS7.

Operation
parameter

An operation parameter is a variable of numerical (e.g., integer, real) or non-numerical
(e.g., binary, ordinal, nominal) type, provided as input to an operation. A set of inpm
parameters for an operation 0p; can be presented as PM; = {pm;y, PMyz, .., DMinpm)
where pm;; represents the /” operation parameter for the operation op;. For example,

{protocol, callRate, calllype} represents a set of operation parametets for dial() operation of
CS1.

Operation
parameter
value

An operation parameter value is a value that can be assigned to an operation parameter.
A set of inpv parameter values for an operation parameter pm; can be presented as

PV; = {pVi1,DVizs - - PVinpy}, Where pv;; represents the /” operation parameter value of
pm;. For example, {Audio, 1/ideo} represents a set of operation patameter values for
callType operation parameter corresponding to the dial() operation of 1'CS7.

10

Interaction

An interaction is communication between at least one source product and one or more
target products communicating via a communication medium, enabled by a sequence of
operations belonging to the source and target products. A set of inin interactions
supported by a product p; to communicate with other products can be presented as:
IN; = {in;y, in;y, .., Mypsy, }, where in;; represents the / interaction supported by
product p;. For example, {making-call, sharing-presentation} represents a set of interactions

supported by I'CS7.

1

Selected
products

A set of nsp communicating products under study can be presented as: SP =
{P1, D2+, Dnsp }» where p; represents the 7 product in the set of communicating

products. Such products may belong to different product lines or same product line. For
example, SP = {I/CS1, I'CS2, IVCS3} represented a set of selected products where
VCS1 and VCS2 belong to VCS-PL1, and 17CS3 belongs to V'CS-PL2.

12

Selected
interactions

A set of nsin selected interactions for the selected products can be defined as: SINgp =
{iny, iny, .., iNpgin }, where in; represents the /” selected interaction. For example, SINsp
= {making-call} represents the set of selected interactions.

13

Selected
operations

For each selected interaction in;, a sequence of operations required to enable
interaction in; can be defined as: OPS; = (0p;1, 0Piz, - -, ODinsop)> Where 0p;;
represents the 7/ operation (in order) required to enable interaction in;. For example,
(V'CS1.dial(), VCS2.accept(), V' CS3.accept(), V'CS1.disconnect()) tepresents the sequence of
operations required to enable waking-call interaction.

14

Selected
configurable
parameters

A set of nscp selected configurable parameters for all the selected products can be
defined as: SCPgp = {CP1, CP2) -, CPnscp)}, Where €p; represents the # configurable
parameter of the selected product. For example, SCPsp={ 1"CS1.defanltProtocol,

V' CS1.defanttCallRate, V' CS1.encryption, 1'CS2.encryption, V' CS3.encryption’} represents the
set of selected configurable parameters for the selected products.

15

Selected state
variables

A set of nssv selected state variables for all the selected products related to the selected
interaction can be defined as SSVsp = {svy, SU,, .., SV, s, }, where vS; tepresents the #
state variable. The selected state variables may belong to different products. For
example, {'CS2.callStatus, V'CS3.callS tatns} represents the set of selected state vatiables.

16

System states

System states are the combinatorial states for all the products involved in the selected
interactions, which indicate whether products communicated successfully (as intended).
Such states are described by defining the state rules on the selected state variables. A set
of nis possible system states corresponding to the selected interactions can be defined
as: SS = {s51,5S,,..,5Sy;s }, whete Ss; represents the /7 system state. For example,
{ ConnectedConnected, Connectedl ailed, FailedConnected, FailedFailed} represents a set of system
states, which are specified by concatenating (state rule) the states values of the selected
state variables.

17

Predicate

A predicate is a conditional statement in a rule with one configurable parameter and its

value joined by one of the relational operators (ie., = #,<,<,>,=). For example,
“VCS1.encryption = On” and “V'CS1. defanltCallRate > 1000” are two predicates.

18

Rule

In the context of rule mining, a rule with npr predicates can be represented as: 1; =
pry AND pry AND ... AND pt,,,,. : Sy, where pr; represents the /” predicate of rule 7;
and SSj represents £&” system state. For example, 1y: “V/CST.encryption = On AND
VCS2.encryption = Off AND V' CS3.encryption = BestEffort: ConnectedFailed” and 1, :

157

“VCS1.encryption = On AND V' CS2.encryption = BestEffort AND 1'CS3.encryption = On:
ConnectedConnected”’ are two rules.

For a rule 1y, Cf (1;) represents the confidence of 1;, which is between 0 and 1. Confidence

for a rule 7; can be calculated as: Cf (1;) = CPEV) here SP; represents the number of

(SPi+Vy)’
19 Confidence instances for which 7; holds true (i.e., suppord) and V; represents the number of instances

st that violate 7; (i.e., violation). An instance represents a set of configurable parameter
values for the selected configurable parameters of the communicating products and
corresponding system state.

A configuration solution {s;} is a set of configurable parameter values assigned to all the

. selected configurable parameters, which mathematically can be represented as: s; =
Configuration

20 .
solution

{cpVj1, .., CDVjnsep), Where cpvj; represents the configurable parameter value assigned

to the 7 configurable parameter (i.e., cp;) in {s;}. For example, {SIP, 5000, On, BestEffor,

Off} is a configuration solution.

A set of ns potential configuration solutions (i.e., configuration space) can be defined as:

S = {{s1}, {s2}, .., {Sns}}, where {s;} represents the # configuration solution. ns can be

calculated as the cardinality of the Cartesian product of configurable parameter values’

sets for all the selected configurable parameters, which can be represented

mathematically as: |[CPV; X..X CPVq,|. The configuration space for the Cisco’s case

study contains approximately 1.03e3? configuration solutions and 6.54e for the Jitsi case

study

Effecti A set of ne effectiveness measures can be defined as: E = {ej, €,,.., €.}, Where e;
ectiveness . .

22 measures represents the 7 effectiveness measure. For example, a set of three effectiveness

measures (i.e., AHNS, NLNS, and NAS) defined in Section 4.3

A set of nes configuration solutions explored during the search is a proper subset of S,

which mathematically can be represented as: Sg, = {{51}, {52}, -, {Snes}}, where nes <

ns.

* Note: All the examples provided are based on the running example. Also, by selected elements (e.g., products, configurable

Configuration
space

21

Explored
solutions

23

parameters), we mean elements under study for learning CPL rules.

[cPLRule

«enumeration»
CPType

Integer

Real

Binary

* " Nominal

1.7 | ConfigurableParameter Ordinal

- type : CPType z_fl String

has

Interaction

- direction : DirectionType
- type : InteractionType

I ConfigurableParameterValue

«enumeration»

DirectionType —— . _I OperationParameter I «enumeration»

Unidirectional CommunicationMedium InteractionType

Bidirectional - OperationsSequence | | 2.1 OperationParameterValue | Homogeneous
Heterogeneous

Figure D-3. A conceptual model for interacting products

Based on the concepts presented in Table D-2, our configuration generation problem can be
formulated as searching a solution set Sg from a set of explored solutions (i.e., Sgx) such that
Sp C Sgx, and all the solutions in S have highest effectiveness in terms of effectiveness
measures E than all the other explored solutions in {Sg\Sgy}-

Vs,esr VsieSpy Veje gSi & Sg AEffect(s,,e) = Effect (s;, e)
A3 e Effect(sy, ex) > Ef fect (s, ex) ©)
where Effect (s;, ;) gives the value of the // effectiveness measure (Section 4.4) for

configuration solution ;.

158

«Enumeration, AN

ConfigurableParameterValue» dial,accept, and diconnect are related to making-call interaction whereas
EncryptionType startPresentation and stopPresentation are related to sharing-presentation interaction. o
On
Product
BogstE"or(«Enumeration, StateValue» « ves1 »
CallStatusType .
- c - - «ConfigurableParameter» defaultProtocol : ProtocolType
~ «Enumeration, Fo_?ndede - «ConfigurableParameter» defaultCallRate : Integer
ConfigurableParameterValue, aile - «ConfigurableParameter» encryption : EncryptionType
OperationParameterValue» - «StateVariable» callStatus : CallStatusType
ProtocolType _(con(exl VCS1,VCS2,VCS3 - «StateVariable» NumberOfActiveCalls : Integer
SIP inv: self.callRate >= 64 and - «StateVariable» IsPresentationShared : Boolean
H323 self.callRate <= 6000} + dial (protocol : ProtocolType, callRate : Integer, callType : CallType)
AlM +accept()
«Enumeration, «ProductLine» - :l:(r:fpnrr;es?n(ta)(on 0
OperationParameterValue» VCS-PL1 !
CallType + stopPresentation ()
Audio «ProductLine» «Product»
Video VCS-PL2 VvCS2
- «ConfigurableParameter» encryption : EncryptionType
«Product» - «StateVariable» callStatus : CallStatusType
vCcs3 - «ConfigurableParameter» defaultProtocol : ProtocolType —

- «ConfigurableParameter» encryption : EncryptionType - «ConfigurableParameter» defaultCallRate : Integer
- ::g!‘::g3:"{?:;?::Zfl‘l’;(‘:"l:’sr_ea‘)“';g‘;ﬁ:??;?"'ea" + dial (protocol : ProtocolType, callRate : Integer, callType : CallType)
- 1 - +accept ()
- «ConfigurableParameter» defaultProtocol : ProtocolType + disco?mecl()
- «ConfigurableParameter» defaultCallRate : Integer
+ (:ca(];é plr:);ocol : ProtocolType, callRate : Integer, callType : CallType) «CommunicationMedium»
+ N P
N disco‘r)mect() Wiredinternet

Figure D-4. Exemplifying concepts related to the product interaction

4.2 Clustering and Classification of CPL Rules

Generally, from the user perspective, the system states (Table D-2) can be categorized as normal
states and abnormal states. Normal states indicate that interaction was enabled successfully and
selected products interacted/communicated successfully as intended whetreas abnormal states
show that interaction failed and selected products did not interact/communicate successfully.
Consequently, CPL rules can be classified into two categoties: Ry = {rq1, 742, Ta3s - Tnar} for
abnormal states (Category-1), where 1,; represents the 7 rule with abnormal state and nar
represents the total number of rules with abnormal states; Ry = {11, Tn2, Tn3s «-os Tanr} is for
normal states, where Ty,; represents the 7/ rule with normal state and nnr represents the total
number of rules with normal states.

We apply 4-means (Section 2.2) to cluster Ry into three clusters based on three attributes of
rules: confidence, support, and violation. Support and violation have a different scale than confidence, and
generally, clustering algorithm does not work with attributes of different scales [89]. Thus, we
divided support and violation by the sum of maximum support and maximum violation in order to
normalize support and violation. After clustering the rules, we calculate the rank for each cluster as:

Rank (c;) = (Support(c;) + Confidence(c;) — Violation(c;)) 2)

Where Support(c;), Violation(c;), and Confidence(c;) are mean values of normalized
support, violation, and confidence for all the rules belonging to cluster ¢;. Based on the calculated
ranks of the three clusters, all the rules are classified into two categories: Ryq represents high-
confidence rules belonging to a cluster with the highest rank (Category-1I) whereas Ry,
represents low-confidence rules belonging to other two clusters with the lowest and medium
ranks (Category-III). In Table D-2 (Def# 18), we present two CPL rules 17 and 1, where 17 is a
rule with an abnormal state ConnectedFailed and 1, is a rule with a normal state ConnectedConnected.
For example, 7 describes that if the encryption of IVCS7 (ie., Caller) is set to be “On”,
encryption of ['CS2 (i.e., Callee) is set to be “Off”, and encryption of ['CS3 (i.e., Callee?) is set

159

to be “BestEffort”, the conference call will connect to the ICS52 but will fail to connect with the
IVCS3. Rule 1y is an abnormal state rule, as the consequent of 1y (i.e., ComnectedFailed) is an

abnormal system state. Similarly, 7, is a normal state rule because its consequent (ie.,
ConnectedConnected) is a normal system state.

4.3 Solution Encoding and Decoding

As mentioned in Table D-2 (Def#3), a configurable parameter can be a numerical (e.g., Integer)
or non-numerical (e.g., Boolean, Nominal) type variable. Thus, to apply search algorithms for the
configuration generation problem, we encode all the configurable parameters as a vector of
integer variables to represent the configuration solutions. Considering three configurable
parameters encryption (i.e., Nominal), remoteAccess (i.e., Boolean), and ca//Rate (i.e., Integer) of three
communicating products V'CS7, 1VCS2, and 1VCS3 in Figure D-5, encryption can take one of the
three values (On, Off;, and BestEfford) and remoteAccess can take True or False whereas callRate can
take a value from 64 to 6000.

Products VCSs2 VCS3

Configurable encryption:

Parameters EncryptionType remoteAccess: Boolean | callRate: Integer |
) 7 2 v ¢_I_+

Configurable

Parameter Values On || Off || BestEffort True False

A A A A

v v v v ' ’
Encoding/Decoding 2 3 1 2 anm 6000

Configuration
Solution <e_encryption:Integer, e_remoteAccess:Integer, e_callRate:Integer>

- <

Configuration
Solution Example <3,1,5000> | .| Decode __, <BestEffort, True, 5000>

Figure D-5. Exemplifying the encoding and decoding mechanism employed in SBRM*

To encode the non-numerical configurable parameters, we map all the configurable parameter
values to a sequence of numbers (Figure D-5). For example, we mapped Oz, Off, and BestElffort to
1, 2, and 3 respectively in order to encode encryption. The configuration solution is represented as
a vector of integer variables (i.e., e_encryption, e_remoteAccess, and e_callRate) where each variable
represents a particular configurable parameter. For example, e¢_encryption represents encryption in
Figure D-5. To decode a particular configuration solution, we replace the integer values in the
vector with the configurable parameter values of corresponding configurable parameters. For
example, in Figure D-5, we replace values 3 and 7 with BestEffort and True to get the final decoded
configuration solution: <BestEffort, True, 5000>.

4.4 Objectives and Effectiveness Measures

CPL rules could reveal invalid configurations that lead to unwanted states of the system (i.e.,
abnormal states) are more important, therefore, the invalid configurations are of more interest.
This encouraged us to use the search to generate configurations in a smart way. To be more
specific, by applying search heuristics, we embrace configurations under which communicating
products may fail to interact/communicate with each other and avoid configurations that lead to

160

successful interactions among products. To achieve this goal, we define three objectives based on
the distances between a configuration solution and the three categories of rules (Category-I,
Category-II, Category-11I). Before presenting the objectives and effectiveness measures, we first
define the distance function that is used to assess the effectiveness measures. The distance
function indicates to what extent a configuration solution conforms to a rule.

npr
Z 1 d(prj, cpvr)
D(ry,sy) == (3)

mnp

where D(r;,s,) calculates the distance between rule 7; and configuration solution s, . In
equation (3), d(prj, var) calculates the branch distance between 7 predicate pr; from rule 7;
and corresponding configurable parameter value cpv, of the configurable parameter involved in
predicate pr; from configuration solution S,.. Npr represents the total number of predicates in
rule 1; whereas mnp represents the number of predicates in a rule with the maximum number of
predicates. To calculate the distance between prj and cpv, as a branch distance, we use the
distance calculation formula provided in [42] (Section 2.3).

Odbyjective-1: 'This objective is to avoid generating configurations that completely or close to
satisfy rules in Category-11. The effectiveness measure AHNS corresponding to this objective can
be calculated as:

AHNS(Ry,s,) = X2 CF () * D(riy5,) | 71 € Ry)

where AHNS(Ry, s,) takes Ry (the set of rules related to the normal states) and one
configuration solution S, as input and gives the effectiveness measure as output. To determine
AHNS, we calculate the sum of weighted distances for all the rules in Category-1I (i.e., Ryq),
where each rule belongs to the cluster with the highest rank. The weighted distance of 1; is
calculated by multiplying Cf (1;) with D (13, s;-).

Odbyjective-2: 'This objective is to generate configurations within the configuration space that
satisfy Category-1II (e, Ry) as well as its nearby space. The nearby space contains
configurations for which the distance to the rules in Category-111I is close to 0 but not exactly 0.
These configurations might help to either improve the confidence of correct rules by increasing
their support or filter out incorrect ones by increasing their violation and hence reducing their
confidence. The effectiveness measure NLNS related to the second objective can be calculated
as:

NLNS(Ry,s) = %o Cf(r) * (1= D(r3,5.)) | 11 € Ry, 5
where NLNS(Ry, s,) takes Ry (the set of rules associated with the normal states) and
configuration solution s, as input and outputs NLNS. Since we want to explore the configuration
space near the configurations satisfying the rules in Category-III, configurations with a smaller
distance to the rules in Category-III are preferred. Therefore, we use (1 — D(r;,S,)) in the
NLNS(Ry, s;). To calculate NLNS, we calculate the sum of the weighted distance (i.e., calculated
by multiplying Cf(1;) with (1 —D(r;,5,))) of a configuration solution to all the rules in
Category-I1I (i.e., Ry;), where each rule belongs to a cluster with middle rank or lowest rank.
Odbyjective-3: This objective is to generate configurations within the configuration space that
satisfy Category-I and its nearby space. The rules in Category-I are of high interest in our context

161

because they indicate situations where interactions of the selected products fail. The effectiveness

measure NAS for this objective can be calculated as:
nar

NAS(Ry,sp) =).._, Cf(r) * (1= D(r;,5,)) ©)
where NAS(Ry, S;) takes rule set Ry (related to the abnormal states) and configuration
solution S, as input. To calculate NAS, we calculate the sum of weighted distances for all the

rules in R4 (Category-I).

4.5 Fitness Function

We first normalize the three effectiveness measures using the simple yet robust unity-based

F(X)—Fmin) [90, 91], where F(x) is an effectiveness

normalization function nOT(F (x)) = (F —
max~Fmin
measure function, Fy, 4, and Fp,;;, are the maximum and minimum values of the effectiveness
measure. For AHNS, Fp,i, is 0 when the distance between all the rules in Category-1I and
configuration solution S, is 0. Fy,4, can be calculated as ;27 Cf (r;) where the distance between
all the rules in Category-1I and configuration solution S, is 1. For NLNS and NAS, F,i,, is O
when the distance between all the rules in the corresponding category and configuration solution
Sy is 1. Corresponding to NLNS and NAS, Fpay can be calculated as)27 Cf(r;) and
e Cf (1) respectively, where the distance between all the rules and configuration solution S,
is 0.
With the three effectiveness measures, we define the fitness function based on the three

objectives as follow:

F(0,) =1— Nor (AHNS(Ry, s;)) (7
F(0,) =1 — Nor (NLNS(Ry, s,)) ®)
F(03) =1— Nor (NAS(Ry, s;))

Note that, in the above equations, we define our search problem as a minimization problem
by subtracting each normalized effectiveness measure from 1 to ensure that a configuration
solution with a value closer to 0 is better.

The fitness function with the three objectives is combined with NSGA-II and NSGA-III to
address the configuration generation optimization problem. We implemented our problem in
jMetal by encoding all the configurable parameters in the configuration solution S, as integer
variables (Section 4.3). Besides the possible values for all the variables that are specified by
constraining their upper and lower limits, there are no additional constraints. Initially, all the
variables in S, are initialized with random values between their upper and lower limits. During
the search, SBRM" generates optimized solutions guided by the fitness function. The jMetal
based implementation of our configuration generation problems for both of the case studies are
provided in the Bitbucket repositories'”.

17 https://bitbucket.org/safdarageel/sbrm-jitsi/, https://bitbucket.org/safdarageel/sbrm-cisco

162

5 Evaluation

The overall objective of the evaluation is to assess the effectiveness of combining two different
machine learning algorithms (i.e., PART and C4.5) with NSGA-II and NSGA-III to mine CPL
rules. In Section 4.1, we present experiment design, followed by the experiment execution
(Section 4.2).

5.1 Experiment Design

We present research questions in Section 4.1.1, the two case studies in Section 4.1.2, evaluation
metrics in Section 4.1.3, evaluation tasks and parameter settings in Section 4.1.4, and statistical
tests used for analysis in Section 5.1.5. In Table D-3, we provide a summary of the experiment
design.

5.1.1 Research Questions

The overall objective of the evaluation is to investigate if NSGA-II and NSGA-III are effective,
as compared to RS, in terms of solving the configuration generation problem, and assess the
quality of rules mined using two machine learning algorithms (PART and C4.5) when combined
with NSGA-II and NSGA-III. The overall objective can be achieved by answering the following
research questions:
RQ1. Are NSGA-II and NSGA-III effective to generate configurations for the purpose of mining
rules as compared to RS?
RQ2. Does SBRM* produce better quality rules (in terms of machine learning measurements) than
RBRM+?
RQ3. To what extent the quality of rules improved using SBRM* in comparison to RBRM* (after the
final iteration)?
RQ4. Which one of NSGA-II and NSGA-III is more effective to generate configurations for mining
rules?
RQ5. Which one of PART and C4.5, when combined with NSGA-II and NSGA-III, produces better
quality rules?
RQ6. How is the quality of rules correlated with average fitness values and quality indicators?
RQ?7. What is the trend of the quality of rules produced by SBRM* across the iterations?
RQ8. Is it feasible to apply SBRM* in practice in terms of time required for employing search to

generate configurations?

5.1.2 Case Studies

Cisco Systems!s, Norway provides a variety of VCSs to facilitate high-quality virtual meetings
[48]. Cisco has developed several product lines for VCS including C-Series, MX-Series, and SX-
Series. Each product from these different product lines has several configurable parameters (e.g.,
defanltProtocol and encryption), which need to be configured before making calls. For each VCS, we
have a set of state variables representing the states of VCS (e.g., callStatus, numberOfActiveCalls,
cameraConnected) that vary according to different hardware and software configurations. Each

18 www.cisco.com/c/en/us/products/collaboration-endpoints/index.html

163

v91

(AH) swmoA odig

sonspels
2y s fouep(INvVd AdO LIVJ-ITVOSNL A S pue
put eySe CHIVOSN, I\YAS “SA TV d-IVOSN, NS — COAd Syt <82+§me.€§ LAV TVOSN, A IS b
. _IEVOSN ‘SA CH-TI-VOSN put Gy)-IFVOSN, IS F0F SF0Ied1pUT
; 1591 s¥O ANEES 52 50 JNEES - COAd Lipenb xis pue sonea ssouy Supedwoo-ry,
- Ay N\ -UuBN 1O-Ad
SmSLINI-Dd/dD/dd/ID VI T4V
e399-0ed/AD/44/00 VI TV .
UOISPRII-Dd/AD/d:1/DD Ul THV SPO-TIIVOSNLINUES puv gy
IS U TV VOSNL UGS LAV ITVOSNL N GS (1Vd!
SoNEA 93eToAL : “VOSN_ AT S 703 9[2£2 & JO puo o3 38 SINO TN ¢
Sursn 30[d uwnjon) dvd B v U0 paseq so[nJ Jo Aipenb op ur syusweAosduwr
HSINY U TV 2Ane[as 9FeroAe o Surkjnuenb-cT,
HVIN UL IV
£oeIN00Y UT TV
SINSEINA-DA/ 4D/ AA/I0
[e24-04/40/44/230
BOIIL-0A/AD/d4/0 SHO-+ YUY Wi SpO-IIVISNL RIS PUe S0
SHO~+INIY "SA SHO-TIVOSNL A ISSHD HSYY IEVOSNL NS PUE LAVA-+ NI Y P THVd
AT A GPO-TTVOSNL A IS — avd -IFVOSNL IS PUe LYV -TTVOSNL A IS (4
LAVI-+NIDY SA LIV TTVOSNL YIS — HSINYG 303 $ana yo Lrenb oy Supedwoo-e 1,
LAV NI SA LIV TYOSNL S — HVIN
sonspels]
2] Loenooy
Zly s fouep(
Soe vuSe (SO) peaxdg paresouan)
pue el uww (@) 29UBISI(] [EUONEIIUIL)
- Loy -uuTy (@A) 2suwIsK(veapIPN
: (3) vopsdy SO+ NI Y
((IOT) 20UTISI(] [PUOREIITIL) PIIIIAT] SPO-TIVOSRLNYES PUv spO-TVOSHL NS
(AFD) swnjoA 39d4f PO TVI+ NI P LIV I-TTVOSNL A IS I
PUt LV TTYOSNL A S F0F SF01ed1pUt
AdO Arenb x1s pue sonfea ssomy Supredwoo-17,
cOAd
cO"Ad
1O-Ad
sad£y 101d
Juduneds] /uostreduwo) SOLIOW UONeNn[eAr syse], sOY

PpUE 51591 [EDTISTIEIS

suowradxa 9y Jo uSIsap [[erdAQ "¢-(I d[q¢,L

<91

SYO+INYdd — ALV suoneIN3yUod
sonfeA 03eIAy — GpD-UIVOSN AT S — 21e39U93 01 pasmbaz own 95eIAL U} UO PIseq 8
GpY-IEVOSN, AT IS — IdLV yoreas Jurk[dde jo Liiqrseay o Surssasse-8T,
SMSEINA-D:A/dD/dA/DD
[e2Y-D4/AD/dd4/20
UOSIJ-DA/AD/dd/DD GHD-UIVOSN, AT S PUE ‘GHD)-IEVOSN, A S
Goﬂmmo%om Jeoury — HSYYT TV IIVOSNO AT FS TV TVOSNL TGS
jord ropeog — qVYa JOJ SUOREFAIL AP SSOIFE SNIC) [IA] UO Paseq L
ASINY so[ns yo Apenb oy Jo puam oY) FurssISSE-LT,
HVIN
LAV d-IEVOSN A GS £orImooy
LAV TYOSN A IS SO 'sA SIWTOW 243 TV
SpO-TIVOSN, NS ao 'sA SWIOW 2% IV
SYO-IEVOSN NS AH sa SWION 2% TV
3 'SA SIWTOI 2 TV GpD-IIFVOSN AT S PUE ‘CH)-IFVOSN AT S
UOnEPRIFI0d doq sa WE‘HOe& YV TV IIIVOSNL AT S TV TTVOSNL YIS
s,uewreadg — AH SA SWTOW 2 [TV 103 SO TIN Y21 s303ed1puUt Apenb pue sonfea ?
AIVO A SINTOW 29 TV $SOUILJ 95LIOAE JO UONL[IIFOD I} FUISSISSL-9T,
€O"AV 'SA SWIOW 2% IV
CO AV "$a SWIOIW 2% 1TV
1O-AAV S8 SWIOW 2% 1TV
(1Mvd SMSEINA-D:A/dD/dA/DD
SomsHES -IEVOSN, AT S “SA G)-TI-VOSN, AR ES) EY-04/40/d44/230
e suupy “sa (LYVA-TVISN, N ES UOISIIA-D: /e1D/:1/00 ﬁ
ysaourPd SA G- TEVOSN, \NES) JUUIA IS SpOIIVOSN, IS PUE Gy)-TEVOSN, INYES
puv eydre — TMVd VY LAV HIVOSN A ES LIV IVOSN, NS S
03 son yo Lenb oy Surredwoo-$
ooy | ONEES S GhOTIVOSN. S SN 9 S0 ST S S
: Ldvd HVIN
SICVOSNL AT S 'sA GYD-TEVOSNL A 'S Loernooy

(SD) peaidg parelouan)
(@) 29ULISI(] [PUONEIIUIL)

(@A) vsueIsy(veapIPNg

(3) worisdyg

(@O1) 22ULISI(] [EUONEIIVIL) PIIFIATT

991

2142 10d suonem3yuod MNeFUIT
01 paxmbaz (saanumw) swn aFeFAY =)LV ‘vonerar 1d suonemsyuod 21erouds 03 parmbar (sonurw) own 9FEIAY =LY ‘SON[eA SSIUIY IFLIIAL [[6IA0) =AYV ©OARID(qO PIN I3 FOJ sanfea
$SoUY 98IAY =CO-AIV DANI(QO PUOIIS I3 JOJ SIN[EA SSIUIY IFEIIAY =7 O-AJV ©ANI2(qO ISTF U JOJ SIN[EA SSIUWIY 3FeFIAY =] O-AJV TUowoA0rdw] 9ARE[Y 98LIAY =YV ‘Po[Ie,IPa122uto))
=D ‘parduuonpare] =D ‘PACAPIe] = ‘PIO2UTONHPIRUTON="))) JOIF parenbg oapey 100y —HSYY FOIFH N[0Sy 2ADLRY —HVY Foirg parenbg uedy 100y —HSINY FOFFH
N[0SV ULIN =Y ‘SON[EA SS9 [[BIAQ) = AJO ©ANI2(QO PI 9} F0F SIN[BA SSIWIL] =C)-A.] DANI(O PUOIIS o3 JOF SIN[EA SSIWL] =g O-AL] @ANI2(QO ISTF 9 JOF san[eA ssoWL] =1 O-Ad *

LAVd- NI —
TAVATIVOSN,NYES —
LAVATYOSNNYES —

product has several operations (e.g., dial(), disconnect(), hold(), accept(), transfer()) to support different
interactions (e.g., making a call, sharing presentation) supported by the product. An operation
can also take several parameters as input (e.g., ca//Iype, callRate, and Protocol for dial() operation).
For our experiment, we used three real products C60, SX20, and MX300 developed by Cisco,
which belong to three different product lines C-series, SX-series, and MX-series. We selected 27
configurable parameters (i.e., including network specific ones) for the Cisco case study, which
were related to the call functionality. Simula Research Laboratory has a long-term collaboration
with Cisco, Norway under Certus-SFI [92]. As part of our collaboration, we have access to
several VCSs at our lab, and thus we used these systems for our experiments. Therefore, our case
study is real, but the experiment was not performed in the real industrial setting of Cisco.

Jitsi [93] is a real-wortld open source Audio/Video Internet Phone, and Instant Messenger
developed in Java, which supports several known protocols including SIP, AIM, and ICQ. Jitsi
was developed based on the OSGI architecture using Apache-Felix implementation. Jitsi
provides a large number of features such as encrypted audio/video conference calls, messaging,
desktop sharing, call hold, transfer, and call recording. Jitsi has several configurable parameters
(e.g., sIPZtpr, defaunltProtocol, andioCodec) and state variables (e.g., callStatus,
numberOfConferenceParticipants). Just like the Cisco case study, Jitsi also has several operations such
as dial(), accept(), and hold(). We extended the case study by adding a new OSGI bundle to
introduce several new configurable parameters (e.g., defaultCallRate, MTU) and implemented
several rules constraining the configurable parameter values. These implemented rules determine
the success of a call connection based on configurable parameter values assigned to the
configurable parameters of the caller and two callees, as we used three instances (products) of
Jitsi in our experiment as for the Cisco case study. The total number of the configurable
parameters selected for the Jitsi case study is 39.

For both Cisco and Jitsi case studies, we selected making a call as the interaction because
making a call is the main functionality of a VCS/VoIP and other functionalities depend on it.
The call statuses of both callees were therefore selected as the state variables. Based on the two-
state variables (i.e., call statuses for both callees) system states were defined by concatenating
their state values, which were used to classify the configurations. For both case studies (i.e., Cisco
and Jitsi), we have one normal system state ConnectedConnected (CC) and three abnormal system
states FailedFailed (FY), FailedConnected (FC), and ConnectedFailed (CF), constituting four classes in
our rule-mining problem, which is in nature a classification problem in machine learning. The
ConnectedConnected shows that caller is connected to both of the callees successfully and
FailedFailed indicates that the caller is failed to establish connections with the two callees.
FailedConnected shows that the caller is connected to the second callee and failed to connect with
the first callee whereas Connectedbailed shows that caller is successfully connected with the first
callee but failed to connect with the second callee. For both case study, to enable the making a
call interaction, we used two operations dial() and disconnect() of the caller, one operation accept()
for both callees.

5.1.3 Evaluation Metrics

To answer RQ1 (Table D-3), we compared NSGA-II and NSGA-III with RS in terms of FV-O1,
FV-02, FV-O3, and OFV. FV-O1, FV-O2, and FV-O3 are fitness values of Objective-1,
Objective-2, and Objective-3 respectively (Section 3.2) whereas OFV is the overall fitness. OFV

167

is calculated by taking the average of FV-O1, FV-O2, and FV-O3, as common practice [94].
Additionally, we compared NSGA-II and NSGA-III with RS in terms of six quality indicators:
Hypervolume (HV'), Inverted Generational Distance (I1GD), Epsilon (€), Eunclidean Distance from the ldeal
Solution (ED), Generational Distance (GD), and Generated Spread (GS). These quality indicators have
been used in the existing literature [95-99] to measure the quality of solutions produced by the
search algorithms in terms of convergence and diversity. Lower values of all the quality indicators
except HI” show better performance of the algorithm. Since the optimal Pareto font PF, is not
known for our problem like most of the real-world problems, thus, we used reference Pareto
front to compute the values of indicators. To compute the reference Pareto front, we combined
the Pareto fronts produced by all the search algorithms. Note, we computed two separate
reference Pareto fronts for the approaches using C45 and PART as rule mining algorithms.

To answer RQ2 (Table D-3), we compated SBRM xscan-C45 and SBRM xsgau-C45 with
RBRM*-C45, and SBRM"scan-PART and SBRM xscam-PART with RBRM-PART based on 17
(ie., five related to the classifier and 12 related to the four classes) machine-learning quality
measurements (MLQMS): Accuracy, Mean Absolute Error (MAE), Root Mean Squared Error (RMSE),
Relative Absolute Error (RAE), and Root Relative Squared Error (RRSE) of a classifier and Precision,
Recall, and FMeasure for the four classes [86]. To differentiate Precision, Recall, and FMeasure
corresponding to four classes, we used abbreviations of the classes with Precision, Recall, and
FMeasure. For example, Precision tor ConnectedConnected is represented as CC-Precision.

= Accuracy indicates the overall performance of rule mining algorithms (e.g., C4.5, PART) by

specifying the percentage of instances that conform to mined rules [83], where one instance
contains one specific configuration (i.e., a set of configurable parameter values for the
selected configurable parameters of the communicating products) and corresponding
system state.

= Precision represents the percentage of instances that are correctly classified divided by the

total number of instances covered by rules associated with a specific system state (i.e.,
defined based on the call statuses of both callees in our case). For example, 98% FF-
Precision means that, according to the mined rules, there are 2% of instances whose
configurations are identified as invalid ones, which led to the FailedFailed state. But actually,
they lead to the other states (e.g., ConnectedConnected, FailedConnected, ConnectedFailed).

= Reall represents the percentage of instances that are correctly classified divided by the total

number of instances corresponding to a particular system state. For example, 90% FF-
Recall means that configurations of 10% instances are not associated with the FazledFailed
state according to the mined rules, but these instances actually lead to the FazledFailed state.

= FMeasure is the harmonic mean of Precision and Recall [83].

= Mean Absolute Error (MAE) represents an average of individual errors (i.e., differences

between values predicted by the classifier and the actual observed values) without
considering the sign of the error.

® Root Mean Squared Error (RMSE) is the square root of the mean of the absolute squared

error (L.e., square of MAE). Root Mean Squared Error amplify the effect of outliers (i.e.,
individuals with large errors) by squaring their errors.

168

® Relative Absolute Error (RAE) is calculated as MAE divided by the error of the default
predictor (i.e., ZeroR classifier, which simply selects the most frequent value from training
dataset (if nominal) or the average value (if numerical).

® Root Relative Squared Error (RRSE) is the square root of the relative mean squared error (i.e.,

square of RAE) [80].

For calculating the values for the MLQMs mentioned above, we used 10 times 10-fold
stratified cross-validation [51, 86|, as stratified cross-validation ensures that each class is
(approximately) equally represented across each test fold [86] (Section 3).

For answering RQ3 (Table D-3), we calculate the average relative improvements (ARIs) in
terms of 17 MLQMs mentioned above achieved at the end of each cycle (i.e., after #eration-5)
using SBRM*xsoau-C45 and SBRM xsoam-C45 in compatison to RBRM*-C45, and SBRM*xscau-
PART and SBRM*xsoam-PART in comparison to RBRM™-PART. We calculated the ARIs for
Aceuraey of classifier and Precision, Recall, and FMeasure for all the classes with respect to
SBRM*nscan-C45, SBRM nsgam-C45, SBRM nscan-PART, and SBRM xsgamn-PART as:

10 LY .
ARI = ZC:l(S(x;CO) R(xic)) (9)

where S(x;.) and R(x;.) give the values of i MLQM in #eration-5 for ¢™ cycle corresponding
to SBRM*xsoan-C45 ot SBRM scam-C45 (SBRM*xsgau-PART or SBRM wscam-PART) and
RBRM*-C45(RBRM*-PART), respectively. To calculate the ARIs for MAE, RAE, RMSE, and
RRSE with tespect to SBRM*nscan-C45, SBRM'xsoam-C45, SBRM'xsoau-PART, and
SBRM "nsca-PART we used the following formula:

ARI = Zégl(R(xiC)_S(xiC)) (10)
10
For RQ4 (Table D-3), we compared NSGA-II with NSGA-III in terms of FV-O1, FV-O2,

FV-O3, OFV, and six quality indicators as we did in RQ1 for comparing NSGA-II and NSGA-
IIT with RS. For RQ5, we compared the quality of the rules produced from SBRM*nscan-C45,
SBRM nsca-m-C45, SBRM*nscan-PART, and SBRM*nsa.-PART, based on 17 MLQMs
mentioned above to find the best-suited search algorithm combined with rule mining algorithm

for mining CPL rules. To answer RQG6 (Table D-3), we computed the correlation estimates (p)
and the p-values using the Spearman’s test corresponding to all the 17 MLQMs in correlation to
the average fitness values for the three individual objectives (i.e., AF1-0O7, AF17-02, and AF1-
0O3), overall average fitness (OAF1"), and six quality indicators (i.e., HI, IGD, €, ED, GD, and
GS). AF1V-01, AF17-02, AF17-O3, and OAF1” are calculated based on the values of FI17-O7,
F17-:02, F17-03, and OF1” respectively, corresponding to each iteration of all the runs. For
iog Fv-o1;
500 ’
where 500 is the total number of fitness values. For RQ7 (Table D-3), we assessed the trend of

the quality of rules in terms of above-mentioned 17 MLQMs for SBRM*nscan-C45, SBRM " nsca-
u-C45, SBRM* nscan-PART, and SBRM* nsca-m-PART, across the five iterations. To answer RQ8
(Table D-3), we calculated the average time tequited by NSGA-II in SBRM'nscan-C45 and
SBRM*nscanr-PART, NSGA-III in SBRMnsca.m-C45 and SBRM*nscam-PART, and RS in
RBRM*-C45 and RBRM*-PART for generating configurations per iteration (ATPI) and per cycle

5 10
Xi=1Zc=1Tic

example, AF1-07 corresponding to one iteration can be calculated as: AFV — 01 =

(ATPC). ATPI is calculated as: ATPI = , where Tj, represents the time required by

10 .
the approach in the i" iteration of the ¢ cycle. ATPC is calculated as: ATPC = Zi’:ﬂ%)-
169

5.1.4 Experimental Tasks and Parameter Settings

As shown in Table D-3, we designed eight tasks (T}-Ts) for addressing RQ1-RQ8. We used the
default settings for NSGA-II and NSGA-III as implemented in jMetal [53, 100]. The single point
crossover and bit-flip mutation, implemented in jMetal were applied as crossover and mutation
operators, respectively with 0.9 crossover rate and (1/total number of configurable parameters)
mutation rate. We used a population size of 500 and 50,000 fitness evaluations where we selected
all the Pareto Non-dominated configuration solutions for mining the rules. NSGA-III produces
92 solutions for three objective problems regardless the larger population size [80], thus, we
executed it using multiple threads to get 500 solutions in one run. We used five iterations per
cycle, and in each iteration, we run the search algorithm (NSGA-II, NSGA-III, or RS) once,
which means we have five runs of the search algorithm in a complete cycle. We used total 10
cycles (i.e., 50 runs of the search algorithm) for our experiment to cater the randomness inherited
in the search algorithms.

Since selecting the best set of parameters is application dependent [37], we used the default
settings provided by Weka [74] for both PART and C4.5. Default settings have been used in
various contexts such as mining rules for video generator product line [37] and comparing the
performance of different classification algorithms [55]. We used 0.25 and 2 for minConfidence
(ie., the minimum confidence for a rule) and minNumObj (i.e., the minimum number of

instances for a rule) respectively.

5.1.5 Statistical Analyses

As inspired by [101], we systematically conducted three types of analyses: difference analysis,
corvelation analysis, and trend analysis to answer RQ1-RQ2 and RQ4-RQ7 (Section 4.1.1). To answer
RQ3 and RQ8, we report descriptive statistics, as for RQ3 we intend to assess the magnitude of
ARI achieved by SBRM*nsca-u-C45, SBRM " nsca-m-C45, SBRM nsan-PART, and SBRM nsca-mr-
PART whereas, for RQ8, we aim to show the total time required for generating configurations.

Difference analysis is the most commonly used analysis, which studies the distributions of a
single measure between two groups. We carried out the difference analysis to compare rule
mining approaches (e.g., SBRM nscan-C45, RBRM'-C45) in terms of fitness values, quality
indicators, and MLQMs (Table D-3) to answer RQ1, RQ2, RQ4, and RQ5. To conduct the
difference analysis, we use the non-parametric Mann-Whitney U-test as recommended in [560] with a
significance level of 0.05 and the Vargha and Delaney’s Klz statistics as an effect size measure
[57]. For comparing the Accuracy, Precision, Recall, F-measure, and H1” for a comparison pair (A, vs.
A), if A, is greater than 0.5, A; is better than 4;, and a value less than 0.5 means vice versa.
Similarly, in the case of fitness values, IGD, €, ED, GD, GS MAE, RMSE, RAE, and RRSE, if
A, is less than 0.5, A4, is better than A, otherwise, A, is better than A. A; >A4; shows that
approach A; performed significantly better than 4, based on the results of the Mann-Whitney U-
test and Vargha and Delaney’s A,, statistics. Similarly, A4, <A, shows that A4, significantly
outperformed 4, whereas .4, =, indicates no significant difference between the two approaches
being compared.

Correlation analysis evaluates the cortelation (positive/negative) between two variables (e.g., x
and y) and its statistical significance. To find the correlation of MLQMs with average fitness
values and six quality indicators (RQ0), we applied the nonparametric Spearman’s test [102] and

170

reported the correlation coefficients (p) and p-values. The value of p ranges from -1 to 1 where a
value of p > 0 (or p < 0) shows a positive (or negative) correlation between x and y, whereas
p = 0 indicates no correlation. The p-value lower than 0.05 shows the correlation is statistically
significant. The analysis aims to test whether Accuracy, Precision, Recall, and FMeasure are positively
correlated with H]” and negatively correlated with average fitness values, IGD, €, ED, GD, and
GS and MAE, RMSE, RAE, and RRSE have a negative correlation with HI” and a positive
correlation with average fitness values, IGD, €, ED, GD, and GS (i.e., hypothesis). Satisfying the
hypothesis is regarded as good performance of the approach because we believe that smaller
fitness and indicator values (except for HI/, as the larger HI” is better) lead to better quality of
rules in terms of MLLQM:s.

To discover the trend of the quality of rules based on MLQMs (RQ7), we constructed 2D
scatter plots and fitted linear regression lines. In 2D plots, the x-axis represents the iteration
number in one cycle, and the y-axis represents different machine learning quality measurements
such as Acuracy. This kind of analyses indicates variation in the quality of rules across the
iterations.

For assessing the magnitude of average relative improvements (ARIs) in the quality of rules in
terms of MLQMs (RQ3), we reported mean, min, and max values. Similarly, for assessing the
feasibility of applying NSGA-II in SBRM*nscan-C45 and SBRM*nscan-PART, NSGA-III in
SBRM*nscam-C45 and SBRM*nscam-PART based on the time required for generating
configurations (RQ8), we reported average values of time required to generate configurations per
iteration (i.e., ATPI) and per cycle (ATPC).

5.2 Experiment Execution

Figure D-6 presents an overview of the experiment execution. As shown in Figure D-06, at the
first step, we randomly generated a set of 2000 configurations corresponding to the three selected
products (Caller, Calleel, and Callee2) for each case study. For the Cisco case study, we selected
C60 (i.e., Caller), MX300 (i.e., Callee?), and SX20 (i.e., Callee2). For the Jitsi case study, we used
three instances (products) belonging to the same product line. At the second step, we configured
the Caller, Calleel, and Callee2 using randomly generated configurations and made a call from
Caller to Calleel and Callee2 tor 10 seconds (step 3). We made the call for 10 seconds to give
sufficient time for establishing the call connection. To make the call, first, we execute the dia/()
operation of Caller and then accept() operation of Calleel and Callee2. In step 4, we captured call
statuses of Calleel and Callee2? to get the system state and added the current configuration being
executed and its corresponding system state to the executed configurations (step 5) whereas, in
step 6, we disconnected the call by executing the disconnect() operation of Caller. We repeated step
2 to step 6 until all the configurations (2000 configurations) are executed. In step 7, we input
executed configurations containing 2000 configurations along with their corresponding system
states to Weka [74] and applied PART [40] and C4.5 to mine the initial set of rules.

To refine the rules, we used the initial set of rules to guide the search algorithms (i.e., NAGA-
II, NAGA-III, and RS) to generate 500 more configurations (step 8). For mining the refined set
of rules, we repeated the same process starting from step 2 to step 7 (i.e., configuring the
products, making the calls, adding the configurations and associated system states to the executed
configurations, disconnecting the calls, and mining the rules using all the executed

171

configurations). We repeated this incremental and iterative process for five iterations in a
complete cycle and mined the final set of rules based on a dataset (i.e., represented as executed
configurations in Figure D-6) containing 4500 configurations and corresponding system states.
We used five iterations as a stopping criterion.

For generating configurations using NSGA-II, NSGA-III, or RS for both case studies, we ran
the experiment on a laptop with Intel Core i7 2.8 GHz CPU and 16GB RAM running the
macOS Sierra v10.12.5 operating system. To make calls for the Jitsi case study, we installed three
instances of Jitsi (Caller, Calleel, Callee?) on three computers. Caller was installed on the laptop
mentioned above (i.e., the one used for generating configurations). Callerl was installed on a
desktop (iMac) with Intel Core i5 CPU 2.7 GHz and 8GB RAM running the macOS Sierra
v10.12.4 operating system. Caller? was installed on a laptop with Intel Core i7 CPU 2.5 GHz and
16GB RAM running the Windows-7 (x64) operating system. For the Cisco case study, all the
three products have their dedicated hardware.

iteration=0
O&(ﬁ Generate initial configurations randomlyjjﬂ

Start | initial 2000 configurations
)
:)(2: Configure Caller, Callee1, and Calleezﬁ
W
(3: Make a call from Caller to Callee1 and Calleezj
2
(4: Capture call statuses of Callee1 and Callee2 system state
N
5: Add configurations being executed and | Search based configurations
system state to configurations dataset
v
No 6: Disconnect call) | Executed configurations |
All configuration: Yes
are executed? Ill l
7: Mine the rules using C45lPART) | Set of rules |
1
Yes 8: Generate 500 configurations using search)
No J
Iteration++

Figure D-6. An overview of the experiment execution

6 Results and Analysis

In this section, we present the results and analysis of the evaluation and answer the research
questions for both of the case studies (i.e., Cisco and Jitsi).

6.1 Effectiveness of Search (RQI1)

To answer RQ1, we compare SBRM nscan-C45 and SBRM nsca.-C45 with RBRM'-C45 and
SBRM*nscan-PART and SBRM*nscam-PART with RBRM'-PART regarding the fitness values

172

(e, FI-O1, F17-02, F17-03, and OFl’) and six quality indicators corresponding to five
individual iterations as well as overall, for both of the two case studies. In Table D-4, we
summarize the results for answering RQ1 whereas the detailed results can be found in the
technical report corresponding to this paper [103].

The results of Man-Whitney U-test and Vargha and Delaney’s Klz for all the fitness values
(i.e., FV-O1, FV-O2, FV-O3, and OFV) show that SBRM" (i.c., SBRM*nscan-C45, SBRM nsca-
ur-C45, SBRM*nsca-PART and SBRM nsca.m-PART) significantly outperformed RBRM' (i.e.,
RBRM*-C45 and RBRM'-PART) corresponding to both the Cisco and Jitsi case studies.
Similarly, from the results of the quality indicators (Table D-4), we noticed that SBRM"
significantly outperformed RBRM" in terms of the majority of the comparisons (i.e., minimum 25
and maximum 32 out of 36 comparisons). Note, for each comparison pair, we have six
comparisons (five individual iterations and overall) in terms of a particular quality indicator for
one case study (i.e., total 36 comparisons for six indicators per case study and 48 comparisons for
one quality indicator for all comparisons pairs and two case studies). We observed that for five
indicators (except for GS), SBRM" significantly outperformed RBRM® for 221 out of 240
comparisons whereas RBRM" significantly outperformed SBRM" in terms of GS for 32 out of 48
comparisons for both of the case studies. Based on the results of RQ1, it can be concluded that
NSGA-II and NSGA-III are more effective than RS for configuration generation problem. The
detailed results of RQ1 can be found in [103].

Table D-4. Comparing SBRM* with RBRM in terms of the quality indicators*

Comparison Pair
Case study Aivs As A2vs As A3 vs Ag Asvs Ag
A1>As | A1<As | Ai=As | Ao>As | Ao<As | Ao=As | As>As | As<As | As=As | As>As | A4<A¢ | A4=As
Cisco 25/36 | 6/36 5/36 32/36 | 0/36 4/36 28/36 | 6/36 2/36 30/36 | 3/36 3/36
Jitsi 32/36 | 1/36 3/36 29/36 | 6/36 1/36 27/36 | 4/36 5/36 27/36 | 6/36 3/36

*A= SBRM+NS('§A—II‘C45, A= SBRM+NS('}A—III‘C45, A= SBRM+NSGA—II‘PART, A= SBRM+NSGA—HI‘
PART, As= RBRM"-C45, A;= RBRM'-PART

6.2 Comparing SBRM* with RBRM* (RQ2)

To answer RQ2, we compare SBRM nscan-C45 and SBRMnscam-C45 with RBRM*-C45, and
SBRM+NjGA.11-PART and SBRM+N5GA.111-PART Wlth RBRM+-PART in terms Of MLQMS based on
the rules mined from each iteration as well as Owera// (i.e., combining the results of all the five

iterations), for both case studies. In Table D-5, we summarize the results for answering RQ?2.
Detailed results are provided in [103] for reference.

Table D-5. Comparing SBRM* with RBRM in terms of MLQMs*

Comparison Pair
A1vs As Az vs As A3 vs Ag Ay vs Ag

A1>As | Ai<As | A1=As | Ao>As | Ao<As | Ao=As | As>As | As<As | As=Ac | As>As | A4<As | A4=As
Cisco 78/90 0/90 12/90 54/90 7/90 29/90 70/93 3/93 20/93 57/93 3/93 33/93
Jitsi 86/102 | 0/102 16/102 | 19/102 | 20/102 | 63/102 | 88/102 | 0/102 14/102 | 48/102 | 38/102 | 16/102
*A1: SBRM*NSGA,11~C45, A2: SBRM*NSGA,111~C45, Azz SBRM*NSGA,IFPART, A4: SBRM*NSGA,HFPART, A5: RBRL\/[+~C45,
Ag= RBRM*-PART

As shown in Table D-5, for the Cisco case study, SBRM nscan-C45 and SBRM nscam-C45
significantly outperformed RBRM*-C45 in 87% (i.e., 78/90) and 60% (i.c., 54/90) of the total
comparisons. Respectively. SBRM*nsgan-PART and SBRM'xsoam-PART significantly

outperformed RBRM"-PART in 75% (i.e., 70/93) and 61% (i.c., 57/93) of the total comparisons.

Case
study

173

In 8% (i.e., 7/90) of the total comparisons, RBRM"-C45 significantly outperformed SBRM nsca-
w-C45 whereas for 3% (3/90) and 3%(3/93) of the total comparisons RBRM*-PART
significantly outperformed SBRM nscan-PART and SBRM nscamn-PART, respectively. For the
remaining comparisons, there was no significant difference between the SBRM" approaches and
the RBRM" approaches.

Corresponding to the Jitsi case study, SBRM xscan-C45 and SBRM nscam-C45 significantly
outperformed RBRM*-C45 in 84% (i.e., 86/102) and 19% (i.e., 19/102) of the total compatisons
respectively, whereas SBRM "nscani-PART and SBRM xscam-PART significantly outperformed
RBRM*-PART in 86% (i.e., 88/102) and 47% (i.e., 48/102) of the total comparisons. In 20%
(i.e.,, 20/102) and 37% (i.e., 38/102) of total comparisons RBRM'-C45 and RBRM'-PART
significantly outperformed SBRM nscam-C45 and SBRM "nscam-PART respectively, whereas for
the remaining compatisons there was no significant difference between the SBRM"™ (SBRM xsca-
u-C45, SBRM xsoam-C45, SBRM 'nscan-PART, and SBRM xsoam-PART) and RBRM*(RBRM™ -
(45 and RBRM"-PART).

Since for both of the case studies, SBRM" significantly outperformed RBRM" in terms of the
majority of MLQMs (i.c., 84% for SBRM"xscan-C45, 86% for SBRM*xscau-PART, and 47% for
SBRM*xsam-PART) except for SBRM nsoam-C45 corresponding to the Jitsi case study where
neither one of the two approaches (i.e., SBRM xsgam-C45 and RBRAM'-C45) dominates the
other. Thus, we can conclude that given the same context (i.e., the same case study, machine
learning algorithm and its parameter settings) SBRM" tends to produce rules with higher quality
as compatred to RBRM" with respect to the MLQMs. In the worst case, SBRM" produces rules
with the same quality as for RBRM".

6.3 Average Relative Improvements in the Quality of Rules (RQ3)

For RQ3, we computed the average relative improvements (ARIs) in terms of MLQMs achieved
at the end of the cycle (i.e., after ieration-5) using SBRM" (SBRM*xscau-C45, SBRM "nsca-C45,
SBRM "nscan-PART, and SBRM*xsgam-PART) in compatison to RBRM"(RBRM' -C45 and
RBRM*-PART) (Section 5.1.3). In Figure D-7 and Figure D-8, we present the ARIs in terms of
all the MLQMs for SBRM xscan-C45, SBRM xscam-C45, SBRM xsean-PART, and SBRM nsca-
m-PART corresponding to the Cisco and Jitsi case studies respectively. Moreover, the detailed
results are presented in [103].

As shown in Figure D-7, for the Cisco case study, on average SBRM" achieved 8% to 13%
higher Accuracy than RBRM™ and 4% to 27% lower values for the four error-related MLQMs (i.e.,
MAE, RMSE, RAE, and RRSE). The ARIs in terms of FF-Precision, FF-Recall, and FF-FMeasure
for SBRM" range between 4% and 9% and for CC-Precision, CC-Recall, and CC-FMeasure, the ARIs
are up to 16%. The ARIs corresponding to FC-Precsion, FC-Recall, and FC-FMeasure for
SBRM* nscar-C45 range between 11% and 23%, while SBRM nsca-m-C45, SBRM*nsca-n-PART,
and SBRM" nscam-PART have negative ARIs ranging from -16% to -2%. This is because they did
not produce rules related to FailedConnected due to less number of configurations leading to
FailedConnected system state. About CF-Precision, CF-Recall, and CF-FMeasure, the ARIs for SBRM*
are between 5% and 21%.

As shown in Figure D-8, for the Jitsi case study, on average SBRM" achieved up to 12%
higher Accuracy and 19% lower values for error-related MLQMs (i.e., MAE, RMSE, RAE, and
RRSE) as compared to RBRM". In terms of FF-Precision, FF-Recall, and FF-FMeasure, the ARIs

174

Aprus osed 1) 9 30§ LHVA-UIVOSN, NI IS PUE {LAVA-TVOSN, UGS ‘SrD-1IVOSN, NS ‘ShO-I'VOSN, N IS £q PasdTyor TV '8-(T 2031

00 00 00 w00 S0 500 200 00 200 010 0K0 600 £00
£00 £00 200 100 800 100 100 100 %00 500 500 900 100
200 €0 000 £00 £00 €00 £00 700 £00 000 W0o- 100 £00
120 820 £20 200 200 100 810 020 910 800 700 210 510
S iwaao wospadso M jeeros uospaigos MU 0o vasoaig00 MMM eon-ad wosoaidas 3wy
.X.h. *h- §.
.Xv. %S % 1-
- - wﬁ %T %E
l P L || ||
. w o =0 B°
%E 3 xm xv
§ %L %L %L %9 u
%8 %0T
%St %91
%0T
%ET

#0'0
800
200
610
vy

.XN

%6T

200
700
10'0
900

IS

900 451}
€00 100
00'0 000
900 110
IV forinooy
AN
%9 %L
%1 %IT

LHVA-lIIFYOSN+NYES m

SPO-II'VOSN+NYES ™

%02~

%01~

%0

g
-
P3NV 14V

%0V

Aprus ased 00SID) O 30J LUV VOSN,AIES PU® LAV VISNLAIAS ‘GHO-TIVOSN, NI IS ‘SpD- 1 VOSN, NS £q paad1yde Iy L-(23]

0z0 00 120 €0'0- 200 00" 000 000 H0'0- 800 200 800 €10
500 500 900 €0'0- 200 00" 500 500 900 800 800 600 810
020 120 910 600" 90" Lo 800 €00 2o 100 $0'0 600 120
510) €10 610 €20 o (4 800 910 900 $0'0 800 920
ainsesjy4 uoisioald aInses|yd uoisioald ainsespy4 uoisiald aInseajyd uoisioalg

[BO9Y-~: E09Y-: BO9Y-: [BO9Y-:
B g leowrdd T DO L g Teodad T ERSN|

%91-
%6-
%9
*#E%ET op N §.§
| Il
el h m— - -.u— = ———- i —
v
0% %9
%8s %L xhxw
e
%sT
\ %91
%0z %#0T %0Z %1z %1z

110
91'0
[441)
120
avy

ISNY

900
800
010
110

w»c.n

700
S0'0
80'0
600
v

800 18V dIIIFYOSN+NYES m
010 18Vd-II'YOSN+NYES &
[4%0] SYOIlI-VOSN+ANES =
€10 SPO-II-VOSN+NYES m
Koeinooy
%0C-
%ST-
%0T-
%S~
%0 B
z
% =
3
%8 %01 o
® %6 Yot %0
%Thyer %ST
%0C
%ST

%0€

SLT

for SBRM" are between -1% and 12% whereas for CC-Precision, CC-Recall, and CC-FMeasure, the
ARIs range between 2% and 20%. Concerning FC-Precision, FC-Recall, and FC-FMeasure, the ARIs
for SBRM" are up to 8% whereas the ARIs in terms of CF-Precision, CF-Recall, and CF-FMeasure
are up to 28%. However, we observed that for some MLQMs (e.g., CF-Precision, CF-Recall) for
SBRM "nsca-PART have negative ARIs.

From Figure D-7, one can observe that SBRM" has positive improvements for the majority of
the MLQMs (i.e., 85%) with an ARI up to 27% for the Cisco case study. Similarly, for the Jitsi
case study, Figure D-8 shows that SBRM" has positive values for ARIs corresponding to the
majority of the MLQMs (i.e., 90%) with an ARI up to 28%. This shows that for both of the case
studies, SBRM™ has significantly improved the quality of rules in terms of MLQMs as compated
to RBRM, as also suggested by the statistical analysis results (Section 6.2).

6.4 Comparing the Effectiveness of NSGA-II and NSGA-III (RQ4)

To answer RQ4, we compare SBRM " nsca.u-C45 with SBRM* nsca-m-C45 and SBRM nsca-n-PART
with SBRM*nscam-PART in terms of the fitness values (i.e., F1-O7, F17-02, F17-03, and OF1)
and the six quality indicators (Section 4.1.3) for both of the two case studies. Table D-6
summarizes the results of RQ4 whereas detailed results are presented in [103].

Table D-6. Comparing SBRM*nsga-11-C45 with SBRM*nsca-1mm-C45 and SBRM*nsca-ni-PART with
SBRM*nsca-mi-PART in terms of fitness values and quality indicators*

Case Fitness value based comparison Quality indicators based comparison

study Ajvs. Ay Az vs. Ay Ajvs. Ay Az vs. Ay

A>Ar | Ai<Ar | A1=Asr | As> AL | As<As | As=As | ADAy | Ai<Ap | Ai1=As | As> AL | As<Ay | A=Ay
Cisco | 7/24 16/24 | 1/24 4/24 16/24 | 4/24 2/36 23/36 | 11/36 | 2/36 28/36 | 6/36
Jitsi 7/24 17/24 | 0/24 5/24 15/24 | 4/24 18/36 | 4/36 14/36 | 5/36 4/36 27/36
*A1= SBRM*nsgai-C45, A= SBRM*nsca-C45, Ao= SBRM*nsgai-PART, Ay= SBRM*nsgam-PART

As shown in Table D-6, for the Cisco (Jitsi) case study, SBRM*nscam-C45 significantly
outpetrformed SBRM*nsca.-C45 for 16/24 (17/24) fitness-based comparisons and SBRM nsca-mr-
PART significantly outperformed SBRMnscar-PART for 16/24 (15/24) comparisons whereas
in only 7/24 (7/24) and 4/24 (5/24) fitness-based comparisons SBRM*nscan-C45 and
SBRM*nscar-PART significantly outperformed SBRM*nscan-C45 and SBRM*nscaan-PART
respectively.

In terms of quality indicators, Table D-6 shows that for the Cisco case study, SBRM " nscam-
C45 (SBRM*nsca-m-PART) significantly outperformed SBRM nscan-C45 (SBRM*nsan-PART)
for 23/36 (28/36) indicator-based compatisons whereas for only 2/36 (2/36) indicator-based
comparisons SBRM*nscan-C45 (SBRM nsca-PART) significantly outperformed SBRMnsca-ur-
C45 (SBRM*nscam-PART). Similatly, for the Jitsi case study, SBRM nsca.n-C45 (SBRM nscanr-
PART) significantly outpetformed SBRM*nscam-C45 (SBRM*nsca-m-PART) in terms of the
quality indicators for 18/36 (5/36) comparisons wheteas for only 4/36 (4/36) SBRM " nscam-C45
(SBRM*nsca-m-PART) significantly outperformed SBRM*nscan-C45 (SBRM*nsca-n-PART). To
summarize the results of RQ4, we can notice that in most of the cases NSGA-III significantly

outperformed NSGA-II in terms of fitness values and quality indicators, however, in some cases
(e.g., for GS) we observed otherwise.

176

6.5 Comparing the quality of rules for sBrRM+ (RQ5)

To answer RQ5, we compare the four SBRM" approaches in terms of MLQMs based on the
rules from each iteration and Overal/ (i.c., the rules of all the five iterations) for both of the case
studies. To do so, first, we compare SBRM " nscar-C45 with SBRM nsca.m-C45 and SBRM nscanr-
PART with SBRM*nsca-m-PART and then we compate the two better performing approaches
from these two comparisons to find the best. Table D-7 summarizes the results of RQ5 whereas
the details results can be found in [103].

Table D-7. Comparing the quality of rules for the SBRM* approaches in terms of MLQMs*

Comparison Pair
Case study Ajvs. Ay Az vs. Ay Wi vs. W2
A>Ay | Ai<Ar | Ai=Ar | As> Ay | As<Ay | As=Ay | Wi>W2 | Wi<Wo | Wi=W»
Cisco 49/90 | 6/90 35/90 | 24/84 | 6/84 54/84 | 74/90 3/90 13/90
Jitsi 85/102 | 2/102 | 15/102 | 60/102 | 35/102 | 7/102 | 2/102 82/102 | 18/102

*A1= SBRM*nsga-C45, A2= SBRM*nscam-C45, Ax= SBRM*nsga-PART, A4= SBRM*nseam-PART, Wi=
Winner of A1 vs. Ay Wo= Winner of Az vs. A4

As shown in Table D-7, for the two case studies, SBRM xscan-C45 significantly outperformed
SBRM "nscamn-C45 in 54% (e, 49/90) and 83% (i.e., 85/102) of the total compatisons
respectively whereas in only 7% (e, 6/90) and 2% (i.e.,, 2/102) of the total compatisons
SBRM xsca-m-C45 significantly outperformed SBRM nscan-C45. Similatly, SBRM xscan-PART
significantly outperformed SBRM*xsgam-PART in 29% (i.e., 24/84) and 59% (i.c., 60/102) of
total comparisons for the Cisco and Jitsi case studies respectively whereas in 7% (i.e., 6/84) and
34% (i.e., 35/102) of total compatisons SBRM*nsca-m-PART significantly performed better than
SBRM nscan-PART. Since SBRM nscan-C45 and SBRM xsoau-PART are two winners from the
first two comparisons, we use these two approaches as the third comparison pair to find the best
for both case studies.

Table D-7 indicates that in 82% (i.c., 74/90) of the total comparisons, SBRM nscan-C45
significantly outperformed SBRM*xsgau-PART whereas in only 3% (i.e., 3/90) SBRM*nscan-
PART significantly performed better than SBRM nscan-C45 for the Cisco case study. Similatly,
for Jitsi, in 80% (i.c., 82/102) of the total compatisons, SBRM xscau-PART significantly
outperformed SBRM'nscan-C45 while in only 2% (e, 2/102) of the total compatisons
SBRM*xsoan-C45 significantly performed better than SBRM*xsoan-PART.

Since SBRM*nsca.n-C45 significantly outperformed other the other three SBRM™ approaches
in terms of MLLQMs for the Cisco case study and SBRM xscau-PART for the Jitsi case study, we
can conclude that given the default parameter settings for both the machine learning algorithms
and the search algorithms, SBRM nsca.-C45 and SBRM nscan-PART produce better rules with
respect to MLQM:s for the Cisco and Jitsi case studies, respectively.

6.6 Correlation Analysis (RQ6)

To answer RQO6, we compute the correlation coefficients (p) and p-values using Non-Parametric
Spearman’s test for all the MLQMs in correlation to the average fitness values (AF1) for the
three individual objectives (i.e., AF1-0O7, AF17-02 and AF17-03), overall average fitness values
(OAFT) and six quality indicators corresponding to both case studies. Through correlation
analysis, we intend to test our hypothesis, i.e., Accuracy, Precision, Recall, and FMeasure have positive
correlations with H1” and negative correlations with the average fitness values and the other five

177

quality indicators whereas MAE, RMSE, RAE, and RRSE are negatively correlated with HI”and
positively correlated with the average fitness values and the other five quality indicators (Section
5.1.5). The results of RQG6 are summarized in Table D-8 for both Cisco and Jitsi case studies
whereas the detailed results can be found in [103].

Table D-8. Summary of the correlation analysis’ results (RQ6) *

Case SBRM+NSGA_II-C45 SBRM+NSGA_111-C45 SBRM+N5GA_11-PART SBRM+NSGA_111-PART

study | HS HR NS HS HR NS HS HR NS HS HR NS
Cisco | 28/170| 11/170{ 131/170| 30/140| 52/140| 58/140| 25/140| 44/140| 71/140| 39/140| 11/140| 90/140
Jitsi 91/170| 11/170| 68/170 | 60/170| 16/170| 94/170| 74/170| 16/170| 80/170| 29/170| 22/170| 119/170
*HS= Hypothesis satisfied, HR= Hypothesis rejected, NS= Not significant

As shown in Table D-8, for the Cisco case study, 23% (i.e., 39/170), 59% (i.e., 82/140), 49%
(i.e., 69/140), and 36% (i.e., 50/140) of the total correlations ate significant for SBRM " nscan-
C45, SBRM " nsca-m-C45, SBRM nscan-PART, and SBRM*nscam-PART respectively, where 72%
(i.e., 28/39), 37% (i.e., 30/82), 36% (i.e., 25/69), and 78% (i.e., 39/50) of significant correlations
satisfy our hypothesis (Section 5.1.5). Similatly, for the Jitsi case study, 60% (i.e., 102/170), 45%
(i.e., 76/170), 53% (i.e., 90/170), and 30% (i.e., 51/170) of the total correlations ate significant
for SBRM*nscan-C45, SBRM'nscam-C45, SBRM'nscan-PART, and SBRM*nscam-PART
respectively, where 89% (i.e., 91/102), 79% (i.e., 60/76), 82% (i.e., 74/90), and 57% (i.e., 29/51)
of significant correlations satisfy our hypothesis (Section 5.1.5).

6.7 Trend Analysis of the Quality of Rules Across the Iterations (RQ7)

To answer RQ7, we study the variation in the quality of rules in terms of MLQMs across the
iterations (from éteration-1 to iteration-5) for the SBRM™ approaches for both case studies. To do
so, we plotted the scatter plots and fitted Linear Regression lines for all the MLQMs. The results
of the trend analysis are summarized below, and the plotted graphs are provided in [103].

Table D-9. Summary of trend analysis’ results (RQ7) *

Case study SBRM *nsca11-C45 SBRM*nscam-C45 | SBRM*nsga--PART | SBRM*nsca--PART
IT DT | ST IT DT | ST IT DT | ST IT DT | ST

Cisco 15/17 | 1/17 | 1/17 | 10/17 | 0/17 | 7/17 | 14/17 | 0/17 | 3/17 | 10/17 | 2/17 | 5/17

Jitsi 14/17 | 0/17 | 3/17 | 16/17 | 1/17 | 0/17 | 17/17 | 0/17 | 0/17 | 14/17 | 0/17 | 3/17

*IT= Increasing trend of the quality of rules, DT= Decreasing trend of the quality of rules, ST= Straight line (no change in the
quality of rules)

As shown in Table D-9, for both case studies, we observed an increasing trend of quality of
rules in terms of the majority (81%, ie., 110/136) of the MLQMs for all the four SBRM"
approaches across the iterations. Also, for both case studies, we witnessed a slightly decreasing
trend in only 3% (i.e., 4/136) of MLQMs for all the four SBRM" approaches whereas in the
remaining 16% (i.e., 22/136), we observed a straight line. Note that the quality of rules in terms
of the MLQMs increases if values of error related MLQMs (i.e., MAE, RAE, RMSE, and RRSE)
decrease and other MLLQMs increase.

6.8 Cost of Applying Search to Generate Configurations (RQS8)

To answer RQ8, we calculated the average time requited by NSGA-II (in SBRM nscan-C45 and
SBRM*nscar-PART), NSGA-IIT (in SBRM*nscamn-C45 and SBRMnsca.m-PART), and RS (in
RBRM*-C45 and RBRM"-PART) to generate configurations per iteration (i.e., ATPI) as well as
pet cycle (i.e., ATPC) (Section 5.1.3). Table D-10 shows the average time required by SBRM " nsca-

178

u-C45, SBRM* nsca--C45, SBRM nscai-PART, SBRM* nsca-m-PART, RBRM*-C45, and RBRM*-
PART to generate configurations per iteration and per cycle for both of the case studies.

Table D-10. Average time (minutes) required for generating configurations

Case Metric SBRM"'NS(;A SBRM"'NS(;A RBRM™- SBRM+NSGA. SBRM+NSGA. RBRM*-
Study .11-C45 .111-C45 C45 II-PART IH-PART PART
Cisco ATPI 22 3224 18 23 8765 22
ATPC 108 16118 90 116 43824 108
[Fi ATPI 32 22527 40 10 10179 21
ATPC 159 112636 199 52 50896 103
From Table D-10, we can observe that the costs of generating configurations using

SBRM* nsca-C45, SBRM nsca-PART, RBRM*-C45, and RBRM'-PART are quite comparable.
Howevet, SBRM*nscam-C45 and SBRMnscamn-PART took significantly more time than the
others, because NSGA-III is significantly slower than NSGA-II and RS. Also, NSGA-III
produces only 92 solutions for the three objective problems regardless of its population size [80],
thus, we executed it multiple times to get 500 configuration solutions corresponding to each
iteration. We used a fixed number of fitness evaluations instead of time budget as the termination
criterion of the search because 1) different frameworks for multi-objective optimization with
metaheuristics (e.g., jMetal [53]) use fitness evaluations instead of time budget; 2) A fixed number
of fitness evaluations are widely applied in SBSE [104-107]; 3) We used 50,000 fitness evaluations
as termination criterion, because we were able to obtain good results in our earlier studies
involving industrial datasets [48, 105]; and 4) We think comparing search algorithms based on
fixed time is biased towards faster algorithms, as a slower one gets less chance to evolve towards
a better solution, particularly in the context where the time cost of executing an approach is not
important which is the case of applying our approach.

From Table D-10, we can also notice that SBRM*nsca.ir-C45, SBRM* nsca.m-C45, and RBRM™ -
(45 took more time than SBRM*nscan- PART, SBRM*nscan- PART, and RBRM'- PART
respectively. This can be explained as C4.5 produced lengthier rules (i.e., more predicates) than
PART (Table D-11). Thus, approaches producing lengthier rules have a higher cost of calculating
fitness values and consequently higher execution time. On average, C4.5 produced 1.7 and 2
more predicates per rule than PART for the Cisco and Jitsi case studies, respectively.

Table D-11. Average number of predicates for the Cisco and Jitsi case studies

Cisco Jitsi
Approach Avg. predicates Avg. predicates Avg. predicates Avg. predicates
per rule per run per rule per run
SBRM*nsga1-C45 5.2 14420 4.6 100095
SBRM*nsga-PART 3.6 17102 2.7 22764
SBRM*nsGa-m-C45 5.7 14853 5.5 134451
SBRM*nsgan-PART | 4.0 20668 2.7 20498
RBRM*-C45 5.6 21763 4.0 106454
RBRM+-PART 3.9 26632 2.6 25208

6.9 Discussion

For RQ1, we noticed that NSGA-II and NSGA-III significantly outperformed RS in terms of all
the fitness values and majority of the quality indicators for both of the case studies (Section 6.1).

179

This can be simply explained as NSGA-II and NSGA-III generate and select better solutions
using operators such as mutation and crossover. We also noticed that RS performed better than
NSGA-II and NSGA-III in terms of GS (representing the diversity of obtained solutions) for
15/24 and 17/24 compatisons for the Cisco and Jitsi case studies, respectively. This is because 1)
for our problem, higher convergence to the objectives (e.g., Odbjective-1 avoids generating
configurations satisfying high confidence rules with normal states) may reduce the search space
to be explored, which consequently affects diversity negatively; and 2) RS explores the search
space more uniformly as compared to other algorithms [108], thus, the solutions produced by RS
has high diversity but low convergence as shown by the results of RQ1 (Section 6.1).

For RQ2, we observed that in 7 out of 8 comparisons for both of the case studies, SBRM*
performed significantly better than the two RBRM" approaches in terms of the majority of
MLQMs whereas in one of the 8 comparisons there was no significant difference observed
between the two approaches (i.e., SBRM nscam-C45 and RBRM'-C45) (Section 6.2). SBRM nsca.
1-C45, SBRM* nsc1.-C45, SBRM* nsc.-PART, and SBRM* nscam-PART have achieved an ARI
up to 27%, 22%, 18%, and 21% for the Cisco case study respectively (Section 6.3). Similarly, for
the Jitsi case study, SBRM nscau-C45, SBRM nse1i-C45, SBRM* nsca-PART, and SBRM nsca.
m-PART have achieved an ARI up to 28%, 4%, 8%, and 12% respectively (Section 6.3). This is
because the three objectives use previously mined rules for guiding the search to generate
configurations that increase the support of the correct rules and filter out incorrect ones. In
addition, the operators of NSGA-II and NSGA-III help SBRM" to converge faster than RBRM".

For RQ4, NSGA-III significantly outperformed NSGA-II in terms of fitness values and the
quality indicators in most of the cases. For RQ5, SBRM"nscan-C45 significantly outperformed
other three SBRM" approaches in producing better quality rules in terms of MLQMs for the
Cisco case study and SBRM xscau-PART for the Jitsi case study. This deviation in the results for
the two case studies could be explained as follow: 1) The number of categorical configurable
parameters is different (15 for Cisco and 27 for Jitsi); 2) The maximum number of possible
configurations for a categorical configuration parameter is different (4 for Cisco and 16 for Jitsi);
3) The total number of configurable parameters is different (27 for Cisco and 39 for Jitsi); and 4)
the configuration spaces are different (1.03¢” for Cisco and 6.54e” for Jitsi). The categorical
parameters are of more importance because satisfying the predicates with the categorical
parameters in the rules is more difficult than satisfying the predicates with numerical parameters.
This is because usually in the rules, predicates with numerical parameters allow a large number of
values to satisfy the predicates, whereas satisfying predicates with categorical parameters requires
exact values from predefined candidate values. The different characteristics of the case studies
could make different algorithms suitable for mining the rules. Based on the characteristics of the
two selected case studies and their corresponding results, we can argue that PART is a preferred
choice to integrate with NSGA-II (i.e., SBRM*nscan-PART) for mining rules for a relatively
larger case study whereas C4.5 (SBRM*nsc1.1-C45) is a better choice in the case of a smaller sized
case study. Nevertheless, these results cannot be generalized based on the evaluation of merely
two case studies. Besides, the selection of the machine learning algorithms and their parameter
settings are usually application dependent. Thus, generalizing the results further requires a much
larger scale empirical evaluation with more case studies.

From the correlation analysis for RQO6, we noticed that the majority of cases satisfy our
hypothesis (Section 5.1.5) that the overall quality of rules in terms of MLQMs improves by

180

reducing the average fitness values and quality indicators (except for HI) and increasing HI".
However, smaller average fitness values and quality indicators (except for HI”) and larger H]” do
not mean that all the MLQMs will always be improved, as we observed several cases (e.g.,
cotrelations of FF-Precision and CF-Recall with AF17-03 cotresponding to SBRM* nscar-PART for
the Cisco case study, correlations of CC-Recall/ and CC-FMeasure with AF1-O7 corresponding to
SBRM* nscar-PART for the Jitsi case study) that reject our hypothesis. It is quite possible that
certain MLLQMs are affected negatively due to several reasons, 1) Objective-1 avoids generating the
configurations satisfying high confidence rules with ConnectedConnected class due to which mining
algorithm will give more preference to other classes (i.e., FailedFailed, FailedConnected, and
ConnectedFailed), therefore, MLQMs such as CC-Recal/ and CC-FMeasure may decrease with the
decrement in AF1~O7 as it did for the Jitsi case study; 2) Objective-2 and Objective-3 generate
configurations satisfying low confidence (i.e., higher violation and lower support) rules with
normal and abnormal states, which increase the violation of low confidence rules that may affect
MLQMs negatively in certain cases (e.g., when violation of rules increased but not enough to
remove them from rule set) as it did for the Cisco case study. In such cases, MLQMs may
decrease with the reduction in AF17-02 and AF1-O3.

For RQ7, we noticed an increasing trend of the quality of rules based on the majority of
MLQMs for all the four SBRM* approaches for both case studies. This is because, in each new
iteration, we refined the rules by generating the configurations based on the rules mined from the
previous iteration and mining a new set of refined rules, which improves the quality based on
MLQMs in each new iteration. Thus, the incremental, iterative process refines rules across
iterations, and the number of iterations does have an impact on the results. For RQ8, the best
petforming SBRM*nsca.n-C45 took 108 minutes for the Cisco case study whereas SBRM nscan-
PART took 52 minutes corresponding to the Jitsi case study, for generating configurations for a
complete cycle, which is acceptable as it is a one-time process.

Furthermore, to know the distribution of the mined rules associated with the four system
states (ConnectedConnected, FailedFailed, ConnectedFailed, and FailedConnected) in the five iterations for
both case studies, we plotted stacked column plots. Note, we have also presented the distribution
of the rules for the iteration zero, to be complete. Figure D-9 presents the average numbers of
rules mined with the different approaches for the Cisco case study. From Figure D-9, we can see
that RBRM*-C45 (RBRM"-PART) produced more rules than SBRM nscan-C45 and SBRM " nsca-
m-C45 (SBRM*nscan-PART and SBRM'nscam-PART) in all the five iterations except that
SBRM* nscan-C45 produced slightly more rules than RBRM'-C45 in iteration-1 and iteration-2. We
can also notice that no rules were produced for FailedConnected in the first three iterations and
significantly fewer numbers of rules produced for FailedConnected (to compare with the other
categories) in only izeration-4 and iteration-5.

181

Average number of rules generat(:’ed in Iteration-0 Average number of rules generated in Iteration-1
250
160 O ConnectedConnected
O FailedFailed O ConnectedConnected °
140 @ ConnectedFailed 200 O FailedFailed
3 120 M FailedConnected o 0 é [ConnectedFailed 0 0
3
« 0 < 150 M FailedConnected
S 100 °
5 2 0 0
£ 80 £
3 i 100 0
s, 60 E -
50 m
20
a
o 0
A1 A2 A3 A4 AS A6 A1 A2 A3 A4 A5 A6
Average number of rules generated in Iteration-2 Average number of rules generated in Iteration-3 0.
250 250
O ConnectedConnected
O ConnectedConnected
200 O FailedFailed 200 O FailedFailed) 0 o
- 0 » M ConnectedFailed
3 @ ConnectedFailed 0 - . 0
2 " 2 M FailedConnected |
%5 150 M FailedConnected %5 150
o o
2 o 0 2 0
£ £ 0
3 100 0 2 100
o 79 [
2 H
50 (2| 50 26|
o/So/Sa/SE ¥ Sk el [Pl
0 0
A1 A2 A3 A4 I A6 A1 A6
Average number of rules generated in Iteration-4 4 Average number of rules generated in Iteration-5
300 350 4
O ConnectedConnected 300 O ConnectedConnected
0 OFailedFailed DOFailedFailed 0
8 B ConnectedFailed $ 250 @ ConnectedFailed
g 200 M FailedConnected 2 M FailedConnected 22
- -
;150 g 200
8 144 2
5 E 150 161
z
»100 .
oo
z £ 100 116 E
50
’ E HI ” oS I
0 0
A6 A4 A5 A6

Figure D-9. Average numbers of rules mined in each iteration for the Cisco case study*

*A1: SBRM*NSGA,H—CA-S, Azz SBRM*NSGA,HrCAS, A3: SBRM*NSGA_IrPART, A4: SBRM*NSGA_HFPART, A5: RBRN[*-CAS,
As= RBRM*-PART
Figure D-10 presents the average numbers of rules mined for the Jitsi case study. From the

figure, we can observe that RBRM"-C45 (RBRM*-PART) produced more rules than SBRM nsca-
1-C45 and SBRM nscan-C45 (SBRM* Nscanr-PART and SBRM* nsa.m-PART) in all the iterations
just as for the Cisco case study. For both of the case studies, we observed that the SBRM"
approaches produced less number of rules than the two RBRM" approaches. This is because the
three objectives refine the rules by removing low confidence incorrect rules and the search
operators (i.e., mutation, crossover, and selection) help SBRM'nscanr-C45 and SBRMnscanr-
PART to get optimal configurations in terms of three objectives.

Averag ber of rules g d in Iteration-0 Average number of rules generated in Iteration-1
1200 1200
O ConnectedConnected O ConnectedConnected
1000 . N 1000
O FailedFailed 0O FailedFailed
é 800 @ ConnectedFailed é @ ConnectedFailed 168
800
; M FailedConnected 142 % 135 133 W FailedConnected
o 2
2 600 2 600 \
E £
2 2
£ a00 % a00 66 s5 73
- l l
200
(Pl (sl [l [
. uo -,-/ .y-f 110 -v-f 0 m’ m’ (a5 - [56 14
Al A2 A3 A4 A5 A6

182

Average number of rules generated in Iteration-2 Average number of rules generated in Iteration-3

1200 1200
O ConnectedConnected OConnectedConnected 2l
1000 X N 1000 i)
O FailedFailed O FailedFailed
K] [l ConnectedFailed 8 W ConnectedFailed
2 800 . Z 800 B
= M FailedConnected T M FailedConnected
2 °
2 600 2 600
: £
2 80 2 86
o 400 ob 400
H H I
200 2
(o1 1 66 [
0 [
Al A2 A3 A4 A5 A6 Al A2 A3 Ad A5 A6

Average number of rules generated in Iteration-5

Average number of rules generated in Iteration-4
1200 1200
243 256
1000 O ConnectedConnected 235 1000 O ConnectedConnected
' OFailedFailed O FailedFailed
! 8 ConnectedFailed @ ConnectedFailed
W FailedConnected M FailedConnected
600
105
95
91
400 i
200
128
[200] wfl ||
197
: 2R El [71] i l [75 s

A3 A4 A5 A6 A3 A4 AS A6

®
S
S
3
Q
=]

Avg. Number of Rules
S o
=3 =3
o o

Avg. Number of Rules

N
o
=]

Figure D-10. Average numbers of rules mined in each iteration for the Jitsi case study*

*A1: SBRM*NSGAAIFC‘*S, A2: SBRM*NSGAAHFC“S, A3: SBRM*NSGAAIFPART, A4: SBRM*NSGAAHI—PART, A5: RBRN[*~C45,
A¢= RBRM+-PART
Figure D-11 shows the distribution of rules with respect to normal and abnormal system

states, obtained using SBRM" for both case studies. From Figure D-11, one can see that the
majority of the rules produced are rules with abnormal system state, which is expected because

SBRM" focused on generating invalid configurations.

Cisco case study Jitsi case study

100%

80%

" 725% 773% 784% 833% 82,7%
40%

2% 340% 209%

0%

SBRM+NSGA-II-C45 SBRM+NSGA-IIl-C45 SBRM+NSGA-II-PART ~ SBRM+NSGA-IIl-PART SBRM+NSGA-II-C45 SBRM+NSGA-IIl-CA5 ~ SBRM+NSGA-II-PART SBRM+NSGA-III-PART
m Normal State Rules Abnormal State Rules m Normal State Rules Abnormal State Rules
Figure D-11. Rules distribution w.r.t. system states
Cisco case study Jitsi case study
100% 100%
80% 54,1% 80%
66,9 %
71,8% 4 78,3 %
60% 0% N4 % 892% 91,5% 937%
40% 40%
459%
20% 282% 20%
i 10,8 % 8,5%
0% 0%
SBRM+NSGA-II-C45 SBRM+NSGA-II-C45 SBRM+NSGA-II-PART SBRM+NSGA-III-PART SBRM+NSGA-I-C45 ~ SBRM+NSGA-III-C45 SBRM+NSGA-II-PART SBRM+NSGA-III-PART
m Valid % Invalid % u Valid % Invalid %

Figure D-12. Average numbers configurations with of valid and invalid system states per run

183

To see the distribution of configurations with respect to the corresponding system states (i.e.,
valid or invalid), we collected the statistics about configurations generated using SBRM™ for both
case studies, which are shown in Figure D-12. However, it is worth mentioning that the
distribution of generated configurations is greatly influenced by the input rules provided to the
search algorithms.

Moreover, we intend to assess if adding more iterations increases the quality of rules
significantly. Due to high execution cost of the experiments, we combined configurations from
10 runs of already executed experiments and mine rules to see the trend of quality improvement
of rules with respect to the dataset size. More specifically, first, we mine the rules using
configurations of the first run and then incrementally add the configurations from other nine
runs and mine the rules. Note, for the first run we used all the 4500 configurations whereas, for
other 9 runs, we have added only 2500 configurations per run (i.e., for five iterations) because the
initial 2000 configurations (i.e., randomly generated) are common across all the runs. To show
the trend, we plotted the MLQMs against the number of instances (i.e., configurations) in the
dataset. Due to limited space, we have selected Accuracy as a representative MLQM to illustrate
the trend (Figure D-13 and Figure D-14).

1,00

0,98

0,96 —_ p———— ¥ -
0,94 »
g 0,92
g
3 0,90
S)
<
0,88
0,86
0,84
4500 7000 9500 12000 14500 17000 19500 22000 24500 27000
—8—SBRM+NSGA-1I-C45 0,94 0,96 0,96 0,96 0,96 0,97 0,97 0,96 0,96 0,97
SBRM+NSGA-II-PART 0,96 0,97 0,97 0,97 0,97 0,97 0,97 0,97 0,97 0,97
SBRM+NSGA-I11-C45 0,90 0,92 0,92 0,93 0,93 0,92 0,93 0,94 0,95 0,95
—4~SBRM+NSGA-II-PART 0,96 0,96 0,96 0,96 0,96 0,96 0,96 0,96 0,96 0,96

Figure D-13. Accuracy vs. number of instances in the dataset for Cisco

As shown in Figure D-13 and Figure D-14, for both of the case studies, there is an
improvement in the quality of rules, but not significant. From 4500 to 22,500 instances (i.e.,
configurations), we get up to 5% of improvement for the Cisco case study and 6% for the Jitsi
case study. Note, for the other MLQMs, we also observed similar results.

1,00

0,95

0,90 o . — - - ° . —e
B,, 085 /
£
3
=]
< 0,80
0,75
0,70
4500 7000 9500 12000 14500 17000 19500 22000 24500 27000
—4—SBRM+NSGA-11-C45 0,86 0,88 0,89 0,89 0,89 0,89 0,89 0,38 0,38 0,89
—#—SBRM+NSGA-II-PART 0,91 0,93 0,93 0,93 0,94 0,94 0,94 0,94 0,94 0,94
SBRM+NSGA-11-C45 0,82 0,81 0,83 0,82 0,83 0,82 0,82 0,82 0,82 0,81
SBRM+NSGA-III-PART 0,90 0,92 0,93 0,95 0,95 0,95 0,96 0,96 0,96 0,96

Figure D-14. Accuracy vs. number of instances in the dataset for Jitsi

184

We assess the trend of quality of rules against different dataset sizes. However, one can argue
that we added the configurations generated using rules from iteration zero to iteration-4 and
adding configurations generated using rules from iteration 5 and onwards would have improved
the quality of rules significantly. To cater this argument, we selected the best performing
approaches SBRM*nscan-C45 for the Cisco case study and SBRM*nsca.n-PART for the Jitsi case
study and conducted the experiment with these two approaches to obtain five more iterations
(i.e., in total 10 iterations) with the Jitsi case study. This is done only for the Jitsi case study
because the experiment can be run on a cluster. However, for the Cisco case study, running the
experiment needs dedicated hardware equipment and we cannot run the experiment in parallel
due to the limited number of VCSs available, which makes the experiment extremely time-
consuming. Figure D-15 shows the average Accuracy (i.e., calculated as the average of 10 runs for
each iteration) across the 10 iterations. From Figure D-15, we can observe an improvement in
the quality of rules across the iterations, however, we got an improvement of 4% at maximum for
any approach from iteration-5 to iteration-10. On the other hand, when looking at the
improvement from iteration-1 to iteration-5, we got an improvement of 13% for SBRM"nscau-
C45 and 10% for SBRM*nscan-PART. Thus, it would be fair to say that after a number of
iterations (e.g., five in our case), the improvement will be very slow. This suggests that using a
fixed number of iterations is a practical and wise approach to terminate the process.

0,80
— 070
w
c
2 0,60
=
b 0,50
°
g;, 0,40
(C
—= 030
>
o
e 0,20
=]
I+
& 0,10
0,00
1 2 3 4 5 6 7 8 9 10
SBRM+NSGA-I-C45 0,52 0,56 0,59 0,63 0,65 0,65 0,66 0,68 0,70 0,65
SBRM+NSGA-I-PART 0,60 0,65 0,68 0,69 0,70 0,72 0,72 0,73 0,73 0,74

Figure D-15. Average accuracy across 10 iterations for the Jitsi case study

6.10 Threats to Validity

In Section 6.10.1, we discuss threats to the internal validity followed by threats to the construct
validity in Section 6.10.2. We discuss threats to the conclusion validity and external validity in
Section 6.10.3 and Section 6.10.4, respectively.

6.10.1 Internal Validity

Threats to the internal validity exist when the results are influenced by the internal factors such as
parameter settings [109]. The first threat to the internal validity is the selection of search
algorithms in our study. To mitigate this threat, we selected the most widely used NSGA-II
algorithm, which has shown promising results in different contexts [45, 78]. Moreover, we have
selected a relatively new multi-objective search algorithms, i.e., NSGA-III, which also has good
performance on addressing many objective problems [82]. The second threat is the selection of
algorithms for rule mining. We selected PART as it has been proven to be more effective than
many well-known algorithms [40, 59] and C4.5, the most popular algorithm in industry and the

185

research community [86, 110]. The third threat is the selection of parameter settings for the
selected search algorithm. To mitigate this threat, we used default parameter settings, which have
exhibited promising results [58]. Similarly, for the machine-learning algorithms, we also used the
default parameters settings, which perform reasonably well [74, 86]. Another threat is the
selection of the Confidence measure for calculating fitness values, as there exist other measures
(e.g., Liff). We acknowledge that this is a threat to the internal validity and dedicated experiments
are needed for further investigation.

6.10.2 Construct Validity

Threats to the construct validity exist when the measurement metrics do not sufficiently cover
the concepts they are supposed to measure [62, 109]. To mitigate this threat, we compared
different approaches using the same comprehensive set of measures: fitness values, quality
indicators, and 17 MLQMs, which are commonly used in the literature [51, 86, 111].

6.10.3 Conclusion Validity

Threats to the conclusion validity concern with the factors influencing the conclusion drawn
from the results of the experiment [112]. The most probable threat to the conclusion validity is
due to the random variation inherent in search algorithms. To minimize this threat, we repeated
the experiment 10 times (i.e., total 50 runs of each search algorithm) to reduce the effect caused
by randomness, as recommended in [100, 113]. Moreover, we also applied the Mann-Whitney
test to determine the statistical significance of the results and the Vargha and Delaney A,

statistics as the effect size measure, which are recommended for randomized algorithms [100,
113].

6.10.4 External Validity

The external validity concerns with the generalization of the experiment results to other contexts
[109]. The threat to the external validity for our experiment is the case studies selected for the
evaluation. In our study, we used a real-world case study (i.e., Cisco Video Conferencing Systems)
and an open source case study Jitsi of different sizes. Furthermore, one can argue that the
complexity of case studies (i.e., a large number of configurable parameters and system states) may
affect the performance of proposed approach. We would like to argue that multi-objective search
algorithms such as NSGA-II and NSGA-III have been applied to problems of different
complexity, and they have proven to be quite effective [60-62, 76, 82, 96]. However, higher
dimensional datasets (more attributes) for complex case studies, may reduce the performance
(e.g., accuracy, precision) of machine learning algorithms but the impact will be the same for both
SBRM" and RBRM, as both approaches employ a machine learning algorithm.

7 Related Work

Search algorithms have been used to solve many problems in the context of PLE [60-62, 76, 906].
In this paper, we also combined the search with machine learning techniques to mine the rules in
the context of PLE. The related work to this research stream focuses on existing studies
presenting the approaches to mine the rules in the context of PLE. In Section 5.1, we discuss

186

dedicated approaches that focus on mining rules from different artifacts (e.g., source code,
configuration file, feature model) of product lines. Furthermore, in Section 5.2, we discuss
approaches such as feature extraction, feature construction and feature recommendation, which
mine crosstree constraints. Finally, in Section 7.3, we summarize the related work and compare it

with our work.

7.1 Dedicated Rule Mining Approaches

The work in [37] applies Binary Decision Tree-J48 (machine learning algorithm) to infer the
constraints from a set of randomly generated product configurations. To classify the
configurations as faulty and non-faulty, a computer vision algorithm was used as an oracle. To
validate the approach, it was applied to an industrial video generator product line. Rules were
evaluated based on expert’s opinion and machine-learning measurements such as Precision and
Recall. Results show that on average 86% Precision and 80% Recall rate can be achieved using
the proposed approach.

In [63], an approach for mining the crosstree binary constraints (i.e., requires, excludes)
corresponding to a feature model is presented. The approach takes a feature model as input
containing the features, their descriptions, and some known crosstree binary constraints. First, it
trains LIBSVM classifier (an extension of support vector machine) with existing crosstree binary
constraints where the parameters of the classifier are optimized using the genetic algorithm to
minimize the error rate of the classifier. Second, it extracts all the feature pairs, and finally, the
optimized classifier finds the candidate features of binary constraints. The approach was
validated using two feature models collected from SPLOT repository. Results show that rules
with high Recal/ (i.e., close to 100%) and the variable low Precision (on average 42%) can be
achieved using proposed approach.

In [64], another approach is presented for mining the crosstree constraints. It constructs
configuration matrix (i.e., product-features matrix) from configuration files and extracts crosstree
constraints using an association rule mining technique (i.e., Apriori algorithm). Rules are pruned
using minimum support and minimum confidence thresholds. The approach was evaluated using
a large-scale industrial software product line for embedded systems. The evaluation shows that a
large number of rules with variable support (i.e., 80% to 99%) and confidence (i.e., 90% to
100%) can be identified. The majority of the rules were identified with support ranging from
80% to 85%.

The work in [65] presents an approach to extract configuration constraints from existing C
codebases using static analysis. It uses build time errors (e.g., preprocessor, parset, type, and link
errors) as the oracle to classify the low-level system configurations (i.e., build and code files) and
mine the constraints. To assess the accuracy of extracted rules, they were compared with the
existing constraints specified in developer’s created variability models. The approach was
validated using four open-source case studies (uClibc, BusyBox, eCos, and the Linux kernel).
Results show that up to 19% of the total constraints can be recovered automatically from the
source code, which assures successful build with the accuracy of 93%. In [38], an extension of
[65] is presented in which the authors improved the static analysis and increased the
recoverability rate by 9%. Additionally, an empirical study is also presented that identifies the
sources of constraints.

187

881

991155010
[F171] B[NWIO] oY 10BNX
ur pa1uasard revonisodoid 01 ss2003d
syoidde eae(jo 90UIPYUOD : SIUTEFISUOD o
VN VN [eo13089187) wWpEose JO WIOJuI ® opraoxd [99]
Td PaZIS [[ewsS pue 130ddng 997155032 JO 198
UE PUE WIPHOS[E N paulep PUe AL
poudy Arewrzo ansiqeqoid
SupPNPONUT
£
(ouroy XnuTT HIqEISA0oaT
o pue 139dx0 o SIUTEFISUOD
o1 PuUE ‘S0)d (s1sATeUE UONIENXI
‘xogAsng oqHn) 4q pougop so €OIJ0321E opod pue prmg) JORSSOR opod JUTETISUOD [8¢] “[s9]
gasng q1) >t 01 2021501 VN VN [t J P \ﬁ pD! pue Agoresan PO2 O ! 8¢l 199
SITpNIS 98BI stsAfeue opelg . uonengdyuon)
UT paInsesw JOo1s Y
901mos uado o]
£oenooy
SwosAs WA
DA 10 90U9PYUOD S0Sa1e WPIFOSE SIUTERSTOD 21 [ol
PoPPoq 3 pue 130ddng N N st 2 pordy | 991ss01d JO 198 7 | UOREIMIUOD) J oo =
Id [EMISnpUT Uy JUTENSUOD)
(s3uTENSUOD
991155010
1d ydeso pue wypIros[e Areurq .~
3
UONEIG JOILI N\ 2INSEIAL] pPUL ¢ fmopuwy . RJAEleE} SIUTERISUOD UMOUY| pUE R — o]
JO S[opOow 2In3ed} | [[BI9Y VOIS] ’ PpU® I91JISSE[D | 9913SSOID JO 39S ‘uondrosop Ed.ﬁmco
201n0s uado omy, INASETT 2IMBd] o =
‘59313897
WA V
) (wpEose
voruido [ed17032187) Gy 30 SIUTERSTOD UOISTA al
J01EI2UI3 09PIA o : voneuawsdur) : o JOJ TONOLNX
139dx0 pue Z Awopuey pue UONEINSFUOD 3oindwoo) [L¢]
JO Td pFom-Tear 7 | . Q4 (-091], JUTENSUOD
99y ‘UOISIO3] [edmownN JO 1S Y 9[oEI0
UOISTO9(J Areurg UOREINIFUOT)
UT Pt N V
U093 adfy so[nI
S9sSED
Apms ase)) uonenyeAr] /uonexduds 1a10urered Sururur 30§ mding nduy ordog, JouaIyOY
o
o # ere(siqemsdguo) | anbruysoy TN

ssoyoeordde Sururur spnr Fupsixa Jo sonspadeIeyD) "7~ 9L,

681

UONEIO[[Y ID[YPII(IU2Ie] =y (] ‘Sutures] surydey = TN O[qeardde 10N =y N “urf 1onpoid = Ppowr a5mesj =]\

9p0)91,]
93
pues womouéom So[nF UONEPOSSE | sjuawasmbaz uo
eIPI 3]0
FERts 90U9PYUOD WPIFOSE o1 O paseq Josn pue | NEPUIWIWIODIF
el e 130ddn: VN VN [e2B0BI) onrd ONEPUIWTIOID ondmose € UOTIEIIXD [s11]
NE— Pue 13 S poudy | uonepuUIWIIOd9) vondposop | pue uonoen
- oIMIEd oIMIEd 91T,
JO Joquunu 237e[
] pa3onmIsuod
Arenuews wpIrose UONOBNXD
eIPIJ330S SIUTERISUOD
WO Po1o0n 01 102dsox N N oo wondy TSSO suondmosop JUTEFISUOD o]
3 PR3l i £oeImooe v v [t = put wypIos[e 1ONpOIJ | PUE UONJELIXD 0
SDIARUE JO 'Id V . 3 W N
UIPHUOD PMOI3-I,1D o1NIed]
93oddng
93pa[mouy|
dnois-
wodAnqisaq HO%oTO UTEWOpP PIppE
Jjo voneandwod :
Jjo Apmas Arenuewr UONILIXD
pasenead [ed17032187) JOJ JOAJOS SIUTERSTOD .
o869 PrrOMESs JOU SEM $9 Awopu ue | (] Ue B[ed 9971SSOID I SO JCIERSTO [z¢]
© pue A[wopues S 70 3 ﬂ VN propm - 3 whuwmﬂo ow c 5 H vospredwod | puE UOROEHXD 43
n Fowm ur parusworduy nqrx
P91e3oU23 SOOMNEW 0 SHI = B tp um ﬁoww“ DL FERSEE 1onpoid oIMEd,J
W
UONEIMSHUOD 77 gl ‘uvondmosop
: pasodoig o
1oNpoI
o110 syuowormbaz $9IN3BIy
PadHOS wyIIFose FosN | SUIpULWIIOD2]
WOIJ Pa3d9[od [d SIUTERISUOD
o vonduose 20UIPYUOD N N eo0Sore poudy oHSSOD PUE 19UIANU[| JOJ UONIELHXD (o] ‘19|
0c3 nepossp pue 130ddng v v et 2 put wpIos[e Uo J[qe[IEAL JUTETISTOD 69 149
PUE UONEBIOQL[[Od s Suore W
Sotwss 10 PMO0I3- 1D suondiosop | puE UOROENXD
71d v 10NpOoI aIm3eaq
WA

JOJ S1UTERSUTOD

7.2 Non-Dedicated Rule Mining Approaches

The work in [110] reported a Systematic Literature Review (SLR) of 13 approaches for feature
extraction from natural language requirements. The results of SLR show that hybrid natural
language processing approaches are commonly used in the overall feature extraction process.
Various clustering approaches from data mining and information retrieval are used to group the
common features. Moreover, several approaches have also employed association mining
techniques to discover the pattern of the features to recommend the relevant features to the
stakeholders. In [66], an extension of feature model called probabilistic feature model is
introduced. To extract crosstree constraints from existing formally defined products, a rule
mining process is presented that uses an association mining technique (i.e., Apriori Algorithm) to
mine the conjunctive association rule and an algorithm proposed in [114] to mine the Disjunctive
association rules. The proposed mining process was applied to a small case study of Java Applets.
Rules were evaluated based on machine-learning measurements (i.e., support and confidence).

In [67], an approach is proposed to model and recommend product features for any particular
domain based on the product description provided by the domain expert. To mine association
rules between product features, association rule mining techniques are applied to configuration
matrix (i.e., product-features matrix). The proposed approach was validated with 20 different
product categories using product descriptions available at SoftPedia. Hariri et al. [69] extended
the work presented in [67]. In [69], different clustering algorithms used to cluster the features and
construct products by feature matrix were compared. The evaluation was also improved by
applying the approach on diverse domains as well as a large project of a software suite for remote
collaboration. Results show that rules with different Precision and Recal/ rates can be mined
according to the threshold set for the confidence.

The work in [32] presents an approach to synthesize attributed feature models (AFM) from a
set of product descriptions in the form of tables (i.e., configuration matrix). An algorithm is
proposed that uses implication graph and mutex graph constructed from configuration matrix to
extract the crosstree constraints. For extracting the relational constraints defined on values of
attributes, the algorithm uses domain knowledge or selects the boundary values of attributes
randomly when domain knowledge is not provided. The approach was validated using random
configuration matrices as well as a real-world case study. Results show that the proposed
algorithm can be used to mine a large number of rules for large-scale case studies.

The work in [70] proposed an approach to construct a feature model automatically from
informal product descriptions available over the Internet. To mine the implication rules of
features, CFP-growth algorithm and Apriori algorithm are applied to configuration matrix (i.e.,
product-features matrix). The proposed approach was applied to a case study of antivirus
software using the product descriptions available at SoftPedia.

In [115], an approach is proposed to extract the features from multiple web repositories,
organize, analyze, and recommend the high-quality features to the stakeholders. The proposed
approach first extracts the information from the Internet repositories and then builds feature
ontologies by employing Latent Dirichlet Allocation and clustering. To mine the hidden
relationships among software features and to recommend high-quality features to the
stakeholders, the proposed approach employs the association rule mining technique (ie., the

190

Apriori algorithm). The proposed approach is validated using a large number of datasets collected
from three repositories (i.e., SoftPedia, SourceForge, and FreeCode).

7.3 Summary

In Table D-12, we summarize the existing rule mining techniques and highlight their
characteristics. From Table D-12, one can see that, (1) all the techniques except [37] are focusing
on mining binary crosstree constraints (requires and excludes) between different features of a
product line or rules constraining the values of features’ attributes in the case of [32]; (2) the
majority of the approaches except two ([37] and [63]) are using unsupervised learning based
association mining techniques such as Apriori algorithm and FP-growth algorithm; (3) none of
the existing approaches have any sophisticated way to select/generate the configurations, and
usually, configurations are generated/selected randomly or used existing configurations; (4) the
majority of the approaches except two are focusing on only categorical type configurable
parameters, however, [37] and [32] are also catering numerical configurable parameters; (5) all the
existing approaches are using machine learning quality measurements such as Precision, Recall,
Support, and Confidence; and 6) above all, none of the existing approaches are mining the rules
for interacting products within/across the product lines.

In contrast to the existing rule mining techniques, we have proposed an incremental and
iterative approach in which we generate the configurations smartly and feed the configurations to
the machine-learning tool and apply supervised learning based rule mining techniques (i.e., PART
and C45), to mine the rules between configurable parameters and system behaviors of interacting
products across product lines. The innovative part of our approach is the data generation strategy
and incremental, iterative nature, which helps to achieve rules with higher quality as compared to
randomly selected configurations based approaches. To generate the configurations, we defined
three objectives (Section 3.2) and combined them with the search algorithms (i.e., NSGA-II and
NSGA-III). To evaluate the quality of rules, we used machine learning quality measurements,
which are also used by existing rule-mining approaches in the literature.

8 Conclusion and Future Work

Today, systems are being developed by integrating multiple products within/across the product
lines that communicate with each other through different communication mediums (e.g., the
Internet). The runtime behavior of these systems does not only depend on product
configurations, but also on the communication medium. To identify the invalid configurations
where these products may fail to communicate, we mine the Cross-Product Line (CPL) rules. To
do so, in our previous work, we proposed an incremental and iterative approach named as
Search-Based Rule Mining (§BRM), in which we combined the widely used multi-objective search
algorithm (NSGA-II) with the machine learning algorithm (PART). To use the search in the rule
mining process, we defined three objectives and integrated them with the multi-objective
optimization algorithm NSGA-II. In this paper, we improved the previously proposed SBRM
(named as SBRM") and incorporated two multi-objective search algorithms (i.c., NSGA-II and
NSGA-III) and two machine learning algorithms (i.e., C4.5 and PART) to mine the rules.
Morteover, in SBRM", we also integrated a clustering algorithm (i.e., £-means) to classify the CPL

191

rules as high or low confidence rules, which are used for defining the three objectives to guide
the search.

To evaluate the SBRM" (SBRM'nscan-C45, SBRM*nscaar-C45, SBRM'nscan-PART, and
SBRM" nscam-PART), we conducted experiments using two real case studies (Cisco and Jitsi) and
performed three types of analyses: difference analysis, correlation analysis, and trend analysis. Difference
analysis shows that SBRM" approaches performed significantly better than two random search-
based approaches (RBRM'-C45 and RBRM'-PART) in terms of the fitness values, six quality
indicators, and 17 MLQMs corresponding to both case studies. Among the four SBRM*
approaches, SBRM*nscan-C45 produced the highest quality rules based on MLQM:s for the Cisco
case study and SBRM*nscar-PART for the Jitsi case study. Correlation analysis suggests that in
most of the cases lower average fitness values and quality indicators (except for H1”) and higher
H1” mean overall higher quality rules in terms of MLQMs. Furthermore, #rend analysis shows an
increasing trend of the quality of rules in terms of MLQMs for all the four SBRM" approaches
across the five iterations.

Our future work includes: (1) Evaluating the performance of different search algorithms for
generating configurations and mining the rules; (2) Using different parameter settings for
machine learning algorithms and search algorithms; 3) Evaluating the performance of proposed
approach using more complex case studies; and (4) Recommending configurations for the
selected products based on the mined rules.

Acknowledgement

This work was supported by the Zen-Configurator project funded by the Research Council of
Norway (grant no. 240024/F20) under the category of Young Research Talents of the FRIPO
funding scheme. Tao Yue and Shaukat Ali are also supported by the Research Council of Norway
funded MBT4CPS (grant no. 240013/070) project.

References

1. Cyber-Physical Systems (CPSs). Available from: http://cyberphysicalsystems.org/.

2. Rawat, D.B.,].J. Rodrigues, and 1. Stojmenovic, Cyber-Physical Systems: From Theory to Practice. 2015:
CRC Press.

3. Nie, K., et al. Constraints: the core of supporting automated product configuration of cyber-physical

systems. in Proceeding of International Conference on Model-Driven Engineering Languages and Systems
(MODELS). 2013. Springet.

4. Yue, T., S. Ali, and B. Selic. Cyber-physical system product line engineering: comprehensive domain
analysis and experience report. in Proceedings of the 19th International Conference on Software Product
Line. 2015. ACM.

5. Kang, K., Cohen, Sholom., Hess, James., Novak, William., & Peterson, A., Feature-Oriented Domain
Analysis (FODA) Feasibility Study (CMU/SEI-90-TR-021), in Secondary Feature-Otiented Domain
Analysis (FODA) Feasibility Study (CMU/SEI-90-TR-021), Secondary Kang, K., Cohen, Sholom., Hess,
James., Novak, William., & Peterson, A., Editor. 1990. RN. Available From:

6. Czarnecki, K., S. Helsen, and U. Eisenecker, Staged configuration using feature models, in Software
Product Lines. 2004, Springet. p. 266-283.

7. Behjati, R., et al., SimPL: a product-line modeling methodology for families of integrated control systems.
Information and Software Technology, 2013.

8. Haugen, O., Common Variability Language (CVL). OMG Revised Submission, 2012.

9. Berger, T., et al. A survey of variability modeling in industrial practice. in Proceedings of 7th International
Workshop on Variability Modelling of Software intensive Systems. 2013. ACM.

10. Galster, M., et al., Variability in softwate systems-A systematic literature review. IEEE Transactions on
Software Engineering, , 2014. 40(3): p. 282-306.

11. Chen, L., M. Ali Babar, and N. Ali, Variability management in software product lines: A systematic review,

in 13th International Software Product Line Conference. 2009. p. 81-90.

192

12.

13.

14.
15.
16.
17.
18.
19.

20.
21.

22.
23.
24.
25.

26.

27.
28.
29.
30.
31
32.

33.

34.
35.

36.

37.
38.
39.

40.

193

Atrrieta, A., G. Sagardui, and L. Etxeberria, A comparative on variability modelling and management
approach in simulink for embedded systems. V Jornadas de Computacién Empotrada, ser. JCE, 2014.
Djebbi, O. and C. Salinesi. Criteria for comparing requirements variability modeling notations for product
lines. in 4th International Workshop on Comparative Evaluation in Requirements Engineering. 2006.
IEEE.

Eichelberger, H. and K. Schmid, A systematic analysis of textual variability modeling languages, in Software
Product Line Conference. 2013, ACM. p. 12-21.

Sinnema, M. and S. Deelstra, Classifying variability modeling techniques. Information and Software
Technology, 2007. 49(7): p. 717-739.

Czarnecki, K., et al. Cool features and tough decisions: a comparison of variability modeling approaches. in
6th international workshop on variability modeling of software intensive systems. 2012. ACM.

Berger, T., et al., Variability modeling in the real: a perspective from the operating systems domain, in
International conference on Automated software engineering. 2010, ACM. p. 73-82.
www.zen-tools.com/SAM2016.html. Available from: www.zen-tools.com/SAM2016.html.
http://www.pure-systems.com/. Available from: http://www.pure-systems.com.
http://modelbased.net/tools/ct-cvl/. Available from: http://modelbased.net/tools/ct-cvl/.

Safdar, S.A., M.Z. Igbal, and M.U. Khan, Empirical Evaluation of UML Modeling Tools—A Controlled
Experiment, in European Conference on Modeling Foundations and Applications. 2015, Springer: Italy. p.
33-44.

The UML MARTE profile, http://www.omgmarte.org/.

OMG, Systems Modeling Language (SysML) v1.4, http://sysml.org/. 2015.

Selic, B. and S. Gérard, Modeling and Analysis of Real-Time and Embedded Systems with UML and
MARTE: Developing Cyber-Physical Systems. 2013: Elsevier.

Detler, P., E.A. Lee, and A.S. Vincentelli, Modeling Cyber—Physical Systems. Proceedings of the IEEE
Special issue on CPS, 2012. 100(1): p. 13-28.

Murguzur, A., et al. Context variability modeling for runtime configuration of service-based dynamic
software product lines. in Proceedings of the 18th International Software Product Line Conference:
Companion Volume for Workshops, Demonstrations and Tools. 2014. ACM.

Holl, G., P. Grinbacher, and R. Rabiser, A systematic review and an expert survey on capabilities
supporting multi product lines. Information and Software Technology (IST), 2012. 54(8): p. 828-852.
Rosenmiiller, M. and N. Siegmund. Automating the Configuration of Multi Software Product Lines. in
Proceeding of International Workshop on Variability Modelling of Software-intensive Systems (VaMoS).
2010. Elseviet.

Video Conferencing Systems Available from: http://www.cisco.com/.

ULMA Handling Systems. Available from: http://www.ulmahandling.com.

Yue, T., S. Ali, and B. Selic. Cyber-Physical System Product Line Engineering: Comprehensive Domain
Analysis and Experience Report. in Proceeding of International Systems and Software Product Line
Conference (SPLC). 2015. ACM.

Bécan, G., et al. Synthesis of attributed feature models from product descriptions. in Proceeding of
International Systems and Softwate Product Line Conference (SPLC). 2015. ACM.

Safdar, S.A., et al. Evaluating Variability Modeling Techniques for Supporting Cyber-Physical System
Product Line Engineering. in Proceeding of International Conference on System Analysis and Modeling
(SAM). 2016. Springer.

Lu, H., et al, Model-based Incremental Conformance Checking to Enable Interactive Product
Configuration. Information and Software Technology (IST), 2015. 72: p. 68-89.

Lu, H., et al, Nonconformity Resolving Recommendations for Product Line Configuration, in
International Conference on Software Testing. 2016, IEEE. p. 57-68.

Lu, H,, et al, Zen-CC: An Automated and Incremental Conformance Checking Solution to Support
Interactive Product Configuration, in 25th International Symposium on Software Reliability Engineering.
2014, IEEE. p. 13-22.

Temple, P., et al. Using Machine Learning to Infer Constraints for Product Lines. in Proceeding of
International Systems and Softwate Product Line Conference (SPLC). 2016. ACM.

Nadi, S., et al., Where do configuration constraints stem from? an extraction approach and an empitical
study. IEEE Transactions on Software Engineering (TSE), 2015. 41(8): p. 820-841.

Witten, I.H., E. Frank, and M.A. Hall, Data Mining: Practical machine learning tools and techniques. Third
ed. 2011: Morgan Kaufmann.

Frank, E. and 1.H. Witten. Generating accurate rule sets without global optimization. in Proceeding of
International Conference on Machine Learning (ICML). 1998. University of Waikato, Department of
Computer Science.

41.
42.
43,
44,
45,
46.

47.

48.

49.

50.
51.

52.
53.

54.
55.
56.

57.

58.
59.
60.

61.

62.
63.

64.

65.
66.
67.

68.

194

Satti, A., N. Cercone, and V. Keselj, Experiments in Web Page Classification for Semantic Web, in
Workshop on Web-based Support Systems. 2004. p. 137-141.

McMinn, P., Search-based software test data generation: a survey. Software Testing Verification and
Reliability (STVR), 2004. 14(2): p. 105-156.

Ali, S., et al., Generating test data from OCL constraints with search techniques. IEEE Transactions on
Software Engineering (TSE), 2013. 39(10): p. 1376-1402.

Deb, K., et al., A fast and elitist multiobjective genetic algorithm: NSGA-II. Evolutionary Computation,
IEEE Transactions on, 2002. 6(2): p. 182-197.

Sarro, F., A. Petrozziello, and M. Harman. Multi-objective software effort estimation. in Proceeding of
International Conference on Software Engineering (ICSE). 2016. ACM.

Pradhan, D., et al., Search-Based Cost-Effective Test Case Selection within a Time Budget: An Empirical
Study, in Genetic and Evolutionary Computation Conference. 2016, ACM. p. 1085-1092.

Pradhan, D., et al. STIPI: Using Seatch to Prioritize Test Cases Based on Multi-objectives Derived from
Industrial Practice. in Proceeding of International Conference on Testing Software and Systems (ICTSS).
2016. Springer.

Wang, S., et al. Multi-objective test prioritization in software product line testing: an industrial case study. in
Proceeding of International Systems and Software Product Line Conference (SPLC). 2014. ACM.

Wang, S., et al., A Practical Guide to Select Quality Indicators for Assessing Pareto-based Search
Algorithms in Search-Based Software Engineering, in International Conference on Software Engineering
(ICSE). 2016.

Nebro, A.J., et al, AbYSS: Adapting scatter search to multiobjective optimization. Evolutionaty
Computation, IEEE Transactions on, 2008. 12(4): p. 439-457.

Sokolova, M. and G. Lapalme, A systematic analysis of performance measures for classification tasks.
Information Processing & Management (IPM), 2009. 45(4): p. 427-437.

Han, J., J. Pei, and M. Kamber, Data mining: concepts and techniques. 2011: Elsevier.

Durillo, J.J. and A.J. Nebro, jMetal: A Java framework for multi-objective optimization. Advances in
Engineering Software, 2011. 42(10): p. 760-771.

Arcuri, A. and L. Briand, A practical guide for using statistical tests to assess randomized algorithms in
software engineering, in 33rd International Conference on Software Engineering. 2011, IEEE. p. 1-10.

Ali, S. and K.A. Smith, On learning algorithm selection for classification. Applied Soft Computing, 2006.
6(2): p. 119-138.

Mann, H.B. and D.R. Whitney, On a test of whether one of two random variables is stochastically larger
than the other. The Annals of Mathematical Statistics, 1947. 18(1): p. 50-60.

Vatrgha, A. and H.D. Delaney, A critique and improvement of the CL common language effect size
statistics of McGraw and Wong. Journal of Educational and Behavioral Statistics (JEBS), 2000. 25(2): p.
101-132.

Arcuri, A. and G. Fraser. On parameter tuning in search based software engineering. in Proceeding of
International Symposium On Search Based Software Engineering (SSBSE). 2011. Springer.

Holmes, G., M. Hall, and E. Prank. Generating rule sets from model trees. in Proceeding of Australasian
Joint Conference on Artificial Intelligence (Al). 1999. Springer.

Lopez-Herrejon, R.E., L. Linsbauer, and A. Egyed, A systematic mapping study of search-based software
engineering for software product lines. Information and Software Technology (IST), 2015. 61: p. 33-51.
Harman, M., et al. Search based software engineering for software product line engineering: a survey and
directions for future work. in Proceeding of International Systems and Software Product Line Conference
(SPLC). 2014. ACM.

Wang, S., S. Ali, and A. Gotlieb, Cost-effective test suite minimization in product lines using search
techniques. Journal of Systems and Software (JSS), 2014. 103: p. 370-391.

Yi, L., et al. Mining binary constraints in the construction of feature models. in Proceeding of International
Requirements Engineering Conference (RE). 2012. IEEE.

Zhang, B. and M. Becker. Mining complex feature correlations from softwate product line configurations.
in Proceeding of International Workshop on Vatiability Modelling of Software-intensive Systems (VaMoS).
2013. ACM.

Nadi, S., et al. Mining configuration constraints: Static analyses and empirical results. in Proceeding of
International Conference on Software Engineering (ICSE). 2014. ACM.

Czarnecki, K., S. She, and A. Wasowski. Sample spaces and feature models: There and back again. in
Proceeding of International Systems and Software Product Line Conference (SPLC). 2008. IEEE.

Dumitru, H., et al. On-demand feature recommendations detived from mining public product descriptions.
in Proceeding of International Conference on Software Engineering (ICSE). 2011. IEEE.

Softpedia. Available from: http://www.softpedia.com.

69.
70.

71.

72.

73.
74.

75.

76.
77.
78.
79.

80.

81.

82.

83.

84.

85.

86.

87.

88.
89.

90.
91.

92.

93.
94.

95.

195

Hariri, N., et al., Supporting domain analysis through mining and recommending features from online
product listings. IEEE Transactions on Software Engineering (TSE), 2013. 39(12): p. 1736-1752.

Davril, J.-M., et al. Feature model extraction from large collections of informal product descriptions. in
Proceeding of Joint Meeting on Foundations of Software Engineering (FSE). 2013. ACM.

Wang, S., et al., Automatic selection of test execution plans from a video conferencing system product line,
in Proceedings of the VARiability for You Workshop: Variability Modeling Made Useful for Everyone.
2012, ACM: Innsbruck, Austria. p. 32-37.

Bagheri, E., et al. Configuring software product line feature models based on stakeholders’ soft and hard
requirements. in Proceeding of International Systems and Software Product Line Conference (SPLC). 2010.
Springer.

Mazo, R., et al., Recommendation heuristics for improving product line configuration processes, in
Recommendation Systems in Software Engineering (RSSE). 2014, Springer. p. 511-537.

Witten, I.H., E. Frank, and M.A. Hall, Data Mining: Practical machine learning tools and techniques. 4th
ed. 2016, Switzerland: Morgan Kaufmann. 734.

Safdar, S.A., et al. Mining Cross Product Line Rules with Multi-Objective Search and Machine Learning in
Proceeding of The Genetic and Evolutionary Computation Conference (GECCO). 2017. Betlin, Germany:
ACM.

Sayyad, A.S., et al. Scalable product line configuration: A straw to break the camel's back. in Proceeding of
International Conference on Automated Software Engineering (ASE). 2013. IEEE.

Guo, J., et al, SMTIBEA: A hybrid multi-objective optimization algorithm for configuring large
constrained software product lines. Software & Systems Modeling (SoSyM), 2017. 16(4): p. 1-20.

Deb, K., et al, A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation, 2002. 6(2): p. 182-197.

Konak, A., D.W. Coit, and A.E. Smith, Multi-objective optimization using genetic algorithms: A tutorial.
Reliability Engineering & System Safety (RESS), 2006. 91(9): p. 992-1007.

Deb, K. and H. Jain, An evolutionary many-objective optimization algorithm using reference-point-based
nondominated sorting approach, part I: Solving problems with box constraints. IEEE Trans. Evolutionary
Computation, 2014. 18(4): p. 577-601.

Jain, H. and K. Deb, An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point
Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive
Approach. IEEE Trans. Evolutionary Computation, 2014. 18(4): p. 602-622.

Mkaouer, M.W., et al. High dimensional search-based software engineering: finding tradeoffs among 15
objectives for automating software refactoring using NSGA-IIL. in Proceedings of the 2014 Annual
Conference on Genetic and Evolutionary Computation. 2014. ACM.

Han, J., M. Kamber, and J. Pei, Data mining: concepts and techniques. 3rd ed. 2012: Elsevier. 703.

Quinlan, J.R., C4.5: Programming for machine learning. 1st ed. 1993, London, UK: Morgan Kauffmann.
302.

Cohen, W.W. Fast effective rule induction. in Proceeding of International Conference on Machine
Learning ICML). 1995. Morgan Kaufmann.

Witten, I.H. and E. Frank, Data Mining: Practical machine learning tools and techniques. 2nd ed. 2005, San
Francisco,USA: Diane Cerra. 525.

Lloyd, S., Least squares quantization in PCM. IEEE Transactions on Information Theory, 1982. 28(2): p.
129-137.

Euclidean distance. 2002 2017; Available from: https://wikipedia.org/wiki/Euclidean distance.

Guérin, J., et al., Clustering for different scales of measurement-the gap-ratio weighted k-means algorithm.
arXiv preprint arXiv:1703.07625, 2017.

Henard, C,, et al. Multi-objective test generation for software product lines. in Proceeding of International
Systems and Software Product Line Conference (SPLC). 2013. ACM.

Marler, R'T. and J.S. Arora, Survey of multi-objective optimization methods for engineering. Structural and
Multidisciplinary Optimization (SMO), 2004. 26(6): p. 369-395.

Alj, S., et al. Empowering Testing Activities with Modeling-Achievements and Insights from Nine Years of
Collaboration with Cisco. in Proceeding of International Conference on Model-Driven Engineering and
Software Development (MODELSWARD). 2017. Springer.

Jitsi 2003; Available from: http://www jitsi.org/.

Pradhan, D., et al. CBGA-ES: a cluster-based genetic algorithm with elitist selection for supporting multi-
objective test optimization. in Software Testing, Verification and Validation (ICST), 2017 IEEE
International Conference on. 2017. IEEE.

Henard, C., et al. Combining multi-objective search and constraint solving for configuring large software
product lines. in Proceedings of the 37th International Conference on Software Engineering-Volume 1.
2015. IEEE Press.

96.

97.

98.

99.

100.

101.
102.

103.

104.
105.
106.
107.
108.
109.
110.

111.

112.

113.

114.

115.

116.

196

Sayyad, A.S., T. Menzies, and H. Ammar. On the Value of User Preferences in Search-Based Software
Engineering: A Case Study in Software Product Lines. in Proceeding of International Conference on
Software Engineering (ICSE). 2013. IEEE.

Chhabra,].K. An empirical study of the sensitivity of quality indicator for software module clustering. in
Contemporary Computing (IC3), 2014 Seventh International Conference on. 2014. IEEE.

Mkaouer, M.W., et al. Preference-based multi-objective software modelling. in Proceedings of the 1st
International Workshop on Combining Modelling and Search-Based Software Engineering. 2013. IEEE
Press.

Ouni, A., et al. The use of development history in software refactoring using a multi-objective evolutionaty
algorithm. in Proceedings of the 15th annual conference on Genetic and evolutionary computation. 2013.
ACM.

Arcuri, A. and L. Briand. A practical guide for using statistical tests to assess randomized algorithms in
software engineering. in Proceeding of International Conference on Software Engineering (ICSE). 2011.
IEEE.

Wu, J., et al, Assessing the quality of industrial avionics software: an extensive empirical evaluation.
Empirical Software Engineering (EMSE), 2016. 22(4): p. 1-50.

Sheskin, D.J., Handbook of Parametric and Nonparametric Statistical Procedures. 3rd ed. 2007,
London,UK: Chapman and Hall, CRC Press. 1776.

Safdar, S.A., et al., Employing Multi-Objective Search and Machine Learning to Mine Cross Product Line
Rules — A Technical Report, in Secondary Employing Multi-Objective Search and Machine Learning to
Mine Cross Product Line Rules — A Technical Report, Secondary Safdar, S.A., et al., Editors. 2018, S.R.
Laboratory: Oslo, Norway. p- 1-54. RN. 2018-05. Available From:
https://www.simula.no/file/emplovingmulti-
objectivesearchandmachinelearningtominecrossproductlinerulespdf/download

Kollat, J.B. and P.M. Reed, Comparing state-of-the-art evolutionary multi-objective algorithms for long-
term groundwater monitoring design. Advances in Water Resources, 2006. 29(6): p. 792-807.

Pradhan, D., et al., CBGA-ES+: A Cluster-Based Genetic Algorithm with Non-Dominated Elitist Selection
for Supporting Multi-Objective Test Optimization. IEEE Transactions on Software Engineering, 2018.
Eiben, A.E. and S.K. Smit, Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm
and Evolutionary Computation, 2011. 1(1): p. 19-31.

Baars, A., et al. Symbolic search-based testing. in Proceedings of the 2011 26th IEEE/ACM International
Conference on Automated Software Engineering. 2011. IEEE Computer Society.

Alarcon-Jaén, J.N., Multi-objective approach for the minimization of test cases in Software Production
Lines. 2018, University of Malaga, Spain. .

Runeson, P., et al,, Case study research in software engineering: Guidelines and examples. 1st ed. 2012,
New Jersey, USA: John Wiley & Sons. 237.

Wu, X., et al., Top 10 algorithms in data mining. Knowledge and Information Systems (KAIS), 2008. 14(1):
p. 1-37.

Pradhan, D., et al., Search-Based Cost-Effective Test Case Selection within a Time Budget: An Empirical
Study, in Proceedings of the Genetic and Evolutionary Computation Conference 2016. 2016, ACM:
Denver, Colorado, USA. p. 1085-1092.

Wohlin, C., et al., Experimentation in software engineering: an introduction. 1st ed. 2000, Berlin, Germany:
Kluwer Academic Publishers. 204.

Wang, S., et al. A practical guide to select quality indicators for assessing pareto-based search algorithms in
search-based software engineering. in Proceeding of International Conference on Software Engineering
(ICSE). 2016. ACM.

Zhao, L., M.]. Zaki, and N. Ramakrishnan. BLOSOM: A framework for mining arbitrary boolean
expressions. in Proceeding of International Conference on Knowledge Discovery and Data Mining (KDD).
2006. ACM.

Yu, Y., et al. Mining and recommending software features across multiple web repositories. in Proceeding
of Asia-Pacific Symposium on Internetware. 2013. ACM.

Bakar, N.H., Z.M. Kasirun, and N. Salleh, Feature extraction approaches from natural language
requitements for reuse in software product lines: A systematic literature review. Journal of Systems and
Software (JSS), 2015. 106: p. 132-149.

9 Appendix A: Examples of Generated Rules Using
SBRM*

Table D-13. Examples of CPL rules from Cisco and Jitsi case studies

Case study

Rule example

Rule format

Product.ConfigurableParameter = ConfigurableParameterValue AND AND
Product.ConfigurableParameter = ConfigurableParameterValue : SystemState (Support/Violation)

Cisco

VCS1.IP-Protocol = Sip AND VCS2.Listen-Port = Off AND VCS2.IP-Protocol = Sip AND Default-
Transport = Tls : FailedFailed (34/5)

VCS2.Max-Transmit-Callrate <= 5982 AND VCS1. IP-Protocol = Auto AND VCS1.Encryption = Off
AND VCS2.Encryption = BestEffort AND VCS3.Encryption = BestEffort AND VCS3.Max-
Transmit-Callrate > 135 : ConnectedConnected (103/1)

Jitsi

VCS1.IP-Pprotocol = AIM AND VCS3.Video-Codec = rtx AND VCS3.Audio-Codec = AMR-WB-
16000 AND VCS2.Audio-Codec = SILK-12000 AND VCS1.Video-Codec = VP8 AND
VCS1.Encryption = On AND VCS2.Encryption = BestEffort AND VCS1.Default-Callrate <= 5744
AND VCS2.Max-Receive-Callrate > 1680 AND VCS3.Max-Transmit-Callrate > 3005
ConnectedFailed (30/1)

VCS2.Video-Codec = VP8 AND VCS3.Video-Codec = h264 AND VCS2MTU > 702 AND
VCS1.MTU > 760 AND VCS1.Audio-Codec = SILK-16000 AND VCS1.SIP-Listen-Port = Off AND
VCS1.Encryption = BestEffort AND VCS1.Video-Codec = VP8 AND VCS2.MTU > 806 :
FailedConnected (32/9)

197

198

