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We extend the thermodynamic approach for the description of the thermal Hall effect in two-dimensional
superconductors above the critical temperature, where fluctuation Cooper pairs contribute to the
conductivity, as well as in disordered normal metals where the particle-particle channel is important.
We express the Hall heat conductivity in terms of the product of temperature derivatives of the chemical
potential and of the magnetization of the system. Based on this general expression, we derive the analytical
formalism that qualitatively reproduces the superlinear increase of the thermal Hall conductivity with the
decrease of temperature observed in a large variety of experimentally studied systems [Grissonnanche
et al., Nature (London) 571, 376 (2019)]. We also predict a nonmonotonic behavior of the thermal Hall
conductivity in the regime of quantum fluctuations, in the vicinity of the second critical field and at very
low temperatures.
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The thermal Hall effect consists of a generation of a
heat flow by a combined action of the temperature
gradient ∇T and magnetic field H perpendicular to it
[1–3]. The heat current is generated in the direction that is
perpendicular both to the magnetic field and the temper-
ature gradient applied. This phenomenon is cognate to the
Leduc-Righi effect [4], well known in metals and semi-
conductors, where the temperature gradient induced in the
direction ½H ×∇T� is measured as a function of ∇T. In
agreement with the Wiedemann-Franz law, the thermal
Hall effect in metals is usually very weak. This is clearly
understandable as heat flows carried by phonons are
weakly sensitive to magnetic fields [5]. However, recently,
in a number of publications, a giant increase of the thermal
Hall conductivity κyx violating the Wiedemann-Franz
law has been reported in several pseudogap cuprates
such as La1.6−xNd0.4SrxCuO4, La1.8−xEu0.2SrxCuO4,
La2−xSrxCuO4, and Bi2Sr2−xLaxCuO6þδ [6].
The increase of the absolute value of κyx by about 2

orders of magnitude and its negative sign in these systems
seems puzzling, at first glance. Note, that the studied
materials [6] included both up-critical superconductors,
where the conductivity is strongly influenced by fluctuation
Cooper pairs, and normal metals where no Cooper pairs
could be formed. While the mechanism of electric con-
ductivity in the studied materials varied strongly, their

thermal Hall conductivity demonstrated the same features,
namely, the negative sign and the superlinear increase with
the decrease of temperature. These discoveries have trig-
gered the interest to comparatively large values of κyx found
also in antiferroics [7] and the nearly ferroelectric insulator
SrTiO3 [8]. First experimental works were followed by a
number of publications aimed at the further study and
interpretation of the observed effects [9–11]. A multitude of
possible reasons of the effect have been proposed for each
studied system, while no unified approach to the interpre-
tation of a giant increase of thermal Hall conductivity in up-
critical superconductors and disordered metals is available
till now, to the best of our knowledge.
Here, we attempt to formulate a simple model that

reveals the mechanism behind the observed effects and
may be adapted to each particular experimental system. We
develop a general thermodynamic approach that links κyx to
the equilibrium characteristics of the systems under study.
We consider an open circuit geometry where there is no
electric current in the system (see Fig. 1). We shall assume
that the system is in the stationary state that may be
characterized by a constant electrochemical potential. This
assumption will allow us to express κyx through the
temperature derivatives of the chemical potential and
magnetization. Analyzing the recent experimental data
on pseudogap cuprates we conclude that the giant Hall
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thermoconductivity found in these systems might take
place because the temperature derivative of the magneti-
zation shows a strong increase with the decrease of
temperature, especially in the vicinity of the phase tran-
sition, while the temperature derivative of the chemical
potential does not contain the smallness characteristic of
the noninteracting degenerate Fermi gas (T=EF). Together,
these two factors might be responsible for the giant
magnitude of the effect. In this Letter, in the framework
of the fluctuation theory approach, we derive the analytical
expressions for κyx both for a superconductor in various
regimes and for a normal metal. These expressions quali-
tatively describe the giant increase of (negative) thermal
Hall conductivity reported in cuprates [6]. Furthermore, we
study the thermal Hall effect in the regime of quantum
fluctuations, in the vicinity of the second critical magnetic
field and in the limit of very low temperatures. We predict
that the effect vanishes in zero temperature limit in full
agreement with the third law of thermodynamics.
Basic definitions and the thermodynamic approach.—To

start with, let us recall that the electric and heat currents
can be linked to the external electric field E and temper-
ature gradient ∇T with use of the conductivity σ̂ðHÞ,
thermoelectric β̂ðHÞ, and heat conductivity κ̂ðHÞ tensors
as follows:

�
j

q

�
¼
�
σ̂

γ̂

�
E −

�
β̂

κ̂

�
∇T; ð1Þ

with the Onsager relation γ̂ðHÞ ¼ −Tβ̂ð−HÞ.
The thermal Hall effect consists of the buildup of the off-

diagonal elements of κ̂ in the presence of a magnetic field,
as the scheme in Fig. 1 shows.
In the stationary regime, where the external circuit is

broken, no electric current flows through the system, and
the electrochemical potential of the charge carriers

μ̄ ¼ μþ e�ϕ ð2Þ

(μ is the chemical potential, ϕ is the electrostatic potential,
e� is the carrier’s charge) remains constant. This statement
is valid also if a temperature gradient is present in the

sample. In this case, the chemical potential μ becomes
dependent on the coordinate and, consequently, the internal
electric field E is generated:

Ex ¼ −∇xϕ ¼ −
1

e�

�
dμ
dT

�
∇xT: ð3Þ

Under these conditions the diagonal components of the
thermoelectric tensor β̂ can be related to the temperature
derivative of the chemical potential by the Kelvin formula
[12], while the off-diagonal components of this tensor
(arising if a magnetic field is applied) are governed by
the appearance of uncompensated magnetization currents.
They can be expressed in terms of the temperature
derivative of the magnetization (see, e.g., [13,14] and
references therein):

β̂ ¼
 
− σxx

e�
dμ
dT c dMz

dT

−c dMz
dT − σyy

e�
dμ
dT

!
: ð4Þ

Using these relations one can express the Hall thermal
flow as

qy ¼ −κyx∇xT ¼ γyxEx: ð5Þ

We note that the second equality in Eq. (5) is by no means
universal. It is valid only in the open circuit geometry
ðj ¼ 0;q ¼ 0Þ in the stationary regime, where the effect of
a temperature gradient can be fully accounted for by the
introduction of an induced electric field (3). Using this
substitution, one can write down the relation linking the
thermal Hall conductivity to the temperature derivatives of
the chemical potential and magnetization:

κyx ¼
cT
e�

�
dM
dT

��
dμ
dT

�
: ð6Þ

One can see that the thermal Hall effect is governed by the
product of the chemical potential and magnetization deriv-
atives over temperature. This simple relation sheds light
on the physics that is behind the recently observed giant
thermal Hall effect in cuprates. We also note that, exper-
imentally, the temperature gradient in the y direction is
frequently measured rather than the thermal flow. This
quantity, also known as the Righi-Leduc coefficient [4], is
dependent on both diagonal and nondiagonal components
of the tensor κ̂ and cannot be directly described by the
expression proposed here for the thermodynamic contri-
bution to κyx. However, we believe that the thermodynamic
formula (6) grasps the essential physics that is behind the
observed effect.
To start with, using the general relation Eq. (6) obtained

above, we will focus on the role of fluctuating Cooper pairs
in the thermal Hall effect above the superconducting phase

FIG. 1. The schematic showing the geometry of a thermal Hall
effect measurement. The Hall bar is studied in the broken circuit
geometry. The thermal flow in the y direction is measured as a
function of the temperature gradient applied in the x direction and
the magnetic field parallel to the z axis.
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transition. Even before doing any calculations one can
expect that the effect will be huge here since the fluctuation
diamagnetism, being a precursor of the Meissner effect, is
giant [15]. An additional reinforcing factor is the large
value of the temperature derivative of the chemical poten-
tial of fluctuating Cooper pairs. We start from the detailed
study of the domain of the phase diagram close to the
critical temperature using the Ginzburg-Landau formalism.
We shall estimate the magnitude and the temperature
dependence of the thermal Hall effect in the domain
of quantum fluctuations: above Hc2ð0Þ and at very low
temperatures as well as in the high temperature limit, far
above the critical temperature. Then, we shall address the
thermal Hall effect in a normal metal where no Cooper
pairs can be formed but the repulsive interaction in a
particle-particle channel leads to the renormalization of
the electron effective mass. We show that also in this case
the temperature derivative of the chemical potential is
much larger than one of a degenerate Fermi gas of
noninteracting electrons, which induces that superlinear
increase of the thermal Hall conductivity with the
decrease of temperature.
The free energy, magnetization, and chemical potential

of fluctuating Cooper pairs.—We shall use the expression
for the Ginzburg-Landau (GL) free energy for a fluctuation
superconductor in the 2D case that one can find in
Ref. [15]:

FðflÞ
ð2Þ ðϵ; hÞ ¼ −

Tc0S
4πξ2

�
ϵ ln

1

2h
− 2h ln

Γð1
2
þ ϵ

2hÞffiffiffiffiffiffi
2π

p
�
: ð7Þ

Here, S is the sample cross section and ξ2 ¼ πD=8Tc0 is the
superconducting coherence length, D is the electron dif-
fusion coefficient, ϵ ¼ lnT=Tc0 ≈ ðT − Tc0Þ=Tc0 ≪ 1 is
the reduced temperature, Tc0 is critical temperature of
the superconducting phase transition at zero magnetic field.
The dimensionless magnetic field h ¼ H=H̃c2ð0Þ ≪ 1 is
normalized with the second critical field H̃c2ð0Þ ¼
Φ0=2πξ2, introduced as the linear extrapolation to zero
temperature of the GL formula and Φ0 ¼ πc=e as the
magnetic flux quantum. Note that superconducting fluctu-
ations behave as 2D objects since the characteristic size
of the fluctuating Cooper pairs, ξðϵÞ ¼ ξ=

ffiffiffi
ϵ

p
, exceeds the

thickness d of the film.
The expression for 2D fluctuation magnetization per unit

square of the film can be obtained just differentiating the
expression for the free energy over magnetic field and
taking this derivative with the opposite sign [16]:

MðflÞ
ð2Þ ðϵ; hÞ ¼

Tc0

Φ0

�
ln
Γð1

2
þ ϵ

2hÞffiffiffiffiffiffi
2π

p

−
ϵ

2h

�
ψ

�
1

2
þ ϵ

2h

�
− 1

��
; ð8Þ

where ψðzÞ ¼ d lnΓðxÞ=dx is the logarithmic derivative of
the Euler gamma function. This formula describes the
crossover from the weak field linear regime to the satu-
ration of the fluctuation magnetization in strong fields [17].
The temperature derivative of the fluctuation magnetization
is given by

dMðflÞ
ð2Þ ðϵ; hÞ
dT

¼ −
1

2hΦ0

�
ϵ

2h
ψ 0
�
1

2
þ ϵ

2h

�
− 1

�

¼ h
Φ0

8<
:

1=6ϵ2; h ≪ ϵ ≪ 1;

1=2h2; ϵ ≪ h ≪ 1;

1=ϵ2h; ϵh ≪ h;

ð9Þ

where ϵh ≡ ϵþ h.
The last ingredient which we need in order to be able

to calculate Eq. (6) explicitly is the chemical potential of
fluctuating Cooper pairs. We are interested in the expres-
sion that would be valid for an arbitrary relation between
the temperature and the magnetic field both in the vicinity
of Tc0 and at high temperatures [18], far from Tc0. It can be
found from the definition of the chemical potential in terms
of the derivative of the free energy, see Eq. (7), over the

fluctuation Cooper pairs concentration NðflÞ
ð2Þ . The latter can

be easily obtained by means of integration of the distri-
bution function of the Cooper pairs over momenta. This
procedure yields

μðflÞð2Þ ðϵ; hÞ ¼ −Tc0ϵ
ln 1

2h −
2h
ϵ ln

Γð1=2þϵ=2hÞffiffiffiffi
2π

p

ln 1
2h − ψð1

2
þ ϵ

2hÞ
: ð10Þ

The details of this derivation are given in the Supplemental
Material [19].
Thermal Hall conductivity due to fluctuating Cooper

pairs close to Tc0.—Now, the thermal Hall conductivity
can be represented explicitly:

κ̃ðflÞyxð2Þðϵ;hÞ ¼−
Tc0

4πh

�
1−

ϵ

2h
ψ 0
�
1

2
þ ϵ

2h

��

×

2
641− ϵ

2h
ψ 0
�
1

2
þ ϵ

2h

� ln 1
2h−

2h
ϵ ln

Γð1=2þϵ=2hÞffiffiffiffi
2π

p

½ln 1
2h−ψð1

2
þ ϵ

2hÞ�2

3
75:

ð11Þ

It is instructive to express Eq. (11) in its asymptotic
form

κ̃ðflÞyxð2Þðϵ; hÞ ¼ −
eDH
64c

8>><
>>:

1=3ϵ2; h ≪ ϵ ≪ 1;

1=h2; ϵ ≪ h ≪ 1;

ϵ−2h ln 2h
ϵh
; ϵh ≪ h:

ð12Þ
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Here, we operate with the true magnetic fieldH¼hH̃c2ð0Þ.
We took advantage of the relation between the GL
extrapolation of the second critical field and the BCS
one: H̃c2ð0Þ ¼ ð8γE=π2ÞHBCS

c2 ð0Þ. We note that in the BCS
theory Hc2ð0Þ ¼ ð2=γEÞΦ0ðTc0=DÞ, where γE ¼ 1.78 is
the Euler constant.
Fluctuation superconductor: the high temperature limit

T ≫ Tc0.—In this limit, fluctuation Cooper pairs can still
be formed, and their concentration can be estimated based
on the fluctuation theory [19]. Assuming that the Cooper
pairs obey the Bose-Einstein statistics, we obtain a relation
between the chemical potential and the concentration of
Cooper pairs that allows us to obtain the temperature
derivative of the chemical potential. Expressing the mag-
netization as in Refs. [20,21], we obtain the thermal Hall
conductivity as

κðflÞð2Þ ðT ≫ Tc0Þ ¼ −
2π2

3

eDH
c

�
1 −

ln ðln ln 1
Tc0τ

− ln ln T
Tc0
Þ

lnðT=Tc0Þ
�
:

Here, τ is a characteristic scattering time. We conclude that
the temperature dependence of the thermal Hall conduc-
tivity becomes less pronounced as one gets farther from
the phase transition point, however, the superlinear char-
acter of this dependence and the negative sign of κyx are
maintained.
Normal metal. Contribution to the thermal Hall effect

due to electron-electron interactions.—We consider a
normal metal, where no fluctuation Cooper pairs are
formed but the repulsive Coulomb interaction between
electrons is important. This is the regime that is observed in
some of the cuprates where no superconducting phase
transition is observed. We analyze the temperature depend-
encies of the magnetization and the chemical potential here.
It is important to emphasize the role of interelectron
interaction in the particle-particle channel that may be
considered as a counterpart of Cooper pairing and leads to
the renormalization of the electron effective mass [22].
Because of this renormalization that is strongly temperature
dependent, the derivative of the chemical potential over
temperature strongly varies as a function of temperature,
which is crucial for the understanding of the temperature
dependence of the thermal Hall conductivity. As shown in
the Supplemental Material, the following expression for κyx
is valid in this case:

κðgÞð2Þ ¼ −
π

3

eDH
c

1

Tτ ln2ðTK=TÞ
: ð13Þ

Note, that the sign of the thermal Hall conductivity is
negative, and it increases with the temperature decrease in
a qualitative similarity to the behavior characteristic of up-
critical superconductors.
Effect of quantum fluctuations on the thermal Hall

conductivity above Hc2ð0Þ.—Using the general

thermodynamic relation (6) one can predict the behavior
of thermal Hall conductivity above Hc2ð0Þ also in the limit
of very low temperatures, in the domain of quantum
fluctuations (QF). The behavior of the fluctuation mag-
netization in this regime was studied in Ref. [23]:

MðflÞ
ð2Þ ðt; h̃Þ ¼

Tc0

γEΦ0

�
ln

1

2γEt
−
γEt

h̃
− ψ

�
h̃

2γEt

��
; ð14Þ

with t ¼ T=Tc0 ≪ 1 and h̃ ¼ ½H −Hc2ðTÞ�=Hc2ðTÞ ≪ 1.
The differentiation of Eq. (14) results in

dMðflÞ
ð2Þ ðt; h̃Þ
dT

¼ 1

γEΦ0

�
h̃
2γE

ψ 0

t2

�
1

2γE

h̃
t

�
−
1

t
−
γE
h̃

�

¼ 1

Φ0

�
2γEt=3h̃

2; t ≪ h̃ ≪ 1;

1=h̃; h̃ ≪ t ≪ 1.
ð15Þ

In the vicinity of Hc2ð0Þ, the chemical potential of fluc-
tuation Cooper pairs can be written as μðQFÞ ¼ −ΔBCSh̃
(similarly to the expression valid at Tc0, see Ref. [24]. Its
temperature derivative differs from zero due to the temper-
ature dependence of Hc2ðTÞ (see Ref. [25]):

dμðQFÞ

dT
¼ ΔBCS

Hc2ð0Þ
�
dHc2ðTÞ

dT

�
¼ −

2γE
π

t: ð16Þ

Substituting Eqs. (15) and (16) into Eq. (6) and taking into
account that Tc0 ¼ ðπ=γEÞΔBCS one finally finds

κ̃ðflÞyxð2Þðt; h̃Þ ¼
ΔBCS

π

�
tþ γEt2

h̃
−

h̃
2γE

ψ 0
�

1

2γE

h̃
t

��

¼ −
ΔBCS

π
t2
�
2γEt=3h̃

2; t ≪ h̃ ≪ 1;

1=h̃; h̃ ≪ t ≪ 1.
ð17Þ

One can see that the thermal Hall conductivity vanishes at
zero temperature, in a full agreement with the third law of
thermodynamics.
Results and discussion.—Figure 2 shows the thermal

Hall conductivity as a function of the reduced temperature
and magnetic field with enlargements of the areas corre-
sponding to the low magnetic field and quantum fluctuation
regimes. One can see that, while the specific shape of the

dependence may vary, κðflÞyx ðϵ; hÞ always has a negative sign,
and its absolute value increases rapidly with the temper-
ature decrease. The same universal behavior is found in
the high temperature limit and in normal metals, as
discussed above.
Now one can compare the predictions of our theory with

the experimental results reported in Ref. [6] for four
cuprates. One can notice that the theory correctly repro-
duces both the sign of the thermal conductivity and the
dramatic increase of its magnitude with the temperature
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decrease. We believe that the qualitative agreement of such
a simple model with the large variety of experimental
results is significant as it hints at the essentially thermo-
dynamic nature of the giant thermal Hall effect.
We note that the approach we used for the description of

up-critical superconductors is based on the conventional
theory of fluctuations [15] applicable to superconductors
above the phase transition boundary Hc2ðTÞ. It may not
account for all the specifics of the experimentally studied
cuprate superconductors. Yet, it turns out that the main
ingredients required for application of Eq. (6), i.e., temper-
ature dependencies of the fluctuation magnetization and
chemical potential of the preformed Cooper pairs in the
pseudogap state, qualitatively do not differ much from the
ones of a conventional superconductor. This is confirmed in
the recent study Ref. [26], that went beyond the weak-
fluctuation formalism, applied the precursor-pairing
approach within the BCS to Bose-Einstein condensation
crossover scheme [27,28] and found a large singular
diamagnetic response for the temperatures much higher
than the transition temperature side by side with the strong

temperature dependence of the pair chemical potential in a
striking similarity to the effects predicted by the simple
model developed here.
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