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Abstract 

DNA methylation data-based precision cancer diagnostics is emerging as the state-of-the-art 

for molecular tumor classification. Standards for choosing statistical methods with regard to 

well-calibrated probability estimates for these typically highly multiclass classification tasks 

are still lacking. To support this choice, we evaluated well-established machine learning 

(ML) classifiers including random forests (RF), elastic net (ELNET), support vector 

machines (SVM) and boosted trees in combination with post-processing algorithms and 

developed ML-workflows that allow for unbiased class probability estimation. Calibrators 

included ridge penalized multinomial logistic regression (MR) and Platt scaling by fitting 

logistic regression (LR) and Firth’s penalized LR. We compared these workflows on a 

recently published brain tumor 450k DNA methylation cohort of 2801 samples with 91 

diagnostic categories using a 5 × 5-fold nested cross-validation scheme and demonstrated 

their generalizability on external data from The Cancer Genome Atlas.  

ELNET was the top stand-alone classifier with the best calibration profiles. The best overall 

two-stage workflow was MR-calibrated SVM with linear kernels closely followed by ridge-

calibrated tuned RF. For calibration, MR was the most effective regardless of the primary 

classifier.  

The protocols developed as a result of these comparisons provide valuable guidance on 

choosing ML-workflows and their tuning to generate well-calibrated class probability 

estimates for precision diagnostics using DNA methylation data. Computation times vary 

depending on the ML-algorithm from <15mins to 5d using multi-core desktop PCs. Detailed 

scripts in the open-source R language are freely available on GitHub, targeting users with 

intermediate experience in bioinformatics and statistics and using R with Bioconductor 

extensions.  



Introduction 

Supervised analysis of DNA methylation data for precision cancer diagnostics 

Methylation data-based cancer diagnostics are currently emerging as state-of-the-art in 

oncology and molecular pathology1-6. However, there are no guidelines for choosing 

statistical methods to analyze high-throughput DNA methylation data with regard to well-

calibrated probability estimates for highly multiclass and unbalanced classification problems 

7-11. Since the cancer methylome is a combination of both somatically acquired DNA 

methylation changes and characteristics reflecting the cell-of-origin12, it is especially suitable 

for molecular classification of tumors and thus for stratifying cancer patients4,13. Therefore, 

DNA methylation has proven to be particularly suitable for individualized cancer diagnostics, 

prognosis, and treatment prediction1,4,13,14. 

Illumina Infinium Human Methylation BeadChip arrays are a popular tool to measure 

genome-wide single-nucleotide CpG site methylation levels1. Their readout is tens or 

hundreds of thousands of beta values that are the ratio of methylated- (m) to the sum of un- 

(u) and methylated probe intensities (m/m+u) 15,16. Hence beta values are continuous 

parameters with values between 0 and 1 (representing the completely un- and fully 

methylated states of a CpG locus, respectively). 

For stratified medicine it is paramount to correctly estimate the class probability (CP) of a 

case of interest with regard to a specific diagnosis17-19. Because CP serves as a confidence 

measure for the predicted disease status, it supports the treating physician to translate 

classifier outputs into robust diagnoses and optimal treatment modalities11. So, instead of just 

labelling the patient with a certain diagnosis, it is more appropriate to provide a numerical 

measure (probability) for that particular diagnosis 20. Thus, the physician and the patient can 

make a more concise decision about treatment selection including its risks and benefits 20. 



However, in high-dimensional (p >> n ) settings of high-throughput genomic technologies, 

where the number of features (p) vastly outnumbers, the sample size (n), there is no hope for 

even asymptotic convergence of the CP estimates to true class probabilities9,20. Therefore, a 

more reasonable requirement is that the estimated class probability function (CPF) provides 

well calibrated predictions20. This means that if the CPF (developed on the basis of an 

arbitrary and limited training set) estimates the probability of future cases for class C of 

about PC, then on average it should actually be about 100PC% of such cases in class C and 

this should be true for all P class estimates 20. Well-calibrated CP estimates can be achieved 

through various model-updating/post-processing strategies like (re-)calibration 18,21. In the 

machine learning (ML) sense re-calibration describes the mapping of a raw predictor output 

to the probability domain of [0; 1] so that all the probabilities sum to one or alternatively, re-

calibration rescales the output of the predictor within the [0; 1] range22-24. A popular 

calibration algorithm is Platt scaling, which passes the raw classifier output through the 

sigmoid of logistic regression 24.  

Although binary classification problems are extensively studied in the literature, multiclass 

problems are more complex and investigated to a substantially lesser extent9,17,23,25-27.  

Multiclass classification problems occur when the aim is to predict many different outcome 

categories, which is a typical situation in personalized diagnostics, where the number of 

diagnostic classes in which patients are stratified is very high. In the medical domain 

classification problems are often limited to two classes or to a selected few entities of interest 

9,17,23,26. Although there is no well-accepted  threshold from which a task is regarded as 

highly multiclass in medicine, we consider comprehensive diagnostics systems that 

incorporate 50 or even more than 100 diagnoses as such 1,28. A further potential statistical 

difficulty is presented by the fact that the number of cases in different diagnostic classes are 

highly variable according to common and rare entities 1,9,18. Thus, while certain classes are 



well-represented others are sparsely populated resulting in unbalanced classification 

problems.  

Random forests (RF), elastic net penalized multinomial logistic regression (ELNET) and 

support vector machines (SVM) are powerful classification algorithms for DNA methylation 

data1,9,29-34. Recently, boosting methods are having their renaissance in the ML community 

since multiple Kaggle competitions (https://www.kaggle.com ; 

https://en.wikipedia.org/wiki/Kaggle) have been won solely (or as part of the final model) by 

boosted trees (https://www.kaggle.com/c/otto-group-product-classification-

challenge/discussion/14335 ; http://blog.kaggle.com/2017/02/27/allstate-claims-severity-

competition-2nd-place-winners-interview-alexey-noskov/ ) 35-38. There are multiple works 

regarding probabilistic calibration profiles of the aforementioned classifiers – mostly 

performed on binary classification problems17,23,26,39-44. However, there is a lack of studies on 

adaptation to highly multiclass and unbalanced data, and these adaptations need to be 

addressed when interrogating methylation data with the intent to diagnostically stratify 

human tumors.  

The purpose of our study was to perform a benchmark analysis to support the choice for 

optimal DNA methylation microarray data analysis through extensive comparisons of well-

established ML-classifiers such as RF, ELNET, SVM and boosted ensemble trees 

(”Machine Learning Algorithms”) and their combination with post-processing algorithms. 

The investigated post-processing algorithms (”Calibration methods”) were i) Platt scaling, 

implemented by fitting logistic regression (LR) or Firth’s penalized likelihood LR and ii) 

ridge penalized multinomial LR (MR) 9,24,45. To provide valid performance estimates and 

practical guidance for hyperparameter settings all methods were implemented within a 5 × 5-

fold nested cross-validation scheme using a primary brain tumor 450k DNA methylation data 

set published in Capper et al. 2018a 1. This data set is uniquely large, with a total sample size 



of n=2,801 comprising k=91 diagnostic categories. Model fits were assessed with a 

comprehensive panel of performance metrics (“Experimental design > Performance 

evaluation”). A glossary of key terms is listed in Table 1 46. 

The ML-workflows described here are generally applicable to any high-dimensional and 

multiclass data in biology and medicine47 or any fields of science and technology, where 

well-calibrated probability forecasts for individualized diagnostics are of major interest. Such 

applications might include, but are not limited to, cancer diagnosis using gene expression 

analysis 9,48, radiological imaging-based tumor profiling (i.e. radiomics) 49 and particle 

physics 37,50 as well as materials sciences 51 or finance and marketing (e.g. credit risk 

assessment or ad clicks)38. If these presented ML-workflows are applied to data sets with 

features that are measured on various (and potentially vastly different) scales, special care 

should be taken for scaling and centering of the features, particularly for ELNET and SVM. 

On the other hand, tree-based algorithms like RF and XGBoost can cope automatically with 

scale differences. Further, this is less of a concern for methylation microarray data as beta 

values are confined to the [0, 1] range. 

 

Analyses Undertaken 

In Fig. 1 we present the sequence of steps needed to develop and assess ML-workflows for 

high precision diagnostics from unprocessed Illumina DNA methylation array data (IDAT) to 

data preparation and pre-processing to downstream analyses (i.e. classifier development) 

including internal validation and calibration.  

All methods were applied to 450K DNA methylation microarray data of the unique primary 

central nervous system (CNS) tumor reference cohort published in 1,2. Hereinafter, we refer 

to this reference cohort as brain tumor methylation data (BTMD). BTMD consists of 2,801 

biologically independent samples belonging to 91 (82 tumor and 9 non-tumor) methylation 



classes with concurrent extreme class imbalances (nmin=8 [0.3%], nmax=143 [5.1%]) 1. 

Unprocessed IDAT files including the reference cohort (Fig. 1) are downloadable from the 

Gene Expression Omnibus under accession number GSE109381 1. Briefly, BTMD is based 

on genome-wide quantitative measurements of DNA methylation at 485,577 CpG sites using 

Infinium Human Methylation450 BeadChip technologies (Illumina, San Diego, US). The 

450k BeadChip provides >98% coverage of reference sequence (RefSeq) genes and 96% of 

CpG islands 1,14 through the combination of two assay technologies (Infinium I and II). Beta 

value readouts by Illumina iScan array (IDAT) were obtained and preprocessed using the 

minfi Bioconductor R package15 with additional filtering, i.e. removal of probes: targeting 

the X and Y chromosomes (n=11,551), containing single nucleotide polymorphisms 

(dbSNP132Common; n =7,998), probes not mapping uniquely to human reference genome 

19 (hg19) allowing for one mismatch (n=3,965), and probes not included on the Illumina 

EPIC (850k) array (n=32,260), leaving 428,799 CpG probes for further analyses (Fig. 1, part 

1; step 1) 1,52 – for details see the corresponding GitHub repository 

(https://github.com/mwsill/mnp_training). 

Each sample was individually normalized by performing a background correction (Fig. 1, 

part 1; box I) as described in the reference article1. We performed the comparative analyses 

both without any batch effect correction (Fig. 1, part 1; box II, path of solid arrows) and with 

adjustments for batch effects caused by the type of tissue material (Fig. 1, part 1; box II, path 

of dashed arrows) – as published in 1,2. Nonetheless, we report and focus on results solely 

from the non-batch adjusted analyses. However, if desired, batch effects caused by the type 

of tissue material from which tumor samples originated (formalin-fixed paraffin-embedded 

(FFPE) or freshly frozen) can be corrected for by fitting univariate linear models to the log2-

transformed methylated and unmethylated intensity values using the limma package v3.24.15 

53 (Fig. 1, step 3).  



To make analyses computationally tractable on multi-core CPUs, we performed feature 

selection using unsupervised variance filtering of the 10,000 most variably methylated probes 

19,33,54. Still, each supervised classifier had to fit over 2.5 billion (104 × 2801 × 91) data 

points. To prevent information leakage, this variance filtering was performed on the 

respective training set for each outer- and innerfold (altogether n=30 folds with foldIDs 1.0 – 

5.5) while the corresponding test- or calibration sets were subset accordingly (Fig. 1, part 2; 

step 5, light blue rectangles). These variance filtered training-test set pairs were saved in 

separate .RData files and provided the foundation for all later comparative analyses. They 

can be generated through scripts on GitHub (https://github.com/mematt/ml4calibrated450k) 

or are readily available to directly download (~5.3Gb) from our Dropbox 

(http://bit.ly/2vBg8yc). 

In order to robustly assess classifier and calibrator performance all algorithms were 

implemented within a 5 × 5-fold nested CV scheme (Fig. 1, part 2) similar to 1,17. Due to 

class imbalances, fold assignments were performed in a stratified manner making sure that all 

classes are present in all (sub)folds (nmin=4-6). Nested CV was chosen because i) one can 

separate the classifier learning problem from the class probability calibration task 17, and ii) it 

more accurately estimates the external test error of the given algorithm on unseen datasets by 

averaging its performance metrics across folds 7,9,18. We followed suggestions by 9,55,56 for 

choosing K=5 for K-fold nested CV as a good overall compromise between bias-variance 

trade-off to estimate prediction error and to limit computational burden. Furthermore, this 

setup allows for large enough calibration sets to limit overfitting and to yield robust tuning of 

post-processing algorithms 40. In detail, classifier optimization during nested CV (Fig. 1, part 

2; internal validation) is as follows: train (i.e. tune) the base ML-classifier on the respective 

outer or innerfold training set. This hyperparameter tuning involves an extra nested 3- or 5-

fold CV loop to perform a grid search of suitable parameter settings, which is not shown on 



Fig. 1 but is indicated in the description of the given ML-classifier (for details see tRF, 

ELNET, SVM and XGBoost in ’Machine Learning Algorithms’). Then the tuned model 

object is used to predict the corresponding innerfold (calibration-) and/or the outer fold test 

sets (raw scores; Fig. 1, red rectangles and boxes). During post-processing the calibration 

models are trained on the raw classifier output scores on all combined calibration data sets 

(Fig. 1, inner CV loop, red rectangles S1.1-1.5), that is, the sum of inner fold test sets (Fig. 1, 

outer CV fold, blue boxes 1-4), which by virtue of nested CV design add up to the 

corresponding outerfold training set (Fig. 1, outer CV loop, blue boxes 1-4). Then the trained 

calibration model (Fig. 1, inner CV loop, green rectangle) is used to predict on the raw scores 

of the outerfold test set and produce calibrated probability estimates (Fig. 1, outer CV loop, 

green arrow & boxes P1.0-1.5) 1,2,17. Thus, the calibration model only “sees” (predicts) the 

outerfold test set once, based on which final performance metrics are generated as an average 

over the predictions on the 5-folds. 

The primary goal of this comparative study was to identify the best combination of ML- and 

calibrator algorithms by focusing particularly on downstream analyses of ML-workflow 

development and evaluation of their overall calibration profiles. 

Application of the protocol to TCGA data. To show the general usability of our protocol 

beyond the BTMD, we applied the workflow presented in 1, to a 450K DNA methylation 

microarray data set from The Cancer Genome Atlas (TCGA) NCI GDC Legacy Archive 

(https://gdc-portal.nci.nih.gov/legacy-archive). First, we downloaded raw 450K data of 7,147 

malignant tumor samples from 30 different TCGA projects (Supplementary Data 1). The data 

was normalized and preprocessed in the same way as described here and in 1 without 

applying any batch adjustment method (i.e. Fig. 1, part 1, solid arrow path). For BTMD the 

class label for each sample was provided by neuropathologists and other medical experts in 

cancer genomics. In contrast, the TCGA data set is (besides the project abbreviations for 



example BRCA for the breast cancer project) unlabeled. To generate methylation class labels 

for the TCGA data set, we performed a t-distributed stochastic neighbor embedding (t-

SNE)57,58 dimension reduction followed by DBSCAN clustering59. In brief, the data was 

reduced to the 32k CpG probes with highest standard deviation across samples, followed by a 

principal component analysis (PCA)9. The first 100 PCs were then used as input data for the 

t-SNE (https://github.com/mwsill/mnp_training/blob/master/tsne.R). On the resulting 2-

dimensional t-SNE coordinates we applied the DBSCAN algorithm to identify clusters that 

we then used as methylation class labels59. DBSCAN is a density-based clustering algorithm 

that tries to estimate the number of clusters and to label samples that do not fit in any cluster 

as outliers. With the DBSCAN we identified 46 clusters and 344 samples were identified as 

outliers and removed from further analysis. The clusters identified by DBSCAN showed 

good overlap with the different TCGA projects (Fig. 2a, b) and some of the clusters might be 

potential candidates for new molecular subtypes, for example cluster 40 and 41 appear to be 

two distinct subtypes of uveal melanomas. However, the biological interpretation of these 

purely data-driven methylation classes is out of the scope of this work. We used the 46 

clusters to label our data and then train a classifier following the workflow presented in 1 . 

Overall, the 5 × 5-fold nested CV estimated a misclassification error of 6.7% and a BS of 

0.099 indicating a good prediction performance only slightly worse than for the BTMD. 

Thus, we conclude that the all other ML-workflows presented here will show a comparable 

performance on the TCGA data. The ten best performing workflows w.r.t. to a minimal BS 

highlighted in Table 2 are therefore all good candidates, to train a diagnostic classifier on 

methylation data for highly multiclass classification problems, as typically encountered in 

personalized medicine. 

The presented procedures can be used to either tune and evaluate the performance of a single 

ML-classifier or calibrated workflow, or to compare all the presented ML- workflows and 



choose the best performing one for the respective scenario case of the user. We also show 

performance improvement compared to the method presented in Ref. 1. 

 

Machine Learning Algorithms 

Random forests  

Random forests (RF) are an ensemble method of bootstrap aggregated (bagged) binary 

classification trees 29. RF grows binary classification trees based on bootstrapped samples of 

the training data while using only a random subset of available features at each node to find 

the optimal splitting rule 9,29,31,60. Through repeating these processes RF can generate 

thousands of decorrelated decision trees (i.e. the ensemble) that can provide more robust 

committee-type decisions. For each case passed through the classifier, the majority vote over 

all trees generates the final class label. RF for classification tasks tend to be deep as they are 

grown to purity – leaving only one case in the terminal nodes29.  

We used the randomForest package in R 61 with default settings for classification: ntree = 

500, mtry = ඥ݌ (i.e. optimal random subset of p features during node splitting) and minimal 

size of terminal nodes = 1. All RF implementations were based on two runs of RF: first, CpG 

probes were ranked according to their importance using permutation-based mean decrease in 

accuracy that measures the average difference over all trees of the out-of-bag sample error 

before and after permuting predictor variables 29,61; second, a RF with the most important 

pvarsel (p) CpG probes was used for prediction 1,2,6. Hereinafter, we refer to the default RF 

implementation with p = 200 as ’vanilla’ RF (vRF).  

For tuned RF (tRF) we optimized parameters including ntree, mtry, and terminal nodesize. 

Optimal settings were found using 5-fold CV on a custom grid within the framework of the 

caret package 62. Although ntree = [500; 1000; 1500; 2000] is often not considered a real 

tuning parameter, it has to be big enough (~500) for error estimates to stabilize 9,18,31. 



Because of bootstrapping, we are not prone to overfitting if ntree is set to be large (>1000), 

but computation times might increase considerably29,31. For the primary tuning parameter 

mtry , we chose values of 1%, 5% and in 10% steps up to 120%	ඥ61,62 ݌. Initial testing 

showed, however, that the search grid could be narrowed down to ඥ(%20 ;%10) ݌. 

Terminal node sizes including the default for classification (1), regression (5), and 1% and 

10% of n were tested 23,26,29,61,63,64. For tRF the parameter pvarsel = [100; 200; 500; 1000; 

2000; 5000; 7500; 10000] (i.e the number of most important CpG probes used for model 

fitting or prediction) was also tuned with regard to ME, BS, and LL (see ’Performance 

evaluation’ in ’Experimental design’). The importance ranking of CpG probes was based 

on the type 1 variable importance measure, that is, the mean decrease in accuracy computed 

on the out-of-bag data by RF61. It is of note, that the type 1 variable importance is proved to 

be biased and dependent on mtry 65 so that correlations between predictors can distort 

variable importance rankings65.  

In all RF implementations we downsampled to the minority class (training subfolds nmin=4-6) 

to counteract severe class imbalances 66. The two-stage workflow of RF in combination with 

ridge-penalized multinomial logistic regression represents the same methodology published 

in 1,2, although, here we switched from the 3 x 3 to a more robust 5 x 5-fold nested CV 

scheme as we performed only internal validation 55,56. 

 

Elastic net penalized multinomial logistic regression  

The glmnet package was used to fit and tune elastic net penalized multinomial logistic 

regression (ELNET) as a stand-alone method 67. Using ELNET without post-processing was 

justified by its well-known applicability to high-dimensional genomic microarray data and 

based on findings that the sigmoid of Platt scaling is less effective on logistic regression 

9,33,40,41,68. Optimal mixing parameter (ߙ) and penalty strength (λ) of the L1 (lasso) and L2 



(ridge) terms were found by concurrent CV of their two-dimensional parameter space 34,67-70. 

The cv.glmnet function utilizes a warm start (through an additional first run) that sets up the 

λ-space for coordinate descent more precisely than other grid search-based methods67,69. To 

exploit this favorable property, we implemented a custom function – as suggested by the 

glmnet package authors 67,69. We used fixed fold assignments of balanced stratified 5x CV 

reassuring that the results of different α were comparable with each other. First, a grid of α = 

[0; 0.1; … ; 0.9; 1]  was tested, which was then fine-tuned in the [0; 0.025; 0.05; 0.075; 0.1] 

range – as exclusively α=0 (ridge) type settings were selected on the first grid. We used MSE 

as the loss during CV. The number of λ and ratio of λmin were left at default at 100 and 10-6 

respectively 67,69. Probability estimates were generated at λ1SE to improve their robustness 60. 

An important technical note is that standardize was left at default (TRUE), thus each 

(sub)fold was scaled and centered, although this might not be necessary as CpG methylation 

beta values are confined to the [0,1] range 67. 

 

Support vector machines  

Support vector machines (SVM) were implemented using linear- and radial basis function 

kernels (RBF)30. Linear kernels (LK) have a single tuning parameter C that is the cost 

parameter of the error term, while RBFs have an additional hyperparameter that defines the 

variance of the Gaussian, i.e. how far a single training example’s radius of influence reaches 

9,30.  

We investigated multiple R packages with SVM running on both GPUs and/or on CPUs. Due 

to performance discrepancies we ended up fully evaluating the e1071 71,72 and LiblineaR 73,74 

packages on CPU; and the GPU-accelerated Rgtsvm package75. It is of note that both e1071 

and LiblineaR use the 1-vs-1 extension to generate probability estimates for multiclass 

tasks42,72,73. In contrast, Rgtsvm uses the 1-vs-all method proposed by Crammer and Singer to 



obtain class labels for multiclass tasks 76 while it uses another framework with 1-vs-all 

coupling strategy along with a global, log loss-optimized softmax 77 to calculate probabilities. 

RBF were tuned on C = 2-3:3 and = 2-5:5 grid using 5-fold CV on the prototyping subfold 1.1. 

LK can provide similar accuracy to RBF but at lower computational costs, especially for p > 

n tasks when mapping data points to a higher dimensional space becomes unnecessary9,78,79. 

For LK we explored the parameter space of C = 10-3:3 with 5x CV using both e1071 and 

LiblineaR packages. The LiblineaR package has the advantage that it provides 8 types of 

linear and logistic regression and support vector classification (SVC) models73 . Hence, one 

can concurrently optimize both model type and C. Both the training set and its respective test 

set of a given (sub)fold were scaled and centered using the corresponding training attributes 

before tuning or prediction 72,79. We investigated the effect of weighting with inverse class 

frequencies to compensate for class imbalances 72.  

 

Boosted decision trees  

Boosted decision trees are fundamentally different from bagged trees (like RF): i) boosting 

grows shallow trees, ii) boosted trees are dependent on previous steps, whereas RF trees are 

identically distributed, iii) boosted trees are prone to overfitting if nrounds/ntree is large 

(>500), whereas bagged trees are not 9,31. Additionally, the type 1 variable importance 

measure used in RF for feature selection is prone to be biased because of correlations 

between predictors. Such correlations can distort variable importance rankings so that 

otherwise irrelevant features with high correlations to informative predictors get 

disproportionately large importance values 18,65 or conversely, if there are many truly relevant 

predictors but they are highly correlated, their importance measures get diluted and will be 

decreased18. In theory boosting is more resistant to dilution than RF as boosted trees 



additively learn from previous steps and focus their learning on areas, which has not been 

well modeled up to that point 9,18,31,65 

For the implementation we chose the currently popular extreme gradient boosting (XGBoost) 

package in R 80 . Softmax was the objective function for multiclass classification. The 

evaluation metric was misclassification error to ensure more direct comparability with other 

methods, although we also tried multiclass log loss, but it yielded worse results during 

training. We used tree-based boosters that translated to an ensemble of trees 80. In the 

XGBoost formulation the main difference between an RF and boosted trees is how are they 

trained 81 . To our knowledge, there are no recommendations in the literature on how to 

optimally initiate hyperparameters for XGBoost when fitting high-throughput methylation 

array data. Therefore, we performed an extensive optimization of XGBoost’s tuning 

parameters (see also Table 3) including: nrounds, the number of iterations (that is equivalent 

to ntree of RF); max_depth, maximum depth of a tree; eta, learning rate; gamma, minimum 

loss reduction required to make a further tree partition; colsample_bytree, subsample ratio 

of columns when constructing each tree; min_child_weight, minimum sum of instance 

weight (hessian) needed in a child; and subsample, subsample ratio of the training instance 

(0.632 is the special case to mimic RF’s bootstrapping) 80,81. Hyperparameters of the best 

performing top 4 models on the prototyping subfold 1.1 (Table 4) were used to fit the 

complete data set with nrounds (=100), min_child_weight (=1), subsample (=1) left at 

default. For this, an extra nested 3-fold CV grid search within each training loop was 

performed using the framework of the caret package 62 to find optimal hyperparameters 

(Table 5). Then, the xgb.train() function was refitted on the training data with those tuned 

settings to exploit its watchlist functionality and to find the optimal number of nrounds 

iterations80,81. Finally, these settings were applied to the respective test/calibration set to 

generate raw probability estimates (i.e. raw scores). 



 

Calibration methods 

Platt scaling 

Platt suggested this parametric method originally for binary classification problems when 

mapping SVM raw scores to posterior probabilities24,40,44. Nonetheless, any classifier’s 

output can be post-processed with Platt scaling. Briefly, Platt’s main idea was to pass raw 

SVM estimates through a sigmoid function24: ܲ(ݕ = 1|݂) = 	 ଵଵାୣ୶୮	(஺௙ା஻)  (1) 

, where f(x) denotes the output of the predictor algorithm, and the parameters A and B are fit 

using maximum likelihood estimation from a training set ( ௜݂	, ௜ݕ , where	௜)ݕ ∈ 	 ሼ−1	, +1ሽ for 

mutually exclusive binary classes 24. Platt then defined a new training set ( ௜݂	, ௜ݐ ௜), whereݐ = ௬೔ା	ଵଶ , which is generated ideally using CV. In this new space A and B are found so that 

they minimize the negative log likelihood (for details see 24,40). To avoid overfitting on the 

training set Platt added some regularization by changing ݐ௜ from ሼ0	, 1ሽ to their maximum a 

posteriori estimates using Bayes’ rule 24. Thus, the log loss cannot be 0 even if we had 

completely correct probability estimates of 0 and 1 for all examples 40. This regularization 

becomes increasingly relevant when there are separable classes with few samples. To apply 

Platt’s method, multiclass problems need to be reduced to a series of binary calibration tasks 

and then recombined to obtain multiclass probabilities 40,44. Two well-known binary 

reduction approaches are the 1-vs-1 and 1-vs-all 24,27,40,42,44. We used the latter approach and 

simply normalized all obtained probabilities such that they sum up to 1 9,18,42,69. Notably this 

might occasionally lead to changing of the most probable classes (see Table 2). 

Logistic regression (LR). A fairly straightforward implementation of Platt scaling is post-

processing with logistic regression using the glm function of base R 82,83 (see also 

http://danielnee.com/tag/platt-scaling/). LR maps the raw predictor to a probability for the 



true binary outcome 18. We iterate through each k class and combine the results. We should 

point out, however, that this approach does not explicitly incorporate Platt’s regularization 

step of ݐ௜ 24. Due to class imbalances complete or quasi-complete separation of datapoints 

(i.e. classes) can occur24,82 thereby motivating the switch to methods that replace the 

maximum likelihood estimate (MLE) with penalized estimates 45. 

Firth’s penalized logistic regression (FLR). Firth proposed a solution 45 for the problem of 

separation in regular models. He aimed to remove the first order bias term for which he 

proposed a penalized likelihood function using the Jeffreys invariant prior 45. Thus, Firth’s 

penalized likelihood is second-order unbiased and the resulting estimates and standard errors 

are always finite 84,85. Although this method removes bias at the coefficient level, it 

concurrently results in biased event probabilities 86. Unfortunately, Firth-estimates (similar to 

MLEs) are not unique for p >> n 84-86. We implemented Firth regression using the brglm 

function of the identically named R package 87. The number of maximum iterations were 

varied from the default 500 up to 10,000. 

Ridge penalized multinomial logistic regression 

Ridge regression is perhaps the most widely used shrinkage method 31. It is particularly 

suitable for p >> n problems and in case of multicollinearity to stabilize the estimates of LR 

9,34,67,68,88. We used the glmnet R package 67, which readily offers the multinomial extension 

of the binomial ridge (L2) penalized LR for multiclass outcome variables 67,69. For ridge 

calibration the cv.glmnet function was fit with mixing parameter 67,69 0 = ߙ. We applied the 

default function settings of 10-fold CV for finding λmin on the inner fold test sets (calibration 

set). The large size of BTMD allowed a sufficiently large calibration set (n > 2,000) to 

stabilize tuning parameters and estimates 17,40,44. Ridge regression can also be interpreted 

from the Bayesian perspective, as it represents an increased prior belief that beta coefficients 

are close to 0 by imposing a normal prior 9,31. Ridging shrinks the estimates towards each 



other and 0, thus introducing biased MLEs of ߚመ  without performing any feature selection 9. 

These properties make ridge regression, intuitively, suitable for being a probability calibrator 

as it does not dismiss any features during post-processing 7,9,67. 

 

Overview and variations of the proposed procedure 

We present a pipeline and affiliated scripts to perform each analysis step in Fig. 1. The 

pipeline is highly modular and enables an entry at any step. However, as our main focus is on 

describing the internal validation process and comparing the results of the investigated ML-

classifiers and calibrators, we recommend starting from step 6 when trying to replicate these 

ML-workflows using the referenced data set (BTMD) or trying these algorithms on their own 

data sets (Fig. 1, part 2). The provided framework allows the user to flexibly plug-in (steps 8-

10) and explore any other predictor algorithm suitable for high-dimensional data analyses 

such as nearest shrunken centroids, k-nearest neighbours (k-NN), and various neural 

networks architectures like multi-layer perceptrons (MLP) 9 or other methods based on 

simple sign averaging 89 or eigenvalue shrinkage 90. 

Similarly, other post-processing algorithms can be inserted in steps 11-14 including isotonic 

regression, naïve Bayes estimates or variations of local error frequencies 17,22,41. Alternative 

methods for calibrating RF were proposed by Boström 22 and more recently by Dankowski 

and Ziegler21. Although both of these methods were developed explicitly on RF, they can be 

applied to any other classifier as well21,22.  

Although the focus of this pipeline is on 450K methylation array data-based tumor 

classification it can be applied to the newest generation of Illumina EPIC (850K) array or any 

other high-dimensional, multiclass data set. However, in the latter case additional care should 

be taken to scale and center the features (especially if they are measured on different scales). 

Such preprocessing is standardization that centers the respective feature around 0 using its 



mean and scales it with respect to its standard deviation. This is less of a concern for 

methylation data as beta values are measured on the same scale and confined to the [0, 1] 

range. 

To account for massive class imbalances in the cohort, we used down-sampling to the 

minority class (nk=8, for all 91 classes) similar to the reference paper 1, however, only for RF 

implementations. For SVM the effect of weighting with the inverse class frequency (1/nk) 

was investigated 9,30,72,79. The remaining classifiers were fitted directly on the nested CV 

data, which was generated by stratified sampling to ensure that all classes are present in each 

CV (sub)fold. A possible extension of this protocol would be to test whether more complex 

resampling strategies for imbalanced datasets, such as random under- or over-sampling, 

would improve classifier or workflow performance. Unfortunately, there are no ready-to-use 

implementations for multiclass problems91, as most available resampling packages primarily 

offer strategies for binary classification tasks only 49,62,92-95. 

 

Comparison with other methods 

In this protocol there are some important changes compared to the approach described in 1. In 

this comparative analysis, we use a benchmarking data set that was normalized but not 

adjusted for possible batch effects between samples stemming from FFPE or freshly frozen 

material. In 1 the batch effect adjustment was included into the 3 x 3 cross-validation scheme 

to estimate prediction performance when the batch adjustment of the test data is based on 

batch effects that were estimated on the training data. However, as the primary goal of this 

study is to compare the performance of different ML-workflows, we performed all analyses 

on a normalized but not batch adjusted feature space. Additionally, our preliminary studies 

showed that the influence of batch adjustment on the overall performance of the ML-

workflows is negligible and it affects all workflows in the same way. 



Second, for feature selection in step 5 (Fig. 1), we use an unsupervised variance-based pre-

filtering to select the 10k most variable CpGs 33,54. Other feature selection and dimensionality 

reduction methods that limit the feature space either independently or in combination with a 

supervised ML-algorithm 96 would be also suitable. These might include: basic filtering, 

controlling for false positive selections, correlation filters, wrapper methods (e.g. greedy 

forward selection), embedded methods (e.g. the investigated ML-algorithms that provide 

feature importance like RF1,2, boosting, regularized LR or SVM), the combination of 

embedded and wrapper methods (e.g. SVM with recursive feature elimination9,97,98), feature 

construction methods (e.g. sample or feature clustering, principal component analysis (PCA) 

projections) – for details see 96 and references therein. To note, that the applied unsupervised 

pre-filtering to the relatively large number of 10k most variable CpGs is quite 

uninformative33,54. Therefore, when there is an interest to use one of the alternative methods 

mentioned in this paragraph for more stringent pre-filtering, then the feature selection should 

be included in the validation via additional internal validation loops96. On top of that, some 

of these dimensionality reduction methods can be computationally very expensive especially 

on a feature space as large as 450k or 850k CpGs produced by methylation microarrays. 

Hence, we did not study the impact of the number of selected features and the choice of pre-

filtering methods on prediction performance in this manuscript; for comparison studies 

focusing on these aspects please refer to 9,33,54,96. 

Third, we performed no additional threshold analysis, that is, for all classifiers or calibrated 

workflows the final predicted class for each case was the one with the highest assigned score 

or probability estimate among the 91 diagnoses. Finding an optimal, common threshold for 

all classes at a desired sensitivity and specificity depends on the practical application of the 

resulting classifiers but is not important for the benchmarking of ML-workflows, as here 

threshold independent metrics like the AUC, Brier-score and log loss should be used for 



evaluation. For example, if the resulting calibrated classifier were to be deployed as a 

diagnostic tool in a clinical setting, thresholds that result in high specificities, that is low type 

one error rates, are preferred. However, when the classifier is applied as a research tool a 

different threshold might be more suitable.  

Finally, for pre-processing and normalization of the raw data we apply functions and data 

classes available in the Bioconductor99 package minfi 15. Alternative software packages that 

provide comparable functionalities are the Bioconductor packages RnBeads 100, ChAMP 101 

and wateRmelon 102. All mentioned packages provide different data classes to store the data, 

but often share implementations of the same popular normalization functions developed for 

Illumina methylation array data. 

 

 

Experimental design 

In order to train a classifier, a suitable training data set needs to be established. As for any 

ML-project this involves expert knowledge to define classes and assign class labels to 

samples. For example, to generate the training data set presented in 1 we used several 

preceding studies that defined new methylation-based tumor classes by performing 

unsupervised methylation data analysis and describing the molecular and clinical differences 

of these classes 5,14,52. Statistical considerations when planning to train a classifier for 

diagnostics using genomic data include the high-dimensionality of the data, the large number 

of classes as well as the heavily imbalanced class sample sizes.  

To reduce dimensionality and computation time, we performed an unsupervised variance 

filtering that was implemented into the nested CV (Fig. 1, step 5) to prevent information 

leakage. Furthermore, like the RF presented in 1 all ML-workflows shown in this study are 

based on methods developed for high-dimensional settings and often include a feature 



selection step or perform automated feature selection, like the lasso penalized regression 

model, to further reduce dimensionality.  

The minimal class sample size for BTMD is eight, which is critical and a minimal class 

sample size of ten or even more might be desired67,69. Otherwise class sizes might become so 

small during the 5 x 5 nested CV that the calculations for ML-classifier training cannot be 

carried out or their estimates become highly unstable. However, we did not observe any 

substantial misclassifications with the smaller than recommended class size and the minimal 

inclusion sample size of eight allowed us to include several rare tumor classes of special 

interest for neuropathologists that otherwise would have been excluded1,2.  

Moreover, the class sample size will be further reduced in the training folds of the CV. This 

is an additional consideration when planning the CV and setting the number of folds. For 

example, with a higher number of CV folds, the computational burden increases but also the 

minimal sample size in the training folds is larger 9,17,18,55,56,92. In addition, when generating 

CV folds, the sampling needs to be done in a stratified manner to guarantee balanced 

minimal class sample sizes in all training folds 18,62,92.  

Tree-based algorithms like the RF are known to suffer from heavily imbalanced class sample 

sizes, which are inherently present in BTMD. To deal with this problem several possible 

strategies have been proposed 66. In 1 and also in this study we deal with this problem by 

downsampling all classes to the minority class for each tree in the RF18,61. Therefore, each 

tree is trained on a relatively small balanced bootstrap data set that has the additional 

advantage to greatly improve the computation time to fit a single tree. Additionally, we 

assessed inversed class frequency weighting for SVM, that is, classes are weighted inversely 

proportional to their distributions 72. However, this can result in artificially distorted class 

weights, as most data sets represent a convenience cohort that do not necessarily resemble 

the true underlying population distributions20. The algorithms ELNET and XGboost do not 



benefit from additional data balancing strategies other than the previously mentioned 

stratified resampling. 

Confounding factors. A typical confounding factor present in Illumina methylation array 

data is the source material the sample DNA originates from. For example, DNA can be 

extracted from FFPE as well as from freshly frozen material, and different extraction 

protocols are applied for each sample type. The type of source material can be easily 

determined by reading out the restoration control probes available for each sample on the 

array. In 1 the methylation data were adjusted for the differences between FFPE and freshly 

frozen material by applying a linear model approach available in the Bioconductor package 

limma 53 that was performed independently within each CV-loop. Another possible 

confounding factor that might affect methylation data is the age of the patient, as it is known 

that methylation is associated with aging and that the age of human tissue may even be 

predicted by methylation data 103. However, as the brain tumors in BTMD belong to adult as 

well as pediatric brain tumor classes, age is expected to be strongly associated with these 

classes  and thus we did not adjust for this possible confounder. DNA-samples measured by 

methylation arrays are usually bulk samples comprising a mixture of tumor cells, infiltrating 

immune cells and other stromal components104. Thus the proportion of tumor cells in the 

sample, which is known as the tumor purity may also influence the DNA methylation and as 

already shown in 1 methylation data can be used to measure tumor purity. Like age, however, 

the tumor classes defined in the BTMD data set are associated with tumor purity, with some 

tumors known to have much higher tumor purity compared to others, and thus we did not 

adjust for purity. Finally, after adjusting for the FFPE/fresh frozen batch effect in the 

reference paper, BTMD was tested with the sva algorithm 105-107 for additional confounding 

batch effects and we were not able to detect any significant surrogate variables. 



Software setup. All computation steps in Fig. 1 can be carried out in the open source R 

statistical programming environment (R Foundation for Statistical Computing, Vienna, 

Austria, https://www.r-project.org/) within the recommended RStudio integrated 

development environment (RStudio, Inc., Boston, MA, http://www.rstudio.com/) 83. R has a 

wide variety of packages including a dedicated bioinformatics analysis suite Bioconductor 

for orchestrating high-throughput genomic analyses 108,109. Besides the optional GPU-

accelerated variant of support vector machines (Rgtsvm) and xgboost, all presented ML-

classifier (steps 8-10), post-processing algorithms (steps 11-14) can be run solely on multi-

core CPUs without the need to install software outside the scope of R 75,80. To speed up 

computations, we used base R’s (>v2.14.0) built-in high-performance parallel computing 

package parallel, which incorporates multiple other packages like multicore, snow and 

foreach – the latter of which is used by glmnet to speed-up hyperparameter tuning (‘Machine 

Learning Algorithms’). We prefer using a single software platform, which provides the 

advantage of a simplified workflow and maintenance 108. Some users might prefer the 

general-purpose programming language Python over R – a popular language for software 

development, prototyping and scientific computing – that also provides a wide variety of 

tools for ML via the scikit-learn library 110. However, Python requires interface packages to 

provide some Bioconductor functionalities. Nonetheless, downstream analyses from step 5 

could easily be implemented in Python, if desired.  

In the PROCEDURE section we present the steps needed to perform hyperparameter tuning 

for the RF classifier including its calibration with MR (i.e. tRFBS + MR and tRFME + MR and 

tRFLL + MR) and its final performance evaluation. Because the respective R package for each 

investigated ML-classifier algorithm has different built-in functionalities our R scripts follow 

a 3-layered approach to carry out the internal validation process (steps 8-10): i) subfunctions 

are invoked to extract optimal hyperparameter settings from the output object of the 



respective predictor algorithm (e.g. vRF, ELNET, SVM) or from the ML-framework of the 

caret package (e.g. tRF) or both (e.g. XGBoost); ii) the train function (e.g. 

trainRF_caret_custom_tuner) performs hyperparameter tuning using the corresponding 

subfunctions; iii) finally, the train function is implemented within the nested cross-validation 

scheme (e.g. run_nestedcv_tunedRF) and consequently dedicated calibrator (steps 11-14) 

and performance evaluator functions (step 15) might be applied separately to its output. 

 

Performance evaluation. We combined a comprehensive panel of numerical performance 

metrics to assess model fits. 

Misclassification error (ME) is defined as the proportion of incorrectly classified cases over 

all classes divided by the total number of cases. In medical applications the lowest achievable 

misclassification error is preferable. For each classifier the provided ME is the average of the 

errors measured in each of the 5-fold CV (outer) test sets.  

While the ME is measured when using the maximum classification score as threshold to 

determine the predicted class, the area under the receiver operating characteristics curve 

(AUC) provides a way to compare the separability of a classification rule for all possible 

thresholds 111. Hand and Till proposed a generalization of the AUC for multiclass 

classification problems by extending its probabilistic form using a 1-vs-1 approach over all k 

classes111. Their multiclass AUC measure is available in the R package HandTill2001112. 

Brier score (BS) is a proper scoring rule that measures the accuracy of probabilistic 

predictions of mutually exclusive classes 113-116. Originally, Brier proposed this method in 

1950 to assess weather forecasts in terms of probability114. His formulation (2) is applicable 

to multiclass forecasts and is defined as the quadratic difference between the assigned 

probability and the value (1, 0) for the class 92,114:  

 (2) 



ܵܤ = 	 1݊෍෍൫ ௜݂,௞ − ௜,௞)ଶ௄݋
௞ୀଵ

௡
௜ୀଵ  

, where ௜݂ is the predicted probability and ݋௜ is the actual outcome of binary coded i (0 if 

happened, 1 if not). In our benchmarking dataset n denotes the number of samples (2,801) 

and K the number of diagnostic classes (91). For binary K Equation (2) gives back the mean 

squared error of the prediction, while for multiclass problems it is the sum over all 1-vs-all 

comparisons 92. Our target is to minimize BS thereby indicating better calibrated predictions. 

Cross-entropy loss or log loss (LL) is extensively used to assess probability estimates of 

predictor models instead of just focusing on their discrete label assignments 18,113,115. The 

advantage of the logarithmic scoring rule over BS is that it is local strictly proper 113. We 

used a multiclass extension of log loss (LL): 

 (3) 

ݏݏ݋݈	݃݋݈ = 	− logܲݎ(ܻ|ܲ) = − 1݊෍෍ݕ௜,௞log൫݌௜,௞)௄
௞ୀଵ

௡
௜ୀଵ  

, here n and K denote the number of samples and classes, respectively; log is the natural 

logarithm, ݕ௜,௞ is the binary true outcome 1 if sample i is in class k and 0 otherwise, and ݌௜,௞ 

is the predicted probability that observation i belongs to class k. Log loss does not explicitly 

require that predicted probabilities add up to one, however a simple division by the row sum 

is recommended. Initial predictor model outputs (raw scores) can theoretically lie anywhere ሾ−∞,+∞ሿ. Thus, before calculating LL, we constrained extremely marginal predicted raw 

scores or calibrated probabilities (close to 0 or 1) to max	(min	(݌	, 1 − 10ିଵହ), 10ିଵହ). 
Similarly to BS, the objective is to minimize LL. Both BS and LL were used as loss 

functions for optimizing feature space (pvarsel) during ML-algorithm tuning (e.g. tRF; Table 

2) as well as evaluation metrics of overall calibration. 



BS encourages predicted and true probabilities to lie close to each other, whereas LL does 

not 115. Extensive empirical testing, however, stressed LL’s favorable local property that it 

will always assign a higher score to a higher probability estimate for the correct class. In 

contrast, BS can perform poorly in this regard 113. R scripts are provided to calculate all 

performance metrics in the GitHub repository. 

 

Expertise needed to implement the protocol 

The presented scripts in the open-source R language target users with intermediate 

experience in bioinformatics and statistics, especially using ML algorithms and using R with 

Bioconductor extensions. Valuable introductory material for ML can be find in the following 

book 117 and free online course taught by two (of the book’s co-authors, who are) world-

renowned//highly distinguished Stanford University Professors of the field 

(https://lagunita.stanford.edu/courses/HumanitiesSciences/StatLearning/Winter2016/about). 

 

Sample preparation  

DNA methylation data of the CNS tumour reference cohort used in this pipeline were 

generated from formalin-fixed paraffin-embedded (FFPE) or freshly frozen tissue samples at 

the Genomics and Proteomics Core Facility of the DKFZ (Heidelberg, Germany) using 

Illumina Infinium HumanMethylation 450K Bead Chip (450k) arrays according to the 

manufacturer’s instructions (Illumina, Inc.). For further details please see 1,2.  

 

Limitations 

Possible limitations of the proposed protocol to train a DNA methylation-based classifier for 

tumor class predictions are, as already mentioned previously, the highly imbalanced class 

sizes and low minimal class sample size in BTMD. Even though we did not observe any 



abnormalities like biased predictions towards tumor classes with larger sample size, these 

limitations can have an impact on the classification performance and for future training sets it 

might be worthwhile to increase the minimal class sample size as well as to try balancing 

class sample sizes. All presented classifiers use an intersection set of CpG probes available 

on both the 450k and the EPIC human methylation array and are thus able to classify samples 

derived by both array technologies. However, as BTMD is solely comprised of 450k 

methylation samples, these classifiers might still be biased towards the 450k, i.e. by 

generating higher raw scores and calibrated probabilities for 450k array samples. To deal 

with this problem in the future, new training data sets should also incorporate EPIC 

methylation array samples, to allow assessing possible batch effects between these two array 

technologies as well as to estimate the impact of incorporating two different arrays on the 

classifier performance by cross-validation. This bias toward a specific platform is also an 

important consideration when deploying a classifier for practical applications1,2. For 

example, when using the classifier presented in the reference paper that is freely available on 

the website www.molecularneuropathology.org, users may upload EPIC and 450k samples, 

generated in different labs under different conditions with varying sample quality and thus 

we cannot expect the same prediction performance that we observed in our cross-validations. 

Due to the highly multiclass nature and relatively large size of BTMD associated with 

extended run-times, we did not systematically compare the performance of the investigated 

ML-classifiers and calibrated workflows with respect to the number of available CpG 

features. Although, RF (pvarsel) and XGboost (colsample_bytree) were tuned with respect 

to the number of CpG probes and the performance of ELNET was also assessed on the 1000 

most variable probes, SVM were applied to the 10k feature set only. This arbitrary but 

deliberate reduction of the feature space (balancing computational effort and feature space 

size) might limit and more negatively influence some classifiers than others. SVM were 



reported to be sensitive to the size of the feature space in p>>n multiclass gene expression 

studies9,48. As the number of genes is reduced, SVM classifiers respond by degrading 

accuracies or even suddenly collapse with poor overall performance 9,48 . Our results show 

that the investigated ML-classifiers performed in a similar range on the 10k feature space: 

tree-based algorithms (tRFBS | LL and boosting) chose comparably sized smaller feature 

subsets of 100-500 CpGs while tRFME and ELNET selected larger (1000-10,000 CpG) or 

consequently the full 10k CpG subsets. 

Computational effort on CPUs varied largely between classifier algorithms, which 

particularly for XGBoost restricted the fine-tuning of its hyperparameter space and 

consequently its overall performance. In the meantime, GPU-accelerated versions of the 

XGboost package118 have become available that might alleviate this restriction.  



MATERIALS 

EQUIPMENT 

Starting data 

• Optional: unprocessed IDAT files containing complete methylation values for the 

reference set and validation set as published in Ref. 1, available for download from the 

NCBI Gene Expression Omnibus (GEO) under accession number GSE109381.  

• Optional: If the user desires to replicate the analysis pipeline presented in the main 

reference paper (Ref. 1), R scripts for data pre-processing including basic filtering and 

normalization, and also 3 x 3-fold nested CV and calibration (see the corresponding 

GitHub page https://github.com/mwsill/mnp_training). 

• The benchmarking data, an unsupervised variance-filtered subset of the reference set 

using the 10,000 (10k) most variable CpG probes and  

• R scripts necessary to run each ML-workflow within the 5 x 5-fold nested CV scheme 

and their evaluations, provided in the GitHub repository 

(https://github.com/mematt/ml4calibrated450k/tree/master/data). 

• Optional: 450K DNA methylation tumor samples from The Cancer Genome Atlas 

(TCGA). For details on how to prepare the TCGA external validation cohort please see 

the GitHub repository (https://github.com/mwsill/mnp_training/blob/master/tsne.R) and 

for download details the NCI GDC Legacy Archive (https://gdc-

portal.nci.nih.gov/legacy-archive). 

 

Software 

• Operating system: Linux+ (e.g. Ubuntu 16.04.5 LTS, 18.04.2 LTS) and Macintosh (OSX 

El Capitan 10.11.6 or newer) were tested; +for GPU (NVIDIA CUDA) accelerated SVM 

(Rgtsvm) we suggest using Linux. 



• R: A language and environment for statistical programming v3.3.3 or newer: 

https://www.R-project.org/. 

• R Studio IDE, a free and open-source integrated development environment for R 

v1.0.136 or newer: https://www.rstudio.com/products/RStudio/. 

• R and RStudio running in Docker containers (rocker) ensuring clear and dedicated 

software environments. We tested our scripts in rocker containers with R v3.5.2 and 

RStudio v1.1.463. For details see https://www.rocker-project.org or 

https://github.com/rocker-org. 

R packages for data preparation and pre-processing  

CRITICAL The R packages listed below are under development and regularly updated 

therefore we recommend using the most recent stable version. These are downloadable 

from the Comprehensive R Archive Network (CRAN is a network of servers that store up-

to-date versions of packages and documentations for R (https://cran.r-project.org/)) or 

from Bioconductor (an open source software for bioinformatics that uses R 

(https://www.bioconductor.org/)). Please select the checkbox “Install dependencies” in 

RStudio or explicitly set the dependencies argument to TRUE 

(install.packages("foo", dependencies=T)). Installing the devtools package 

(install_github) permits to directly install packages from GitHub. 

 

• conumee Bioconductor package v1.3.0 for copy-number variation analysis 

• minfi Bioconductor package v1.14.0 for obtaining raw signal intensities from IDAT 

files and normalization 

• rhdf5 Bioconductor package v2.26.2 to provide an interface between HDF5 and R to 

store and access very large and/or complex datasets with metadata119. 



• limma package v3.24.15 (removeBatchEffect function) to fit univariate linear 

models to correct for the type of tissue material (FFPE or frozen) 

• Rtsne package v0.15 to apply t-distributed stochastic neighbor embedding (t-

SNE)57,58 

• dbscan package v1.1-3 for density-based clustering of applications with noise 

(DBSCAN) and related algorithms59 

• RSpectra package v0.14-0 containing solvers for large-scale eigenvalue and SVD 

problems120 

General machine learning frameworks: 

• Classification and Regression Training 

caret v6.0-81 (http://topepo.github.io/caret/index.html) 

• Optional: Machine learning in R 

mlr v2.13 (https://mlr.mlr-org.com/ or https://github.com/mlr-org/mlr) 

Machine learning algorithms(classifiers):  

• randomForest v4.6-12 or newer (most recent 4.6-14): https://cran.r-

project.org/web/packages/randomForest/index.html  

• glmnet v2.0-10 or newer (most recent v2.0-16): https://cran.r-

project.org/web/packages/glmnet/index.html  

• We tested multiple SVM implementations including:  

e1071 v1.7-0 (https://cran.r-

project.org/web/packages/e1071/index.html),  

LiblineaR v2.10-8 (https://www.csie.ntu.edu.tw/~cjlin/liblinear/) 

kernlab v0.9-25 or newer (most recent v0.9-27) also available through 

the caret package (https://github.com/cran/kernlab) 

#Rgtsvm v0.5 (https://github.com/Danko-Lab/Rgtsvm)  



• xgboost v0.82.1 (https://xgboost.readthedocs.io/en/latest/R-package/index.html) more 

recently GPU support became available, see 

https://xgboost.readthedocs.io/en/latest/build.html (note: in our scripts we use the 

CPU version only)  

CRITICAL: Please note that on Mac OSX only a single-threaded version of 

xgboost will be installed when using the install.packages(“xgboost”) 

command. This is because the default Apple Clang compiler does not support 

OpenMP. To enable multi-threading on Mac OSX please consult the xgboost 

installation guide (https://xgboost.readthedocs.io/en/latest/build.html#osx-

multithread). 

Calibration (i.e. post-processing) algorithms: 

• base R for logistic regression (glm function) 

• brglm v0.6.1 and brglm2 v.0.5.1 (https://github.com/ikosmidis/brglm2) for Firth’s 

penalized logistic regression 

• glmnet v2.0-10 or newer (most recent v2.0-16) https://cran.r-

project.org/web/packages/glmnet/index.html for ridge/L2 penalized multinomial 

logistic regression 

Performance evaluation 

• HandTill2001 v0.2-12 https://cran.r-

project.org/web/packages/HandTill2001/index.html for multiclass AUC  

Optional extra libraries and R packages: 

CRITICAL: For GPU accelerated Rgtsvm and builds of xgboost NVIDIA CUDA-

capable graphic cards are required with additional software setup of the CUDA toolkit 

library 



• CUDA library: https://developer.nvidia.com/cuda-toolkit-archive and installation 

guide for Linux https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html  

CRITICAL: Compiling Rgtsvm using CUDA 9.0 prohibits the architecture (sm_20) of 

early GeForce series. Furthermore, a distinct architecture type is needed for TitanX 

(sm_50) or P100 (sm_60) cards with additional manual configuration. Please consult 

the GitHub page for Rgtsvm (https://github.com/Danko-Lab/Rgtsvm).  

• Boost library: http://www.boost.org/users/download/ (is required only for Rgtsvm) 

• Extra R packages (required for Rgtsvm, https://github.com/Danko-Lab/Rgtsvm):  

bit64 v0.9-7, snow v0.4-3, SparseM v1.77, Matrix v1.2-15 

 

EQUIPMENT SETUP 

Required data All comparative analyses described in this study were performed using 450k 

Illumina Methylation Beadchips data of the CNS tumour reference cohort (Ref. 1) . To limit 

computational burden, we performed an unsupervised variance filtering selecting the 10 000 

most variable CpG probes based on training data of each (sub)fold while subsetting the CpG 

features of the corresponding test or calibration set accordingly. These variance filtered train-

test matrix pairs (n=30; betas.1.0.RData – betas.5.5.RData) provided the basis of all 

ML-workflow comparisons. For instance, the betas.1.1.RData file contains a 

betas.train matrix object with 1720 rows (cases) and 10,000 columns (i.e. most variable 

CpG probes for those 1720 cases) and a betas.test matrix object with 484 rows (cases) and 

the same 10,000 most variable CpGs as selected on the betas.train matrix (Fig. 1, part 2, 

step 5). The betas.K.k.RData files can be readily downloaded from our Dropbox folder 

(betas.train.test.10k.filtered; http://bit.ly/2vBg8yc) or generated using scripts 

(PROCEDURE step 5). The true label vector (y) for each of the 2,801 cases from 91 possible 

classes is provided within the y.RData file (3kB) at 



https://github.com/mematt/ml4calibrated450k/tree/master/data. The exact same fold 

assignment nfolds.RData (84kB) for distributing cases (using stratified sampling) into more 

robust 5 x 5-fold nested CV scheme is also provided on the GitHub page above 

(https://github.com/mematt/ml4calibrated450k/tree/master/data). 

Optional data A collection of scripts used for pre-processing (normalization and batch 

adjustment of the IDAT data), and to train (3 x 3-nested CV) and validate the RF classifier 

presented in the main reference article is provided at https://github.com/mwsill/mnp_training.  

Required hardware Multi-core laptops, preferably high-end desktop or workstation level 

CPUs and at least 8Gb RAM (32Gb or more for certain highly-parallelized implementations 

under Linux) are suggested. A list of CUDA-capable NVIDIA graphic cards can be found at 

https://www.geforce.com/hardware/technology/cuda/supported-gpus.  

To provide an impression, run-times (Table 2) are based on various PCs and/or laptops 

equipped with Intel Core i7 (7700k @ 4.2 GHz, 4 cores/8 threads; 6850k @ 3.6GHz, 6 cores/ 

12threads) or Core i9 (i9-8950HK @ 2.9GHz 6 cores/12threads; 7960X @ 2.8 GHz, 16 

cores/32 threads) CPUs and 32 - 128Gb RAM, and on NVIDIA Geforce GTX 1080Ti cards 

using CUDA 8.0 or on high-performance computing optimized Amazon Elastic Compute 

Cloud (EC2) C5n instances (c5n.18xlarge with 72 vCPU on Intel Xeon Platinum 8000 and 

192Gb RAM). 

Downloading and installing software Please follow the instructions in the installation links 

listed in Equipment or in the R scripts on the respective GitHub pages 

(https://github.com/mematt/ml4calibrated450k and https://github.com/mwsill/mnp_training).  

CRITICAL Most commands should be executed within R, however, for certain installations 

the Unix shell prompt using a terminal window or within RStudio (available in more recent 

versions) might be necessary. To perform all analyses, we recommend creating a separate 

directory and downloading all data and scripts there. 



Downloading and organizing the data The size of betas.K.k.RData is around 215 

MB/(sub)fold ~5.3Gb in total (n=30 folds; http://bit.ly/2vBg8yc). All other files are provided 

in the respective GitHub repositories. We suggest using a common path for all data objects 

either within the working directory (e.g. “./data/”) or outside (“/home/rstudio/data/”).  

  



PROCEDURE 

Download and extract the data TIMING ~ 1.5h (50 MB/s) 

1. Download and unzip the raw data archive of the GEO series GSE90496 (22.7 Gb) 

from NCBI GEO: 

CRITICAL STEP: These two commands (wget and tar) should be run in a UNIX Terminal. 

# Note: these commands should be run in a UNIX Terminal 

wget https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE90496&format=file 

tar GSE90496_RAW.tar 

2. Download the corresponding annotation data from GEO using the Bioconductor 

package GEOquery. Execute the commands below in the R or RStudio console: 

library(GEOquery) 

gse <- getGEO(“GSE90496”, GSEMatrix = TRUE, getGPL = FALSE) 

anno <- pData(gse$GSE90496_series_matrix.txt.gz) 

Pre-processing TIMING ~ 1h 

3. After extracting the raw data archive, the methylation data can be read into the R 

workspace using the R or RStudio console: 

filepath <- file.path("GSE90496_RAW/", 

 gsub("_Grn.*", "",  

  gsub(".*suppl/","",anno$supplementary_file) 

  ) 

 ) 

RGset <- read.metharray(filepath, verbose = TUE) 

 

CRITICAL STEP:  The pre-processing steps (Fig. 1, part 1, step 2) of normalization and 

basic filtering presented in 

https://github.com/mwsill/mnp_training/blob/master/preprocessing.R need to be performed 

to generate the matrix of beta methylation values. All comparisons and presented results in 



Table 2 were obtained on normalized but not batch adjusted beta values (Fig. 1, part 1, step 2 

& 4, path of solid arrows). 

 

CRITICAL STEP: If desired, batch effects originating from FFPE or fresh frozen samples 

(Fig. 1, part 1, step 3, path of dashed arrows) can also be adjusted for using a linear model 

similar to 1. To note, however, that we found no major confounding effect associated with 

FFPE or frozen sample types.  

 

Load prerequisite data objects TIMING < 1 min 

CRITICAL: We assume that the GitHub repository 

(https://github.com/mematt/ml4calibrated450k) is downloaded with all R scripts into a 

folder, which serves as the current working directory for R (see EQUIPMENT SETUP). We 

suggest using a separate data folder to hold the required .RData files and objects within the 

working directory (“./data/”) or at another common path e.g. “/home/rstudio/data/”. 

4. Load the true labels vector y (containing true class labels for all 2801 cases) to 

perform internal 5 x 5-fold nested cross-validation (CV) and load the list nfolds 

(nfolds.RData) to reproduce our fold assignments. The list nfolds was generated 

by the makefolds.R script and function makefolds(y, cv.fold = 5) that 

generates stratified samples from each class of y (overall ݊௠௜௡ = 8 ; within subfolds ݊௠௜௡ = 4 − 6).  

load("./data/y.RData") # or “/home/rstudio/data/y.RData” 

load("./data/nfolds.RData") # or “/home/rstudio/data/nfolds.RData” 

?TROUBLESHOOTING For details see Table 6. 

 

Download the pre-filtered benchmarking data set TIMING ~ 18 min (5MB/s) 



5. Download the readily prepared benchmarking data sets (betas.1.0.RData – 

betas.5.5.RData ; 5.3Gb) that contain the variance filtered (10,000 CpG probes) 

training-test set (betas.train ; betas.test) pair for each K.k (sub)fold from the 

linked Dropbox folder (betas.train.test.10k.filtered) at http://bit.ly/2vBg8yc. 

# We suggest a common data folder, for instance:  

“/home/rstudio/data/”  

“./data/” # or within the working directory 

CRITICAL STEP: All implementations of the investigated ML-algorithms require this same 

type of input data structure to function correctly. This data structure can be generated from 

any input data using the subfunction_load_subset_filter_match_betasKk() function in the 

identically named .R script 

(https://github.com/mematt/ml4calibrated450k/blob/master/data/). 

PAUSEPOINT: After data preparation, the protocol can be halted and the ML-workflows can 

be applied at any later time point.  

 

Internal validation example using tuned random forests (tRF) classifier TIMING: ~13h  

6. Setup and import required R packages (Fig. 1, step 6).  

# Parallel backend  

library(doParallel) 

library(doMC) 

# Random Forests classifier 

library(randomForest) 

# Caret framework for tuning randomForest hyperparameters 

library(caret) 

?TROUBLESHOOTING For details see Table 6. 

7. Setup the parallel backend for the parallelized version of RF (rfp.R) and the caret 

package for variable tuning. 



# Number of cores (threads available).  

# It is usually 2x (physical core count) on hyperthreaded Intel or AMD CPUs 

cores <- detectCores() # assigns all available threads 

 

# Consider leaving 1 thread for the operating system. 

cores <- detectCores()-1  

registerDoMC(cores) # registerDoParralel(cores) 

CRITICAL STEP: it is recommended to leave one thread free for the operating system. 

?TROUBLESHOOTING For details see Table 6. 

 

8. For step 9-10 (Fig. 1) source the R.script (subfunctions_tunedRF.R) that contains: 

• the rfp() function that provides a parallelized wrapper for the randomForest() 

function of the identically named R package. This function is also provided in a 

separate R sciprt (rfp.R) that can be used to fit vanilla RF (vRF).  

• the customRF function for the caret package to enable tuning RF hyperparameters 

including ntree, mtry and nodesize  

• the function subfunc_rf_caret_tuner_customRF() to perform grid search using an 

extra nested n-fold CV with the caret package 

CRITICAL STEP: rfp and customRF functions can be adjusted depending on the tuning 

grid size and the available thread count of the hardware, directly with the argument mc = 

4L or with the cores = 4L argument of the trainRF_caret_custom_tuner function. 

For example, on a 72 vCPU (c5n.18xlarge AWS instance) for a hyperparameter grid of 8 

mc can be set up to 9 to fully utilize CPU resources. 

# Subfunctions to define and perform custom grid search using  

the caret package 

source("subfunctions_tunedRF.R") 

?TROUBLESHOOTING For details see Table 6. 

 



9. Next, source the R script (train_tunedRF.R) that contains a custom function for the 

whole tuning process of RF hyperparameters including mtry, ntree and nodesize as 

well as pvarsel. 

This script contains the function trainRF_caret_custom_tuner() that performs the 

following tasks: 

• An extra, nested hyperparameter tuning using 5-fold CV fitted only on the training 

set. 

• The function performs two runs of the RF algorithm in order to select the most 

important features:  

During the 1. run: variable selection of p most important CpG probes (i.e. pvarsel) 

based on the importance measure of mean decrease in accuracy for this the rfp 

function is applied in parallel by default on 4 cores (mc = 4L).  

In the 2. run: the randomForest() function is fit again on the whole training data 

using only the selected p probes from the 1. run (single core), then the performance 

metrics ME, BS and LL are evaluated to provide the optimal number of p features 

with respect to each tuning metric. 

# Training & Hyperparameter tuning & Variable selection performed here 

source("train_tunedRF.R") 

?TROUBLESHOOTING For details see Table 6. 

 

10. Finally, source the R script (nestedCV_tunedRF.R) that contains the full 

implementation of tuning RF within the 5 x 5-fold nested CV scheme and the R script 

containing the required evaluation metrics (evaluation_metrics.R).  

The computation time for tuning a hyperparamter grid of size 16 with extra nested 5-

fold CV within each train set (nodesize = 1; ntree = [500, 1000, 1500, 



2000]; mtry = [80, 90, 100, 110]) while tuning pvarsel = [100, 200, 500, 

1000, 2000, 5000, 7500, 10000] for BS, ME, and LL concurrently using 72 

vCPU c5n.18xlarge AWS instances amounted to ~16 – 25min/(sub)fold; and a total 

of 12 – 13 h for the full 5 x 5-fold nested CV. 

The first script contains the function run_nestedcv_tunedRF() that performs the following 

tasks:  

• It creates an output folder tRF and exports resulting variables and objects into a 

CVfold.1.0.RData file for each (sub)fold, respectively (see comment #(1) in the 

code segment below).  

• If mtry.min and mtry.max arguments are left at default (NULL), the function equally 

divides floor(sqrt(ncol(betas)))*0.5) and floor(sqrt(ncol(betas))) to 

length.mtry parts (see comment #(2) in the code below).  

• Sourcing the evaluation_metrics.R script is required by the 

run_nestedcv_tunedRF() function to be able perform pvarsel tuning with respect to 

BS, ME, and LL.  

• If the argument use.default.nodesize.1 = TRUE then only the default value of 

nodesize = 1 for classification is tested and all values provided for the argument 

nodesize.proc are ignored. Otherwise the percentage values provided for 

nodesize.proc are complemented with the defaults for classification (= 1) and 

regression (= 5), respectively; and this extended .nodesize = floor(c(1, 5, 

value_nodesizes)) vector is used in the subfunc_rf_caret_tuner_customRF() 

to expand the tuning grid (see comment #(3) in the code below). 

# Source scripts 

source("nestedcv_tunedRF.R") 

# Source evaluation metrics (BS, ME, LL) for p_varsel tuning 

source("evaluation_metrics.R") 



 

# Run the function that performs the task 

run_nestedcv_tunedRF(y.. = NULL,  

                  betas.. = NULL,  

                  nfolds..= NULL, 

                  # y, nfolds are fetched from the .GlobalEnv 

                  path.betas.var.filtered ="./data/betas.train.test.10k.filtered/", 

                  fname.betas.p.varfilt = "betas", 

                  subset.CpGs.1k = F, # subset to 1k CpGs 

                  n.cv.folds = 5,  

                  K.start = 1, k.start = 0, 

                  K.stop = NULL, k.stop = NULL, 

                  n.cv = 5, n.rep = 1, # caret # extra nested tuning 

                  mtry.min = 80, mtry.max = 110, length.mtry = 4, # (2) 

                  ntrees.min = 500, ntrees.max = 2000, ntree.by = 500, 

                  use.default.nodesize.1.only = T, # (3) 

                  nodesize.proc = c(0.01, 0.05, 0.1), 

                  p.n.pred.var = c(100, 200, 500, 1000,  

                                   2000, 5000, 7500, 10000), 

                  cores = cores,  

                  seed = 1234, 

                  out.path = "tRF", # (1) 

                  out.fname = "CVfold") 

The output file CVfold.1.0.RData is comprised of the following objects: 

• predicted scores by the tuned RF using pvarsel (p.n.pred.var) features based 

on the lowest BS, ME and LL values: scores.pred.rf.tuned.brier, 

scores.pred.rf.tuned.miscerr, scores.pred.rf.tuned.mlogl,  

• rfcv.tuned: the output object of the trainRF_caret_custom_tuner() 

function  

• fold: the corresponding (sub)fold with training and test sets 

CRITICAL STEP: the output .RData file can be large, as it contains multiple copies of large 

matrices (2,801 x 10,000 approx. 215 MB each) adding up to 1 - 1.5 Gb. Hence, the complete 

nested CV scheme might require 40-50Gb free space on the respective drive.  



CRITICAL STEP: Alternatively, all tRF functions can be substituted for similarly named 

functions of other investigated ML-classifiers at each Step 8 – 10. At each respective step, 

the corresponding subfunctions and (if available) the train function (e.g. trainRF, 

trainGLMNET, train_SVM_LiblineaR, train_SVM_e1071_LK, 

trainXGBOOST_caret_tuner) and finally the integrated run within the nested CV scheme 

(e.g. run_nestedcv_vRF, run_nestedcv_GLMNET, run_nestedcv_SVM_e1071, 

run_nestedcv_SVM_LiblineaR, run_nestedcv_SVM_Rgtsvm, run_nestedcv_XGBOOST) 

should be used.  

PAUSEPOINT: Each run_nestedcv_`…` function can be halted using the “break/stop” 

button in Rstudio at any time point or (sub)fold. It can be restarted at a later time point from 

the K.k-fold and using K.start, k.start arguments.  

However, when stopping/breaking the function it might require some time (up to several 

minutes) for RStudio to exit and recover from highly parallel implementations. During this 

phase, RStudio can prompt you in a window to terminate or close the RStudio session, which 

can be cancelled. Nevertheless, in certain cases, the R session might still eventually terminate 

or collapse with complete data loss of the .GlobalEnv. 

?TROUBLESHOOTING For details see Table 6. 

 

 

Calibration TIMING on a single thread for LR ~30s; FLR ~9 min; MR ~20min; multi-

threaded (n=11) MR ~8min  

Calibration can be performed at any later time point after all 5 x 5-fold CV (n=30; 1.0 – 5.5) 

base ML-classifier output scores are generated and saved.  



To replicate the presented results in (Table 2) the user can perform calibration with all 

investigated post-processing algorithms in steps 11-14 on the (raw) score output of any ML-

algorithm. A worked example for tRF is presented below. 

11. Source the R script (calibration_Platt_LR.R) that performs post-processing (Fig. 

1, step 11) using Platt scaling with logistic regression (LR) on the predicted (raw) 

scores of tuned RF. 

# Source the script 

source(“calibration_Platt_LR.R”) 

The script contains the function calibrate_LR() that outputs either 

probsCVfold.LR.K.k.RData (if save.metric.name.into.output.file = F) or 

probsCVfold.<brier|miscerr|mlogl>.LR.K.k.RData (if 

save.metric.name.into.output.file = T) files into a subdirectory that is comprised of the 

matrices of raw tRF scores and their LR calibrated probabilities (probs) for each (sub)fold. 

?TROUBLESHOOTING For details see Table 6. 

 

12. Likewise, to perform Platt scaling with Firth’s penalized LR source the R script 

(calibration_Platt_FLR.R) (Fig. 1, step 12). 

# Source the script 

source(“calibration_Platt_FLR.R”) 

This script contains the function calibrate_FLR() with maximum iteration (br.maxit) = 

10000. Analogous to calibrate_LR(), this function outputs either 

probsCVfold.FLR.K.k.RData or 

probsCVfold.<brier|miscerr|mlogl>.FLR.K.k.RData files into the predefined 

subdirectory. 

?TROUBLESHOOTING For details see Table 6. 



 

13. Source the R script (calibration_MR.R) to perform post-processing (Fig. 1, step 13) 

using ridge penalized multinomial logistic regression (MR) on the raw scores of tRF. 

# Source the script 

source(“calibration_MR.R”) 

Similarly to the previously described calibrator functions, this script contains the 

calibrate_MR() function that outputs either probsCVfold.MR.K.k.RData or 

probsCVfold.<brier|miscerr|mlogl>.MR.K.k.RData files into the out.path directory. 

?TROUBLESHOOTING For details see Table 6. 

 

14. We also provide a wrapper function calibrator_integrated_wrapper() around 

calibrate_LR(), calibrate_FLR(), and calibrate_MR(). Use this to apply all 

post-processing algorithms (LR, FLR and MR) to all ML-classifiers and tRFBS | ME | LL 

with a single function call.  

# Source the script 

source(“calibrator_integrated_wrapper_LR_FLR_MR.R”) 

calibrator_integrated_wrapper(out.path ="./tRF-ME-calibrator-integrated/", 

                              load.path.w.name = "./tRF/CVfold.", 

                              which.optimized.metric.or.algorithm = "miscerr", 

                 # c("brier", "miscerr", "mlogl", "vanilla", "svm", "xgboost") 

                              which.calibrator = "all", 

                 # c("Platt-LR", "Platt-FLR", "ridge-MR", "all") 

                              verbose.messages = F, 

                              brglm.ctrl.max.iter = 10000, # for FLR 

                              save.metric.name.into.output.file = T, 

                              parallel.cv.glmnet = T, # for MR 

                              setseed = 1234) 

The argument which.optimized.metric.or.algorithm accepts the following values: for 

tRF ("brier", "miscerr", "mlogl"), for vRF ("vanilla"), for SVM (e1071; "svm"), and 



for XGBoost ("xgboost"). The argument which.calibrator can be used to specify what 

type of post-processing (”Platt-LR”, “Platt-FLR”, ”ridge-MR”, ”all”) should be applied. 

PAUSEPOINT: Performance evaluation can be performed at any later time point on raw 

ML-classifier outputs (raw scores) or probability outputs of calibrated workflows. To carry 

out the evaluation only the .RData object of the outerfold test sets (1.0 – 5.0) are required.  

?TROUBLESHOOTING For details see Table 6. 

 

Performance evaluation TIMING < 30 s / ML-algorithm 

15. Source the R script performance_evaluator.R that invokes subfunctions for each 

performance metrics including (ME, AUC, BS and LL) by sourcing the 

evaluation_metrics.R script that carries out the performance evaluation on tRF’s 

(or any other ML-algorithms’) raw/uncalibrated scores and post-processed 

probabilities (probs). 

# Source the script for complete performance evaluation of tRF 

source("performance_evaluator.R") 

# Source the required evaluation metrics 

source("evaluation_metrics.R") 

 
Use the performance_evaluator() function (Fig. 1, step 14) that returns a list that includes 

misc.err, auc.HandTill, brier and mlogloss values for the respective scores or probs 

matrix objects. 

# Folder structure:  

# “./tRf/CVfold.1.0.RData … CVfold.5.5.RData # raw scores tRFBS|ME|LL 

# “./tRF-BS-calibrator-integrated/probsCVfold.brier.LR.1.0. … 5.0.RData 

# “./tRF-BS-calibrator-integrated/probsCVfold.brier.FLR.1.0 … 5.0.Rdata 

# “./tRF-BS-calibrator-integrated/probsCVfold.brier.MR.1.0 … 5.0.RData 

# “./tRF-ME-calibrator-integrated/probsCVfold.miscerr.<LR|FLR|MR>.1.0 … 5.0.RData 

# … 



# “./tRF-LL-calibrator-integrated/probsCVfold.mlogl.<LR|FLR|MR>.1.0 … 5.0.RData 

# …  

 

# Create concurrent lists of tRF.folder.path & tRF filename stumps to replicate  

# the above folder & file path structure 

tRF.opt.metrics.folder.name <- c("BS", "ME", "LL") 

tRF.folder.path <- as.list(rep(paste("tRF",  

                                     tRF.opt.metrics.folder.name,  

                                     "calibrator-integrated", sep = "-"), 

                               each = 3)) 

tRF.opt.metrics.RData <- rep(c("brier", "miscerr", "mlogl"), each = 3) 

calibrator.name <- c("LR", "FLR", "MR") 

tRF.fname.stump <- as.list(paste("probsCVfold",  

                                 tRF.opt.metrics.RData, 

                                 rep(calibrator.name, 3),  

                                 sep = ".")) 

 

# The actual function call of `performance_evaluator` using mapply()  

tRF.l.perfevals.all <- mapply(FUN = performance_evaluator,  

                              load.path.folder = tRF.folder.path,  

                              load.fname.stump = tRF.fname.stump) 

# Add column names 

colnames(tRF.l.perfevals.all) <- tRF.fname.stump  

tRF.l.perfevals.all  # matrix 

The code snippet above generates (in < 4 min) the complete performance evaluation of all 

tRF algorithms (3 [tRFBS | ME | LL] x 3 [calibratorLR | FLR | MR] x 4 [metricsME | AUC | BS | LL]), see 

also Table 2. The performance_evaluator() function can be used to evaluate the 

performance of other ML-classifiers and workflows after specifying the load.path.folder, 

load.fname.stump, and name.of.obj.to.load arguments. By default, the cases are 

reordered and scaled and all metrics (ME, AUC, BS, LL) are calculated. 

CRITICAL STEP: If raw scores or probabilities of SVM generated by the e1071 package are 

evaluated, it is essential to set the argument reorder.columns.svm.e1071 = TRUE because 



the 1-vs-1 coupling approach of e1071 changes the order of columns (class labels) for each 

K.k (sub)fold differently. Without re-matching the columns to the levels of y, the resulting 

performance metrics are extremely poor. 

?TROUBLESHOOTING For details see Table 6. 

 

TIMING 

Detailed timing information about each ML-classifier is provided in the Run-time column of 

Table 2. The most time-consuming part of the PROCEDURE section is Step 10, the tuning 

of the respective ML-classifier within the 5 x 5-fold nested CV scheme (Fig. 1, steps 7-10), 

which can vary from ~5 h up to 4-5 days depending on the respective algorithm and given 

hardware. 

 

Steps 1-2, NCBI GEO download: ~1 h 

Steps 3, pre-processing: ~1 h 

Steps 4 and 5, prerequisite data download: ~20 min 

Steps 6-10, internal validation of tuned RF (on 72 threads, AWS EC2 c5n.18xlarge): ~12-13h  

Step 11-14, calibration: - single thread: A) LR ~30 s ; B) FLR ~9 min ; C) MR ~20 min;  

 - multi-threaded (@ 11 threads): C) MR ~8 min 

Step 15, performance evaluation: <30 s / ML-classifier 

 

?TROUBLESHOOTING 

Troubleshooting advice is provided in Table 6. 

  



ANTICIPATED RESULTS  
 

In this section, the benchmarking results using the investigated ML-workflows are described 

and interpreted in detail corresponding to their order in Table 2.  

 

Random forests 

Vanilla RF (vRF) with default settings represented the computationally least expensive 

baseline method (<40 min). Nonetheless vRF achieved a ME of 4.8%, an AUC of 99.9% 

with corresponding BS and LL of 0.32 and 0.78 respectively (Table 2). BS was similar to 

SVM-LK but high compared with ELNET or boosting. Raw scores of vRF ranged between 0 

– 0.948. Platt scaling with LR and Firth-LR improved BS and LL by factors of 2-4, the latter 

yielded somewhat better numerical results. MR slightly outperformed both Platt variants and 

achieved remarkably low 10th and 9th overall BS (0.073) and LL (0.155) metrics, 

respectively. Notably, row sum scaling to 1 could alone improve BS by up to 20% while 

concurrently lowering LL by 0-10%.  

Tuned RF variants selected almost always ntree =1000-2000) trees, except for a few 

occasions (ntree =500) on nested subfolds. RF tuned for ME (tRFME) showed the 10th 

lowest error rate (3.5%) overall with 4th highest AUC (99.9%), while it had relatively high 

BS (0.35) and LL (0.86) similar to vRF (Table 2). Interestingly, BS- (tRFBS) and LL-tuned 

RF (tRFLL) both had substantially (57%) higher error rates of ~5.5%. Both tRFBS and tRFLL 

chose similarly small models consisting of ca. 100-500 CpG probes, whereas tRFME models 

were inflated upwards to 1,000-10,000 CpG probes. The range of raw score outputs was 

closer to 1 for tRFBS [0, 0.973] and tRFLL [0, 0.986] while tRFME had more confined [0, 

0.881] raw score outputs. Terminal node size tuning revealed that the default setting for 

classification (=1) was always superior to regression (=5) or to 1% and 10% of CpGs. Firth 

regression was marginally better than simple LR. Among these calibrated models tRFME 



showed the lowest error rates (3.7-4.2%) and highest AUCs (99.8-99.9%). Likewise, BS 

(0.062-0.086) and LL (0.15-0.156) metrics of tRFME benefited the most from calibration. The 

respective metrics of tRFBS (BS 0.086; LL 0.194-0.266) and tRFLL (BS 0.089; LL 0.205-

0.291) were markedly higher. After calibration, ME and AUC metrics often got slightly 

worse compared to the corresponding raw tRF model. This happened to all three tRF models, 

noticeably when using Platt scaling with LR or FLR. Worsening of ME and AUC metrics 

was typical of tRFME, which already had lower values of ME and AUC. Although tRFBS and 

tRFLL models had higher baseline ME they responded only marginally to calibration (if at all) 

in terms of ME improvement. On the other hand, BS and LL metrics were the major 

beneficiaries of post-processing with improvements by factors of ~2-6x independent of how 

the raw model was tuned during feature selection (Table 2). Calibration with MR resulted in 

the largest performance improvement for nearly all versions of tRF. Additionally, this was 

the only calibrator that could improve all metrics compared to the respective raw tRF model 

(except for ME of tRFLL and AUC of tRFBS). MR-calibrated tRFME (tRFME+MR) showed the 

fourth lowest ME (2.7%), and BS (0.046), while it achieved the 2nd best overall LL (0.095), 

and AUC (99.9%). 

 

Elastic net 

ELNET as a stand-alone method was tested in two scenarios. First, we fitted only the 1,000 

most variable CpG probes, which nevertheless resulted in the 8th lowest ME and 5th highest 

AUC overall, plus it produced lower BS and LL measures by a large margin compared to all 

other base classifiers trained on all 10,000 CpGs (Table 2). Almost exclusively 0 = ߙ was 

used for fitting except for a single subfold (1.3) for which 0.025 = ߙ with λ1SE = [0.0010 – 

0.0036] settings were used. Probability scores on outerfold test sets were in the range of 

[6.76×10-13, 0.99996].  



In the second scenario ELNET was applied to the full scope of 10,000 probes with outerfold 

test set probabilities in the range of [4.61×10-13, 0.99997]. It outperformed all other tuned-, 

but uncalibrated classifier algorithms across all metrics (Table 2). Despite the larger 10,000 

feature space 0 = ߙ (ridge) settings were selected for all outer folds. Optimal λ1SE ranged 

between 0.012 – 0.038 depending on the given (sub)fold. The limiting solution of an 0 = ߙ 

ELNET can be thought of as a SVM with all 10,000 CpG probes selected 9,78. In contrast, 

SVM implementations used 1,300-1,600 support vectors.  

Overall ELNET (10k) achieved the 3rd–5th best performance profile behind two-stage 

workflows of calibrated SVMs and tRFME+MR showing marginally higher ME (2.7%), BS 

(0.048), LL (0.109) and negligibly lower AUC (99.9%).  

 

Support vector machines  

RBF kernel SVM were fitted on the 100 most variable CpGs running 5-repeats of 10-fold CV 

grid search on C = 2-5:8 ; σ | γ = 2-10:4. Their CPU implementations showed optimal settings at 

C = 16 ; σ = 2-7 with ME = 9.1 – 9.3% (caret-ksvm) and C = 0.1; γ = 0.5 with ME = 14.3 –

15.1% (e1071). In contrast, GPU-accelerated RBFs fitted on all 10,000 CpGs showed 

extremely poor 5x CV ME ranging between 65.23 – 98.43% over the tuning grid of C = 10-5:3 

| 2-5:-1 and γ = 10-5:0 | 2-5:5. 

Therefore, we switched to linear kernel SVM (SVM-LK). Tuning all 8 available LK models 

in LiblineaR on the prototype subfold (1.1) using C = 10-3:3 grid and 5-fold CV showed that 

the accuracies of all models laid within a close range (92-96%). Individual model accuracies 

varied by less than 5% (except for L1-regularized LR) given that C was sufficiently large (C 

≥ 0.01) supporting the fact that SVM-LK solvers are indeed not very sensitive to C. Among 

these models, SVC by Crammer and Singer (CS)73,74,76,121 with C = 1000 performed the best 

(ME = 2.7%). Closely followed by L2-regularized L2-loss SVC and L2-regularized LR (ME 



= 2.9%) models. Hence the CS model was implemented into the nested-CV scheme and 

showed the 6th lowest ME (2.8%). It is of note, however, that CS only allows for class but 

not probability outputs. We also implemented SVM-LK using the e1071 package and tested 

whether weighting with inverse class frequency improved results as suggested in the 

literature71,72,79. To the contrary, it increased test errors by ~10% from 4.5% to 4.9%. SVM-

LK of e1071 behaved similarly to LiblineaR’s CS method (Table 2), achieving an ME = 

3.2% (7th lowest overall) while it had substantially worse BS (0.37) and LL (0.98; worst 

overall) calibration profiles than ELNET or XGboost comparable to vRF and tRF models. 

Raw probability estimates of SVM-LK ranged between [5.08×10-5, 0.9657]. Platt scaling 

with Firth regression was more effective for improving ME = 2.1% (lowest overall) while 

simple LR could more effectively improve BS (2nd) and LL (4th) by factors of 8x-9x 

respectively. Post-processing with LR and FLR spread out probabilities to the identical range 

of [2.22×10-16, 1]. The most comprehensive improvement for all metrics was achieved by 

MR (SVM-LK+MR). It reduced BS by a factor of 9.5 and LL by 11.5 resulting in the 2nd 

lowest ME (2.1%) and AUC (99.9%), lowest BS (0.039) and lowest LL (0.085). 

Correspondingly, MR-calibrated probabilities extended over the range [7.1×10-25 - 0.99999]. 

GPU-accelerated SVM-LK internally applied a 1-vs-all coupling framework with LL-

optimized global softmax to calculate multiclass probabilities. This yielded somewhat higher 

ME (3.3%; 9th overall) with 2nd best BS (0.056) and LL (0.144) among base classifiers 

behind ELNET. Nonetheless, training SVM-LKs on the GPU had the major advantage that it 

was 10-15x faster than on the CPU. Both e1071 and Rgtsvm identified C = 0.001 | 0.01 as 

optimal settings with the number of support vectors varying between 1,300-1,600 depending 

on the (sub)fold.  

 

Boosted trees 



Using XGboost’s default parameter settings of boosted decision trees (Table 3) achieved a 

dismal ME of ~16%. To our knowledge, there is no information available in the literature on 

how to initialize hyperparameters for gradient boosted trees when fitting high-throughput 

methylation array data. Thus, we conducted an extensive parameter search of XGBoost 

investigating the combination of all settings shown in Table 3 on the same prototyping 

subfold as before. Boosted models that used ME as an evaluation metric outperformed those 

using LL. XGBoost converged fast in nrounds < 200. Error rates of best performing 

parameter settings are presented in Table 4. The combination of all hyperparameters that 

showed the lowest MEs (0.045-0.066) on the prototype subfold (1.1) were implemented 

within an extra nested 3-fold CV scheme to find the optimal settings (Table 5). XGboost 

performed similarly to raw vRF and tRFLL | BS (Table 2) by showing an overall ME of 5.1%, 

AUC of 99.9% with 2nd lowest BS (0.15) and LL (0.43) among the investigated base ML-

classifiers. Raw probability scores of tuned XGBoost models spanned the [8.75×10-6 - 

0.9987] range. Also, among all the ML classifiers XGBoost responded the most to calibration 

with MR (XGBoost+MR), which revealed 4.6% ME while BS improved ~60% and LL 

approximately halved, while AUC slightly decreased. Platt-type post-processors improved 

BS slightly more efficiently than MR by a factor of 2 but LL only by 10-20%, while they 

concurrently worsened ME and AUC.  

 

Calibration algorithms 

Multinomial ridge regression demonstrated to be the best overall calibration method for all 

classifiers. It consistently outperformed Platt scaling variants for most evaluation metrics. 

Tuned RF and SVM-LK were most improved by calibration with MR. Their BS and LL were 

reduced by a factor of ~7.6-9 and ~9.5-11.5 respectively. Boosted trees benefited less 

markedly from ridge-calibration. 



It is of note that calibration changed ME and AUC of raw classifier algorithms on multiple 

occasions. Although such changes were generally small, involving only 1-2 cases (0.3-0.7%) 

this could result in quite substantial proportional alteration of these performance metrics as 

even such minor changes represented 8-20% of the baseline ME (2.5-5.1%) of raw models 

including boosting, vRF and tRF. For binary classification, post-processing does not change 

the most probable class of a sample 22, but this is not necessarily true in the multiclass setting 

27,44. In part this is caused by the way in which we applied the binomial calibrator functions 

in a 1-vs-all manner 44. Hence, they retained the ordering of scores within the class (i.e. over 

all samples) but not within rows (i.e. for each sample across all diagnostic classes). Thus, 

calibration can occasionally decrease the probability of the true class and result in a switch of 

the most probable class to another column or vice versa 22. Additionally, complete or quasi-

complete separation of classes in the p>>n feature space can lead to infinite calibrator model 

estimates, which can further complicate the above scenario of switching classes. 

  

External validation on DNA methylation data from The Cancer Genome Atlas 

Performance evaluation of vRF in a 5-fold nested CV setup on the external validation cohort 

based on the combination of thirty 450k DNA methylation microarray studies from TCGA 

with n=7,142 cases belonging to 46 classes using a feature space that was limited to the 32k 

most variable CpG probes across samples returned an ME of 0.135, AUC of 0.997, BS of 

0.44, and LL of 1.07. Post-processing vRF scores with MR showed (Fig. 2a-d) similar 

improvements to the vRF + MR workflow that was fitted on BTMD by substantially 

improving ME (0.067), BS (0.100), and LL (0.217) by factors of ~2x, 4.4x and 5x 

respectively while slightly improving AUC (0.998). These results indicate that the vRF + MR 

workflow and likewise all other presented workflows are robust, generalize well, and can be 

easily applied to other methylation data sets to train well performing classifiers. 



Summary 

We performed extensive comparative analyses of four well-established classifier algorithms 

including RF, ELNET, SVM and boosted ensemble trees in combination with Platt scaling 

and multinomial ridge regression to support the choice for optimal high-throughput DNA 

methylation data analysis with regard to well-calibrated probability estimates in highly 

multiclass settings.  

Tuned ELNET proved to be the best stand-alone algorithm. ELNET has the advantages that 

the lasso term can select a subset of CpG probes suitable for later biomarker identification 

development and that it is the most straightforwardly interpretable among the tested 

algorithms.  

The best overall two-stage workflow was MR-calibrated linear kernel SVM and it generated 

the best overall BS, LL and AUC metrics. The second-best workflow was MR-calibrated tRF 

while also being computationally the fastest CPU workflow (and corresponding to the 

method published in Ref. 1 and Ref. 2).  

Notably, linear kernel SVM and RF had worse BS and LL metrics than other classifiers, but 

they benefited the most from calibration. Although limited by the need to perform extensive 

parameter tuning, boosted trees achieved ME similar to uncalibrated vanilla and tuned RF but 

with better (second-best among base classifiers) BS and LL profiles.  

For calibration, multinomial ridge penalized regression was the most effective regardless of 

the primary classifier, and hence should be the method of choice. Platt scaling variants 

suffered from separation of the classes and were (as originally designed) most suited for 

SVM. 

Although all methods presented here were developed on a unique brain tumor methylation 

reference cohort and then applied to external TCGA data, the provided blueprint and insights 



are not limited to analyzing high-throughput biomedical data but can also be applied to any 

high-dimensional highly multiclass classification problem in other scientific fields.  

We suggest hyperparameter values for the investigated ML-workflows to limit the tuning 

grid and the resulting computational burden while maximizing potential yield in model 

performance when fitting multiclass DNA methylation data sets like BTMD. For ELNET 

ridge (0 = ߙ) or ridgelike (0.025 = ߙ) settings with λ1SE = [0.0010 – 0.0036] can be good 

starting values. To limit the tuning of linear kernel SVM the range of C = 10-3:-2 proved to be 

sufficiently large enough for the ME estimates to stabilize. Tuned RF variants selected 

almost always at least ntree =1000(-2000) trees, while mtry values varied in the ±10% 

vicinity of the default value ඥ݌. The default setting for classification of terminal nodesize 

(=1) was always superior. Tuning RF for ME is more effective than BS or LL but it results in 

larger models (feature space of pvarsel =1000-10000 CpG probes). XGBoost requires the most 

extensive tuning, however, it converges fast (nrounds<100) while using max_depth= 6, 

eta= 0.1, gamma= 0 or 0.01, colsample_bytree= 200 or 500 yielded the best performance 

on BTMD. 
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Data availability Data and code availability  

The described collection of R scripts and the associated data files provided in GitHub 

repositories (https://github.com/mwsill/mnp_training and 

https://github.com/mematt/ml4calibrated450k) are free software; you can redistribute it 

and/or modify it under the terms of the GNU General Public License as published by the Free 

Software Foundation version 2. All analyses were performed within either local 

(https://www.R-project.org/) or docker containerized (https://www.docker.com) versions 

(rocker; https://www.rocker-project.org or https://github.com/rocker-org.) of the R: A 

language and environment for statistical programming v3.3.3 - 3.5.2 using the R Studio IDE, 

a free and open-source integrated development environment for R (v1.0.136 or v1.1.463; 

https://www.rstudio.com/products/RStudio/). Unprocessed IDAT files containing complete 

methylation values for the reference set and validation set as published in Ref. 1, available 

for download from the NCBI Gene Expression Omnibus (GEO) under accession number 

GSE109381 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE109381). The 

variance filtered outer- (fold IDs: 1.0, 2.0, …, 5.0) and innerfold (fold IDs: 1.1, 1.2, …, 1.5; 

2.1, 2.2, …, 2.5; … 5.1, 5.2, … 5.5) training-test set pairs (altogether n=30; i.e. 1.0 – 5.5; Fig 

1, part 2, outer & inner CV loops) of .RData files can be generated through scripts on Github 

(https://github.com/mematt/ml4calibrated450k/blob/master/data/subfunction_load_subset_fil

ter_match_betasKk.R) or are directly downloadable (~5.3Gb) from our Dropbox 

(http://bit.ly/2vBg8yc). For details on how to prepare the 450K DNA methylation tumor 

samples from The Cancer Genome Atlas, please see the GitHub repository 

(https://github.com/mwsill/mnp_training/blob/master/tsne.R) and to download the source 

data visit the NCI GDC Legacy Archive (https://gdc-portal.nci.nih.gov/legacy-archive). The 

the combined TCGA cohort with vRF+MR predictions is available as .xlsx file 

(Supplementary dataset).   



Table 1 | Glossary 

Term Abbreviation Definition 

1-vs-1  Coupling approach to tackle multiclass problems. Classes are compared in a 1-against-1 fashion, particularly for support vector machines in the LiblineaR and e1071 packages. 
1-vs-all  Coupling approach that uses 1-against-the-rest comparison, which is applied by the GPU-accelerated support vector machine implementation in Rgtsvm package. 
AUC AUC Multiclass extension of the area under the Receiver Operating Characteristics curve (AUC) measure as defined by Hand and Till (2001) 

Batch effect  A source variation that occurs because measurements are influenced by laboratory or technical conditions. This can be crucial and result in biased conclusions when batch effects are confounded with one or 
more outcomes. 

Batch adjustment  If not corrected by suitable numerical algorithms, batch effects may distort subsequent analyses by increasing variability and covering or confounding the real biological signal122,123. There are various 
computational solutions to counteract batch effects such as ComBat, Surrogate Variable Analysis, and Functional normalization105,122-124. 

Benchmark  Is the method to compare the performance of computer programs or calculations using various settings or on different hardware. 

Brier score BS BS is a proper score function that was proposed by Glenn Brier in 1950 – initially to assess weather forecasts in terms of probability114. 
Calibrator / Post-processing 
algorithm 

 An algorithm that is applied to the output of a classifier to achieve better calibrated probability estimates such as Platt scaling using logistic regression, Firth’s penalized regression or multinomial ridge penalized 
regression. 

Calibrated probabilities  Probability estimates of machine learning classifiers that were post-processed (i.e. calibrated) using an additional algorithm such as Platt scaling. 

Classifier  Any collection of prediction rules learned by an ML-algorithm that provide class estimates. For the sake of simplicity, we call all investigated ML-algorithm and statistical models (RF, ELNET, SVM and 
XGBoost) a classifier.

Cross-Validation CV During CV the data set is randomly partitioned into complementary subsets then the analysis is performed on one subset (training set) and validated on the remaining subset (called the validation- or test set). To 
estimate variability of the model's predictive performance, usually multiple rounds of CV are carried out and the validation results are averaged over these rounds.

DNA methylation   DNA methylation is one of the principal mechanisms of epigenetic modifications that enzymatically adds methyl groups to the DNA4. 

Elastic net ELNET To consider the effect of many strongly correlated predictor variables Zou and Hastie 34 proposed the elastic net penalty to generalized linear models by combining the lasso (L1) and ridge (L2) penalties. Thus, 
ELNET can concurrently perform variable selection and shrink coefficients of correlated variables. 

Feature selection  Is method of machine learning algorithms to select the subset of relevant predictors/features to create robust classifiers. 

Firth’s penalized regression FLR Firth proposed a solution for the problem of separation in regular models by removing the first order bias term and replacing it with a penalized likelihood function using the Jeffreys invariant prior45. 

Graphical processing unit GPU A type of hardware within the computer specifically designed to accelerate the creation of images. 

Generalized linear model via 
penalized maximum likelihood 

GLMNET Glmnet is a package that fits a generalized linear model via penalized maximum likelihood67. The regularization path is computed for the lasso or elastic net penalty at a grid of values for the regularization 
parameter lambda (λ). 

Information leakage  Is when information outside the training set is provided (“leaked”) to the model. Hence, the model can learn or know some additional information. This can result in overly optimistic or invalid predictive 
models.  

Logarithmic loss LL Multiclass formulation of the logarithmic loss metric. 
Logistic regression LR Is a widely used statistical model, which is used to model relationships between the binary response variable and multiple explanatory variables82.  

Machine learning ML ML is a way to meaningfully process data using algorithms and statistical models to perform specific (un- or supervised) tasks without hardcoding explicit instructions. 
Misclassification error  ME Is defined by the proportion of incorrectly classified cases over all classes divided by the total number of cases. 

Multinomial ridge-penalized 
regression 

MR This is the multinomial special case of the generalized elastic net family with mixing parameter α = 0 9,67,69. 

Nested cross-validation  Nested CV is an extension of CV so that each initial partition of the data set (outerfold) containing the training set is further partitioned into a nested (innerfold) training- and validation set (Fig 1. part 2). It is 
particularly suitable to train a model in which hyperparameters also need to be optimized or to train a secondary model for e.g. calibration. The combination of the innerfold validation (i.e. calibration) sets is 
used for for training the post-processing algorithm.  

Overfitting  Is the production of an analysis that corresponds too closely to a particular set of data and fails to fit or predict future data sets reliably. The available data points have been overly used to optimize the decision 
boundary and to extract information from noise. Hence, an overfitted classifier does not generalise well to other data sets.

Platt scaling  Is a post-processing approach to transform raw classifier scores into a probability distribution over classes. The method was proposed by John Platt originally for support vector machines but can be applied to 
any classifier output 24. 

Random forests RF Are an ensemble method of bootstrap aggregated (bagged) binary classification trees, which were proposed by Leo Breiman in 200129.  
Raw scores  Uncalibrated (“raw”) score outputs of machine learning classifiers. 
Shrinkage methods  Is a subset of selection methods that fit models containing all p predictors and apply techniques that constrain or regularize the coefficient estimates by shrinking them towards zero117. 

Support vector machines SVM Is a supervised learning algorithm that was first introduced for binary classification by Cortes and Vapnik in 1995. SVM try to find the optimal separating hyperplane with the largest margin between two classes 
30. They are very popular for p >> n problems, especially for genomic data analysis9,31,32. 

The Cancer Genome Atlas TCGA A landmark cancer genomics program that molecularly characterized over 20,000 primary cancer and matched normal samples spanning 33 cancer types as a joint initiative between the National Cancer Institute 
and the National Human Genome Research Institute. 

Workflow  We refer to the combination of a machine learning classifier and the consecutive post-processing with a calibrator algorithm as a workflow. 

(E)xtreme Gradient Boosting XGBoost It is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable 80,81. 

 



Table 2 | Summary table of performance measures of tested classifier algorithms and calibrated workflows. 
Workflow Top 

10 
BS  

Classifie
r 

Run-time 
5x5 CV ( /fold) 

# of CPU 
threads 
[hardware] 

R package Calibrator Optimized  
Metric 

Hyperparameters ME AUC BS LL 

vRF  RF 38 min 1 [2] randomForest raw ME ntree =500, mtry=100 0.048 0.999 0.320 0.780 
vRF + LR  RF +30 s [LR] 1 [2] randomForest Platt LR (us) ME pvarsel = 200 0.052 - 0.106 0.289 
vRF + LR  RF " " randomForest Platt LR ME " 0.052 0.994 0.081 0.262 
vRF + FLR  RF +8-9 min [FLR] 1 [2] randomForest Platt Firth (us) ME " 0.048 - 0.105 0.193 
vRF + FLR  RF " " randomForest Platt Firth ME " 0.048  0.999 0.081 0.193 
vRF + MR 10 RF +7-8 min [MR] 11 [2] randomForest MR ME " 0.043  0.999 0.073 0.155 
tRFBS  RF 

12-13 h 
(16-25 min/fold)  

72 [5] 
randomForest raw BS ntree = [500, 1000, 1500, 2000] 0.055  0.999 0.272 0.673 

tRFME  RF randomForest raw ME mtry = [80, 90, 100, 110] 0.035  0.999 0.351 0.855 
tRFLL  RF randomForest raw LL pvarsel = [100, 200, 500, 1000,  0.055  0.999 0.273 0.672 
tRFBS+LR  RF +30 s [LR] 1 [2] randomForest Platt LR BS  , 2000, 5000, 7500, 10000] 0.056  0.997 0.086 0.266 
tRFME+LR 9 RF " " randomForest Platt LR ME nodesize = 1  0.042  0.998 0.062 0.156 
tRFLL +LR  RF " " randomForest Platt LR LL " 0.058  0.995 0.089 0.291 
tRFBS +FLR  RF +8-9 min [FLR] 1 [2] randomForest Platt Firth BS " 0.054  0.997 0.086 0.194 
tRFME +FLR 8 RF " " randomForest Platt Firth ME " 0.037  0.999 0.062 0.150 
tRFLL +FLR  RF " " randomForest Platt Firth LL " 0.056  0.999 0.089 0.205 
tRFBS +MR  RF +7-8 min [MR] 11 [2] randomForest MR BS " 0.051  0.997 0.082 0.176 
tRFME +MR 4 RF " " randomForest MR ME " 0.027  0.999 0.046 0.095 
tRFLL +MR  RF " " randomForest MR LL " 0.055  0.999 0.086 0.188 
ELNET (1k) 7 ELNET ~7.5 h  

(12-15 min/fold) 
31 [4] glmnet raw ME 0.025 | 0 = ߙ ; λ = [0.0010-0.0036] 0.032  0.999 0.059 0.131 

ELNET (10k) 5 ELNET ~72 h 
(2-2.25 h/fold) 

31 [4] glmnet raw ME 0 = ߙ ; λ = [0.012-0.038] 0.027  0.999 0.048 0.109 

SVM-LK  SVM ~28 h 
(50-70 min/fold) 

11 [3] e1071 raw ME C = 0.001 | 0.01 0.032  0.999 0.372 0.978 

SVM-LK+LR 2 SVM +30 s [LR] 1 [2] e1071 Platt LR ME " 0.025  0.999 0.043 0.112 
SVM-LK+FLR 3 SVM +8-9 min [FLR] 1 [2] e1071 Platt Firth ME " 0.021  0.999 0.044 0.135 
SVM-LK+MR 1 SVM +7-8 min [MR] 11 [2] e1071 MR ME " 0.021  0.999 0.039 0.085 
SVM-LK (GPU) 6 SVM ~5 h 1080Ti Rgtsvm-GPU global softmax ME C = 0.01 | 0.001 ; n.SV= 1300-1600 0.033  0.998 0.056 0.144 
SVM-CS6  SVM ~6 h 

(13-15 min/fold) 
7 [1] LiblineaR - ME C ≥ 0.001 0.028 - - - 

XGBoost  BT ~65-70 h  
(110-130 min/fold) 

72 [5] xgboost raw ME Table 3 & 4. 0.051  0.999 0.150 0.430 

XGBoost+LR  BT +30 s [LR] 1 [2] xgboost Platt LR ME " 0.055  0.991 0.087 0.452 
XGBoost+FLR  BT +8-9 min [FLR] 1 [2] xgboost Platt Firth ME " 0.053  0.993 0.089 0.384 
XGBoost+MR  BT +7-8 min [MR] 11 [2] xgboost MR ME " 0.046  0.999 0.092 0.247 
AUC: multiclass area under the ROC after Hand and Till (that can only be calculated if probabilities are scaled to 1), us: unscaled, rowsum ≠1, BS: Brier score, ME: misclassification error, LL: multiclass log loss, vRF 
and tRF: vanilla- and tuned random forests, LR: logistic regression, FLR: Firth-penalized LR with 10 000 iterations; MR: multinomial ridge penalized LR; ELNET: elastic net penalized multinomial logistic regression, 
1k and 10k: 1000 or 10000 most variable CpG probes, SVM: support vector machines, LK: linear kernel SVM, CS: Crammer and Singer (type 4) without probability output, n.SV: number of support vectors; XGBoost: 
extreme gradient boosting using trees as base learners, BT: boosted trees. Used [hardware]: i) CPU: [1] 8 threads on i7 7700k @ 4.2GHz ; [2] 12 threads on MacBook Pro 15” i9-8950HK @ 2.9 GHz or [3] i7-6850k @ 
3.6 Ghz; [4] 32 threads on i9-7960X @ 2.8 Ghz; [5] 72 threads on AWS EC2 c5n.18xlarge @ 3.5Ghz; ii) GPU: NVIDIA GTX 1080Ti. 

 



Table 3 | Combination of investigated XGBoost hyperparameter settings 
Booster parameter Parameter description Default Tested combination of 

settings 
nrounds number of iterations  

(equivalent to ntree of RF) 
100 100, 150, 200 

max_depth maximum depth of a tree 6 2, 3, 4, 5, 6, 8, 10 
eta learning rate 0.3 0.05, 0.1, 0.3 
gamma minimum loss reduction required to make a 

further tree partition 
0 0, 0.001, 0.01, 0.05, 0.1 

colsample_bytree subsample ratio of columns when 
constructing each tree 

1 0.01, 0.02, 0.05, 0.1, 0.2, 
0.4, 0.5, 0.6, 0.8, 1 

min_child_weight minimum sum of instance weight (hessian) 
needed in a child 

1 1, 2 

subsample subsample ratio of the training instance 1 (0.632), 1 
Parameter settings were compared on subfold 1.1 (n = 1720 cases). subsample = 0.632 is the special case to 
mimic RF’s bootstrapping. For further details of the listed booster parameters see the methods section or 
consult the XGboost help. 
 

Table 4 | Characteristics of best performing XGboost models on prototyping subfold 1.1 (n=1720) 
Error rate nbest_iter max_depth eta gamma colsample_bytree 
0.045  62 6  0.1  0  0.01 (100)  
0.052  90 6  0.1  0.01  0.02 (200)  
0.054  73 6  0.1  0  0.05 (500)  
0.066  107 6  0.1  0  0.2 (2000)  
min_child_weight and subsample were left at default = 1. nbest_iter is the optimal nrounds/ntrees achieving the highest 
accuracy found within the default nrounds=100 range using the built-in watchlist functionality of xgboost. 
 

Table 5 | XGboost hyperparameter combinations chosen in extra nested 3-fold CV on outerfolds 1.0 -5.0 
Outerfold Error rate nbest_iter max_depth eta gamma colsample_bytree 
- - - 6  0.1  0  0.01 (100)  
2.0  0.071 41  6  0.1  0  0.02 (200)  
3.0  0.051 66  6  0.1  0  0.02 (200)  
5.0 0.029 95 6  0.1  0  0.02 (200)  
1.0 0.050 90 6  0.1  0.01  0.02 (200)  
4.0 0.052 73 6  0.1  0  0.05 (500)  
- - - 6  0.1  0  0.2 (2000)  
min_child_weight and subsample were left at default = 1. nbest_iter is the optimal nrounds/ntrees achieving the highest 
accuracy found within the default nrounds=100 range using the built-in watchlist functionality of xgboost. 

 

  



 

Table 6 | Troubleshooting table 
Step Problem Possible reason Solution 
4 Objects (y, 

nfolds) are 
not found. 

Incorrect path or 
missing files. 

Check path; Download from GitHub 
(https://github.com/mematt/ml4calibrated450k/tree/master/d
ata). 

6-9 Error 
messages 
during 
package 
installation: 
package 
'foo' is not 
available 
(for R 
version 
x.y.z) 

Typo in code; R or 
Bioconductor is out 
of date. 

Check spelling, Check ?setRepositories, Update R and/or 
Bioconductor. 

10, 
15 

Error 
messages 
displayed; the 
program 
stops 

Missing 
performance 
metrics (typical for 
tRF) 

Load the script containing the evaluation metrics: 
source("evaluation_metrics.R"). 
Check in the R- or RStudio console whether the package 
HandTill2001 is installed and loaded into the global 
environment (.GlobalEnv). 

10 Error 
messages 
displayed; the 
program 
stops 

Any ML-classifier 
(run_nestedcv_<”M
L-algorithm”>): a 
custom matrix 
object was provided 
for betas.. = NULL 

betas..= argument requires the pre-variance filtered .RData 
files with betas.train-betas.test matrix pairs (Step 5).  
This data structure can be generated using the 
subfunction_load_subset_filter_match_betasKk() 
function in the identically named .R script 
(https://github.com/mematt/ml4calibrated450k/blob/master/d
ata/). 
 

11-
14 

Error in 
gzfile(file, 
“wb”): 
cannot open 
the 
connection. 
… 
cannot open 
compressed 
file 
`./…/.RData`
…  

Incorrect loading 
path or file name 
combination.  
`No such file or 
directory` 

Check the folder path argument load.path.w.name = 
"./tRF/CVfold.". Please note that the “dot” at the end of 
CVfold. is required for creating correct file.path. 
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Figure legends 

Figure-1 | Pipeline of methylation microarray data-based machine learning workflow 

development and comparison for well-calibrated personalized cancer diagnostics. Data 

preparation and pre-processing steps are described (Part 1) but our primary focus is on 

providing a blueprint for internal validation of algorithms using a nested resampling scheme 

and calibration (Part 2). The protocol is modular and provides flexible entry points at any 

step (red circles), however, the recommended entry is marked with a red triangle (step 6). 

Required R statistical programming packages are indicated in orange-framed boxes. Purple-

framed rectangles indicate data objects like Illumina methylation microarray outputs that are 

used in the 5 x 5 nested cross-validation (CV) scheme to be fitted by machine learning 

algorithms. Rectangles with light blue frames represent processes: either data preprocessing 

methods such as normalization or batch effect adjustment, or performance evaluation metrics. 

Dark blue and red boxes in the outer CV loop represent the outerfold (1.0; 2.0; … ; 5.0) 

training and test sets respectively. The numbers “1, 2, …, 5” within these boxes indicate the 

fold identification numbers of the 5-fold CV. Similarly, in the inner CV loop (1.1; 1.2; … ; 

1.5) , blue and red rectangles indicate the nested training and calibration sets. Light blue 

rectangles represent the unsupervised variance filtering (step 5) of the 10,000 most variable 

CpG probes that was performed on the respective training set of each 5 x 5-fold (n=30) ;the 

corresponding test/calibration set was subset (light blue arrows) accordingly in order to 

prevent information leakage. The collection of red rectangles (S 1.1 – 1.5) represent the 

combined calibration set of raw probability outputs (“raw scores”) that is used for training 

(i.e. tuning) the calibrator algorithms (green-framed rectangle). Green arrows represent post-

processing, that is the fitting of the tuned calibrator algorithm on the outerfold “raw scores”, 

to generate calibrated probabilities (green boxes; P 1.0 – 5.0). Dark grey rectangles indicate 

data- or code available in NCBI GEO or in our GitHub repositories. 



 

Figure-2 | External validation on various tumor types from the The Cancer Genome Atlas 

(TCGA). We generated the external validation cohort (n=7,147) by extracting and combining 

450k DNA methylation microarray data from 30 different TCGA projects. First, an 

unsupervised variance filtering was performed to reduce the feature space to the 32k CpG 

probes with highest standard deviation across samples, followed by a principal component 

analysis (PCA). Then t-distributed stochastic neighbor embedding (t-SNE)57,58 was applied to 

the first hundred PCs. Finally, the density-based algorithm for discovering clusters 

(DBSCAN) was applied to generate data-driven (“artificial”) methylation tumour classes. 

The (a) image shows the clustering of these projects based on t-distributed stochastic 

neighbor embedding (t-SNE) 58. The legend shows the color-coding and abbreviations of the 

30 TCGA projects that were used to create the external validation cohort. (b) shows the 

results of DBSCAN that identified k=46 distinct clusters (i.e. classes) embedded within the 

combined TCGA validation cohort. Distribution of cases over the k=46 classes is presented 

in the legend on the right. Cases that could not be associated with a cluster by DBSCAN were 

defined as outliers or noise (light grey triangles, n=344). (c) shows the cases (red triangles) 

that were misclassified during 5-fold nested CV on the t-SNE clustered TCGA cases by the 

multinomial ridge calibrated vRF (vRF + MR). The overall metrics of this workflow were 

similar to those seen on BTMD (Table 2). (d) shows the distribution of vRF+MR-calibrated 

probabilities for each case on the same t-SNE clustered image on a diverging color-coded 

scale [0 – blue; 0.5 – green; 1 – yellow] with steps by 0.1 alongside the numerical 

performance metrics of BS and LL in the upper right corner. 

  



Supplementary material legends 

 

Supplementary dataset | Provides the compiled external validation DNA methylation data 

of the 30 combined TCGA projects comprised of altogether n=7,148 cases. The included 

variables (9 columns) are as follows: the TCGA sample IDs (TCGA_ID), the sentrix IDs 

(Sentrix_ID) from illumina sentrix arrays containing positional information that might be 

useful, the coordinates derived by the t-SNE algorithm (tsne1; tsne2), type of tissue sample 

(material), abbreviation of the respective TCGA project (TCGA_Project), the “artificial” 

target labels (i.e. cluster) created by the DBSCAN algorithm (DBSCAN_cluster), the 

maximal probability estimates (max_calibrated) and the corresponding class labels 

(predicted) generated by multinomial ridge calibrated vRF (vRF + MR), which was the 

fastest CPU workflow among the investigated ML-workflows. 
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