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We describe perturbation theory (PT) models of galaxy bias for applications to photometric galaxy
surveys. We model the galaxy-galaxy and galaxy-matter correlation functions in configuration space and
validate against measurements from mock catalogs designed for the Dark Energy Survey (DES). We find
that an effective PT model with five galaxy bias parameters provides a good description of the 3D
correlation functions above scales of 4 Mpc=h and z < 1. Our tests show that at the projected precision of
the DES Year 3 analysis, two of the nonlinear bias parameters can be fixed to their coevolution values, and a
third (the k2 term for higher derivative bias) set to zero. The agreement is typically at the 2% level over
scales of interest, which is the statistical uncertainty of our simulation measurements. To achieve this level
of agreement, our fiducial model requires using the full nonlinear matter power spectrum (rather than the
one-loop PT one). We also measure the relationship between the nonlinear and linear bias parameters and
compare them to their expected coevolution values. We use these tests to motivate the galaxy bias model
and scale cuts for the cosmological analysis of the Dark Energy Survey; our conclusions are generally
applicable to all photometric surveys.

DOI: 10.1103/PhysRevD.102.123522

I. INTRODUCTION

The structure in the Universe at low redshift was seeded
by small perturbations in the early Universe. Although the
evolution of these tiny perturbations is well described in the
linear regime, their nonlinear evolution on small scales is an
active area of research.
There is a well-formulated framework of nonlinear per-

turbative expansions of these early fluctuations in both
Eulerian and Lagrangian space (see Refs. [1] and [2] for a
review). Major approaches include standard perturbation
theory (SPT) [3,4], Lagrangian perturbation theory (LPT)
[5,6], renormalized perturbation theory [7], and effective field
theory (EFT) [8–10]. Although these theories analytically
describe the relation between dark matter nonlinear density
perturbations and linear density perturbations, direct obser-
vations exist only for some biased tracers of the underlying
darkmatter field.These theories have therefore been extended
to describe biased tracers like galaxies [6,11–17] and applied
to data [18–25].

Another analytical approach for biased tracers is the halo
model framework (see Ref. [26] for a review). The halo
model assumes that all matter is bound in virialized objects
(halos) and relates clustering statistics to halos. This frame-
work can be extended to include the observed tracers—for
example, via the halo occupationdistribution (HOD) [27,28].
However, unlike the perturbation theory, the parametrization
of the HOD is tracer dependent and cannot be easily
generalized [29,30]. Moreover, the HOD only describes
the distribution of galaxies inside halos (known as the one-
halo term). To correctly describe the clustering of galaxies on
weakly nonlinear scales, between the nonlinear one-halo
regime and the large-scale linear regime, would require a
combination with perturbative models.
Several studies have tested the perturbation theory (PT)

of biased tracers in Fourier space (mostly focused on
redshift surveys) [31–35]. This study focuses on PT in
configuration space using standard perturbation theory
(SPT) and effective field theory (EFT). We use the 3D
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correlation functions, ξgg and ξgm, constructed from galaxy
and matter catalogs built from simulations. One of the key
results of our analysis is the minimum length scale for
which the correlation functions can be modeled with PT.
The mock catalogs used in this analysis are designed for

the Dark Energy Survey (DES). As described in Sec. III,
our focus is on Year 3 (Y3) DES datasets, for which we use
the mocks to validate our PT models. This dataset con-
stitutes the largest current imaging survey of galaxies, and
thus careful testing and validation that match its statistical
power are essential for extracting information in the non-
linear regime. We also project the 3D correlations from
mocks to the angular correlations (as measured by photo-
metric surveys), but since projection results in loss of
information, our 3D tests are more stringent. Since the PT
formalism is not tied to any particular tracer, and the scales
of interest are well above the one-halo regime (where
differences in galaxy assignment schemes matter), we
expect that our conclusions will have broad validity for
the lensing and galaxy clustering analyses from imaging
surveys.
We also aim to test the accuracy of different variants of

perturbation theory for cosmological applications with
DES. Although this analysis is at fixed cosmology, we
implement fast evaluations of the projected correlations so
that they can feasibly be used for cosmological parameter
analysis. Finally, we explore the possibility of placing well-
motivated priors on some of the PT bias parameters.
This paper is organized as follows: In Sec. II, we review

the existing perturbation theory literature and the models
used in this study. Section III describes the simulations used
for the measurements, and Sec. IV describes the analysis
choices. The results are presented in Sec. V, and we
conclude in Sec. VI.

II. FORMALISM

We summarize in this section the perturbation theory
formalism used in our study and the projected two-point
statistics relevant for surveys like DES. We are interested in
modeling both the matter and galaxy distributions.
Different perturbation theory approaches describe the
evolved galaxy density fluctuations δgðxÞ of a biased
tracer, g, in terms of the linear matter density fluctuations
δLðxÞ. Although formally the relationship between δgðxÞ
and δLðxÞ is on the full past Lagrangian path of a particle at
Eulerian position x, in this analysis we use the approxi-
mation that this relationship is instantaneous, meaning
δgðx; zÞ is related only to δLðx; zÞ at any redshift z.

A. Standard perturbation theory

Standard perturbation theory expands the evolved dark
matter density field δmðxÞ in terms of the extrapolated
linear density field, shear field, the divergence of the
velocity field, and rotational invariants constructed using

the gravitational potential. In Fourier space, this expansion
can be written as [1]

δmðkÞ ¼
X 1

n!

Z
d3k1
ð2πÞ3 � � �

d3kn
ð2πÞ3 ð2πÞ

3δDðk1…n − kÞFn

× ðk1;…;knÞδLðk1Þ…δLðknÞ: ð1Þ

Here Fnðk1;…;knÞ are the mode coupling kernels
constructed out of correlations between the scalar quantities
mentioned above, and δD is the Dirac delta function.
The form of the Fn kernels can be derived by solving
the perturbative fluid equations. For example, under the
assumptions of the spatially flat, cold dark matter model of
cosmology, F2 is well approximated by

F2ðk;k0Þ ¼
�
ð1þ αÞ þ μ

�
k
k0
þ k0

k

�
þ ð1 − αÞμ2

�
: ð2Þ

For Ωm < 1, α ¼ 3
7
ðΩmÞ−2=63 and μ ¼ k·k0

k·k0 . In this analysis,
we use the Einstein–de Sitter limit and assume α ¼ 3

7
.

1. Biased tracers

The overdensity of biased tracers is modeled as the sum
of a deterministic function of the dark matter density
(f½δmðxÞ�) and a stochastic component [εðxÞ] [36–38]:

δgðxÞ ¼ f½δmðxÞ� þ εðxÞ: ð3Þ

Given the galaxy sample and scales of our interest
(which are greater than the Lagrangian radius of the host
halos of our galaxy sample) in this analysis, we ignore the
stochastic contribution and focus on the deterministic
relation between the dark matter field and the biased tracer.
Assuming a local biasing scheme, this expansion is given
as [4]

δlocalg ðxÞ ¼
X∞
n¼1

bn
n!

δnmðxÞ: ð4Þ

However, as is well known [11,14], on small scales this
local biasing in Eulerian space rapidly breaks down.
Assuming isotropy and homogeneity, the bias parameters
have to be scalar, and hence the density of a tracer can only
depend on scalar quantities [15]. Therefore, nonlocal terms
can only be sourced by scalar quantities constructed out of
gravitational evolution of matter density (δm), shear
(∇i∇jΦ), and velocity divergences (∇ivj). Following the
procedure in Refs. [15,39,40], these contributions can be
rearranged into independent terms that contribute to the
overdensity of galaxies (δg) at different orders:
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δg ∼ fðδm;∇i∇jΦ;∇ivjÞ ∼ fð1ÞðδmÞ þ fð2Þðδ2m; s2Þ
þ fð3Þðδ3m; δms2;ψ ; stÞ þ � � � : ð5Þ

Here fi are the functions that contribute to the total
overdensity at ith order only, and ψ , s, and t are the scalar
quantities constructed out of shear and velocity divergen-
ces. When expanding the form of these functions fi up to
third order, we introduce un-normalized bias factors as
given in Eqs. (9) and (12) of McDonald and Roy [15]. In
Fourier space, the equivalent equation is Eq. (A14) of Saito
et al. [31].

B. Higher derivative bias

In the above section, the nonlocal terms included in the
expansion of galaxy overdensity come only from shear and
velocity divergences. However, those terms are still local in
the spatial sense, meaning that the formation of biased
tracers only depends on the scalar quantities discussed
above at the same position as the tracer. A short-range
nonlocality due to nonlinear effects in halo and galaxy
formation within some scale R will change Eq. (3) as
follows (according to Ref. [15]):

δgðxÞ ¼ f½δmðx0Þ�; ð6Þ

where generally jx − x0j < R, and R is usually of the order
of the halo radius. By Taylor-expanding this function, we
can see that the lowest-order gradient-type term that can
contribute to δg is proportional to ∇2δm. Hence, we can
further generalize our Eq. (5) to include this gradient-type
term as

δg ∼ fðδm;∇i∇jΦ;∇ivjÞ ∼ fð1ÞðδmÞ þ fð2Þðδ2m; s2Þ
þ fð3Þðδ3m; δms2;ψ ; stÞ þ fgradð∇2δmÞ þ � � � : ð7Þ

Note that in Fourier space, this term would scale
as k2δmðkÞ.

C. Effective field theory

Moreover, as discussed in Carrasco et al. [8], it is
theoretically inconsistent to use small-scale modes in the
integration over Fourier space. So, we use effective
integrated ultraviolet (UV) terms in the final expansion
for the power spectrum. This effective term also enters as a
k2 contribution in the large-scale limit. For example, if we
expand the nonlinear matter power spectrum in terms of the
linear power spectrum [PLðkÞ] using the PT framework, we
have to include this k2 piece usually written as c2sk2PLðkÞ,
where cs is the effective adiabatic sound speed.

D. Regularized PT power spectra

Note that the bias parameters that will appear in the
expansion of δg in Eq. (7) will be unobservable “bare bias”

parameters and need not have the physical meaning usually
attributed to the large-scale tracer bias (for example, the
measurable responses of galaxy statistics to a given
fluctuation). We refer the reader to McDonald and Roy
[15] for the details on the renormalization of these “bare
bias” parameters by combining all the parameters with
similar power spectrum kernels. After renormalizing, we
can write the tracer-matter cross spectrum (Pgm) and
autopower spectrum of the tracer (Pgg) as

PgmðkÞ ¼ b1PmmðkÞ þ
1

2
b2Pb1b2ðkÞ þ

1

2
bsPb1s2ðkÞ

þ 1

2
b3nlPb1b3nlðkÞ þ ðbhd∇2δ

þ c2s Þk2Pgrad
mm ðkÞ; ð8Þ

PggðkÞ ¼ b21PmmðkÞ þ b1b2Pb1b2ðkÞ þ b1bsPb1s2ðkÞ

þ b1b3nlPb1b3nlðkÞ þ
1

4
b22Pb2b2ðkÞ þ

1

2
b2bsPb2s2ðkÞ

þ 1

4
b2sPs2s2ðkÞ þ b1ð2bhd∇2δ

þ c2s Þk2Pgrad
mm ðkÞ: ð9Þ

Here, the bias parameters like b1, b2, bs, and b3nl are the
renormalized bias parameters which are physically observ-
able. The bias parameter bhd∇2δ

is the higher-derivative bias
parameter, and c2s is the sound-speed term as described by
EFT (Sec. II C). As for the kernels, Pb1b2ðkÞ is generated
from the ensemble average of hδmδ2mi, Pb1s2ðkÞ is generated
from hδms2i, and Pb1b3nl is generated from a combination of
the ensemble average between δm and arguments of fð3Þ
[see Eq. (7)] that contribute at the one-loop level [31]. For
the exact form of the above kernels, see the Appendix A of
Saito et al. [31].
Instead of expanding the Eulerian galaxy overdensity

field directly as we have done above, we can also predict
the galaxy overdensity by evolving the Lagrangian galaxy
overdensity (see Matsubara [16] for detailed calculations).
These two approaches should evaluate to the same galaxy
overdensity at a given loop order [16,31,40–42]. By
equating the two approaches and neglecting shear-like
terms in the Lagrangian overdensity, as they are small
for bias values of our interest (see Sec. Vand Ref. [43]), we
get the prediction of the coevolution value of the renor-
malized bias parameters: bs ¼ ð−4=7Þ × ðb1 − 1Þ and
b3nl ¼ ðb1 − 1Þ [16,31].1 This coevolution picture naturally
describes how gravitational evolution generates the non-
local biasing even from the local biased tracers in a high-
redshift Lagrangian frame.
We use different choices of Pmm and Pgrad

mm in our
analysis. These choices will be detailed in Sec. IVA.

1Note that our coevolution value of b3nl differs from that of
Saito et al. [31], as we include their prefactor of 32=315 in our
definition of Pb1b3nl.
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E. 3D statistics to projected statistics

We are interested in the cosmological applications of
imaging surveys via projected correlation functions.
Projections of the 3D correlation functions ξgg and ξgm
to angular coordinates in finite redshift bins give the
projected correlations known as wggðθÞ and γtðθÞ, respec-
tively. We estimate the covariance of these projected
statistics for the DES-Y3-like survey. This allows us to
estimate the angular scales for which our perturbation
theory model is a good description for DES-Y3-like
sensitivity.

1. Galaxy-galaxy clustering

The angular correlation function wggðθÞ is given by the
Limber integral

wggðθÞ ¼
Z

∞

0

dχχ4ϕ2ðχÞ
Z

∞

−∞
drkξgg

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2k þ χ2θ2

q �
; ð10Þ

where χ is the comoving distance and ϕðχÞ is the
normalized radial selection function of the lens galaxies,
related to the normalized redshift distribution of lens
galaxies [ngðzÞ] as ϕðχÞ ¼ ð1=χ2Þðdz=dχÞngðzÞ.
To simplify the above equation and ones that follow, the

inner integral will be denoted by wp
gg ¼

R
∞
−∞ drkξgg×� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2k þ χ2θ2
q �

. A similar equation applies for the gal-

axy-matter correlation as well. The integral limits for this
projection integral are from −∞ to∞. Though our analysis
of survey data is over a finite projection length, as described
below in Sec. III, our thinnest tomographic bin spans
redshift 0.3 < z < 0.45—a distance of over 500 Mpc=h.
Moreover, as our analysis uses true galaxy redshifts, there
is no peculiar velocity effect on projected integrals [44].
Therefore, ignoring the finite bin size introduces negligible
errors in our correlation function predictions.
Substituting the radial selection function in terms of the

galaxy redshift distribution and using the above definition
of wp, the projected galaxy clustering, wggðθÞ, can be
expressed as

wggðθÞ ¼
Z

∞

0

dz
dz
dχ

n2gðzÞwp
ggðχθÞ: ð11Þ

2. Galaxy-galaxy lensing

The galaxy-galaxy lensing signal (γt) is related to the
excess surface mass density (ΔΣ) around lens galaxies by

γtðθ; zl; zsÞ ¼
ΔΣðθ; zlÞ
Σcritðzl; zsÞ

; ð12Þ

where Σcrit is the critical surface mass density given by

Σcritðzl; zsÞ ¼
c2

4πG
DAðzsÞ

DAðzlÞDAðzl; zsÞ
: ð13Þ

Here DA is the angular diameter distance, zl is the redshift
of the lens, and zs is the redshift of the source.
The surface mass density at the projected distance

rp ¼ χθ can be related to the projected galaxy-matter
correlation function by

Σðrp; zÞ ¼ hΣi þ ρmðzÞwp
gmðrp; zÞ; ð14Þ

where hΣi is the mean surface density,

hΣi ¼
Z

zmax

zmin

dz
dχ
dz

ρmðzÞ; ð15Þ

and ρmðzÞ ¼ Ωm;0ð1þ zÞ3ρcrit;0 is the mean density of the
Universe.
Therefore, the excess surface density is

ΔΣðrp; zÞ ¼ ρmðzÞðw̄p
gmðrp; zÞ − wp

gmðrp; zÞÞ ð16Þ

¼ ρmðzÞΔwp
gmðrp; zÞ; ð17Þ

where w̄p
gmðrp; zÞ is given as

w̄p
gmðχθ; zÞ ¼ 2

ðχθÞ2
�Z

χθ

0

drprpw
p
gmðrp; zÞ

�
: ð18Þ

Now, combining all the above equations, the galaxy-
galaxy lensing signal for lenses at redshift zl and sources at
redshift zs is

γtðθ; zl; zsÞ ¼
Δwp

gmðχθ; zlÞρmðzlÞ
Σcritðzl; zsÞ

: ð19Þ

Averaging this signal with the redshift distribution of
sources (nsðzsÞ) would give

γtðθ; zlÞ ¼ Δwp
gmðχθÞρmðzÞ

Z
∞

0

dzsnsðzsÞ
1

Σcritðzl; zsÞ
:

ð20Þ

Finally, averaging this signal with the redshift distribu-
tion of lens galaxies (ngðzlÞ) gives

γtðθÞ ¼
Z

∞

0

dzlρmðzlÞngðzlÞΔwp
gmðχθÞ

×
Z

∞

0

dzsnsðzsÞ
1

Σcritðzl; zsÞ
: ð21Þ

The tangential shear γtðθÞ is nonlocal and depends on the
correlation function at all scales smaller than the transverse
distance χθ [Eq. (18); see MacCrann et al. [45] and
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Baldauf et al. [46] for a detailed analysis]. Perturbation
theory is not adequate for modeling these small scales. We
therefore add to γt a term representing a point-mass con-
tribution: B=θ2, where B is the average point mass for a
sample of lens and source galaxies and is treated as a free
parameter. Any spherically symmetric mass distribution
within the minimum scale used is captured by the point-
mass term, thus removing our sensitivity to these scales. Our
final expression for the galaxy-galaxy lensing signal is

γtðθÞ ¼ γtheoryt ðθÞ þ B
θ2

; ð22Þ

with γtheoryt given by Eq. (21).

III. SIMULATIONS AND MOCK CATALOGS

The full DES survey was completed in 2019 and covered
∼5000 square degrees of the South Galactic Cap. Mounted
on the Cerro Tololo Inter-American Observatory (CTIO)
4 m Blanco telescope in Chile, the 570 megapixel Dark
Energy Camera (DECam) [47] images the field in grizY
filters. The raw images are processed by the DES Data
Management (DESDM) team [48,49]. The Year 3 (Y3)
catalogs of interest for this study span the full footprint of
the survey but with fewer exposures (and depth) than the
complete survey. About 1 × 107 galaxies have shear and
photometric redshift measurements that enable their use for
cosmology. For the full details of the data and the galaxy
and lensing shear catalogs, we refer the readers to
Refs. [50] and [51].
We use DES-like mock galaxy catalogs from the MICE

simulation suite in this analysis. The MICE Grand
Challenge simulation (MICE-GC) is an N-body simulation
run in a cube with side length 3 Gpc=hwith 40963 particles
using the Gadget-2 code [52] with a mass resolution of
2.93 × 1010 M⊙=h. Halos are identified using a friend-of-
friends algorithm with linking length 0.2. For further details
about this simulation, see Fosalba et al. [53]. These halos
are then populated with galaxies using a hybrid subhalo
abundance matching plus halo occupation distribution
(HOD) approach, as detailed in Carretero et al. [54].
These methods are designed to match the joint distributions
of luminosity, g − r color, and clustering amplitude
observed in SDSS [30]. The construction of the halo
and galaxy catalogs is described in Crocce et al. [55].
MICE assumes a flat ΛCDM cosmological model with
h ¼ 0.7, Ωm ¼ 0.25, Ωb ¼ 0.044, and σ8 ¼ 0.8.
We use two galaxy samples generated from the full

MICE galaxy catalog. A DES-like lightcone catalog of
redMaGiC galaxies [56] with average photometric errors
matching DES Y1 data is generated. We also use another
galaxy sample (Maglim hereafter) based on cuts on galaxy
magnitude only. This sample is created by imposing a cut
on the simulated DES i-band-like magnitudes (mag-i) of
MICE galaxies [57]. The galaxies in this Maglim sample

follow the conditions mag-i > 17.5 and mag-i < 4zþ 18,
where z is the true redshift of the galaxy. This definition
results from a sample optimization process when deriving
cosmological information from a combined clustering and
lensing analysis [57]. Both simulated galaxy samples
populate one octant of the sky (ca. 5156 deg2), which is
slightly larger than the sky area of DES Y3 data (approx-
imately 4500 deg2 [51]). From these simulations, we
measure the nonlinear bias parameters at fixed cosmology,
which we use as fiducial values for the DES galaxy
sample(s).
As detailed in later sections, we divide our galaxy

samples into four tomographic bins with edges [0.3,
0.45, 0.6, 0.75, 0.9]. These bins are the same as the last
four of the five tomographic bins used in the DES Y1
analysis [58,59]. We do not fit to the first tomographic bin
of DES Y1 analysis (which is 0.15 < z < 0.3), because we
are limited by the jackknife covariance estimate (see
Sec. IV D and Appendix A). These tomographic bins cover
a similar redshift range as planned for the DES Y3 analysis.
Note that we bin our galaxies used in this analysis using
their true spectroscopic redshift. Therefore, there is no
overlap in the redshift distribution of galaxies between two
different bins. After all color, magnitude, and redshift cuts,
there are 2.1 × 106 redMaGiC galaxies and 2.0 × 106

Maglim galaxies (downsampled to have approximately the
same number density as redMaGiC) used in this analysis.
The normalized number densities of two catalogs are
shown in Fig. 1.
We note that although both the mock catalogs used in

this analysis are calibrated with DES Y1 data, we do not
expect our tests and conclusions to change with the Y3
mock catalog. Since our tests are based on the true redshifts
of the galaxies, we are not sensitive to photometric redshift
uncertainties, exact tomography choices, or color selection
of the galaxies.

FIG. 1. Comparison of normalized number density of galaxies
corresponding to redMaGiC and Maglim samples. The dashed
vertical lines denote the tomographic bin edges.
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IV. ANALYSIS

A. Data vector and models

Ourmain analysis involves the auto- and cross-correlation
functions for galaxies and matter: ξmm, ξgm, and ξgg. Our
focus is on galaxy bias, so we would like to minimize
artifacts that are specific to the clustering of matter, in
particular sampling effects due to the finite volume of the
simulations (see Appendix A). Therefore, we fit our theory
models to the ratios: ξgg=ξmm and ξgm=ξmm so that the galaxy
two-point functions are analyzed relative to the matter-
matter correlation (see Appendix B and Fig. 12 for an
analysis on correlation functions ξgm and ξgg directly). We
consider three models to describe these measured ratios:

A∶
ξgm
ξmm

¼ b1;

B∶
ξgm
ξmm

¼ F ½b1P1−loop
mm ðkÞ þ P1−Loop

gm ðkÞ þ k2b∇2δPlinðkÞ�
F ½PHF

mmðkÞ�
;

C∶
ξgm
ξmm

¼ F ½b1PHF
mmðkÞ þ P1−Loop

gm ðkÞ þ k2b∇2δP
HF
mmðkÞ�

F ½PHF
mmðkÞ�

;

ð23Þ

where, F denotes the Fourier transform, and P1−Loop
gm ðkÞ is

the effective sum of all the terms dependent on b2, bs, and

b3nl in Eq. (8). An analogous form of this expansion can be
derived for PggðkÞ. The term P1−Loop

mm ðkÞ is the one-loop PT
estimate of the matter-matter correlation function. Model A
is the linear bias model, and the numerator in Model B is
similar to the model considered by previous analyses using
the EFT description of clustering [10,24,25,60–63]. In this
study,we also analyzeModelC,which differs fromModelB
in the use of the full nonlinear matter power spectrum using
halofit (as opposed to the one-loop PT in Model B) in the
numerator. This model is motivated by completely resum-
ming thematter-matter autocorrelation term to all orders as it
uses the fully nonlinear fits to simulations such as halofit
[64]: PNL

mm ¼ PHF
mm. We make a similar choice for Pgrad

mm ðkÞ
[65]. The bias term, b∇2δ, is the sum of both the higher-
derivative bias term (bhd∇2δ

) and the sound-speed term (c2s )
for PgmðkÞ. The sound-speed term is zero in Model C,
as the fully nonlinear matter power spectra include any
correction from the UV divergent integrals. Hence, in
Model C, b∇2δ ¼ bhd∇2δ

. Unlike Model C, in Model B
the sound-speed term is not zero, so there we denote
b∇2δ ¼ bhd∇2δ

þ c2s .
The choices of different power spectra for the three

models are given in Table I.
Note that the denominators of Models B and C implicitly

assume that halofit is a good description of the matter-
matter correlation on the scales we are interested in. We
check this assumption using the matter density field from
the MICE simulations. The residuals of the matter-matter
correlation functions for both halofit and EFT are shown in
Fig. 2. The EFT theory curve is predicted by fitting the
measured ξmm on scales larger than 4 Mpc=hwith themodel
ξmm ¼ F ðP1−Loop

mm ðkÞ þ c2sk2PlinðkÞÞ. We can see that EFT
shows deviations at the 5% level, while halofit is a good
description of ξmm over all scales and redshifts—typically
within 2% for the bins with percent-level error bars on the
measurement.

TABLE I. Variations in the choice of power spectra elements in
the three models considered here. Based on the analysis of the
three models, we will use Model C as our fiducial model (see
Sec. V).

Models Pmm Pgrad
mm Remarks

Model A PHF
mm 0 Linear bias model

Model B P1−loop
mm PL One-loop EFT model

Model C PHF
mm PHF

mm Fiducial model

FIG. 2. Residuals of the matter-matter correlation function for the four tomographic bins (from left to right) when using halofit and
EFT as the theoretical model. The difference between the model and measurements from the MICE simulations is plotted. Halofit
performs significantly better on small scales. The reduced χ2 for halofit using the data points above 4 Mpc=h (outside of the gray shaded
regions) are 0.36, 0.53, 0.49, and 0.55 for the four tomographic bins. The red and blue points are staggered for clarity.
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B. Goodness of fit

To assess the goodness of fit of the models, we use the
reduced χ2. For a good fit to nd number of data points,
using a model with nv free parameters, we expect the
χ2=d:o:f: to have a mean of 1 and a standard deviation offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=d:o:f:

p
, where d:o:f: ¼ nd − nv is the total number of

degrees of freedom.

C. FAST-PT

The mode coupling kernels that appear in perturbative
terms, such as the higher-order bias contributions in Eq. (8),
in Fourier space take the form of convolution integrals. For
example, in standard perturbation theory, we expand the
evolved overdensity field of tracers in terms of the linear
overdensity, up to third order. This results in terms in the
power spectrum that are proportional toP22ðkÞ (given by the
ensemble average hδð2Þδð2Þi) andP13ðkÞ (givenby hδð1Þδð3Þi).
These kernels can be efficiently evaluated using fast Fourier
transform techniques presented in Refs. [66–68], if one
transforms these convolution integrals to the prescribed
general form. We use the publicly available Python code
FAST-PT as detailed in McEwen et al. [66] to evaluate all the
PT kernels, which is also tested against a C version of the
code, CFASTPT.2

D. Covariance estimation

We estimate a covariance for the data vector by applying
the jackknife method [69,70] to the simulation split intoNjk

number of patches.We use the k-means clustering algorithm
to get the patches, which roughly divides the octant of sky
occupied by our galaxy samples intoNjk equal-area patches.
We use these same patches for covariance calculation in each
of our tomographic bins. The accuracy of the estimated
covariance increaseswith increasingNjk and for scalesmuch
smaller than the size of an individual patch [71,72]. As the
total area of themock catalogs is fixed, changing the number
of jackknife patches changes each patch’s size.
In order to provide constraints on both nonlinear and linear

bias parameters, the analysis requires a covariance estimate
that correctly captures the auto- and correlations between
radial bins over both small and large scales to provide
constraints on both nonlinear and linear bias parameters.
We find thatweneed to limit the analysis to z > 0.3 to achieve
stable covariance estimates. For this reason,wedonot analyze
the MICE catalog over the first tomographic bin used in the
DES-Y1 analysis (0.15 < z < 0.3).
We estimate the jackknife covariance using Njk ¼ 300

patches. For the lowest redshift bin (0.3 < z < 0.45), this
results in an individual jackknife patch with a side length of

approximately 100 Mpc=h. We determine the maximum
scale included in our analysis by varying the number of
patches and comparing the estimated errors at different
scales. We find the covariance estimate to be stable below
40 Mpc=h and use this as our maximum scale cut. These
tests are detailed in Appendix A.
We explicitly remove the cross covariance between

tomographic bins, as there is negligible overlap in the
galaxy samples of two different redshift bins, and as the
length scales of interest are much smaller than the radial
extent of the tomographic bins. We correct for biases in the
inverse covariance (when calculating the reduced χ2) due to
the finite number of jackknife patches using the procedure
described in Hartlap et al. [73].
Note that Fig. 11 shows the signal-to-noise ratio for these

3D statistics for each radial bin for our fiducial covariance.

V. RESULTS

A. Measurements

We split the galaxy sample into four tomographic bins,
following the DES Year 1 analysis (DES Collaboration
et al. [58]). The redshift ranges for the four bins are
0.3 < z < 0.45, 0.45 < z < 0.6, 0.6 < z < 0.75, and
0.75 < z < 0.9.
The auto- and cross-correlations measured with the

galaxy and matter catalogs in the MICE simulations are
shown in Fig. 3. We use the Landy-Szalay estimator [74] to
estimate the correlation functions ξgg, ξgm, and ξmm for all
the Njk jackknife patches (see Sec. IV D). We create a
random catalog with 10 times the number of galaxies in
each tomographic bin and with number densities corre-
sponding to a smoothed galaxy number density. We then
use the ratios ξgg=ξmm and ξgm=ξmm to create our data-
vector and jackknife covariance. We use the public code
Treecorr [75] to measure the cross-correlations. We jointly
fit these ratios ξgg=ξmm and ξgm=ξmm with PT models
mentioned in Sec. IVA, as described next.

B. Results on fitting the 3D correlation functions

As a first analysis step, we fit the correlation function
ratios measured from the simulation with the three models,
A, B, and C [Eq. (23)], described in Sec. IVA. Model A
only has one free parameter, linear bias b1, while Model B
and C in principle have b1, b2, bs, b3nl, and b∇2δ as free
parameters. Here b∇2δ is the higher-derivative bias param-
eter. Among these parameters, by using the equivalence of
Lagrangian and standard Eulerian perturbation theory (see
Sec. II D), we can write bs and b3nl in terms of b1 as their
coevolution value. Therefore, the simplest complete one-
loop model has b1, b2, and b∇2δ as free parameters. We fit
our measurements while varying the number of free
parameters in both Model B and Model C, to find the
minimum number of parameters needed to describe the
measured correlation function for different scale cuts.

2
FAST-PT is available at https://github.com/JoeMcEwen/FAST-

PT, and CFASTPT is available at https://github.com/xfangcosmo/
cfastpt.
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We analyze the MICE data vector with two different
minimum scale cuts: 8 Mpc=h and 4 Mpc=h. In Fig. 4, we
compare the marginalized constraints on b∇2δ for Models B
and C for each redshift bin. The marginalized constraints on
b∇2δ are consistent with zero for Model C for all redshift
bins and both scale cuts. In contrast, Model B shows
significant detection of the b∇2δ term. It appears that the
EFT term mostly captures the departure of the matter
correlation function model from the truth.
Figure 5 compares the goodness of fit of different models

by showing the reduced χ2 estimated from the best fit of
various model choices (as given in the x axis). We find that
using Model C with only b1 and b2 as free parameters gives
a reduced χ2 consistent with 1 for all redshift bins (with bs
and b3nl fixed to their coevolution value and b∇2δ ¼ 0).

Hence, we conclude that adding these as free parameters is
not needed to model the measurements on the scales
considered here. In what follows, we consider this model
choice of using one-loop PT with free b1 and b2 as our
fiducial model. We also compare our fits to Model A, with
free linear bias parameter b1. The residuals of the observ-
ables—i.e., the ratios ξgg=ξmm and ξgm=ξmm—are shown in
Fig. 6 for a scale cut of 8 Mpc=h, and in Fig. 7 for a
scale cut of 4 Mpc=h. Note that halofit describes the
matter-matter autocorrelation above scales of 4 Mpc=h at
about the 2% level (see Fig. 2). In these and following
figures, we refer to ξmodel

gg ¼ ξgg=ξmm and ξmodel
gm ¼ξgm=ξmm.

Our fiducial model fits the simulations on scales above
4 Mpc=h and z < 1 within 2%, while the linear bias model
performs significantly worse.
We also show the residuals of our fits to the Maglim

sample in Fig. 7. We find that similar to the redMaGiC

FIG. 3. Measurements of the ratio of the 3D galaxy-matter correlation functions (ξgg) and the matter-matter autocorrelation (ξmm) for
the four tomographic bins of the redMaGiC galaxy sample in MICE simulations. The error bars are estimated from jackknife
covariances. We fit PT models to the ratios ξgg=ξmm and ξgm=ξmm, as shown in subsequent figures.

FIG. 4. The effective field theory parameter (b∇2δ) estimated
from two different models, described in Eq. (23), at two different
scale cuts and using the redMaGiC galaxy sample. For example,
the red points are the result of a joint analysis of ratios ξgg=ξmm

and ξgm=ξmm (see Fig. 3) above 8 Mpc=h using Model C with
free b1, b2, and b∇2δ parameters for each tomographic bin. We see
that when the matter-matter correlation function is described by a
nonlinear halofit (Model C), the marginalized EFT terms are
consistent with zero for all redshifts and both scale cuts.

FIG. 5. The reduced χ2 for various choices of free parameters in
themodels described in Eq. (23), when fitting the 3Dmeasurements
of the redMaGiC galaxy sample at scale cuts of 8 Mpc=h and
4 Mpc=h. The gray band denotes the expected error in the reduced
χ2 for a given number of degrees of freedom.We use Model C with
two free parameters, b1 and b2 as our fiducial model (with bs and
b3nl fixed to their coevolution value and b∇2δ ¼ 0).
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sample results, the fiducial model describes the measure-
ments within about 2% above scales of 4 Mpc=h.

C. Relations between bias parameters

In this section, we revisit the approximation that the
nonlinear bias parameters bs and b3nl follow the coevolu-
tion relation. The equivalence of the local Lagrangian and
nonlocal Eulerian description predicts bs ¼ −4=7ðb1 − 1Þ
and b3nl ¼ ðb1 − 1Þ (see Sec. II D). We test this assumption

by freeing up these parameters, in addition to b1 and b2,
and refitting the measurements with these extended models.
Figure 8 shows the relation between the nonlinear bias
parameters and b1 at the two scale cuts and for both
redMaGiC and Maglim galaxy samples. The points in
each panel for each scale cut correspond to the four
tomographic bins. The top panel shows the relation
between b1 and b2 (when the parameters bs and b3nl are
fixed to their coevolution values), the middle panel shows

FIG. 6. Residuals ½ðdata − best-fitÞ=best-fit� after performing a joint fit to the measurements of 3D statistics in the redMaGiC galaxy
sample in the four tomographic bins shown in Fig. 3 withModel A (linear biasmodel) and our fiducialmodel,Model C (one-loop PTmodel,
with free b1 and b2 bias parameters for each bin, and bs and b3nl fixed to the coevolution value, b∇2δ ¼ 0), and using halofit for matter-matter
autocorrelation. Panels in the upper row show the residuals for the galaxy-galaxy correlation function, and panels in the lower row show the
residuals for the galaxy-matter correlation function. Note that we refer to ξmodel

gg ¼ ξgg=ξmm and ξmodel
gm ¼ ξgm=ξmm. Model C is an adequate

description of the simulation measurements. We use a scale cut of 8 Mpc=h here and only fit the data points outside the gray region.

FIG. 7. Same as Fig. 6, but analyzed with a scale cut of 4 Mpc=h. Here we also show the residuals for the Maglim galaxy sample.
Model C fits the simulation measurements with these smaller scale cuts for both redMaGiC and Maglim samples.
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the relation between b1 and bs (when b3nl is fixed to its
coevolution value), and the bottom panel shows the relation
between b1 and b3nl (when bs is fixed to its coevolution
value). The fits obtained when all the parameters are free
have a larger uncertainty but are consistent with the other
approaches: the relations between the parameters bs-b1 and
b3nl-b1 are consistent with the expected coevolution value.
We also note that the recovered relation with b1 is
consistent for the two scale cuts, which is a further test
that the one-loop PT is a sufficient and complete model for
the scales of interest in this analysis.
It is possible to predict the relation between b2 and b1 for

our galaxy samples (the measurements are shown in the top
panel of Fig. 8). However, unlike the bs-b1 and b3nl-b1
relations, predicting the b2-b1 relation requires knowledge
of the HOD of galaxy samples. Since an accurate HOD of
the galaxy sample in data is challenging and not yet
available for DES, we have treated b2 as a free parameter.
Therefore, only the measurements of the b2-b1 relation
from simulations are shown in Fig. 8.

D. Inferences for the projected statistics

As described in Sec. II E, we can convert our measure-
ments and fits for the 3D correlation functions to the
projected statistics typically used by the imaging surveys.
We show such a conversion in Fig. 9 for galaxy number
densities in MICE simulations corresponding to the
redMaGiC galaxies satisfying 0.3 < zl < 0.45 and the
fourth source tomographic bin as used in the DES Y1
analysis. Note that Fig. 9 does not show direct measure-
ments of wðθÞ and γt, but a transformation of the measured
and best-fit data vector to angular statistics. Since our
analysis is based on the ratios ξgg=ξmm and ξgm=ξmm, we
first convert our measured data vector and best-fit theory
curves to ξgg and ξgm and then apply Eqs. (11) and (22) to
estimate angular correlation functions. We use the halofit
prediction of ξmm, which is a good fit to the matter-matter
autocorrelation for our scales of interest (see Fig. 2) to
convert the ratios to ξgg and ξgm.
The error bars in Fig. 9 are calculated from Gaussian

covariance,3 as we do not expect significant non-Gaussian
contribution to the covariance of the angular statistics (see
Ref. [77]). The covariance is estimated using all the galaxies
satisfying the redshift criteria mentioned above in the MICE
simulation. Explicitly, we generate this covariance with lens
and source galaxies covering 5156.6 square degrees with
number densities (per square arc-minutes) of lens galaxies in
four tomographic bins corresponding to 0.039, 0.058, 0.045,
and 0.028, respectively. The number density and shape noise
of source galaxies are assumed to be the same as in DES Y3
[78]. Due to a similar area and number densities, this

FIG. 8. The relation between the best-fit nonlinear bias
parameters and the linear bias parameter b1 for the four
tomographic bins at two different scale cuts. We show the
results for both redMaGiC and Maglim galaxy samples. The
top panel shows the second-order bias parameter b2, with bs and
b3nl fixed to their coevolution Lagrangian values. The middle
panel shows bs (with b3nl fixed to the coevolution Lagrangian
value). The bottom panel shows b3nl (with bs fixed to the
coevolution Lagrangian value).

3We use the COSMOSIS package [76] https://bitbucket.org/
joezuntz/cosmosis/wiki/Home.
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covariance is comparable to the expected DES Year 3
covariance [78]. Note that the shaded region corresponds to
scales below 4 Mpc=h, which are not used in the 3D fits. The
top panel shows the projected galaxy correlation function
wðθÞ, and the bottom panel shows the galaxy-galaxy lensing
signal γtðθÞ. Note that in order to estimate γt, we fit for the
point-mass term as described in Sec. II E. This best-fit value of
the point-mass term is obtained by fitting for the coefficient B
in Eq. (22).
Figure 9 demonstrates that our model describes the

projected angular correlation functions well above scales

of 4 Mpc=h. The error bars in that figure provide a DES-
Y3-like benchmark for such an agreement. Note that the
fractional statistical uncertainties for projected statistics are
much larger than their 3D counterparts. Hence, the 3D tests
presented in Sec. V B are substantially more stringent than
the projected statistics require.
The analysis of measured wðθÞ and γtðθÞ is detailed in

Appendix C.

E. Comparison with other studies in literature

There have been multiple studies in the literature probing
thevalidity of PTmodels using simulations [31–35].Most of
these studies have focused on Fourier space rather than
configuration space. One reason for this choice is that
nonlinear and linear scales are better separated in Fourier
space,while in configuration space, even large scales receive
a contribution from nonlinear Fourier modes. However,
many cosmic surveys perform their cosmological parameter
analysis in configuration space, as it is easier to take into
account a noncontiguous mask and depth variations. Hence,
an understanding of the validity of PT models is required in
real space to get unbiased cosmology constraints.
The Fourier space studies conducted by Saito et al. [31]

andAngulo et al. [32] focus only on dark-matter halos anddo
not aim to reduce the number of free parameters required to
explain the auto- and cross-correlations between dark matter
halos and dark matter particles. Bella et al. [33] and Werner
and Porciani [34] probe this question on the minimum
number of bias parameters but again focus on dark matter
halos as the biased tracers. Recently Eggemeier et al. [35]
have conducted a study similar to ours in Fourier space using
three different galaxy samples (mock SDSS and BOSS
catalogs) and four halo samples. For a most general case,
they find that a four-parametermodel (linear, quadratic, cubic
nonlocal bias, and constant shot noise with fixed quadratic
tidal bias) can describe correlations between galaxies and
matter catalogs, with the inclusion of scale-dependent noise
from halo exclusion being particularly beneficial for the
combinationof auto- and cross-spectra. They also explore the
restriction to a two-parameter model by imposing coevolu-
tion relations, as done in this paper, and find that in general,
this reduces the highest Fourier mode for which the model is
robust, but it can result in higher constraining power
compared to the five-parameter model. However, this par-
ticular scenario is not general across samples and requires
careful validation with simulations, as done here. The main
differences in our study are that we work in configuration
space with two different galaxy samples that have a higher
number density, cover a wider redshift range, and probe
smaller host halo masses. Our galaxy samples also have a
significantly larger satellite fraction (for example, the first
two redMaGiC bins have a ∼50% satellite fraction)
compared to SDSS and BOSS catalogs.
These crucial differences make our study complementary

to the above studies. Ours is especially relevant for imaging

FIG. 9. The blue error bars show the projected statistics wðθÞ and
γtðθÞ transformed from 3D measurements of MICE redMaGiC
samples [using Eqs. (11) and (22)]. The red theory curve is also
estimated similarly from the best fit to the 3D statistics on scales
above 4 Mpc=h (see Fig. 7). These transformations use the nðzÞ
corresponding to our first lens tomographic bin (0.3 < zl < 0.45)
(of the redMaGiC sample) and the fourth source redshift bin (see
Ref. [59]) in theMICE simulation.Theshaded region shows the scale
cut of4 Mpc=h. Theerror bars are estimated using theGaussian halo
model covariance for the best-fit bias values. The theory curve for γt
includes the contribution from the point mass [see Eq. (22)].
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surveys, as it is tailored to DES. The consistency of our
conclusions with Eggemeier et al. [35] suggests that a two-
parameter model may have wide applicability, particularly
for surveys with different galaxy selections. This would be
an extremely useful result and is worth investigating in
detail for the next generation of surveys.

VI. CONCLUSION

We have presented an analysis of galaxy bias comparing
perturbation theory and 3D correlation functions measured
from N-body simulation-based mock catalogs. We used an
effective PT model to analyze the galaxy-galaxy and
galaxy-matter correlations jointly.
Our fiducial model successfully describes the measure-

ments from simulations above a scale of 4 Mpc=h, which is
significantly lower than the scale cut used in the DES Year
1 analysis (where a linear bias model was used). In addition
to the linear bias parameter b1, we include four bias
parameters in our model: b2, bs, b3nl, and b∇2δ. We find
that treating only the first- and second-order bias param-
eters b1 and b2 as free parameters is sufficient to describe
the correlation functions over the scales of interest. We find
that the constraints on the higher-derivative bias parameter
b∇2δ are consistent with zero in Model C, and we thus fix it
to zero in our fiducial model. We demonstrate that fixing
the parameters bs and b3nl to their coevolution value
maintains the accuracy of our model. The agreement of
our model with measurements from simulations is typically
at the 2% level over scales of interest. This is within the
statistical uncertainty of our simulation measurements and
below the requirements of the DES Year 3 analysis.
We show the relationship between the nonlinear and

linear bias parameters at different redshifts and scale cuts.
We find that the relationship between bs-b1 and b3nl-b1 is
consistent with the expectations from the coevolution
relationship. Moreover, we find that the relationship
between b2-b1 is consistent at different scale cuts, which
is a useful validation of our model.
We have validated our model with two lens galaxy

samples having different and broad host halo mass distri-
bution—the redMaGiC and Maglim samples—that could
be used in DES Y3 cosmological analyses, which combine
the projected galaxy clustering signal, wðθÞ, and the galaxy-
galaxy lensing signal, γt. Note that these projected statistics
have significantly higher (fractional) cosmic variance than
their 3D counterparts, ξgg and ξgm, due to the smaller
number of independent modes. Furthermore, the statistical
uncertainty of γt includes weak lensing shape noise, which
is not included in the error budget of its 3D counterpart
(ξgm). Hence, we analyze 3D correlation functions, as the
measurements from simulations are more precise and
provide a percent-level test of our model.
The scales of interest (above 4 Mpc=h) are well above

the one-halo regime, where differences in HOD implemen-
tations are greatest. So we expect that our conclusions

about bias modeling with PT will have broad validity for
the lensing and galaxy clustering analysis from imaging
surveys. Nevertheless, at the percent level of accuracy, tests
with a variety of schemes for assigning galaxies will be
valuable. Moreover, pushing the analysis to higher redshift,
or a completely different galaxy selection requires addi-
tional testing. We leave these studies for future work.
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APPENDIX A: COVARIANCE
OF THE DATA VECTORS

The measurements of the correlation functions ξgg and
ξgm are highly correlated in the configuration space due to

the mixing of modes. However, since the correlation
function ξmm is also impacted by similar mode-mixing,
analyzing the ratio of the correlation functions ξgg=ξmm and
ξgm=ξmm makes the covariance more diagonal. In Fig. 10,
we compare the correlation matrix for ξgg and ξgg=ξmm for
the third tomographic bin for 20 radial bins ranging from
0.8 to 50 Mpc=h. We clearly see that analyzing the ratio
gives us a much better-behaved correlation matrix.
We generate the fiducial jackknife covariance from 300

patches distributed over the simulation footprint. As the
total area populated by both our galaxy sample is equal to
one octant of the sky, changing the number of jackknife
patches changes the size of each patch. In Fig. 11, we
compare the signal-to-noise estimate when using a different
number of patches. We see that the diagonal elements of the
covariance are robust to changes in the number of patches.
We have also compared the changes in best-fit curves when
using the covariance matrix generated using a different

(a) (b)

FIG. 10. The correlation matrix for the two-point galaxy
correlation function ξgg and the ratio ξgg=ξmm for the second
tomographic bin. Both correlation matrices are estimated using
300 jackknife patches. We see that the covariance is more
diagonal for the ratio.

FIG. 11. The comparison of error bars (and signal-to-noise ratios)
estimated using the jackknife procedure, for a different number of
patches. We show the comparison for the smallest tomographic bin
used in our analysis, since that is most susceptible to the sizes of the
jackknife patches. Also, since the covariance matrix of the corre-
lation function ratios has small cross-bin covariance (see Fig. 10),
we only compare the diagonal value. The blue points (and solid
curve) correspond to our fiducial choice of 300 as the number of
jackknife patches used for covariance estimation.
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number of patches. We get consistent reduced χ2 and best-
fit curves for z > 0.3. However, we find that we cannot get
a robust covariance for the tomographic bin corresponding
to z < 0.3 without sacrificing large-scale information
(which is required to constrain the linear bias parameter).
For this reason, we only analyze the tomographic bins
satisfying z > 0.3 and find that with 300 patches, we can
get a robust estimate of jackknife covariance.

APPENDIX B: RESULTS WITH FITTING ξgg
AND ξgm DIRECTLY

As mentioned in the main text, we consider the ratios
ξgg=ξmm and ξgm=ξmm as our data vector. This ratio is more

sensitive to the galaxy-matter connection than the correla-
tion functions ξgg and ξgm themselves. However, when we
try to fit directly the correlation functions, ξgg and ξgm, our
conclusions do not change. The residuals of ξgg and ξgm
using our fiducial model are shown in Fig. 12 for the third
tomographic bin. We compare the residuals obtained when
directly fitting the correlation functions ξgg, ξgm with the
results shown in the main text obtained when fitting the
ratios of the correlation functions, ξgg=ξmm, ξgm=ξmm. We
find that our residuals are consistent with zero above the
scales of 4 Mpc=h for both data vectors.

APPENDIX C: ANALYZING THE
2D CORRELATION FUNCTION

AT FIXED COSMOLOGY

As described in the Sec. II E and Fig. 9, we convert the
3D statistics to the projected statistics. However, we can
also fit our perturbation theory models directly to the
measured projected statistics. Therefore, in this Appendix,
we fit our fiducialmodel to the projected statistics wðθÞ and
γt in the four lens and source tomographic bins. We refer
the readers to MacCrann et al. [59] for the details about the
estimation of the projected statistics and the tomographic
redshift distribution of our bins.
The residuals of this model are shown in Fig. 13 when

using scales above 4 Mpc=h. For the observable γt, we
show the results for only the fourth source bin and all four
lens tomographic bins (since this has the highest signal-to-
noise ratio). The fit has a reduced χ2 of 0.88. There are
some points in the residuals that are inconsistent with zero;
however, as there is a significant correlation between
different radial bins, they do not impact the χ2 of the fit.
The measured relation between b2 and b1 from this model
is shown in Fig. 14. We also compare this relationship with
the one inferred from the 3D measurements and find them
consistent.
Hence, when fitting the measured projected correlation

functions directly, we also get a reduced χ2 consistent with
one. These results motivate us to model the correlations on
the scales down to 4 Mpc=h in the DES Y3 cosmological
analysis. To determine the scale cuts for DES analysis with
a nonlinear bias model, we will study the cosmological
parameter biases in a future study with the range of scale
cut choices motivated by this study.

FIG. 12. Comparing the residuals when fitting the measured
correlation functions ξgg, ξgm directly and when fitting the ratio
ξgg=ξmm, ξgm=ξmm for the second tomographic bin. We use our
fiducial model as our theory model in both cases. We find the fits
are consistent.
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