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Abstract 45 

The accurate simulation and prediction of flood response in urbanized basins remains 46 

a great challenge due to the spatial and temporal heterogeneities in land surface 47 

properties. We hereby propose an integrated modelling approach that consists of a semi-48 

distributed conceptual hydrological model and a novel parameterization strategy. The 49 

modelling approach integrates the Xinanjiang (XAJ) model, Taihu Basin (TB) model, 50 

and Nash instantaneous unit hydrograph (IUH) into a framework. Model parameters 51 

are calibrated by optimizing their relationships with corresponding physical factors. 52 

The proposed modelling approach is applied in the Qinhuai River basin (QRB), China. 53 

The modelling approach shows satisfactory performance in flood simulation both for 54 

calibration and validation of flood events in the QRB. The approach has temporal and 55 

spatial prediction capability by using the established relationships between parameter 56 

values and physical factors. Robustness analysis reveals that the different sets of flood 57 

events used for parameter relationship calibration led to similar model performance. 58 

Numerical experiments show that impervious coverage poses strong influences on the 59 

model performance and needs to be considered in flood routing simulations for small- 60 

or medium-intensity flood events.  61 

Keywords 62 

Urbanization, Hydrological model, Model calibration, Flood response, Parameter 63 

estimation  64 
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1. Introduction 65 

As one of the most extensive anthropogenic activities, urbanization has triggered a 66 

variety of environmental issues (Booth and Jackson 1997; Patra et al. 2018; Zhang et 67 

al. 2018), among which hydrological alterations have attracted increasing concern in 68 

the past several decades. Urban development increases impervious surface area and 69 

artificial drainage systems, which dramatically alter hydrological processes (Braud et 70 

al. 2013; Oudin et al. 2018; Schueler et al. 2009), such as an increase in surface runoff, 71 

a decrease in infiltration and changes in groundwater discharge (e.g., Burns et al. 2005; 72 

Salvadore et al. 2015). Previous studies have shown that disastrous flood events have 73 

become more frequent due to urbanization (Hu 2016; Hundecha and Bardossy 2004). 74 

Hydrological modelling is the most useful and effective tool to examine the 75 

impacts of urbanization on hydrological processes (Jacobson 2011; Trinh and Chui 76 

2013). Hydrological models can be typically divided into three categories: lumped, 77 

semi-distributed and distributed models (Arnold and Gibbons 1996; Bach et al. 2014; 78 

Salvadore et al. 2015). Of all three categories, semi-distributed models reasonably 79 

consider the spatial heterogeneity of subcatchments or hydrologic units compared with 80 

the lumped model. In addition, semi-distributed models are superior to distributed 81 

models in terms of reducing computational complexity and the number of parameters. 82 

Therefore, semi-distributed hydrological models are broadly employed in urban 83 

hydrological studies, e.g., the Storm Water Management Model (SWMM), Hydrologic 84 

Engineering Center-Hydrologic Modeling System (HEC-HMS), Soil and Water 85 

Assessment Tool (SWAT), and so on (e.g., Abbaspour et al. 2015; Arnold and Fohrer 86 
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2005; Lee and Heaney 2003; Lhomme et al. 2004; McColl and Aggett 2007; Valeo and 87 

Moin 2000; Zhao 1992).  88 

In this study, we propose a semi-distributed conceptual modelling approach that 89 

combines the Xinanjiang (XAJ) model (Zhao 1992), Taihu Basin (TB) model (Cheng 90 

et al. 2006), and Nash instantaneous unit hydrograph (IUH) method (Nash 1960). The 91 

modelling approach uses spatially variable parameters and adopts conceptual methods 92 

to calculate runoff generation and routing. It has relatively feasible parameterization 93 

and high computational efficiency. Model calibration based on the observed 94 

hydrological data is necessary for obtaining better model performance. To reduce the 95 

number of calibrated parameters for semi-distributed models, parameters with low 96 

sensitivities or direct physical meanings can be assigned to their ‘typical’ value from 97 

current literature or field measurements. For example, hydraulic properties of soil can 98 

be obtained from the literature and from field measurements (Refsgaard 1997; 99 

Rodriguez et al. 2008). The ratio and connectivity of impervious surfaces can be 100 

obtained using remote sensing products (Lee and Heaney 2003). Parameters with high 101 

sensitivities are calibrated based on observed data. However, the observed data are 102 

usually scarce and unavailable for the calibration of parameters in each sub-basin. To 103 

determine the values of some highly sensitive parameters (especially for process-related 104 

parameters), one solution is to use regression equations to calculate those parameters 105 

based on physical data as independent variables (Xu 1999, 2003; Yang et al. 2018). For 106 

instance, Bedient and Huber (1992) presented regression equations for determining the 107 

time of concentration and the storage coefficient of the Clark unit hydrograph for each 108 
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sub-basin. These equations represent relationships between parameters and other easily 109 

measurable physical factors, such as channel length, channel slope, and percentage of 110 

developed land. However, parameter estimations using these relationships are not 111 

always accurate because different basins or sub-basins may have different relationships; 112 

thus, the estimated values might be used only as initial values of the parameters for 113 

further calibration (USACE-HEC 2000). Ideally, these equations should be rebuilt or 114 

calibrated for each individual sub-basin. However, it is almost impossible to rebuild the 115 

equations due to the lack of observed data for each sub-basin. To address this problem, 116 

a parameterization scheme was proposed in this study by directly building unified 117 

equations to calculate parameters for each sub-basin, and the coefficients in the 118 

equations can be calibrated based only on the streamflow data at the basin outlet. In this 119 

way, the limitation of a lack of observation data for sub-basins can be solved, the 120 

number of calibrated model parameters can be reduced, and the calibration efficiency 121 

can be improved. 122 

Therefore, the objectives of this study are to (1) propose a framework that uses a 123 

semi-distributed rainfall-runoff model for simulating flood processes in a mesoscale 124 

urbanized basin; (2) propose a parameterization scheme by establishing relationships 125 

between model parameters and potential driving factors; and (3) evaluate the simulation 126 

and prediction capacity of the integrated modelling approach. 127 

2. Study Area and Data 128 

The Qinhuai River basin (QRB) is located in Jiangsu Province, south-eastern China 129 
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(Fig. 1). The drainage area is 2,631 km2. The peak rainfall from June to August often 130 

leads to severe flood hazards. Fast urbanization further increases the frequency of 131 

floods in this region (Du et al. 2013). The main land-use types include water surface, 132 

paddy land, urban land, dry land, and woodland. There are seven reservoirs, four 133 

hydrological stations and seven rain gauges in the QRB. The Qinhuaixinhe and 134 

Wudingmen hydrological stations are located at the outlet of the basin (see Fig. 1 for 135 

locations). 136 

 137 

Fig. 1 Overview of the study area and location of hydrometeorological stations 138 

Fourteen isolated flood events were selected from 1986 to 2015. The hourly 139 
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rainfall data for the seven rain gauges, the hourly discharge data from Qianhancun 140 

Station and Jurong Station, and the instant peak flow and daily discharge data from 141 

Wudingmen Station and Qinhuaixinhe Station for the flood events were collected from 142 

the Nanjing Hydrological Bureau. The Thiessen polygon approach was used to 143 

interpolate rainfall. The hourly outflows of Wudingmen Station and Qinhuaixinhe 144 

Station were obtained by linear interpolation of the instant peak flow and the daily 145 

discharge of the stations. The summary of rainfall at the basin scale and runoff observed 146 

at Qianhancun station in the fourteen flood events is given in Table 1. 147 

Table 1 Summary of selected rainfall and runoff events  148 

Storm no. Storm date 

Basin-scale rainfall  Streamflow at the Qianhancun 

Station 

Depth 

(mm) 

Duration 

(h) 

Average  

intensity  

(mm/h) 

 Peak 

(m3/s) 

Time to peak 

(h) 

198707 July 2,1987 228.3 119 1.9  731 83 

199106 June12,1991 333.9 115 2.9  964 81 

199607 July 3, 1996 152.3 75 2.0  707 81 

200607 July 19, 2006 171.4 91 1.9  513 79 

200808 August 1,2008 115.3 32 3.6  654 37 

200907 July 21, 2009 172.7 62 2.8  775 43 

201007 July 12, 2010  153.2 32 4.8  491 34 

201106 June 25, 2011 93.1 30 3.1  588 30 

201107 July 18, 2011 95.6 56 1.7  517 30 

201207 July 14,2012 62.8 17 3.7  380 20 

201208 August 8,2012 78.3 37 2.1  667 47 

201307 July 5,2013 125.9 62 2.0  497 37 

201407 July 4, 2014 99.6 29 3.4  772 35 

201506 June 16,2015 179.1 43 4.2  939 44 

Fig. 2 shows changes in land use/land cover in the QRB during the period 1988-149 
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2015. The land use/land cover was extracted from Landsat satellite images based on the 150 

rotation forest classifier method (Rodriguez et al. 2006; Bian et al. 2017). A noticeable 151 

change was found in the increase in impervious coverage from 3.92% to 19.76%, which 152 

was caused by the decrease in paddy field (from 50.09% to 29.94%) during the same 153 

period. 154 

 155 

Fig. 2 Land use classification results of the Qinhuai River basin 156 

3. Methodology 157 

3.1 Overview of the modelling framework 158 

The semi-distributed model has three individual modules: (i) runoff generation, (ii) 159 
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runoff separation, and (iii) runoff routing. The runoff generation module is derived from 160 

the XAJ model and TB model; the runoff separation module is mainly adopted from the 161 

XAJ model; and the runoff routing module is established based on the XAJ model using 162 

the Nash IUH method (Nash 1957, 1960). The structure of the semi-distributed model 163 

is given in Fig. 3. The key feature of the XAJ model is that runoff is generated and 164 

calculated only when the soil moisture content reaches field capacity (Zhao et al. 1980). 165 

The TB model is a hydrological modelling system that considers the heterogeneity in 166 

runoff generation by categorizing land surfaces into four main categories, i.e., water 167 

surface, urban, paddy field, and non-irrigated farmland (Cheng et al. 2006). The QRB 168 

is divided into 18 sub-basins. The three modules were established for each of the sub-169 

basins.  170 

 171 

Fig. 3 The structure of the semi-distributed hydrological model 172 

3.1.1 Runoff generation 173 

In the runoff generation module, four types of land uses are considered: water surface, 174 

paddy field, impervious coverage, and non-irrigated areas. 175 

The runoff generated from the water surface at each time interval is calculated as: 176 



11 

 

 =w pR P E   (1) 177 

where Rw is the runoff generated from the water surface (mm), P denotes the 178 

precipitation (mm), Ep denotes the potential evapotranspiration (mm), and β denotes the 179 

adjustment factor of Ep (-). 180 

Paddy fields can be divided into dormant periods and rice-growing periods. The 181 

runoff generated from paddy fields is calculated in different rice-growing periods and 182 

at each time interval, and it is described as: 183 

 
2 1    pH P E H f  (2) 184 

When 
2 pH > H , 185 

 
2 1,r p pR = H - H H = H  (3) 186 

When 
u 2 pH H H  , 187 

 r 2 1,u uR H H H H    (4) 188 

When 2d uH < H H , 189 

 r 1 20,R H H   (5) 190 

When 2 dH H , 191 

 r 2 1,d dR H H H H    (6) 192 

where Rr is the runoff generated from the paddy field in the rice-growing period (mm) 193 

at each time interval, a represents the water requirement coefficient of the paddy field 194 

(-), f is the infiltration in the paddy field (mm) at each time interval, and H1 and H2 are 195 

the depths of water in the paddy field at the beginning and end of each time interval 196 

(mm), respectively. Hp represents the depth of submergence tolerance (mm). Hu and Hd 197 

denote the suitable top and bottom depths of water needed at different growing periods 198 
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(mm), respectively. 199 

The runoff generated from impervious coverage at each time interval is calculated 200 

as:  201 

 iR P   (7) 202 

where Ri is the runoff generated from impervious coverage (mm), and φ is the runoff 203 

coefficient (-). 204 

The runoff generated from non-irrigated areas and dormant paddy fields at each 205 

time interval is estimated based on the XAJ model. In the saturated area where the soil 206 

moisture content reaches field capacity, the runoff is calculated using Eq. (8). Otherwise, 207 

the runoff calculation can be found by referring to Zhao (1992). 208 

  d = oR P WM W E    (8) 209 

where Rd represents the runoff generation (mm) in the time interval, WM is the areal 210 

mean tension water capacity (mm), W0 is the initial soil water (mm), and E is the actual 211 

evapotranspiration (mm). Evapotranspiration is not considered in the runoff generation 212 

module due to its negligible contributions to flood simulation.  213 

3.1.2 Runoff separation  214 

Runoff separation aims to divide the generated runoff into two or more components 215 

according to land-use type. All the runoff generated from the water surface and 216 

impervious coverage would turn to surface runoff. The runoff from non-irrigated areas 217 

and dormant paddy fields is subdivided into surface runoff and groundwater runoff 218 

based on the free water capacity distribution curve (Li et al. 2018; Meng et al. 2016; 219 
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Zhao 1992), and the runoff in paddy fields calculated from Eqs. (2) to (6) turns to 220 

surface runoff; finally, infiltration at a steady rate contributes to groundwater runoff. 221 

For each sub-basin, the total surface runoff (groundwater runoff) is an area-weighted 222 

summation of runoff from the four land-use types (paddy land and non-irrigated areas). 223 

3.1.3 Runoff routing 224 

The surface runoff is routed directly to the outlet of each sub-basin by the Nash IUH 225 

method (Nash 1957, 1960), while the groundwater runoff is routed using the linear 226 

reservoirs method (Zhao et al. 1980; Zhao 1992). The discharge from the upper sub-227 

basins is routed through the river network to the outlet of the sub-basin by the 228 

Muskingum successive-reaches model (Deng et al. 2009). The outflow at the outlet of 229 

each sub-basin is the summation of the surface runoff and groundwater discharge of the 230 

sub-basin and the river network routing discharge from the upper sub-basins. 231 

3.1.4 Reservoir operation 232 

Reservoirs can temporarily store flood water and release it later, which effectively 233 

lowers the magnitude and frequency of floods in downstream reaches. The changes in 234 

reservoir volume are simulated by the storage function approach as: 235 

 
dV

INF OF
dt

   (9) 236 

where V is the reservoir storage (m3), t is the time (s), INF is the inflow (m3/s), and OF 237 

is the release (m3/s). The details on reservoir operation can be found in Du et al. (2016). 238 
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3.2 Model calibration strategy 239 

To reduce the number of calibrated parameters and improve the calculation efficiency 240 

of the model, the following parameterization strategy is proposed. (1) Parameters with 241 

low sensitivities or direct physical meanings are set to their ‘typical’ values based on a 242 

literature review and expert experience. (2) Parameters with high sensitivity are 243 

estimated based on the proposed parameterization scheme: calibrating relationships 244 

between parameters and influencing factors, such as urbanization index (impervious 245 

ratio) and basin characteristics (i.e., area, slope and length). (3) Other parameters are 246 

determined through calibration.  247 

The parameters with high sensitivity and the typical values of most parameters in 248 

the proposed model can be found in the literature (e.g., Li et al. 2018; Lin et al. 2011; 249 

Meng et al. 2016; Zhao et al. 1980; Zhao 1992). For the parameters with high sensitivity 250 

for groundwater routing, the Muskingum successive-reaches method and the runoff 251 

coefficient of the impervious surface are manually optimized based on the trial-and-252 

error method. The parameters of the Nash IUH method for surface runoff routing for 253 

each sub-basin are calibrated by using the proposed parameterization scheme. To reduce 254 

parameter dimensions, we assume that the Nash IUH parameters of all sub-basins have 255 

the same functional relationships with sub-basin characteristics (e.g., area, slope and 256 

length of the river network) and urbanization index (i.e., impervious rate), and the 257 

relationships between the Nash parameters, urbanization index and basin characteristics 258 

can be expressed as follows: 259 

 1( , , , ,...)n f A SL LE IM  (10) 260 
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 2( , , , ,...)k f A SL LE IM  (11) 261 

where f1 and f2 are functions; n and k are the number and storage coefficient of linear 262 

reservoirs of the Nash IUH, respectively; and A, SL, LE, and IM denote the 263 

characteristics of the area, slope, length, and impervious ratio of a sub-basin, 264 

respectively. The Nash IUH parameters of each sub-basin can be calculated based on 265 

the relationships. Parameter optimization thus turns into the optimization of functions 266 

(10) and (11). The best mathematical forms of relationships f1 and f2 could be obtained 267 

by maximizing the average NSE for all calibrated flood events. The enumeration 268 

optimal method or other optimal methods could be implemented to find the optimal 269 

parameters for each relationship by maximizing the average NSE. The proposed 270 

parameterization strategy can improve model calibration efficiency by reducing the 271 

number of calibrated parameters. 272 

3.3 Temporal and spatial prediction capabilities of the integrated modelling 273 

approach 274 

To test the temporal prediction capability of the approach, six flood events from 1987 275 

to 2009 were used for the relationship calibration, while eight flood events from 2010 276 

to 2015 were used for model validation. Flood records from Qianhancun Station were 277 

used. The proxy-basin test was performed to verify the spatial prediction capability of 278 

the approach, i.e., calibrate flood events on one catchment and validate them on another 279 

catchment. The relationships of Nash IUH parameters were calibrated using the 280 

discharge data for fourteen flood events at Qianhancun Station. The calibrated 281 



16 

 

relationships were then used to predict flood events for the entire QRB. 282 

3.4 Evaluation criteria  283 

Four criteria were employed to evaluate the model performance (McCuen et al. 2006): 284 

the Nash-Sutcliffe efficiency (NSE), the coefficient of determination (R2), the relative 285 

error of peak discharge (Dp) and the relative error of runoff volumes (Dv), and they are 286 

calculated as follows: 287 

 
   

 

2

1
2

1
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n

c oi

n

o oi
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where Qc(i) and Qo(i) denote the estimated and observed discharges for time period i 292 

(m3/s), respectively; Qc and Qo represent the estimated and observed mean values (m3/s), 293 

respectively; n is the total number of observed discharges; and Qp,c and Qp,o are the peak 294 

discharges of the estimated and observed hydrographs (m3/s), respectively. 295 

4. Results and Discussion 296 

4.1 Model calibration and validation 297 
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4.1.1 Calibration of model parameters 298 

The runoff generation parameters over paddy land were set to suggested values and are 299 

shown in Table 2 (Cheng et al. 2006). The parameters depend on different paddy 300 

growing periods. The daily infiltration capacity was set to 1 mm due to the high 301 

groundwater level and saturated soil during the growing season. The runoff coefficient 302 

of impervious coverage was set to 0.65 (-). The parameters WM and W0 for non-irrigated 303 

areas were set to 120 (mm) and 30 (mm), respectively. The daily recession coefficient 304 

of groundwater in the linear reservoir method was set to 0.9, and the Muskingum time 305 

constant and weighting factor were calibrated to be 2 (h) and 0.2, respectively. The best 306 

relationships of the Nash IUH model parameters for all sub-basins were obtained by 307 

maximizing the average NSE of calibrated flood events using the optimal enumeration 308 

method: 309 

 
0.05 0.010.6n A IM     (16) 310 

 
0.27 0.21.0k A IM     (17) 311 

where n and k are the number and storage coefficient of the Nash IUH of a selected sub-312 

basin, A is the area of the sub-basin, and IM is the impervious ratio of the sub-basin.  313 

Table 2 The runoff generation parameters of paddy land from Cheng et al. (2006) 314 

Duration (day) 

Depth of 

submergence 

tolerance (mm) 

Top suitable 

water depth 

(mm) 

Bottom 

suitable 

water depth 

(mm) 

Coefficient of 

water 

requirement (-) 

Daily 

infiltration 

capacity (mm) 

5.16~5.25 20 10 5 1.00 1 

5.26~6.23 30 20 10 1.00 1 

6.24~6.30 50 30 20 1.35 1 

7.1~8.4 50 30 20 1.30 1 

8.5~9.3 50 40 30 1.65 1 

9.4~9.16 50 30 20 1.76 1 
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9.17~10.20 20 10 0 1.50 1 

4.1.2 Model performance 315 

Table 3 indicates that the model achieves satisfactory performance during both 316 

calibration and validation periods, with the average values of R2 and NSE exceeding 317 

0.9 and the average values of Dp and Dv being lower than 5%. Fig. 4 demonstrates that 318 

the estimated results are well synchronized with the observed hydrographs in terms of 319 

both peak magnitudes and timing, indicating that the established model is applicable 320 

for flood simulation in the QRB. The parameterization strategy of calibrating 321 

relationships between model parameters and basin physical characteristics is also 322 

effective and suitable for the study basin. 323 

Table 3 The statistics of the model calibration and validation results at Qianhancun Station 324 

Period Flood code 
Land-use 

pattern 

Evaluation criteria 

R2 NSE DP (%) DV (%) 

Calibration 

198707 1988 0.91 0.91 4.65  1.24  

199607 2001 0.86 0.84 12.84  5.75  

200808 2009 0.92 0.90 2.44  7.84  

201106 2011 0.95 0.95 3.74  1.15  

201207 2013 0.93 0.92 1.84  4.42  

201407 2015 0.93 0.93 2.14  3.85  

Mean value 0.92  0.91  4.61  4.04  

Validation 

199106 1988 0.92 0.91 0.90  3.51  

200607 2006 0.88 0.87 1.96  4.00  

200907 2009 0.97 0.94 2.34  9.29  

201007 2011 0.96 0.95 2.05  4.39  

201107 2011 0.77 0.76 1.90  4.04  

201208 2013 0.97 0.96 5.43  3.84  

201307 2013 0.97 0.96 1.43  4.94  

201506 2015 0.97 0.97 1.17  3.42  

Mean value 0.93  0.92  2.15  4.68  
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 325 

Fig. 4 Observed and simulated hydrographs of 14 floods at Qianhancun Station 326 

Table 4 shows the temporal prediction results at Qianhancun Station. The average 327 

values of R2 and NSE of all predictive flood events exceeded 0.9, while the average 328 

values of Dp and Dv were less than 5%, indicating that the proposed modelling approach 329 
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can achieve good temporal prediction capacity. It also demonstrates that the 330 

relationships calibrated from the early period can be used for later or future flood event 331 

prediction. 332 

The statistics of the spatial prediction performance of the approach are shown in 333 

Table 4. The results indicate satisfactory prediction results in terms of simulating flood 334 

events in the whole QRB, with the average R2 and NSE exceeding 0.85 and the average 335 

values of Dp and Dv being lower than 10%, which demonstrate that the calibrated 336 

relationships over the upper and middle sub-basins can be transferred to the whole basin 337 

for flood simulation. 338 

Table 4 The statistics of model temporal prediction results at Qianhancun Station and spatial 339 

prediction results in the whole QRB 340 

Prediction 

capability 

Flood code Land-use 

pattern 

Evaluation criteria 

R2 NSE DP（%） DV（%） 

Temporal 

prediction 

results 

201007 2011 0.94 0.94 0.82 1.26 

201106 2011 0.97 0.96 4.58 3.70 

201107 2011 0.78 0.77 2.10 3.60 

201207 2013 0.93 0.93 6.08 3.24 

201208 2013 0.98 0.98 1.37 2.05 

201307 2013 0.97 0.96 5.04 7.11 

201407 2015 0.94 0.93 3.38 2.31 

201506 2015 0.98 0.97 1.36 4.43 

Mean value 0.94 0.93 3.09 3.46 

Spatial 

prediction 

results 

198707 1988 0.94 0.94 3.76 2.03 

199106 1988 0.93 0.93 1.76 2.62 

199607 2001 0.84 0.82 4.88 7.27 

200607 2006 0.96 0.95 3.70 4.76 

200808 2009 0.92 0.92 6.73 4.24 

200907 2009 0.96 0.94 10.81 10.53 

201007 2011 0.96 0.96 13.72 1.47 

201106 2011 0.96 0.89 11.04 18.44 

201107 2011 0.85 0.79 10.85 15.00 

201207 2013 0.91 0.9 10.98 0.66 

201208 2013 0.96 0.99 1.22 8.68 

201307 2013 0.94 0.91 5.92 8.22 

201407 2015 0.89 0.76 19.72 19.82 
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201506 2015 0.82 0.78 14.09 0.88 

Mean value 0.92 0.89 8.51 7.47 

4.2 Impacts of building relationships with or without the consideration of 341 

impervious areas on model performance 342 

The temporal and spatial variations of imperviousness should be considered in 343 

hydrological modelling for urbanized basins due to the role of impervious surface in 344 

influencing hydrological processes (Jacobson 2011; Praskievicz and Chang 2009). 345 

Previous studies have shown that an increase in impervious areas had large effects on 346 

the hydrological response for medium and small flood events but only small effects on 347 

extreme events (Braud et al. 2013; Kaspersen et al. 2015). To further examine the effects 348 

of impervious coverage on runoff generation and routing for flood events, the following 349 

test was conducted to determine the impacts of establishing the relationships of Nash 350 

IUH parameters with or without the consideration of imperviousness on model 351 

performances. Three scenarios were considered in the test: (1) flood simulation scenario; 352 

(2) temporal prediction scenario; and (3) spatial prediction scenario. The selected flood 353 

events for calibration and validation/prediction were the same as those described in 354 

Section 3.  355 
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 356 

Fig. 5 Comparison of model simulation results, temporal prediction results and spatial prediction 357 

results with (A) and without (B) the consideration of imperviousness. Blue triangles represent 358 

small and medium floods (peak discharge lower than 700 m3/s), red circles represent large floods 359 

(peak discharge higher than 700 m3/s) 360 

As seen from Fig. 5, almost all R2 and NSE values for floods without the 361 

consideration of imperviousness in the surface runoff calculation are smaller than those 362 

that consider imperviousness, while the values of Dp that consider imperviousness are 363 

obviously smaller than those that do not consider imperviousness. For Dv values, all 364 
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points are located near the 1:1 line, indicating that there is no distinct difference. This 365 

result is because impervious coverage only changes runoff-routing speed but not runoff 366 

volume. The volume of runoff generation remains the same for surface runoff routing 367 

regardless of whether imperviousness is considered. 368 

For simulation and temporal prediction scenarios (Fig. 5), the values of R2, NSE, 369 

and Dp for small and medium floods were considerably improved when imperviousness 370 

was considered compared to those that did not consider imperviousness, indicating that 371 

imperviousness has a pronounced impact on model simulation for small and medium 372 

flood events. For the spatial prediction scenario in the whole QRB (Fig. 5), the 373 

improvements in the R2, NSE, and Dp values for most flood events were not as obvious 374 

as those in the first and second columns, which was likely because the impact of 375 

urbanization on the surface runoff process has been relatively weakened with the 376 

increase in basin size. 377 

4.3 Impacts of flood event selection for calibrating the relationships on model 378 

performance 379 

The effects of using different flood events for calibrating relationships of Nash IUH 380 

parameters on model performance were also analysed. Three scenarios were built: (1) 381 

flood simulation scenario: six flood events different from the ones in Subsection 4.1 382 

were selected for relationship calibration, the others were used for validation, and the 383 

calibration and validation results were compared with those in Subsection 4.1; (2) 384 

temporal prediction scenario: three flood events from 1987 to 1996 were used for 385 
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calibration and the others were used for validation, the results were compared with 386 

those calibrated by six flood events from 1987 to 2009 in Subsection 4.1; and (3) spatial 387 

prediction scenario: the prediction results of the whole basin using relationships 388 

calibrated by Qianhancun Station were compared with those calibrated by Jurong 389 

Station. 390 

 391 

Fig. 6 Results of impacts of flood event selection for calibrating relationships on model 392 

performance. (1) Flood simulation scenario: comparison of calibration and validation results by 393 

selecting different flood events for calibration. A represents the previous flood simulations in 394 
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Subsection 4.1, and B represents flood simulations obtained by selecting the other six floods for 395 

relationship calibration; (2) Temporal prediction scenario: comparison of calibration and temporal 396 

prediction results obtained by selecting different flood events for calibration. A represents the 397 

previous calibration and temporal prediction results obtained by selecting the former six floods for 398 

relationship calibration in Subsection 4.1, and B represents those obtained by selecting the former 399 

three flood events for relationship calibration. (3) Spatial prediction scenario: comparison of 400 

spatial prediction results for the whole basin obtained by selecting different sub-basins for 401 

calibration. A represents the previous spatial prediction results with relationships calibrated by the 402 

discharge data of Qianhancun Station in Subsection 4.1, B represents the spatial prediction results 403 

with relationships calibrated by the discharge data of Jurong Station 404 

As shown in Fig. 6, the R2, NSE, Dp, and Dv values are located near the 1:1 line. 405 

The differences in the four criteria are statistically insignificant according to the F-test 406 

(α=0.05, Jamshidian et al. 2007), indicating that the use of different flood events for 407 

parameter calibration yielded similar results for simulation and temporal prediction. In 408 

terms of spatial prediction, the relationships calibrated from different sub-basins could 409 

be transferred to the whole basin and generated similar spatial prediction results. These 410 

results demonstrate that the impact of flood event selection on model performance is 411 

insignificant, indicating that the proposed parameterization scheme of establishing 412 

unified relationships between model parameters and driving factors of sub-basins is 413 

robust for hydrological modelling in basins with urbanization. Thus, the relationships 414 

calibrated based on flood events with the corresponding land-use patterns can be 415 

effectively used for flood simulation and prediction under urbanization with certain 416 

reliability.  417 

5. Conclusions 418 
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In this study, we proposed an integrated modelling approach to simulate flood events 419 

in the QRB, an urbanized basin of south-eastern China. The impacts of imperviousness 420 

on runoff generation and runoff routing were both taken into account. Considering the 421 

lack of observed data in sub-basins, unified relationships between Nash IUH model 422 

parameters and driving factors for all sub-basins were established and calibrated with 423 

observed data at the basin outlet. The following conclusions were obtained: (1) the 424 

proposed semi-distributed modelling approach can produce reasonable flood simulation 425 

results, especially when parameters of the Nash model for any sub-basin are calculated 426 

based on calibrated unified relationships between parameters and sub-basin physical 427 

characteristics; (2) imperviousness is an important factor that should be considered in 428 

flood routing calculations, especially for simulating small or medium floods; (3) the 429 

integrated modelling approach is effective, robust and efficient for flood simulation in 430 

mesoscale basins and has prediction capability over time and space for future land-use 431 

changes and adjacent basins. Future studies need to be carried out to extend the 432 

application of the proposed modelling approach to other urbanized basins. 433 
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