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The delta phase of Bi2O3 has the highest known value of oxide ion conductivity

within the solid state and therefore remains a benchmark for the development of fu-

ture generations of electrolyte materials to fuel cell technologies. Conventionally, the

high value of conductivity in δ-Bi2O3 has been explained by a large concentration of

inherent vacancies, together with a strongly polarisable Bi-O bond. We show from

ab initio molecular dynamics simulations that short “chains” of collective migrating

oxygens contribute strongly to the high value of conductivity with the single particle

Nernst–Einstein (N.E.) conductivity to collective (d.c.) conductivity σN.E./σd.c. ∼

0.5 at 1033 K. The nature of collective events is investigated from a hopping model,

the distinct part of the Van Hove function and from the extent of dynamical hetero-

geneities in the superionc regime. Results from this analysis indicates that the main

contribution to collective ionic diffusion in δ-Bi2O3 involves short collinear chains of

2 or 3 oxygens. These chains are either initiated by an oxygen that jumps into an

already occupied oxygen cavity (where they co-exist for a very short time before the

residential oxygen is kicked out of its cavity), or from a jump into a vacant cavity

which trigger a next nearest neighbouring oxygen to migrate. Since δ-Bi2O3 is easily

stabilised in a range of environments, the nature of these collective chains can give

important insight into the design of δ-Bi2O3-based fuel cells for the future.

Atomistic insight into the nature of ionic diffusion in the superionic regime has unveiled

strong evidence for collective “multi ion” migration [1–13]. Although first suspected in
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the 1960s when Yokota showed that the popular Einstein relation failed to explain the

discrepancy between the mobility and conductivity in silver-halides [14], it has not been

until quite recently that atomistic simulations have shown that collective chains of migrating

ions may possess lower energy barriers than those calculated from single-particle jump-

diffusion models [2, 3, 8, 15, 16]. Recent demonstrations include several Density Functional

Theory (DFT) studies of highly mobile “chains” of Li+ ions in sulphides and phosporites [6,

8], “string-like” movements of fluorines in fluorites [12] as well as 2D collective transport

of oxygens in reduced perovskites [2]. Collective dynamics in these compounds are often

advantageous since the nature of energetically preferred local motifs and their connectivity

patterns are kept intact as the chain of ions migrate, minimizing bond-breaking and bond-

formation [2, 11]. In the fast-ion conducting phase of strongly non-ideal BaInO2.50, for

example, the vacancies are not distributed at random, but order on local and intermediate

length-scale in corner shearing networks of InO4, InO5 and InO6 polyhedra. These motifs

can only be kept intact if the ions migrate in a highly collective fashion. Single particle jumps

would, in contrast, involve strongly repulsive O-O interactions and strained configurations,

and the calculated activation energy for uncorrelated oxygen hops is therefore high [2].

Collective mechanism appear therefore to be advantageous over isolated jumps in non-ideal

compounds where the ions are not randomly distributed over positions in a sublattice and

therefore not “free” to jump to a random neighbouring cavity [15]. Bearing in mind recent

effort in the search for new materials to operate Solid Oxide Fuel Cells (SOFCs) at lower

temperature, capturing the nature of collective dynamics in fast-ion conductors can give

useful input in the design and development of new electrolyte materials.

Superionic bismuth oxide, δ-Bi2O3, has the highest known value of oxide ion conductivity

within the solid state [17–19], and remains a benchmark for understanding ionic transport

processes in the superionic regime. It adopts the cubic fluorite crystal structure (space group

Fm3̄m), where the oxygens form a simple cubic anion sublattice and the bismuths occupies

alternate cube centers (the 4a site at (0,0,0)). The stoichiometry of δ-Bi2O3 implies that

two of the eight anion cavities centered at the 8c site at 1/4, 1/4, 1/4 etc. surrounding each

Bi3+ are vacant. This provides, together with a strongly polarisable and transient Bi-O

bond, a plausible explanation for the high value of ionic conductivity. Previous ab initio

Molecular Dynamics (MD) calculations [20, 21] of the ionic conductivity used the Einstein

relation, σN.E. = ρ(eZ−)2

kBT
DN.E., to calculate the conductivity from the diffusion coefficient,
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DN.E.. Here, ρ− and Z− are the density and the formal charge of the diffusing oxygens. The

calculated Nernst–Einstein (N.E.) conductivity was found to be in good agreement with

that obtained experimentally [17–19], which could indicate that collective diffusion does not

contribute strongly to the overall ionic conductivity. On the other hand, previous studies

have shown that the δ-Bi2O3 is surprisingly non-ideal since only a fraction of the oxygen-

vacancy configurations are thermally available even at high temperature [20]. The oxygens,

therefore, can not jump entirely at random to one of it’s nearest neighbouring cavities since

this could involve strongly repulsive vacancy vacancy interactions. This implies, in turn,

that collective conductivity may be non-negligible for a critical comparison with conductivity

measurements. Contribution from collinear chains of migrating oxygens may enhance the

conductivity, and the good agreement between experiment and ab initio calculations could

be fortuitous.

The extent of collective dynamics is often interpreted from the Haven ratio, HR =

DN.E./Dd.c., where DN.E. is calculated directly from tracer-diffusion experiment and Dd.c.

is estimated from conductivity experiment using the relation σd.c. = ρ(eZ−)2

kBT
Dd.c.. Although

the Haven ratio can be used to determine the nature of collective diffusion in the superionic

regime, the dynamics of many superionic conductors with a high defect concentration is

complex, and the extent of collective dynamics is difficult to interpret from the Haven ratio

alone [22]. The advantage with ab initio MD simulations is that the nature of single-particle

(tracer) correlation and collective dynamics can be investigated directly from the atomic

trajectory which allows one to calculate the Haven ratio and compare directly with result

from conductivity measurement.

In this work we will investigate atomistically different collective transport mechanism in

δ-Bi2O3 using ab initio MD at the level of the generalized-gradient approximation to DFT.

To our knowledge, understanding at the atomic level collective conductivity in δ-Bi2O3 and

other fluorite-structured fast-ion oxide conductors remains unexplored, probably because

much longer MD runs are needed to collect sufficient statistics in order to calculate the

d.c. conductivity compared to that needed to calculate the (single particle) tracer diffusion

coefficient.
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THEORY

The ionic conductivity itself is calculable by integrating the charge-current correlation

function

σ =
1

kBTV

∫ ∞

0

J(t)dt, (0.1)

where V is the volume and J(t) = e2
∑

ij ZiZj〈vi(0) · vj(t)〉, with e, Zi and vi being the

elementary charge, the charge number and the velocity of ion i respectively. To avoid the

slow convergence in the integral over the charge current correlation function associated with

non-negligible contribution from the tails in J(t), we assume that we can ignore correla-

tion between the velocities and re-express the conductivity in the form of a mean-square

displacement [1]

σd.c. =
e2

kBTV
lim
t→∞

1

6t
〈|
∑

i

Z+
i δr

+
i (t) +

∑

i

Z−
i δr

−
i (t)|2〉. (0.2)

Here the summations within the brackets are the charge weighted net displacements of all

cations and anions respectively. If we also ignore the correlations in the positions of the

different ions in Eq. 0.2, we can write down the analogues (single-particle) Nernst–Einstein

equation

σN.E. =
e2

kBT
lim
t→∞

1

6t
(〈ρ+|Z+δr+(t)|2〉+ 〈ρ−|Z−δr−(t)|2〉), (0.3)

where ρ+ and ρ− are the densities of the cations and anions respectively. If we assume that

the oxygen charge is a constant (Z− = −2) and that the cations do not diffuse (at least on

the timescale of the MD simulation) we can calculate the d.c. conductivity from the Mean

Square Displacement (MSD) of the centre of mass, C.M., of the mobile oxygen ions as:

σd.c. =
(eZ−)2

kBTV
lim
t→∞

1

6t
MSDC.M. (0.4)

where MSDC.M. = 〈|
∑

i δr
−
i (t)|2〉 and similarly the N.E. conductivity

σN.E. =
(eZ−)2ρ−

kBT
lim
t→∞

1

6t
MSDN.E. (0.5)

with MSDN.E. = 〈|δ+(t)|2〉 (where δ+(t) is the average displacement of a single oxygen ion).

COMPUTATIONAL DETAILS

All results reported here are calculated using ab initio Born–Oppenheimer MD simulation

in the NVT ensemble (N = 270 atoms, V = (16.95 Å)3 and T = 1033 K) with a time step
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of 4 fs. The volume was the same as those obtained from neutron diffraction experiment at

1033(3) K [23] and MD runs [20]. We use VASP [24–26] with the Perdew–Burke–Ernzerhof

functional [24], an energy cut-off of 400 eV for the electronic wave function and 605 eV for

the electronic charge density. Consistent with previous MD calculationss [20] the 6s26p3and

2s22p4 electron configurations for the bismuths and oxygens were used and the Brillouin zone

is sampled the gamma point only. In all MD runs we start by generating random oxygen

positions by distributing oxygen/vacancies over the tetrahedral positions in the fluorite

structure and in all runs statistics were collected for at least 150 ps, after about 20 ps of

equilibration. This ensured sufficient statistics for the sampling of collective dynamics and

thus the ionic conductivity after the ballistic regime i.e. from t = 1 to t = 3 ps.

RESULTS

The single-particle and collective mean square displacements are shown in Fig. 1. From

DN.E. = lim
t→∞

1
6t
MSDN.E. and Dd.c. = lim

t→∞

1
6t

MSDC.M. we find that DN.E. = 8.8 10−6 cm2

s−1 and that Dd.c. = 1.7 10−5 cm2 s−1. Our value of DN.E. is in good agreement with

those found in previous MD runs [20, 21] and also with that measured from tracer diffusion

experiment (D∗ = 1 10−5 cm2 s−1) [27]. We find that the Nernst–Einstein conductivity,

σN.E. = 2.7 (Ω cm) −1 at 1033 K, is consistent with previous ab initio studies on superionic

Bi2O3 at similar temperatures [20, 21], but σd.c. is more than a factor 2 higher than that

measured from d.c. conductivity experiment [17] (which is ∼ 1.5 (Ω cm)−1). Bearing

in mind the large uncertainties associated with such conductivity experiment and that the

approximation made to DFT as well as constraints imposed by periodic boundary conditions

may influence ionic diffusion, the agreement is quite satisfactory.

We find that the Haven ratio, HR = 0.51 ± 0.04, calculated using Eq. 0.2 and Hdir
R

calculated directly from Eq. 0.1 is 0.33 ± 0.13. The small discrepancy between these two

values is probably due to the non-negligible contribution in the tails in J(t) in Eq. 0.1.

The low value of the Haven ratio is indicative for collective diffusion of oxygens, and

to provide some mechanistic insight into the diffusion of the oxygens in δ-Bi2O3, we first

carry out a detailed atomistic analysis by calculating single particle and collective diffusion

coefficient from a hopping model. We thus analyse characteristic times for hopping of isolated

oxygens from an inspection of the ionic trajectories and then analyse the nature of collective
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events. Collective dynamics is analysed from dynamical heterogeneities in the simulation

box by identifying atoms that move considerably distances - characteristic for interbasin

jumps - in a small time interval. If these ions cluster together, the nature and size of these

can help capturing the nature of collective excitation in the superionic regime.

Single particle dynamics from a jump diffusion model

We first analyse correlations between successive jumps of an oxygen by dividing the

simulation cell into distinct space-filling primitive oxygen cubes [28–30] with the cube-

center located at the peak density position of the oxygens (i.e. at the tetrahedral 8c site of

Fm3̄m) [31]. To distinguish vibrations with large amplitudes stretching into a neighbouring

cavity and unsuccessful ’back jumps’ (jump-relaxation), a jump is assumed to take place if

the oxygen jumps from cavity “A” to “B” and stays within the new cavity for some time

given by τ thresh. The value of τ thresh should be chosen with some care because if τ thresh is

too large, i.e. on the size of the average residence time, ∼ τ residence, two consecutive jumps

may be identified as a single jump. If we set τ thresh = 1 ps, the calculated jump frequency

is the same as that we find from an inspection of the ionic trajectories. Furthermore, the

calculated diffusion using this threshold is in good agreement with that obtained from the

DN.E. which we turn to discuss below.

Results from this analysis shows that the average residence-time, τ residence, of an oxygen is

slightly less than 10 ps with large vibrational amplitudes occurring dominantly in the 〈111〉
direction. Although the peak position in the ionic density of the oxygens is at the centre of

the cavity (i.e. at the 8c site of Fm3̄m) [20], a typical oxygen position, when viewed locally,

is shifted markedly in the direction of the octahedral hole in the crystallographic 〈111〉
direction. We find that the oxygens migrate rapidly and decisively with τ jump ∼ 0.5 − 1.0

ps. 90% of the jumps are between nearest neighbouring tetrahedral cavity aligned in the

crystallographic 〈100〉 direction whereas ∼ 10% of the jumps are between the next nearest

neighbours aligned in the 〈110〉 direction. Occasionally a jumping oxygens will carry out a

short loop or wiggle near an interstitial octahedral position, but the octahedral site is not

a residential site for the oxygen. In fact, it corresponds to an ionic density minimum [20],

which also rules out an interstitial/intersitialcy diffusion mechanism for oxygen transport

in superionic bismuth oxide. Of particular note is that we find that 20% of all jumps take
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place to an already occupied cavity which can initiate chains of collective migrating oxygens

as discussed below.

Correlation between successive jumps, f , can be calculated using f = 1 + 2〈cosθl,l+1〉,
where θ is the angle between jump l and jump l+1. We then calculate f by decompose two

consecutive oxygen-jumps in the three distinct directions. Back-jumps (jump-relaxations)

takes place when an atom jumps back to where it came from. Sideway jumps involves two

consecutive jumps in different crystallographic directions whereas a forward jump describes

an oxygen that jumps in the same direction as it did in the previous step, i.e. a jump in the

〈100〉 direction is followed by a jump in 〈100〉.
We find that f is about 0.35 due to high high fraction of back-jumps which is also higher

than that expected for a random diffusion process at t > τ residence. We can calculate the

tracer-diffusion coefficient from a hopping model using: D̃N.E. = 1
6
fΓa2, where Γ and a

are the jump frequency and the hopping lengths. Inserting the values of f , a and Γ gives

D̃N.E. = 1.0 10−5cm2 s−1 which is in good agreement with both DN.E. calculated from the

MSDs above (shown in Fig. 1), and with result from tracer-diffusion experiment reported in

Ref. [27]. The good agreement between D̃N.E. calculated from a hopping model and DN.E.

calculated from the MSD, gives some confidence in that a hopping model provide a useful

tool to also analyse collective dynamics in the superionic regime.

Collective dynamics from a pair hopping model

We now investigate collective diffusion of oxygens along the MD trajectory from an in-

spection of correlation between pairs of jumping oxygens. We distinguish between events

where the diffusion mechanism involves a common cavity (i.e. a “kick out” mechanism as

shown in Fig. 2a), or if they do not involve a common cavity, as visualized in Fig. 2b. The

“kick out” mechanism involves two oxygens, O1 and O2, that typically stay together in the

same cavity, B, for a very short time (between 0.1 and 0.3 ps), before O2 is kicked out.

Diffusion of an oxygen from cavity “A” to an empty cavity “B” can also “trigger” an oxygen

in a neighbouring cavity, “C”, to jump to cavity “D”(see Fig. 2b). We further distinguish

between collinear, non-collinear and exchange mechanisms: If the cavities “A”, “B” and

“C” involved in the diffusion of the two oxygens are all aligned in the same crystallographic

direction (as shown in Fig. 2a and Fig. 2b), the mechanism is termed collinear. If O1 jumps



8

to cavity “B” while O2 jumps to cavity “A”, the oxygens exchange positions which gives no

net charge transport. A non-collinear mechanism involves cavities that are not aligned in

the same crystallographic directions, as shown in Fig. 2c.

20% of the oxygens jump into an already occupied cavity, and will therefore trigger

collective chains of migrating oxygens. Of these, about 40% are involved in a collinear

mechanism, 60% in a non-collinear path whereas less than 1% of these oxygens exchange

positions. The fraction of collinear chains is thus substantially higher compared to that

of a random diffusion process where the probability of collinear chains is 1/6. This

suggests that a collinear “kick out” mechanism could explain, at least in part, the low

value of the calculated Haven ratio. We can quantify the contribution from a collinear

“kick out” mechanism to the Haven ratio, by comparing the MSD of a “quasiparticle”

of two oxygens involved in a collective chain with that when two oxygens hops at ran-

dom on the oxygen sublattice. Since 40% of the 20% that jump into an already oc-

cupied cavity follow a collinear “kick out” mechanism, we can calculate the MSD from

such a pair model from: MSDkick out = 1
6
fΓ(Pvac × apair random + Pkick out × akick out)

2 =

1
6
fΓ(0.8×

√
2ann + 0.2× (0.4 ∗ 2 + 0.6 ∗

√
2)ann)

2 where Pvac., Pkick out, arandom and akick out

are probabilities and hopping lengths for oxygens pairs that follows a (random) vacancy

mechanism or kick out mechanisms respectively. The calculated Haven ratio from this pair

model is therefore Hcollinear kick out
R ≈ MSDrandom/MSDkick out = 0.9, which is markedly higher

than that calculated from the ratio of the MSDN.E. to MSDd.c.. It is however worth bearing

in mind that this model does not include contributions from migrating chains involving 3 or

more oxygens. If we assume that chains of 3 migrating oxygens follow the same probability

distribution as that of pairs, the Haven ratio calculated from a collinear kick out mechanism

will decrease to about 0.8. We do not expect a significant contribution to the Haven ratio

from collective chains with more than 3 oxygens since the “kick out” chains are quickly

terminated by a jump into a vacant cavity. This is also confirmed from an inspection of the

trajectory which shows that chains involving more than 3 ions are rare. Collective collinear

strings of 2 and 3 oxygens therefore contribute about 30% to all collective events.

The discrepancy between the Haven ratio calculated from MSDN.E./ MSDd.c. and that

estimated from a hopping model of pairs (and triplets) of migrating oxygens may, in part,

be due to collective chains that have been averaged out in our analysis due difficulty in

distinguishing vibrations and jumps. We have not yet included correlated events where
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pairs of oxygens do not stay within the same cavity “B” at the same time during diffusion,

such as if O2 jumps to cavity “C” before O1 jumps to “B”. Our jump diffusion model of

oxygen pairs would identify such a collective oxygen pair as two uncorrelated jumps to vacant

cavities. To estimate the contribution from such events to the Haven ratio we carried out an

inspection of the oxygen trajectories which indicates that these events are rare. In addition,

our analysis does not, so far, include events where the two cooperatively migrating oxygens

are not nearest neighbours as shown in Fig. 2b. Such a mechanism was more important in

superionic CuI than the “kick out” mechanism [31, 32] and is not expected to contribute to

the a first peak in GOO
d (r, t). We shall turn to investigate if such events contribute to the

Haven ratio from the nature of the dynamical heterogneities.

Collective diffusion from the distinct part of the Van Hove function

The collinear “kick out” mechanism appear not to fully capture all collective events

in δ-Bi2O3 which can be further investigated from the distinct part Van Hove function

GOO
d (r, t) = 1

N(N−1)

∑N
i 6=j〈δ(|rij(t + t0) − r(t0)|)〉. If the kick out mechanism would account

for all collective jumps, we might expect a peak to grow at short distances and times in the

distinct part of the Van Hove function, GOO
d (r, t), as demonstrated for collective “kick out”

chains of Li+ ions in Li-based superionic conductors [6].

That is, since - in the kick out mechanism - cavity B is occupied by O1 even before O2 has

left the cavity we expect a peak in GOO
d (r,t) at times consistent with the characteristic jump-

time of an oxygen (τ jump = 0.5 ps) within intrabasin distances at r < 1 Å and at t ∼ 0.5− 1

ps. However, as seen in Fig. 3, the peak position in GOO
d (r, t > 2ps) at 0.7-0.8 Å is first

visible at around 4 ps which suggest that kick out events are not captured in GOO
d (r, t). The

peak in GOO
d (r = 0.7 Å) therefore reveals little information about the collective diffusion

of oxygens, but rather reflects the presence of large thermal anharmonic vibrations and a

highly asymmetric local oxygen arrangement around the bismuth as discussed previously in

Refs. [20, 23, 33].
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Collective diffusion from dynamical heterogeneity

Challenges in capturing many collective events from a hopping model and the dis-

tinct part of the Van Hove function - due to difficulties in distinguishing vibrations

with large amplitudes and jumps - has motivated us to investigate the nature of dy-

namical heterogeneity as a possible route to identify cooperative migrating oxygens. We

therefore define the “rearrangement indicator” Ri [34, 35], of an oxygen, i, in order to

measure the spacious region of its trajectory (within a small time window) as: Ri =
√

〈(

ri− < ri >t−δt/2

)2〉

t+δt/2

〈(

ri− < ri >t+δt/2

)2〉

t−δt/2
) where <>t+δt/2 and <>t−δt/2

denotes time averages from t to t + δt/2 and from t − δt/2 to t with δt = 1 ps. Note

that this choice of δt is the same as that used above for distinguishing vibrations with large

amplitudes and ion hops (τthresh), but we stress that our results below are not strongly influ-

enced by the choice of δt as long as 0.1 ps < δt < 3 ps. We identify oxygens that are likely to

migrate or hop as those with
√
Ri > 0.95ann, (where ann again is the distance between near-

est neighbouring oxide ion positions). The oxygens that are moving a distance of a typical

jump with time characteristic of a jump are marked as “red balls” in Fig 4, which shows 3

typical snapshots along an MD trajectory. It is evident that these oxygens form dynamical

clusters and that these clusters can contain more than 2 oxygens! We can quantify the size

of these clusters by counting all oxide ions with
√
Ri > 0.95ann that are within within a

cut off distance, dmax = 1.1ann of an other “rearranging” oxygen with
√
Ri > 0.95ann. This

cut-off distance capture co-operative migrating groups of oxygens involving primarily near-

est neighbouring atoms and result from this analysis shows that 14% and 3% of the clusters

contain 2 and 3 (or more) oxygens respectively compared to 6% and less than 1% for a

random distribution of red balls. If we increase dmax to 1.5ann - and thereby include a larger

fraction of oxygens involved in the mechanism shown in Fig 2b - we find that 26%, 12% and

6% of the clusters contain 2, 3 and more than 3 oxygens respectively. If we assume that

the oxygens do not correlate we find that these numbers reduce to 19% and 4% for 2 and

3 atoms clusters. At an even higher cut-off distance (dmax = 2.0ann), there is a significant

and higher fraction of three atoms clusters (18%) compared to that of a random distribution

(12%). This indicates that oxygen clusters of next nearest and even third nearest neighbour

are involved in collective diffusion of oxygens and if these jumps are in the same directions

(e.g. as that shown in Fig 2b) they will contribute to the low value of the Haven ratio, HR,
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The results form the cluster analysis are in good agreement with results from the hopping

models discussed above. Both models indicate that about 20% of the oxygens jump to an

already occupied cavity and are thus involved in a “kick out” mechanism. This suggests, in

turn, that the rearranging oxygens are indeed oxygens that jump to new cavities and the

shape and size of the clusters visualizes chains of migrating oxygens.

Results from hopping of pairs, the distinct part of the Van Hove function and the nature

of dynamical heterogeneities show that diffusion processes in δ-Bi2O3 is complex and include

several distinct mechanism. Hopping to an already filled cavity can initiate collective co-

linear chains (see Fig. 2a) and hopping to vacant cavities can trigger hopping of an another

oxygen that are not necessary a nearest neighbour (see Fig. 2b). The high inherent vacancy

concentrations in δ-Bi2O3 indicates that these strings are short, involving up to maximum

four oxygens.

Implication for the design of future solid oxide fuel cells

The insight into collective diffusion from ab initioMD can provides us with essential input

in the design and development of the next generations SOFCs. Although the δ phase of

Bi2O3 itself is not a particular interesting candidate electrolyte materials for the use within

SOFCs because of it’s high temperature window of stability, it can easily be stabilized

to lower temperature by aliovalent doping [36, 37], or as thin films grown on a suitable

substrate [38, 39]. This provide a range of opportunities to implement δ-Bi2O3 within

intermediate and low temperature fuel cell devices. Functionally graded bismuth oxide/ceria

bilayers [40], for example, and ultrathin multilayers consisting of alternate Er2O3-doped

Bi2O3 and Gd2O3-doped CeO2 sheets [41] both possess high chemical stability and high

power densities at modest to low temperature. However, δ-Bi2O3 films grown directly on

suitable substrates, such as SrTiO3, may relax to new phases [42] or can easily “crack up”

forming dislocation misfits near the interface as shown from ab initio DFT calculations [43,

44]. Such a mismatch may increase the contribution from the p-type electronic conductivity

to the total conductivity, but it is often extremely difficult to distinguish the electronic and

ionic contributions to the conductivity in layered heterostructures [45–47].

Vertically grown architectures have challenged conventional lateral heterostructure for

oxide fuel-cell technology, where nanorods and thin layers can be self assembled vertically
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on a suitable substrates [48]. This allows for a both high strain tunability - which is ex-

tremely difficult to achieve using δ-Bi2O3 thin-films grown layer-by-layer - and for a much

better control of the contribution from the electronic currents to the conductivity. Indeed,

Sm doped CeO2 electrolytes grown vertically as nanopillars on SrTiO3, show an order of

magnitude higher oxide ion conductivity compared to plain Sm-doped films, with fast-ion

diffusion occurring to large extent inside the nanopillars [48]. Collinar strings of coopera-

tively migrating oxygens can easily be accommodated within such architectures providing

a possible new route to implement δ-Bi2O3 as nanopillars/nanotubes to lower the current

operation temperature of SOFCs.

CONCLUSIONS

We have carried out a detailed analysis of the nature of oxygen diffusion in the superionc

phase of Bi2O3 using ab initio MD. The calculated Haven ratio, HR = DN.E./Dd.c., is

markedly lower than 1 which indicates that collective chains of migrating oxygens contribute

strongly to the d.c. conductivity. We explore the atomistic origin of these collective events

from 1) a hopping model of oxygen “pairs” 2) the distinct part of the Van Hove function

and 3) the nature of dynamical heterogeneities. We are unable to capture any collective

chains from the functional form of GOO
d (r, t) but from a pair hopping model (where the

number of oxygen hops in and out of their residential cavities are counted) we identify

short collective chains of migrating oxygens that follow a “kick out” mechanism similar to

that shown in Fig 2a. These chains are initiated by an oxygen that jumps into an already

occupied cavity and then “kick out” the residential oxygen from that cavity. The calculated

contribution to the Haven ratio from such collective two atom chains is only about 20%,

indicating that collective chains may contain at least three oxygens and/or that correlation

length between different oxygen jumps may be longer than only involving nearest neighbours

as, for example, cartooned in Fig 2b. To investigate this further we explore the nature of

dynamical heteregeneities, where “clusters”of oxygens that move distances characteristic of

typical a jump is identified. The nature of these “clusters” confirm that crystallographically

collinear chains containing more than two atoms, also contribute to the ionic conductivity

and that hops into vacant cavities can correlate with oxygen hops when these are aligned

further apart than nearest neighbours. Results from hopping of pairs, the distinct part
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of the Van Hove function and the nature of dynamical heterogeneities show that the ion

diffusion processes in δ-Bi2O3 is complex, blurred and involves different mechanisms which

are not easily distinguished from one another. Nevertheless, it is evident that this complex

dynamics plays an important role in promoting fast ion conductivity.

ACKNOWLEDGEMENTS

The Centre for Earth Evolution and Dynamics is funded by CoE-grant 223272 from

the Research Council of Norway. The computing time was provided by the Norwegian

metacenter for computational science (NOTUR) through a grant of computing time grant

nn2916k.



14

 0

 1

 2

 3

 0  1  2  3  4  5  6

M
S

D
 (

Å
2 )

t (ps)

FIG. 1: The collective (centre of mass) and the Nernst–Einstein MSD of the oxygens from two ab

initio MD simulations. carried out at 1033 K. The MSDd.c. are only plotted to t = 3 ps where we

have enough statistics.



15

∗ Electronic address: chrism@geo.uio.no

[1] M. J. Castiglione and P. A. Madden, J. Phys.: Condens. Matter 13, 9963 (2001).

[2] C. E. Mohn, N. L. Allan, C. Freeman, P. Ravindran, and S. Stølen, Phys. Chem. Chem. Phys.

6, 3052 (2004).

[3] F. Shimojo and M. Aniya, J. Phys. Soc. Japan 74, 1224 (2005).

[4] E. Kendrick, J. Kendrick, K. S. Knight, M. S. Islam, and P. R. Slater, Nature Mat. 6, 871

(2007).

[5] C. E. Mohn, N. L. Allan, C. L. Freeman, P. Ravindran, and S. Stølen, J. Solid State Chem.

178, 346 (2005).

[6] M. Xu, J. Ding, and E. Ma, Appl. Phys. Lett. 101, 031901 (2012).

[7] C. Tealdi, P. Mustarelli, and M. S. Islam, 20, 3874 (2010).

[8] X. He, Y. Zhu, and Y. Mo, Nat. Commun. 8, 15893 (2017).

[9] S. Hull, S. T. Norberg, S. G. Eriksson, and C. E. Mohn, J. Phys.: Condens. Matter 25, 454205

(2013).

[10] S. Stølen, E. Bakken, and C. E. Mohn, Phys. Chem. Chem. Phys. 8, 429 (2006).

[11] A. Vasileiadis and M. Wagemaker, cm 29, 1076 (2017).

[12] A. Annameareddy and J. Eapen, sr 7, 44149 (2017).

[13] A. Mascaro, Z. Wang, P. Hovington, Y. Miyahara, A. Poelella, V. Gariepy, Z. Feng, T. Enright,

C. Aiken, K. Zaghib, et al., nl 717, 4489 (2017).

[14] I. Yokota, J. Phys. Soc. Japan 21, 420 (1966).

[15] N. L. Allan, S. Stølen, and C. E. Mohn, J. Mater. Chem. 18, 4124 (2008).

[16] X.-S. Kong, C. J. Hou, Q.-H. Hao, C. S. Liu, X. P. Wang, and Q. F. Fang, Solid State Ionics

180, 946 (2009).

[17] H. A. Harwig, Z. Anorg. Allg. Chem 444, 151 (1978).

[18] T. Takahashi, H. Iwahara, and Y. Nagai, J. Appl. Electrochem. 2, 97 (1972).

[19] T. Takahashi and H. Iwahara, J. Appl. Electrochem. 3, 65 (1973).

[20] C. E. Mohn, S. Stølen, S. T. Norberg, and S. Hull, Phys. Rev. B 80, 024205 (2009).

[21] A. Seko, Y. Koyama, A. Matsumoto, and I. Tanaka, J. Phys.: Condens. Matter 24, 475402

(2011).



16

FIG. 2: The left picture (a) shows a cartoon of the collinear “kick out” mechanism where O1 and

O2 shear a common cavity for a few vibrational periods before O2 is kicked out. Fig. 2b) is an

example of a crystallographically collinear mechanism where O1 “trigger” an oxygen, O2, to jump

in a neighbouring cavity during diffusion whereas c) is a non-collinear mechanism.



17

FIG. 3: Distinct part of the Van Hove correlation function of the oxygens GOO
d (r, t) =

1
N(N−1)

∑N
i 6=j〈δ(|rij(t + t0) − r(t0)|)〉 from ab initio MD runs at 1033 K. The indexes i and j

runs over all N oxygens in the simulation box, and the brackets denotes averaging over different

time origins, t0.

[22] G. E. Murch, Solid State Ionics 7, 177 (1982).

[23] S. Hull, S. T. Norberg, M. G. Tucker, S. G. Eriksson, C. E. Mohn, and S. Stlen, Dalt. Trans.

p. 8737 (2009).

[24] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

[25] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

[26] G. Kresse and J. Joubert, Phys. Rev. B 59, 1758 (1999).

[27] R. D. Bayliss, S. N. Cook, S. Kotsantonis, R. J. Chater, and J. A. Kilner, Adv. Energy Mat.

4, 1301575 (2014).

[28] G. Jacucci and A. Rahman, J. Chem. Phys. 69, 4117 (1978).

[29] S. Wengert, R. Nesper, W. Andreoni, and M. Parrinello, Phys. Rev. Lett. 77, 5083 (1996).

[30] C. E. Mohn, S. Stølen, and S. Hull, J. Phys. Soc. Japan 81, 106001 (2012).

[31] C. E. Mohn, S. Stølen, and S. Hull, J. Phys.: Condens. Matter 21, 335403 (2009).

[32] K. Tsumuraya, T. Ohtsuka, H. T. H. Oshihara, and M. Tsumuraya, J. Phys. Soc. Japan 81,

044603 (2012).

[33] C. E. Mohn, S. Stølen, S. T. Norberg, and S. Hull, Phys. Rev. Lett. 102, 155502 (2009).

[34] R. Candelier, A. Widmer-Cooper, K. K. Kummerfeld, O. Dauchot, G. Biroli, P. Harrowell,



18

FIG. 4: Three random snapshots of oxide ion positions during an MD run at 1033 K. The red

spheres are oxygens with a rearrangement indicator,
√
Ri > 0.95ann, representing jumping oxygen

ions, whereas the gray ones are those with
√
Ri < 0.95ann (the non migrating oxygens). Sticks are

drawn between red balls with dmax = 1.5ann

and D. R. Reichman, Phys. Rev. Lett. 105, 135702 (2010).

[35] E. D. Cubuk, S. S. Schoenholz, E. Kaxiras, and A. J. Liu, 120, 6139 (2016).

[36] S. Hull, Rep. Prog. Phys. 67, 1233 (2004).
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