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Chapter 1

Introduction

When making decisions based on predictions about the future, it is imperative to
consider information about the prediction’s uncertainty. This is particularly true for
weather forecasting, where the chaotic nature of the atmosphere does not allow for
perfect precision. It has been shown that having access to uncertainty information
leads to better decisions, especially in the case of extreme or severe events (Joslyn
and LeClerc,  2012 ). Nonetheless, the estimated uncertainty needs to be accurate
and informative. Post-processing weather forecasts with statistical methods improves
conventional weather models by reducing biases and calibrating predictive probability
distributions. In this thesis, we will introduce rapid adjustment of forecast trajectories
(RAFT), a new post-processing approach that utilises the error correlation between
lead times to update parts of a forecast trajectory that have not yet realised.

1.1 Numerical weather prediction and ensembles

Numerical weather prediction (NWP) originated with Vilhelm Bjerknes, who in 1904
suggested that weather forecasts can be obtained by applying the governing equations
of fluid dynamics and integrating the current state of the atmosphere forward in time
(Bjerknes,  1904 ). In 1922, Lewis Fry Richardson made the first attempt at producing
such a forecast (Richardson,  1922 ), although it took him at least several weeks and the
result was far from accurate (Lynch,  2006 ). His dream was to one day have enough
(human) computers available to keep up with the current development of weather.
The first successful numerical weather forecast came with the arrival of ENIAC, the
first electronic multi-purpose digital computer, and the experiments conducted by
Charney, Fjørtoft, and von Neumann ( 1950 ). They managed to accurately forecast
the geopotential height over North America 24 hours ahead, even if the computations
took longer than a day to finish (Lynch,  2008 ). Due to the rapid increase in computing
power, the first global spectral model became fully operational in the 1980s (e.g.,
Kalnay,  2002 ).

A major paradigm shift in NWP occurred following Edward Lorenz’s first ven-
tures into chaotic systems (Lorenz,  1963 ; Lorenz,  1969 ), where he established that
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1. Introduction

the atmosphere’s development is critically sensitive to its initial state, of which a
perfect representation can never be achieved. This limits the predictability of weather
phenomena to a maximum of about two weeks, as small-scale errors grow so rapidly
that they carry over to larger scales after a few days. Even with unlimited computing
power and perfect numerical models, it is still impossible to produce perfect forecasts
of a deterministic chaotic system.

Although Edward Epstein (Epstein,  1969 ) proposed a stochastic-dynamic solution
by treating the weather variables as random and generating multiple predictions using
the Monte Carlo method (Metropolis and Ulam,  1949 ), the required computational
resources were far from realistic (Lewis,  2005 ). Leith ( 1974 ) found that the predictive
mean can be accurately determined with 8 samples, but higher moments and thus
much larger sample sizes are needed for modelling more complex distributions (Lewis,

 2014 ).

It took another two decades until operational forecast ensembles as we know them
today were launched by the European Centre for Medium-Range Weather Forecasts
(ECMWF) and the National Centers for Environmental Prediction (NCEP) in 1992
(e.g., Molteni et al.,  1996 ; Tracton and Kalnay,  1993 ). An ensemble prediction system
comprises of multiple runs of a numerical forecasting model, each differing slightly in
the specifications of the initial conditions or the model parameters, or both. In order to
make the most use of the ensembles, it is important to choose sets of initial conditions
that, when integrated forward, span a large part of all possible atmospheric states. At
the ECMWF, singular vectors, pointing towards the fastest growth over a finite time
interval, were initially used for this purpose (Buizza and Palmer,  1995 ; Buizza et al.,

 1993 ), while the NCEP model relied on bred vectors, where scaled perturbations are
frequently added to the control run of the non-linear model (Toth and Kalnay,  1993 ).

Ensemble forecasting systems consist of several stages. First, the current state of the
atmosphere, the analysis, has to be determined from recent observations. This process,
called data assimilation, is also used to create reanalyses, i.e., historical atmospheric
states that are employed for climate monitoring and verification. One such reanalysis
data set is ERA5 (Copernicus Climate Change Service,  2017 ), produced at ECMWF
based on their model IFS.

While some models combine a single best analysis with the ensemble perturbations
to form the initial conditions, others incorporate ensemble techniques into the data
assimilation process (for an overview see e.g., Hamill,  2006 ) and thereby try to obtain
more accurate information about the expected forecast error. The German Weather
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Service (DWD), for example, uses a local ensemble transform Kalman filter approach
for their COSMO (COnsortium for Small-scale MOdelling) convective-scale model
(Schraff et al.,  2016 ).

Another fundamental way to create useful ensemble perturbations is to incorporate
uncertainty in the second stage of the forecasting process, when the analysis is integrated
forward in time to create predictions. The model itself is imperfect, with some physical
processes not resolved directly but through parameterisations. These, in combination
with spatial and temporal discretisation due to mathematical limitations, constitute
further sources of uncertainty. Popular methods developed to account for the resulting
errors include stochastically perturbing the parameterisation tendencies (e.g., Buizza,
Miller, and Palmer,  1999 ) or modelling missing physics processes with a stochastic
kinetic energy backscatter scheme (e.g., Tennant et al.,  2011 ).

Many forecast providers also run limited-area weather forecasting models, which
have a higher grid resolution over a certain region. These models are often convection-
permitting and thus able to resolve processes on a much finer scale than the global
models. In  Paper I and  Paper II , data from the UK Met Office’s MOGREPS-UK (Met
Office Global and Regional Ensemble Prediction System) limited-area ensemble are
used, which has been in operation since 2012 (Hagelin et al.,  2017 ). For such models,
the initial and boundary conditions are usually taken from one or more global models
and sometimes combined with perturbations of the model physics. In the case of the
MOGREPS-UK model, the global ensemble MOGREPS-G originally provided the
initial and boundary conditions, however since a major upgrade in 2016, the initial
conditions have been created by using a combination of the MOGREPS-G perturbations
and the analysis of the high-resolution deterministic UK variable-resolution (UKV)
model. Recently, MOGREPS-UK received another significant change. Instead of
producing twelve ensemble member forecasts four times a day for the next 36 hours
(as in the data set here used), the ensemble is now run on an hourly cycle with three
ensemble members and predictions for the next 120 hours. The forecasts from the six
most recent model cycles are collected and comprise an 18-member lagged ensemble
(Met Office,  2020 ).

1.2 Sub-seasonal to seasonal forecasting

Although the predictability limit for weather lies at about two weeks (Zhang et al.,
 2019 ), some long-range phenomena can still provide useful indications about the average
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1. Introduction

weather over longer time periods, from a few weeks to a whole season. Sub-seasonal to
seasonal forecasting tries to bridge the gap between weather and climate predictions
by looking at how these phenomena possibly influence deviations from climatology
for certain regions and weather parameters. For example, sea surface temperature
changes in the Pacific Ocean, the El Niño-Southern Oscillation (ENSO), are related to
abnormal rainfall activity across the globe.

One of the biggest drivers of seasonal variability in Europe is the North Atlantic
Oscillation (NAO), a teleconnection pattern defined as the difference in sea level pressure
between two points in the North Atlantic (Feldstein and Franzke,  2017 ). A strongly
positive NAO index often coincides with warm and wet winters in northern and cold and
dry winters in southern Europe. However, recent results suggest that predictability for
NAO, and thus seasonal anomalies, shows some multi-decadal variability (Weisheimer
et al.,  2017 ), making useful predictions potentially difficult during future periods of
low predictability.

In order to incorporate long-range processes, atmospheric general circulation models
are coupled with ocean, land-surface and sea-ice models (Vitart and Robertson,  2019 ).
One such system is the UK Met Office’s GloSea5 (Global Seasonal forecast system
version 5), which is based on the HadGEM3 family of climate prediction models
(MacLachlan et al.,  2015 ). The underlying atmospheric model of both GloSea5 and
the short-range MOGREPS-UK is the Unified Model, designed to produce seamless
forecasts from hours to months (Met Office,  2019 ).

Ensembles play a particularly important role in seasonal weather forecasting, as
forecast uncertainty increases with lead time and seasonal forecasts are often given as
likelihoods of deviation from the average weather. To get the most benefit from the
computational resources available, GloSea5 uses a lagged ensemble approach: every
day, four ensemble members are initialised from the most recent analysis, two of them
running out to 210 days. The forecasts from the last three weeks are then combined
to form a 42-member seasonal ensemble (MacLachlan et al.,  2015 ). In addition to
the operational forecasts, produced since 2013, a set of hindcasts with three ensemble
members is generated every week, covering the same week over a 14-year-period in
the past. The purpose of this data set is to provide training data for bias-correcting
the operational forecasts, with the hindcast data characteristics matching those of the
current model version.

While many sources of forecast skill remain theoretical and relationships between
teleconnection patterns still need to be fully understood (Hoskins,  2012 ; Robertson
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and Vitart,  2019 ), seasonal prediction models are rapidly evolving and thus rising in
value for many customers (White et al.,  2017 ). Applications include the energy sector,
particularly renewable energies (e.g., Orlov, Sillmann, and Vigo,  2020 ), agriculture
(e.g., Klemm and McPherson,  2017 ) and public health (e.g., MacLeod et al.,  2015 ).

1.3 Optimising forecast skill

In order to be considered skilful, forecasts need to be accurate. For deterministic
forecasts, where usually only one single number is predicted, this means that this
number should be as close to the observation as possible. In the probabilistic case,
the forecast can take a number of different forms, like a percentile, an exceedance
probability, a confidence interval or a full probability distribution.

There are two important concepts that in combination describe the skill of a
probabilistic forecast: calibration is the statistical consistency between the forecasts
and the observations, whereas sharpness refers to the concentration of the forecast
uncertainty (Gneiting, Balabdaoui, and Raftery,  2007 ). A forecast is calibrated if an
event that is predicted with a certain probability p on average transpires in p percent
of all forecast cases. NWP ensemble forecasts are typically underdispersed, meaning
that the ensemble spread is too small and the model is too confident (e.g., Hamill and
Colucci,  1997 ). Forecasts derived from climatology on the other hand are by design
well-calibrated, but not sharp and therefore potentially not very useful.

Optimal sharpness constitutes a 100% confident probabilistic forecast, e.g., when
a confidence interval has width zero. This is, however, only desired if this confidence
is justified, i.e., if the forecasts are reliable. Gneiting, Balabdaoui, and Raftery
( 2007 ) therefore introduce the paradigm of maximising the sharpness of the predictive
distribution subject to calibration. Given a choice of reasonably calibrated forecasts,
one should always choose the one producing the sharpest predictions. A collection
of tools assessing both calibration and sharpness are described in Chapter  4 and in
 Paper IV . The latter also provides studies investigating the behaviour of these tools
(e.g., for limited sample sizes), as well as suggestions for best practice.

Despite all of the efforts in designing and improving NWP models as described
in Section  1.1 , ensembles are not able to capture all of the uncertainties involved
in weather forecasting (Raftery et al.,  2005 ). They are e.g., limited in their spatial
and temporal resolution, number of ensemble members, representation of atmospheric
processes and accuracy of the initial state.
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For this reason, a multitude of statistical post-processing methods have been de-
veloped over the past decades, aiming to correct the deterministic and probabilistic
forecasts generated by NWP models and thus account for some of the missing atmo-
spheric uncertainty. During this process, the models are usually compared against
observations, either on a grid or at specific sites. In the latter case, it is also possible
to account for local effects that might not be present in the model, e.g., due to a large
difference between the model orography and the actual terrain.

Although NWP models are continuously improved and benefit strongly from the
rapid increase in available computing power, Hemri et al. (  2014 ) show that the benefit
gained from statistical post-processing remains almost constant, even if the underlying
model’s skill increases. Consequently, there is and will be a need for statistical post-
processing in order to create reliable and useful forecast products from the raw NWP
output.

While it is essential to make forecasts as accurate and as reliable as possible, they also
have to be of relevance to customers, who may include the public and commercial sectors,
as well as the general public. This corresponds to the type 3 criterion for the goodness
of a weather forecast described in Murphy ( 1993 ). Human forecasters add a large
amount of value to numerical weather forecasts and are essential for giving warnings
for high-impact weather events (e.g., Novak et al.,  2011 ). However, it is impossible to
have forecasters manually assess and interpret every time series or map and websites
of most forecast providers are instead supplied with direct output from the numerical
weather forecasting and post-processing systems. This makes the forecasts somewhat
susceptible to inconsistencies in time and space if locations and forecast lead times
are post-processed separately. Some of these issues, including inconsistencies between
weather parameters, can partially be addressed with multivariate post-processing as
described in  Section 2.2 .

Furthermore, forecasts are usually updated only when a new NWP model run has
finished, which can range from hourly to twice-daily updates. In the meantime, it
might become obvious that the current forecast run suffers from a systematic error as
soon as the first few observations are recorded. For instance, the cloud cover could be
overestimated for the next six hours and the temperature therefore underestimated. The
customer then sees a cloudy forecast that fails to materialise in reality and is possibly
replaced with a more accurate forecast some hours later. This discrepancy between
the current forecast and the short-term outcome may result in a loss of confidence in
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the forecast provider, in addition to any loss due to decisions made on the basis of an
inaccurate forecast.

With the new RAFT post-processing framework, we want to provide a solution
to this issue. Forecast trajectories can now receive frequent updates every time a
new observation becomes available, based on the correlation between the observed
errors at consecutive lead times. This means that systematic errors can be caught
early and corrected for several hours ahead when applied to short-range ensembles like
MOGREPS-UK. Consequently, forecasts from older model runs with large lead times
become more valuable and can outperform the first few forecasts from the newest run.
This is especially important as models take multiple hours to run and are not available
until some time after initialisation. In  Paper I and  Paper II  , we illustrate how RAFT
is applied to short-range temperature and wind speed forecasts, both deterministic and
probabilistic.

RAFT can also provide a large advantage to ensembles with a rapid update cycle,
where forecasts from several runs are combined to a large ensemble. As these forecasts
correspond to different lead times, their relative skill can vary substantially. With
RAFT, all ensemble members are updated using the most recent error information and
the differences in skill are balanced out. The application of RAFT in such a setting is
discussed in  Paper III , although there are limitations to its capabilities due to the lack
of correlation between lead times of seasonal forecasts.
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Chapter 2

Statistical post-processing

In the following, we describe how statistical post-processing can be used to improve the
skill of deterministic and probabilistic forecasts. We differentiate between univariate
post-processing, where usually only one location, lead time and variable is addressed,
and multivariate post-processing, which incorporates dependencies between multiple
dimensions. The methods in this chapter are applied in  Paper I and  Paper II to provide
a baseline for RAFT.

2.1 Univariate post-processing

As a relatively sparse way to correct for deterministic and probabilistic biases, there are
now several post-processing methods in operational use around the world, designed for
different weather variables and forecasting scenarios. Hess ( 2020 ) illustrate how such
an operational framework can work: Deutscher Wetterdienst employ a combination of
the well-known model output statistics approach (MOS; Glahn and Lowry,  1972 ) for
deterministic forecasts of individual variables and event probabilities, as well as logistic
regression (Hosmer, Lemeshow, and Sturdivant,  2013 ) for more complex probabilities.

There are two well-established statistical post-processing methods for ensemble
forecasts that produce full probability distributions, from which any deterministic or
probabilistic forecast can be derived: Bayesian Model Averaging (BMA; Raftery et al.,
 2005 ) and Ensemble Model Output Statistics (EMOS; Gneiting et al.,  2005 ). BMA
dresses each ensemble member forecast with an appropriate probability distribution,
e.g., Gaussian distributions in the case of temperature forecasts, and then combines
these distributions to a weighted average mixture distribution. The ensemble member
forecasts are first bias-corrected using linear regression and the individual weights and
variance of the mixture distribution then estimated with maximum likelihood (Fisher,

 1922 ) and the expectation-maximisation algorithm (Dempster, Laird, and Rubin,  1977 ;
McLachlan and Krishnan,  2008 ). The weights for the individual ensemble member
distributions can be interpreted as the relative forecast skill of that member over the
training period. Further variants of BMA have been developed for wind speed (Baran,
 2014 ; Sloughter, Gneiting, and Raftery,  2010 ), precipitation (Schmeits and Kok,  2010 ;
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2. Statistical post-processing

Sloughter et al.,  2007 ) and wind vectors (Sloughter, Gneiting, and Raftery,  2013 ), as
well as a method for jointly post-processing temperature and wind speed (Baran and
Möller,  2014 ).

While BMA has the ability of forming multimodal predictive distributions, which is
especially advantageous for ensembles whose members can be grouped into clusters or
weather scenarios, it is relatively expensive to run – although the computational cost
of any statistical post-processing is negligible compared to running the NWP model
itself. The much more sparse EMOS method only fits a single unimodal predictive
distribution, but is conceptually simpler and therefore easier to adapt and faster to
compute. In terms of forecast skill, both methods usually perform on a similar level
(e.g., Baran, Horányi, and Nemoda,  2013 ) and we thus prefer to use EMOS (sometimes
also called non-homogeneous regression) in  Paper I and  Paper II .

Like many post-processing methods, EMOS is based on the idea that the ensemble
will provide a flow-dependent estimate of the uncertainty in a given weather scenario, it
is just on average too confident and needs to be calibrated. Therefore a single standard
probability distribution is fitted across all ensemble members and the distribution
characteristics are modelled as functions of the ensemble. Again, the distribution
depends on the type of weather variable at hand. A variety of EMOS versions are
available for temperature (Gneiting et al.,  2005 ; Scheuerer and Büermann,  2014 ),
wind speed (e.g., Baran and Lerch,  2016 ; Scheuerer and Möller,  2015 ; Thorarinsdottir
and Gneiting,  2010 ), wind gust (Thorarinsdottir and Johnson,  2012 ), precipitation
(e.g., Baran and Nemoda,  2016 ; Scheuerer,  2013 ; Scheuerer and Hamill,  2015 ), wind
vectors (Schuhen, Thorarinsdottir, and Gneiting,  2012 ) and combined wind speed and
temperature (Baran and Möller,  2016 ).

In  Paper I , temperature forecasts are post-processed in a conventional manner using
Gaussian distributions for modelling the EMOS predictive distribution, as in Gneiting
et al. ( 2005 ), before applying the new RAFT method. For every location, forecast
run and lead time, there are ensemble forecasts X1, . . . , Xm, which correspond to an
observation Y . We model the predictive distribution of the observation, conditional on
the ensemble members, as

Y | X1, . . . , Xm ∼ N
(
µ, σ2) , (2.1)
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Univariate post-processing

where N is a Gaussian distribution with mean µ and variance σ2. The mean and
variance are connected to the ensemble mean X̄ = 1

m

∑m
i=1 Xi and the ensemble

variance S2 = 1
m

∑m
i=1
(
Xi − X̄

)2 in the following manner:

µ = a+ b2 · X̄ (2.2)

σ2 = c2 + d2 · S2. (2.3)

Here, we treat the ensemble members as exchangeable and only use the ensemble mean
X̄ as predictor for the EMOS mean µ. It is also possible to include the individual
ensemble members in the regression equation ( 2.2 ), as well as other potentially useful
predictors. However, this increases the amount of necessary training data and can
lead to overfitting. The coefficient b is squared to make it easier to interpret, while
c and d in ( 2.3 ) are squared in order to ensure a positive variance. The latter also
provide an indicator of the performance of the ensemble over the training period. If c
is large and d close to zero, the ensemble spread is not a good forecast of the actual
forecast uncertainty and is disregarded; in the case of c being small and d close to 1,
the ensemble spread reflects the actual predictability over the training period.

There has been some discussion as to the optimal estimation of the coefficients
a, b, c and d. Gneiting et al. ( 2005 ) originally propose to minimise the continuous
ranked probability score (CRPS; see  Section 4.1 ), a proper scoring rule that optimises
calibration and sharpness at the same time. Another option is maximum likelihood
estimation, which can also be interpreted as minimising a proper scoring rule, namely
the ignorance score. Gebetsberger et al. ( 2018 ) show that although both methods
perform similarly overall, CRPS minimisation works slightly better if the forecast
distribution is not perfectly specified and the forecasts are ultimately verified using the
CRPS. Therefore we use this method in  Paper I  and  Paper II to obtain the estimated
parameters for the EMOS predictive distributions.

The parameters are calculated based on a training set, i.e., forecast-observation pairs
over a given time period. While some statistical applications allow for a fixed, longer
training period, post-processing of weather forecasts often involves a rolling training
period consisting of data from the last n days preceding the model run of interest (e.g.,
Gneiting et al.,  2005 ). In order to correct the specific deficiencies of NWP ensembles,
the training data and the current forecasts should ideally have been generated using
the same model setup. With operational NWP models, frequent changes are common
and therefore a long time period of past data from every model generation (reforecasts;
Hamill,  2018 ) pose an enormous computational burden. In cases where such reforecasts
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2. Statistical post-processing

are not feasible, as with the MOGREPS-UK model in  Paper I and  Paper II , it is better
to use a relatively short rolling training period so that the transition between model
generations is smooth. It has the additional advantage that errors associated with
particular weather regimes can be captured in a flow-dependent manner. However, due
to the smaller amount of data, coefficients can exhibit a jumpy behaviour, which in
turn might lead to a loss in predictive skill. Lang et al. ( 2020 ) have recently shown
that sliding training period windows that incorporate at least some historical data
have an advantage over the conventional approach. In an interesting proof-of-concept,
Demaeyer and Vannitsem ( 2020 ) investigate a technique based on response theory to
incorporate small model changes into the estimation of post-processing coefficients.

When selecting an appropriate set of training data, it is necessary to choose between
two approaches, which Thorarinsdottir and Gneiting ( 2010 ) call regional and local
EMOS. The former pools the training data from all locations or grid points and
then estimates only one set of coefficients. This results in more stable estimates and
therefore shorter training period lengths, in addition to the possibility of applying
these coefficients to locations without available observation data. The local approach
uses only training data from the location or grid point at hand, which requires longer
training periods, but often produces more skilful forecasts that take into account local
effects.

After estimating the parameters by minimising the CRPS over the training data,
we then plug the ensemble mean and variance from the current forecast run in ( 2.2 )
and ( 2.3 ), respectively. From the resulting predictive distribution, we can generate
any deterministic or probabilistic forecast product. This process is repeated for every
forecast run, lead time and, in the case of local EMOS, location. In order to avoid
large jumps in the coefficients from day to day, the previous day’s final estimates are
used as starting values for the optimisation algorithm. Occasionally, in particular when
d is close to zero, this can lead to the algorithm being stuck in a local minimum. In
such cases, we reset the starting values for c and d.

While the Gaussian distribution is usually a very good fit for temperature fore-
cast, it is more difficult to find a suitable distribution for wind speed, as the values
are non-negative and the tails can be quite heavy, depending on the location. For
instantaneous wind speed, Thorarinsdottir and Gneiting ( 2010 ) propose a truncated
Gaussian distribution that is cut off at zero. This means that any negative value has
probability zero and the remaining part of the distribution is adjusted accordingly.
Other distributions commonly used are truncated logistic distributions, gamma distri-
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butions (both Scheuerer and Möller,  2015 ), log-normal distributions (Baran and Lerch,
 2015 ) and generalised extreme value distributions (Lerch and Thorarinsdottir,  2013 ).
In  Paper II  , we will apply the truncated Gaussian (gEMOS) and truncated logistic
(logEMOS) models to generate post-processed forecasts as baseline for the new RAFT
method. The two wind speed EMOS models are defined as

Y | X1, . . . , Xm ∼ N+ (µ, σ2) (2.4)

for gEMOS, with µ and σ2 being the location and scale parameters of the truncated
Gaussian distribution N+, and

Y | X1, . . . , Xm ∼ L+ (µ, s) (2.5)

for logEMOS, where µ is the location parameter and s the scale of the truncated logistic
distribution L+.

Again, we want to link the distribution characteristics to the ensemble mean X̄ and
variance S2:

µ = a+ b2 · X̄ (2.6)

σ2 = c2 + d2 · S2. (2.7)

Note that here we model the location parameter µ and not the mean, and in the case of
gEMOS the scale parameter σ2 and not the variance. For logEMOS, ( 2.7 ) refers to the
variance σ2 = s2π2/3. As the CRPS is available in a closed form for both truncated
distributions (see  Section 4.1 ), parameter estimation is straightforward and can be
conducted in the same manner as for temperature.

Although BMA and EMOS are the most popular, there is a wide variety of post-
processing methods, catering to specific weather variables and forecasting needs. For
example, some applications might require a non-parametric approach, where the indi-
vidual ensemble members are corrected instead of constructing a predictive distribution.
Comprehensive overviews can be found in Wilks ( 2018 ) and Vannitsem et al. ( 2020 ).
The latter article also summarises current operational applications of statistical post-
processing – including forecast blending – and their challenges, as well as potential
future research directions. A prominent new area of research mentioned is the applica-
tion of machine learning in post-processing. Developed by NCAR (National Center for
Atmospheric Research), the DICAST system, combining statistical post-processing and
blending of numerous data sources with machine learning, has already been operational
for more than two decades and is used for many applications in various sectors, such
as wind and solar energy or agriculture (Haupt et al.,  2018 ).
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2.2 Multivariate post-processing

The post-processing methods described in the previous section are designed in such
a manner that they can be applied to single forecasts valid at a single point in time
at a single location. Due to the purely statistical nature of these methods, physical
relationships are rarely taken into account and forecasts are potentially no longer
consistent. For example, temperatures in summer are usually correlated with cloud
cover, however separate post-processing of the two variables can lead to them being
completely independent. While there may be scenarios where physical consistency is of
no importance, typical applications include at least multiple locations or lead times.
For the wind energy industry, it is important to have accurate forecasts about the
location and timing of frontal systems (Steiner et al.,  2017 ), whereas in a hydrological
context, run-off scenarios require coherent spatio-temporal structures (Hemri, Lisniak,
and Klein,  2015 ).

Some multivariate post-processing methods are tailored to specific applications, such
as producing calibrated bivariate forecasts for wind vectors (Pinson,  2012 ; Schuhen,
Thorarinsdottir, and Gneiting,  2012 ; Sloughter, Gneiting, and Raftery,  2013 ), either
in the form of full predictive distributions or adjusted ensemble forecasts. Hemri,
Lisniak, and Klein ( 2015 ), e.g., model the correlation structure between different lead
times, each first post-processed with EMOS, by using Gaussian copulas. In order to
obtain consistent and calibrated forecast fields, Berrocal, Raftery, and Gneiting ( 2007 ),
Berrocal, Raftery, and Gneiting ( 2008 ), and Feldmann, Scheuerer, and Thorarinsdottir
( 2015 ) combine BMA and EMOS with the geostatistical output perturbation method
(Gel, Raftery, and Gneiting,  2004 ), also based on Gaussian copulas. These parametric
approaches, however, can be quite complicated and expensive to run.

Non-parametric methods that rely on empirical copulas to model the multivariate
relationships have proven to be rather versatile and effective when it comes to handling
many dimensions or combinations of multiple variables, lead times and locations.
There are two state-of-the-art approaches, each with their strengths and weaknesses,
depending on the forecasting scenario: ensemble copula coupling (ECC) and Schaake
shuffle. They share the same framework, where a specific multivariate dependency
template is applied to samples from individually calibrated marginal distributions. The
only difference lies in the origin of the dependency template at hand. While ECC
(Schefzik, Thorarinsdottir, and Gneiting,  2013 ) assumes that the raw ensemble correctly
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portrays the physical relationship between the dimensions of interest, Schaake shuffle
(Clark et al.,  2004 ) relies on historical observations.

Due to their design, it is straightforward to combine univariate post-processing
with ECC or Schaake shuffle. These methods are computationally efficient, can be
applied to forecasts of any dimension and default to the original marginal distributions
when evaluated in a univariate manner. In order to apply ECC or Schaake shuffle, we
follow these three steps:

1. Apply a univariate post-processing method of choice to the raw ensemble forecasts
X

(d)
1 , . . . , X

(d)
m for each dimension d, then draw n samples from the d marginal

distributions. Schefzik, Thorarinsdottir, and Gneiting ( 2013 ) recommend using
equidistant quantiles, as they are optimal with regard to the CRPS (Bröcker,

 2012 ). It is also possible to use other techniques like stratified (Hu et al.,  2016 ) or
random sampling. For ECC, the number of samples n is limited to the size of the
original NWP ensemble m, while for Schaake shuffle it depends on the number
of historic observations selected. From this step, we obtain a set of samples
X̃

(d)
1 , . . . , X̃

(d)
n .

2. Extract the dependency template from the selected source. In case of ECC,
this is the order statistic of the raw ensemble members, where we note the rank
of each ensemble member X(d)

i among the other members X(d)
1 , . . . , X

(d)
m . Any

ties are resolved at random. For the Schaake shuffle, we do the same with a
set of historical observations Y (d)

1 , . . . , Y
(d)
n . The dependency template is then a

permutation τd (·) of the numbers 1, . . . ,m or 1, . . . , n with

X
(d)
τd(1) ≤ X

(d)
τd(2) ≤ . . . ≤ X

(d)
τd(m) or (2.8)

Y
(d)
τd(1) ≤ Y

(d)
τd(2) ≤ . . . ≤ Y

(d)
τd(n). (2.9)

3. Reintroduce the correlation structure by ordering the post-processed samples
X̃

(d)
1 , . . . , X̃

(d)
n according to the permutation from the previous step. The result

is a d-dimensional ensemble with n members that has calibrated marginals and
the same relationship between components as the dependency template:[

X̃
(1)
τd(1), . . . , X̃

(d)
τd(1)

]
, . . . ,

[
X̃

(1)
τd(n), . . . , X̃

(d)
τd(n)

]
. (2.10)

ECC has the advantage that no additional data are needed, whereas the Schaake
shuffle requires a comprehensive amount of historical observations. While Clark et al.
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2. Statistical post-processing

( 2004 ) initially only use dates from previous years and a small period around the current
date, there have been some efforts to develop more sophisticated selection processes,
like restricting the data according to similarity conditions (Schefzik,  2016 ) or matching
the marginal distributions of the observations and forecasts (Scheuerer et al.,  2017 ). To
circumvent the limitation in sample size for ECC, it is possible to repeatedly sample
randomly from the post-processed distributions and apply the reordering multiple times.
The aggregated ensemble can then outperform the much smaller ensemble consisting of
equidistant quantiles (Wilks,  2014 ). Ben Bouallègue et al. ( 2016 ) combine ECC with
the autocorrelation of the forecast error over consecutive lead times in order to improve
the representation of temporal dependencies.

In  Paper II , we show how the new RAFT method can be combined with ECC to
create an optimal post-processing chain. A variant of the EMOS/ECC combination
used here, only with a slightly different sampling scheme, can be interpreted as a direct
mapping between unprocessed and post-processed ensemble members, often called
member-by-member post-processing (Schefzik,  2017 ). The RAFTens method described
in  Section 3.2 also resembles such member-by-member approaches. Lerch et al. ( 2020 )
investigate the relative performance of ECC, Schaake shuffle and a parametric Gaussian
copula method (Möller, Lenkoski, and Thorarinsdottir,  2013 ; Pinson and Girard,  2012 )
for simulated data, where the forecasts exhibit a variety of misspecifications. A detailed
description of multivariate post-processing methods can be found in Schefzik and Möller
( 2018 ).
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Chapter 3

Rapid adjustment of forecast
trajectories

The newly proposed RAFT approach describes a class of statistical post-processing
methods, designed to complement the established methods described in the previous
chapter. Its goal is to update forecasts using observations that have become available
since the model run’s initialisation and thus improving the skill of older forecasts, as
shown in  Paper I and  Paper II  . For lagged ensembles like in  Paper III , RAFT can be
used to balance the difference in relative skill between ensemble members. In principle,
RAFT applies to forecast scenarios of any range, from short-range to seasonal. However,
there are limitations, which we discuss in  Section 3.5 .

3.1 RAFT for ensemble mean forecasts

The idea behind RAFT is to make use of observations recorded between two model
initialisation times to incorporate new information and consequently make the old
forecasts more accurate. This prevents forecast products, especially in the short range,
becoming outdated and sometimes obviously wrong until the next model run has
finished. At this point it is likely that the level of forecast skill suddenly jumps, as the
new NWP run replaces the old.

A typical setup of a NWP model cycle can be seen in  Figure 3.1  , where the model
is initialised from a new analysis every 6 hours, producing hourly forecasts for the
next few hours to days. We refer to the model runs by their initialisation time (in

t+1 t+2 t+3 t+4
FC2

t+6

t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9
FC1

t+10

t+5 

Figure 3.1: Figure 1 from  Paper I . Diagram of a typical forecast cycle, where new
model runs (FC1, FC2) are initialised every six hours and forecast lead times are one
hour apart. The MOGREPS-UK version used here is configured in this way.
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3. Rapid adjustment of forecast trajectories

UTC) and the time points for which forecasts are produced as lead times if they are
given relative to the initialisation time. For example, a forecast produced from a run
initialised at 03 UTC with lead time 6 (or t+ 6) would here be valid for 09 UTC on
the same day. This latter, fixed time point is usually called the valid or validity time.

The scheme in  Figure 3.1  corresponds to the Met Office’s MOGREPS-UK ensemble
(Hagelin et al.,  2017 ), which is used in  Paper I and  Paper II  . Forecasts are interpolated
from the model grid to individual observation locations in the UK and the Republic of
Ireland, and corrected for differences between the real and the model orography. In a
subsequent process, these data are blended with forecasts from other models such as the
global MOGREPS-G and the ECMWF medium-range model, before being published
on the Met Office’s website (Sharpe, Bysouth, and Stretton,  2017 ). However, we do
not apply RAFT to these blended forecasts, but rather to the individual models.

Our initial goal is to improve the deterministic forecast skill of the ensemble mean
forecast to showcase the RAFT framework and then develop a version that also addresses
probabilistic forecasts and can be integrated into a comprehensive operational post-
processing chain. RAFT does not replace other post-processing methods, but can and
should be applied to forecasts that have been subject to conventional post-processing.
In this way, methods like EMOS (and ECC, as described in the next section) work in
concert with RAFT, but operate at different time scales.

Therefore, we first apply EMOS to temperature and wind speed forecasts from
MOGREPS-UK in order to create a baseline for the forecast skill we can obtain from
conventional post-processing. Any additional forecast skill is solely achieved by adding
information that was not available at the point when the original forecasts were issued.
The data set covers a period of about 2.5 years from January 2014 to June 2016.
MOGREPS-UK has experienced several operational changes during this time, such as
the addition of the high-resolution analysis of the UKV model; however, we can not
take these into account here. We use the complete year of 2014 as an estimation period
for RAFT and the remaining 1.5 years for evaluation.

All four forecast initialisation times at 03, 09, 15 and 21 UTC are considered, as are
all 36 hourly lead times. The data set contains 150 locations for surface temperature
and 152 for surface wind speed forecasts, which correspond to weather stations recording
SYNOP observations. We can roughly categorise these weather stations as coastal,
mountainous and inland sites.

When applying EMOS to the whole data set, as described in  Section 2.1 , each
location, forecast run and lead time are treated separately. We use a rolling training
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Figure 3.2: (a) Verification rank histogram of the raw MOGREPS-UK surface
temperature forecasts from the 15 UTC run and PIT histogram of the corresponding
EMOS temperature forecasts. (b) Verification rank histogram of the raw MOGREPS-
UK surface wind speed forecasts from the 15 UTC run and PIT histograms of the
forecasts post-processed with EMOS, using truncated Gaussian (gEMOS) and truncated
logistic distributions (logEMOS). 

1
 

period of 40 days, which has shown good results in a previous study (Schuhen et al.,
 2016 ). This process results in fairly calibrated temperature and wind speed forecasts,
as can been seen in  Figure 3.2  . Here, the verification rank and PIT histograms of
the raw ensemble are compared to the post-processed EMOS forecasts for all data
in the test set where the model run was initialised at 15 UTC. The MOGREPS-UK
forecasts are very underdispersed, in both the temperature and the wind speed case.
After applying the EMOS version using Gaussian distributions to the temperature
forecasts, the histogram is much closer to uniformity. For wind speed, we show results
for two EMOS variants, using truncated Gaussian (gEMOS) and truncated logistic
(logEMOS) distributions, respectively. Both have similar results and improve the level
of calibration significantly. More details about the composition and interpretation of
these histograms can be found in  Section 4.1 .

Likewise, we can assess the benefit of statistical post-processing by looking at proper
scores.  Table 3.1 lists the values of the CRPS and the root-mean-square error (RMSE)
for the MOGREPS-UK and EMOS temperature forecasts, averaged over all model
runs initialised at 15 UTC, as well as all locations and lead times. While the CRPS
looks at the whole probability distribution and assesses both calibration and sharpness,

1Visualisation for the histograms in this thesis is taken from Barnes, Brierley, and Chandler ( 2019 ).
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Table 3.1: Continuous ranked probability score and root-mean-square error (in °C)
of raw and post-processed MOGREPS-UK temperature forecasts, averaged over all
forecast cases from the 15 UTC run in the test set. All pairwise score differences are
statistically significant at α = 0.01.

CRPS RMSE
Raw ensemble 0.734 1.253
EMOS 0.596 1.136

Table 3.2: Continuous ranked probability score and root-mean-square error (in knots)
of raw and post-processed MOGREPS-UK wind speed forecasts, averaged over all
forecast cases from the 15 UTC run in the test set. All pairwise score differences are
statistically significant at α = 0.01.

CRPS RMSE
Raw ensemble 2.116 3.670
gEMOS 1.618 3.056
logEMOS 1.622 3.070

the RMSE is a measure for the accuracy of the mean forecast. Again, more details are
given in  Section 4.1 . We apply a permutation test (Heinrich et al.,  2020 ) to the scores
to test if the mean differences are significantly different. The corresponding scores for
MOGREPS-UK wind speed forecasts and the two EMOS variants applied are shown
in  Table 3.2 .

For both weather variables, EMOS manages to considerably improve the determinis-
tic and probabilistic forecast skill, as compared to the original ensemble. The two EMOS
approaches gEMOS and logEMOS perform on a similar level, with gEMOS receiving
marginally lower scores. However, the logEMOS forecasts seem to be slightly better
calibrated (  Figure 3.2 b). In the following, we concentrate on forecasts post-processed
with the gEMOS method.

At this stage in the post-processing process, after the numerical model has run
and EMOS (or a similar method) has been applied, the forecasts are issued for the
full range of lead times. Typically, there are no further changes to this trajectory
and at some point it is replaced by or blended with forecasts from newer model runs.
With RAFT, we can repeatedly correct errors that become apparent as parts of the
trajectory realise. First, we concentrate on improving the skill of the EMOS mean as a
deterministic forecast.
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RAFT is based on the notion that errors at forecast lead times are often correlated,
as long as those lead times are sufficiently close to each other. We define the observed
error of a deterministic forecast mt,l, initialised at a time t with lead time l as the
distance to the observation valid at the same time, yt+l:

et,l = yt+l −mt,l. (3.1)

Here, the deterministic forecast m is the mean of the EMOS predictive distribution and
lead times l are measured in hours. For wind speed, the mean has to be calculated from
the location and scale parameters first.  Figure 3.3 illustrates the correlation matrix of
the forecast errors over the training period at two locations in the UK. Neighboring
lead times are highly correlated and the correlation becomes weaker as the distance
between lead times increases. Therefore, the observed error at one particular lead time
can be a reliable predictor for the expected error at a later lead time. We define the
RAFT adjustment period as the period preceding a lead time l, where an observed
error et,l∗ at time t + l∗ with l∗ < l provides information about the error et,l. For
temperature, the length of the adjustment period seems to vary as the predictability
changes with the diurnal cycle ( Figure 3.3 a), while it seems more consistent for wind
speed ( Figure 3.3 b).

We connect the predicted to the observed error using linear regression and define
the RAFT model for the estimated error êt,l at a future lead time l as

êt,l = α̂+ β̂ · et,l∗ + ε, (3.2)

with ε being normally distributed with mean zero. The assumption of normally
distributed residuals holds for both the temperature and wind speed errors in our
estimation dataset, as confirmed by Q-Q and residual plots (not shown). We estimate
the regression coefficients α̂ and β̂ using the least squares method for every possible
combination of l = 3, . . . , 36 hours and l∗ = 1, . . . , 34 hours. In order to make RAFT
operationally viable, we allow for one hour to process observations and start with the
first adjustment at time t+ 3, using the observed error at t+ 1.

From the coefficient β̂, the length of the adjustment period, p, can now be determined
for every l. If et,l∗ is a useful predictor for et,l, then β̂ in ( 3.2 ) will be significantly
greater than zero for this combination of lead times. Below, we describe the algorithm
to find the optimal length of p for lead time l, again using only the estimation period
data. We here restrict p to be smaller or equal to 22 hours (with one additional hour
reserved for processing observations), but it is possible to allow longer adjustment
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periods, especially in the temperature case, where predictability depends considerably
on the diurnal cycle. The RAFT algorithm is defined in  Paper II as follows:

1. Estimate the regression coefficients in ( 3.2 ) for all predictors et,l∗ with l∗ in
[l − 23; l − 2]. If this results in any negative lead time values, we add 24 hours to
l∗, so that lead time 23 is followed by lead time 0, 1, 2, . . ..

2. a) Find the earliest l∗ in [l − 11; l − 2], such that the coefficient β̂ is significantly
different from zero at the 10% level for each lead time l∗+1, . . . , l−2. Denote
the result as lp.

b) If there is no result in the previous step, find the earliest l∗ in [l − 19; l − 12],
such that β̂ is significantly different from zero at the 5% level for each lead
time l∗ + 1, . . . , l − 12. Denote the result as lp.

c) If there is no result in the previous step, find the earliest l∗ in [l − 23; l − 20],
such that β̂ is significantly different from zero at the 1% level for each lead
time l∗ + 1, . . . , l − 20. Denote the result as lp.
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Figure 3.3: (a) Figure 4a from  Paper I . Empirical correlation coefficient of the
temperature mean forecast error for every lead time combination of the 03 UTC model
run at Heathrow Airport during the training period. Only correlations significant at
the 10% level are shown. (b) Figure 4a from  Paper II . Empirical correlation coefficient
of the wind speed mean forecast error for every lead time combination of the 15 UTC
model run at The Cairnwell during the training period. Only correlations significant at
the 10% level are shown.
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RAFT for ensemble mean forecasts

3. After running the first two steps for all lead times, determine the length of the
adjustment period p:

a) If Step 2 has yielded a result for lp, set p = l − lp.

b) If Step 2 has not yielded a result for lp, set p equal to the average of the
adjustment period length values for the neighbouring lead times l − 1 and
l + 1.

c) If there is still no valid value for p, set it to p = 22 hours. This corresponds
to the longest possible adjustment period.

By letting the significance levels vary, we ensure that the adjustment period is
as long as possible, while at the same time avoiding unreasonably long periods with
negligible adjustments. In the few instances in this study where the algorithm was
not able to identify a suitable adjustment period, this seemed due to significant, if
small, error correlations for a large number of lead times. Therefore, it was decided to
then set the adjustment period to the maximum value, which seemed to be justified,
as tests showed no deterioration in forecast skill, even if the adjustment period is very
long. This algorithm can be understood as a template that has been customised to the
MOGREPS-UK ensemble. For other data sets, a different approach might be more
suitable.

Finally, we collect the respective adjustment period lengths for each lead time
l and the corresponding RAFT coefficients in ( 3.2 ) for every l∗ in [l − p; l − 2]. All
locations and model initialisation times are treated separately to account for location-
and run-specific patterns. As can be seen from Figures 4b in  Paper I and 2b in  Paper II  ,
the length of the adjustment period is not necessarily consistent between consecutive
lead times. A smoother result might be achieved by pooling several lead times, however
we did not see any jumpiness in the actual forecast skill of the RAFT updates. Also,
varying predictability due to the diurnal cycle can more effectively be considered if
adjustment period lengths are lead-time-specific.

Once we have obtained the coefficients, RAFT can be applied to online NWP model
runs by plugging the latest observed errors into the RAFT model ( 3.2 ). The first
adjustment of each model run is carried out at t+2 for all forecasts in the trajectory for
which the respective adjustment period extends back to t+ 1, the time the observation
used in this step was recorded. From this point onward, hourly adjustments are applied
until t+ 35;  Figure 3.4  illustrates how RAFT works in the context of a typical forecast
cycle. The first two lead times can not be updated, as there are no forecast data from
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Figure 3.4: Figure 5 from  Paper I . Diagram of a forecast cycle for an hourly
forecast issued every 6 hours, with RAFT applied as new observations become available.
Forecasts in grey are only used as predictors by means of their observed error and are
not adjusted themselves.

the current run available. In order to somewhat bridge this gap, we use forecasts from
the run initialised 24 hours earlier that are valid at the same time of day. However,
this results in only a small improvement in forecast skill.

Formally, the predicted error êt,l for a model run t and lead time l is calculated
using the RAFT coefficients α̂ and β̂ and the observed error et,l−k, where 2 ≤ k ≤ p:

êt,l = α̂+ β̂ · et,l−k. (3.3)

The estimated error is then added to the original EMOS mean forecast for lead time l
to create the RAFT-adjusted forecast m̂t,l:

m̂t,l = mt,l + êt,l. (3.4)

It is possible for negative wind speeds to occur in this process, which we then set to
zero. While here only the mean forecast is adjusted, it can now be plugged into the
EMOS distribution in order to generate probabilistic forecasts. For wind speed, we
first need to compute the location parameter, which we have to do numerically using
the updated mean and the scale parameter.

The deterministic and probabilistic forecast skill of the combined RAFT/EMOS
forecasts is evaluated over the test period with the tools described in  Chapter 4  . To
assess the accuracy of the mean forecast, we again use the RMSE.  Figure 3.5 shows
the average temperature RMSE over all sites and dates in the test period for the 21
UTC model run. The solid line is the RMSE of the EMOS mean over lead time and
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RAFT for ensemble mean forecasts

the dashed line the score for the RAFT-adjusted mean. In the top plot, RAFT is only
applied once at t+ 1, using the error of the t+ 24 forecast from the previous day’s run.
Even with this limited additional information, there is a reduction in the RMSE for
the next twelve hours.
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Figure 3.5: Figure 9 from  Paper I . (a) RMSE of the EMOS and RAFT mean
temperature forecasts over lead time. The scores are averaged over all dates and
locations in the test period for model runs initialised at 21 UTC. RAFT error corrections
are carried out only once at lead time t+ 1. (b) is as (a), but RAFT is carried out for
all lead times until the end of the trajectory.

25



3. Rapid adjustment of forecast trajectories

2.75

3.00

3.25

0 4 8 12 16 20 24 28 32 36
Lead time

R
M

S
E

(a)

2.75

3.00

3.25

0 4 8 12 16 20 24 28 32 36
Lead time

R
M

S
E

(b)

gEMOS  gEMOS + RAFT  logEMOS  logEMOS + RAFT

Figure 3.6: Figure 4 from  Paper II . RMSE over lead time for gEMOS (red solid line)
and logEMOS (red dashed line) mean wind speed forecasts, as well as their RAFT
adjustments (blue solid and blue dashed lines, respectively). The scores are averaged
over all dates and locations in the test period for model runs initialised at 15 UTC.
(a) RAFT is only carried out until the adjustment at t+ 15. (b) RAFT is carried out
until its last iteration at t+ 35.

The bottom plot shows the same data, but RAFT has now been applied hourly
until the end of the trajectory, i.e., all RAFT adjustments have been made with the
observations recorded two hours earlier, resulting in the maximum achievable forecast
skill. There is a significant improvement of the deterministic skill across all lead times,
but especially after t+ 3, when we start using the forecasts from the current forecast
run instead of the previous day’s. It is noticeable that the RMSE of the RAFT mean
is less subject to diurnal variations and the deterioration in skill due to increasing lead
times completely disappears. The most substantial difference in forecast skill occurs
during the last twelve hours of the trajectory.
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RAFT for ensemble mean forecasts

In  Figure 3.6  , the same scores are shown for EMOS and RAFT wind speed forecasts.
As noted before, the forecast skill here does not vary with the diurnal cycle.  Figure 3.6 a
shows only the RAFT adjustments that have been made until t+ 15, meaning that all
forecasts to the left of the vertical line have been adjusted one hour before, and the
ones to the right with the error information recorded at lead time t+ 14. At this point,
RAFT provides a skill increase for the next 10 hours, compared to the unadjusted
EMOS forecasts. In  Figure 3.6 b, we see the wind speed equivalent to  Figure 3.5 b; the
difference in RMSE between EMOS and RAFT is here quite consistent and increases
slightly with lead time. Again, there is no significant difference between the two EMOS
versions, gEMOS and logEMOS.

Both  Figure 3.5 b and  Figure 3.6 b illustrate one of RAFT’s main benefits. We can
compare the forecast skill at two lead times corresponding to the same time of day,
for example t + 2 and t + 26. Usually, forecasts at t + 26 would have lower skill, as
they lie in the tail of the trajectory. With RAFT, however, they are now more skilful
than the forecasts at t + 2, as we have to rely on data from older forecast runs to
adjust the first few hours of the trajectory, which is less effective. Consequently, it is
reasonable to prefer the RAFT-adjusted forecasts at lead time t+ 26 from the previous
day’s run to the t+ 2 forecasts from the current one. Contrary to how NWP models
currently operate, the newest model run has, for a brief time at the beginning of a
trajectory, less forecast skill than forecasts from an older run. This time period is
prolonged considerably when we take into account the computation time of the NWP
model, which is disregarded in this study.

To further highlight the additional predictive skill provided by RAFT, we compare
the final RAFT adjustments to the EMOS forecast from the most recent model run
for any particular lead time ( Figure 3.7 ). These forecasts have lead times of one to
six hours and are therefore a fairer comparison to the final RAFT adjustments, which
were created from information that was available two hours before the validity time.
The top plot shows the same temperature scores as in  Figure 3.5 b, with the coloured
lines being the RMSE values of the first forecasts from each model run. Again, the
diurnal variation in predictability is quite noticeable, as is the gap in forecast skill
between EMOS means at small and large lead times. The RAFT forecasts, however,
are continuously performing better than EMOS, independent of lead time. Only the
first 15 UTC run predictions come close to the RAFT-adjusted forecasts from the 21
UTC run during the period in the late afternoon where predictability increases, similar
to the behaviour seen in Figure 8 in  Paper I . The bottom plot shows the corresponding
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3. Rapid adjustment of forecast trajectories

scores for wind speed forecasts. As expected, there is no significant diurnal cycle and
the first forecasts from each run perform on a comparable level. During the first 18
hours of the trajectory, the RMSE of the RAFT mean is substantially lower than that
of the newest EMOS predictions. However, as the skill of the trajectory deteriorates,
the gap decreases. It should be kept in mind, though, that by this time the newer
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Figure 3.7: (a) As  Figure 3.5 b, with added RMSE scores of the most current EMOS
mean forecasts for each lead time, i.e., the first 6 hours of the most recent model run.
(b) As  Figure 3.6 b, with added RMSE scores of the most current EMOS mean forecasts
for each lead time, i.e., the first 6 hours of the most recent model run.
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Figure 3.8: (a) PIT histograms of EMOS and RAFT mean temperature forecasts,
aggregated over all sites and dates from model runs initialised at 15 UTC in the test
data set. RAFT forecasts are taken from the final adjustment for each lead time. (b)
PIT histograms of gEMOS and RAFT mean wind speed forecasts, aggregated over
all sites and dates from model runs initialised at 15 UTC in the test data set. RAFT
forecasts are taken from the final adjustment for each lead time.

EMOS runs themselves have been adjusted so that they are also now on a similar skill
level as the first part of the RAFT mean curve in this figure.

The question arises if the combination of the RAFT-adjusted mean and the original
EMOS variance constitutes a skilful probabilistic forecast, now that the deterministic
skill has been improved. Thus, we look at the calibration of the RAFT/EMOS
distribution via their probability integral transform (PIT) histograms in  Figure 3.8 .
For both temperature and wind speed, the RAFT distributions now show a slight
overdispersion, where they were a little underdispersed before. This is not surprising,
as the spread includes some uncertainty that can be associated with the mean forecast
and that has now been reduced by updating the mean. Although the sign of the
miscalibration has changed, the coverage of the prediction interval shows that the
RAFT/EMOS distributions are closer to perfect calibration than the original EMOS
distributions.
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3. Rapid adjustment of forecast trajectories

3.2 RAFT for ensemble members

While adjusting only the mean forecast still results in calibrated distributions for
MOGREPS-UK, this is not guaranteed for any type of ensemble. In our example,
the EMOS forecast were slightly underdispersed and benefited from increasing the
deterministic skill while keeping the EMOS variance unchanged. We now want to
adapt RAFT in such a way that it works for NWP ensembles with different error
profiles and adjusts the variance as well as the mean. To achieve this, we show how the
RAFT technique for mean forecasts described in the previous section can be applied
to individual ensemble forecasts. We call the mean forecast version RAFTm and the
ensemble member version RAFTens. Results in this section are shown for wind speed
forecasts only.

First, we sample ensemble members from the EMOS predictive distributions to ob-
tain a calibrated ensemble with the same number of members as the original MOGREPS-
UK. Following the recommendation by Schefzik, Thorarinsdottir, and Gneiting ( 2013 ),
we use twelve equidistant quantiles. Similar to ( 3.1 ), the forecast error for the ith
ensemble member forecast x(i)

t,l from the model run initialised at time t and valid at
lead time l is defined as

e
(i)
t,l = yt+l − x(i)

t,l , i = 1, . . . , 12. (3.5)

Then we proceed as before by investigating the relationship between the errors at
different lead times over the estimation period. We look at every ensemble member
individually and therefore do not treat them as exchangeable any more. The correlation
matrix for one ensemble member of the 15 UTC run at The Cairnwell, Scotland is
shown in  Figure 3.9  a; compared to  Figure 3.3 b, there seems to be less long-range
correlation between earlier and later lead times.  Figure 3.9 b shows the corresponding
adjustment periods for each lead time, determined using the algorithm described in

 Section 3.1 . There is some jumpiness as to the length of the adjustment period at
consecutive lead times, which is not present in the RAFTm version (Figure 2b of

 Paper II ). For larger ensembles than MOGREPS-UK, such as the 51-member ECMWF
medium-range ensemble (Buizza and Richardson,  2017 ), it might be beneficial to pool
ensemble members to achieve a smoother result and reduce the computational burden.

After determining the length of the adjustment period and the RAFT coefficients
for every ensemble member, initialisation time, location and lead time combination, we
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Figure 3.9: (a) Correlation matrix of an EMOS ensemble member for the 15 UTC
run at The Cairnwell, with only correlations significant at the 10% level shown. (b)
Corresponding RAFTens adjustment period length for each lead time and the same
ensemble member.

proceed with the online RAFT adjustments. The observed errors e(i)
t,l−k with 2 ≤ k ≤ p

and the coefficients are plugged into the RAFT model

ê
(i)
t,l = α̂+ β̂ · e(i)

t,l−k (3.6)

and the predictive error ê(i)
t,l is added to the respective ensemble forecast:

x̂
(i)
t,l = x

(i)
t,l + ê

(i)
t,l . (3.7)

At any given lead time, the set of adjusted ensemble members x̂(i)
t,l constitutes an

empirical probability distribution, whose mean and variance have both been corrected
by incorporating the most recent error information.

Again, when assessing the probabilistic skill of RAFTens and of the combined
RAFTm and EMOS distributions, we should keep in mind that the results for the latter
method can vary considerably, depending on the properties of the ensemble.  Figure 3.10 

shows the verification rank histograms of the RAFTens forecasts when applied to the
two EMOS wind speed variants. These histograms can be directly compared to the
ones in  Figure 3.8 , which seem overall to be slightly better calibrated. The scores in
 Table 3.3 confirm this result; in terms of the CRPS, RAFTm performs better, likely
due to being closer to perfect calibration. RAFTens has a slightly lower RMSE, but
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Table 3.3: Continuous ranked probability score and root-mean-square error (in knots)
of different combinations of EMOS and RAFT methods, averaged over all forecast cases
from the 15 UTC run in the test set. The RAFT forecasts are taken from the final
adjustments for each lead time. All pairwise score differences are statistically significant
at α = 0.05, apart from the RMSE differences between identical combinations using
gEMOS and logEMOS.

CRPS RMSE
gEMOS + RAFTm 1.445 2.713
logEMOS + RAFTm 1.443 2.714
gEMOS + RAFTens 1.483 2.708
logEMOS + RAFTens 1.482 2.709

both methods improve the forecast skill considerably compared to the baseline EMOS
forecasts in  Table 3.2 .

 Figure 3.11 shows the mean CRPS at every RAFT iteration. As expected, the
scores decrease as the forecast skill increases with each update. Throughout the process,
RAFTm has the lowest CRPS and the gap between the two methods widens. Although
RAFTens exhibits the higher deterministic forecast skill, the CRPS here seems to reward
the better calibrated RAFTm forecasts. These results, together with the verification
rank histogram in  Figure 3.10 , suggest that by applying RAFTens, the predictive
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Figure 3.10: Verification rank histogram of the gEMOS and logEMOS + RAFTens
forecasts, aggregated over all dates, locations and lead times in the evaluation set where
the NWP model was initialised at 15 UTC. RAFT forecasts have been adjusted using
the observations recorded 2 hours earlier.
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Figure 3.11: Figure 7a from  Paper II  . Mean CRPS for every step in the RAFTm and
RAFTens process. Scores are averaged over all lead times, sites and dates for the 15
UTC model initialisation time.

variance becomes too small at later RAFT iterations. This is indeed a danger with
RAFTens: with consecutive updates, the forecasts become more and more certain while
the spread decreases. As a result, later predictions may then be overconfident and show
underdispersion. Although it did not present a large problem in our study, this feature
should be kept in mind and thoroughly checked when applying RAFTens. Future
research should include investigating ways to safeguard against underdispersion, such
as in other member-by-member post-processing approaches (e.g., Van Schaeybroeck
and Vannitsem,  2014 ).

To summarise, RAFTm and RAFTens are largely comparable in terms of determin-
istic and probabilistic skill, with RAFTm performing marginally better overall. This
can, however, be attributed to the properties of the ensemble and is not necessarily
universal.

3.3 Order of operation for post-processing of multivariate

forecasts

As discussed in  Section 2.2 , there is often a need for post-processed forecasts that
are coherent in multiple dimensions, such as across locations, variables or lead times.
Methods like ECC (Schefzik, Thorarinsdottir, and Gneiting,  2013 ) have been developed
to work in combination with univariate post-processing methods to address this issue.

33



3. Rapid adjustment of forecast trajectories

Table 3.4: Multivariate scores for different combinations of post-processing methods,
averaged over all locations, lead times and dates in the test set, where the model was
initialised at 15 UTC. RAFT forecasts are taken from the final adjustment for each lead
time. The variogram score was calculated with order 0.5, as per the recommendation
in Scheuerer and Hamill ( 2015 ). All score differences are significant at the 5% level.

Energy score Euclidean error Variogram score
gEMOS + ECC 12.312 16.549 812
gEMOS + RAFTm 11.943 15.045 899
gEMOS + RAFTm + ECC 11.175 15.049 784
gEMOS + ECC + RAFTens 11.164 15.024 786

In  Paper II , we clarify how the new RAFT method can be used together with EMOS and
ECC in multiple post-processing stages and investigate the optimal order of operation.

In this application, we are interested in preserving the multivariate structure between
the 36 hourly lead times in order to obtain coherent forecast trajectories. We create
two alternative post-processing chains, based on the two RAFT versions described
in the previous sections: EMOS + RAFTm + ECC and EMOS + ECC + RAFTens.
In the first scenario, we apply RAFT to the EMOS mean, then sample from the
RAFT/EMOS distribution and reorder the new ensemble members according to the
dependency template gathered from the raw ensemble. This setup means that ECC
has to be applied at every RAFT adjustment step, resulting in longer computation
times. In the second scenario, we sample from the unadjusted EMOS distribution first,
reorder the new ensemble members only once and then apply RAFTens.

For assessing the multivariate forecast skill, some of the tools mentioned in
 Section 4.3 are employed. In  Table 3.4  , the average energy score and variogram
score are given, along with the Euclidean error, which measures the Euclidean distance
of the spatial predictive median to the observation vector. The results for the deter-
ministic skill transfer from the univariate to the multivariate setting, as the forecasts
produced by RAFTens have both the lowest RMSE and Euclidean error. Combining
ECC and any version of RAFT reduces the energy score substantially, as compared to
only using one of these methods. We can attribute the fact that gEMOS + ECC +
RAFTens has a better score than gEMOS + RAFTm + ECC to the higher deterministic
skill of the former, as the energy score is much more sensitive to the mean error than to
misspecifications in calibration or correlation (Pinson and Tastu,  2013 ). In the context
of the variogram score, which puts more weight on a correct correlation structure,
both combinations perform on the same level, with gEMOS + RAFTm + ECC being
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Figure 3.12: Figure 6 from  Paper II . Average rank histograms for different combi-
nations of post-processing methods. Data points are aggregated over all sites, model
runs and lead times. All RAFT forecasts have been adjusted using the observation
measured 2 hours earlier.

slightly better. This also means that the dependency template of the ensemble that
was reintroduced by ECC is not being destroyed by applying RAFTens.

Finally, we are also interested in whether the multivariate forecasts produced by the
two combinations of post-processing methods are calibrated. To this end, we look at the
average rank and band-depth histograms. For the interpretation of these histograms,
we refer to Figure 6.2 in  Paper IV . Figures  3.12 and  3.13 illustrate how EMOS and ECC
operate: the raw ensemble is underdispersed, but by applying EMOS to achieve better
calibration, we lose all correlation between the lead times. ECC manages to restore the
correlation structure, yet the forecasts are still somewhat underdispersed. As already
seen with the univariate histograms, the predictive variances of gEMOS + ECC +
RAFTens are slightly too small and therefore underdispersive. The histograms for
gEMOS + RAFTm + ECC are also not completely flat and show signs of a correlation
structure that is too weak. This might be a remnant of the MOGREPS-UK ensemble
not being able to specify the correlation perfectly in the first place and this flaw
propagating through the post-processing chain.
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Figure 3.13: Band depth histogram for different combinations of post-processing
methods. Data points are aggregated over all sites, model runs and lead times. All
RAFT forecasts have been adjusted using the observation measured 2 hours earlier.

3.4 Forecast jumpiness and consistency

One major concern or difficulty in operational weather forecasting that has received
increasing attention in recent years is forecast jumpiness. A forecast for a fixed time
and location, say a particular event, will be updated several times in a setting similar to
MOGREPS-UK, for example every time a new model run is initialised. It is reasonable
to expect that the forecast accuracy improves with every update, however sometimes
forecasts exhibit jumpy behaviour in that they do not converge towards the observation
or switch between two different weather scenarios (Ehret,  2010 ). This “flip-flopping”
can interfere with the decision-making process and may lead to a loss in confidence in
the forecast provider.

As applying RAFTm reduces the forecast error, we are also interested in whether this
affects the forecast jumpiness or consistency. To this end, we look at the convergence
index proposed by Ehret ( 2010 ) and compare it against the raw ensemble and the
EMOS forecasts for surface temperature. Other, similar tools include the flip-flop index
(Griffiths et al.,  2018 ), inconsistency index (Zsoter, Buizza, and Richardson,  2009 ),
forecast convergence score (Ruth et al.,  2009 ) and divergence index (Richardson, Cloke,
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and Pappenberger,  2020 ). We refer to a number of predictions for the same validity
time and location as a forecast sequence.

The convergence index combines the concepts of divergence, where the forecast
error of a deterministic forecast sequence does not decrease, and oscillation, where the
sign of the forecast error changes with consecutive updates. For every validity time,
we collect forecasts from all model runs and count the number of divergences d and
oscillations o in the forecast sequence, allowing for a tolerance of 1°C. The convergence
index for a forecast sequence of length N is then defined as

conv =
∑N−1
i=1 (di + oi)
2 (N − 1) . (3.8)

The version employed here is unweighted and uses an absolute tolerance rather than
a value relative to the observation, as that is more appropriate for temperature. A
convergence index of 1 denotes a forecast sequence that deteriorates at every step,
while a perfectly convergent forecast sequence has a convergence index of 0. For more
details, see Ehret ( 2010 ).

 Figure 3.14  shows the station-wise means of the convergence index for the EMOS and
EMOS + RAFTm post-processed forecasts against the raw ensemble mean convergence
indices. All values are close to 0 and the different forecasters therefore quite consistent.
By applying EMOS, consistency is lost at about two thirds of the sites, as compared
to the original ensemble. This is not surprising, as we calibrate each of the 36 lead
times separately. At the final RAFT iteration, however, we have not only managed to
compensate for this loss, but also improve on the raw ensemble’s consistency at almost
all sites. There are no sites where the jumpiness increases when RAFT is applied to
the EMOS forecasts. Thus, adjusting forecast trajectories with RAFT benefits both
forecast accuracy and consistency, making it more useful to customers in multiple
aspects.

3.5 Seasonal temperature forecasts

RAFT can be universally applied to almost any forecasting scenario that involves two
or more consecutive lead times. In  Paper III , we test the effectiveness of RAFT in
the context of a sub-seasonal to seasonal setting by means of the Met Office’s GloSea5
ensemble (MacLachlan et al.,  2015 ).

For this purpose, we make use of the GloSea5 hindcast data set, provided by the
Copernicus Climate Change Service (C3S; Copernicus Climate Change Service,  2020 ).
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Figure 3.14: Convergence index for the EMOS and EMOS + RAFTm mean tempera-
ture forecasts as a function of the ensemble mean forecast convergence index, averaged
for every observation station over all dates in the test data set. RAFT scores are taken
from the final adjustment for each lead time.

This data set contains seasonal forecasts made by the same model version for the years
1993 to 2015, with seven ensemble members initialised weekly. We concentrate on
forecasts for spring and summer surface temperature anomalies in Europe, covering the
time period from early May until early September. As mentioned in  Section 1.2 , the
ensemble members of three consecutive weeks are collected and treated as a lagged 21-
member ensemble. The three sets of ensemble members have been initialised at different
times and therefore from different analyses, with members from the newest run being
on average the most skilful (Doblas-Reyes et al.,  2013a ; Doblas-Reyes et al.,  2013b ).
If RAFT can manage to compensate for this discrepancy, the forecasts will be more
accurate overall. To calibrate and verify GloSea5, we use ERA5 reanalyses (Copernicus
Climate Change Service,  2017 ), regridded from their native grid resolution of 0.28° x
0.28° to the GloSea5 0.8° x 0.5° grid. Anomalies are calculated as the weekly/monthly
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Figure 3.15: Correlations between forecast anomaly errors of the ensemble mean
at monthly lead times for the model run initialised on 1 May. All correlations are
significant at the 10% level.

deviations of the ensemble mean and the reanalysis from their respective grid-point-wise
temperature average over the same time period.

In a first step, we investigate the relationship between forecast lead times for
monthly average forecasts, as these are the most widely used in terms of seasonal
predictions. Because we are working with a limited data set, only five realisation times
per year, we use data from all 23 years for this analysis and do not longer treat locations
separately, but rather group all land grid points together. The forecast error et,l of the
ensemble mean x̄t,l valid for lead time l and initialised at time t is again defined as

et,l = yt+l − x̄t,l, (3.9)

where yt+l is the corresponding reanalysis value.  Figure 3.15 shows the empirical
correlation matrix of ensemble mean errors at different lead times for the run initialised
on 1 May. Although all correlations are significant, there is no clear and noticeable
pattern. The correlation values are quite jumpy and actually change sign. Experiments
with applying RAFT using the shortest possible adjustment period of one month show
almost no gains in forecast skill, which leads us to assume that the correlation between
neighboring lead times is spurious rather than genuine.

Therefore, we move to a sub-monthly scale and repeat the analysis above for weekly
averaged anomaly forecast trajectories, as seen in  Figure 3.16 a. Here, the correlation
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Figure 3.16: Figure 2 from  Paper III  . (a) Correlations between forecast anomaly
errors of the ensemble mean at weekly lead times for the model run initialised on 1
May. All correlations are significant at the 10% level. (b) The resulting adjustment
periods for each forecast lead time.

between lead times is more substantial, although it decreases after a couple of weeks,
matching the pattern from  Figure 3.15 . As we treat all grid points simultaneously
and only have a maximum of 18 lead times, the length of the adjustment period p is
determined subjectively and not with the algorithm described in  Section 3.1 . In this
way, we avoid unrealistically long lead times and sign changes in the correlation. The
resulting adjustment periods are shown in  Figure 3.16 b for the run started on 1 May.
We repeat the process for the other runs initialised on 9 May, 17 May, 25 May and 1
June.

Again, the RAFT model relates the expected forecast error at lead time l with the
observed error at an earlier lead time l∗ through linear regression:

êt,l = α̂+ β̂ · et,l∗ + ε. (3.10)

The random term ε is normally distributed with mean zero and the coefficients α̂ and
β̂ estimated for every lead time combination using a leave-one-out-cross-validation
approach. This means that we obtain the coefficients for a particular year using the
complete data set apart from forecasts from that year. Anomaly mean forecasts x̄l,l
are then adjusted using the observed error at l∗ if l − p ≤ l∗ ≤ l − 1:

ˆ̄xt,l = x̄t,l + êt,l. (3.11)
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Figure 3.17: Figure 3 from  Paper III  . RMSE skill scores for five different runs of
GloSea5 compared against ERA5 climatology. The score for each forecast week is
aggregated over all land grid cells in the study area and the years 1993-2015. The
original GloSea5 forecasts are indicated with dashed lines, while RAFT forecasts
updated one week prior to the realisation time are indicated by solid lines.

The goal of any long-range NWP forecast is to perform better than a climatological
forecast, which we here compute from the ERA5 reanalyses. Therefore, we mainly look
at the RMSE skill score (for details see  Section 4.1 ) with the weekly local climatology
as reference forecast. A perfect score would be 1, while a negative score means that
the forecast has less skill than climatology. First, we evaluate the performance of the
individual GloSea5 runs and their RAFT adjustments over lead time in  Figure 3.17 .
For the first two weeks of a run, the raw ensemble has considerably more skill than
climatology, but beyond week three, the ensemble’s RMSE is about 5 to 15% worse
than that of the climatology. RAFT forecasts from the final adjustment perform either
slightly better or slightly worse than climatology, but always better than the raw
ensemble.

As we are interested in the performance of a lagged ensemble, we also compute
the unweighted average of all ensemble means available at any given lead time, for
both GloSea5 and RAFT ( Figure 3.18 ). In addition to this, the climatological forecast
can also be updated with RAFT, using an adjustment lead time of one week. As long
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3. Rapid adjustment of forecast trajectories

as new forecast runs are added to the lagged ensemble mean, the GloSea5 forecasts
perform better than climatology, but drop to about the same level afterwards – a 5 to
15% improvement compared to the individual runs. Similarly, the combined RAFT
forecast deteriorates after the last model run is added, but always has considerably
more forecast skill than climatology. In the first few weeks, the combined RAFT mean
performs worse than the lagged raw ensemble mean due to the stark discrepancy in
predictive skill between weeks one and two (cf.  Figure 3.17 ). As we can not adjust
the first week of each forecast, the RAFT lagged mean here only includes forecasts
from the second week of a model run onward. The skill of the adjusted climatological
forecast is consistently about 5 to 10% higher than that of the unadjusted climatology
and on par with the RAFT lagged mean. This illustrates once more how crucial recent
observational information is and to what extent NWP becomes more challenging with
increasing lead times. We could also try to adjust the lagged mean itself, but the
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Figure 3.18: Figure 4 from  Paper III . RMSE skill scores for a comparison against
ERA5 climatology for the combination of all five forecast runs (blue dashed line), for
RAFT-processed ERA5 climatology of adjustment lead time one week (brown solid
line), and for a combination of the RAFT-processed ensemble means for all five forecast
runs at an adjustment lead time of one week (blue solid line). For comparison, these
skill scores are overlaid on the results shown in  Figure 3.17 .
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Figure 3.19: Anomaly correlation coefficient of different mean forecasts and the
ERA5 reanalysis. Shown are the GloSea5 individual runs and their RAFT adjustments
in the background and the combined GloSea5 mean forecast (dashed dark blue line), as
well as the combined RAFT mean forecast (solid dark blue line). All RAFT forecasts
have one week adjustment lead time.

primary goal is to correct systematic errors present in the individual model runs. Tests
also show that the correlation pattern between lead times of the lagged ensemble mean
is slightly weaker than seen in  Figure 3.16 , supporting the approach of applying RAFT
first and aggregating afterwards.

A verification measure that is often used in conjunction with the RMSE is the
anomaly correlation coefficient (ACC), the correlation between the predicted and the
observed anomalies; more details can be found in Section 6.4 of  Paper IV . The ACC
assesses how well the forecasting system tracks the observations over time without
regarding the bias. In  Figure 3.19 , we compare the ACC of the five individual GloSea5
runs with the respective RAFT adjustments. Also shown are the combined mean
forecasts for the raw ensemble and RAFT. After week seven, when there is no additional
data from new model runs, the ensemble correlation does not exceed 0.25 and the
combined forecast performs mostly on the same level as the best individual model run.
The correlation of the RAFT forecasts on the other hand always lies between 0.25 and
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3. Rapid adjustment of forecast trajectories

0.5 and the lagged RAFT mean outperforms the individual models at almost all lead
times.

The question remains if we should always combine all forecasts that are available at
a particular realisation time or if only certain runs should be selected. Therefore, we
look at all ensemble forecasts for lead times greater than week five and at the RAFT
forecasts that are issued in week five.  Figure 3.20 shows different ways to combine
the lagged forecasts, from only using the latest run initialised on 1 June to averaging
the ensemble means of all five runs; we also include the RAFT-adjusted climatology
forecast. For the first two weeks, there is indeed a benefit in combining only a few runs,
whereas for the later part of the trajectory, all runs and the adjusted climatology should
be combined. However, none of these forecasts consistently outperform climatology.

While using RAFT to incorporate additional error information into seasonal tem-
perature trajectories provides a gain in forecast skill, it is only for a short time and does
not go far beyond the medium range. For a useful application to seasonal forecasts, a
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Figure 3.20: Figure 5 from  Paper III . RMSE skill scores for various model combi-
nations of forecasts issued in week five compared against ERA5 climatology. Each
combination consists of the most recently available runs. The score for each forecast
week is aggregated over all land grid cells in the study area and the years 1993-2015.
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substantial correlation between lead times further than a month apart would be needed.
However, we see signs that creating lagged ensembles, especially if the ensemble mem-
bers have been updated with RAFT, reduces forecast bias and increases the correlation
between forecasts and reference. In order to improve the effectiveness of RAFT for
seasonal predictions, future research could look into applying RAFT to forecasts of the
underlying atmospheric circulation patterns that govern European seasonal variations.
These patterns, such as the North Atlantic Oscillation, can be directly linked to surface
weather variables, but are often easier to predict (Lledó et al.,  2020 ).
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Chapter 4

Forecast verification

In order to judge the goodness of a forecast and therefore the effectiveness of any
NWP modelling or post-processing, verification methods are needed. They summarise
information about calibration, sharpness or overall skill into one figure or number.
 Paper IV is an overview over the multitude of verification measures employed in weather
forecasting and gives some advice how to best use them.

4.1 Univariate forecast verification

As stated in  Section 1.3 , there are two important properties to forecast skill and the
goal of any post-processing should be to maximise the sharpness subject to calibration
(Gneiting, Balabdaoui, and Raftery,  2007 ). Calibration is the statistical compatibility
of forecasts and observations; ideally an observation would be indistinguishable from an
ensemble member or a random sample from the predictive distribution. In practice, we
can assess calibration with the probability integral transform (PIT) histogram (Dawid,
 1984 ; Diebold, Gunther, and Tay,  1998 ).

The PIT histogram tests whether the forecasts and observations exhibit the same
statistics over a long time period. To create the histogram, we compute the value of the
predictive cumulative distribution functions (CDF) F1, . . . , Fn at the corresponding
observation y1, . . . , yn and then aggregate over a number of forecast cases n:

F1 (y1) , . . . , Fn (yn) . (4.1)

These PIT values are plotted in a histogram, which is uniform or flat if the forecasts
are perfectly calibrated. Underdispersive forecasts can be recognised by a ∪-shaped
histogram and overdispersive forecasts by a ∩ shape; if the histogram is monotonic
(meaning a triangular shape), the forecasts are biased. Examples of these histograms
can be found in Figure 6.1 of  Paper IV . The verification rank histogram (Anderson,
 1996 ; Hamill and Colucci,  1997 ; Talagrand, Vautard, and Strauss,  1997 ) applies to
ensemble forecasts and can be interpreted in the same manner as the PIT histogram.
Given a calibrated ensemble, the observation has the same likelihood to occupy any
rank in the joint set of ensemble members and observation. If we compute this rank for
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every forecast case and then plot the observation ranks as a histogram, we can again
identify deficiencies in the calibration of the ensemble.

Note that a flat histogram is only a necessary condition for calibration, not a
sufficient one (Hamill,  2001 ). It is therefore best to confirm the findings with other
methods, like the coverage of the prediction interval spanned by the ensemble members.
The closer to the nominal value of (m− 1) / (m+ 1) for an ensemble with m members,
the better the calibration. For the simulation study in Section 6.3.2 of  Paper IV , we
created two forecasting scenarios that only differ by the amount of data points. Figures
6.4 and 6.5 in that section show that it can be hard to assess different forecasts if the
sample size is not sufficiently large. A statistical significance test like the chi-squared
test (Wilks,  2004 ; Wilks,  2011 ) can help in such situations to find out if a forecast is
really calibrated.

For ranking competing forecasts and their accuracy, scoring rules (Gneiting and
Raftery,  2007 ) are the best choice. A scoring rule S is a function S(F, y) that assigns
a numerical value to the skill of each probabilistic forecast F relative to the verifying
observation y. The better the forecast matches the observation, the higher the accuracy
and the lower the score. It is very important that the scores used are proper, which
means that the expected score of the true forecast distribution should always be the
lowest. This prevents hedging strategies and ensures that forecasters always issue the
best prediction they can. Most scores are computed for every individual forecast case
and then averaged over a large data set.

Two of the most popular scores are the continuous ranked probability score (CRPS)
and the ignorance or logarithmic score. Both scores assess calibration and sharpness
simultaneously and are thus used for verification as well as minimum score estimation
(see also  Section 2.1 ), where some parameters are estimated by minimising the score
over a training period. The ignorance score (Good,  1952 ) is defined as the logarithm of
the value of the predictive distribution, evaluated at the observation:

IGN (F, y) = − log (f (y)) . (4.2)

Here, f is the probability density function (PDF) of the distribution F . Optimising
the ignorance score is thus equivalent to maximum likelihood estimation (Fisher,  1922 ).
The ignorance score has the disadvantage that it is very sensible to outliers and does
not apply directly to discrete ensemble forecasts.

For verification, the CRPS (Matheson and Winkler,  1976 ) is often preferred, as it
is more robust and has several representations suitable for different kinds of forecasts
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(Gneiting and Raftery,  2007 ; Gneiting and Ranjan,  2011 ; Hersbach,  2000 ; Laio and
Tamea,  2007 ):

CRPS (F, y) = EF |X − y| −
1
2EFEF |X −X

′| (4.3)

=
∫ ∞
−∞

(F (x)− 1 {y ≤ x})2 dx (4.4)

=
∫ 1

0

(
F−1 (τ)− y

)
·
(
1
{
y ≤ F−1 (τ)

}
− τ
)
dτ. (4.5)

Here, 1 {·} denotes the indicator function and F−1 the quantile function of the predictive
distribution F . The forms in ( 4.4 ) and ( 4.5 ) can be interpreted in terms of other proper
scores, namely the Brier score (Brier,  1950 ) and the quantile score (Friederichs and
Hense,  2007 ; Gneiting and Raftery,  2007 ), respectively. In ( 4.3 ), X and X ′ are
independent random variables distributed according to F (Gneiting and Raftery,  2007 ).
For ensemble forecasts, the first representation can be approximated (Grimit et al.,
 2006 ) by

CRPS (X1, . . . , Xm, y) = 1
m

m∑
i=1
|Xi − y| −

1
2m2

m∑
i=1

m∑
j=1
|Xi −Xj | . (4.6)

As described in  Section 2.1 , we estimate the EMOS coefficients for post-processing
the MOGREPS-UK forecasts in  Paper I and  Paper II by minimising the CRPS over
the training period. There are closed forms of the CRPS for the Gaussian distribution
in the temperature EMOS model in ( 2.1 ) (Gneiting et al.,  2005 ), as well as for the
two wind speed EMOS models using truncated Gaussian ( 2.4 ; Thorarinsdottir and
Gneiting,  2010 ) and truncated logarithmic distributions ( 2.5 ; Scheuerer and Möller,
 2015 ):

CRPS
(
N
(
µ, σ2) , y) = σ

{
y − µ
σ

[
2Φ
(
y − µ
σ

)
− 1
]

+ 2ϕ
(
y − µ
σ

)
− 1√

π

}
(4.7)

CRPS
(
N+ (µ, σ2) , y) = σ · Φ

(µ
σ

)−2
[
y − µ
σ
· Φ
(µ
σ

){
2Φ
(
y − µ
σ

)
+ Φ

(µ
σ

)
(4.8)

−2
}

+ 2ϕ
(
y − µ
σ

)
Φ
(µ
σ

)
− 1√

π
Φ
(√

2 · µ
σ

)]
CRPS

(
L+ (µ, s) , y

)
= (y − µ) ·

(
2py − 1− p0

1− p0

)
+ s ·

[
log (1− p0) (4.9)

−1 + 2 log (1− py) + 2pylogit (py)
1− p0

− p2
0 log (p0)

(1− p0)2

]
.
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The CDF and PDF of the standard normal distribution are denoted by Φ and ϕ,
respectively; p0 = Λ

(
µs−1) and py = Λ ((y − µ) /s) are values of the CDF of the

standard logistic distribution, and logit (p) = p/ (1− p) is the logit function.
For assessing deterministic forecasts, we use so-called scoring functions. Similar

to scoring rules, a penalty is computed for every forecast x relative to the verifying
observation y. It is essential that scoring functions are consistent for the target
functional issued as a forecast (Gneiting,  2011 ). This means that e.g., if the issued
forecast is the mean of a predictive distribution F , it should only be evaluated with an
appropriate scoring function, such as the squared error

SE (F, y) = (mean (F )− y)2
. (4.10)

When averaging the squared error over a large number of forecast cases n, the root-
mean-square error (RMSE) is often computed:

RMSE (F, y) =

√√√√ 1
n

n∑
i=1

SE (Fi, yi). (4.11)

One scoring function consistent for the median of a forecast distribution is the absolute
error

AE (F, y) = |med (F )− y| . (4.12)

If applied to a deterministic forecast, the CRPS reduces to the mean absolute error.
In  Paper IV , we show in a simulation study how the sample size can affect the

outcome when comparing competing forecasts with proper scores. For this purpose, we
test if scoring rules can identify the true forecast from a range of predictive distributions.
Two sets of data are drawn from a true distribution, which is Gaussian in the first part
of the study and a Gumbel distribution in the second. We use one data set as training
data to estimate the moments of four competing forecast distributions (Gaussian,
non-central t, log-normal and Gumbel) and the other to verify these forecasts with
the absolute error, the squared error, the CRPS and the ignorance score. The fifth
forecaster is the true distribution with the true parameters. This process is repeated
twice, once with a total of 1000 forecast-observation pairs to test how the scores
would rank the different forecasters in a somewhat realistic setting, and once with one
million data points to find out the true order in which these forecasts should be ranked.
Bootstrap intervals indicate if the difference between two mean scores is statistically
significant at the 5% level.
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Figure 4.1: Figure 6.7 from  Paper IV . Top row: Mean absolute error, CRPS
and ignorance score, and the 95% bootstrap confidence interval for the five forecast
distributions, if the true distribution is a Gumbel distribution. Scores are based on
1000 forecast-observation pairs. Bottom row: Same as above, but scores are based on 1
million forecast-observation pairs.

 Figure 4.1 shows a plot from  Paper IV with the ranking of the five forecasters
according to different scoring rules if the truth is a Gumbel distribution. While the
scores agree if the sample size is very large, only the ignorance score manages to identify
the true distribution as the best for the smaller data set. The absolute error and the
CRPS values of the non-central t-distribution are actually lower than the score for
the true distribution. This confirms the findings in Gebetsberger et al. ( 2018 ) that
the ignorance score is more sensitive to the shape of the distribution and outliers in
general, while the CRPS puts more importance to the center of the distribution. From
the results of this simulation study, we conclude that forecasts should be evaluated over
as large a data set as possible and mean scores should be accompanied by confidence
intervals.
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Our assessment of whether two mean scores are significantly different is based
on overlapping bootstrap intervals (e.g., Lahiri,  2003 ). It is also possible to use less
empirical and more formal tests like the Diebold-Mariano test (Diebold and Mariano,

 1995 ). Heinrich et al. ( 2020 ) propose a permutation test that has the advantage that
the asymptotic variance does not have to be estimated. We use this permutation test
in  Paper II  to compare the performance of different combinations of post-processing
methods.

Instead of mean scores, the relative skill of two forecasts is often given by means of
a skill score:

Sskill = Sfc − Sref

Sperf − Sref
. (4.13)

Here, the mean score Sfc of a particular forecast is compared to the mean score Sref of
a reference, often a climatological forecast, while Sperf is the score of a perfect forecast.
A negative skill score means that the forecast performs worse than the reference, a skill
score equal to 1 would indicate a perfect forecast. Any scoring rule can be chosen for
S, but it should be noted that skill scores are not necessarily proper, even if computed
from a proper scoring rule (Gneiting and Raftery,  2007 ; Murphy,  1973 ).

4.2 Verification of forecasts for extremes

Often, forecast providers and their customers are interested in predicting extreme
events in order to assess risk, prevent damage to life and property and to mitigate
impacts. There are several post-processing methods that focus on weather extremes;
an overview can be found in Friederichs, Wahl, and Buschow ( 2018 ). In a similar
fashion, special verification tools are required for highlighting a forecasting system’s
performance when it comes to extreme events.

The most important aspect of verifying forecasts for extremes is to not simply
restrict the data set to a subset where the observations are extreme, e.g., above or
below a certain threshold. Lerch et al. ( 2017 ) illustrate how such a strategy can lead
to proper scoring rules becoming non-proper and therefore unable to assess forecasts in
the correct manner. For example, a forecast constantly predicting an extreme value
will be correct in 100% of the cases if only extreme observations are considered, but is
very poor overall. This so-called “forecaster’s dilemma” therefore requires us to use
all available forecast-observation pairs and employ versions of the regular verification
tools that are weighted towards the extreme part of the distribution.
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Such scores include the conditional likelihood and censored likelihood scores, which
are versions of the ignorance score (Diks, Panchenko, and van Dijk,  2011 ). A simulation
study in  Paper IV shows different options for using the threshold-weighted CRPS
proposed by Gneiting and Ranjan ( 2011 ). This score is defined as

twCRPS (F, y) =
∫ ∞
−∞

w (z) (F (z)− 1 {y ≤ z})2 dz, (4.14)

where w (z) is a non-negative weight function. Depending on the choice of w (z), certain
parts of the predictive distribution can be emphasised.

In a similar setting as in the previous section, we compare the threshold-weighted
CRPS with three weighting functions,

w1 (y) = 1 {y ≥ u} ,

w2 (y) = 1 + 1 {y ≥ u} and

w3 (y) = 1 + 1 {y ≥ u} · u,

to the unweighted CRPS and the non-proper CRPS with restricted observations, where
the threshold u is selected as the 97.5% observed quantile. The true distribution is
Gaussian and the four forecasters consist of two Gaussian and two Gumbel distributions.
 Figure 4.2 shows the mean scores and the respective 95% bootstrap intervals, apart
from the first weight function, as these scores are equal to zero. It is obvious that
the CRPS with restricted observations is not proper, as it disagrees with the other
scores and assigns the lowest value to the Gumble distribution with fixed parameters,
which has the heaviest tail of all forecast distributions. All other scores agree on the
ranking of the forecasts, which makes the use of weighted scoring rules rather limited
(Lerch et al.,  2017 ), especially when the threshold quantile becomes large. Nevertheless,
they can provide useful insight when it comes to the interpretation of forecast skill for
extremes.

4.3 Multivariate forecast verification

Many forecasting applications require some multivariate consistency, whether spatially,
temporally or between weather variables. In order to select the best forecasting methods
that also incorporate dependencies, we need corresponding multivariate verification
tools. The biggest challenge for these tools is that they have to work well on both
small and large numbers of dimensions.
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Figure 4.2: Figure 6.11 from  Paper IV . Mean scores and 95% bootstrap confidence
interval for the four versions of the CRPS. Top row: twCRPS with weight functions
w2 and w3. Bottom row: CRPS restricted to observations above the threshold u and
unweighted CRPS.

Multivariate calibration is probably the most difficult to assess, as the ranking of
vectors across multiple dimensions is quite problematic. In  Paper IV , we compare
four histograms that all follow the same template. First, for each element in the set
of ensemble member and observation vectors S = {X1, . . . , Xm, y}, each of length
d, a so-called pre-rank is calculated. Then, the rank of the observation pre-rank is
determined and plotted as a histogram. The four methods only differ in their approach
to calculating the pre-rank.

The direct extension of the univariate verification rank histogram is the multivariate
rank histogram (Gneiting et al.,  2008 ), where the pre-rank is simply the sum of vectors
that are smaller in every dimension. Unfortunately, this technique results in a large
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number of equal pre-ranks if the dimension is greater than two or three (Pinson and
Girard,  2012 ) and the multivariate rank is heavily influenced by random decision,
resulting in a potentially misleading flat histogram.

Thorarinsdottir, Scheuerer, and Heinz (  2016 ) propose two alternatives, the average
rank histogram and the band-depth histogram. For the average rank histogram, we
first calculate the univariate ranks for each component of the vectors in S. The average
over the univariate ranks of a vector is then used as the pre-rank in the second step
of the scheme. The concept behind the band-depth histogram is slightly different, in
that it is based on the notion that the components of the observation vector will on
average lie in every band spanned by pairs of points from S with the same frequency if
the ensemble is calibrated. In this context, ranks are not defined from small to large
values, but from the center of a set of curves outward; thus the band-depth histogram
can not be interpreted in the same way as the previous techniques.

To calculate the pre-rank for the minimum spanning tree histogram, we look at the
minimum spanning tree (Smith and Hansen,  2004 ; Wilks,  2004 ) of the set S without
the vector u, where u = X1, . . . , Xm, y. The minimum spanning tree is a collection of
pairs of points connected by segments in such a way that all points are used without
closed loops, and the total length of the segments is minimised. Then, the pre-rank of
a vector is the length of its minimum spanning tree.

These four tools, although similar in their approach, can behave very differently
depending on the type of miscalibration in the data. Perfect calibration always results in
a flat histogram, but diagnosing deficiencies can be difficult. In Figure 6.2 in  Paper IV ,
we show the shapes of the rank histograms for different kinds of miscalibration in order
to facilitate interpretation. Ideally, one should use several of these methods to confirm
results, e.g., the average rank and the band-depth histograms like in  Paper II .

Some of the proper scores described in  Section 4.1 have multivariate extensions,
while others can more or less be directly applied to multivariate predictive distributions,
like the ignorance score. However, the outcome of multivariate post-processing methods
is often in the form of ensembles and not full probability distributions. In these cases,
the generalisation of the CRPS to multiple dimensions, the energy score (Gneiting and
Raftery,  2007 ), is a popular choice. It is defined as

ES (F, y) = EF ‖X − y‖ −
1
2EFEF ‖X −X

′‖ , (4.15)

where X and X ′ are independent random vectors distributed with the multivariate
predictive distribution F and y is the observation vector. The Euclidean norm is

55



4. Forecast verification

here denoted by ‖·‖. For an ensemble of vectors X1, . . . , Xm, the energy score can be
expressed as

ES (X1, . . . , Xm, y) = 1
m

m∑
i=1
‖Xi − y‖ −

1
2m2

m∑
i=1

m∑
j=1
‖Xi −Xj‖ . (4.16)

The energy score has its limitations, as the sample size plays a more important role
with increasing dimensionality (Pinson,  2013 ) and it is very sensitive to errors in the
mean and spread and less so to misspecified correlations (Pinson and Tastu,  2013 ). As
an alternative, Scheuerer and Hamill ( 2015 ) propose the variogram score, which has
better discrimination ability when it comes to the correlation structure:

VSp (F, y) =
d∑
i=1

d∑
j=1

ωij (|yi − yj |p −EF |Xi −Xj |p)2
. (4.17)

Here, Xi and Xj are components of the d-dimensional random vector X, yi and yj
components of the observation vector and ωij optional non-negative weights. The order
p can be chosen freely, but it is recommended to be set to p = 0.5.

It is again important to use multiple scores in order to have more information about
the different aspects of forecast skill. As with the univariate scores, the sample size
should be sufficiently large and confidence intervals should be given.

4.4 Comparing probability distributions

In each forecast setting previously mentioned in this chapter, we try to predict one
observation value as accurately as possible. Climate projections, for example, operate
differently: here, the focus is on matching the observed climate, which is the distribution
of the observations over a long time period. This means that we no longer compare an
ensemble or a distribution to a single deterministic value, but rather two distributions.

To this end, Thorarinsdottir, Gneiting, and Gissibl ( 2013 ) derive divergence func-
tions from proper scores that are themselves proper. Examples for these are the
integrated quadratic distance for a predictive distribution F , relative to the observed
distribution G, which is based on the CRPS:

IQD (F,G) =
∫ ∞
−∞

(F (x)−G (x))2 dx. (4.18)

The score divergence associated with the ignorance score, the Kullback-Leibler di-
vergence, can break down if the observation distribution is given as an empirical
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distribution, which is usually the case. Hence, this score divergence is rather impracti-
cal to use.

Some applications might require a focus on certain aspects of a distribution. A score
divergence derived from the squared error, the mean value divergence, only compares
the means of two distributions:

MVD(F,G) = (mean (F )−mean (G))2
. (4.19)

The Brier divergence is based on the Brier score and assesses the skill relative to a
certain threshold u:

BD (F,G | u) = (G (u)− F (u))2
. (4.20)

Figure 6.12 in  Paper IV shows some examples for the different score divergences and
how they compare in terms of discrimination ability.
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Chapter 5

Summary of papers

 Paper I introduces rapid adjustment of forecast trajectories (RAFT), a new family
of post-processing methods. Weather forecasts are usually not revisited once
issued and are only updated when a new run of the numerical weather prediction
(NWP) model is available. We propose to use error information from the part of
the trajectory that has already verified to enhance forecast skill at future lead
times. To this end, we utilise the error correlation between forecast lead times
and link them with a linear regression model. The regression coefficients allow us
to define an adjustment period, i.e., the time period preceding each forecast lead
time where errors are correlated enough so that an adjustment will result in a
genuine improvement in forecast skill.

RAFT is applied to temperature forecasts from the UK Met Office’s MOGREPS-
UK convective-scale ensemble (Hagelin et al.,  2017 ), which have been previously
post-processed with the state-of-art ensemble model output statistics (EMOS)
technique (Gneiting et al.,  2005 ). In this way, large deterministic and probabilistic
biases are removed, before increasing the skill of the ensemble mean further with
RAFT. Both methods complement each other, as they pertain to different stages
of the post-processing chain. While EMOS is carried out once, as soon as the
NWP model has finished its run, we apply RAFT adjustments at every forecast
time step to the remaining part of the trajectory.

Results are shown for Heathrow Airport and 149 other locations in the UK and the
Republic of Ireland. By adding the latest information about the future prediction
error, forecast trajectories become substantially more accurate, with the most gain
in skill realised in the final adjustment steps. Although predictability of surface
temperature forecasts varies greatly with the diurnal cycle, RAFT compensates
for periods of low predictive skill during nighttime. Adjusted older model runs
become so much more skilful that they outperform the newest run for a brief
time.
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RAFT deterministic forecasts may be used as an updated mean in the EMOS
predictive distribution. Although the sign of miscalibration changes from slightly
under- to slightly overdispersed, the new forecast distributions are closer to
perfect calibration. Therefore, the combined distributions of RAFT mean and
EMOS variance provide an improved probabilistic forecast, in addition to the
reduced deterministic bias.

 Paper II shows how RAFT can be applied to individual ensemble members in order to
adjust the ensemble mean and variance simultaneously. MOGREPS-UK surface
wind speed forecasts are post-processed with two different EMOS variants, using
truncated Gaussian (Thorarinsdottir and Gneiting,  2010 ) and truncated logistic
distributions (Scheuerer and Möller,  2015 ), respectively. Both techniques perform
similarly well, with one being slightly better calibrated and the other producing
more accurate mean forecasts.

Typically, statistical post-processing addresses locations, weather parameters
and forecast lead times separately. As a consequence, physical dependencies
between these variables are destroyed and forecasts can become inconsistent
when viewed in a multivariate sense. Techniques like ensemble copula coupling
(ECC; Schefzik, Thorarinsdottir, and Gneiting,  2013 ) copy the raw ensemble’s
correlation structure and transfer it to the post-processed forecasts. In this
paper, we try to find an answer to the question in which order the three different
techniques, EMOS, RAFT and ECC, should be combined in order to build a
comprehensive multi-stage post-processing system.

We investigate two alternatives: EMOS + RAFTm + ECC, where ECC is
applied to ensemble members sampled from the EMOS predictive distribution
with RAFT-adjusted mean, and EMOS + ECC + RAFTens, where we sample
from the original EMOS distribution, apply ECC and then adjust the ensemble
members with the new RAFT version. Our findings show that the two options
for combinations of post-processing methods receive similar overall scores, but
one might decide to implement one version and not the other, depending on the
target statistics.

If focussing on univariate verification tools, EMOS + RAFTm + ECC is the
better choice, as it performs best in terms of calibration and the continuous
ranked probability score (CRPS), while the root-mean-square error (RMSE)
values are roughly equal. As with temperature, the MOGREPS-UK wind speed
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forecasts are still underdispersed after the EMOS step, which is compensated
by applying RAFTm. For multivariate coherency, however, EMOS + ECC +
RAFTens should be preferred, as it receives lower energy scores and Euclidean
errors. This post-processing chain is also less dependent on the level of calibration
after completing the initial EMOS step. If forecasts are perfectly calibrated or
overdispersed, the RAFTens version will most likely also produce the more skilful
univariate forecasts.

 Paper III illustrates that RAFT can work on multiple NWP time scales, as long as the
forecast lead times are correlated. It is also demonstrated how RAFT complements
lagged ensembles, a collection of ensemble members from different model runs,
by updating the older members to the skill level of the newest ones. A particular
challenge in weather forecasting are sub-seasonal to seasonal predictions, as they
rely on specific low-frequency patterns to provide predictability beyond the usual
two-week limit of synoptic-scale forecasting (e.g., Vitart and Robertson,  2019 ). At
this time scale, forecasts should be of a probabilistic nature and skilful ensembles
are essential. We apply RAFT to the UK Met Office’s GloSea5 coupled ocean-
atmosphere seasonal prediction system (MacLachlan et al.,  2015 ) for spring and
summer temperature anomalies in Europe, using the ERA5 reanalysis (Copernicus
Climate Change Service,  2017 ) for post-processing and verification. In order to
obtain a sufficiently large sample, GloSea5’s hindcast data set is used, which
covers 23 years from 1993 to 2015. Due to limitations in the temporal correlation
structure, we concentrate on weekly average forecasts.

Some changes have to be made to the original RAFT technique that was designed
for short-range weather models. The adjustment period is determined subjectively,
as we have to take care to avoid spurious correlations, and we now treat the
whole forecast grid simultaneously, rather than individual sites. Five model runs
initialised between 1 May and 1 June are considered, producing forecasts for a
maximum of 18 weeks until the beginning of September.

Overall, a seasonal forecasting system should outperform a climatological forecast
in order to be useful. Thus, we assess the forecast quality in terms of the skill score
of the RMSE with the ERA5 climatology as reference forecast. The individual
model runs are for the first two weeks considerably more skilful than climatology,
but drop to about 5 to 15% below climatology afterwards. Adjusted ensemble
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means from the final RAFT iteration improve the original forecasts, such that
they are more skilful than climatology for later lead times.

Although the ensemble means of every single model run have lower skill than
climatology, the mean of the lagged ensemble performs on roughly the same level,
while the skill score of the respective RAFT combined mean is consistently better
than climatology. We can also adjust the climatological forecast in the same
manner as the ensemble; these forecasts are then 5 to 10% more skilful than the
unadjusted climatology. For obtaining the largest skill, the RAFT climatology
forecast should be included in the lagged ensemble. While the benefit of applying
RAFT to lagged ensembles is shown, the correlation between lead times only
allows for adjustments one or two weeks ahead, which limits the usefulness of the
adjusted forecasts.

 Paper IV provides an overview of verification tools commonly used for assessing the
calibration and sharpness of probabilistic weather forecasts, as well as determin-
istic forecasts derived from ensembles. Calibration is the statistical compatibility
between forecasts and observations, and sharpness refers to the concentration
of the predictive distribution. The goal of any forecasting system should be
to maximise the sharpness subject to calibration (Gneiting, Balabdaoui, and
Raftery,  2007 ).

The most widely used diagnostic tools for univariate calibration are the verification
rank (Anderson,  1996 ; Hamill and Colucci,  1997 ) and PIT histograms (Dawid,

 1984 ; Diebold, Gunther, and Tay,  1998 ). In the multivariate case, there are
several options like the multivariate rank histogram (Gneiting et al.,  2008 ), the
average rank and band depth histograms (both Thorarinsdottir, Scheuerer, and
Heinz,  2016 ) and the minimum spanning tree histogram (Smith and Hansen,  2004 ;
Wilks,  2004 ). We compare these methods and show how they can be interpreted
by means of an example.

Proper scoring rules are important techniques to assess forecast accuracy; different
forecasters can easily be ranked, as the scores always reward the true predictive
distribution with the lowest value (Gneiting and Raftery,  2007 ). In a simulation
study, we test if scores agree on how a set of different forecast distributions
should be ranked. For this purpose, we repeat the experiment twice, once with a
sample size that is realistic for most research studies, and once with 1000 times
as many data points to find the true ranking. We conclude that inference about
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the best forecaster is difficult for the smaller data set and mean scores should
always be accompanied by some quantification of uncertainty, e.g., confidence
intervals. Different scores can highlight different aspects of forecast quality, thus
it is advised to use a combination of scoring rules to compare forecasting methods.

Another focus in this paper lies on the verification of extremes with proper scores.
The so-called “forecaster’s dilemma” describes how restricting the observations to
subsets can lead to hedging strategies, even when using scores that are otherwise
proper (Lerch et al.,  2017 ). In a similar setting to the previous simulation study,
it is shown how weighted versions of proper scores can be constructed and applied
in order to identify the best forecaster for extreme values.

Multivariate scores also take into account the correlation between components of
multidimensional forecasts; we discuss their respective strengths and weaknesses.
In the context of climate modelling, it is necessary to compare two distributions,
specifically the predictive distribution to the distribution of observations. For
this purpose, divergence functions that are associated with proper scores have
been proposed (Thorarinsdottir, Gneiting, and Gissibl,  2013 ). Here, we give an
overview of these divergence functions and show their respective properties in an
example. We conclude by commenting on tools commonly used to understand
a NWP model’s performance. Although they are sometimes not proper and
typically should not be used to rank competing forecasters, there is value in
applying these methods to investigate certain aspects of a forecasting system.
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Chapter 6

Conclusions

In this thesis, we have shown how forecast trajectories can be improved even after they
have been issued. As soon as observations for the first few time steps are recorded,
we adjust the remaining part of the trajectory based on new error information. The
empirical correlation structure of forecast errors allows us to connect different lead
times and define an adjustment period, during which an adjustment results in increased
forecast skill. Even when applied on top of state-of-the-art statistical post-processing
like ensemble model output statistics (EMOS), rapid adjustment of forecast trajectories
(RAFT) improves on the already calibrated forecasts by adding information about the
systematic error that was previously not available.

Studies for surface temperature and wind speed forecasts from the convection-
permitting MOGREPS-UK ensemble demonstrate the benefit of two different RAFT
approaches, one where only the mean forecast is adjusted and another where all
ensemble members, and thus the ensemble spread, are updated. For this specific
ensemble, the mean forecast version performs slightly better, as the original forecasts
were underdispersed. Although not adjusting the variance results in overdispersion,
the combined RAFT/EMOS distributions are nonetheless closer to being perfectly
calibrated. On the other hand, the accuracy of the deterministic forecast is optimised
when using RAFT to correct individual ensemble members. The RAFTens version
manages to reduce the uncertainty as new information about the development of
the weather is incorporated. Caution must be taken that this does not result in
underdispersed forecasts, especially for the tail of the trajectory. Other methods
that rely on the same principle of increasing sharpness are shown in Raynaud and
Bouttier ( 2015 ) in the form of small-scale initial perturbations for convective-scale
models created with minimal computational effort, and in Dobrynin et al. ( 2018 ), who
select subsamples of seasonal NAO forecast ensembles that resemble a first guess based
on statistical analysis.

Many applications require forecasts to be consistent across multiple dimensions,
e.g., across locations, time steps or weather parameters. Methods like ensemble copula
coupling (ECC) restore the raw ensemble’s correlation structure to the post-processed
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forecast by reordering the ensemble members. We investigated how to best combine
EMOS, ECC and RAFT, each one being an integral part of a comprehensive post-
processing scheme. While the results were similar overall, one might prefer the EMOS +
RAFTm + ECC combination if mainly interested in univariate performance and EMOS
+ ECC + RAFTens for a multivariate focus. The former is usually computationally
more expensive, as ECC has to be applied at every update, but this varies with the
number of ensemble members and forecast lead times. The computational cost of
post-processing is, however, negligible in comparison to the NWP ensemble.

Whereas the application to MOGREPS-UK was not able to identify substantial
differences in performance between RAFTm and RAFTens, it is possible to further
investigate using a synthetic data set. By letting specific characteristics of the predictive
distribution vary while keeping the others fixed, the relative strengths and weaknesses
of different methods can be analysed, which is especially important when multivariate
forecasts are considered. Previous studies making use of such data sets include Lerch
et al. ( 2020 ), who compare multivariate post-processing techniques (including the
combination of EMOS and ECC), and Ben Bouallègue et al. ( 2016 ), who illustrate the
effect of their modification to the ECC method.

One of the most interesting results is that RAFT-adjusted forecasts from older
model runs for a brief time outperform those from the newest run. This effect is
particularly important, as we have not considered the NWP model’s computation time
– typically several hours – in  Paper I and  Paper II . In a real operational setting, the
time period where older, updated forecasts should be used is therefore considerably
longer than presented here. Potential applications for RAFT include settings where
forecasts have to be issued at a certain point in time (such as the day-ahead energy
market), but the last run of the NWP model is several hours old. With RAFT, these
forecasts can be updated and raised to the skill level of a recently initialised model.

In addition to the improved predictive skill, RAFT mean forecasts are also less
jumpy than the EMOS and – in most cases – the raw ensemble forecasts, meaning that
the forecast error reduces with successive updates while not changing sign. So far, tools
analysing jumpiness or consistency mostly apply to deterministic forecasts, as it is
difficult to transfer this aspect of forecast quality to predictive distributions. Richardson,
Cloke, and Pappenberger ( 2020 ) recently proposed to evaluate the consistency of
ensemble forecasts on the basis of the integrated quadratic distance (see  Section 4.4 ) at
different lead times. This approach does not take into account forecast accuracy and
its ability to rank the consistency of competing forecasting methods is therefore quite
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limited. However, it points towards future research and potential ways of developing
the tools required for assessing the jumpiness of forecast distributions.

The MOGREPS-UK ensemble has undergone substantial changes in recent years,
among others a rapid update cycle was introduced. Instead of being initialised every six
hours, a new model run is now started every hour with a reduced number of ensemble
members (Met Office,  2019 ). An 18-member lagged ensemble, consisting of the forecasts
from the last 6 cycles, is formed. These members correspond to lead times that are
up to 6 hours apart and can therefore exhibit quite stark skill differences. RAFT
can be used to update older members of the lagged ensemble and thus balance these
discrepancies.

We examine this feature for seasonal temperature predictions of the GloSea5 long-
range ensemble. There is a considerable benefit to applying RAFT in such a context,
however forecasts can reasonably only be adjusted one to three weeks ahead and only
for weekly aggregates, as useful correlations between lead times do not extend beyond
one month. In  Paper III , we only considered spring and summer temperatures and these
findings might differ substantially depending on the season and weather parameter.
Also, it might be more effective to apply RAFT to forecasts of atmospheric circulation
patterns instead of surface weather variables.

In a way, RAFT can be regarded as in the same spirit as other methods that
combine numerical weather forecasts and recent observations, such as nowcasting
or short-range forecast blending (Vannitsem et al.,  2020 ). The latter involves the
estimation of blending weights, which can be achieved based on a range of criteria and
with a variety of different methods (e.g., Atencia et al.,  2020 ; Bouttier and Marchal,

 2020 ; Schaumann et al.,  2020 ). However, RAFT is not a direct competition of these
techniques, but rather complements them. Different blending sources are often not on
equal skill levels, for example a nowcast and a forecast from a NWP model run that
was initialised several hours ago. With RAFT, the older sources can be updated so
that they contain nearly the same amount of information as the newest predictions.
In this way, computing blending weights is much easier and can result in more skilful
and consistent forecasts. RAFT also has an advantage compared to post-processing
techniques that use observations as persistence predictors (e.g., Hess,  2020 ). These
methods are restricted to the data that is available when the forecast is created and
persistence forecasts are usually only valid for a few hours. RAFT allows for continuous
updates of the same trajectory incorporating new information – in our study up to
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18 hours ahead – without creating a fully new forecast each time and using only one
predictor variable, therefore reducing the computational overhead.

There are many aspects of RAFT that can still be optimised, such as the algorithm
to determine the adjustment period and finding solutions for sites where local effects
play a particular important role. In conclusion, we hope that RAFT will be adopted
by the weather forecasting community as a straightforward, versatile and economical
way to add value to forecasts even after they were issued.
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Abstract
Modern weather forecasts are commonly issued as consistent multi-day fore-
cast trajectories with a time resolution of 1–3 hours. Prior to issuing, statistical
post-processing is routinely used to correct systematic errors and misrepresen-
tations of the forecast uncertainty. However, once the forecast has been issued, it
is rarely updated before it is replaced in the next forecast cycle of the numerical
weather prediction (NWP) model. This paper shows that the error correla-
tion structure within the forecast trajectory can be utilized to substantially
improve the forecast between the NWP forecast cycles by applying additional
post-processing steps each time new observations become available. The pro-
posed rapid adjustment is applied to temperature forecast trajectories from the
UK Met Office's convective-scale ensemble MOGREPS-UK. MOGREPS-UK is
run four times daily and produces hourly forecasts for up to 36 hours ahead. Our
results indicate that the rapidly adjusted forecast from the previous NWP fore-
cast cycle outperforms the new forecast for the first few hours of the next cycle,
or until the new forecast itself can be rapidly adjusted, suggesting a new strategy
for updating the forecast cycle.

K E Y W O R D S

atmosphere, ensembles, forecasting (methods), statistical methods

1 INTRODUCTION

Weather forecasts resulting from numerical weather pre-
diction (NWP) models are traditionally post-processed
using statistical approaches in order to correct poten-
tial systematic biases in the forecasts (Glahn and Lowry,
1972). Roughly 15 years ago, the first papers on statistical
post-processing methods yielding full predictive distribu-
tions – correcting both systematic biases and assessments
of forecast uncertainty – appeared in the literature (Gneit-
ing et al., 2005; Raftery et al., 2005). Since then, approaches
of this type have become increasingly more common in

both the literature and operational forecasting for NWP
forecasts and forecast ensembles (Vannitsem et al., 2018).
Originally, the methods applied to marginal predictive dis-
tributions of individual weather variables at individual
locations (Gneiting et al., 2005; Raftery et al., 2005). More
recent work has produced consistent probabilistic predic-
tions for temporal trajectories (Hemri et al., 2015), spatial
forecast fields (Berrocal et al., 2008; Feldmann et al., 2015)
and multiple variables (Schuhen et al., 2012; Möller et al.,
2013; Sloughter et al., 2013). Vannitsem et al., (2018) gives
a recent overview of statistical post-processing methods for
ensemble forecasts.

Q J R Meteorol Soc. 2020;146:963–978. wileyonlinelibrary.com/journal/qj © 2019 Royal Meteorological Society 963
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F I G U R E 1 Diagram of a typical forecast cycle for hourly
forecasts issued every 6 hr. The MOGREPS-UK version used in this
paper is configured in this way

The aim of probabilistic forecasting is to “maximize the
sharpness of the predictive distribution subject to calibra-
tion” (Gneiting et al., 2007). Here, calibration, or reliability,
refers to the statistical consistency between the forecast
and the observation; a forecast is (probabilistically) cali-
brated if events predicted to have probability P are real-
ized with the same relative frequency in the observations.
A calibrated forecast should then provide as much infor-
mation regarding future weather as possible; the smaller
the forecast uncertainty, or the higher the sharpness of
the predictive distribution, the more information regard-
ing future weather is contained in the forecast. In practice,
the NWP model outputs a forecast trajectory for multiple
lead times. As soon as the model output is available, the
forecasts of the entire trajectory are post-processed using
the most recent available pairs of previous forecasts and
verifying observations to obtain calibrated and sharp fore-
casts for all lead times. A new, post-processed forecast is
then issued for all future time points corresponding to the
lead times of the original NWP forecast. An example of
such a setting is shown in Figure 1 for an hourly forecast
where a new forecast is issued every 6 hr.

In the standard setting demonstrated in Figure 1, the
published forecast is not updated until it is replaced in
the next forecast cycle of the NWP model. However, new
information in the form of new observations becomes
available every hour. In the current paper, we propose an
approach for Rapid Adjustment of Forecast Trajectories
(RAFT), where, in addition to standard post-processing,
we regularly update the forecast every time a new piece of
information becomes available by utilizing the correlation
of the forecast errors within an NWP forecast trajectory.
The idea behind RAFT is related to that of data assimi-
lation, for example Mitchell and Houtekamer (2000) who
developed a method to account for model error in the con-
text of an ensemble Kalman filter technique. Here, our
main priority is computational efficiency to minimize the
time needed for each adjustment. We thus propose an effi-
cient adjustment approach that is adapted to each forecast
cycle, hour and lead time separately. In a case-study, we
apply the method to hourly temperature forecasts from the
MOGREPS-UK ensemble from the UK Met Office whose
schedule follows the forecast cycle shown in Figure 1.

The remainder of the paper is organized as follows. In
the next Section 2, we introduce the MOGREPS-UK (Met

Office Global and Regional Ensemble Prediction System)
forecast ensemble and the corresponding observations,
and review the classical Ensemble Model Output Statistics
(EMOS) post-processing method as well as the validation
metrics used in our study. We further show the skill of
the post-processed EMOS forecasts. In Section 3, we intro-
duce our proposed method for RAFT. Results at Heathrow
Airport as well as those over the entire study region are
presented in the following Section 4. Finally, the paper
concludes with a summary and discussion in Section 5.

2 DATA AND CONVENTIONAL
POST-PROCESSING

2.1 MOGREPS-UK

Our dataset consists of surface temperature forecasts and
observations for 150 locations in the UK and the Repub-
lic of Ireland. The forecasts are provided by the UK
Met Office's convective-scale ensemble MOGREPS-UK
(Hagelin et al., 2017), which has been running opera-
tionally since July 2012. The dataset covers a period of
30 months between January 2014 and June 2016, during
which the ensemble had a horizontal resolution of 2.2 km
and produced hourly forecasts for up to 36 hr. During this
time, MOGREPS-UK was run four times daily, at 0300,
0900, 1500 and 2100 UTC. The initial and boundary condi-
tions were originally provided by the global MOGREPS-G
ensemble, but since March 2016 the initial conditions have
been created by adding the MOGREPS-G perturbations
to the analysis of the high-resolution deterministic UK
variable-resolution (UKV) model, while the boundary data
continue to be provided by MOGREPS-G. The ensemble
consists of one control forecast and eleven perturbed mem-
bers, which we treat as twelve exchangeable ensemble
members.

In this study, we consider site-specific data only, inter-
polated by the Met Office from model grid to observation
locations. During this process, forecasts are corrected for
local effects and the height differences between station
and model orography. The observations are extracted from
SYNOP messages at the 150 locations in Figure 2 and
Met Office quality controls have been applied. We sep-
arate the data into a training set (January to December
2014) with approximately 1,300 forecast trajectories for
each location, or a total of 7,018,719 forecast–observation
pairs, and a test set (January 2015 to June 2016) with
approximately 2,096 forecast trajectories for each loca-
tion, or a total of 11,320,762 forecast–observation pairs.
Although there have been several operational changes to
the MOGREPS-UK model during these periods, we treat
the dataset as homogeneous over the entire study period.
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F I G U R E 2 Map of the 150 observation locations in the UK
and the Republic of Ireland used in this study. The sites are divided
into three categories: coastal (circles), inland (triangles) and
mountain (squares) sites. The black triangle marks Heathrow
Airport

2.2 Ensemble model output statistics

For all their benefits, weather forecast ensembles are usu-
ally too confident and produce underdispersed forecasts
(Hamill, 2001). This means that the ensemble spread does
not cover all sources of uncertainty in a given weather
situation and is therefore on average too narrow. Like all
weather prediction models, ensembles are also subject to
a deterministic bias, depending on the model's skill in
varying weather situations. To correct for the bias and the
underdispersion, we first apply statistical post-processing
to the raw ensemble forecasts before using the new RAFT
error correction method. EMOS (Gneiting et al., 2005),
sometimes called non-homogeneous Gaussian regression,
has successfully been applied to multiple forecast models
(e.g., Kann et al., 2009; Scheuerer and Büermann, 2014;
Feldmann et al., 2015) and is a suitable method to calibrate
MOGREPS-UK forecasts.

We denote a future temperature observation for a spe-
cific location and time by Y and the corresponding ensem-
ble forecast members by X1, … ,X12. The EMOS predictive
distribution of Y conditional on X1, … ,X12 is then defined
as a Gaussian distribution:

Y |X1,… ,X12 ∼  (
𝜇, 𝜎2) . (1)

The moments of this distribution are modelled using
the ensemble forecast's statistics; the predictive mean

𝜇 = a + b2 ⋅ X (2)

is a linear function of the ensemble mean X = 1
m

∑m
i=1 Xi

and the predictive variance

𝜎2 = c2 + d2 ⋅ S2 (3)

an affine function of the ensemble variance S2 =
1
m

∑m
i=1

(
Xi − X

)2
. Here, m = 12 is the number of ensem-

ble members and the coefficients a, b, c and d are real
numbers. For estimating a, b, c and d, we use minimum
score estimation (Dawid et al., 2016) and optimize the con-
tinuous ranked probability score (CRPS; Matheson and
Winkler, 1976; Gneiting and Raftery, 2007) based on train-
ing data as suggested by Gneiting et al., (2005). Gebets-
berger et al., (2018) gives a comprehensive comparison of
minimum CRPS and maximum likelihood estimation. The
parameters in Equation (3) are squared to ensure that the
predictive variance is non-negative. In Equation (2), b is
constrained in the same way, making it easier to interpret.

All runs of the NWP model and all forecast lead times
are calibrated separately using a rolling training period of
40 days. This means that for each run and each lead time,
we collect all forecast–observation pairs from the last 40
days, where the forecasts were initialized at the same time
of day and are valid for the same lead time. These data
comprise the basis for the estimation of the EMOS coef-
ficients. The current ensemble forecasts are then plugged
into Equations (2) and (3) to obtain the full EMOS pre-
dictive distribution  (

𝜇, 𝜎2). We follow the local EMOS
approach, in that all stations are treated on an individual
basis. This accounts for local effects and turns out to pro-
duce much better results than a regional approach, where
data from different sites are pooled together. In order to
have a full set of training data for the first model runs in
2014, some dates from the end of 2013 are used.

2.3 Verification methods and EMOS
forecast skill

To evaluate the effectiveness of the EMOS method, we
compare the predictive skill of the post-processed forecasts
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T A B L E 1 Continuous
ranked probability score (CRPS)
and root-mean-square error
(RMSE) averaged over all sites and
forecast runs, for different lead
time ranges

CRPS RMSE

Lead times 1–12 hr 13–24 hr 25–36 hr 1–12 hr 13–24 hr 25–36 hr

Raw ensemble 0.718 0.741 0.792 1.205 1.254 1.343

EMOS 0.555 0.596 0.636 1.054 1.131 1.204

The margin of error based on a 95% bootstrap interval is less than 0.002.

to the raw MOGREPS-UK ensemble. The tools used here,
as well as for evaluating the RAFT forecasts in Section 4,
are the root-mean-square error (RMSE), the CRPS and the
rank and probability integral transform (PIT) histograms.
Both the RMSE and the CRPS are proper scoring rules
(Gneiting and Raftery, 2007); they measure the skill of
a forecast by assigning a numerical penalty depending
on how well the forecasts match the observations. It is
essential that they are proper, as this guarantees that the
best forecast model will receive the best score and pro-
hibits hedging. While the RMSE assesses the deterministic
forecast accuracy of the mean of a predictive probability
distribution F, the CRPS evaluates the probabilistic skill
of the whole distribution – which can also be represented
by a discrete ensemble. The RMSE is defined as the square
root of the average squared distance between the mean
forecasts and the observations y:

RMSE (F, y) =

√√√√ 1
n

n∑
i=1

(mean (F) − y)2, (4)

where n is the number of data points or forecast cases.
In its general form, the CRPS can be expressed as the

squared area between a forecast cumulative distribution
function (CDF) F and the empirical CDF of the observa-
tion y or, equivalently, in terms of two expected values
(Thorarinsdottir and Schuhen, 2018):

CRPS (F, y) = ∫
+∞

−∞

[
F (x) − 𝟙 {y ≤ x}

]2 dx

= 𝔼|X − y| − 1
2
𝔼|X − X ′|, (5)

where 𝔼 denotes the expected value with respect to F and
X ,X ′ are independent random values with distribution
F. Here, we use the closed form for a Gaussian distribu-
tion (Equation (6)) to evaluate the EMOS forecasts and an
approximation for the MOGREPS-UK forecasts, where the
distribution is given by an ensemble (Equation (7)):

CRPSEMOS
( (

𝜇, 𝜎2) , y
)
= 𝜎

{y − 𝜇

𝜎

[
2Φ

(y − 𝜇

𝜎

)
− 1

]

+ 2𝜙
(y − 𝜇

𝜎

)
− 1√

𝜋

}
, (6)

CRPSENS (X1,… ,Xm; y) = 1
m

m∑
i=1

|Xi − y|

− 1
2m2

m∑
i=1

m∑
j=1

||Xi − Xj|| . (7)

The functions Φ (⋅) and 𝜙 (⋅) in Equation (6) indicate
the CDF and the probability density function (PDF) of a
standard Gaussian distribution, respectively. As noted by
Ferro et al., (2008), the size of the ensemble may influence
the CRPSENS in Equation (7), in that larger ensembles are
likely to obtain a better score. Gneiting et al., (2005) gives
a derivation of the result in Equation (6) and Grimit et al.,
(2006) a derivation of the result in Equation (7).

Table 1 summarizes both scores for the EMOS and the
raw MOGREPS-UK forecasts. We divide the forecast lead
times into three categories, early (1 to 12 hr), mid-range
(13 to 24 hr) and later lead times (25 to 36 hr) and average
the scores over each of the categories. As can be expected,
the scores deteriorate with increasing lead time, for both
EMOS and raw ensemble forecasts. By applying the EMOS
post-processing technique, the probabilistic forecast skill
is improved by around 20% and the deterministic skill of
the mean forecast by around 10%.

To assess the calibration of the probabilistic forecasts,
we use the PIT histogram to check the level of calibration
(Thorarinsdottir and Schuhen, 2018). For a perfectly cali-
brated forecast, the PIT values, computed by evaluating the
forecast CDFs at the observations, should form a flat his-
togram. The equivalent method for discrete ensemble fore-
casts is the verification rank histogram (Anderson, 1996;
Hamill and Colucci, 1997; Talagrand et al., 1997), which
measures the distribution of the observation rank in the set
of ensemble forecasts. Both histograms are interpreted in
the same way.

In Figure 3, the PIT histograms for the EMOS forecasts
are shown. Overall, they seem reasonably flat, however
it seems that small miscalibrations remain; there are, in
particular, too many observations that land in the lower
tail of the predictive distribution. There is almost no dif-
ference in the degree of calibration for the different lead
time categories. These results indicate that a major jump
in forecast skill can be achieved by applying EMOS to
the raw ensemble. In a next step, the forecast trajectories
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F I G U R E 3 Probability integral transform (PIT) histograms of the EMOS post-processed forecasts, indicating the degree of calibration.
Forecast cases are aggregated over all sites and forecast runs in the test set for (a) early, (b) mid-range and (c) later lead times

provided by the EMOS mean are successively updated
using the RAFT technique. Therefore, EMOS forms a base-
line against which all further error reduction is measured.

3 RAPID ADJUSTMENT
OF FORECAST TRAJECTORIES

The new RAFT technique is applied directly to the mean
of the EMOS forecast distribution, in order to increase
the deterministic skill of the EMOS forecasts even fur-
ther when new information becomes available. This in
turn also leads to a reduction in the CRPS (Equation (5)).
More specifically, the goal of the new RAFT method is to
adjust and improve forecast trajectories over time by using
the part of the trajectory that has already verified, in con-
junction with the matching observations. First we need to
establish the relationship between forecast errors at differ-
ent lead times. The forecast error et,l is here defined as the
distance of the EMOS mean forecast 𝜇t,l to the observation
yt+l, where the forecast is initialized at time t and valid at
lead time l:

et,l = yt+l − 𝜇t,l. (8)

Figure 4a shows the Pearson correlation coefficient
matrix of the forecast errors at Heathrow Airport (marked
with a black triangle in Figure 2) for the 0300 UTC model
run. To create the plot, the error correlations for all pos-
sible pairs of lead times were computed over the training
set, as well as the corresponding p-values. Only statistically
significant correlations at the 90% level are shown. The
correlation between lead times 1 and 36 is slightly negative
and significant, but is left out for clarity and ultimately has
no relevance for this study.

In all instances, there is a positive correlation between
the errors at a certain lead time and its immediate neigh-
bours. This means that the errors at two lead times,
if close enough, are so strongly connected that we can

make inference about the forecast skill at a future lead
time by observing the error at the earlier lead time. For-
mally, there is a period preceding each forecast 𝜇t,l, dur-
ing which the recently measured forecast error et,l∗ , with
l∗ < l, provides useful information for a forecast adjust-
ment at time t + l and thus can reduce the subsequent
error et,l.

The size of these temporal neighbourhoods varies
greatly with the time of day. At lead times 8 to 11, corre-
sponding to midday, the relationship between the forecasts
is weakest with only 4 to 5 hr of significant correlation,
while the largest predictability of 15 to even 27 hr can be
found at lead times 28 to 31, in the early morning. In the
MOGREPS-UK setting, this makes the RAFT method work
on a rather short time-scale, adjusting forecasts sometimes
at only a couple of hours in advance. However, RAFT
adapts to the scale and context of the application; for
example, for daily weather forecasts, the potential time
range of adjustment increases to a few days.

Based on the correlation structure in Figure 4a, we can
now define the RAFT model, establishing the relationship
between forecast errors at two different lead times by linear
regression. The estimated future error êl at lead time l =
1,… , 36 is written as a linear function of the observed error
at earlier lead times l∗:

êl = 𝛼̂ + 𝛽 ⋅ el∗ + 𝜀. (9)

The error term 𝜀 is normally distributed with mean
zero and both coefficient estimates 𝛼̂ and 𝛽 are deter-
mined by the least squares approach based on the training
dataset. All lead time combinations, sites and the four
NWP model initialization times are treated separately. We
omit the index t for the model run from Equation (9) for
simplicity. Regression equations using multiple lead times
as predictors were also investigated, but did not yield any
improvement, as the newest observation always contains
the most useful information.
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F I G U R E 4 (a) Empirical correlation coefficient of the forecast error for every lead time combination of the 0300 UTC model run at
Heathrow Airport during the training period from January to December 2014. Correlations are only plotted if they are significant at the 90%
level. (b) RAFT adjustment period for each forecast lead time for the 0300 UTC model run at Heathrow Airport. The periods refer to the time
points at which the observations used to adjust the future forecast are recorded

Not all of the possible lead time combinations produce
valid and useful results. As seen in Figure 4a, the corre-
lation between lead times, and therefore predictability, is
irregular and depends on various factors. Consequently,
we define for each lead time l an adjustment period of
length p, consisting of the preceding lead times for which
there is a strong enough correlation to affect the forecast
skill. Starting at l − p + 1, the forecast for lead time l is
repeatedly adjusted in hourly steps, each time using the
most recent available forecast error information. Here, we
allow for a processing time of one hour after an observation
has been recorded, which means that the final adjustment
for a forecast valid at lead time l is made at l − 1, using the
error at l − 2.

To establish the length of the adjustment period for
each location and lead time numerically, we need an
algorithm that ensures that any adjustments are not based
on random effects, but genuine additional error informa-
tion about future lead times. Therefore we look at the
coefficient 𝛽 in the RAFT model (Equation (9)) and deter-
mine for which lead time combinations the estimate is
significantly different from zero. This corresponds to a
large enough error correlation between the two lead times
at hand to justify a RAFT adjustment. As to the level of sig-
nificance for 𝛽, we want to be a little lenient if the temporal

difference between lead times is small, starting with a level
of 90%, and become stricter with increasing distance to
the predicted lead time, ending with 99%. Experiments
have shown that legitimate connections at small lead time
differences can be missed if the required level is set too
high and spurious correlations at far apart lead times can
lead to excessively long adjustment periods without real
improvement if the level is set too low.

With our forecast trajectories spanning 36 hr, we need
to account for the fact that multiple lead times correspond
to the same time of day. As we treat each of the four forecast
runs individually, there is for every lead time combination
separated by more than 24 hr a corresponding combina-
tion from the run initialized one day earlier with a time
difference of less than 24 hr, which will on average provide
a more skilful forecast. Therefore, the maximum length of
the adjustment period is 22 hr, with one hour allowed for
processing the observations.

The algorithm for obtaining the optimal length of the
adjustment period is then defined as follows:

1. Run the linear regression in Equation (9) using all lead
times l∗ ∈ [l − 23, l − 2] as predictors. For negative lead
times, add 24 hours, so that lead time 23 is followed by
lead time 0, 1, etc.

92



SCHUHEN et al. 969

2(a) Working backwards, find the first instance of l∗ in
[l − 11; l − 2]where the regression coefficient 𝛽 is not
significantly different from zero at the 90% level. If a
result can be found, we denote it by lp.

(b) If such an lp cannot be found, find the first instance
of l∗ in [l − 19; l − 12] where 𝛽 is not significantly dif-
ferent from zero at the 95% level. If a result can be
found, we denote it by lp.

(c) If such an lp cannot be found, find the first instance
of l∗ in [l − 23; l − 20] where 𝛽 is not significantly
different from zero at the 99% level.

3. Set p = l − lp. If no value for lP is found after Step 2,
then p is the average of the adjustment period lengths
of the neighbouring lead times l − 1 and l + 1. In case
this does not produce a valid number, p is set to 22, the
maximum possible length for the adjustment period.

This somewhat arbitrary algorithm was designed so
that it works well for a multitude of sites in our dataset
with very different correlation patterns. It can be replaced
by any other method for identifying a suitable adjust-
ment period. Figure 4b shows the adjustment periods for
the 0300 UTC run at Heathrow Airport produced by the
algorithm above. It is clear that there is a strong connec-
tion between the correlation pattern in Figure 4a and the
adjustment period length, in that large p correspond to
longer periods of predictability. Note that for a stable esti-
mation, the algorithm is applied only once to the entire
training set (data from January to December 2014) with
the obtained parameter estimates used for all data in the
test set, as opposed to the rolling training period approach
used for the EMOS post-processing.

The adjustment period refers to the time points when
the observations used in the adjustment are recorded, and
not the time points when the adjustments are carried out.
As we allow an extra hour for the processing of the obser-
vations, the actual correction is made one hour after the
observation time, starting at l − p + 1. For example, we see
from Figure 4b that the ideal length of the adjustment
period for lead time l = 25 here is p = 9. This means that
the first correction to a forecast valid at t + 25 is made at
t + l − p + 1 = t + 17 using the observation collected 1 hr
earlier, at t + 16. From there on, an adjustment takes place
every hour, each time using the newest error informa-
tion available at that moment, until the time t + 24, where
we adjust the forecast for a final time based on the error
measured at t + 23. Clearly this last observation gives us
the most accurate information about the expected forecast
error, as it is closest in time to the forecast. This means that
we get the most gain in forecast skill if RAFT is applied in
the very short term.

Obviously, there is a gap during the first 2 hr of the
forecast trajectory, where no forecast data from the current

run are available to adjust the forecasts at t + 1 and t + 2.
In this case, we instead use forecasts from the run that
was initialized 24 hr earlier which are valid at the same
time as the missing forecasts. Of course this does not lead
to the same kind of improvement in forecast skill, as the
current forecast run might exhibit a very different error
characteristic from the one from 24 hr ago.

To obtain the size and direction of the forecast adjust-
ment for a certain forecast run t and lead time l, we first
calculate the observed error et,l−k at lead time l − k accord-
ing to Equation (8), where k ≤ p and the time l − k thus lies
within the adjustment period. Then we plug the observed
error into the regression equation for the predicted error
êt,l at the future time point t + l:

êt,l = 𝛼̂ + 𝛽 ⋅ et,l−k. (10)

The regression coefficient estimates 𝛼̂ and 𝛽 are unique
for each lead time combination, forecast initialization time
and location, and were calculated in the first step of the
algorithm to find the optimal adjustment period. Once we
have established the predicted error in this way, we add
it to the EMOS mean forecast 𝜇t,l and obtain the adjusted
RAFT forecast 𝜇̂t,l:

𝜇̂t,l = 𝜇t,l + êt,l. (11)

The resulting adjusted mean forecast is generated
from data that have passed through multiple levels of
post-processing. First, while applying EMOS, the perfor-
mance of the raw ensemble over the past 40 days is ana-
lyzed and the results are used to improve the determin-
istic and probabilistic forecast skill. This post-processing
method uses forecasts and observations from a rolling
training period and is carried out right after the NWP
model run has finished and before the forecast is issued.
When the first forecast from the trajectory verifies 2 hr
later, we make the first RAFT adjustment and continue in
the same manner in hourly intervals (Figure 5). The level
of RAFT error correction only relies on the performance of
the EMOS forecast mean during the current forecast run,
using very short-term information not available when the
NWP model was initialized and when EMOS was applied.
The combined EMOS/RAFT predictive distribution con-
sisting of the RAFT forecast as mean and the EMOS vari-
ance can produce a more accurate forecast than both the
raw ensemble and the unadjusted EMOS forecast, while
remaining calibrated.

4 RESULTS

In the previous section, we described how the RAFT
method can be combined with post-processing methods
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F I G U R E 5 Diagram of a forecast cycle for an hourly forecast
issued every 6 hr with rapid adjustment of the forecast trajectory
(RAFT) applied as new observations become available. Forecasts in
grey are only used as predictors by means of their observed error
and are not adjusted themselves

like EMOS to provide an additional short-term error cor-
rection. We now show comprehensive results, first for
Heathrow Airport and then for all sites in the dataset.

4.1 Results for Heathrow Airport

As the busiest airport in the UK, accurate weather fore-
cast for Heathrow are of major importance, especially for
the very short term (e.g., Ghirardelli and Glahn, 2010).
Therefore, we investigate the impact of RAFT on forecast
quality at this site separately. From Figure 4, we know how
the relationship between forecast errors at different lead
times can be used to define the RAFT regression model and
corresponding adjustment periods. This analysis is done
only once and the parameters are then valid until there are
significant changes in the forecast models or the local error
characteristics.

In the following example, we illustrate how RAFT
works in a real-time setting. Figure 6 is a snapshot, taken
at 2300 UTC on 14 January 2016 at Heathrow Airport. The
light grey dashed line depicts a forecast trajectory, issued
at 0300 UTC the same day and post-processed using EMOS
as described in Section 2.2. Over time, temperature val-
ues (represented by the black solid line) are observed for
the 36 lead times of the trajectory. However, at the time of
the snapshot, they are only available up to 1 hr before. The
dot-dashed dark grey line is the RAFT forecast and consists
of two parts. The trajectory left of the black vertical line is
a combination of the most recent RAFT forecasts at each
lead time, i.e., the forecast issued 1 hr earlier, using the
error information from 2 hr before the valid time. These
are the optimal RAFT forecasts, as they contain the most
information and are very short-term.

The right side of the black vertical line is the current
RAFT trajectory, showing the best possible forecast we

can make with the information we have at this point in
time. Depending on the length of the adjustment period,
the forecasts from here to the end of the original fore-
cast trajectory are adjusted using the most recent error
information. For example, the forecast at t + 28 is being
adjusted, while the forecast at t + 33 is not. For the first
12 hr, the uncorrected trajectory has a good agreement
with the observations and only small corrections are made.
Between lead times 15 and 30, corresponding to evening
and night-time, the EMOS forecast underpredicts the tem-
perature. As soon as larger errors are observed, the RAFT
adjustment to the original forecast also becomes larger and
after a short time manages to counter the underpredic-
tion. This example illustrates how RAFT is able to quickly
correct forecast errors a few hours ahead, whereas the
unadjusted forecast would continue to underpredict the
temperature for further 15 hr.

To evaluate the performance of RAFT over the entire
test period, we look at the root-mean-square error of
the RAFT-adjusted forecasts and compare to the unad-
justed EMOS mean forecasts. Figure 7 shows the RMSE at
Heathrow, averaged over all cases in the test period where
the NWP model was initialized at 0300 UTC. In both plots,
the solid line is identical and represents the performance
of the EMOS-post-processed forecast trajectories, and the
dashed line is the RMSE of the RAFT forecasts. The dif-
ference between the plots lies in the fact that they are
snapshots taken at different points in the forecast cycle.

Figure 7a depicts the level of forecast skill if we stopped
applying RAFT after lead time t + 15. This would mean
that all forecasts to the left of the vertical line have been
adjusted according to the forecast error measured 2 hr ear-
lier. As the most recent observed error is registered at t +
14, all forecasts to the right of the vertical line are adjusted
using this error information (depending on the length of
the respective adjustment periods). This means that on
the left side, the difference between the two curves is the
maximum improvement obtainable by applying RAFT.

For the first few hours, there is only very little improve-
ment, as we do not yet have any information about the
current run's forecast error, and we have to rely on the
information from the run started 24 hr earlier. However,
as soon as the new error information is available, RAFT
shows a considerable reduction in forecast error, even up
to 20%. On the right side, the largest benefit can be seen in
the next few hours, as the correlation is strongest between
close lead times. After about 5 hr, RAFT falls back to the
skill level of the EMOS forecasts. Interestingly, for the
period between t + 28 and t + 32, there appears to be a sig-
nificant correlation to the error at t + 14. Thus we see a
small error reduction 14 to 18 hr ahead.

In Figure 7b, a different snapshot is shown. Now we
apply RAFT to the full forecast cycle, that is, we let it run
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F I G U R E 7 (a) RMSE of the
EMOS and RAFT mean forecasts over
lead time. The scores are averaged over
all dates in the test period at Heathrow
Airport for model runs initialized at
0300 UTC. RAFT error corrections are
only carried out until lead time t + 15. (b)
is as (a), but RAFT is carried out for all
lead times until the end of the trajectory

until the last adjustment made at t + 35. This plot con-
siders only the most short-term correction for each lead
time and therefore the best possible forecast. Here we see a
large improvement over EMOS throughout and especially

for later lead times. An interesting feature emerges if we
compare the forecast skill at lead times t + 2 and t + 26.
These lead times correspond to the same time of day,
0500 UTC, and we would expect the forecasts at t + 26 to
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F I G U R E 8 Average root-mean-square error for RAFT forecasts from all four daily NWP model runs as a function of the time of day.
The scores were computed over the test period at Heathrow Airport and are shown with 90% bootstrap confidence intervals. The dashed
vertical lines represent the initialization times of the NWP model

perform worse due to more time having passed since the
model initialization. With RAFT, however, this forecast
was adjusted with a very recently measured observation
error, whereas the t + 2 forecast could only be adjusted
using the data from the model run initialized 24 hr prior.
As a result, the t + 26 error is lower than the one at t + 2
and, consequently, a forecast for t + 26 of an older model
run will on average have more forecast skill than the t + 2
forecast from the next (and newer) model run.

This means that there is a transition period at the
beginning of every NWP model run, where an old run
provides better forecasts until the point is reached where
the forecasts from the new model run can be used for
the RAFT adjustment. Figure 8 illustrates the relationship
between all four initialization times, depicting the aver-
age RAFT RMSE as a function of the time of day in UTC.
The times when a new model run is started are marked by
dashed vertical lines. Again, the RMSE is computed using
the most recent adjusted and optimal forecast. Here, the
mean score is shown, as well as 90% confidence intervals
based on 1,000 bootstrap samples.

At first glance, there is a strong diurnal variation in all
four runs, with the lowest predictability around midday
and the highest during the early morning. We are inter-
ested in the ranking of the four runs in terms of forecast
skill. Ordinarily, we would expect the newest run to be
the best, but as seen in Figure 7b, there is a short period
during which an older run produces better forecasts. For
the first few hours of the day, the ranking is as expected,
in that the 2100 UTC run has the lowest RMSE and the
0300 UTC run the highest. When the first forecast from
the new 0300 UTC run comes in at 0400 UTC, the skill

decreases considerably, instead of improving. This is due
to the fact that there are no recent forecast data available
for the RAFT adjustment and we have to rely on the error
information from 24 hr before. For 2 hr after the initializa-
tion of the 0300 UTC run, the 2100 UTC run remains the
best forecast; the score difference between the two runs is
actually significant at the 90% level. After 0600 UTC, the
model runs rank in the expected order.

A similar pattern can be noticed every time a new
model run is produced, with the exception being the
1500 UTC run. This run actually ranks best, or at least
close to the others, from the first forecast, coinciding with
the increase in predictability in the afternoon. We can
conclude that the four daily model runs have comparable
forecast quality after applying RAFT, apart from a transi-
tion period of about 2 hr. During this period, forecasts from
an older run should be preferred to the newest.

4.2 Results for all sites

After presenting the results for Heathrow Airport, we now
discuss how RAFT performs for all observation sites avail-
able. The dataset covers the British Isles (Figure 2) and
displays a wide variety of local characteristics, such as sites
in the Scottish mountains at elevations above 1000 m or
coastal towns.

Figures 9a,b compare the average RMSE of the EMOS
and RAFT forecasts for the 2100 UTC model run, similar
to Figure 7. Again, they represent snapshots at different
times in the RAFT adjustment process. In Figure 9a, we
see the maximum achievable RAFT improvement over the
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F I G U R E 9 (a) RMSE of the
EMOS and RAFT mean forecasts over
lead time. The scores are averaged over
all dates and locations in the test period
for model runs initialized at 2100 UTC.
RAFT error corrections are carried out
only once at lead time t + 1. (b) is as (a),
but RAFT is carried out for all lead
times until the end of the trajectory

EMOS mean if we only applied the adjustment once at the
moment the first forecast becomes valid at t + 1. At that
time, no observations are available yet for the new run, so
we have to rely solely on error information from the run
initialized 24 hr earlier. Those RAFT forecasts for which
the adjustment period extends beyond the beginning of the
run have been adjusted using the observation made at t +
0, combined with the old run's t + 24 forecast.

While the benefit from applying RAFT in this way
is considerably smaller than the improvement we see as
soon as the new forecast data are used, there is still a
reduction in the RMSE for the next 12 hr. We notice an
interesting detail between t + 20 and t + 23 (corresponding
to 1700 UTC and 2000 UTC, respectively). In this period of
high predictability, the RAFT scores are actually slightly
worse than the EMOS scores, but revert to being equal with
the next RAFT adjustment at t + 2 (not shown). This pat-
tern can be observed at a handful of sites, where the error
correlation between the lead times is particularly strong
and the corresponding adjustment periods quite long. The

RAFT algorithm described in Section 3 is applied in the
same form to all locations and lead times. This does not
take into account any potential stark differences in correla-
tion patterns between the sites which in turn might require
slightly different stopping rules or significance levels for
an optimal performance. It might therefore be advisable to
look into adjusting the algorithm if interest is in optimizing
the performance for specific locations.

In Figure 9b, we again see the outcome if RAFT is
applied every hour up until the last installment at t + 35.
This represents the maximum and most short-term gain
in forecast skill achievable at every lead time and is not a
continuous trajectory. We will use these forecasts for the
entire subsequent analysis. At the beginning of the forecast
cycle, there is a sharp drop in the RMSE, immediately after
we are able to use data from the current run. Afterwards,
the RAFT skill remains relatively constant, with small vari-
ations due to the diurnal cycle, whereas the EMOS skill
fluctuates considerably. Especially during the last 12 hr of
the forecast cycle, the improvement of RAFT over EMOS is
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(a) (b)

F I G U R E 10 (a) Average RMSE of the RAFT forecasts as function of the EMOS RMSE for all sites, lead times and model runs in the
dataset. (b) Average CRPS of the RAFT forecasts as function of the EMOS CRPS for all sites, lead times and model runs in the dataset. The
RAFT CRPS is computed using the EMOS predictive variance

quite substantial, as the short-term RAFT forecast correc-
tions manage to cancel out the skill deterioration usually
occurring with increasing lead time.

All observation sites in the study can be separated into
three categories based on their location: coastal, inland
and mountain sites. In Figure 10, the RMSE and CRPS
scores for all locations are aggregated over all four model
runs and the RAFT scores are plotted against the EMOS
scores. The CRPS for RAFT is calculated by plugging the
RAFT mean into the EMOS predictive distribution. For
both the RMSE and the CRPS, we see an improvement
for all sites after applying RAFT, in particular at locations
where the error was high in the first place. In fact, the
improvements seem to follow the same linear trend, apart
from a group of five mountain sites (located in Scotland
and Cumbria), which receive a somewhat larger bene-
fit from RAFT than the other sites. This hints at some
location-specific issues not resolved by EMOS or the orig-
inal ensemble.

In Figure 3, we showed that EMOS produces nearly
calibrated forecasts and naturally we want to preserve
this level of calibration with RAFT. Therefore we com-
pare the rank and PIT histograms of the raw ensemble,
EMOS and the distribution consisting of the RAFT mean
and the EMOS predictive variance. Figure 11 shows these
histograms divided by site type. For all three forecasting
methods, there is only very little difference in calibration

between coastal, inland and mountain sites. The raw
ensemble is, as expected, uncalibrated and very underdis-
persive, recognizable by the characteristic U-shape. EMOS
is fairly calibrated, although there is still some hint of a bias
and underdispersion. In contrast, RAFT is slightly overdis-
persive, meaning that the variance of the distribution is
on average too large. This is not surprising, given that the
mean of the distribution now has much better determin-
istic skill, but the corresponding EMOS variance has not
changed. An additional adjustment of the EMOS variance
to counteract the induced overdispersion is a potential
subject for further study.

Another indicator of calibration is the actual cover-
age of the prediction interval compared to the nominal
value. The ensemble members create a prediction interval
of 11∕13 ≈ 84.62%, which would correspond to perfect cal-
ibration. However, the raw MOGREPS-UK ensemble only
reaches a coverage of 52.24%, whereas the EMOS coverage
is 79.29% and the RAFT prediction intervals cover 87.31%.
Although one is under- and the other overdispersive, both
EMOS and RAFT are nearly calibrated, with the coverage
for RAFT being slightly closer to the correct value.

Finally, we look at how RAFT performs during dif-
ferent seasons of the year. The test set contains two
full spring seasons, and one full winter, summer and
autumn. Figure 12 depicts the RMSE skill score, the rel-
ative improvement of the RAFT over the EMOS mean,
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F I G U R E 11 Verification rank histograms for the raw ensemble (top row) and PIT histograms for the EMOS (middle row) and RAFT
(bottom row) forecasts. The RAFT predictive distribution is generated by using the EMOS predictive variance. The histograms are divided by
site type and data are aggregated over all dates, lead times and model runs in the test dataset

for the four seasons. A score of 1 would mean a perfect
forecast and a score of 0 no improvement over the refer-
ence forecast. Again, all four runs and all sites have been
aggregated.

The largest gain in forecast skill occurs during the night
and is very similar for all seasons. The same pattern holds
for the time between 1200 and 1600 UTC, where the skill
score values are very close. In the morning, however, the
scores for summer and winter behave very differently; they
both decrease, but the summer skill score much faster and
further than the winter score. This is due to the fact that
in summer, the diurnal cycle plays a much more promi-
nent role (not shown) and the predictability during night
is much higher than during the day. In winter, the RMSE
is more stable and there is only very little difference in pre-
dictability. The deterioration in the skill score during the

early morning in summer coincides with a period of large
change in predictability. It seems that during this time pre-
dictability changes so fast that even the very short-term
RAFT adjustment can only improve the forecast skill by a
small amount. Therefore, it might be advantageous to look
into obtaining separate RAFT coefficients for the different
seasons. This is not possible in the context of the current
study, however, as a much larger training dataset would be
required.

5 CONCLUSIONS
AND DISCUSSION

This paper presents a new post-processing approach for
NWP forecasts, rapid adjustment of forecast trajectories
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F I G U R E 12 RMSE skill score of
RAFT with EMOS as reference forecast
against time of day for different seasons.
RMSE scores are averaged over all sites,
model runs and dates in the test dataset
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(RAFT), which is applied on top of the traditional
post-processing approach EMOS once new information
pertaining to the current forecast trajectory becomes avail-
able. By utilizing the forecast error correlation structure
in the post-processed NWP forecast trajectories, the EMOS
mean forecasts of the not-yet-realized part of the trajectory
are adjusted in every time step of the forecast based on the
forecast errors that have already been realized. This com-
putationally efficient approach to make use of the newest
available information provides an appealing alternative to
computationally costly rapid ensemble cycles (Lu et al.,
2007; Benjamin et al., 2016), and the older forecast gains
skill in the time between initialization and release of the
next NWP forecast cycle.

While the precise set-up described here may have some
operational restrictions due to computing and observa-
tion processing time if applied at a large number of loca-
tions, our results provide a convincing proof-of-concept.
For example, as shown in Figure 9b, the forecast skill may
be improved by over 40% on average in terms of RMSE
when a 32-hour-old forecast is supplemented with the
most recent available information an hour before it is real-
ized. In an operational setting, the amount of benefit from
the RAFT approach will depend heavily on the operational
set-up of the forecast system. The MOGREPS-UK data
used here were run on a 6-hourly basis, which is quite typ-
ical for a NWP system. For this type of set-up, our results
at Heathrow Airport suggest a potential new strategy for
updating the forecast cycle in that a delay in introduc-
ing the new NWP forecast may be preferred if RAFT is
employed. Since spring 2019, MOGREPS-UK has changed
to run on an hourly-updating cycle, with three members
run every hour and an 18-member ensemble formed by
time-lagging of six cycles. In such cases, it might be benefi-
cial to apply RAFT to the older members of the time-lagged
ensemble; Schuhen (2019) gives an application of RAFT to
individual ensemble members.

RAFT is easily implemented at individual locations
and could be especially useful for forecast users in appli-
cations such as aviation and renewable energy production
where decision-making relies on location-specific skilful
weather forecasts. Here, the forecast user commonly has
access to their own observations in close to real time while
the NWP forecast may be delivered with a small time lag,
or a decision needs to be made in the middle of a fore-
cast cycle, making the setting ideal for a RAFT application.
In such cases, observation frequency may also be higher
than the time resolution of the NWP forecast, a situation
to which RAFT can easily be adapted.

In the EMOS post-processing procedure, each lead
time is corrected independently based on forecast errors
pertaining to that same lead time in older forecasts. As
noted by (e.g.) Schefzik et al., (2013), this may lead to phys-
ical inconsistencies between lead times so that the EMOS
mean trajectory over all lead times may not be a physically
consistent forecast trajectory. One potential inconsistency
is unrealistically large jumps in the temperature between
lead times. Using the convergence index proposed by Ehret
(2010), we compared the temporal stability, or the jumpi-
ness, of the EMOS mean trajectory and the last RAFT
trajectory and found the RAFT trajectory to be less jumpy
for almost all sites than the original EMOS mean trajec-
tory. This indicates that RAFT might correct some of the
physical inconsistencies across lead times introduced in
the univariate EMOS post-processing. An approach that
combines RAFT with the ensemble copula coupling (ECC)
approach of Schefzik et al., (2013) to generate physically
consistent trajectories for wind forecasts is proposed in
Schuhen (2019).

In our analysis, we update only the mean of the
EMOS forecasts while the variance remains unchanged.
The original EMOS forecasts are slightly underdispersive
and biased; a similar effect has been reported in previ-
ous applications of EMOS to individual locations (e.g.,
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Thorarinsdottir and Gneiting 2010). The RAFT procedure
reduces the bias and improves the overall calibration,
while changing the sign of the miscalibration to slightly
overdispersive, cf. Figure 11. This effect is robust across
all lead times as the EMOS forecast uncertainty is nearly
constant across the relatively short lead times of 1–36 hr,
except for minor diurnal differences related to the diurnal
predictability pattern displayed in Figure 8. Our experi-
ments to update the EMOS spread simultaneously with
the mean were not successful in that they did not result in
further skill improvement. One potential explanation for
this is the consistency of the EMOS spread across the lead
times; as the EMOS spread for 1 hr ahead forecasts is sim-
ilar to that for 36 hr ahead forecasts, we do not necessarily
expect to the be able to improve upon the spread for the
36 hr ahead forecasts, even if their means are updated to
become 1 hr ahead predictions. However, a joint approach
for mean and spread might be worth investigating fur-
ther in cases where the originally post-processed forecast
is nearly perfectly calibrated, or slightly overdispersive.
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Abstract. With numerical weather prediction ensembles un-
able to produce sufficiently calibrated forecasts, statistical
post-processing is needed to correct deterministic and prob-
abilistic biases. Over the past decades, a number of meth-
ods addressing this issue have been proposed, with ensemble
model output statistics (EMOS) and Bayesian model averag-
ing (BMA) among the most popular. They are able to pro-
duce skillful deterministic and probabilistic forecasts for a
wide range of applications. These methods are usually ap-
plied to the newest model run as soon as it has finished, be-
fore the entire forecast trajectory is issued. RAFT (rapid ad-
justment of forecast trajectories), a recently proposed novel
approach, aims to improve these forecasts even further, uti-
lizing the error correlation patterns between lead times. As
soon as the first forecasts are verified, we start updating the
remainder of the trajectory based on the newly gathered er-
ror information. As RAFT works particularly well in con-
junction with other post-processing methods like EMOS and
techniques designed to reconstruct the multivariate depen-
dency structure like ensemble copula coupling (ECC), we
look to identify the optimal combination of these methods.
In our study, we apply multi-stage post-processing to wind
speed forecasts from the UK Met Office’s convective-scale
MOGREPS-UK ensemble and analyze results for short-
range forecasts at a number of sites in the UK and the Re-
public of Ireland.

1 Introduction

Numerical weather prediction (NWP) is an inherently un-
certain process, and even with present-day computational
resources, ensembles can not produce perfect forecasts
(Buizza, 2018). Statistical post-processing methods have
been successfully applied to address these deficiencies, aim-
ing to resolve a multitude of issues. Two important proper-
ties of probabilistic forecasts are calibration and sharpness
(Gneiting et al., 2007). Calibration is the statistical consis-
tency between the forecasts and the observations, and sharp-
ness refers to the amount of predictive uncertainty and thus
the extent of information contained in the forecast. Usually,
NWP ensembles lack calibration, as they can not consider
all sources of atmospheric uncertainty, but they are quite
sharp. The main goal of any statistical post-processing pro-
cess should therefore be to maximize the forecast’s sharp-
ness, subject to it being calibrated (Gneiting et al., 2007).

Well-established techniques like ensemble model output
statistics (EMOS; e.g., Gneiting et al., 2005) or Bayesian
model averaging (BMA; e.g., Raftery et al., 2005) are now
available for a number of weather variables; for an overview,
see Wilks (2018). They measure the ensemble’s performance
over a training period, either consisting of a rolling window
of a few weeks or a longer, fixed period of time, and then
apply a statistical correction to the newest NWP model run.
The updated forecasts are usually in the form of a predic-
tive probability distribution, as close to perfect calibration as
possible. As EMOS has been proven to work well for our
data set, the MOGREPS-UK ensemble produced by the UK
Met Office, and is computationally more efficient, we prefer
it over BMA.
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36 N. Schuhen: Order of operation for post-processing of wind forecasts

During the application of some of the methods mentioned
above, any physical, spatial and temporal dependency struc-
ture from the NWP model is lost and additional effort is
needed to restore these patterns (Schefzik and Möller, 2018).
In some cases, parametric models can be developed (e.g.,
Schuhen et al., 2012; Feldmann et al., 2015); however, if
this is not feasible, techniques like ensemble copula coupling
(ECC; Schefzik et al., 2013) and the Schaake shuffle (Clark
et al., 2004) provide a non-parametric approach based on re-
ordering samples from the calibrated predictive distributions.
In this study, we choose ECC over the Schaake shuffle, as it
does not require any additional historical data.

Recently, Schuhen et al. (2020) proposed a new kind of
post-processing method, rapid adjustment of forecast trajec-
tories (RAFT), designed to minimize forecast errors on-the-
fly. Instead of running once, like EMOS or BMA, between
the NWP model run finishing and the publication or deliv-
ery of the forecasts, it is applied repeatedly at every lead
time step. RAFT works in concert with conventional post-
processing techniques and utilizes the error information from
the part of a forecast trajectory where observations are al-
ready available in order to improve the mean forecast skill for
the rest of the trajectory. This means that, e.g., any system-
atic forecast error in a model run that was not picked up by
the standard post-processing can now be corrected quickly,
once it is recorded. In this way, older forecasts become more
valuable and typically outperform the first few forecasts of a
new model run. While Schuhen et al. (2020) adjust the deter-
ministic mean forecast only, we will show in this paper how
RAFT can also be used to adjust the predictive variance. In
general, RAFT applies to any kind of forecast scenario, from
the short range to seasonal forecasting, as long as there is suf-
ficient correlation between the errors at different lead times.

With an abundance of post-processing methods available,
the question arises in which order they should be employed.
Li et al. (2019) look at this problem in the context of
generator-based post-processing (GPP; Chen and Brissette,
2014), producing discrete, auto-correlated time series, and
dependence reconstruction methods like ECC. When work-
ing with EMOS, it should generally be run first in order to
remove large-scale calibration errors and provide a skillful
baseline forecast. However, it is not obvious how to com-
bine ECC and RAFT. Therefore it is our aim to find the
optimal order of operation for these three post-processing
methods, each designed to achieve a different objective. The
combinations of post-processing methods will be applied to
site-specific instantaneous wind speed forecasts produced by
the high-resolution MOGREPS-UK ensemble and will be as-
sessed using multiple univariate and multivariate verification
tools.

The remainder of this paper is organized as follows. In
Sect. 2, we introduce the data set used in this study. Section 3
describes the individual post-processing methods, including
the new RAFT approach, and Sect. 4 outlines the set of ver-
ification metrics which we apply to determine the forecast

performance. In Sect. 5, we illustrate how the different tech-
niques work by means of an example forecast and present re-
sults for the selected combinations of post-processing meth-
ods. We conclude with a discussion in Sect. 6.

2 Data

The 10 m instantaneous wind speed forecast data used in this
study were produced by the UK Met Office’s limited-area en-
semble MOGREPS-UK (Hagelin et al., 2017). MOGREPS-
UK is based on the convection-permitting NWP model UKV,
but with a lower resolution of 2.2 km. Until March 2016,
the global ensemble MOGREPS-G produced both initial and
boundary conditions for MOGREPS-UK; subsequently per-
turbations from the global ensemble were combined with
UKV analysis increments to generate the initial conditions.

We use data from all model versions between Jan-
uary 2014 and June 2016, during which the ensemble was
initialized four times a day and consisted of 12 members,
one control and 11 perturbed forecasts. Here, we only look
at the model run started at 15:00 UTC, as it was observed
in Schuhen et al. (2020) that all four runs behave somewhat
similarly in terms of predictability. Forecasts are produced
for every hour up to 36 h, covering the short range.

For both estimation and evaluation, SYNOP observations
from 152 sites in the British Isles are used (see Fig. 1). To
match the observation locations, the forecasts were interpo-
lated from the model grid and subjected to Met Office post-
processing in order to correct for local effects and differences
between the model and the location’s orography. We separate
our data set into two parts: the first 12 months are used for es-
timating the RAFT coefficients and the remaining 18 months
for evaluating the post-processing techniques.

3 Post-processing methods

In this paper, several post-processing methods are used in
various combinations. They all fulfill different purposes:
EMOS functions as a baseline for producing calibrated and
sharp probabilistic forecasts, ECC transfers the physical de-
pendency structure of the ensemble to the EMOS forecasts
and RAFT continually improves the EMOS deterministic
forecasts after they have been issued, based on previously
unavailable information.

3.1 Ensemble model output statistics

In a first step, all forecasts are post-processed with EMOS,
sometimes also called non-homogeneous regression, in or-
der to correct deterministic and probabilistic biases the raw
ensemble might suffer from. These deficiencies are a result
of the limits of ensemble forecasting in general, as, e.g.,
the ensemble members can only represent a small subset of
the multitude of all possible or probable states of the atmo-
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Figure 1. Map of the British Isles with the 152 observation loca-
tions used in this study. The sites are divided into three categories,
coastal, inland and mountain sites, depending on their location and
altitude. The black square marks The Cairnwell, a mountainous site
in the Scottish Highlands.

sphere at any given point in time. Thorarinsdottir and Gneit-
ing (2010) propose an application of the EMOS method for
wind speed forecasts based on truncated Gaussian distribu-
tions, although they study maximum instead of instantaneous
wind speed.

As we will see in Sect. 5, this approach (here called
gEMOS) produces nearly calibrated forecasts, but they are
still slightly underdispersive. For this reason, we investi-
gate a second variant of EMOS introduced by Scheuerer and
Möller (2015), logEMOS, where the predictive distributions
are truncated logistic. Due to its heavier tails, the logistic dis-
tribution can provide a better fit to the instantaneous wind
speed data at hand. Further case studies including various
versions of EMOS have shown that sharp and calibrated fore-
casts can be produced for a number of different NWP ensem-
bles (e.g., Feldmann et al., 2015; Scheuerer and Büermann,
2014; Kann et al., 2009).

LetX1, . . .,X12 denote an ensemble forecast valid at a spe-
cific time and location and Y be the corresponding observed
wind speed. Then we model the gEMOS forecast as a trun-
cated Gaussian distribution with cut-off at zero, in order to

account for the non-negativity of the wind speed values:

Y |X1, . . .,X12 ∼N+
(
µ,σ 2

)
. (1)

Due to the truncation, the negative part of the distribution is
cut off and a corresponding probability mass added to the
positive part. This means that the parameter µ here is not
the mean of the distribution, but the location parameter, and
σ 2 is the scale parameter. Using the ensemble mean X =
1

12
∑12
i=1Xi and variance S2

=
1

12
∑12
i=1
(
Xi −X

)2
as predic-

tors for the EMOS parameters µ and σ 2, we define the fol-
lowing equations:

µ= a+ b2
·X, (2)

σ 2
= c2
+ d2
· S2. (3)

The coefficients b, c and d are squared in order to sim-
plify interpretability and to make sure that the scale parame-
ter is positive. Minimum score estimation is a versatile way
to obtain parameter estimates in such a setting (Dawid et al.,
2016). The proper score we want to optimize is the continu-
ous ranked probability score (CRPS; Matheson and Winkler,
1976; Gneiting and Raftery, 2007), which addresses both im-
portant forecast properties, sharpness and calibration (for de-
tails, see Sect. 4). We process all locations and lead times
separately, equivalent to the local EMOS approach in Tho-
rarinsdottir and Gneiting (2010), and the training data con-
sist of a rolling period of 40 d. In practice, this means that
the training period contains forecast–observation pairs from
the last 40 d preceding the start of the model run, valid at the
same lead time and location.

In the case of logEMOS, we substitute the truncated Gaus-
sian distribution in Eq. (1) with a truncated logistic distribu-
tion:

Y |X1, . . .,X12 ∼ L+ (µ,s) , (4)

where µ is again the location parameter and s =
√

3σ 2 ·π−1

the scale. The location parameter µ and variance σ 2 are
linked to the ensemble statistics in the same way as in
Eq. (2). Scheuerer and Möller (2015) provide a closed form
of the CRPS for a truncated logistic distribution, meaning
that gEMOS and logEMOS are comparable in terms of com-
putational cost and complexity. We found parameter estima-
tion to be more stable when applying EMOS to wind speed in
knots as compared to meters per second. The ensemble mem-
bers are treated as exchangeable, in that we use the ensemble
mean as a predictor for the EMOS location parameter. This
results in more robust parameters and faster computation.

3.2 Ensemble copula coupling

While EMOS is particularly adept at calibrating ensemble
forecast, the ensemble’s rank structure is lost in the process.
To restore the physical dependencies between forecasts at
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different lead times, we employ ECC (e.g., Schefzik et al.,
2013). This method makes use of the original ensemble’s
multivariate dependency information and transfers it to the
new, calibrated forecasts.

First, we draw samples from the univariate EMOS distri-
butions. There are several options, but Schefzik et al. (2013)
(as a consequence of the discussion in Bröcker, 2012) rec-
ommend using equidistant quantiles, as they best preserve
the calibration of the univariate forecasts. Then we reorder
the quantiles according to the order statistic of the ensemble
members. Thus, for each ensemble member Xi at any given
forecast lead time l = 1, . . .,36, we note its rank among the
other ensemble members X(l)1 , . . .,X

(l)
12 . We obtain a permu-

tation τl of the numbers 1, . . .,12 such that

X
(l)
τl(1) ≤X

(l)
τl(2) ≤ . . .≤X

(l)
τl(12). (5)

Any ties are resolved at random. Then we apply τl to the
EMOS quantiles X̃(l)1 , . . ., X̃

(l)
12 and reorder the individual en-

semble members so that we obtain a multivariate ensemble[
X̃
(1)
τl(1), . . ., X̃

(36)
τl(1)

]
, . . .,

[
X̃
(1)
τl(12), . . ., X̃

(36)
τl(12)

]
. (6)

The new ensemble has the same univariate properties as
the original EMOS quantiles, as only the order of the ensem-
ble members has changed. However, when we evaluate it us-
ing multivariate scores and verification tools, we can see the
benefit of ECC. It is a computationally efficient and straight-
forward method to preserve spatial and temporal features of
the NWP model. ECC has been used in a variety of atmo-
spheric and hydrological forecasting scenarios, e.g., Schuhen
et al. (2012), Hemri et al. (2015) and Ben Bouallègue et al.
(2016).

3.3 Rapid adjustment of forecast trajectories

RAFT is a new technique that can be used in conjunction
with established approaches like EMOS and ECC. However,
it operates on a different timescale. While EMOS and ECC
are applied once when the NWP model run has finished,
RAFT continually updates the forecast after it has been is-
sued, using information from the part of the forecast tra-
jectory that has already realized. Essentially, RAFT applies
to any weather variable; therefore, we do not have to make
many alterations to the method for temperature described in
Schuhen et al. (2020). We treat all locations separately, as the
local error characteristics vary greatly.

In this paper, there are two different RAFT concepts
used: we call the standard method that adjusts the EMOS
mean RAFTm, while RAFTens applies to individual ensem-
ble members drawn from the EMOS distribution. RAFTm
therefore can only improve the deterministic forecast skill,
whereas RAFTens provides an adjusted empirical distribution
spanned by the ensemble. Both RAFT variants are based on
the correlation between observed forecast errors at different
lead times. We define the error et,l at a particular lead time l,

generated from a model run started at time t , as the difference
between the forecast and the observation yt+l :

et,l = yt+l −mt,l, (7)

e
(i)
t,l = yt+l − x

(i)
t,l , i = 1, . . .,12. (8)

Equation (7) refers to the RAFTm approach, where mt,l is
the mean of the EMOS distribution. For RAFTens, we need
to calculate the error for every ensemble member x(i)t,l (Eq. 8).
To obtain the mean of the truncated Gaussian distribution
from the location and scale parameters µ and σ 2, we use the
following relationship:

m= µ+ σ ·ϕ
(
−
µ

σ

)
·

(
1−8

(
−
µ

σ

))−1
. (9)

The functions ϕ and 8 here denote the density and cumula-
tive distribution function of the standard Gaussian distribu-
tion, respectively. Similarly, the mean of the truncated logis-
tic distribution is

m= s · log
(

1+ exp
(µ
s

))
·

(
1−3

(
−
µ

s

))−1
, (10)

where µ is the location parameter, s the scale and 3 the cu-
mulative distribution function (CDF) of the standard logistic
distribution.

From the forecast errors et,l and e(i)t,l , we generate the Pear-
son correlation coefficient matrix to establish the relationship
between the 36 lead times. In the RAFTens case this means
looking at the correlation matrices of each ensemble member
separately. The left column in Fig. 2 shows the gEMOS error
correlation matrix for the weather station on The Cairnwell
mountain in the Scottish Highlands. The top plot refers to
RAFTm, while the bottom illustrates the correlation for one
member of the RAFTens ensemble. All correlations shown
are statistically significant at the 90 % level. There is a good
correlation between a sizable number of lead times, which
makes it possible to define an adjustment period for each lead
time, telling us at what point in time to begin with the RAFT
adjustments. While the adjustment period applies, we know
that a previously observed error et,l∗ at lead time l∗ < l gives
us reliable information about the future error et,l .

The RAFT model used to obtain the estimated future er-
ror êt,l at l = 1, . . .,36 is based on linear regression with the
observed error et,l∗ as predictor:

êt,l = α̂+ β̂ · et,l∗ + ε, (11)

where the random error term ε is normally distributed with
mean zero. The regression coefficients α̂ and β̂ are de-
termined using least squares. Once we have estimated the
RAFT regression coefficients for every possible combination
of lead times l and l∗, we can establish the length p of the
individual adjustment periods by looking at those combina-
tions where the estimate of the coefficient β̂ is significantly
greater than zero, meaning that et,l∗ is likely to provide useful
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Figure 2. (a) Correlation matrix of the EMOS mean error at The Cairnwell. Only correlations significant at the 90 % level are shown.
(b) Length of the RAFTm adjustment period for each lead time. (c) As (a) but for the error of an ensemble member drawn from the EMOS
predictive distribution. (d) Length of the RAFTens adjustment period for each lead time.

information for the prediction of et,l . In order to account for
potential limitations in real-time availability of observations,
the RAFT adjustments performed at a certain lead time l− 1
for any lead time greater than or equal to l use the observa-
tion recorded at l− 2. For the first few lead times of a model
run, where no previous error can be computed, the predictors
in Eq. (11) are based on the forecasts from the model run
initialized 24 h earlier.

The algorithm for determining the adjustment period cor-
responds to the one described in Schuhen et al. (2020). In
general, it can be applied to any weather variable with errors
on a continuous scale. However, it is somewhat arbitrary and
can certainly be optimized for individual forecasting scenar-
ios. The algorithm is run once, based on the fixed estimation
data set. We proceed as follows.

1. Estimate the regression coefficients in Eq. (11) for all
predictors et,l∗ with l∗ in [l− 23; l− 2]. If any l∗ are

negative, we use l∗+ 24 as predictors instead, so that
lead time 23 is followed by lead time 0,1,2, . . ..

2. a. Find the earliest l∗ in [l− 11; l− 2], such that the
coefficient β̂ is significantly different from zero at
the 90 % level for each lead time l∗+ 1, . . ., l− 2.
Denote the result as lp.

b. If there is no result in the previous step, find the
earliest l∗ in [l− 19; l− 12], such that β̂ is signifi-
cantly different from zero at the 95 % level for each
lead time l∗+ 1, . . ., l− 12. Denote the result as lp.

c. If there is no result in the previous step, find the
earliest l∗ in [l− 23; l− 20], such that β̂ is signifi-
cantly different from zero at the 99 % level for each
lead time l∗+ 1, . . ., l− 20. Denote the result as lp.

3. After running the first two steps for all lead times, de-
termine the length of the adjustment period p.

a. If Step 2 has yielded a result for lp, set p = l− lp.
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b. If Step 2 has not yielded a result, set p equal to the
average of the adjustment period length values for
the neighboring lead times l− 1 and l+ 1.

c. If there is still no valid value for p, set it to p = 22.
This corresponds to the longest possible adjustment
period.

Figure 2b and d show the adjustment periods for the
RAFTm (top) and RAFTens (bottom) versions at The Cairn-
well. For the ensemble method, the algorithm results in a
good approximation of the correlation pattern in panel (c),
but the values of p seem to jump back and forth with increas-
ing lead time. In the case of the EMOS mean, the values of p
are more consistent across the lead times, but do not neces-
sarily correspond as well to the respective correlation matrix
pattern in panel (a).

Finding the optimal adjustment periods concludes the esti-
mation part of RAFT. The actual adjustment of the predicted
forecast error happens in real time once the current model
run has finished and the forecasts have been issued. For lead
time l, the adjustment starts at l−p+1, using the observation
recorded at l−p, and then continues hourly until l− 1. The
smaller the gap between l and the time the observation was
recorded, the greater the value of the error information and
therefore the larger the gain in forecast skill.

In practice, we calculate the observed error according to
Eq. (7), plug it into Eq. (11) with the appropriate coefficients
α̂ and β̂ and obtain the predictive error êt,l . Then we can
add this forecast to the EMOS mean mt,l for RAFTm or the
ensemble member x(i)t,l , i = 1, . . .,12 drawn from the EMOS
distribution for RAFTens:

m̂t,l =mt,l + êt,l, (12)

x̂
(i)
t,l = x

(i)
t,l + êt,l . (13)

Any values of m̂t,l and x̂
(i)
t,l that become negative during

this process are set to zero in order to account for the non-
negativity of wind speed. While we can use the RAFT-
adjusted mean m̂t,l as a deterministic forecast, the corre-
sponding location parameter µ̂t,l is needed to evaluate the
full distribution. For this purpose, we solve Eqs. (9) and (10)
numerically for µ. This approach can be quite unstable and
has to be done carefully so that the resulting distribution is
valid. We then combine the new location parameter with the
unchanged EMOS variance and thus obtain a predictive dis-
tribution. In the case of RAFTens, the ensemble members
span a discrete distribution. Therefore, we here adjust not
only the deterministic forecast, but also simultaneously the
spread of the distribution in an adaptive and flow-dependent
way.

4 Evaluation methods

There is a multitude of evaluation methods available to assess
both deterministic and probabilistic forecast skill (see, e.g.,

Thorarinsdottir and Schuhen, 2018). In addition to looking at
univariate verification results, we also want to determine the
benefit of various combinations of post-processing methods
in a multivariate sense.

Proper scoring rules (Gneiting and Raftery, 2007) are use-
ful tools that assign a numerical value to the quality of a fore-
cast and always judge the optimal forecast to have the best
score. Usually, they are averaged over a number of forecast
cases n. In the deterministic case, the root-mean-square er-
ror (RMSE) gives an indication about the forecast accuracy
of the mean forecast, be it the mean of a distribution or an
ensemble mean. It is defined as

RMSE(F,y)=

√√√√1
n

n∑
i=1

(mean(F )− y)2, (14)

where y is the verifying observation corresponding to the
predictive distribution F .

To evaluate probabilistic forecasts, the CRPS (Matheson
and Winkler, 1976) is an obvious choice. Given the score’s
robustness, it is often used for parameter estimation, as in
the two EMOS variants gEMOS and logEMOS described in
Sect. 3.1. A closed form of the CRPS for the truncated Gaus-
sian was derived by Thorarinsdottir and Gneiting (2010) as

CRPS
(
N+

(
µ,σ 2

)
,y
)
= σ ·8

(µ
σ

)−2
[
y−µ

σ
8
(µ
σ

)
{

28
(
y−µ

σ

)
+8

(µ
σ

)
− 2

}
(15)

+2ϕ
(
y−µ

σ

)
8
(µ
σ

)
−

1
√
π
8
(√

2
µ

σ

)]
, (16)

where 8 is the CDF and ϕ the PDF (probability density
function) of a standard normal distribution. For the trun-
cated logarithmic distribution, a closed form is also available
(Scheuerer and Möller, 2015):

CRPS
(
L+ (µ,s) ,y

)
= (y−µ)

(
2py − 1−p0

1−p0

)
(17)

+ s
[
log(1−p0)

−
1+ 2log

(
1−py

)
+ 2py logit

(
py
)

1−p0

−
p2

0 log(p0)

(1−p0)
2

]
. (18)

Here, logit(·) is the logit function and p0 =3
(
−µs−1) and

py =3
(
(y−µ)s−1) are values of the CDF of the truncated

logistic distribution 3. To be able to compare all types of
forecasts in a fair way, we draw random samples X1, . . .,X12
from every continuous predictive distribution and evaluate
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them using the ensemble version of the CRPS:

CRPSens (X1, . . .,X12;y)=
1

12

12∑
i=1

|Xi − y| −
1

2 · 122

12∑
i=1

12∑
j=1

∣∣Xi −Xj ∣∣ . (19)

Furthermore, we want to assess the level of calibration in
a forecast separately, as it is important to prefer the sharpest
forecast subject to calibration (Gneiting et al., 2007). To this
end, we check the verification rank histogram (Anderson,
1996; Hamill and Colucci, 1997; Talagrand et al., 1997),
where we find the ranks of the observation within the fore-
cast ensemble for each forecast case and plot them as a his-
togram. A ∩-shaped histogram points towards overdispersed
forecast distributions, while a ∪ shape means that the fore-
casts do not exhibit enough spread. For perfect calibration,
a flat histogram is a necessary condition, although not suffi-
cient (Hamill, 2001).

The direct equivalent of the CRPS for multivariate fore-
casts, the energy score (Gneiting and Raftery, 2007), is de-
fined as

ES(F,y)= EF ‖X− y‖−
1
2
EFEF

∥∥X−X′
∥∥ , (20)

where X and X′ are independent random vectors drawn from
the multivariate distribution F , y is the observation vector
and ‖.‖ is the Euclidean norm. If we replace the absolute
value in Eq. (19) with the Euclidean norm, we obtain an anal-
ogous version of the energy score for ensemble member vec-
tors. It is also possible to evaluate deterministic forecasts in
multiple dimensions using the Euclidean error, which we de-
rive from the energy score by replacing the distribution F
with a point measure:

EE(F,y)= ‖medF− y‖ . (21)

The multivariate point forecast medF is the spatial median,
computed numerically using R package ICSNP (Nordhausen
et al., 2015). It minimizes the sum of the Euclidean distances
to the ensemble members.

While the energy score is generally more sensitive to er-
rors in the predictive mean (Pinson and Tastu, 2013), the
variogram score proposed by Scheuerer and Hamill (2015)
is better at identifying whether the correlation between the
components is correct. In addition to following the authors’
recommendation and setting the score’s order p to 0.5, we
assign equal weights to all lead times. The variogram score
then becomes

VS(F,y)=
36∑
i=1

36∑
j=1

(∥∥yi − yj∥∥p −EF
∥∥Xi −Xj∥∥p)2, (22)

where yi and yj are the ith and j th components of the obser-
vation vector and Xi and Xj components of a random vector
distributed according to F .

Finally, there are several possibilities to check multivari-
ate calibration, like the multivariate rank histogram (Gneiting
et al., 2008), the band depth histogram and the average rank
histogram (both Thorarinsdottir et al., 2016). We choose to
use the latter in this case, as it is less prone to give misleading
results than the multivariate rank histogram and more easily
interpretable than the band depth histogram. First, a so-called
prerank is calculated, corresponding to the average univariate
rank of the vector components:

ρS (u)=
1
36

36∑
i=1

rankS (ui) , (23)

with rankS (ui) being the rank of the ith component of a vec-
tor u within the combined set of ensemble member and ob-
servation vectors S = {x1, . . .,x12,y}. Then the multivariate
average rank is the rank of the observation prerank in the set
{ρS (x1) , . . .,ρS (x12) ,ρS (y)}. The interpretation of the av-
erage rank histogram mirrors that of the univariate rank his-
togram, and errors in the correlation structure present them-
selves in the same way as dispersion errors in the marginal
distributions (Thorarinsdottir and Schuhen, 2018). Visualiza-
tion of the histograms is taken from Barnes et al. (2019).

5 Results

It is the purpose of this paper to investigate whether there is
a preferred order in applying three different kinds of post-
processing methods. In particular, it will be important to see
whether ECC should be run once, like EMOS, subsequent
to the end of the NWP model run, or whether it should be
continuously applied every time the RAFT adjustment oc-
curs. Therefore, there are two combinations of methods to be
tested: EMOS + RAFTm + ECC, where RAFT is applied to
the EMOS mean only, and EMOS+ ECC+ RAFTens, where
we adjust the EMOS/ECC ensemble members and thus at the
same time the prediction of uncertainty. As we are interested
in a comprehensive assessment of the individual combina-
tions’ performance, all scores, whether univariate or multi-
variate, are of equal importance.

5.1 Example forecast

First, we take a look at an example forecast to illustrate how
the different RAFT variants work. Figure 3 shows different
forecasts issued from the 15:00 UTC model run on 30 Octo-
ber 2015 at The Cairnwell, Scotland. Panels (a) and (c) depict
the gEMOS + ECC + RAFTens forecasts, where the mean
and prediction interval are obtained by the 12 samples drawn
from the EMOS distribution. In panels (b) and (d), we have
gEMOS+RAFTm forecasts, with the mean being the RAFT-
adjusted mean of the EMOS distribution and the variance the
unchanged EMOS predictive variance. Here, we show two
different stages in the RAFT adjustment cycle for each com-
bination of post-processing methods. For the top plots, we
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Figure 3. Example forecast at The Cairnwell initialized at 15:00 UTC on 30 October 2015 for the next 36 h. The red line corresponds to
the RAFT mean forecast, with the shaded area being the 84.6% prediction interval. The verifying observation is indicated by the blue line
and the vertical line refers to the current point in time during the RAFT adjustment cycle. (a) Snapshot of the gEMOS + ECC + RAFTens
forecast taken after RAFT has been applied to the gEMOS + ECC samples once. The prediction interval is spanned by the individually
corrected ensemble members. (b) Snapshot of the gEMOS+ RAFTm forecast taken after RAFT has been applied to the gEMOS mean once.
The prediction interval is based on the gEMOS variance. (c) Same as (a), but RAFT has been applied hourly until the last iteration at t + 35.
(d) Same as (b), but RAFT has been applied hourly until the last iteration at t + 35.

only apply RAFT once at time t+1. This means that all fore-
casts in the trajectory have been adjusted using the error of
the t+24 forecast from the model run initialized 24 h earlier,
as long as their corresponding adjustment period allows it.
The bottom plots are the results of running the whole RAFT
adjustment cycle until the last installment at t + 35. Conse-
quently, all forecasts have been corrected with the observed
error measured 2 h earlier and are the most short-term and
therefore optimal RAFT forecasts.

In this weather situation, both mean forecasts initially un-
derpredict the wind speed for roughly 12 h starting from
lead time 10, corresponding to the time between 01:00 and
13:00 UTC. A further period of underprediction occurs to-
wards the end of the trajectory, from lead time 28. RAFT
is able to recognize these problems quickly and corrects the
underprediction quite well, as can be observed in the bottom
two panels. However, as the observations are quite jumpy, the
sign of the forecast error changes frequently during the ad-
justment process and the RAFT mean trajectory thus can also

exhibit more jumpiness than the initial EMOS mean. This
could be addressed by, e.g., adding additional predictors to
the RAFT linear regression model in Eq. (11).

There are only minor differences in the mean forecasts be-
tween the two post-processing method combinations, while
their main difference lies in the derivation of the predictive
variance. We can see that the size of the prediction interval
for gEMOS + ECC + RAFTens changes considerably be-
tween the first and last RAFT adjustments. This is of course
because the ensemble, and therefore the prediction interval
spanned by its members, is continuously updated and ad-
justed in a flow-dependent manner. For example, at the end of
the trajectory the ensemble spread in Fig. 3c is much smaller
than in Fig. 3d. In the case of gEMOS + RAFTm, the vari-
ance is not changed by RAFT and remains at the value orig-
inally estimated by EMOS.
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Figure 4. RMSE over lead time for gEMOS (red solid line) and logEMOS (red dashed line) mean forecasts, as well as their RAFTm
adjustments (blue solid and blue dashed lines, respectively). The scores are averaged over all model runs and sites in the evaluation set.
(a) RAFT is only carried out until the adjustment at t + 15. (b) RAFT is carried out until its last iteration at t + 35.

Table 1. Univariate and multivariate mean scores for different post-processing method combinations, using the final RAFT adjustments 1 h
before valid time. Bold numbers denote the best score in each column. All score differences are significant at the 95 % level, apart from the
ones marked with an asterisk, where the pairwise differences between the versions using gEMOS and logEMOS are not significant.

RMSE CRPS Euclidean error Energy score Variogram score

Raw ensemble 3.670 2.116 19.207 15.132 847

gEMOS 3.056 1.618 16.539 13.000 956
logEMOS 3.070 1.622 16.589 13.028 957

gEMOS + ECC 3.056 1.618 16.549 12.312 812
logEMOS + ECC 3.070 1.622 16.607 12.356 815

gEMOS + RAFTm 2.713∗ 1.445 15.045 11.943 899
logEMOS + RAFTm 2.714∗ 1.443 15.029 11.913 897

gEMOS + RAFTm + ECC 2.713∗ 1.445 15.049 11.175 784∗
logEMOS + RAFTm ECC 2.714∗ 1.443 15.033 11.165 784∗

gEMOS + ECC + RAFTens 2.708∗ 1.483 15.024∗ 11.164∗ 786
logEMOS + ECC + RAFTens 2.709∗ 1.482 15.023∗ 11.166∗ 787

5.2 Choice of EMOS model

As we tested two versions of EMOS using two different
distributions to model the future wind speed observations,
we are interested in which of these, if any, performs better.
Initially, we compare the deterministic forecast skill of the
EMOS mean and how it is improved by RAFT. In Fig. 4, the

RMSE of the gEMOS and logEMOS mean, averaged over all
sites and model runs, is shown. Both methods perform very
similarly, but gEMOS seems to have a slight advantage over-
all, apart from the first 3 h and the last hour. There is a small
increase in the RMSE for logEMOS at lead time 23, which
is most certainly due to issues in finding the minimum CRPS

www.nonlin-processes-geophys.net/27/35/2020/ Nonlin. Processes Geophys., 27, 35–49, 2020

113



44 N. Schuhen: Order of operation for post-processing of wind forecasts

Figure 5. Verification rank histograms for different forecasting methods, aggregated over all sites, model runs and lead times. RAFT his-
tograms are based on the final adjustment for each lead time.

Figure 6. Average rank histogram for different combinations of post-processing methods. Data points are aggregated over all sites, model
runs and lead times. All RAFT forecasts have been adjusted using the observation measured 2 h earlier.

during the EMOS parameter estimation, where all lead times
are handled separately.

The ranking of the two EMOS variants is preserved when
applying RAFTm to the EMOS mean forecast. Figure 4a
shows the RAFT RMSE if we stopped adjusting the forecasts
at t+15. This means that all forecasts left of the vertical line
have been updated using the observation made 2 h earlier,
and all forecasts to the right of the line are adjusted using the
most recent information available at t+15, i.e., the observed
error at t + 14. However, this only applies to those forecasts
where lead time 14 lies in the respective adjustment periods.
For all other forecasts, the scores for EMOS and RAFT co-
incide. It is noticeable that the forecast skill improves sig-
nificantly as soon as we have information about the error in
the current model run at t + 3. The score remains at about
the same level until t + 16, when it starts to deteriorate, but
RAFT still has an advantage over the EMOS forecasts for an-
other 10 h. In reality, however, we would run RAFT until the
end of the forecast cycle, which is shown in Fig. 4b. Here,
we can see a consistent improvement, especially at large lead
times. We also see that the forecasts at lead times 25–26 have

more skill than the ones at lead times 1–2, which leads to the
conclusion that forecasts from a 24 h old model run are for
a couple of hours more skillful than the forecast from the
newest run.

The first column in Table 1 confirms these results. Here,
the scores have been aggregated over all lead times, model
runs and sites. In this table only scores for RAFT forecasts
that have been adjusted 1 h previously are shown, i.e., the op-
timal forecasts. We test the significance of score differences
by applying a permutation test based on resampling, as de-
scribed in Heinrich et al. (2019) and Möller et al. (2013).
Both EMOS methods increase the deterministic skill con-
siderably when compared to the raw ensemble and then are
further improved by applying RAFTm. While the RMSE
for gEMOS is significantly better than for logEMOS, which
we also see in the CRPS, there is almost no difference in
the gEMOS + RAFTm and logEMOS + RAFTm scores. In
terms of the CRPS, logEMOS + RAFTm has a slight advan-
tage, with the difference being significant at the 95 % level.

To confirm that the EMOS forecasts are indeed calibrated,
we look at the verification rank histograms in Fig. 5a. While
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Figure 7. Mean CRPS, energy score and variogram score for every
step in the RAFTm and RAFTens process. Scores are averaged over
all lead times, sites and model runs.

the raw ensemble is very underdispersive, as expected, both
gEMOS and logEMOS forecasts are nearly calibrated. Both
gEMOS and logEMOS histograms are again very similar, so
we compute the coverage of the 84.6% prediction interval
created by 12 ensemble members. From the results we see
that logEMOS, with a value of 85.18 %, is much closer to
the nominal value than gEMOS with 80.56% and therefore
better calibrated. Figure 5b shows the histograms after we
apply RAFTm. Whereas the EMOS variance was on average
slightly too small before, it is now a little too big, indicated
by the small hump in the middle. This is due to the fact that
we do not adjust the variance in this process, but the deter-
ministic skill improves greatly. There is almost no difference
in the two histograms, which is also evident in the coverage
of the prediction interval, with values of 83.80 % and 83.44%
for gEMOS and logEMOS, respectively.

In conclusion, there is little difference in the overall per-
formance of the two EMOS variants. While logEMOS has
the advantage of being slightly better calibrated, gEMOS
shows better scores. After applying RAFT, the two methods
are essentially equal. In the following we will therefore only
present results from one of the two EMOS versions.

5.3 Predictive performance for combinations of
post-processing techniques

The main focus of this study is to find out in which order
EMOS, RAFT and ECC should be combined. For RAFT,
we employ two different approaches: RAFTm, where the ad-
justments are only applied to the EMOS mean and are then
combined with the EMOS variance to obtain a full predic-
tive distribution, and RAFTens, where we adjust individual
ensemble members and consequently both mean and spread.
In the latter case, ECC is only run once when EMOS has fin-
ished; in the first, it has to be applied at every RAFT step
for the remaining lead times in the forecast run. Therefore
the required computing resources depend on the ratio of en-
semble members to lead times. In this study, the EMOS +
RAFTm + ECC combination takes about 33% more time to
compute than EMOS+ ECC+ RAFTens; however, both are,
with only a few seconds per model run and site, computa-
tionally very sparse.

When we compare Figure 5b and c, it is obvious that the
EMOS + ECC + RAFTens combination produces forecasts
which are slightly less calibrated than EMOS + RAFTm
forecasts. In fact, the level of calibration deteriorates from
the baseline EMOS methods. This also can be deduced from
the CRPS values in Table 1, where EMOS + RAFTm clearly
performs better. The RMSE for both methods is quite sim-
ilar, so that we can ascribe the discrepancy in the CRPS to
the different levels of calibration. Both methods improve the
EMOS baseline forecast considerably. In the case of EMOS
+ RAFTm, we know this improvement in forecast skill is
only due to the adjusted mean forecast, which simultaneously
results in better calibrated predictive distributions.

As we are interested not only in the univariate perfor-
mance, but also in the multidimensional dependencies be-
tween the lead times of a forecast trajectory, we look at sev-
eral multivariate scores (Table 1). The Euclidean error agrees
with the univariate RMSE that the best deterministic result
can be achieved by applying RAFT last. ECC seems not to
have any effect on the scores, which can be expected, as we
are only rearranging ensemble members and do not neces-
sarily change the multivariate median. The energy score is
a measure for the overall skill, but is also more sensitive to
errors in the mean forecast. This is the reason why RAFTm
manages to improve the energy score as compared to EMOS
+ ECC, while the variogram score deteriorates. Note that
both scores are reduced when we reintroduce the tempo-
ral correlation structure by applying ECC to the EMOS +
RAFTm forecasts. Although the energy and variogram scores
for EMOS+ ECC+RAFTens and EMOS+RAFTm + ECC
are very close, the two scores prefer different post-processing
method combinations. While the energy score judges the
method to be the best where we apply ECC first, which also
has the best RMSE and Euclidean error, the variogram score
assigns the lowest value to the better calibrated EMOS +
RAFTm + ECC. The almost identical variogram scores sug-
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Figure 8. (a) CRPS of gEMOS+ RAFTm forecasts against the CRPS of gEMOS forecasts for individual sites. (b) Energy scores of gEMOS
+ RAFTm forecasts against energy scores of gEMOS + ECC forecasts for individual sites. (c) Variogram scores of gEMOS + RAFTm +
ECC forecasts against variogram scores of gEMOS + ECC forecasts for individual sites. The scores are averaged over all lead times and
model runs. RAFT forecasts are taken from the final iteration. Filled symbols denote that the score on the y axis is lower than the one on the
x axis; empty symbols denote the opposite.

gest that RAFTens manages to preserve the multivariate cor-
relation structure throughout its multiple iterations.

The average rank histograms in Fig. 6 confirm that without
applying ECC, the EMOS and EMOS + RAFTm forecasts
are very uncalibrated. Both the EMOS + ECC and EMOS +
ECC + RAFTens combinations show a ∪-like shape, which
can be interpreted as either a too strong correlation or under-
dispersion. From the band depth histogram (not shown; see
Thorarinsdottir et al., 2016) we can conclude that the latter is
the case here, as was also seen in the univariate histograms.
On the other hand, the EMOS + RAFTm + ECC forecast
ranks form a hump-like histogram. This is due to the corre-
lation between the components being too weak, again con-
firmed by the band depth histogram.

In order to investigate further the optimal order of oper-
ation when applying multiple post-processing methods, we
look at how the scores develop with every step in the RAFT
process. While the scores in Table 1 are computed using the
final RAFT installment at t + 35, where all forecasts have
been adjusted using the observation made 2 h earlier, Fig. 7
shows the CRPS, energy score and variogram score com-
puted at each RAFT iteration for the gEMOS + ECC +
RAFTens and gEMOS + RAFTm + ECC forecasts. From
Fig. 7a, it is clear that EMOS + RAFTm + ECC performs
best in terms of the CRPS, with the gap between the two com-
binations widening with increasing number of RAFT adjust-
ments. As we have also seen that the RAFTm version is better
calibrated than the RAFTens one, this means that the CRPS
here puts more weight on the calibration being correct than
on the slightly better deterministic forecast (see the RMSE in
Table 1) in the RAFTens case. This is surprising, given that
the CRPS and its multivariate equivalent, the energy score,

are usually more sensitive to the error in the forecast mean
(see Fig. 4 in Friederichs and Thorarinsdottir, 2012, and Pin-
son and Tastu, 2013).

While the CRPS results show a clear pattern, it is not as
straightforward for the energy score. The mean score de-
creases with every RAFT adjustment, as expected, but there
is no discernible difference in the performance of the two
post-processing method combinations. The most complex
picture emerges in the case of the variogram score, where
the ranking of the two combinations actually switches around
RAFT iteration 24. The variogram score is better at detect-
ing incorrect correlation structures than the energy score, so
one possible explanation would be that EMOS + ECC +
RAFTens is initially good at retaining the appropriate corre-
lations, but that ability weakens over time. Conversely, ECC
is applied after every iteration of RAFTm, which might ex-
plain the better variogram scores towards the end of the pro-
cess. However, we have observed in Fig. 6 that the correlation
structure at the last iteration is still too weak. It should also
be noted that the variogram score for EMOS + RAFTm +

ECC deteriorates slightly at the beginning.
Finally, we want to investigate the homogeneity of the

scores across the different locations and highlight some in-
teresting results for particular sites. In Fig. 8a, we see that
RAFTm improves the CRPS for all sites as compared to the
EMOS baseline. That means that the method where the vari-
ance is not adjusted increases the deterministic and proba-
bilistic forecast skill at all sites. As we have seen from the
univariate histograms in Fig. 5, even the calibration is im-
proved. Figure 8b shows how a reduction in the mean er-
ror can have a large effect on the energy score. At 37 sites,
the energy score for gEMOS + RAFTm is actually lower
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than the one for gEMOS + ECC. The former forecasts are
lacking any form of temporal coherency among lead times,
so here the deterministic improvement exceeds any benefit
from reintroducing the ensemble’s correlation information.
Judging from Fig. 8c, a case can be made for a site-specific
RAFT approach. The mean variogram score for the gEMOS
+ RAFTm + ECC forecasts at The Cairnwell, Scotland, is
higher than the score for gEMOS + ECC, meaning that we
are not able to make any improvements by applying RAFTm
and that there are local effects not resolved by the RAFT
model.

6 Conclusions

Our goal was to find out in which order post-processing
methods pertaining to different stages in the forecasting pro-
cess should be applied. We look at three techniques, each
with a different objective. EMOS is a versatile method aim-
ing to calibrate ensemble output as soon as the model run is
finished, based on the ensemble’s performance over the last
40 d. There are two candidates for wind speed calibration:
gEMOS uses a model based on truncated Gaussian distribu-
tions and logEMOS a model based on truncated logarithmic
distributions. It turns out that both models produce very sim-
ilar results, with gEMOS having slightly better scores and
logEMOS being a little closer to perfect calibration. There-
fore it is advisable to test both methods for the data set at
hand and to check which distribution gives a better fit.

The second technique, ECC, restores the multivariate de-
pendency structure present in the ensemble forecasts to the
EMOS predictions. While conceptually and computationally
easy to implement, the success of ECC relies on the NWP
model getting the physical, spatial and temporal correlations
between the components right. Making use of the part of a
forecast trajectory that has already been verified, RAFT is
based on the concept that an observed error will provide in-
formation about the expected error at not-yet-realized lead
times. It can be applied either to the forecast mean only
(RAFTm) or to a set of ensemble members (RAFTens) in or-
der to adjust both predictive mean and variance.

In essence, there are two feasible options when combining
these three methods: EMOS + ECC + RAFTens and EMOS
+ RAFTm + ECC. Overall, their performance might be very
similar, but there are subtle differences which can lead to pre-
ferring one method over the other. The EMOS + RAFTm +

ECC variant produces a lower CRPS and has better univariate
calibration, although this is most likely a feature of this fore-
casting system only, where the EMOS forecasts are under-
dispersive. Naturally, the RAFTens adjusted predictive vari-
ance becomes smaller with every RAFT step, as predictabil-
ity usually increases with a shrinking forecast horizon. This,
however, leads to the respective distributions still being un-
derdispersed and not able to counterbalance the deficit of the
EMOS forecasts.

If multivariate coherency is of particular importance, e.g.,
to create plausible forecast scenarios, the EMOS + ECC +
RAFTens turns out to be the better choice, as is beats its alter-
native in terms of the energy score, the Euclidean error and
also the RMSE, while there is only very little difference in
the variogram score. It is also more versatile and should be
preferred for NWP ensembles exhibiting very different cali-
bration characteristics than MOGREPS-UK.

Therefore, it is necessary to study every forecasting sce-
nario closely, monitor how calibration methods like EMOS
affect the forecast skill and identify potentially remaining
deficiencies. As a rule of thumb, it can be said that the post-
processing method designed to address one’s particular area
of interest, whether univariate or multivariate, should be ap-
plied first. So far, we do not adapt RAFT to optimize fore-
casts at individual sites. A model tailored to specific local
characteristics could involve changing the algorithm for find-
ing the adjustment period or adding suitable predictors to
the linear model. Also, particular attention should be paid
to whether the focus lies on a specific subset of lead times
or whether the forecasts have to be irrevocably issued at a
certain point in time, as the ranking of methods can change
during the RAFT process.
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1 Introduction
Weather forecasting beyond the medium range of two weeks is currently an active area of
research (Robertson and Vitart, 2018) due to the demand for skillful long-range forecasts
in various societal sectors such as energy production, agriculture, health and disaster
management (e.g. Ogallo et al., 2008). Sources of long-range predictability within the at-
mosphere are usually associated with the existence of different modes of low-frequency
variability, including the El Niño Southern Oscillation (ENSO), monsoon rains, sudden
stratospheric warmings, the Madden Julian Oscillation (MJO), the Indian Ocean dipole,
the North Atlantic Oscillation (NAO), and the Pacific/North American (PNA) pattern,
spanning a wide range of time scales from months to decades (Hoskins, 2013; Vitart et al.,
2012). It is expected that, if a forecasting system is capable of reproducing phenomena
with low-frequency variability, they may also be able to forecast them (Van Schaeybroeck
and Vannitsem, 2018). Post-processing and skill assessment of long-range forecasts is thus
often focused on these same phenomena (e.g. Van Schaeybroeck and Vannitsem, 2018), or
other slowly-evolving components of the Earth system such as sea-surface temperature
(e.g. Heinrich et al., 2019). However, forecast users commonly need information on atmo-
spheric variables such as surface temperature and precipitation (Roulin and Vannitsem,
2019).

At time scales beyond the medium range, the weather noise that arises from the growth of
the initial uncertainty, becomes large (Royer, 1993). As a consequence, predictions must
be probabilistic in nature. This is made possible through the use of ensemble forecasts
(Van Schaeybroeck and Vannitsem, 2018), with a trade-off between increased compu-
tational costs and increased skill as the ensemble size grows. For monthly to seasonal
forecasts, the benefit of good initialization (initialization as close as possible to observa-
tions) has been demonstrated (Doblas-Reyes et al., 2013a,b). For these reasons, the UK
Met Office’s seasonal prediction system, GloSea5, uses a lagged initialization approach
with new ensemble members initialized every day, resulting in a monthly seasonal fore-
cast ensemble with 42 members generated by combining all forecasts available from the
most recent three weeks (MacLachlan et al., 2015)1.

In this paper, we investigate how the older members of a lagged ensemble system can be
brought closer to observations by utilizing new observations that have become available
since the forecast system was run to generate these members, using the rapid adjustment
of forecast trajectories (RAFT) algorithm recently proposed by Schuhen et al. (2020). With
a focus on weekly average surface temperature, we aim to assess the skill of the forecast in
a user-relevant setting. For observations, we use the ERA5 reanalysis. Preliminary data
for ERA5 is now being released daily with a 5-day delay from real time, making the
setting considered here somewhat realistic from an operational perspective. The data sets
and the RAFT algorithm are described in the following Section 2, with results shown in
Section 3. Finally, some concluding remarks are given in Section 4.

1. https://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/gpc-outlooks/

user-guide/technical-glosea5
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2 Data and methods

2.1 Data
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Figure 1. Verification rank histograms for GloSea5 forecasts of weekly mean temperature anom-
alies initialized on May 1st compared against ERA5. The results are aggregated over the study
region, the time period 1993-2015 as well as lead times 1-6 weeks (left), 7-12 weeks (middle) or
13-18 weeks (right). The black horizontal lines indicate a perfectly calibrated forecast.

We analyze surface temperature hindcasts, or historical re-forecasts, from GloSea5, the
UK Met Office Global Seasonal forecast system version 5 (MacLachlan et al., 2015). The
GloSea5 system has a spatial resolution of 0.8 degrees in latitude and 0.5 degrees in lon-
gitude. Our analysis focuses on land grid cells in a region bounded by -30 to 50 longit-
ude and 30 to 90 latitude, covering Europe and surrounding area. The hindcasts cover
the time period 1993 to 2015, and the system uses a lagged initialization approach with
seven members initialized on the 1st, 9th, 17th and 25th of every month. Hindcasts of
weekly mean temperatures from five initialization dates–May 1st to June 1st–are con-
sidered for realization dates of up to 18 weeks ahead for the May 1st run, or the time
period from early May to early September. The analysis is performed on temperature
anomalies which are defined relative to the model’s weekly climatology over the entire
time period 1993-2015. In the remainder of the paper, we will refer to the hindcasts as
“forecasts”.

The GloSea5 forecasts are compared against the ERA5 reanalysis (Copernicus Climate
Change Service (C3S), 2017). ERA5 originally has a spatial resolution of 0.28 degrees and
is here upscaled to match the resolution of the GloSea5 system. We calculate weekly mean
anomalies in the same manner as for the hindcasts using ERA5’s climatology over the
same time period.

The aim of the forecast system is to provide accurate and calibrated forecasts (e.g. Thor-
arinsdottir and Schuhen, 2018). Calibration, or reliability, refers to the representation of
uncertainty in the forecast in that an event predicted to occur with probability p should be
realized with the same frequency in the reanalysis. An empirical calibration assessment
of the seven member ensemble initialized on May 1st is shown in Figure 1. The plots
show the distribution of the rank of the reanalysis when compared against the seven
ensemble members across years, spatial locations and forecast lead times. While the fore-
casts are slightly underdispersive for the first six weeks as indicated by the ∪-shape, they
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are nearly perfectly calibrated for weeks 7-18. For this reason, we will in the following
focus on improving the prediction accuracy.

2.2 Rapid adjustment of forecast trajectories (RAFT)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

F
or

ec
as

t l
ea

d 
tim

e

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

F
or

ec
as

t l
ea

d 
tim

e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Forecast lead time

−1.0 −0.5 0.0 0.5 1.0

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Adjustment period

(b)

Figure 2. (a) Correlations between forecast anomaly errors at different lead times of the same fore-
cast trajectory for the ensemble mean forecast initialized on May 1st; (b) The resulting adjustment
periods for each forecast lead time.

To improve the accuracy of the forecasts, we consider new information that has become
available since the forecast was issued, namely observations associated with lead times
that have already been realized. Specifically, if the forecast errors at subsequent lead times
are correlated with the most recently observed forecast error, this information can be used
to update the remaining forecast trajectory that is yet to be realized using the rapid ad-
justment of forecast trajectories (RAFT) algorithm proposed by Schuhen et al. (2020). The
forecast error et,l is here defined as the distance of the ensemble mean anomaly forecast
x̄t,l initialized at time t and valid at lead time l to the observed anomaly yt+l at time t+ l,

et,l = yt+l − x̄t,l. (1)

Figure 2(a) shows the correlation between forecast errors at different lead times for the
ensemble mean forecast trajectory initialized on May 1st. While the errors at all lead times
beyond the first show substantial correlation with the error observed at the previous lead
time, the correlation decreases rapidly for lead times further into the future.

We use a linear regression model to connect the error at a future lead time l′ > l with the
current error et,l. Specifically, we define the model

et,l′ = α+ β et,l + ε, (2)

where α and β are real valued regression coefficients and ε is a normally distributed er-
ror term with mean zero. The model is estimated separately for each forecast run, current
lead time and future lead time in a leave-one-out cross-validation approach, i.e. forecast
anomaly errors for each year are predicted by using data from all remaining years. In
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Schuhen et al. (2020) and Schuhen (2019), the number of future lead times that are cor-
rected each time is selected based on a hypothesis test for β = 0 after estimating the
regression equation in (2) for future lead times l+ 1, l+ 2, . . .. At the first future lead time
l∗ where this test is not rejected, the procedure is stopped and only lead times l′ with
l < l′ < l∗ are corrected. Here, this approach turns out to produce unrealistically long
adjustment periods and thus spurious correlations can result in reduction of the forecast
accuracy rather than an improvement. As we only have a small number of lead times, we
instead determine the length of the adjustment periods empirically.

For each l′ with l < l′ < l∗, we then update the ensemble mean forecast x̄t,l′ to x̄t,l′ + êt,l′

where êt,l′ is the estimated error based on (2). The adjustment periods for the forecast run
initialized on May 1st are shown in Figure 2(b). Further details of the RAFT algorithm
are given in Schuhen et al. (2020) and Schuhen (2019).

3 Results
For evaluating the forecasts, we calculate the root mean square error (RMSE) skill score
of the ensemble mean forecast with the ERA5 climatology forecast of that week and grid
cell over the entire time period 1993-2015 as a reference forecast. A positive skill score
indicates a higher skill than the climatology, while a negative skill score indicates a lower
skill.
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Figure 3. Root mean squared error (RMSE) skill scores for five different runs of GloSea5 com-
pared against ERA5 climatology. The score for each forecast week is aggregated over all land grid
cells in the study area and the years 1993-2015. The original GloSea5 forecasts are indicated with
dashed lines while RAFT forecasts updated one week prior to the realization time are indicated
by solid lines.
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Figure 3 shows the RMSE skill scores for each of the GloSea5 runs as a function of lead
time, aggregated over grid cell locations and years. All the runs show a similar pattern: In
the first week, the forecast improves the climatological reference forecast by 40-60%, and
in the second week, the forecasts are 15-35% better than climatology. From week three
and onward, however, the skill is roughly constant at 5-15% below climatology. At the
shortest possible adjustment lead time of one week, the forecasts updated with the RAFT
algorithm are consistently better than the original forecasts and, on average, more skillful
than the climatology forecast. The skill of RAFT forecasts with adjustment lead times
from one week to that of the original forecast generally falls between the two forecasts
shown in Figure 3. For example, for the run initialized on May 1st, Figure 2(b) shows that
the adjustment period for this run varies from one to three weeks depending on the week.
At any given time, the RAFT forecast trajectory will thus converge to the original forecast
trajectory after one to three weeks. Results for the other four runs are similar (results not
shown). On their own, the individual runs thus do not provide forecasts of higher skill
than climatology beyond the medium range of two weeks.
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Figure 4. Root mean squared error (RMSE) skill scores for a comparison against ERA5 clima-
tology for the combination of all five forecast runs (blue dashed line), for RAFT-processed ERA5
climatology of adjustment lead time one week (brown solid line), and for a combination of the
RAFT-processed ensemble means for all five forecast runs at an adjustment lead time of one
week (blue solid line). For comparison, these skill scores are overlaid on the results shown in
Figure 3.

We now consider various forecast combinations where, in each case, the multi-model
or lagged ensemble mean forecast is constructed using equal weights on the different
models. As shown in Figure 4, for the first five forecast weeks, the skill of the lagged
ensemble mean is slightly below that of the newest forecast run. From forecast week six
and onward, no new runs are added to the lagged ensemble mean, resulting in increasing
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effective lead time of the forecast. While this gradually reduces the skill, as expected, the
reduction halts at around the skill of the climatology and beyond week eight, the two
forecasts are comparable in skill. Thus, while the skill of each individual run is lower
than that of climatology beyond the medium range of two weeks, their joint skill is con-
sistently higher for lead times of up to three weeks and comparable thereafter.

The climatological reference forecast may be updated in the same manner as the GloSea5
forecasts using the RAFT algorithm. This results in a climatological forecast with a struc-
ture comparable to an autoregressive process of order one. The updated climatological
forecast with lead time of one week is indicated with a brown line in Figure 4. This
forecast has 5-10% higher skill than the climatological reference forecast. Furthermore,
a forecast that combines the lagged ensemble means post-processed with RAFT is the
best forecast for weeks 6 and 7, and comparable to the RAFT climatology for week 8 and
onward.
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Figure 5. Root mean squared error (RMSE) skill scores for various model combinations for fore-
casts issued in week five compared against ERA5 climatology. Each run combination consists of
the most recently available runs. The score for each forecast week is aggregated over all land grid
cells in the study area and the years 1993-2015.

For a further comparison of various model combinations in an operational setting, Fig-
ure 5 shows the skill scores for a number of forecasts for weeks 5-18 issued in week 5.
These results indicate that an optimal forecasting strategy is to combine a smaller number
of the most recent runs for the first two forecast weeks after which all five runs as well as
the climatology should be combined. While the combination of all runs and climatology
does not outperform climatology for all forecasts weeks, it is overall the best forecast for
weeks 7-18. In particular, including climatology in the ensemble is consistently slightly
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better than only considering the five GloSea5 runs.

As shown in Figure 2, the adjustment period at forecast lead time 5 is relatively short.
This can also be seen in Figure 5 where the RAFT-adjusted forecasts coincide with the
original forecasts from week 7. Figure 6 shows the same original forecasts from week 10
and onward, as well as the RAFT-adjusted forecasts issued in week 10. Here, the adjust-
ment periods are considerably longer for all the forecast runs and the RAFT adjustment
yields improved performance until week 14 after which the forecasts again coincide. In
this case, the original forecasts have lead times of 5+ weeks, and we see that only the
combination of all five runs is on a par with climatology. For a combination of three or
more runs, the RAFT adjustment yields an overall higher skill than climatology with the
full combination of all five runs and RAFT climatology again showing the highest skill
overall.
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Figure 6. Root mean squared error (RMSE) skill scores for various model combinations compared
against ERA5 climatology for forecast weeks 10-18. The score for each forecast week is aggreg-
ated over all land grid cells in the study area and the years 1993-2015. The original GloSea5
forecasts are indicated with dashed lines while RAFT forecasts issued in week 10 are indicated
by solid lines.

4 Conclusions and discussion
In a study of long-range forecast skill for weekly summer surface temperatures in Europe,
we assess the skill of the UK Met Office’s seasonal prediction system GloSea5 against
the ERA5 reanalysis. GloSea5 uses a lagged initialization approach where, for the 1993-
2015 hindcasts analyzed here, seven members are initialized on the 1st, 9th, 17th and
25th of every month. Our results indicate that the system might benefit from a step-wise
model combination approach, where for the earliest forecast lead times, only more re-
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cently available runs are used, while a larger set of runs should be employed for lead
times beyond two weeks. Furthermore, the forecast skill is increased for lead time bey-
ond two weeks if climatology is included in the ensemble.

For a lagged ensemble system, additional information in the form of observed forecast er-
rors is available for earlier lead times of the older ensemble members. Using the recently
proposed RAFT adjustment approach (Schuhen et al., 2020), we have investigated the use
of this information to post-process the older members before the forecast is issued. Our
results indicate that the application of the RAFT adjustment can improve the RMSE skill
of the forecast by as much as 10% compared to climatology. In each time step, the length
of the RAFT adjustment period depends on the number of future lead times where the
forecast error is expected to correlate with the most recently observed forecast error. We
find that the length of the adjustment period varies over time, with a higher correlation
across lead times in July and August than in the earlier part of our study period in May
and June.

As argued by e.g. Kharin and Zwiers (2003) and Van Schaeybroeck and Vannitsem (2018),
the small samples sizes available for seasonal forecasts (23 seasons in our case) require
simple post-processing methods in order to avoid overfitting. The RAFT approach is a
fairly simple post-processing method whose strength lies in the use of new, otherwise un-
used, information. The current study focuses on average skill in predicting mean weekly
summer temperatures in Europe. For many forecast users, a particularly valuable in-
formation is the occurrence of outliers, e.g. a particularly warm or cold summer. While
this topic requires further investigation, we expect that RAFT could prove particularly
useful in such situations when the outlier has been detected in the newest runs with that
not being the case for the older runs.
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6.1 INTRODUCTION
In a discussion article on the application of mathematics in meteorology, Bigelow (1905) describes the

fundamentals of modeling in a timeless manner:

There are three processes that are generally essential for the complete development of any branch of

science, and they must be accurately applied before the subject can be considered to be satisfactorily

explained. The first is the discovery of a mathematical analysis, the second is the discussion of nu-

merous observations, and the third is a correct application of the mathematics to the observations,

including a demonstration that these are in agreement.
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The topic of this chapter is methods for carrying out the last item on Bigelow’s list, that is, methods

to demonstrate the agreement between a model and a set of observations. Ensemble prediction systems

and statistically postprocessed ensemble forecasts provide probabilistic predictions of future weather.

Verification methods applied to these systems should thus be equipped to handle both the verification

of the best prediction derived from the ensemble and the verification of the associated prediction

uncertainty.

Murphy (1993) argues that a general prediction system should strive to perform well on three types

of goodness: There should be consistency between the forecaster’s judgment and the forecast, there

should be correspondence between the forecast and the observation, and the forecast should be infor-

mative for the user. Similarly, Gneiting, Balabdaoui, and Raftery (2007) state that the goal of proba-

bilistic forecasting should be to maximize the sharpness of the predictive distribution subject to

calibration. Here, calibration refers to the statistical consistency between the forecast and the observa-

tion, while sharpness refers to the concentration of the forecast uncertainty; the sharper the forecast, the

higher information value will it provide, as long as it is also calibrated. The prediction goal of Gneiting

et al. (2007) is thus equivalent to Murphy’s second and third types of goodness.

We focus on verification methods for probabilistic predictions of continuous variables in one or

more dimensions under the general framework described by Murphy (1993) and Gneiting et al.

(2007). Specifically, we denote an observation in d dimensions by y ¼ (y1, …, yd) 2 Ω
d for d ¼ 1,

2, …, where Ω denotes either the real axis , the nonnegative real axis "0, the positive real axis

>0, or an interval on . A probabilistic forecast for y given by a distribution function with support

onΩ
d is denoted by F2F for some appropriate class of distributionsF , with the density denoted by f if

it exists. For ensemble forecasts, we will alternatively use the notation x¼ {x1,…, xK} to describe theK

ensemble members or F for the associated empirical distribution function. Verification methods for

deterministic predictions and other types of variables are discussed, for example, in Wilks (2011,

Chapter 8) and Jolliffe and Stephenson (2012).

This chapter is organized as follows. Diagnostic tools for checking calibration are discussed in

Section 6.2. Section 6.3 describes methods that assess the accuracy of forecasts where each forecast

is issued a numerical score based on the event that materializes. Scoring rules apply to individual events

while divergence functions compare the empirical distribution of a series of events with a predictive

distribution. The scores may focus on certain aspects of the forecast, such as the tails, and it is important

also to assess the uncertainty in the scores. The properties of various univariate scores are compared in a

simulation study. While the methods in Section 6.3 provide a decision-theoretically coherent approach

to model evaluation and model ranking, they may hide key information about the model performance

such as the direction of bias. Additional evaluation may thus be needed to better understand the per-

formance of a single model. Approaches for this are discussed in Section 6.4. The chapter then closes

with a summary in Section 6.5.

6.2 CALIBRATION
Calibration, or reliability, is the most fundamental aspect of forecast skill for probabilistic forecasts as

it is a necessary condition for the optimal use and value of the forecast. Calibration refers to the sta-

tistical compatibility between the forecast and the observation; the forecast is calibrated if the obser-

vation cannot be distinguished from a random draw from the predictive distribution.
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6.2.1 UNIVARIATE CALIBRATION

Several alternative notions of univariate calibration exist for a single forecast (Gneiting et al., 2007;

Tsyplakov, 2013) and a group of forecasts (Str€ahl & Ziegel, 2017). We focus on the so-called prob-

abilistic calibration as suggested by Dawid (1984); F is probabilistically calibrated if the probability

integral transform (PIT) F(Y), the value of the predictive cumulative distribution function for the ran-

dom observation Y, is uniformly distributed. If F has a discrete component, a randomized version of the

PIT given by

lim
y"Y

FðyÞ+V FðYÞ' lim
y"Y

FðyÞ

 !

with V(Uð½0,1+Þ may be used, see Gneiting and Ranjan (2013). Here, we use y"Y to denote that the

limit is taken as y approaches Y from below.

Assume our test set consists of n observations y1,…, yn. For a forecasting method issuing contin-

uous univariate predictive distributions F1,…, Fn, calibration can be assessed empirically by plotting

the histogram of the PIT values

F1ðy1Þ,…,FnðynÞ:

A forecasting method that is calibrated on average will return a uniform histogram, a \-shape indicates
overdispersion and a [-shape indicates underdispersion, while a systematic bias results in a triangular-

shaped histogram. Examples of miscalibration are shown in Fig. 6.1, including a biased forecast

(panel a), an underdispersive forecast (panel b), an overdispersive forecast (panel c), and an example

of a multiply misspecified forecast where the left tail is too light, the main bulk of the distribution lacks

mass and the right tail is too heavy (panel d).

The discrete equivalent of the PIT histogram, which applies to ensemble forecasts, is the verifica-

tion rank histogram (Anderson, 1996; Hamill & Colucci, 1997). It shows the distribution of the ranks of

the observations within the corresponding ensembles and has the same interpretation as the PIT

histogram.

PIT

0.0 0.2 0.4

(a) (b) (c) (d)

0.6 0.8 1.0

PIT

0.0 0.2 0.4 0.6 0.8 1.0

PIT

0.0 0.2 0.4 0.6 0.8 1.0

PIT

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 6.1

Probability integral transform (PIT) histograms for 100,000 simulated standard Gaussian Nð0,1Þ observations

and various misspecified forecasts: (a) biased Nð0:5,1Þ forecasts, (b) underdispersive Nð0,0:752Þ forecasts,

(c) overdispersive Nð0,22Þ forecasts, and (d) multiply misspecified generalized extreme value GEV(0, 1, 0.5)

forecasts. The theoretically optimal histograms are indicated with dashed lines.
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The information provided by a rank histogram may also be summarized numerically by the reli-

ability index (RI), which is defined as

RI¼
X

I

i¼1

ζi'
1

I

#

#

#

#

#

#

#

#

where I is the number of (equally sized) bins in the histogram and ζi is the observed relative frequency

in bin i ¼ 1,…, I. The RI thus measures the departure of the rank histogram from uniformity (Delle

Monache, Hacker, Zhou, Deng, & Stull, 2006).

6.2.2 MULTIVARIATE CALIBRATION

For assessing the calibration of multivariate forecasts, Gneiting, Stanberry, Grimit, Held, and Johnson

(2008) formalized a general two-step framework. Let S¼ {x1,…, xK, y} denote a set of K + 1 points in

Ω
d comprising an ensemble forecast with Kmembers and the corresponding observation y. The rank of

y in S, rankS(y), is calculated in two steps,

(i) apply a prerank function ρS : Ωd!"0 to calculate the prerank ρS(u) of every u 2 S resulting in a

univariate value for each u;

(ii) set the rank of the observation y equal to the rank of ρS(y) in {ρS(x1),…, ρS(xK), ρS(y)},

rankSðyÞ¼
X

v2S

1fρSðvÞ1 ρSðyÞg

where 1 denotes the indicator function and ties are resolved at random.

Here, we focus on four different approaches that follow this general two-step framework. Further

approaches are discussed in Gneiting et al. (2008), Ziegel and Gneiting (2014), and Wilks (2017).

The difference between our four approaches lies in the definition of the prerank function ρS in step

(i). The multivariate ranking of Gneiting et al. (2008) is defined using the prerank function

ρmS ðuÞ¼
X

v2S

1fv≼ug (6.1)

where v≼u if and only if vi1 ui in all components i¼ 1,…, d. Gneiting et al. (2008) further consider an

optional initial step in the ranking procedure in which the data is normalized in each component before

the ranking. The average ranking proposed by Thorarinsdottir, Scheuerer, and Heinz (2016) provides a

similar ascending rank structure and is given by the average over the univariate ranks. That is, let

rankSðu, iÞ¼
X

v2S

1fvi1 uig

denote the standard univariate rank of the ith component of u among the values in S. The multivariate

average rank is then defined using the prerank function

ρaSðuÞ¼
1

d

X

d

i¼1

rankSðu, iÞ (6.2)

Two further approaches assess the centrality of the observation within the ensemble. Under minimum

spanning tree ranking, the prerank function ρmst
S ðuÞ is given by the length of the minimum spanning tree
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of the set S n u, that is, the set S without the element u (Smith & Hansen, 2004; Wilks, 2004). Here, a

spanning tree of the set Snu is a collection of K ' 1 edges such that all points in Snu are used, with no
closed loops. The spanning tree with the smallest length is then the minimum spanning tree (Kruskal,

1956); it may, for example, be calculated using the R package vegan (Oksanen et al., 2017; R Core

Team, 2016).

Alternatively, the band-depth ranking proposed by Thorarinsdottir et al. (2016) uses a prerank

function that calculates the proportion of components of u 2 S inside bands defined by pairs of points

from S. It can be written as

ρbdS ðuÞ¼
1

d

X

d

i¼1

rankSðu, iÞ ðK + 1Þ' rankSðu, iÞ½ ++ rankSðu, iÞ'1½ +
X

v2S

1fvi¼ uig

" #

(6.3)

If ui 6¼ vi with probability 1 for all u, v 2 S with u 6¼ v and i ¼ 1,…, d the formula in Eq. (6.3) may be

simplified to

ρbdS ðuÞ¼
1

d

X

d

i¼1

ðK + 1Þ' rankSðu, iÞ½ + rankSðu, iÞ'1½ + (6.4)

This implies that the formula in Eq. (6.3) should be used for forecasts with a discrete component, for

example, precipitation forecasts. The band depth in Eq. (6.3) is equivalent to the simplicial depth pro-

posed by Liu (1990) and thus also to the simplicial depth ranking proposed by Mirzargar and Anderson

(2017), see López-Pintado and Romo (2009) and Thorarinsdottir et al. (2016).

While all four methods return a uniform rank histogram for a calibrated forecast, the interpretation

of the histogram shape for a misspecified forecast varies between the methods as demonstrated in the

following example.

6.2.3 EXAMPLE: COMPARING MULTIVARIATE RANKING METHODS

The four multivariate ranking methods are compared in Fig. 6.2 for several different settings where

y2d can be thought of as a temporal trajectory of a real-valued variable observed at d¼ 10 equidistant

time points t ¼ 1, …, 10. In the first two examples (rows 1 and 2), y is a realization of a zero-mean

Gaussian AR(1) (autoregressive) process Y with a covariance function given by

CovðYi, YjÞ¼ expð'ji' jj=τÞ, τ> 0: (6.5)

The process Y thus has standard Gaussian marginal distributions while the parameter τ controls how

fast correlations decay with time lag. We set τ¼ 3 for Y and consider ensemble forecasts with 50 mem-

bers of the same type, but with a different parameter value τ. That is, we set τ¼ 1.5 in row 1 (too strong

correlation) and τ¼ 5 in row 2 (too weak correlation). It follows from this construction that a univariate

calibration test at a fixed time point would not detect any miscalibration in the forecasts.

While all four methods are able to detect the misspecification in the correlation structure, the result-

ing histograms vary in shape. The shape of the average rank histograms and the band-depth rank histo-

grams offer a similar interpretation as that of the univariate rank histograms in Fig. 6.1 with a [-shape
when the correlation is too strong (underdispersion across components) and a \-shape when the cor-

relation is too weak (overdispersion across components). In these 10-dimensional examples, the pre-

rank ordering of the multivariate rank histograms (Eq. 6.1) is only able to detect miscalibration related
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FIG. 6.2

Rank histograms for multivariate data showing various types of miscalibration under different ranking methods:

average ranking (first column), band-depth ranking (second column), multivariate ranking (third column),

and minimum spanning tree ranking (fourth column); 10,000 simulated observations of dimension 10 are

compared with ensemble forecasts with 50 members. In the top two rows, the observations are realizations of a

zero-mean Gaussian AR(1) process with the covariance function in Eq. (6.5) where τ ¼ 3. The forecasts

follow the samemodel with τ¼ 1.5 (first row) and τ¼ 5 (second row). In the bottom two rows, the observations are

i.i.d. standard Gaussian variables while the forecasts have variance 1.252 (third row) and 0.852 (fourth row).

The theoretically optimal histograms are indicated with dashed lines.
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to the highest ranks (see also the discussion in Pinson & Girard, 2012 and Thorarinsdottir et al., 2016).

Under minimum spanning tree ranking, too many observations have high ranks when the correlation in

the forecasts is too strong and the opposite holds for the example with too weak correlation in the

forecasts.

In the latter two examples in Fig. 6.2 (rows 3 and 4), both observations and forecasts are i.i.d. vari-

ables in 10 dimensions. However, the marginal distributions of the ensemble forecasts are misspecified.

The observations follow a standard Gaussian distribution, the forecasts in row 3 have a standard de-

viation of 1.25 (overdispersion) and the forecasts in row 4 have a standard deviation of 0.85 (under-

dispersion). The shape of the average rank histograms is exactly that of their univariate counterparts in

Fig. 6.1, indicating that this ranking method cannot distinguish betweenmiscalibration in the marginals

and the higher-order structure. For the two ranking methods based on centrality, the marginal overdis-

persion results in too many high ranks while the marginal underdispersion results in too many low

ranks. For this dimensionality, the multivariate ranking is unable to detect the miscalibration.

Further comparison of the four ranking methods is provided in Thorarinsdottir et al. (2016) and

Wilks (2017). In general, it is a challenging task to represent and compare a multifaceted higher-order

structure with a single value. As the different methods vary in their strengths and weaknesses, it is

recommended that several of these methods be applied when assessing multivariate calibration. The

multivariate ranking of Gneiting et al. (2008), for instance, does not satisfy affine invariance

(Mirzargar & Anderson, 2017) while lower-dimensional positive and negative biases may cancel

out under average ranking (Thorarinsdottir et al., 2016).

Furthermore, a prior assessment of the marginal calibration may increase the information value in

the multivariate rank histograms and ease the interpretation of the resulting shapes. As the multivariate

methods perform a simultaneous assessment of the marginal and the higher-order calibration, a specific

nonuniform shape may represent multiple types of misspecifications. For example, depth-based ap-

proaches such as the band-depth ranking and the minimum spanning tree ranking are not able to dis-

tinguish between underdispersive and biased forecasts (Mirzargar & Anderson, 2017).

6.3 ACCURACY
In this section, we discuss methods for assessing forecast accuracy that are appropriate for ranking and

comparing competing forecasting methods. Alternative assessment techniques that may provide addi-

tional insights for understanding the performance and errors of a single forecasting model, but are not

appropriate for forecast ranking are discussed in Section 6.4.

6.3.1 UNIVARIATE ASSESSMENT

Scoring rules assess the accuracy of probabilistic forecasts by assigning a numerical penalty to each

forecast-observation pair. Specifically, a scoring rule is a mapping

S : F 6Ωd![f∞g (6.6)

where for every F2F the map y 7! S(F, y) is quasiintegrable. In our notation, a smaller penalty in-

dicates a better prediction. A scoring rule is proper relative to the class F if

GSðG,YÞ1GSðF,YÞ (6.7)
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for all probability distributions F,G2F , that is, if the expected score for a random observation Y is

optimized if the true distribution of Y (G) is issued as the forecast. The scoring rule is strictly proper

relative to the class F if Eq. (6.7) holds with equality only if F ¼ G. Propriety will encourage honesty

and prevent hedging, which coincides with Murphy’s first type of goodness (Murphy, 1993). That is,

the scores cannot be hedged by a willful divergence of the forecast from the true distribution to improve

the perceived performance, see for example the discussion in Section 1 of Gneiting (2011).

Competing forecasting methods are verified based on a proper scoring rule by comparing their

mean scores over an out-of-sample test set. The method with the smallest mean score is preferred. For-

mal tests of the null hypothesis of equal predictive performance can also be employed, see

Section 6.3.7. While average scores are directly comparable if they refer to the same set of forecast

situations, this may no longer hold for distinct sets of forecast cases, for instance due to spatial and

temporal variability in the predictability of weather. For ease of interpretability and to address this is-

sue, verification results are sometimes represented as a skill score of the form

Sskilln ðAÞ¼

1

n

X

n

i¼1

SðFA
i ,yiÞ'

1

n

X

n

i¼1

SðFref
i ,yiÞ

1

n

X

n

i¼1

SðFperf
i ,yiÞ'

1

n

X

n

i¼1

SðFref
i ,yiÞ

(6.8)

for the forecasting method Awhere Fref denotes the forecast from a reference method, Fperf denotes the

perfect forecast, and n is the size of the test set. The skill score is standardized such that it takes the

value 1 for an optimal forecast and the value 0 for the reference forecast. Negative values thus indicate

that the forecasting method A is of a lesser quality than the reference forecast. However, it is vital to

select the reference forecast with care (Murphy, 1974, 1992) as skill scores of the form of Eq. (6.8) may

be improper even if the underlying scoring rule S is proper (Gneiting &Raftery, 2007; Murphy, 1973a).

The most popular proper scoring rules for univariate real-valued quantities are the ignorance (or

logarithmic) score (IGN) and the continuous ranked probability score, see Gneiting and Raftery

(2007) for a more comprehensive list. IGN is defined as

IGNðF,yÞ¼' log f ðyÞ (6.9)

where f denotes the density of F (Good, 1952). It thus applies to absolutely continuous distributions

only and cannot be applied directly to ensemble forecasts. For a large enough ensemble, the density

of the ensemble forecast may potentially be approximated using, for example, kernel density estimation

or by fitting a parametric distribution. Alternatively, IGN may be replaced by the Dawid-Sebastiani

(DS) score (Dawid & Sebastiani, 1999),

DSðF,yÞ¼ logσ2F +
ðy'μFÞ

2

σ2F
(6.10)

where μF denotes the mean value of F and σ2F its variance. While the proper DS score equals IGN for a

Gaussian predictive distribution F, it only requires the estimation of the ensemble mean and variance.

The continuous ranked probability score (CRPS) (Matheson & Winkler, 1976) is of particular in-

terest in that it simultaneously assesses both calibration and sharpness, and thus all three types of good-

ness discussed by Murphy (1993). The CRPS applies to probability distributions with a finite mean and
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has three equivalent definitions (Gneiting & Raftery, 2007; Gneiting & Ranjan, 2011; Hersbach, 2000;

Laio & Tamea, 2007),

CRPSðF,yÞ¼FjX' yj'
1

2
FFjX'X0j (6.11)

¼

Z +∞

'∞
FðxÞ'1fy1 xgð Þ2dx (6.12)

¼

Z 1

0

F'1ðτÞ' y
' (

1fy1F'1ðτÞg' τ
' (

dτ (6.13)

Here, X and X0 denote two independent random variables with distribution F, 1fy1 xg denotes the

indicator function that is equal to 1 if y 1 x and 0 otherwise, and F'1ðτÞ¼ inffx2 : τ1FðxÞg is

the quantile function of F.

It follows directly from Eqs. (6.12), (6.13) that the CRPS is tightly linked to other proper scores that

focus on specific parts of the predictive distribution. The form in Eq. (6.12) can be interpreted as the

integral over the Brier score (Brier, 1950), which assesses the predictive probability of threshold ex-

ceedance. The Brier score is usually written in the form

BSðF,y|uÞ¼ pu'1fy" ugð Þ2 (6.14)

for a threshold u with pu ¼ 1 ' F(u). Similarly, the integrand in Eq. (6.13) equals the quantile score

(Friederichs & Hense, 2007; Gneiting & Raftery, 2007),

QSðF,y|qÞ¼ F'1ðqÞ' yð Þ 1fy1F'1ðqÞg'qð Þ (6.15)

which assesses the predicted quantile F'1(q) for a probability level q 2 (0, 1).

When the predictive distribution F is given by a finite ensemble {x1,…, xK}, the CRPS represen-

tation in Eq. (6.11) is equal to

CRPSðF,yÞ¼
1

K

X

K

k¼1

jxk' yj'
1

2K2

X

K

k¼1

X

K

l¼1

jxk' xlj (6.16)

see Grimit, Gneiting, Berrocal, and Johnson (2006). For small ensembles, Ferro, Richardson, and

Weigel (2008) propose a fair approximation given by

CRPSðF,yÞ9
1

K

X

K

k¼1

jxk' yj'
1

2KðK'1Þ

X

K

k¼1

X

K

l¼1

jxk' xlj (6.17)

For large ensembles, a more computationally efficient calculation is based on the generalized quantile

function (Laio & Tamea, 2007). Let x(1) 1⋯ 1 x(K ) denote the order statistics of x1, …, xK. Then

CRPSðF,yÞ¼
2

K2

X

K

i¼1

xðiÞ'y
' (

K1fy< xðiÞg' i+
1

2

 !

(6.18)

see also Murphy (1970). The formula in Eq. (6.18) is implemented in the R package scoringRules

together with exact formulas for a large class of parametric families of distributions (see Table 6.1

and Jordan, Kr€uger, & Lerch, 2017).
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When the forecasting model is estimated using a Bayesian analysis, the predictive distribution F is

commonly given by the posterior predictive distribution under the model. Here, F is rarely known in

closed form and is, instead, approximated by a large sample that is often obtained using Markov chain

Monte Carlo techniques. However, such techniques may yield highly correlated samples, which com-

plicates the employment of approximation formulas as those for the CRPS shown herein. Optimal ap-

proximations for both IGN and CRPS when the distribution F is the posterior predictive distribution

from a Bayesian analysis are discussed in Kr€uger, Lerch, Thorarinsdottir, and Gneiting (2016).

The quality of a deterministic forecast x is typically assessed by applying a scoring function s(x, y),

that assigns a numerical score based on x and the corresponding observation y. As in the case of proper

scoring rules, competing forecasting methods are compared and ranked in terms of the mean scores

over the cases in a test set. Popular scoring functions include the squared error, s(x, y) ¼ (x ' y)2,

and the absolute error, s(x, y) ¼ jx ' yj.
A scoring function can be applied to a probabilistic prediction F2F if it is consistent for a func-

tional T relative to the class F in the sense that

FsðTðFÞ,YÞ1Fsðx,YÞ (6.19)

for all x 2Ω and F2F . A consistent scoring function becomes a proper scoring rule if the functional T

in Eq. (6.19) is used as the derived deterministic prediction based on F. That is, if S(F, y) ¼ s(T(F), y).

The squared error proper scoring rule is given by

SEðF,yÞ¼ ðmeanðFÞ' yÞ2 (6.20)

where mean(F) denotes the mean value of F, and the absolute error proper scoring rule becomes

AEðF,yÞ¼ jmedðFÞ' yj (6.21)

where med(F) denotes the median of F.

One appealing property of scoring rules that derive from scoring functions is thus the possibility of

comparing deterministic and probabilistic forecasts. See Gneiting (2011) for an extensive discussion of

the use of scoring functions to evaluate probabilistic predictions.

Table 6.1 Parametric Families of Distributions for Which the CRPS Is Implemented in the R

Package scoringRules (Jordan et al., 2017)

Dist. on  Dist. on >0 Dist. on Intervals Discrete Dist.

Gaussian Exponential Generalized extreme value Poisson

t Gamma Generalized Pareto Neg. binomial

Logistic Log-Gaussian Trunc. Gaussian

Laplace Log-logistic Trunc. t

Two-piece Gaussian Log-Laplace Trunc. logistic

Two-piece exponential Trunc. exponential

Mixture of Gaussians Uniform

Beta

Notes: The truncated families can be defined with or without a point mass at the support boundaries.
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6.3.2 SIMULATION STUDY: COMPARING UNIVARIATE SCORING RULES

The purpose of this simulation study is to demonstrate a coherent approach to using proper scores and

rank or PIT histograms in practice, while highlighting some of the difficulties that might arise when

working with limited data sets. In particular, we investigate how different scoring rules rank forecasts

according to their skill, and how these results differ with the amount of available data.

We start by generating two sets of observation data, drawn randomly from the same fixed “true”

distribution. The first set consists of 100 values, which will serve as verifying observations, while the

second set, the training data, consists of 300 values for each of the 100 observations. Our goal is to issue

forecasts matching the observations, based on the information contained in the training data. For the

first part of the simulation study, the true distribution is normal, with a random mean μ(N 25,1ð Þ and
fixed standard deviation σ ¼ 3. In the second part, the truth is a Gumbel distribution, with the mean

following a N 25,1ð Þ distribution and the scale parameter fixed to 3, see Table 6.2.

Using a method-of-moments approach, we estimate four competing forecast distributions for each

observation, which are listed in Table 6.3. The distribution parameters are calculated by plugging the

sample mean and sample standard deviation from the training data into the equations for mean and

variance. For the noncentral t-distribution, the degrees of freedom are obtained numerically by a

root-finding algorithm described in Brent (1973), while restricting them to ν " 3, ensuring that both

mean and variance exist. As a fifth forecaster, we use the true distribution, from which the observations

Table 6.2 Observation-Generating Distributions Used in the Simulation Study

Distribution F Yð Þ  Yð Þ Var Yð Þ

Part 1 Normal N μ,σ2ð Þ μ(N 25,1ð Þ σ
2 ¼ 9

Part 2 Gumbel G μ,σð Þ μ+ σ : γ(N 25,1ð Þ π2

6
σ2¼ 3π2

2

Notes: The expected values are random variables following a normal distribution, while the scale parameters are fixed.

γ denotes the Euler-Mascheroni constant.

Table 6.3 Forecasters Used in Both Parts of the Simulation Study, and Their Expected Values

and Variances as Functions of the Distribution Parameters

Distribution F Yð Þ  Yð Þ Var Yð Þ

Normal N μ,σ2ð Þ μ σ
2

Noncentral t t ν,μð Þ

μ
ffiffi

ν
2

p

Γ
ν'1

2

 !

Γ
ν

2

+ , , if ν > 1 ν 1 + μ2ð Þ

ν'2
'

μ2ν

2

Γ
ν'1

2

 !

Γ
ν

2

+ ,

0

B

B

@

1

C

C

A

2

, if ν > 2

Lognormal lnN μ,σ2ð Þ exp μ + σ2

2

+ ,

exp σ2ð Þ'1ð Þexp 2μ + σ2ð Þ

Gumbel G μ,σð Þ μ + σ : γ π2

6
σ2

Note: γ denotes the Euler-Mascheroni constant.
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are generated. An ensemble of 50 members is drawn randomly from each of the forecast distributions,

which is then paired with the observations.

The performance of the five forecasters is evaluated using the absolute error, the squared error, the

ignorance score, the CRPS, and the PIT histogram. We also produced rank histograms, but they turned

out to be almost identical to the PIT histograms. As we encountered variations in the scores depending

on the initial random seed, the whole process is repeated 10 times with different initial seeds, so that the

final number of forecast-observation pairs comes to 1000.

In order to understand the true ranking of the five forecasting methods in terms of skill, we repro-

duce the simulation study with 10 times 100,000 forecasts. For the case of a normal true distribution,

Fig. 6.3 shows the mean absolute error, mean CRPS and mean ignorance score, along with 95% boot-

strap confidence intervals (see Section 6.3.7) computed from 1000 bootstrap samples.We have omitted

the squared error from this plot, as its values are on a much larger scale than the other scores. Looking at

the results for the small sample size in the top row, all scores assign the lowest mean value, and there-

fore the highest skill, to the normal distribution with the true parameters. However, if no knowledge

about the true distribution is available, as in a real forecast setting, the absolute error and the CRPS

FIG. 6.3

Top row: Mean absolute error, CRPS and ignorance score, and the 95% bootstrap confidence interval for the five

forecast distributions, if the true distribution is normal. Scores are based on 1000 forecast-observation pairs.

Bottom row: Same as above, but scores are based on 1 million forecast-observation pairs.
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would prefer the lognormal distribution over all other forecasters, while the ignorance score judges the

normal distribution with estimated parameters to be the best.

The bottom panel of Fig. 6.3 shows the results from running the same study with the larger sample

size, which changes the order in which we would expect the forecasters to rank. Here, all scores cor-

rectly find the Gumbel distribution, which has a completely different shape and tail behavior than the

truth, to be the worst forecast, and the two forecasts based on normal distributions to be the best. This

contradicts the results in the top panel, where only the ignorance score ranked the forecasters in the

same order as we would expect.

Due to assigning large penalties to outliers, the ignorance score is able to discriminate between the

shapes of the forecast distributions, and shows a significant difference at the 95% level between the

Gumbel and the normal, lognormal, and true distributions. The relatively poor performance of the non-

central t-distribution can probably be explained by the fact that, while this distribution approximates a

normal distribution if the degrees of freedom are large, the asymptotic distribution will have a standard

deviation of 1, which does not match the given standard deviation of 3 in this example.

Judging from Fig. 6.4, which shows PIT histograms for the small-sample study with a normal true

distribution, we cannot make any statements about the forecast ranking, except that the Gumbel dis-

tribution forecast is clearly uncalibrated. Only when looking at the large sample equivalent in Fig. 6.5

do we see that the normal and the true forecasters are the only ones not suffering from miscalibration.

A formal chi-squared test (see Section 6.3.7) rejects the assumption of uniformity for the Gumbel

FIG. 6.4

PIT histograms for the five forecast distributions, if the true distribution is normal, based on 1000 forecast-

observation pairs.
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distribution and even the t and lognormal distributions (at a level of 5%) in the small-sample case, and

for all distributions apart from the true one in the large sample case.

Fig. 6.6 illustrates one example forecast, for which the scores are plotted as functions of the ver-

ifying observation, in this case a sample value from aN 27:16,9ð Þ distribution. While the score minima

largely coincide for the true and the t-distribution, it becomes clear from the shape of the ignorance

score why it is much better at identifying the Gumbel distribution as inferior: because of the lack

of symmetry, Gumbel forecasts will receive a much higher penalty if the observation lies left of the

distribution mode than if it lies on the right.

For the second part of the simulation study, we used a Gumbel distribution as truth, where the mean

is distributed asN 25,1ð Þ and the scale parameter is 3. The same kinds of forecasts are produced again:

normal, noncentral t, lognormal, and Gumbel distributions, based on the sample means and variances of

the training data. In Fig. 6.7, the outcome of the study is shown for a small sample size (top row) and a

very large sample size (bottom row). As previously, all scores agree on the forecast ranking when the

sample is large. The Gumbel distribution with estimated parameters and the true Gumbel distribution

are assigned the lowest scores, while the normal forecaster now has the lowest skill.

However, the rankings look different in the top panel, where the true distribution is only ranked the

third best by the absolute error and the CRPS, behind the estimated Gumbel and noncentral t-distribu-

tions. The ignorance score again is the only score able to reproduce the forecast ranking we expect from

the bottom panel. This is, of course, concerning and hints at the fact that even for a data set of apparently

sufficient size, such as the 1000 50-member ensembles used here, the scores do not necessarily provide

robust and proper results.

FIG. 6.5

PIT histograms for the five forecast distributions, if the true distribution is normal, based on 1 million forecast-

observation pairs.
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Again we cannot really judge the degree of forecast calibration by just looking at the small-sample

PIT histograms in Fig. 6.8, except for the clearly uncalibrated normal distribution. A case could be

made that the histogram for the true distribution looks slightly flatter than the other ones, but not with

great certainty. It becomes clear, however, from Fig. 6.9, that the forecasts based on noncentral t and

lognormal distributions also suffer frommultiple types of miscalibration. These findings are confirmed

by a chi-squared test, which rejects the uniformity hypothesis for all except the Gumbel distributions in

Fig. 6.8 and all except the true distribution in Fig. 6.9.

Picking an example forecast from the data set, Fig. 6.10 shows that the ignorance score for the two

Gumbel distribution forecasters is again nonsymmetric, and therefore minimizes at a different value

compared with the CRPS. In general, the ignorance score takes its minimum value at the mode of

the distribution, and the CRPS at the median.

We can gather from this simulation study that even proper scores can behave very differently,

depending on the size of the underlying data set, and are not necessarily able to rank competing fore-

casters according to their actual skill. Therefore, we suggest always using a combination of scoring

rules to get a maximum amount of information about the performance of a particular model or fore-

caster. The ignorance score is more sensitive to the shape of a distribution and thus is suitable to check

if a chosen distribution actually fits the data. The CRPS is very useful for comparing models when the

forecasts do not take the form of a standard probability distribution, or if for a given data set such a

distribution cannot be perfectly specified.

(a) (b) (c)

(d) (e)

FIG. 6.6

Squared error, absolute error, CRPS, and ignorance score as functions of the verifying observation, for one forecast

case in the simulation study: (a) normal distribution forecast, (b) noncentral t-distribution forecast, (c) lognormal

distribution forecast, (d) Gumbel distribution forecast, and (e) forecast based on the true normal distribution.
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These results also have implications for the ongoing discussion of whether to use maximum like-

lihood methods or minimize the CRPS to estimate model parameters (Gneiting, Raftery, Westveld, &

Goldman, 2005), in that there might not be a definitive answer. Depending on the forecast situation and

model choice, it could be preferable to switch between the two approaches. A case can be made for

performing a thorough exploratory analysis of the data at hand before fitting any distributions, to find

one that matches the data best. If it is difficult to select one distribution over the other, the simpler

model should be preferred.

In all circumstances, the ranking of forecasters should not be solely based on the mean score, even if

the sample size seems to be sufficiently large, but confidence intervals should be given, for example, by

applying bootstrapping techniques. We found that even for 1 million data points, differences between

the forecast scores were often not significant at the 5% level.

6.3.3 ASSESSING EXTREME EVENTS

Forecasts specifically aimed at predicting extreme events can be assessed in a standard manner, for

example, by using the scoring rules discussed in Section 6.3.1 (Friederichs & Thorarinsdottir, 2012).

FIG. 6.7

Top row: Mean absolute error, CRPS and ignorance score, and the 95% bootstrap confidence interval for the five

forecast distributions, if the true distribution is a Gumbel distribution. Scores are based on 1000 forecast-

observation pairs. Bottom row: Same as above, but scores are based on 1 million forecast-observation pairs.
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FIG. 6.8

PIT histograms for the five forecast distributions, if the true distribution is a Gumbel distribution, based on 1000

forecast-observation pairs.

FIG. 6.9

PIT histograms for the five forecast distributions, if the true distribution is a Gumbel distribution, based on 1million

forecast-observation pairs.
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However, the restriction of conventional forecast evaluation to subsets of extreme observations by

selecting the extreme observations after-the-fact while discarding the nonextreme ones, and to proceed

with standard evaluation tools, will invalidate their theoretical properties and encourage hedging

strategies (Lerch, Thorarinsdottir, Ravazzolo, & Gneiting, 2017).

Specifically, Gneiting and Ranjan (2011) show that a proper scoring rule S is rendered improper if

the product with a nonconstant weight function w is formed, where w depends on the observed value y.

That is, consider the weighted scoring rule

S0ðF,yÞ¼wðyÞSðF,yÞ: (6.22)

Then if Y has density g, the expected scoregS0ðF,YÞ is minimized by the predictive distributionFwith

density

f ðyÞ¼
wðyÞgðyÞ

Z

wðzÞgðzÞdz
(6.23)

which is proportional to the product of the weight function w and the true density g. In particular, if

wðyÞ¼1fy" ug for some high threshold value u, then S0 corresponds to evaluating F only on observed

values exceeding u under the scoring rule S.
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FIG. 6.10

Squared error, absolute error, CRPS, and ignorance score as functions of the verifying observation, for one

forecast case in the simulation study: (a) normal distribution forecast, (b) noncentral t-distribution forecast,

(c) lognormal distribution forecast, (d) Gumbel distribution forecast, and (e) forecast based on the true Gumbel

distribution.
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Instead, one can apply proper weighted scoring rules that are tailored to emphasize specific regions

of interest. Diks, Panchenko, and Van Dijk (2011) propose two weighted versions of the ignorance

score that correct for the result in Eq. (6.23). The conditional likelihood (CL) score is given by

CLðF,yÞ¼#wðyÞ log f ðyÞ
Z

Ω

wðzÞf ðzÞdz

0

B

B

@

1

C

C

A

and the censored likelihood (CSL) score is defined as

CSLðF,yÞ¼#wðyÞ log f ðyÞ# 1#wðyÞð Þ log 1#
Z

Ω

wðzÞf ðzÞdz
' (

Here, w is a weight function such that 0 $ w(y) $ 1 and
R

wðyÞf ðyÞdy> 0 for all potential predictive

distributionsF2F . Whenw(y)' 1, both the CL and the CSL score reduce to the unweighted ignorance

score in Eq. (6.9).

Gneiting and Ranjan (2011) propose the threshold-weighted continuous ranked probability score

(twCRPS), defined as

twCRPSðF,yÞ¼
Z

Ω

wðzÞ FðzÞ#1fy$ zgð Þ2dz

where, again,w is a nonnegativeweight function, see alsoMathesonandWinkler (1976).Whenw(y)'1,

the twCRPS reduces to the unweighted CRPS in Eq. (6.12) while wðyÞ¼1fy¼ ug equals the Brier

score in Eq. (6.14). More generally, the twCRPS puts emphasis on a particular part of the forecast dis-

tribution F as specified by w. For focusing on the upper tail of F, Gneiting and Ranjan (2011) consider

both indicator weight functions of the typewðyÞ¼1fy* ug and nonvanishing weight functions such as
w(y)¼Φ(yju, σ2)whereΦ denotes the cumulative distribution function of theGaussian distributionwith

mean u and variance σ2. Corresponding weight functions for the lower tail of F are given by

wðyÞ¼1fy$ ug and w(y) ¼ 1 # Φ(yju, σ2) for some low threshold value u.

Nonstationarity in the mean climate, for example, due to spatial heterogeneity, may render it dif-

ficult to define a common threshold value u over a large number of forecast cases. Here, it may be more

natural to define a weight function in quantile space using the CRPS representation in Eq. (6.13),

twCRPSðF,yÞ¼
Z 1

0

wðτÞ F#1ðτÞ#y
* +

1fy$F#1ðτÞg# τ
* +

dτ

where w is a nonnegative weight function on the unit interval (Gneiting & Ranjan, 2011; Matheson &

Winkler, 1976). Setting w(τ) ' 1 retrieves the unweighted CRPS in Eq. (6.13) while this definition of

twCRPS with wðτÞ¼1fτ¼ qg equals the quantile score in Eq. (6.15). Examples of more general

weight functions for this setting include wðτÞ¼1fτ* qg and w(τ) ¼ τ
2 for the upper tail, and wðτÞ¼

1fτ$ qg and w(τ) ¼ (1#τ)2 for the lower tail, with appropriate threshold values q, see also Gneiting

and Ranjan (2011).

Lerch et al. (2017) find that there are limited benefits in using weighted scoring rules compared with

using standard, unweighted scoring rules when testing for equal predictive performance. However, the

application of weight functions as described here may facilitate interpretation of the forecast skill.
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6.3.4 EXAMPLE: PROPER AND NONPROPER VERIFICATION OF EXTREMES

In the following, we illustrate that the use of nonproper methods to verify and compare competing fore-

casts for extremes can lead to a distortion of the results and possibly false inference. Taking the same

setting as the first part of the simulation study in Section 6.3.2, we generate sets of observation and

training data from a normal distribution with standard deviation 3 and the mean a random value from

a N 25,1ð Þ distribution.
Four of the forecasting methods in Section 6.3.2 are compared: a normal distribution with estimated

parameters based on the training data, a Gumbel distribution with estimated parameters, a normal dis-

tribution with the true parameters, and a Gumbel distribution with the true means as location parameter

and scale parameter σ ¼ 3. The forecasters’ performance for extremes, which we consider to be values

greater or equal to the 97.5% quantile of the observations u, will be measured using the threshold-

weighted CRPS with three different weight functions and the unweighted CRPS, where the cases

are restricted to observations above the threshold. The weight functions considered are variations

on the indicator function:

w1 yð Þ ¼1 y* uf g
w2 yð Þ ¼ 1 +1 y* uf g
w3 yð Þ ¼ 1 +1 y* uf g - u

Mean scores and 95% confidence intervals, calculated by numerical integration based on the small

sample data set from Section 6.3.2, are shown in Fig. 6.11 for the threshold-weighted CRPS and

the CRPS with restricted observations, along with the unweighted CRPS. The results for the twCRPS

with weight function w1 are omitted, as they are equal to 0 for all forecasters.

However, just by adding 1 to the indicator function, we obtain meaningful scores with weight func-

tion w2, showing the Gumbel distribution with fixed parameters to be the least skillful forecast, while

the two normal distribution forecasters are of significantly better quality. The twCRPS with weight

function w3 and the unweighted CRPS lead to similar conclusions, although the differences between

the scores are sometimes not significant. In contrast to the other scores, the CRPS based on the re-

stricted data set clearly shows the Gumbel distribution with fixed parameters to be the preferred

forecaster.

Although the fixed Gumbel parameters and shape are obviously wrong, this is no surprise, as this

distribution was purposely chosen because it has a heavy tail. Fig. 6.12 shows predictive densities for

one example from the data set. If we restrict the evaluation to the area above the chosen threshold,

represented by the black vertical line, the Gumbel distribution with fixed parameters is indeed the

seemingly best forecast, as it assigns the highest probabilities to extreme values. The two normal dis-

tributions and the Gumbel distribution with estimated parameters, which tries to approximate the true

normal distribution, have a very similar tail behavior, explaining their similar performance in terms of

all scores.

We come to the same conclusion as Lerch et al. (2017), that conditioning a data set on extremal

observations can result in preferring a forecaster who predicts extremes with inflated probabilities.

When evaluating forecasts for a certain range of values, proper methods such as the threshold-weighted

CRPS should be used, where the whole data set is considered.
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6.3.5 MULTIVARIATE ASSESSMENT

Two general approaches can be employed to assess multivariate forecasts with scoring rules: Use spe-

cialized multivariate scores, or reduce the multivariate forecast to a univariate quantity and subse-

quently apply the univariate scores discussed previously. For the latter approach, the appropriate

univariate quantities depend on the context. Multivariate forecasts of single weather quantities are usu-

ally in the form of temporal trajectories, spatial fields, or space-time fields. Here it can, for instance, be

useful to assess the predictive performance of derived quantities such as maxima, minima, and accu-

mulated totals, all of which depend on accurate modeling of both marginal and higher order structures.

See, for example, Feldmann, Scheuerer, and Thorarinsdottir (2015) for an assessment of spatial fore-

cast fields for temperature.
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FIG. 6.11

Mean scores and 95% bootstrap confidence interval for the four versions of the CRPS. Top row: twCRPS with

weight functions w2 and w3. Bottom row: CRPS restricted to observations above the threshold u and unweighted

CRPS.
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Scores that directly assess multivariate forecasts are rather scarce and, as noted by Gneiting and

Katzfuss (2014), there is a need to develop further decision-theoretically principled methods for mul-

tivariate assessment. The univariate Dawid-Sebastiani score in Eq. (6.10) can be applied in a multivar-

iate setting with

DSðF,yÞ¼ log detΣF + ðy#μFÞ>Σ#1
F ðy#μFÞ (6.24)

where μF is the mean vector and ΣF the covariance matrix of the predictive distribution with detΣF

denoting the determinant of ΣF (Dawid & Sebastiani, 1999). However, note that unless the sample size

is much larger than the dimension of the multivariate quantity, sampling errors can affect the calcu-

lation of detΣF and Σ#1
F (see e.g., Table 2 in Feldmann et al., 2015). Similarly, if the multivariate pre-

dictive density is available, the ignorance score in Eq. (6.9) can be employed (Roulston & Smith, 2002).

Gneiting and Raftery (2007) propose the energy score (ES) as a multivariate generalization of the

CRPS. It is given by

ESðF,yÞ¼F kX# y k#1

2
FF kX#X

0 k (6.25)

where X and X0 are two independent random vectors distributed according to F and k-k is the Euclidean
norm. For ensemble forecasts, the natural analog of the formulas in Eqs. (6.16), (6.17) apply. If the

multivariate observation space Ωd consists of weather variables on varying scales, the margins should

be standardized before computing the joint energy score for these variables (Schefzik,

Thorarinsdottir, & Gneiting, 2013). This can be done using the marginal means and standard deviations

of the observations in the test set. The energy score has been developed with low-dimensional quan-

tities in mind and it may lose discriminatory power in higher dimensions (Pinson, 2013).
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FIG. 6.12

Example predictive densities given by the four competing forecasters. The black vertical line shows the threshold

u, above which observations are considered to be extreme.
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Scheuerer and Hamill (2015) propose a multivariate scoring rule that considers pairwise differences

of the components of the multivariate quantity. In its general form, the variogram score (VS) of order p

is given by

VSpðF,yÞ¼
X

d

i¼1

X

d

j¼1

ωij jyi # yjjp #FjXi #Xjjp
* +2

(6.26)

where yi and yj are the ith and the jth component of the observation, Xi and Xj are the ith and the jth

component of a random vector X that is distributed according to F, and ωij are nonnegative weights.

Scheuerer and Hamill (2015) compare different choices of the order p and find that the best results in

terms of discriminative power are obtained with p ¼ 0.5. Furthermore, they recommend using weights

proportional to the inverse distance between the components unless a prior knowledge regarding the

correlation structure is available.

A comparison of the three multivariate scores in Eqs. (6.24)–(6.26) is provided in Scheuerer and

Hamill (2015). The authors conclude by recommending the use of multiple scores as they complement

each other in their strengths and weaknesses. The variogram score is generally able to distinguish be-

tween correct and misspecified correlation structures, but it has certain limitations resulting from the

fact that it is proper but not strictly proper. Some of these limitations can be addressed by also using the

energy score that is more sensitive to misspecifications in the predictive mean and less affected by

finite representations of the predictive distribution.While the latter is an issue for the Dawid-Sebastiani

score, it performs well for continuous predictive distributions, in particular for multivariate Gaussian

models (Wei, Balabdaoui, & Held, 2017).

6.3.6 DIVERGENCE FUNCTIONS

In some cases, in particular in climate modeling, it is of interest to compare the predictive distribution F

against the true distribution of the observations, which is commonly approximated by the empirical

distribution function of the available observations y1, …, yn,

ĜnðxÞ¼
1

n

X

n

i¼1

1fyi $ xg: (6.27)

The two distributions, F and Ĝn, can be compared using a divergence

D : F 1F !*0 (6.28)

where D(F, F) ¼ 0.

Assume that the observations y1,…, yn forming the empirical distribution function Ĝn are indepen-

dent with distribution G2F . A propriety condition for divergences corresponding to that for scoring

rules (Eq. 6.7) states that the divergence D is n-proper for a positive integer n if

GDðG,ĜnÞ$GDðF,ĜnÞ (6.29)

and asymptotically proper if

lim
n!∞

GDðG,ĜnÞ$ lim
n!∞

GDðF,ĜnÞ (6.30)

for all probability distributions F,G2F (Thorarinsdottir, Gneiting, & Gissibl, 2013). While the con-

dition in Eq. (6.30) is fulfilled by a large class of divergences, only score divergences have been shown
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to fulfill Eq. (6.29) for all integers n. A divergence D is a score divergence if there exists a proper

scoring rule S such that DðF,GÞ¼GSðF,YÞ#GSðG,YÞ.
A score divergence that assesses the full distributions is the integrated quadratic divergence (IQD)

IQDðF,GÞ¼
Z +∞

#∞
FðxÞ#GðxÞð Þ2dx (6.31)

which is the score divergence of the continuous ranked probability score (Eq. 6.12). Alternative score

divergences that assess specific properties of the predictive distribution include the mean value diver-

gence (MVD),

MVDðF,GÞ¼ meanðFÞ#meanðGÞð Þ2 (6.32)

which is the divergence associated with the squared error scoring rule (Eq. 6.20), and the Brier diver-

gence (BD) associated with the Brier score (Eq. 6.14),

BDðF,G|uÞ¼ GðuÞ#FðuÞð Þ2 (6.33)

for some threshold u.

Fig. 6.13 provides a comparison of the score divergences in Eqs. (6.31)–(6.33) for two simple set-

tings where the observation distribution is given by a standard normal distribution and all the forecast

distributions are also normal distributions but with varying parameters. In the left plot, the variance is

correctly specified while the forecast mean value varies. In the right plot, the forecast mean values

equal that of the observation distribution while the standard deviation varies. We compare the IQD,

the MVD, and the BD with thresholds u ¼ 0.67 and u ¼ 1.64, which equal the 75% and the 95% quan-

tiles of the observation distribution, respectively. The divergences are more sensitive to forecast errors

in the mean than the spread. In particular, the MVD is, naturally, not able to detect errors in the forecast

spread. Furthermore, integrating over the BD for all possible thresholds u and obtaining the IQD yields
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FIG. 6.13

Comparison of expected score divergence values for a standard normal observation distribution and normal

forecast distributions with varying mean values (left) or standard deviations (right).
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a better discrimination than investigating the differences for individual quantiles. The right plot also

shows that the model ranking obtained under the BD strongly depends on the threshold u.

While every proper scoring rule is associated with a score divergence, not all score divergences are

practical for use in the setting where the empirical distribution function Ĝn is used. One example is the

Kullback-Leibler divergence, which is the score divergence of the ignorance score in Eq. (6.9). The

Kullback-Leibler divergence becomes ill-defined if the forecast distribution F has positive mass any-

where where the observation distributionG has mass zero. WhenG is replaced by Ĝn and, especially, if

the sample size n is relatively small, such issues might occur. One option to circumvent the issue is to

treat the data as categorical and bin it in b bins prior to the evaluation. That is, identify the probability

distribution Fwith a probability vector (f1,…, fb) and, similarly,Gwith a probability vector (g1,…, gb).

The Kullback-Leibler divergence is then given by

KLDðF,GÞ¼
X

b

i¼1

fi log
fi

gi

see also the discussion in Thorarinsdottir et al. (2013).

Historically, much of the forecast evaluation literature has focused on the evaluation of probabi-

listic forecasts against deterministic observations and an in-depth discussion of optimal theoretical

and/or practical properties of divergences is lacking. Applied studies commonly employ divergences

that are asymptotically proper rather than n-proper for all positive integer n, see for example, Palmer

(2012) and Perkins, Pitman, Holbrook, and McAneney (2007).

6.3.7 TESTING EQUAL PREDICTIVE PERFORMANCE

As demonstrated in the simulation study in Section 6.3.2, the estimation of the mean score over a test set

may be associated with a large uncertainty. A simple bootstrapping procedure over the individual

scores may be used to assess the uncertainty in the mean score, see for example, Friederichs and

Thorarinsdottir (2012). Assume we have n score values S(F1, y1),…, S(Fn, yn). By repeatedly resam-

pling vectors of length n (with replacement) and calculating the mean of each sample, we obtain an

estimate of the variability in the mean score. Note that some care is needed if the forecast errors,

and thus the resulting scores, are correlated. A comprehensive overview over bootstrapping methods

for dependent data is given in Lahiri (2003).

Formal statistical tests can be applied to test equal predictive performance of two competing

methods under a proper scoring rule. The most commonly applied test is the Diebold-Mariano test

(Diebold &Mariano, 1995), which applies in the time series setting. Consider two competing forecast-

ing methods F and G that for each time step t ¼ 1,…, n issue forecasts Ft and Gt, respectively, for an

observation yt+k that lies k time steps ahead. The mean scores under a scoring rule S are given by

S
F

n ¼ 1

n

X

n

t¼1

SðFt,yt + kÞ and S
G

n ¼ 1

n

X

n

t¼1

SðGt,yt + kÞ

The Diebold-Mariano test uses the test statistic

tn ¼ ffiffiffi

n
p S

F

n #S
G

n

σ̂n
(6.34)
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where σ̂2n is an estimator of the asymptotic variance of the score difference. Under the null hypothesis of

equal predictive performance and standard regularity conditions, the test statistic tn in Eq. (6.34) is

asymptotically standard normal (Diebold & Mariano, 1995). When the null hypothesis is rejected

in a two-sided test, F is preferred if tn is negative and G is preferred if tn is positive.

Diebold and Mariano (1995) note that for ideal k-step-ahead forecasts, the forecast errors are at

most (k# 1)-dependent. An estimator for the asymptotic variance σ̂2n based on this assumption is given

by

σ̂2n ¼
γ̂0 if k¼ 1

γ̂0 + 2
X

k#1

j¼1

γ̂ j, if k* 2

8

>

>

<

>

>

:

(6.35)

where γ̂ j denotes the lag j sample autocorrelation of the sequence fSðFi ,yi+ kÞ#SðGi ,yi+ kÞgni¼1 for j¼ 0,

1, 2,… (Gneiting & Ranjan, 2011). Alternative estimators are discussed in Diks et al. (2011) and Lerch

et al. (2017).

In the spatial setting, Hering and Genton (2011) propose the spatial prediction comparison test,

which accounts for spatial correlation in the score values without imposing assumptions on the under-

lying data or the resulting score differential field. This test is implemented in the R package SpatialVx

(Gilleland, 2017). Weighted scoring rules and their connection to hypothesis testing are discussed in

Holzmann and Klar (2017).

A simple test for the uniformity of a rank or PIT histogram is the chi-squared test. It tests if the

histogram values can be considered samples from a uniform distribution and therefore if any deviations

of uniformity are random or systematic (Wilks, 2004, 2011). The chi-squared statistic based on n cases

and K ensemble members is

χ2 ¼
X

K + 1

i¼1

mi # fð Þ2
f

(6.36)

with mi denoting the actual number of counts for bin i and f ¼ n
K + 1

the expected number of counts for a

uniform distribution. We can reject the null hypothesis of the histogram being uniform if this statistic

exceeds the quantile of the chi-squared distribution with K degrees of freedom at the chosen level of

significance.

In its general form, however, the chi-squared test only applies to independent data, which is not the

case in many forecast settings due to, for example, temporal or spatial correlation between forecast data

points. Some methods to address this effect are proposed in Wilks (2004). If the goal is to not only test

for uniformity, but also for the other deficiencies in calibration shown in Section 6.2.1, Elmore (2005)

and Jolliffe and Primo (2008) present alternatives that are more flexible and appropriate. Wei et al.

(2017) propose calibration tests for multivariate Gaussian forecasts based on the Dawid-Sebastiani

score in Eq. (6.24).

6.4 UNDERSTANDING MODEL PERFORMANCE
When assessing the performance of an individual model, for example, to identify weaknesses and test

potential improvements, it might be useful to look at tools that do not necessarily follow the principles
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of propriety described in Section 6.3. For instance, it can be useful to investigate the forecast bias to

better understand the potential sources of forecast errors even if competing forecasting models should

not be ranked based on mean bias as it is not a proper score (Gneiting & Raftery, 2007). Here, we dis-

cuss a few tools that may be used to provide a better understanding of the performance of an individual

forecasting model, even though ranking of competing forecasters should not be based on these tools.

One of the most popular measures used by national weather services is the anomaly correlation

coefficient (ACC), a valuable tool to track the gain in forecast skill over time (Jolliffe &

Stephenson, 2012). The ACC quantifies the correlation between forecast anomalies and the anomalies

of the observation, typically an analysis. Anomalies are defined as the difference between the forecast

or analysis and the climatology for a given time and location. Usually, the climatology is based on the

model climate, calculated from the range of values predicted by the dynamical forecast model over a

long time period.

For a deterministic forecast fi, valid at time i, with a corresponding analysis ai and climate statistic

ci, there are two equivalent definitions for the ACC (e.g., Miyakoda, Hembree, Strickler, & Shulman,

1972):

ACC¼

X

N

i¼1

fi # cið Þ - ai # cið Þ#
X

N

i¼1

fi # cið Þ -
X

N

i¼1

ai # cið Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

N

i¼1

fi # cið Þ2 #
X

N

i¼1

fi # cið Þ
 !2

v

u

u

t -

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

N

i¼1

ai # cið Þ2 #
X

N

i¼1

ai # cið Þ
 !2

v

u

u

t

¼

X

N

i¼1

f 0i # f 0
* +

a0
i #a0* +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

N

i¼1

f 0i # f 0
* +2

X

N

i¼1

a0
i #a0ð Þ2

s

Here, f 0i ¼ fi # ci is the forecast anomaly and a0
i ¼ ai # ci the anomaly of the analysis, with respective

sums f 0 ¼PN
i¼1 fi # cið Þ and a0 ¼PN

i¼1 ai # cið Þ. The ACC is a preferred evaluation tool for gridded fore-

casts and spatial fields, as these are usually compared with an analysis or a similar gridded observation

product.

However, there are certain limitations and pitfalls one has to be aware of when using this measure.

Due to it being a correlation coefficient, the ACC does not give any information about forecast biases

and errors in scale, so that it can overestimate the forecast skill (Murphy & Epstein, 1989). As such, it

should always be used in conjunction with an estimate of the actual bias, or applied to previously bias-

corrected data.

It has been established empirically that an anomaly correlation of 0.6 corresponds to a limit in use-

fulness for a medium-range forecast. Murphy and Epstein (1989) warn, however, that the ACC is an

upper limit of the actual skill and that the ACC should be seen as a measure of potential skill. Naturally,

the ACC relies to a large extent on the underlying climatology used to compute the anomalies.

When evaluating forecast skill with proper scores, it is often useful to compute separate indicators

for the degree of calibration and the sharpness of the forecast. The well-known and widely used de-

composition of the Brier score by Murphy (1973b) separates the score value in three parts, quantifying

reliability, resolution, and uncertainty.
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Consider a forecast sample of size N, where probability forecasts pu ¼ 1 # F(u) are computed for

exceeding a threshold u and binary observations take the form o¼1fy* ug. If the forecasts take K

unique values, with nk denoting the number of forecasts within the category k and pu,k the probability

forecast associated with category k, then the Brier score can be written as

BSðF,yjuÞ¼ 1

N

X

K

k¼1

nk pu,k # "okð Þ2 # 1

N

X

K

k¼1

nk "ok # "oð Þ2 + "o 1# "oð Þ (6.37)

where "ok is the event frequency for each of the forecast values and "o¼ 1
N

PN
i¼1oi the climatological

event frequency, computed from the sample. The first part of the sum in Eq. (6.37) relates to the re-

liability or calibration, the second, having a negative effect on the total score, to the resolution or sharp-

ness, and the last part is the climatological uncertainty of the event.

This representation of the Brier score relies on the number of discrete forecast values K being rel-

atively small. If pu takes continuous values, care must be taken when binning the forecast into cate-

gories, so as not to introduce biases (Br€ocker, 2008; Stephenson, Coelho, & Jolliffe, 2008). Several

analog decompositions have been proposed for other scores, such as the CRPS (Hersbach, 2000),

the quantile score (Bentzien & Friederichs, 2014), and the ignorance score (Weijs, van Nooijen, &

van de Giesen, 2010). Br€ocker (2009) shows that any proper score can be decomposed analogously

to Eq. (6.37). Recently, Siegert (2017) formulated a general framework allowing for the decomposition

of arbitrary scores.

While it is common and advisable to look at a model’s performance in certain weather situations or

for certain periods of time, it is important to be aware of Simpson’s paradox (Simpson, 1951). It de-

scribes the phenomenon that a certain effect appearing in several subsamples may not be found in a

combination of these samples, or that the larger sample may even show the complete opposite effect.

For example, a forecast model can have superior skill over all four seasons, compared with another

model, but still be worse when assessed over the whole year. Hamill and Juras (2006) showed this to be

true for a synthetic data set of temperature forecasts on two islands. In this case, the climatologies of the

two islands were so different that the values of performance measures were misleadingly improved.

Fricker, Ferro, and Stephenson (2013) found that this spurious skill does not affect proper scores de-

rived from scoring rules, but care should be taken when using scores derived from a contingency table

that are not proper, and skill scores in general.

In general, it is recommended to use statistical significance testing in order to evaluate potential

model improvements. Differences in scores are often very small and it is hard to judge if they are caused

by genuine improvement or chaotic error growth. Geer (2016) investigate a version of the Student’s

t-test modified for multiple models and taking account of autocorrelation in the scores. They also found

that in order to detect an improvement of 0.5%, at least 400 forecast fields on a global grid would be

required. This confirms our findings from Section 6.3.2 that it is essential to carefully consider the ex-

periment sample size in order to generate meaningful and robust results.

6.5 SUMMARY
In this chapter, a variety of methods to assess different aspects of forecast goodness were presented and

discussed. Calibration errors can be diagnosed with the help of histograms, in both univariate and
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multivariate settings. It is recommended to use multiple such diagnostics, especially in the multivariate

case, as different tools highlight different types of miscalibration.

Scoring rules provide information about the accuracy of a forecast and are valuable tools for com-

paring forecasting methods. In this context, only proper scores should be used, as they ensure that the

forecast based on the best knowledge will receive the best score. There are many such scores available,

with the CRPS and the ignorance score being among the most popular. However, only looking at the

mean of one such score can be misleading, even if the underlying sample seems to be of sufficient size.

Therefore, it is crucial to also provide information about the error of a mean score, and to base decisions

about model preference on the evaluation of multiple scoring rules, if possible. If we do not want to

compare models, but rather understand the behavior of a model, it can be helpful to use measures that

are not necessarily proper. Especially skill scores and the ACC are widely used.

By adding appropriate weight functions to the CRPS and the ignorance score, it is possible to eval-

uate extreme event forecasts in a proper way. These weight functions can be designed to emphasize, for

example, different parts of the climatological distribution. Scores for multivariate quantities not only

give information about the calibration and sharpness of the forecast, but also assess the correct repre-

sentation of the covariance structure between locations, forecast times, or variables. However, some of

them have limitations and do not work well if the number of dimensions is large.

Given the multitude of available evaluation tools and scores, which are constantly growing due to

new research and applications, it is essential to be aware of their properties and how to choose a suitable

measure. To make sure that all aspects of a forecast’s performance are addressed, a number of scores

should be calculated and a quantification of the associated uncertainty given.
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López-Pintado, S., & Romo, J. (2009). On the concept of depth for functional data. Journal of the American Sta-

tistical Association, 104, 718–734.

Matheson, J., & Winkler, R. (1976). Scoring rules for continuous probability distributions. Management Science,

22, 1087–1096.

Mirzargar, M., & Anderson, J. (2017). On evaluation of ensemble forecast calibration using the concept of data

depth. Monthly Weather Review, 145, 1679–1690.

Miyakoda, K., Hembree, G., Strickler, R., & Shulman, I. (1972). Cumulative results of extended forecast exper-

iments I. Model performance for winter cases. Monthly Weather Review, 100, 836–855.

Murphy, A. (1970). The ranked probability score and the probability score: a comparison. Monthly Weather Re-

view, 98, 917–924.

Murphy, A. (1973a). Hedging and skill scores for probability forecasts. Journal of Applied Meteorology, 12,

215–223.

Murphy, A. (1973b). A new vector partition of the probability score. Journal of AppliedMeteorology, 12, 595–600.

Murphy, A. (1974). A sample skill score for probability forecasts. Monthly Weather Review, 102, 48–55.

Murphy, A. (1992). Climatology, persistence, and their linear combination as standards of reference in skill scores.

Weather and Forecasting, 7, 692–698.

Murphy, A. (1993). What is a good forecast? An essay on the nature of goodness in weather forecasting.Weather

and Forecasting, 8, 281–293.

Murphy, A., & Epstein, E. (1989). Skill scores and correlation coefficients in model verification.Monthly Weather

Review, 117, 572–582.

Oksanen, J., Blanchet, F., Friendly, M., Kindt, R., Legendre, P., &McGlinn, D. (2017). Vegan: community ecology

package.

Palmer, T. (2012). Towards the probabilistic Earth-system simulator: a vision for the future of climate and weather

prediction. Quarterly Journal of the Royal Meteorological Society, 138, 841–861.

Perkins, S., Pitman, A., Holbrook, N., & McAneney, J. (2007). Evaluation of the AR4 climate models’ simulated

daily maximum temperature, minimum temperature, and precipitation over Australia using probability density

functions. Journal of Climate, 20, 4356–4376.

Pinson, P. (2013). Wind energy: forecasting challenges for its operational management. Statistical Science, 28,

564–585.

Pinson, P., & Girard, R. (2012). Evaluating the quality of scenarios of short-term wind power generation. Applied

Energy, 96, 12–20.

Core Team, R. (2016).R: A language and environment for statistical computing. Vienna, Austria: R Foundation for

Statistical Computing.

185REFERENCES

170



Roulston, M., & Smith, L. (2002). Evaluating probabilistic forecasts using information theory. Monthly Weather

Review, 130, 1653–1660.

Schefzik, R., Thorarinsdottir, T., & Gneiting, T. (2013). Uncertainty quantification in complex simulation models

using ensemble copula coupling. Statistical Science, 28, 616–640.

Scheuerer, M., & Hamill, T. M. (2015). Variogram-based proper scoring rules for probabilistic forecasts of mul-

tivariate quantities. Monthly Weather Review, 143, 1321–1334.

Siegert, S. (2017). Simplifying and generalising Murphy’s Brier score decomposition. Quarterly Journal of the

Royal Meteorological Society, 143, 1178–1183.

Simpson, E. (1951). The interpretation of interaction in contingency tables. Journal of the Royal Statistical Society

Ser B, 13, 238–241.

Smith, L., & Hansen, J. (2004). Extending the limits of ensemble forecast verification with the minimum spanning

tree. Monthly Weather Review, 132, 1522–1528.

Stephenson, D., Coelho, C. A. S., & Jolliffe, I. (2008). Two extra components in the Brier score decomposition.

Weather and Forecasting, 23, 752–757.

Str€ahl, C., & Ziegel, J. (2017). Cross-calibration of probabilistic forecasts. Electronic Journal of Statistics, 11,

608–639.

Thorarinsdottir, T., Gneiting, T., & Gissibl, N. (2013). Using proper divergence functions to evaluate climate

models. SIAM/ASA Journal on Uncertainty Quantification, 1, 522–534.

Thorarinsdottir, T., Scheuerer, M., & Heinz, C. (2016). Assessing the calibration of high-dimensional ensemble

forecasts using rank histograms. Journal of Computational and Graphical Statistics, 25, 105–122.

Tsyplakov, A. (2013). Evaluation of probabilistic forecasts: Proper scoring rules and moments. http://ssrn.com/

abstract¼2236605 (Accessed 26 January 2018).

Wei, W., Balabdaoui, F., & Held, L. (2017). Calibration tests for multivariate Gaussian forecasts. Journal of Mul-

tivariate Analysis, 154, 216–233.

Weijs, S., & van Nooijen, R.van de Giesen, N. (2010). Kullback-Leibler divergence as a forecast skill score with

classic reliability-resolution-uncertainty decomposition. Monthly Weather Review, 138, 3387–3399.

Wilks, D. (2004). The minimum spanning tree histogram as verification tool for multidimensional ensemble fore-

casts. Monthly Weather Review, 132, 1329–1340.

Wilks, D. (2011). Statistical Methods in the Atmospheric Sciences. Oxford: Elsevier Academic Press.

Wilks, D. (2017). On assessing calibration of multivariate ensemble forecasts. Quarterly Journal of the Royal Me-

teorological Society, 143, 164–172.

Ziegel, J., & Gneiting, T. (2014). Copula calibration. Electronic Journal of Statistics, 8, 2619–2638.

186 CHAPTER6 VERIFICATION: ASSESSMENTOF CALIBRATIONANDACCURACY

171


	Preface
	List of papers
	Contents
	List of Figures
	List of Tables
	Introduction
	Numerical weather prediction and ensembles
	Sub-seasonal to seasonal forecasting
	Optimising forecast skill

	Statistical post-processing
	Univariate post-processing
	Multivariate post-processing

	Rapid adjustment of forecast trajectories
	RAFT for ensemble mean forecasts
	RAFT for ensemble members
	Order of operation for post-processing of multivariate forecasts
	Forecast jumpiness and consistency
	Seasonal temperature forecasts

	Forecast verification
	Univariate forecast verification
	Verification of forecasts for extremes
	Multivariate forecast verification
	Comparing probability distributions

	Summary of papers
	Conclusions
	References
	Papers
	Rapid adjustment and post-processing of temperature forecast trajectories
	Order of operation for multi-stage post-processing of ensemble wind forecast trajectories
	Trajectory adjustment of lagged seasonal forecast ensembles
	Verification: assessment of calibration and accuracy



