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Abstract. Foreground components in the Cosmic Microwave Background (CMB) are sparse
in a needlet representation, due to their specific morphological features (anisotropy, non-
Gaussianity). This leads to the possibility of applying needlet thresholding procedures as a
component separation tool. In this work, we develop algorithms based on different needlet-
thresholding schemes and use them as extensions of existing, well-known component sep-
aration techniques, namely ILC and template-fitting. We test soft- and hard-thresholding
schemes, using different procedures to set the optimal threshold level. We find that thresh-
olding can be useful as a denoising tool for internal templates in experiments with few fre-
quency channels, in conditions of low signal-to-noise. We also compare our method with other
denoising techniques, showing that thresholding achieves the best performance in terms of
reconstruction accuracy and data compression while preserving the map resolution. The best
results in our tests are in particular obtained when considering template-fitting in an LSPE
like experiment, especially for B-mode spectra.

1Corresponding author.

ar
X

iv
:1

91
1.

01
29

8v
1 

 [
as

tr
o-

ph
.C

O
] 

 4
 N

ov
 2

01
9

mailto:filippo.oppizzi@pd.infn.it
mailto:alessandro.renzi@pd.infn.it
mailto:michele.liguori@pd.infn.it
mailto:frodekh@astro.uio.no
mailto:marinucc@mat.uniroma2.it
mailto:carlo.baccigalupi@sissa.it
mailto:daniele.bertacca@pd.infn.it
mailto:davide.poletti@sissa.it


Contents

1 Introduction 1

2 Needlet Regression 2
2.1 Sparsity and Thresholding 4

3 Methodology 5
3.1 Template Fitting 9
3.2 ILC 11

4 Results 12
4.1 Measuring sparsity 12
4.2 Template reconstruction 13
4.3 Synergy with other methods 17

4.3.1 Template Fitting 17
4.3.2 ILC 20

5 Conclusions 21

1 Introduction

The search for primordial polarization B-modes is the main and most exciting challenge for
both the current and coming generation of Cosmic Microwave Background (CMB) exper-
iments. A detection of B-mode CMB polarization would carry huge implications for our
understanding of the Early Universe, essentially allowing for a smoking-gun confirmation of
Inflation, as well as for the measurement of its energy scale [1–4]. At the same time, the quest
for B-modes presents formidable challenges. The polarization signal from the inflationary
stochastic Gravitational Wave (GW) background is expected to be very faint. Its detection,
if achievable, will require an exquisite and unprecedented level of accuracy in controlling sys-
tematic biases in the data. One of the major sources of systematic contamination, besides
instrumental effects, is the astrophysical foreground [5–12].
A variety of methods have been so far designed, with the purpose to separate the CMB signal
from foreground components. Of course, state-of-the-art component separation methods work
very efficiently on the best available datasets, such as Planck [5, 13]. The target sensitivity
for future B-mode surveys is, however, orders of magnitude below that of current experiments
[14, 15]. This – together with the morphological complexity and incomplete understanding
of polarized foregrounds – makes further study and advancements in this area still crucial.

Different component separation algorithms exploit characteristic features of foreground
emission to disentangle them from the background radiation, (mostly, but not only, their
non-blackbody spectrum) [16–22].
In this work, we present an investigation on a technique relying on the assumption that the
foreground signal is “sparse” in a proper representation, i.e. the majority of the signal is
concentrated in few expansion coefficients.
To this purpose, we will rely on a needlet expansion of the CMB map. Needlets are a special
kind of spherical wavelets, directly defined in harmonic space and not relying on any tangent
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plane approximation (see next section for details). They were developed as a functional
analysis tool by [23] and applied to CMB analysis in various works [17, 24–27]. Like all
wavelets, needlets display the property to be localized both in space (or time) and frequency,
this is a key property to induce sparsity in the representation of coherent signals, such as
foreground emission. In our analysis, we will exploit sparsity to either reconstruct foreground
templates via thresholding procedures or for template denoising purposes. The idea is that
these approaches can be combined with – and be used as preliminary steps in – different
standard component separation methods: for example, initial template denoising in needlet
space can be followed by standard template fitting; alternatively, needlet thresholding can
be used for pre-cleaning single frequency channels, by exploiting morphological information
(non-Gaussianity and anisotropy of foregrounds); the channels can then be combined with
a common approach such as Internal Linear Combination (ILC). The idea is therefore not
that of developing a component separation method per se, but rather to explore a range of
applications in a general context. We will specify case by case what are the main novelties
introduced in the different techniques which we are going to explore, and in which regime
they find their best application. Our general finding is that the methods we explore here can
be useful in situations characterized by limited frequency coverage, as it can be the case for
current and forthcoming ground-based and balloon experiments. The paper is structured as
follows: in section 2 we will review the main characteristic of the spherical needlet and we
will introduce the notions of sparsity and thresholding. In section 3 we will show how these
properties can be exploited for component separation and we will describe the techniques
developed in this work. In section 4 we will check the performance of our thresholding
methods on simulations of different CMB surveys, showing a comparison with alternative
techniques for template denoising, as well as possible applications in which thresholding is
used in synergy with other methods. Finally, section 5 is dedicated to the conclusions.

2 Needlet Regression

Spherical wavelets are usually constructed by relying on a local flat sky approximation. This
means that the basis function is defined on a flat tangent plane and then implemented on
the sphere. The needlet basis, instead, is defined directly in harmonic space, in terms of
spherical harmonics. As we will show in the following, this is a great advantage for the exact
computation of the needlet coefficients.

More specifically, needlets are defined starting from the window function b(`, j) that sets
the harmonic support for each needlet layer j. This function must satisfy three properties:

1. compact support: b(`, j) > 0 if `min,j ≤ ` ≤ `max,j and b(`, j) = 0 otherwise. This
ensure that each needlet layers represents a fixed range of scales. Moreover, each layer
j will have equal support in log(`).

2. partition to unity, so that
∑

j b
2(`, j) = 1.

3. smoothness, i.e. b(`, j) is infinitely differentiable.

Given a window function with these properties (see [28] for a complete derivation), the
spherical needlet basis function can be defined as:

ψjk(x) =
√
λjk
∑
`

b(`B−j)
∑̀
m=−`

Y m
` (ξjk)Y

m
` (x), (2.1)
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where j represents the needlets scale, λjk and ξjk are respectively the weights and the cubature
points at the level j, and B is a parameter fixing the ` coverage of the needlets layers. As
shown in [29], the support of b(`B−j) extends over ` ∈ (Bj−1, Bj+1), this is the multipoles
window spanned by the needlets layer j. From Eq. 2.1 we can define the needlets coefficients
βjk of a square integrable function on the sphere f(x) as:

βjk =

∫
S2

dx f(x)ψjk(x) =
√
λjk
∑
`

b(`B−j)
∑̀
m=−`

a`mY
m
` (ξjk), (2.2)

where we use:

a`m =

∫
S2

dx f(x)Y
m
` (x). (2.3)

Equation (2.2) is the direct needlet transform, and βjk are the needlet coefficients at scale j in
the position defined by the cubature point ξjk. The harmonic coefficients a`m can be computed
numerically with a high level of precision [30], this makes the numerical implementation of
needlets very convenient.
The inverse of equation (2.2) is:

f(x) =
∑
jk

βjkψjk(x). (2.4)

With these preliminary definitions in hand, let us now review the main properties which
make needlets a particularly suitable choice for CMB analysis. Needlets owe their name to
their localization properties. The basis functions are localized quasi-exponentially around
their centers, represented by the cubature points ξjk. In their seminal paper [23], Narcowich
and collaborators proved this statement showing that for any point x on the sphere surface,
there exists a constant cM , such that:

|ψjk| ≤
cMB

j

(1 +Bj arccos (ξjk, x))M
. (2.5)

Note that the function arccos in the above formula represents the distance on the sphere;
this states exactly that the function ψjk decreases faster than any power law. This property
is of significant importance in CMB analysis, where the presence of missing observations
poses a problem for the computation of harmonic coefficients due to the onset of spurious
correlations between harmonic coefficients a`m. These correlations represent a limitation for
the evaluation of the power spectrum and the other cumulants and must be corrected for,
generally with high computational costs. As proven in [29], needlet coefficients are instead
much less sensitive to gaps in the map, therefore working in needlet space allows avoiding to
correct for missing observation.
Needlets are also particularly well suited for the representation of random fields on the sphere,
due to their uncorrelation properties. The fact that the window function b(`B−j) has compact
support in (Bj−1, Bj+1) indeed ensures that theoretical correlations between βjk cancel if the
difference in levels is greater than 2, so that if j − j′ > 2 we have:

βjkβj′k′ =
√
λjkλj′k′

∑
``′

b(`B−j)b(`′B−j
′
)
∑
mm′

ajkaj′k′Y
m
` (ξjk)Y `

′m′
(ξjk) = 0, (2.6)
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as the simple consequence of the fact that the supports of the two basis functions do not
overlap. If we consider instead fixed scale correlations, it was proven in [24] that the needlet
representation of a Gaussian random field with smooth power spectrum satisfies:

|Corr(βjkβjk′)| =

∣∣∣∣∣∣ βjkβjk′√
β2jkβ

2
jk′

∣∣∣∣∣∣ ≤ cM
(1 +Bj arccos (ξjk, ξjk′))

, (2.7)

for any positive integer M and cM > 0. This implies that, for growing scale j, needlets
coefficients are asymptotically uncorrelated. Therefore, under Gaussianity, the small scales
coefficients behave approximately as a sample of i.i.d. random variables.

2.1 Sparsity and Thresholding

A signal is said to be sparse if – in a given basis or frame – it can be reconstructed by using
only a small amount of basis elements (see e.g. [31] for a complete review on the subject).
Wavelets and needlets present several crucial features which allow for sparse representation of
signals. First, they are not an orthonormal basis but instead a tight frame. This implies that
the basis contains redundant elements. Furthermore, their tight space-frequency localization
properties make them suitable to identify discontinuities in the signal and represent them with
just a small number of modes. In such conditions, sparsity can always be achieved if the signal
under study is smooth (although this is not a necessary condition). This makes sparsity a
key element in wavelet regression methods [32], since it allows developing efficient techniques
to separate a coherent signal (which is sparse, for the reasons just mentioned above) from a
stochastic “noise” component. Note that in our setting, CMB itself can be viewed as part of
this “noise” (for the purpose of foreground estimation). In general, stochastic fields do not
admit a sparse representation, due to their lack of smoothness and, in the case of CMB, to
its isotropy. Such separation can be essentially achieved by setting to zero all the coefficients
under a certain threshold and eventually rescaling the remaining ones. This clearly filters
the few large signal coefficients from the noise background. Such a procedure is referred
to as thresholding and it is, in spirit, similar to principal component analysis, since it aims
to reduce the complexity of a multidimensional data-set, by identifying the most significant
modes.

The simplest thresholding scheme is called hard thresholding (HT); the effects of the
hard thresholding operator on the needlet coefficients are simply:

HT (βjk) =

{
0 if |βjk| < λ

βjk if |βjk| ≥ λ,
(2.8)

where λ is a given threshold. In the case of a coherent signal, only few significant coefficients
survive this operation, providing an optimal representation as well as efficient data compres-
sion.
A second option is soft thresholding (ST). In this case, the significant coefficients are rescaled,
proportionally to the chosen threshold:

ST (βjk) = sgn(βjk)(|βjk| − λ)+


βjk + λ if βjk ≤ λ
0 if |βjk| < λ

βjk − λ if βjk ≥ λ,
(2.9)
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where the operator (∗)+ stands for the positive part of the argument.
It is known that the soft thresholding solution can be interpreted – from a Bayesian perspective
– as a maximum posterior estimator from a Gaussian Likelihood with a leptokurtic Laplace
prior on the parameters, which in our case are the needlet coefficients. Let us briefly show
this. Consider a dataset x = θ + n, where θ is a signal that is sparse in some basis and n is
a Gaussian noise with known variance σ2. Assume also that the scale parameter 1/λ of the
Laplace prior on θ is known and its mean is 0, so that we can write:

P (θ|x) ∝ L(x|θ)P (θ) = N(x; θ, σ)L(θ;λ, 0), (2.10)

− logP (θ|x) =
(x− θ)2

2σ2
+ λ|θ|+ const, (2.11)

where we use N(∗;µ, σ) and L(∗;µ, λ) to define respectively the Normal and the Laplace
distributions, that is:

L(d;λ, µ) =
λ

2
e−λ|d−µ|. (2.12)

The maximum posterior estimator (MPE) is obtained by minimizing equation (2.11). We
start by taking the derivative with respect θ (that we denote with ∂θ):

∂θ(− logP (θ|x)) = −(x− θ)
σ2

+ λ∂θ|θ| = 0, (2.13)

θ = x− σ2λ∂θ|θ|, (2.14)

since the absolute value is not differentiable around zero (and equivalently the L1 norm ||θ||,
if dealing with multidimensional data), we should take the subgradient, so that we have:

∂θ||θ|| =


1 if θ > 0

−1 if θ < 0

[−1, 1] if θ = 0,

(2.15)

note that for θ = 0 the subgradient is actually an interval of values. We can understand the
soft thresholding solution applying the conditions (2.15) at equation (2.14). First notice that
the term σ2λ∂θ|θ| can only take values in the interval [−σ2λ, σ2λ]. Therefore,considering the
case |x| > σ2λ we must have θ 6= 0 to satisfy condition (2.14). From the same equation we
see that it must be sgn(θ) = sgn(x). In this case, the solution is given by θ = x− sgn(x)σ2λ.
For |x| = λσ2 instead, P (θ|x) is maximum in θ = 0 since limx→σ2λ(x − sgn(x)σ2λ) = 0
(remind that P (θ|x) is continuous). At last, if we have |x| < σ2λ , the only admissible
solution of (2.14) is θ = 0 otherwise, due to condition (2.15), it would give θ < 0 for θ > 0
and vice versa. After these considerations it is clear that the solution coincides with the soft
thresholding operator, that in this case is:

ST (x) = sgn(x)(|x| − σ2λ)+. (2.16)

3 Methodology

The general idea behind this investigation is that foreground signals and the CMB fluctuations
can be disentangled when the data are represented in a proper basis, frame or dictionary, and
that needlets represent an ideal choice to this purpose. Foreground emission comes, in the
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j=1 j=3

j=5 j=6

Figure 1. Needlet coefficients of a Gaussian random realization for some needlet scale j with scale
parameter B=2, the corresponding multipole coverage is: ` = [1, 4] for j = 1, ` = [4, 16] for j = 3,
` = [16, 64] for j = 5, ` = [32, 128] for j = 6.

larger part, from coherent sources concentrated around the galactic plane and in few large
structures that extend at higher galactic latitudes. As we saw in the previous sections, a
space-frequency representation of coherent signals naturally tends to be sparse. We will thus
expect that the contribution from the galactic foreground will be concentrated in few large
coefficients that can be identified and fitted with a needlet thresholding technique. On the
other hand, CMB has very different features, since it is a random isotropic field and not a
coherent signal. Thus, unlike foregrounds, a needlet-space representation of the CMB signal
will not be sparse. The reason is that the CMB mostly does not form coherent structures,
but it is instead a homogeneous fluctuations field at all scales.

The different behaviour of the two components can be immediately appreciated by look-
ing at the needlet decomposition of a CMB realization and a foreground template. We show
in figure 1 the needlet decomposition of a random CMB realization: the signal is spread over
all the coefficients, as expected, given its stochastic nature. Furthermore, it is easy to notice
that only adjacent layers show some level of correlation. Needlets split a continuous field in
several independent realizations, the layers, each one covering a limited range of frequencies.
Figure 2 shows instead the corresponding decomposition of a thermal dust template. We see
how the information is actually concentrated only in few coefficients located near the galactic
plane. The lowest layers trace the diffuse emission while the higher frequency levels contain
only few small scale corrections. Moreover, all scales are highly correlated at any distance in
frequency level, and this is expected since the signal is coherent.

To get further insight into how the thresholding procedure operates in a component
separation context, we now illustrate and justify it within a general Bayesian framework.
As shown in e.g., [33], a Bayesian approach provides a way to describe different component
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j=1 j=3

j=5 j=6

Figure 2. Needlet coefficients of thermal dust template for some needlet scale j with scale parameter
B=2, the corresponding multipole coverage is: ` = [1, 4] for j = 1, ` = [4, 16] for j = 3, ` = [16, 64]
for j = 5, ` = [32, 128] for j = 6.

separation techniques within a unified, general formalism. This approach shows in particular
how different common component separation methods amount to different choices of priors
and marginalized parameters.

We start as usual by assuming to have observations from K channels, with a mixture
of N components and M elements (pixels) in each channel (by “pixel” we mean real space
pixels, a`m, needlet coefficients or the elements of whichever basis is adopted to represent the
signal). We recall then the linear mixture model:

di = Asi + ni, (3.1)

where di is a vector ofK elements representing the observations in a given pixel i, si is a vector
of N elements representing the contribution of the components in the same pixel, A is the
mixing matrix of dimension N ×K, which weighs the contributions of different components
at different frequencies; finally, ni is the noise in the pixel i.

The Bayesian formulation of the component separation problem aims to solve:

P (A, s|d) ∝ L(d|A, s)P (s), (3.2)

as shown e.g., in [33]. With specific assumptions on the priors and eventually variables to
marginalize over, the formulation above can be used to define typically adopted component
separation techniques, such as ILC and SMICA [16, 34]. In our case, we want to introduce
the sparsity assumption on the foreground templates. A similar hypothesis is also at the basis
of the development of other algorithms as, for example, GMCA [20]. We will soon clarify the
differences between the approach discussed here and GMCA.
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As noticed in the previous section, the usual way to enforce sparsity in a Bayesian context
is to assume leptokurtic priors, with the Laplace distribution as a common choice. We thus
want to study the implementation of this kind of prior in a Bayesian component separation
framework.

First, we must rewrite the linear mixture model in a form more suited to our scope,
which is ultimately that of recovering the CMB signal. We assume that the foreground signal
is sparse in the needlet domain, but the CMB is not, this is the main difference with the
GMCA algorithm, which instead implicitly assumes sparsity also for the CMB component.
In more detail, GMCA aims at the reconstruction of the full mixing matrix A and the signal
s by exploiting the morphological diversity of the components in a given basis [35, 36]. In
this work, instead, our purpose is to isolate the cosmological stochastic signal from the other
emissions, avoiding the full reconstruction of the components.
We thus rewrite the linear mixture model assuming that components with a “Gaussian” and a
“non-Gaussian” prior probability coexist in the data. Besides noise, we assume that the only
“Gaussian” component is the CMB; thus we have, in the single pixel:

di = Asi + eci + ni = fi + eci + ni, (3.3)

where we explicitly separate the CMB from the other components, by denoting it with ci,
times the vector of ones e of length K (since the CMB signal is constant between channels).
Furthermore fi = A′si, where A′ is the mixing matrix with the row corresponding to the CMB
set to zero. We rewrite the model in this way because at this stage we are not interested in
the mixing matrix A. Therefore instead of explicitly estimating the underlying N templates,
we consider the linear combination, fi, of all of them, in each of the K channels. We assume
that a Laplace distribution is a proper prior also for this combination.
We now split the problem as follows:

{
P (f, c|d) = P (c|f, d)P (f |d),

P (f |d) ∝ P (f)
∫
∞ dc L(d|c, f)P (c),

(3.4)

→ P (f, c|d) ∝ P (c|f, d)P (f)

∫
∞

dc L(d|c, f)P (c). (3.5)

We can then solve the problem of recovering the CMB component in two steps. We first
find the value f̂ which maximize 3.4, followed by replacing such value in 3.5 and maximizing
again.
Since the noise component is uncorrelated between channels and since in our approach we
are not interested in recovering explicitly the full mixing matrix, we can assume we will
repeat our thresholding procedure independently at each frequency. Therefore, in our present
derivation, we treat d, f and c as single-channel maps. The data likelihood takes the usual
form (Gaussian noise):

L(d|c, f) = N(d; c+ f, Cn) ∝ exp

[
−1

2
(d− f − c)TC−1n (d− f − c)

]
(3.6)

P (c) = N(c; 0, Cc) ∝ exp

[
−1

2
c
T
C−1c c

]
, (3.7)
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where Cn and Cc are respectively the noise and CMB covariance matrices. Therefore we can
write:

L(d|c, f)P (c) ∝ exp

[
−1

2
d
T
C−1n d+ f

T
C−1n d− 1

2
f

T
C−1n f

]
×

× exp

[
−1

2
c
T (
C−1n + C−1c

)
c+ c

T (
C−1n d− C−1n f

)]
, (3.8)

Marginalization over c can be carried out via standard Gaussian integration. We remind:∫
exp

[
−1

2
~xTR~x+ ~BT~x

]
dnx =

√
(2π)n

detR
exp

[
1

2
~BTR−1 ~B

]
, (3.9)

to obtain:

L(d|f) =

∫
∞

dc L(d|f, c)P (c) ∝ exp

[
−1

2
d
T
C−1n d+ f

T
C−1n d− 1

2
f

T
C−1n f

]
×

× exp

[
1

2

(
C−1n d− C−1n f

)T (
C−1n + C−1c

)−1 (
C−1n d− C−1n f

)]
. (3.10)

We then implement the Laplacian prior, again assuming uncorrelation between the channels.
Thus we have P (f) ∝ exp−λ||f || where || ∗ || is the L1 norm. We add this to (3.10) define
R ≡

(
C−1n + C−1c

)
for simplicity of notation. Finally, we differentiate posterior with respect

to the foreground component, to find:

∂f (− log(P (f, d))) = −C−1n d+ C−1n f + C−1n R−1C−1n d− C−1n R−1C−1n f + λ∂f ||f ||, (3.11)

which implies:
f̂ = d−

(
C−1n − C−1n R−1C−1n

)−1
λ∂f ||f ||. (3.12)

As derived in section 2.1, the solution to this problem is the soft thresholding operator, with
threshold

(
C−1n − C−1n R−1C−1n

)−1
λ. Following the above derivation, the central idea of our

study is therefore that of using thresholding as a preliminary tool for foreground cleaning or
foreground template reconstruction, in single channels. This captures morphological infor-
mation in the foreground spatial distribution, at any fixed frequency. Channels can then be
combined and the overall cleaning procedure further refined by applying standard algorithms
that exploit CMB and foreground spectral properties. To this purpose, in the following, we
combine thresholding with template fitting and Internal Linear Combination. Before con-
cluding this section, let us stress here that our thresholding operator is applied to reconstruct
foregrounds and not the CMB component. Reconstructing the CMB via thresholding in
specific representations could break isotropy and Gaussianity, and we explicitly avoid this
potential issue with our approach [37, 38].

3.1 Template Fitting

Template fitting provides estimates of the amplitudes of each component from the fit of known
templates to the data of interest. The results are then subtracted from the data to remove
the spurious signal.

In the linear mixture model (3.1), the distribution of the components over the data is
stored in the matrix s. The templates used should then reproduce the elements of s, other
than the CMB, or a linear combination thereof. Assuming to have the exact templates, the
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linear fit would provide the entries of the mixing matrix A corresponding to the given source
and channel. The result for a collection of Ntemp known templates T fitted to a map y, is the
standard linear regression solution. Calling α the vectors of estimated amplitudes we have:

α =
(
TTC−1T

)−1 (
TTC−1y

)
, (3.13)

where C is the Npix × Npix covariance matrix of the map, which depends on the noise and
the CMB, and T is the Npix ×Ntemp matrix representing the template. The estimation and
the inversion of C is a major limitation in template fitting since, given the high number of
data points collected by modern surveys, it is very large and computationally expensive.

The choice of templates is, obviously, the crucial part of any template fitting technique.
A possibility is that of resorting to external templates from previous experiments or theoretical
modeling. This approach requires a lot of a-priori information on the emissions of interest,
which can be unavailable or unreliable. Relying on external data-sets also runs into the issue
of having to deal with additional systematic effects, cross-calibration problems and so on.
For this reason, most of the modern CMB surveys have been designed with several channels
at foreground dominated frequencies, allowing us to track spurious contaminant components
without having to rely on external information. These templates obtained directly from the
data are called internal templates. The most straightforward approach would be just to use
these foreground dominated maps as templates, for example, a high-frequency channel as a
dust template and a low frequency as synchrotron. However, these maps contain also the CMB
contribution, which would be removed together with the contaminants, so that a correction
factor must be introduced in formula (3.13). Another widely implemented solution is thus
to build linear combinations of different channels so that the constant component (the CMB,
providing that the observations are calibrated to its black body spectrum) vanishes [21, 39].
These combinations usually are computed as the subtraction of adjacent frequency channels.
The major drawback of this approach is that the noise in the internal templates is enhanced
compared with the single channel. A natural application of the thresholding techniques just
described is thus the denoising of the internal difference templates.

In other words, our goal is to clean a “target” map with a given number of noisy fore-
ground templates; a needlet thresholding algorithm is then used to obtain optimal templates
in which the noise component is minimized while preserving the resolution of the starting
template. In the next section, we will discuss in more detail the “optimality” of the thresh-
olding solution for this purpose, and we will show a comparison with other viable estimators.
In our procedure, these templates are then fitted to the target channel, and the fitting coef-
ficients are then used to combine the original templates. The map obtained is an estimate
of the foreground contribution in the target channel, which is then cleaned by subtracting it.
We start by decomposing the data (the target channel and the internal templates) in needlet
coefficients. For each needlet scale j, the templates are then thresholded with threshold λi
and fitted to the data to obtain the amplitude coefficients αi (where i runs over the different
templates). The optimal thresholds are selected in recursive way to maximize the goodness
of fit of the templates with the target channel; namely, we iteratively threshold and fit the
internal templates so that:

χ2 =
∑
k

(
βmapjk −

∑
i αiβ

Ti
jk(λi)

)2
σ2jk

, (3.14)

– 10 –



is minimized. Here, βmapjk represents the target channel at the needlet scale j (With k running
over pixels), βTijk(λi) are the templates thresholded with threshold λi and the coefficients αi
are obtained with the standard template fitting solution. We will discuss other threshold
selection method in the next section.
The templates are thus linearly combined with weights αi and subtracted to the target map
as a standard template fitting procedure. We stress the fact that the cleaned template are
used only to obtain the fitting coefficient, while the full templates are used to clean the map.
This allows us to preserve the linearity of the template fitting procedure. In section 4.3.1, we
will show the results of the application of this algorithm to different simulated data-sets.

3.2 ILC

As a further case study and an example of the versatility of our approach, we merge our
thresholding algorithm with an Internal Linear Combination cleaning procedure. The general
idea is as follows: a thresholding algorithm is “inverted” to remove from the map the most
contaminated coefficients. This is followed by combining the channels, following the usual
ILC prescription. Since we work in needlet space, such method can be straightforwardly
implemented in needlet-based ILC pipelines, such as NILC. However, this is by no means
mandatory, and any other signal representation domain can be chosen in the ILC step.

The overall rationale of the approach is as usual that thresholding exploits complemen-
tary foreground information, compared to ILC, since it allows us to minimize the foreground
contribution in single channels, on the basis of spatial – rather than spectral – features. Merg-
ing the two methods could therefore in principle lead to useful improvements, especially in
experiments where a limited number of frequency channels are available. In the section 4.3.2
we will show the results of the application of our ILC with thresholding procedure, using
simulated data-set and comparing it with the standard approach.

The algorithm developed in these tests is structured as follows. First of all, each channel
map is decomposed in needlet coefficients, and we treat different scales separately. In other
words, we exploit the flexibility of the needlet representation to identify and remove large,
spurious coefficients scale by scale. Note that, to avoid distortions in the spectral energy
distribution of foregrounds, which would compromise the ILC step, in this analysis the masked
coefficients after thresholding must be the same in each channel. In practice, we construct
an initial linear combination of the channels (for example with a preliminary ILC) to identify
the foreground dominated regions as the isotropic residuals in this co-added map. We then
go back to single-channel maps and remove these regions at each frequency. The criterion to
choose the threshold is again recursive and based on the minimization of the anisotropy of
the residual coefficients. More specifically, in the thresholding step, we minimize:

∆j =
1

Nj

∑
k


(
βjk − β

T(λ)
jk

)2
σ2j

− 1


2

, (3.15)

where, as usual, j set the scale, βjk represents the map in needlet space and βTλjk is the map
thresholded with threshold λ, k is the position index (the HEALPix pixels, in our algorithm),
Nj is the number of coefficients at the given layer j and the variance σj can be estimated from
the coefficients themself. After this "pre-cleaning" via thresholding, the different channels are
then combined again with an ILC algorithm to produce a final CMB map. The overall method
can be essentially interpreted as a needlet space masking, where the masked area varies with
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the scale, followed by Internal Linear Combination. At the end of this procedure, we extract
the power spectrum from the cleaned maps, correcting for the missing coefficients with the
standard MASTER technique [40]. The final power spectrum is used as a figure of merit to
assess the performance of both our template fitting and ILC algorithms. The performance of
our algorithms is discussed in the next section.

4 Results

The initial goal of our analysis is that of verifying how well we can reconstruct noisy fore-
ground templates at high resolution, using needlet thresholding. We then focus on the issue
of combining our thresholding procedure with standard component separation methods -
namely ILC and template fitting - with the aim of improving their performance. However,
before moving to these points, we start by quantitatively checking the foreground sparsity
assumption, on which the entire procedure is based.

4.1 Measuring sparsity

Our main goal is to separate the CMB and foreground components, by exploiting the sparsity
of the latter. It is, therefore, useful to start our analysis by defining a metric to quantify
sparsity and verify in detail whether and to which extent this assumption holds in our context
of interest.

It has been proven that a good measure of sparsity is the so-called Gini index [41, 42],
defined as:

GP = 1− 2

∫ 1

0
dC(x)

∫ x
0 dt tP (t)∫∞
0 dt tP (t)

, (4.1)

where P (x) is a positive valued probability distribution, with cumulative distribution C(x).
For an ordered data set, d = {[d1, ..., di, ..., dN ] : di < di+1∀ i < N}, the Gini index can

be estimated with the formula:

Ĝ(d) = 1− 2
N∑
i=1

di∑N
k=1 dk

(
N − i+ 0.5

N

)
. (4.2)

Originally, the Gini index was introduced in social economics to measure the degree of in-
equality of the income distribution of a population. It runs from 0 (perfect equality, every
person has the same wealth) to 1 (perfect inequality, one person owns all the goods) [43]. It is
immediate to notice that the notion of inequality as defined above corresponds to the notion
of sparsity in signal processing. To check the sparsity assumption, we thus measure the Gini
index of different foreground templates and we compare it to a Gaussian realization. Since
the Gini index is defined for positive valued distributions, we use the square of the needlet
coefficients βjk.

Table 1 shows the results for intensity templates of different components, at different
scales j, setting the needlet scaling parameter B = 2 (we remind that each scale j cover the
multipole interval [Bj−1, Bj+1], and the corresponding window function peaks at Bj). We
report the values computed both on the full sky and outside the galactic plane, with a galactic
mask covering the 20% of the sky. The first row refers to a random CMB realization. The
following rows refer instead the principal sources of foreground emission. Since they roughly
follow the shape of the Galaxy, the results are similar between components and are less sparse
outside the galactic plane, where the diffuse emission dominates. We generate the templates
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j 2 3 4 5 6 7 8 9 10 11

`peak 4 8 16 32 64 128 256 512 1024 2048

CMB 0.669 0.652 0.633 0.638 0.637 0.637 0.637 0.637 0.637 0.637

dust 0.599 0.788 0.906 0.957 0.982 0.991 0.993 0.995 0.997 0.997
fsky = 0.8 0.692 0.693 0.809 0.886 0.938 0.969 0.985 0.993 0.997 0.997

syncrothron 0.688 0.844 0.933 0.969 0.986 0.988 0.979 0.989 0.994 0.995
fsky = 0.8 0.719 0.754 0.812 0.870 0.895 0.873 0.844 0.842 0.849 0.868

AME 0.631 0.823 0.940 0.988 0.998 1.000 1.000 1.000 1.000 1.000
fsky = 0.8 0.687 0.694 0.830 0.918 0.954 0.977 0.995 0.999 0.999 0.997

free-free 0.739 0.868 0.941 0.974 0.989 0.995 0.997 0.997 0.997 0.998
fsky = 0.8 0.711 0.852 0.935 0.969 0.983 0.991 0.995 0.997 0.997 0.995

Table 1. Gini index of the square of needlet coefficients β2
jk of various components computed scale

by scale, both full-sky and outside the galactic plane (fsky = 0.8). Values approaching 1 correspond
to a more sparse representation. 0.637 is the expected value for the χ2 distribution.

with the PySM software, based on the Planck sky model [44, 45].
If we start by looking at the Gini index of the square of the CMB coefficients, we notice
that it remains substantially constant between scales and it converges to 0.637 for high j.
This is the expected value for the χ2 distribution, i.e. the distribution of the squares of a
Gaussian random variable. This behaviour reflects what stated in section 2, namely that
the needlet coefficients are asymptotically uncorrelated/independent at higher frequencies. If
we now focus on the foreground components, the first thing we see is that lower frequencies
display lower values of the Gini index. This is due to the fact that lower frequencies represent
diffuse emission, which is not sparse. Layers corresponding to higher multipoles are instead
significantly more sparse, with a high degree of sparsity achieved at j ≥ 3 or ` & 10 in the
corresponding harmonic representation. This reflects the fact that, at smaller scales, we track
single structures rather than a homogeneous fluctuations field. The small scale portion of the
signal can thus be recovered keeping only the coefficients corresponding exactly to the size
and positions of these structures, which are few compared to the total number of cubature
points.
In light of these observations, we, therefore, expect our thresholding-based methods to achieve
significantly better performance at ` & 10.
Let us point out that the fact that very large scales are not sparse does not refute in any way
the overall sparsity assumption. This is of course due to the fact that the cardinality of the
needlet coefficients at a given frequency scales as B2j , thus the number of low j βjk is negligible
compared to the total. Summarizing, we have just verified that foreground templates can be
faithfully represented taking almost all the (few) large scale needlet coefficients and a minimal
portion of the high-frequency ones, selected with a thresholding algorithm. This highlights
how thresholding can also achieve a remarkable level of data compression.

4.2 Template reconstruction

After this preliminary investigation, we now move on to show the actual performance of
thresholding on the recovery of a signal template from noisy data. In this analysis, we use as
benchmark a map obtained from a foreground template at 200 GHz and an isotropic Gaussian
noise realization, with HEALPix nside 512. In order to highlight the denoising properties of
thresholding, we set a very high noise level, so that a large portion of the available scales are
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map signal

smoothing thresholding

Figure 3. Left Panel: Power spectra of the input map (blue), of the noise (black), of the signal
(red) and of the template recovered via thresholding. Right panel: a 30◦ × 30◦ patch extracted from
the input map. Clockwise from the top left: full input foreground signal + noise, input foreground
signal only, reconstructed foreground signal after thresholding, patch smoothed at signal dominated
resolution.

noise dominated. We run a soft thresholding algorithm on this synthetic map: the threshold
is selected following the method introduced in [46], based on the minimization of the Stein
Unbiased Estimate of Risk (SURE), defined as, given a map x and a thresholding operator
STλ(x):

SURE(x) = Nσ2 + ||STλ(x)− x||2 + 2σ2
N∑
i=1

∂

∂xi
(STλ(x)− x)i, (4.3)

where N is the dimension of the map x, i runs over the pixels indices and, in the specific
case of soft thresholding, the last summation corresponds simply to minus the number of
thresholded coefficients.
As expected, thresholding is very effective in recovering the power of the input signal, deep
into the noise dominated region. This is shown in the left panel of figure 3, where the
angular power spectrum of the recovered template (in green) follows faithfully the one of the
input signal (in red) at all scales and well below the noise level (in black). The excellent
performance of thresholding is directly related to what discussed in the previous section.
At high multipoles, corresponding to the noise dominated region in this example, the signal
power is concentrated in a tiny number of very large βjk, whereas the noise power is spread
among all the coefficients. In the right panel, we show the real space reconstruction of signal
structures, compared to the noisy map and the input signal. We also show the map smoothed
at the signal-dominated scale. The comparison with the thresholding results shows clearly
how the latter removes a large part of the noise while also preserving the smallest structures.
In summary, this test shows that thresholding out small coefficients produces an almost
complete suppression of the noise with only marginal loss of the signal power while maintaining
the full resolution of the starting template. Furthermore, as said before, the dimension of
the data set is greatly reduced: the reconstruction presented here use only 7% of the total
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Figure 4. Power spectra of the full map (blue) of the foreground (red), of the input CMB signal
(cyan) and of the CMB reconstruction from the residuals of thresholding (black cross) for simulations
at 143 GHz (left panel) and 217 GHz (right panel).

number of coefficients.
Moreover, the denoising of a foreground template is not the only applications of these

methods. Needlet properties also allow us to separate the coherent (foreground) and stochastic
(CMB, noise) components. Since we have just reconstructed a foreground template, using
only 7% of the map coefficients, it is natural to assume that the residual coefficients provide
a reconstruction of the stochastic component, being it the noise (as in our previous example)
or the CMB. To check for this, we build a map from a foreground template and a CMB
realization. We are interested in the recovery of specific features of the CMB power spectrum,
e.g. the acoustic peaks, thus, for the purpose of this test, we do not need to include noise in
the map. We show the results of this analysis in figure 4, considering two realizations at 143
and 217 GHz respectively. In this case, we used a hard thresholding algorithm implemented
with a threshold selection criterion based on the minimization of the difference between the
Gini index of the residuals with the expected value for a Gaussian field. In both cases we
remove a small part of the galactic plane (fsky = 90%). Note that the size of the mask does
not affect the results of thresholding. We see that the power spectrum of the residuals (black
cross) remarkably follows the CMB one (cyan line) for ` & 20 irrespective of the relative
amplitude of the foreground component (red line). On the other hand, at low multipoles
the reconstruction completely fails. As we commented before, these multipoles represent the
diffuse signal, that is not sparse and cannot be separated from the stochastic background
with this technique.

As a final interesting result we show that, in consequence of the sparsity of foregrounds,
thresholding (and in particular soft thresholding) dominates all linear estimators in terms
of mean square error, when we attempt to reconstruct a foreground template from a noisy
realization. The problem we have dealt with so far is that of estimating a foreground template
f from a single noisy observation d = f + n, where the noise is a Gaussian realization
n = N(0, Iσ), so that d = N(f, Iσ). The usual least square solution would be simply f̂ = d.
In contexts of this type, it however proven that the asymptotically optimal estimator is not
least square but it is the so-called James-Stein (JS) estimator. More specifically, if we focus
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method James-Stein Thresholding
smoothing real space needlets harmonic hard soft

rms (σn = 27.10mK) 0.020σn 0.026σn 0.018σn 0.023σn 0.020σn 0.016σn
rms (σn = 0.75mK) 0.295σn 0.735σn 0.259σn 0.259σn 0.189σn 0.170σn
rms (σn = 0.28mK) 0.493σn 0.925σn 0.429σn 0.426σn 0.315σn 0.286σn

Table 2. Root mean square errors of the real space template in unit of the noise standard deviation
per pixel. The noise levels are set so that the power spectrum match the signal one at ` = 20, 250, 600
(top-down).

on linear estimators, and the dimension of the data-set is greater than 3, the JS estimator
is known to provide be the lowest mean square error, always dominating the least square
solution [47, 48]. We will therefore focus here on this class of estimators to set our performance
benchmark, which we will use to assess thresholding results later on.

Following the notation just defined, the JS estimator of the template f is defined as:

f̂JS =

(
1− (N − 2)σ2∑N

i=1 d
2
i

)+

d (4.4)

where i runs over the mode indices in the chosen representation, N is the dimension of the
data-set and the apex + stand for the positive part. We develop a simple implementation of
this estimator and test it in needlet, harmonic and real space. In real space, the application
is straightforward: d is the map, σ is the noise standard deviation, and N is the number of
pixels. For needlet (harmonic) space we apply the estimator adaptively, scale by scale and
multipole by multipole, so that – for each scale j′ (multipole `) – d in formula 4.4 corresponds
to βj′k (a`′m), while σ2 corresponds to the needlet noise variance σ2j′ (noise power spectrum
C`′). A general implementation would require the computation of the full noise covariance.
However, in our idealized situation, where the noise is white and uncorrelated both in space
and frequency, the solution we provide here is exact. Note that, under the assumption that
signal and noise are independent Gaussian random fields, the harmonic James-Stein estimator
just described would be formally analogous to the Wiener filter solution. Basically, in its
scale/multipole dependent implementation, this estimator suppresses the noise dominated
scales.
As mentioned above, after applying the JS estimator to our case of interest, we compare

its performance to thresholding. In particular, we compare two thresholding algorithms: a
soft thresholding where the threshold is selected minimizing SURE, and a hard thresholding
based on the so-called universal threshold defined as:

λj = σj
√

2 logN, (4.5)

where σj is the noise variance at the scale j and N in the number of needlet coefficients. We
find that, in the case of sparse signals, thresholding dominates (i.e. provides lower mean
square error) even this estimator (and therefore any other linear estimator). We show this
in Table 2, where we list the root mean square errors of the real space template with respect
to the input signal, in units of σnoise for different estimators and noise levels for a 200GHz
foreground template. The central row corresponds to the configuration used in the analysis
shown in figure 3. As said earlier, we compare the results obtained with thresholding with
the JS estimates in real, harmonic and needlet space, and with a simple smoothing at sig-
nal dominated scales (respectively ` = 20, 250, 600 for the three configurations top-down).
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Channel 140 220 240
Beam (arcmin) 110 110 110
σ (µKCMBarcmin) 30 40 80

Table 3. SWIPE specifications

Besides optimality issues, another advantage of needlet methods is that they are completely
blind (under the assumption of white noise), whereas the other approaches assume knowledge
of either the noise Power Spectrum or σpixel. For the smoothing case, also some knowledge
about the signal Power Spectrum is necessary, in order to set the scale of the low-pass filter.
On the contrary, in the needlet methods, the noise standard deviation (that appear both in
SURE and in the JS shrinking factor) is computed directly from the data using the median
absolute deviation (MAD) 1 of the highest frequency layer, knowing that this is noise domi-
nated. As expected, thresholding always provides the lowest rms in these tests. In particular,
soft thresholding with SURE based threshold selection achieves the best results in all cases.
The hard thresholding estimator, based on the universal, threshold also provides good re-
sults, being slightly outperformed by the needlet JS estimator only in the noisiest case. The
improvement is always higher for higher level of noise for all, while the differences between
them are more pronounced for lower noise.
Summarizing, our analyses so far have shown that thresholding achieves the best results in
the extraction of foreground templates from noisy realizations. In the next section, we dis-
cuss some examples of applications of these techniques, in synergy with other component
separation methods.

4.3 Synergy with other methods

In this section, we present the results obtained by applying the techniques described in the
previous sections to different simulated data-sets. We generate two mock datasets using the
PySM software [45], which mimic respectively observations of the Planck mission and of the
SWIPE instrument of the forthcoming LSPE mission [49–51].
LSPE (Large Scale Polarization Explorer) is a forthcoming ASI mission aimed at the mea-
surement of large scale CMB polarization fluctuations. It will scan a large region of the
sky (20%), with two instruments, SWIPE and STRIP. In this work, we concentrate on the
former, SWIPE (Short Wavelength Instrument for the Polarization Explorer). SWIPE will
measure CMB polarization in three frequency channels from a stratospheric balloon flying
long-duration in the northern polar region during the winter night.
Due to its configurations, SWIPE represents a good benchmark for our methods: since it
observes in just three different frequency channels, needlet thresholding can in principle sig-
nificantly improve the results of blind component separation techniques as internal templates
fitting and ILC. Planck simulations, instead, are useful to test the performance of the algo-
rithms on the current state of the art CMB maps and, more in general, on full-sky data-sets
with significant frequency coverage.

4.3.1 Template Fitting

In this section, we test the performance of our internal template fitting pipeline, equipped
with the needlet thresholding method described before. Our aim here is not that of present-

1The MAD times a given factor provides a robust estimator of the standard deviation in presence of
outliers.
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Figure 5. Power spectrum reconstruction with a template fitting algorithm in needlet space – with
and without thresholding – for SWIPE simulations, corrected for the average noise contribution. The
black line represents the average of the power spectra of the maps and the shaded blue area is its
standard error. Green and blue lines represent the mean of the power spectra of the cleaned maps
with and without thresholding respectively. The error bars are the respective standard errors.

ing a full component separation pipeline, but rather that of quantifying the impact of the
application of thresholding techniques on simple template fitting procedures.
As a first test, we produce a set of 100 simulations of the three SWIPE channels, assuming
the Planck cosmology and tensor-scalar ratio r = 0.1, while the foregrounds are generated
following the Planck sky model (see [45] for reference). Given the coarse angular resolution of
the experiment under exam, simulations with HEALPix nside=128 are sufficient. The noise
is assumed to be white, Gaussian and isotropic.
With just three frequency bands, only one internal template can be used. This regime pro-
vides therefore an ideal benchmark to verify the improvement from the pre-processing of the
templates with our denoising algorithm. The internal template is obtained from the difference
between the 240 GHz and the 220 GHz channels, and it is used to clean the 140 GHz cos-
mological channel. As a probe of the flexibility of this technique, we implement two different
pipelines. The former strictly follows the steps described in section 3. The latter still uses
the same procedure to obtain the thresholded template, but the final fit is now performed in
real space.

The overall approach to assess the performance of our method is quite straightforward:
we decompose each set of polarization maps in E and B modes, followed by applying our
template fitting algorithms with and without thresholding. We then measure EE and BB
power spectra in all cases and use them as figure-of-merit, by comparing cleaned spectra with
the input ones.
We show the results of this analysis in figure 5 and 6. We find that, for both techniques
(needlet and real space fit), pre-cleaning the templates with the needlet thresholding provide
noticeable improvements. Especially in the case of B-mode reconstruction, where the noise
dominate the templates, we found that preliminary denoising allows us to successfully recover
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Figure 6. Power spectrum reconstruction using a template fitting algorithm in real space – with
and without thresholding – for SWIPE simulations, corrected for the average noise contribution. The
black line represents the average of the maps’ power spectra and the shaded blue area is its standard
error. Green and the red lines represent the mean of the power spectra of the cleaned maps with and
without thresholding respectively; the error bars are the respective standard errors.

the input power spectrum in a large portion of the multipole space under examination. We
repeat the same kind of analysis on simulations of Planck data. Planck, with 9 frequency
channels, has a much larger frequency coverage than SWIPE, therefore we expect the effects
of template thresholding to be less relevant in this case. Given the preliminary level of this in-
vestigation, we do not produce full resolution simulations but we limit the maps to nside=256
and we restrict the analysis to lmax=500. Since we are looking at diffuse foregrounds on large
scales, this does not alter significantly our final performance assessment. For consistency, all
the template are smoothed to match the Planck channel with lowest resolution, i.e. the 30
GHz channel with a 30 arcmin beam. Our internal templates are built following the SEVEM
pipeline described in [13]. In figure 7 we show results for the cleaning of the 147 GHz channel.
Following the Planck team, we use as internal templates the difference between the channels:
(30-44)GHz, (217-100)GHz, (353-217)GHz. The first traces the synchrotron, while the last
two will trace the dust emission.
Our results are obtained on a set of 50 simulation; as expected in this case, the impact of
thresholding is much less relevant than in the LSPE case. However, some improvement can
still be noticed in the B-mode spectrum reconstruction, where the signal to noise is very low.
Let us note here that, in principle, other denoising techniques can be applied to this problem,
with a good performance in terms of the mean square error. For example, if we focus on the
B-mode maps, a simple smoothing of the template at very low resolution can still produce
an accurate fit. This is because - using the foreground model of our simulations (based on
PySM)- the result is mostly driven by the first few multipoles, where the foreground ampli-
tude is well above the template noise. However, even in cases where the error improvement
by using thresholding is only marginal, we stress the fact that soft thresholding does maintain
a number of important advantages. The main advantage is that thresholding preserves the
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Figure 7. Same results as in figure 5, but for Planck-like simulations.

original resolution of the maps after denoising, thus allowing us to reconstruct and study
the actual structure of the template on smaller scales in real observations. All this can be
achieved at the same time with a huge amount of data compression, as discussed and tested
in detail in the previous section. This last property is of particular interest in the context
of template fitting, because a smaller data-set requires to invert a smaller covariance matrix,
with a remarkable computational gain. No other technique among those we analyzed allows
us to achieve this combined result, i.e., optimality, no loss of resolution and data compression.
If we focus for example on the denoising method described in our previous section, we already
commented how smoothing the maps has the obvious drawback of removing potentially rel-
evant information at small scales. The JS estimator, on the other hand, preserve resolution,
but does not allow for data compression.

4.3.2 ILC

Here we present a similar analysis as in the previous section but we focus on ILC techniques
rather than template fitting. We work on the same set of simulations described before. We
consider a needlet space ILC approach, implemented via the algorithm described in section
3, where the map needlet coefficients are thresholded before combining the channels. We
compare this technique with a needlet space ILC where the weights are left free to vary be-
tween scales. Before applying this “standard” needlet ILC with no thresholding, we mask
the galactic plane with the Planck component separation common mask in polarization. On
the other hand, our method does not need any masking since the thresholding automatically
remove the most contaminated regions. We want to verify how our blind threshold selection
criterion based on the minimization of anisotropy performs with respect to a standard, “a
priori” masking procedure.
Figures 8 and 9 show the results for LSPE and Planck respectively. We find that the results
are comparable, proving that our technique performs well in selecting the foreground con-
taminated regions. We point out here that our currently implemented ILC technique can be
improved in several ways, e.g. changing the weight in different areas of the sky. However,
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Figure 8. Power spectrum reconstruction with ILC with and without thresholding for SWIPE
simulations, corrected for the average noise contribution. The conventions are the same as in previous
figures: the average power spectrum from input simulations is represented in black, with the shaded
blue area showing its standard error. Green and red lines show the average power spectra of the
cleaned map with and without thresholding respectively.

we did not introduce these additional refinements since – as for the previous template-fitting
analysis – they are not required for what we are strictly interested about in this work, namely
the specific impact of thresholding on the cleaning procedure.
These results show how this technique can act as an automatic, blind masking method, with
similar performance as the standard real space mask. It is relevant to notice that this approach
allows recovering the input power spectrum without external assumptions on the contami-
nated areas of the sky (i.e., the masked part of the sky is recovered internally via thresholding,
and no externally generated galactic mask is required). We also stress again that the role of
thresholding, in this case, is conceptually completely different from the denoising performed
in the template fitting algorithm. This is an additional probe of the large flexibility of this
method.

5 Conclusions

In this paper, we showed several applications of needlet thresholding techniques to the problem
of CMB component separation.

The unifying idea behind our study is that of exploiting sparsity of foreground com-
ponents in the needlet representation, as a tool to separate foregrounds from the stochastic
background by exploiting their peculiar morphological features (anisotropy, non-Gaussianity).

In the first part of our analysis, we tested explicitly on simulations that our needlet ex-
pansion of foreground templates is sparse, by using Gini coefficients as a measure of sparsity.
We then showed how thresholding allows reconstructing a noisy template with high accuracy,
up to small scales, well below the noise level. We also made a comparison between differ-
ent denoising techniques, showing that for our purposes, needlet thresholding has the best
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Figure 9. Same results as shown in figure 8, but for EE Power Spectrum of Planck-like simulations

performance in terms of reconstruction accuracy, while preserving the full resolution of the
templates and at the same time achieving strong data compression.

After this investigation, in the second part of our study we implemented specific needlet
thresholding procedures as extensions of existing component separation techniques. We then
verified whether and in which situations this could improve the final CMB reconstruction.
To this purpose, we focused on two well-known component separation procedures, namely
ILC and template-fitting, considering simulated data sets and using as figure of merit the
reconstruction of the input CMB polarization power spectrum. We compared bot soft- and
hard-thresholding schemes and developed different procedures to set the optimal threshold
level.

In the case of ILC, the role of thresholding is that of "pre-cleaning" single channels,
before combining all the frequencies. This captures information on the foreground spatial
distribution, which complements spectral frequency information and can in principle lead to
a more accurate foreground cleaning procedure. In the case of template fitting, we have instead
already discussed how thresholding is a powerful denoising method for internal templates.

After applying our algorithms to realistic simulations of different experimental setups, we
found in practice that thresholding can be useful in experiments with few frequency channels,
in conditions of low signal-to-noise. This is logical, since in these cases the original internal
foreground templates are very noisy and the small frequency coverage reduces the accuracy
of the standard approaches.

The best performance of thresholding in our tests are in particular found when consid-
ering a template fitting technique in an LSPE like experiment, especially for B-mode. Our
ILC-thresholded algorithm, where we set the threshold level to maximize isotropy, gives in-
stead similar results to standard ILC. Similarly, as anticipated, only marginal improvements
are obtained in both cases for a Planck-like experiment with many frequency bands.

After the preliminary exploration discussed in this paper, we will therefore focus in a
future work on developing in detail a full thresholding-based, needlet template-fitting pipeline.
We will also explore the performance of this approach in a different context, namely for
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foreground cleaning and template reconstruction in intensity mapping experiments.
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